04.04.2019 Views

3DModels_for_EVs_Munich_2019_v2_IN

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Studying<br />

Intercellular Communication<br />

by mean of<br />

Extracellular Vesicles in 3D Models<br />

„Optimized Cancer Treatments with 3D Models“<br />

PeloBiotech and ABCbiopply workshop<br />

Irina Nazarenko<br />

Medical Center University of Freiburg<br />

27th March <strong>2019</strong>


Progressing tumor attracts and re-programs<br />

stromal and immune cells<br />

Santi et al, Proteomics, 2017<br />

2 · April 4, <strong>2019</strong>


Tumor releases into microenvironment variety of<br />

different factors<br />

miRNA<br />

mRNA<br />

3 · 4. April <strong>2019</strong><br />

Schwarzenbach et al., Nature Review 2011


4 · April 4, <strong>2019</strong><br />

Emerging complexity of communication mechanisms


Publications frequency of studies investigating<br />

<strong>EVs</strong> in cancer<br />

Keywords used <strong>for</strong> PubMed search<br />

ISEV was founded<br />

in 2011 (Paris, France)<br />

2011 2012 2013 2014 2015 2016 2017 2018<br />

5 · April 4, <strong>2019</strong>


Relevance of extracellullar vesicles <strong>for</strong> liquid biopsy<br />

Modifed - from Stella Kourembanas, Annu. Rev. Physiol.<br />

2015. 77:13–27.<br />

6 · April 4, <strong>2019</strong>


Versatile EV functions in cancer<br />

Kogure et al., Journal of Biomedical Science; <strong>2019</strong><br />

7 · April 4, <strong>2019</strong>


Emerging diversity of extracellular vesicles<br />

EV<br />

Exosomes<br />

50-150 nm<br />

Microvesicles<br />

120-500 nm<br />

Large<br />

Oncosomes<br />

500-800 nm<br />

Apoptotic<br />

Bodies<br />

0.5-4 µm<br />

8 · April 4, <strong>2019</strong>


Biogenesis of extracellular vesicles: microvesicles and exosomes<br />

exosomes<br />

microvesicles<br />

Van Niel and Raposo, Nature Review 2017<br />

9 · April 4, <strong>2019</strong>


Proteomics analysis of small <strong>EVs</strong> (mostly exosomes) and large <strong>EVs</strong> (mostly<br />

microvesicles and oncosomes) show high discrepancy in protein content<br />

Micianchi et al., Oncotarget 2015<br />

10 · April 4, <strong>2019</strong>


The need of physiological in vitro models<br />

in vitro<br />

in vivo<br />

www.yogabox.de<br />

11 · April 4, <strong>2019</strong>


Development of a 3D model<br />

<strong>for</strong> EV production and analysis<br />

Requirements <strong>for</strong> EV production:<br />

‣ 3D environment in serum-free, or EV-free culture medium<br />

‣ Control of cell viability, proliferation, apoptosis and necrosis<br />

‣ High amount of <strong>EVs</strong> produced<br />

‣ Efficient and easy recovery of <strong>EVs</strong> from the 3D cell culture<br />

‣ Possibility to upscale the approach<br />

Requirements <strong>for</strong> modelling of tumor microenvironment<br />

‣ Easy analysis – microscopy, immunohistochemistry<br />

‣ Possibility of co-culture with stroma cells and other<br />

components of tumor microenvironment<br />

12 · April 4, <strong>2019</strong>


Application of 3DCoSeedis TM<br />

to produce and study <strong>EVs</strong> in 3D environment<br />

Models:<br />

Prostate cancer<br />

Breast cancer<br />

Gastrointestinal cancer<br />

13 · April 4, <strong>2019</strong>


Separation of different <strong>EVs</strong> subtypes from 2D and 3D cultures<br />

