08.10.2020 Views

Generic Boilers 10.8.20

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

CW<br />

Site-Specific Customized to<br />

your boilers and equipment<br />

Boiler<br />

General<br />

Operations<br />

Illustrations and Notes arranged by<br />

Sedley Parkinson, Instructor<br />

Sep 2020<br />

P a g e 1


Table of Contents<br />

Preface: System Design ........................................................................................................................................................... 7<br />

1) Primitive <strong>Boilers</strong> ........................................................................................................................................................... 7<br />

2) Fire Tube <strong>Boilers</strong> ........................................................................................................................................................... 8<br />

i. Multi-Pass ........................................................................................................................................................... 8<br />

ii. Dryback vs. Wetback .......................................................................................................................................... 9<br />

iii. Tube Connections: Roll and Bead ..................................................................................................................... 11<br />

iv. Stays ................................................................................................................................................................. 12<br />

3) Water Tube <strong>Boilers</strong> ..................................................................................................................................................... 13<br />

i. Types of water tube boilers .............................................................................................................................. 13<br />

ii. Tube Connections: Roll and Flare ..................................................................................................................... 18<br />

iii. Downcomer ...................................................................................................................................................... 19<br />

iv. Superheater ...................................................................................................................................................... 20<br />

v. Steam Scrubber: Baffles/Dry Pipe ..................................................................................................................... 21<br />

vi. Mud Drum continuous heater .......................................................................................................................... 21<br />

4) Cast Iron Sectional <strong>Boilers</strong> .......................................................................................................................................... 23<br />

5) Co-Generation ............................................................................................................................................................ 24<br />

a. Electricity ........................................................................................................................................................... 24<br />

b. Turbo Generator ............................................................................................................................................... 26<br />

c. Steam Turbine .................................................................................................................................................. 27<br />

d. Condenser ......................................................................................................................................................... 28<br />

e. Non-Condensing Turbines ................................................................................................................................. 29<br />

f. Combined Cycle ................................................................................................................................................ 30<br />

6) Closed Loop Water Circulation ................................................................................................................................... 31<br />

Aquastat ................................................................................................................................................................ 31<br />

Air Removal ........................................................................................................................................................... 32<br />

Water Expansion Control ...................................................................................................................................... 33<br />

Exterior Circulation Pumps .................................................................................................................................... 34<br />

Closed Loop Corrosion Control ............................................................................................................................. 34<br />

PEX tubing ............................................................................................................................................................. 35<br />

Antifreeze .............................................................................................................................................................. 36<br />

Noncondensing vs Condensing Boiler ................................................................................................................... 39<br />

A) Start Up, Operation and Shutdown .................................................................................................................................. 40<br />

1) Ideal Gas Law: PV=nRT ............................................................................................................................................... 40<br />

i. Heat Pump ........................................................................................................................................................ 42<br />

ii. Dehumidifier ..................................................................................................................................................... 43<br />

iii. Air Compressor ................................................................................................................................................. 44<br />

P a g e 2<br />

CW


CW<br />

2) Temperature vs Heat Content .................................................................................................................................... 45<br />

3) Pressure ...................................................................................................................................................................... 46<br />

i. Vapor Pressure .................................................................................................................................................. 47<br />

ii. Water Phase Expansion ..................................................................................................................................... 51<br />

4) Pressure vs Temperature Chart .................................................................................................................................. 53<br />

i. Sublimation/Deposition .................................................................................................................................... 53<br />

ii. Freezing/Melting .............................................................................................................................................. 55<br />

iii. Boiling/Condensing ........................................................................................................................................... 56<br />

iv. Gauge vs Absolute ............................................................................................................................................ 57<br />

5) Steam Table ............................................................................................................................................................... 58<br />

6) Temperature vs Enthalpy (Btus/Pound)..................................................................................................................... 59<br />

7) Boiler Operational Controllers ................................................................................................................................... 61<br />

B) Fuel: Primary and Backup ................................................................................................................................................. 62<br />

1) Fuel Types ................................................................................................................................................................... 62<br />

i. Natural Gas ....................................................................................................................................................... 62<br />

ii. Liquid Fuels ....................................................................................................................................................... 64<br />