Cell Culture Supernatant<br />

depletion of cell debries<br />

800 x g and 1000 x g<br />

Centrifugation: 5000 x g <strong>for</strong> 45 min at 4°C<br />

EV5<br />

large oncosomes/<br />

apoptotic bodies<br />

Centrifugation: 12000 x g <strong>for</strong> 45 min at 4°C<br />

EV12<br />

microvesicles<br />

• Ultracentrifugation: 120000 x g <strong>for</strong> 2 h at 4°C<br />

• PEG / or other reagents-based precipitation<br />

• Ultrafiltration<br />

EV120<br />

exosomes and<br />

other small <strong>EVs</strong><br />

Serial filtration steps to remove residual EV<br />

fc fraction<br />

Krafft et al., Nanomedicine 2016<br />

Klump et al., Nanomedicine 2017


Application of 3DCoSeedis TM<br />

to produce and study <strong>EVs</strong> in 3D environment<br />

Models:<br />

Prostate cancer<br />

Breast cancer<br />

Gastrointestinal cancer<br />

15 · April 4, <strong>2019</strong>


Establishment of CWR22-RV1 cells<br />

3D culture conditions<br />

1 day,<br />

FSC<br />

2 day,<br />

FSC<br />

1 day 2 day 3 day 4 day 5 day<br />

Scale bar: 50µm<br />

Input<br />

• 10^6 cells/well<br />

• 5% (EV-depleted) FCS<br />

• 1 matrix= 950 microwells<br />

• 2 matrixes = 16 ml<br />

Liliia Paniushkina<br />

TRA<strong>IN</strong>-EV<br />

ITN-Marie Curie


Comparative analysis of different EV populations from cells<br />

derived from 2D and 3D conditions<br />

Working steps<br />

2D<br />

(225ml)<br />

3D<br />

(16ml)<br />

Cell<br />

Cult<br />

ure<br />

Sup<br />

erna<br />

tant<br />

Differential centrifugation<br />

EV5 EV12 EV120<br />

OptiPrep density gradient<br />

10<br />

fractions<br />

10<br />

fractions<br />

10<br />

fractions<br />

NTA, microBCA, DLS,<br />

qNano analysis


Cells produce more <strong>EVs</strong> under 3D condtitions<br />

***<br />

*** ***<br />

1


EV populations produced under 2D and 3D conditions differ in<br />

their distribution among Optiprep gradient fractions<br />

ug/ul<br />

particles/ml<br />

fractions


qNano measurements of EV5 and EV12<br />

Optiprep fractions from 2D and 3D cultures<br />

EV5_2D,3D<br />

EV12_2D<br />

EV12_3D<br />

NP800<br />

Size range: 250-1200nm<br />

EV5 3D fraction contains<br />

large <strong>EVs</strong> 800-900 nm<br />

NP400<br />

Size range: 250-1000nm<br />

NP400<br />

Size range: 150-1100nm<br />

EV12 3D fraction is more<br />

heterogeneous as 2D<br />

fraction


qNano measurements of EV120<br />

Optiprep fractions from 2D and 3D cultures<br />

EV120_2D<br />

EV120_3D<br />

EV120_2D,<br />

3D<br />

NP100<br />

Size range: 95-<br />

190nm<br />

NP100<br />

Size range: 75-250nm<br />

NP100<br />

Size range: 150-1100nm<br />

EV120 particles from 3D<br />

are smaller


Size distribution of EV5,12,120 vesicles<br />

from 2D and 3D cultures


To sum up<br />

‣ The 3DCoSeedis TM are applicable <strong>for</strong> the EV production in a prostate cancer<br />