2) Combustion ................................................................................................................................................................ 65<br />

i. Combustion Air ................................................................................................................................................. 66<br />

ii. Spark ................................................................................................................................................................. 68<br />

iii. Flame ................................................................................................................................................................ 69<br />

iv. Air/Fuel Ratio (AFR) .......................................................................................................................................... 71<br />

3. Burners ...................................................................................................................................................................... 73<br />

i. Natural gas ....................................................................................................................................................... 73<br />

ii. Oil Burners ....................................................................................................................................................... 76<br />

iii . Duel Fuel Burners ............................................................................................................................................ 77<br />

C) Plant Equipment Operations ............................................................................................................................................ 77<br />

1) Steam Traps ................................................................................................................................................................ 78<br />

i. Thermodynamic ............................................................................................................................................... 79<br />

ii. Mechanical ...................................................................................................................................................... 80<br />

iii. Thermostatic .................................................................................................................................................... 84<br />

iv. Universal Mount Steam Traps ......................................................................................................................... 86<br />

v. Automatic Pump Trap (APT) = Condensate Pump ........................................................................................... 87<br />

vi. PRV .................................................................................................................................................................. 88<br />

vii. Steam Trap Troubleshooting .......................................................................................................................... 90<br />

2) Desuperheater ............................................................................................................................................................ 91<br />

3) Heat Exchangers ......................................................................................................................................................... 92<br />

i. Shell and Tube .................................................................................................................................................. 92<br />

P a g e 3


CW<br />

High Capacity Instantaneous Steam Fired Water Heater ...................................................................................... 93<br />

ii. Plate and Frame ................................................................................................................................................ 95<br />

iii. HVAC Mixing Boxes ........................................................................................................................................... 96<br />

4) Pumps ......................................................................................................................................................................... 97<br />

i. Reciprocating .................................................................................................................................................... 97<br />

ii. Rotary ............................................................................................................................................................... 98<br />

iii. Centrifugal ........................................................................................................................................................ 99<br />

iv. Multi Stage Pumps .......................................................................................................................................... 101<br />

v. Motor Vibration Monitoring ........................................................................................................................... 102<br />

5) Valves ....................................................................................................................................................................... 103<br />

i. Types .............................................................................................................................................................. 103<br />

ii. Backflow Prevention ....................................................................................................................................... 104<br />

iii. Actuators ........................................................................................................................................................ 105<br />

iv. Water Hammer: Valve Induced ...................................................................................................................... 108<br />

6) Electricity .................................................................................................................................................................. 110<br />

i. Flow ................................................................................................................................................................. 110<br />

ii. VFD: Affinity Law ............................................................................................................................................. 111<br />

D) Hot Piping Systems ......................................................................................................................................................... 113<br />

1) Pipes ......................................................................................................................................................................... 113<br />

i. Manufacture Style .......................................................................................................................................... 113<br />

ii. Composition ................................................................................................................................................... 115<br />

iii. Sizing ............................................................................................................................................................... 116<br />

2) Water Hammer: Steam Driven ................................................................................................................................. 117<br />

i. Water Slug ...................................................................................................................................................... 117<br />

ii. Vacuum Induced ............................................................................................................................................. 117<br />

iii. Inline Steam Separators .................................................................................................................................. 118<br />

3) Condensate/Surge Tank ........................................................................................................................................... 119<br />

5) Feed Water Pumps ................................................................................................................................................... 121<br />

E) Water Quality .................................................................................................................................................................. 122<br />

1) Boiler Water Chemistry ............................................................................................................................................ 122<br />

i. pH .................................................................................................................................................................... 122<br />

ii. Conductivity..................................................................................................................................................... 125<br />

2) Make Up Water ........................................................................................................................................................ 128<br />

i. Water Softener .............................................................................................................................................. 129<br />

ii. Reverse Osmosis (RO).................................................................................................................................... 131<br />

iii. Filtration ........................................................................................................................................................ 133<br />

3) Feed Water: DA Tank ............................................................................................................................................... 137<br />