model<br />

‣ 3D conditions differentially affect EV population distribution<br />

23 · April 4, <strong>2019</strong>


Application of 3DCoSeedis TM<br />

to produce and study <strong>EVs</strong> in 3D environment<br />

Models:<br />

Prostate cancer<br />

Breast cancer<br />

Richa Khanduri<br />

Gastrointestinal cancer<br />

24 · April 4, <strong>2019</strong>


Studying breast cancer small <strong>EVs</strong><br />

Cel line<br />

MDA-MB-231 BT-549 MCF7 MDA-MB-361<br />

Molecular<br />

Classification<br />

Triple negative<br />

(Claudin low)<br />

Triple negative<br />

(Claudin low)<br />

Luminal A<br />

Luminal B<br />

Tumor Type Adenocarcinoma Invasive ductal<br />

carcinoma<br />

Adenocarcinoma<br />

Adenocarcinoma<br />

Source<br />

Metastasis,<br />

Pleural Effusion<br />

Primary tumor<br />

Metastasis, Pleural<br />

Effusion<br />

Metastasis, Brain<br />

Phenotype<br />

Mesenchymal<br />

(Post-EMT)<br />

Mesenchymal<br />

(Post-EMT)<br />

Epithelial<br />

Epithelial<br />

Receptor<br />

Expression<br />

ER-, PR-<br />

HER2 low , EGFR+,<br />

ER-, PR-<br />

HER2-, EGFR+<br />

ER+, PR+/-,<br />

HER2 low , EGFR low<br />

ER+, PR+/-<br />

HER2+, EGFR+<br />

Tspan8<br />

Expression<br />

TSPAN8 -/low Tspan8- Tspan8- Tspan8+<br />

25 · April 4, <strong>2019</strong>


MDA-MB-231<br />

231-Tspan8<br />

Morphology of cells,<br />

growing under<br />

2D conditons<br />

BT-549<br />

BT-Tspan8<br />

MCF7<br />

MCF7-<br />

Tspan8<br />

26 · April 4, <strong>2019</strong>


Establishment of the 3D culture <strong>for</strong> EV production<br />

MDA-MB-231<br />

MDA-MB-231Tspan8<br />

Day 1 Day 3 Day 5 Day 7 Day 1 Day 3 Day 5 Day 7<br />

MCF7<br />

MCF7-Tspan8<br />

Day 1 Day 3 Day 5 Day 7 Day 1 Day 3 Day 5 Day 7<br />

1000 cells<br />

per microwell<br />

400 cells<br />

per microwell<br />

100 cells<br />

per<br />

microwell<br />

1000 cells<br />

per microwell<br />

400 cells<br />

per microwell<br />

100 cells<br />

per microwell<br />

27 · April 4, <strong>2019</strong>


Establishment of the 3D culture <strong>for</strong> EV production<br />

MDA-MB-231<br />

MDA-MB-231Tspan8<br />

Day 1 Day 3 Day 5 Day 7 Day 1 Day 3 Day 5 Day 7<br />

MCF7<br />

MCF7-Tspan8<br />

Day 1 Day 3 Day 5 Day 7 Day 1 Day 3 Day 5 Day 7<br />

No FBS<br />

FBS Withdrawal<br />

FBS<br />

No FBS<br />

FBS Withdrawal<br />

FBS<br />

28 · April 4, <strong>2019</strong>


Establishment of the 3D culture <strong>for</strong> EV production<br />

MDA-MB-231<br />

MDA-MB-231Tspan8<br />

Day 1 Day 3 Day 5 Day 7 Day 1 Day 3 Day 5 Day 7<br />

MCF7<br />

MCF7-Tspan8<br />

Day 1 Day 3 Day 5 Day 7 Day 1 Day 3 Day 5 Day 7<br />

No FBS<br />

FBS<br />

Withdrawal<br />

FBS<br />

No FBS<br />

FBS<br />

Withdrawal<br />

FBS<br />

29 · April 4, <strong>2019</strong>


Establishment of the 3D culture <strong>for</strong> EV production<br />

MDA-MB-361<br />

2000 cells<br />

per microwell<br />

Day 1 Day 3 Day 5 Day 7<br />

MDA-MB-231<br />

1500 cells<br />

per microwell<br />

231-Tspan8<br />

1500 cells<br />

per microwell<br />

BT-549<br />

1500 cells<br />

per microwell<br />

BT-Tspan8<br />

1500 cells<br />

per microwell<br />

MCF7<br />

2000 cells<br />

per microwell<br />

30 · April 4, <strong>2019</strong><br />

MCF7-<br />

Tspan8<br />

2000 cells<br />

per microwell


Immunohistochemistry of breast cancer cell aggregates<br />

Day 1 Day 3 Day 5 Day 7<br />

MDA-MB-231<br />

231-Tspan8<br />

MCF7<br />

MCF7-<br />

Tspan8<br />

Collaboration with Department of Pathology, P. Bronsert<br />

31 · April 4, <strong>2019</strong>


Characterisation of Extracellular Vesicles by Electron Microscopy<br />

2D<br />

3D<br />

MDA-MB-231 231-Tspan8 MDA-MB-231 231-Tspan8<br />

BT-549<br />

BT-Tspan8<br />

BT-549<br />

BT-Tspan8<br />

MCF7<br />

MCF7-Tspan8<br />

MCF7<br />

MCF7-Tspan8<br />

32 · April 4, <strong>2019</strong>


Breast cancer cells produce higher amounts<br />

of small vesicles in 3D than in 2D culture under normoxia and hypoxia<br />

A. MDA-MB-361 B.<br />

MDA-MB-231<br />

231-Tspan8<br />

<strong>EVs</strong> released per cell<br />

Normoxia<br />

Hypoxia<br />

<strong>EVs</strong> released per cell<br />

<strong>EVs</strong> released per cell<br />

<strong>EVs</strong> released per cell<br />

Normoxia<br />

Hypoxia<br />

C. D.<br />

BT-549<br />

BT-Tspan8<br />

MCF7<br />

MCF7-Tspan8<br />

Normoxia<br />

Hypoxia<br />

Normoxia<br />

Hypoxia<br />

33 · April 4, <strong>2019</strong>


Size of <strong>EVs</strong> produced by the cells, differs under 2D and 3D conditions and<br />

under normoxia and hypoxia<br />

Normoxia<br />

MDA-MB-231<br />

231-Tspan8<br />

BT-549<br />

BT-Tspan8<br />

MDA-MB-361<br />

Hypoxia<br />

MDA-MB-231<br />

231-Tspan8<br />

BT-549<br />

BT-Tspan8<br />

MDA-MB-361<br />

34 · April 4, <strong>2019</strong>


To sum up<br />

‣ The 3DCoSeedis TM are applicable <strong>for</strong> the EV production<br />

‣ 3D conditions differentially affect EV number and size in breast cancer cells<br />