P a g e 4


CW<br />

i. Temperature Control ...................................................................................................................................... 137<br />

ii. Dissolved Air Removal .................................................................................................................................... 138<br />

4) Boiler Water ............................................................................................................................................................. 140<br />

i. Caustic Embrittlement .................................................................................................................................... 140<br />

ii. Scale Control: Residual Hardness ................................................................................................................... 141<br />

iii. Residual Oxygen Pitting Control: Oxygen Scavengers ..................................................................................... 142<br />

iv. Surface blowdown .......................................................................................................................................... 143<br />

v. Sludge and Settlement Control: Bottom Blowdown ....................................................................................... 144<br />

vi. Water Column Blowdown............................................................................................................................... 146<br />

5) Condensate: Carbonic Acid ...................................................................................................................................... 147<br />

6) Combination Chemical Treatment ........................................................................................................................... 149<br />

7) Chemical Feed Pumps ............................................................................................................................................... 150<br />

G) System Documentation / Plant Performance ................................................................................................................ 151<br />

1) Pressure Gauges ....................................................................................................................................................... 151<br />

i. Bourdon Tube ................................................................................................................................................. 151<br />

ii. Pressurestat .................................................................................................................................................... 152<br />

iii. Pig Tale / Syphon Loop ................................................................................................................................... 152<br />

2) Flow Meters .............................................................................................................................................................. 153<br />

i. Differential Pressure ....................................................................................................................................... 153<br />

ii. Ultrasonic ....................................................................................................................................................... 155<br />

iii. Coriolis Oscillation .......................................................................................................................................... 155<br />

iv. Positive Displacement .................................................................................................................................... 156<br />

3) Energy Measurement ............................................................................................................................................... 157<br />

4) Emissions (Air Pollution) ........................................................................................................................................... 158<br />

i. Boiler Mact .................................................................................................................................................... 158<br />

ii. Acid Rain ........................................................................................................................................................ 159<br />

iii. NO x, HC and CO Control ................................................................................................................................. 160<br />

iv. CO ₂ (Green House Gasses) ............................................................................................................................. 165<br />

H) Emergency Generator .................................................................................................................................................... 166<br />

1) Arc Flash ................................................................................................................................................................... 166<br />

2) Generator System Components ............................................................................................................................... 167<br />

I) Routine Equipment Maintenance .................................................................................................................................... 169<br />

1) EMP (Equipment Maintenance Plans) ...................................................................................................................... 169<br />

2) Lock Out / Tag Out .................................................................................................................................................... 170<br />

J) Inspection Preparation .................................................................................................................................................... 171<br />

1) Internal vs. Operational ............................................................................................................................................ 171<br />

2) Refractory ................................................................................................................................................................. 172<br />

P a g e 5


CW<br />

3) Seal Ropes ................................................................................................................................................................ 173<br />

K) Safety Systems ................................................................................................................................................................ 174<br />

1) Emergency Stop Button ............................................................................................................................................ 174<br />

2) Earthquake Shutoff .................................................................................................................................................. 174<br />

3) Pop-Off Valve............................................................................................................................................................ 175<br />

4) OS&Y ......................................................................................................................................................................... 175<br />

5) Safety Limit Controls ................................................................................................................................................ 176<br />

a. Boiler Failure Examples ................................................................................................................................... 176<br />

b. Fuel Line Limit Controllers ............................................................................................................................... 177<br />

c. Air Flow Proving Switches ................................................................................................................................ 178<br />

d. Fuel Line Train Parts ........................................................................................................................................ 179<br />

e. Flame Scanner ................................................................................................................................................. 183<br />

f. Water Column .................................................................................................................................................. 187<br />

g. Carbon Monoxide ............................................................................................................................................ 189<br />

L) Facilitating and monitoring receipt of fuels .................................................................................................................... 190<br />

M) Efficiency........................................................................................................................................................................ 191<br />

1) Causes of Inefficiency ............................................................................................................................................... 191<br />

2) Effects of Inefficiency ............................................................................................................................................... 196<br />

3) Economizer ............................................................................................................................................................... 197<br />

4) LEED Program ........................................................................................................................................................... 198<br />

Section 107 of the Copyright Act provides the statutory framework for determining whether something is a fair use and identifies<br />

certain types of uses—such as criticism, comments, news reporting, teaching, scholarship, and research.<br />

P a g e 6


CW<br />

Preface: System Design<br />

1) Primitive <strong>Boilers</strong><br />

Hero’s Engine<br />

around 50 AD<br />

Alexandria,<br />

Roman Empire<br />

Cugnot’s<br />

Steam Car<br />

around 1769<br />

Paris, France<br />

Newcomen<br />

Steam Engine<br />

around 1770<br />

London, England<br />

Single, steam driven piston<br />

Primitive boilers were generally, large<br />

spheres with a fire underneath.<br />

P a g e 7


2) Fire Tube <strong>Boilers</strong><br />

i. Multi-Pass<br />

Multi-Pass <strong>Boilers</strong><br />

1 Pass<br />

CW<br />

Electrical combustion air<br />

blowers spurred the<br />

advancement of the use of<br />

tubes in a boiler.<br />

1 and 2 pass boilers have no<br />

baffles<br />

2 Pass<br />

3 Pass<br />

Baffles control direction<br />

of flue gases<br />

4 Pass<br />

Multi-pass Vertical Firetube<br />

Passes: 1 2 3 4<br />

Stack & Burner: O S O S<br />

O = Opposite End<br />

S = Same End<br />

P a g e 8


CW<br />

ii. Dryback vs. Wetback<br />

P a g e 9


CW<br />

ICB: InterCooled Back boiler<br />

P a g e 10


CW<br />

iii. Tube Connections: Roll and Bead<br />

Fire tubes are often referred to as “flue tubes”.<br />

P a g e 11


CW<br />

iv. Stays<br />

Stays are often installed in high<br />

pressure fire tube boilers to help<br />

offset stress difference on the<br />

flat plates in the open steam<br />

section.<br />

diagonal stays<br />

Some fire tube boilers have a dry<br />

pipe which helps prevent water<br />

droplets from escaping into steam<br />

lines.<br />

When corrosion or cracks in<br />

the staybolt reach the drilled<br />

telltale hole, steam is<br />

released, alerting the<br />

operator. (Typical in some<br />

types of locomotive steam<br />

engines)<br />

P a g e 12


CW<br />

3) Water Tube <strong>Boilers</strong><br />

i. Types of water tube boilers<br />

Babcock & Wilcox<br />

Boiler, 1867<br />

To greatly increase<br />

heating surface area,<br />

water was sent<br />

through tubes in the<br />

refractory.<br />

Stirling Boiler,<br />

1898<br />

Bottom tubes often became plugged with<br />

sediment. The invention of the mud drum,<br />

along with blowdown lines overcame this issue.<br />

P a g e 13


CW<br />

Flex Tube Bryan ®<br />

Flex Tube<br />

Closed Loop<br />

(Hot Water) Flex<br />

Tube Boiler<br />

The unique flexible bent tube design prevents<br />

all possible damage from thermal shock and<br />

related problems. Bryan Flexible Tubes are<br />

easily removable and replaceable, allowing<br />

for quick and simple boiler maintenance.<br />

Steam Generating<br />

Flex Tube Boiler<br />

P a g e 14


CW<br />

Circular Coil<br />

Circular Coil<br />

Boiler<br />

Clayton ® Steam Generator<br />

with integrated superheater<br />

P a g e 15


CW<br />

Panel<br />

Welllons ®<br />

Panel Boiler<br />

Modulated HRSG (Heat Recovery Steam Generator)<br />

P a g e 16


CW<br />

O, D, A Type<br />

“O” Type<br />

“A” Type<br />

“D” Type<br />

Back<br />

P a g e 17


CW<br />

ii. Tube Connections: Roll and Flare<br />