35 · April 4, <strong>2019</strong>


Comprehensive analysis of the effect of 3D<br />

condititions on EV release, cargo and function in<br />

gastrointestinal cancer model<br />

Collaboration study between<br />

Medical Center University of Freiburg (Germany) and<br />

Univeristy of Porto (Portugal)<br />

36 · April 4, <strong>2019</strong>


Cell spheroids and aggregates grow under controlled conditions in<br />

microwell arrays upto 10 days<br />

Rocha et al,<br />

Advanced Science Feb. <strong>2019</strong><br />

37 · April 4, <strong>2019</strong>


Tumor cells produce higher amounts<br />

of small vesicles in 3D than in 2D culture<br />

Rocha et al,<br />

Advanced Science Feb. <strong>2019</strong><br />

38 · April 4, <strong>2019</strong>


Overall up-regulation of miRNAs and down-regulation<br />

of proteins in <strong>EVs</strong> derived from 3D cultures<br />

Rocha et al,<br />

Advanced Science Feb. <strong>2019</strong><br />

39 · April 4, <strong>2019</strong>


ARF6 signaling pathway is downregulated in 3D <strong>EVs</strong><br />

Rocha et al,<br />

Advanced Science Feb. <strong>2019</strong><br />

40 · April 4, <strong>2019</strong>


41 · April 4, <strong>2019</strong><br />

ARF6 signaling pathway is downregulated in 3D <strong>EVs</strong>


42 · April 4, <strong>2019</strong><br />

ARF6 signaling pathway is downregulated in 3D <strong>EVs</strong>


Network integrated analysis revealed<br />

a co-regulation of miRNAs and target proteins<br />

Cell<br />

EV<br />

A. Keller, Saabruecken<br />

43 · April 4, <strong>2019</strong>


Network integrated analysis revealed<br />

a co-regulation of miRNAs and target proteins<br />

miRNAs<br />

in cells<br />

Target<br />

proteins<br />

in <strong>EVs</strong><br />

Rocha et al,<br />

Manuscript in Revision<br />

44 · April 4, <strong>2019</strong>


Network integrated analysis revealed<br />

a co-regulation of miRNAs and target proteins<br />

miRNAs<br />

in cells<br />

Target<br />

proteins<br />

in <strong>EVs</strong><br />

Rocha et al,<br />

Manuscript in Revision<br />

45 · April 4, <strong>2019</strong>


3D conditions modulate functionality of <strong>EVs</strong> in a cell<br />

line-specific manner<br />

Increased uptake of 3D <strong>EVs</strong><br />

Mediation of invasive cell behavior<br />

*<br />

*<br />

46 · April 4, <strong>2019</strong>


Conclusions<br />

‣ 3DCoSeedsis TM are applicable <strong>for</strong> EV isolation, analytic and functional<br />

characterization<br />

‣ Using the 3D microwell array more <strong>EVs</strong>/cell can be isolated in a considerably more<br />

cost- and ef<strong>for</strong>ts- efficient manner than 2D culture<br />

‣ 3D environment is likely to trigger release of smaller <strong>EVs</strong> with increased amounts of<br />

certain miRNAs and decreased amounts of their target proteins<br />

‣ Functional impact of 3D environment on <strong>EVs</strong> differs between cell lines and should be<br />

individually analyzed<br />

47 · April 4, <strong>2019</strong>


https://www.extracellular-vesicles.de/<br />

48 · April 4, <strong>2019</strong>


49 · April 4, <strong>2019</strong><br />

Thery et al., JEV 2018<br />

(ca. 80 co-authors, members of the ISEV community)


International Society of Extracellular Vesicles -<br />

annual meeting ISEV<strong>2019</strong> in Kyoto, Japan<br />

German and Austrian Societies of Extracellular Vesicles -<br />

Autumn meeting and HandsOn Workshop in Freising, <strong>Munich</strong>, Germany<br />

50 · April 4, <strong>2019</strong>


Exosomes and Tumor Biology Group<br />

Our Collaborations:<br />

Freiburg:<br />

Andreas Thomsen (Radiology)<br />

Nikolas von Bubnoff (Hemathology<br />

Oncology)<br />

Marie Follo (Core Facility)<br />

National:<br />

Karlsruhe<br />

Christoph Koos (KIT)<br />

Saabruecken<br />

Andreas Keller (Medical Bioin<strong>for</strong>matics)<br />

Jena<br />

Chirstoph Kraft, Frank Garwe (IPHT);<br />

MSC/ITN Marie Curie<br />

Train-EV<br />

International:<br />

Carla Oliveira, Sara Rocha<br />

(Ipatimub, Porto)<br />

Jean-Charles Sanchez,<br />

Domitille Schvartz (Human Protein<br />

Science, University of Geneve)<br />

apc Biopply (Switzerland)<br />

51 · April 4, <strong>2019</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!