P a g e 18


CW<br />

iii. Downcomer<br />

spelling!<br />

Mud drum<br />

Downcomer tubes bring water that didn’t<br />

turn to steam back to the bottom drum.<br />

No pump is needed: water has less mass in<br />

the tubes where the water is boiling (steam<br />

bubbles) creating a natural circulation<br />

P a g e 19


CW<br />

iv. Superheater<br />

The superheater relief<br />

valve is set to pop before<br />

boiler relief valve.<br />

Steam Superheater<br />

Steam temperature is increased by passing though<br />

fire chamber 2 nd time (pressure stays the same).<br />

1. The additional energy in the steam<br />

allows more work to be done.<br />

2. With the steam above the saturation<br />

point (boiling point), any water droplets<br />

that may have escaped the boiler<br />

(priming), are automatically flashed into<br />

steam, this protects critical parts such as<br />

turbine blades from physical damage.<br />

The Bleeder is used to maintain a flow of steam<br />

through the super heater during light-off and shut<br />

down when the boiler main steam stops are shut.<br />

P a g e 20


CW<br />

v. Steam Scrubber: Baffles/Dry Pipe<br />

vi. Mud Drum continuous heater<br />

Simple interior port for water level columns<br />

P a g e 21


CW<br />

Steam Scrubber and outlet<br />

Downcomer tubes<br />

Surface Blowdown<br />

(skimmer)<br />

Purple line for soot<br />

blower (not used)<br />

Feed water<br />

Chemical Injection<br />

(from bypass feeder)<br />

Steam is sent through mud drum on<br />

boilers that are “waiting” (standby) for<br />

a faster startup when boiler is needed<br />

P a g e 22


CW<br />

4) Cast Iron Sectional <strong>Boilers</strong><br />

To increase capacity, add sections<br />

Multiple stacks indicate CIS<br />

boilers, making flue gas flow<br />

over sections more uniform.<br />

CIS boilers operate at


CW<br />

5) Co-Generation<br />

a. Electricity<br />

Tesla vs. Edison<br />

Direct Current:<br />

One Way Flow<br />

Using Tesla’s new AC technology, Westinghouse<br />

entered the low bid well under Edison to produce<br />

electricity for the 1893 World’s Fair held in NY City.<br />

They used water driven turbines on the Niagara Falls.<br />

In an effort to discredit AC electricity and its inventor,<br />

Nikoli Tesla (who once worked for Edison), Thomas<br />

Edison publically electrocuted a series of animals<br />

including Topsy the elephant in 1903.<br />

Alternating Current: Switches Back and<br />

Forth from Positive to Negative<br />

Single Phase AC<br />

Hertz = rotations per second<br />

Three Phase AC<br />

P a g e 24


CW<br />

The Grid<br />

the Grid<br />

Base Load Power Plants run<br />

continuously while Intermediate and<br />

Peak Plants meet local load demands<br />

Transmission<br />

Energy Losses<br />

P a g e 25


CW<br />

b. Turbo Generator<br />

Stator:<br />

Stationary<br />

Wire Windings<br />

Turbo<br />

Generator<br />

Rotor:<br />

DC induced magnetic fields<br />

When the rotor’s magnetic field passes by the<br />

stator’s wire windings, electrons are repeatedly<br />

pushed then pulled through the metal, creating<br />

an alternating electric current (AC).<br />

Same working principle as your car’s alternator<br />

P a g e 26


CW<br />

c. Steam Turbine<br />

Rotors<br />

(rotating)<br />

Stators<br />

(stationary)<br />

Lower pressure steam for facility use can be taken from various locations in turbine shell via extraction ports.<br />

P a g e 27


CW<br />

d. Condenser<br />

Condenser<br />

Condensers are located after the<br />

turbines to cool used steam.<br />

The faster steam is cooled the faster it shrinks,<br />

creating a vacuum, “pulling” on the turbines.<br />

Inside Condenser<br />

Cooling Towers Serve the Condenser<br />

hot moist air ↑<br />

heat exchange packing<br />

cool air→<br />

P a g e 28


CW<br />

e. Non-Condensing Turbines<br />

Non-Condensing (Back Pressure) Turbines<br />

No Condenser or Cooling Towers.<br />

Steam is used in process or<br />

heating (no energy loss through<br />

cooling tower).<br />

In the backpressure turbine configuration, the turbine does<br />

not consume steam. Instead, it simply reduces the pressure<br />

and energy content of steam that is subsequently exhausted<br />

into the process header.<br />

In essence, the turbo generator serves the same steam<br />

function as a pressure-reducing valve (PRV)—it reduces<br />

steam pressure—but uses the pressure drop to produce<br />

highly valued electricity in addition to the low-pressure<br />

steam.<br />

P a g e 29


CW<br />

f. Combined Cycle<br />

CCPP: Dual Shaft<br />

CCPP: Single Shaft<br />

P a g e 30


CW<br />

6) Closed Loop Water Circulation<br />

Aquastat sets hot water<br />

Aquastat boiler temperature ranges<br />

Closed Loop (water only boilers)<br />

Probe with coils are<br />

generally for air<br />

temperature.<br />

STRAP-ON SURFACE<br />

TEMPERATURE PROBE<br />

Temperature probe bulb<br />

fits into thermowell.<br />

Low Limit:<br />

Turns on the burner<br />

view from inside vessel<br />

Differential:<br />

Normal operating range<br />

above low limit (turns off burner)<br />

Triple Aquastat<br />

High Limit:<br />

Safety Cutoff<br />

Manual reset indicates this is a high<br />

temperature limit safety cutoff<br />

P a g e 31


CW<br />

Air Removal<br />

Air Removal<br />

Closed Loop Continued<br />

Air Vent<br />

Air Scoop<br />

Open<br />

Air under pressure<br />

is blown out<br />

Closing<br />

Water replaces air<br />

Closed<br />

Poppet floats and<br />

seals top<br />

Air Separator<br />

Manual Radiator<br />

Air Bleed Valves<br />

Auto Radiator Air<br />

Bleed Valves<br />

Air escapes from the radiator through the valve until water<br />

enters and expands the hygroscopic washers.<br />

P a g e 32


CW<br />

Water Expansion<br />

Control<br />

Water Expansion Control<br />

Closed Loop Continued<br />

Expansion tanks located at<br />

the highest point in the<br />

closed loop do not need air<br />

separators. They usually<br />

have a sight glass and should<br />

be at least 1/3 rd empty.<br />

Expansion<br />

Joints<br />

To extend the life of the<br />

diaphragm/bladder<br />

compression tank, it is<br />

usually placed on the cold<br />

end of the loop.<br />

P a g e 33


Exterior Circulation Pumps Pumps<br />

Closed Loop Continued<br />

CW<br />

While a steam boiler’s pressure<br />

forces the circulation of the steam,<br />

a closed loop system needs pumps<br />

to circulate the water.<br />

Closed Corrosion Loop Control<br />

Corrosion in electric closed loop boiler<br />

SPEC: Molybdates (“Moly”), Nitrites, or<br />

Silicates are added as a corrosion inhibitor to<br />

closed loop systems via bypass feeders or<br />

direct injection pumps.<br />

P a g e 34


PEX tubing<br />

Closed Loop Continued<br />

CW<br />

PEX: No corrosion<br />

An aluminum layer or EVOH barrier (Ethylene-Vinyl<br />

Alcohol copolymer) prevents oxygen penetration.<br />

(3 layers)<br />

(5 layers)<br />

PEX Al PEX<br />

P a g e 35


CW<br />

Antifreeze<br />

Closed Loop Continued<br />

Prevents freezing in Closed Loops<br />

during shut downs.<br />

PG<br />

C₃H₈O₂<br />

Composition<br />

EG<br />

C2H6O2<br />

Food Grade<br />

(You can drink it)<br />

Safety<br />

Toxic<br />

(Follow proper use and<br />

disposal guidelines)<br />

Nitrites are added to<br />

prevent corrosion.<br />

Cost (as of 2014)<br />

Inhibitor = Nitrites<br />

= corrosion prevention<br />

Because of safety, food-processing closed loop<br />

boilers generally are charged with Propylene<br />

Glycol.<br />

Use<br />

Because of cost, nonfood-processing closed loop<br />

boilers generally are charged with Ethylene Glycol.<br />

Automobile engine antifreeze usually<br />

contain antifoams, coagulants, dyes and<br />

other additives which may or may not<br />

effect a boiler’s proper operation.<br />

P a g e 36


CW<br />

Measurement<br />

Refractometer:<br />

Chemical concentration effects<br />

refraction angle.<br />

Float Type<br />

Antifreeze testers<br />

Since non-food grade (cheaper) antifreeze is generally<br />

used in automobile engines, these type of testers<br />

indicate freeze point of Ethylene Glycol.<br />

Glycol Mixing Tanks<br />

1. Allows water to raise to room temperature before entering system, removing dissolved air.<br />

2. A convenient way to make sure your percentage is correct.<br />

P a g e 37


CW<br />

Concentration vs Freeze Point<br />

Glycols 70%<br />

Freeze point starts<br />

to go back up!<br />

50/50 Blend: Typical Use Recommendation<br />

P a g e 38


CW<br />

Condensing Boiler<br />

Noncondensing vs Condensing Boiler<br />

More efficient use of flue gas<br />

Closed Loop Continued<br />

A condensing boiler<br />

Non-Condensing<br />

Boiler with separate<br />

condensing chamber<br />

Acidic condensate flows<br />

across neutralizing<br />

marble type chips<br />

preventing possible<br />

damage to sewer lines<br />

Notice PVC drain line<br />

for acidic condensate<br />

P a g e 39


CW<br />

A) Start Up, Operation and Shutdown<br />

1) Ideal Gas Law: PV=nRT<br />

When Temperature↑ and Volume stays the same, then Pressure↑<br />

= BOILER<br />

When Pressure↑ and Volume stays the same, then Temperature↑ = AIR COMPRESSOR<br />

The INTERCOOLER uses water or<br />

outside air to cool compressed<br />

air in-between stages.<br />

2 nd Stage<br />

1 st Stage<br />

When Pressure↓ and Volume stays the same, then Temperature↓ = Propane Tank<br />

P↓ × V c = T↓ : Refrigeration<br />

ICE !<br />

Hot<br />

(Restricting Orifice)<br />

Cold<br />

Various types of expansion valves<br />

Air Conditioning<br />

* Simplified for training purposes. Actual:<br />

P a g e 40


CW<br />

If<br />

↓<br />

then<br />

↑ ↓ ↑<br />

If<br />

↑<br />

↑ ↑<br />

then<br />

↓ ↑ ↓<br />

P a g e 41


CW<br />

i. Heat Pump<br />

Around 37°F many heat pumps reach what is<br />

called the balance point where the heat pump<br />

needs to run constantly to maintain a<br />

comfortable indoor temperature. Efficiency<br />

drops as you approach this point.<br />

Reversing Valve<br />

P a g e 42


CW<br />

ii. Dehumidifier<br />

DEHUMIDIFIER<br />

AIR OUTLET,<br />

NEAR SAME<br />

TEMPERATURE<br />

AS INLET<br />

Dehumidification Kiln: Room<br />

Temperature Wood Drying<br />

HVAC Dehumidification Air Handler<br />

P a g e 43


CW<br />

iii. Air Compressor<br />

Atomizing and<br />

Control Air<br />

Point of use PRV<br />

P a g e 44


Temperature<br />

CW<br />

2) Temperature vs Heat Content<br />

: through nonmoving or solid parts<br />

: through moving substances, such<br />

as water, steam, or air<br />

: through energy waves, even<br />

travels through a vacuum (such as the sun<br />

transfers heat to Earth through space)<br />

Latent heat of<br />

liquefaction<br />

Latent heat of<br />

vaporization<br />

vaporizing →<br />

BTUs<br />

Latent Heat:<br />

BTUs<br />

← condensing<br />

P a g e 45


Temperature<br />

CW<br />

@ 0 psig = 1 Atm = sea level<br />

Saturated Steam = steam at the boiling pt.<br />

Superheated<br />

(above the<br />

boiling pt.)<br />

32°F 212°F<br />

0°C 100°C<br />

970.3 BTUs to boil 1 # of H 2O<br />

Water at 32°F<br />

contains 0 BTUs<br />

(beginning point for<br />

BTU measurement)<br />

-144BTU 0BTU 180BTU 1150.3BTU<br />

Heat Content<br />

1 BTU = heat needed to change 1 lb. of water 1°F<br />

To change 1 lb of:<br />

Ice 1º F, add 0.5 Btu<br />

Steam 1º F, add 0.45 Btu<br />

1 BTU also is about equal<br />

to heat given off by one<br />

match stick burning<br />

How many BTUs does one pound of steam contain at 212°F at Sea Level?<br />

32 ºF water to 212 ºF water takes 180BTU/lb. 180<br />

212 ºF water to 212 ºF steam takes 970.3BTU/lb. +970.3<br />

1150.3 BTUs<br />

P a g e 46


CW<br />

3) Pressure<br />

i. Vapor Pressure<br />

Absolute Zero = Perfect Vacuum<br />

Vapor Pressure<br />

0<br />

Vacuum<br />

Maximum water<br />

content in air =<br />

saturation point<br />

Evaporation or<br />

Vaporization<br />

Vaporization ><br />

Condensation<br />

Vaporization =<br />

Condensation<br />

Equilibrium<br />

Pressure changes with Temperature (molecules<br />

move around more when heated)<br />

Saturation Point<br />

(Equilibrium) changes with<br />

Temperature and Pressure<br />

and becomes the<br />

Saturation Curve<br />

P a g e 47


CW<br />

Saturation Curve<br />

Saturation Curve<br />

Saturation Curve<br />

1000gH20 / Kg Air<br />

all air is water vapor<br />

Equilibrium = Saturation Curve = Dew Point<br />

Water vapor in air<br />

400g<br />

300g<br />

200g<br />

100g<br />

0 K= -273°C= -460°F<br />

No water vapor in air<br />

No molecular movement<br />

Absolute zero temperature<br />

temperature increase →<br />

373 K=100°C=212°F<br />

All water vaporized<br />

(@0psig)<br />

0g<br />

Water droplets, suspended in the air,<br />

form as humid air temperature drops<br />

past the saturation curve.<br />

←temperature drop<br />

H 2O falls out as dew and frost,<br />

OR rain and snow.<br />

f<br />

r<br />

o<br />

s<br />

t<br />

d<br />

e<br />

w<br />

Freeze Point<br />

P a g e 48


Air Moisture Content →<br />

CW<br />

Adiabatic Process<br />

Adiabatic Process<br />

Moist air rises over mountains: lower air pressure,<br />

vapor condenses on dust particles forming<br />

suspended droplets or ice crystals (clouds).<br />

Descending clouds increase in<br />

air pressure, clouds evaporate<br />

back into vapor = Rain Shadow.<br />

Rain/Snow →<br />

Temperature Increase →<br />

Same principle applies<br />

to large air masses<br />

P a g e 49


Extreme<br />

Precipitation<br />

CW<br />

A combination of the adiabatic process and<br />

the inability of cold air to hold moisture, the<br />

Dry Valleys of Antarctica is said not to have<br />

any measurable precipitation for over<br />

2,000,000 years.<br />

The Brahmaputra Mountains in Eastern<br />

India reports the highest average rainfall of<br />

467 inches per year.<br />

P a g e 50


CW<br />

ii. Water Phase Expansion<br />

Water to Vapor Expansion<br />

Water to Vapor<br />

When Temperature ↑ and Pressure stays the same, then Volume must ↑<br />

v = 0.01672 ft 3<br />

Now imagine a 500 gallon boiler rupturing and instantly filling the building with 111,700 ft 3<br />

(100 hot air balloons) of flash steam<br />

Denver: 500 gallon boiler explosion<br />

P a g e 51


Water<br />

to Ice Expansion<br />

to Ice<br />

Expansion<br />

Slightly<br />

negative<br />

Freezing: +10%<br />

Melting: - 9%<br />

CW<br />

Slightly<br />

positive<br />

Slightly<br />

positive<br />

Water to Ice Volume Expands about 10%<br />

Which is about the same as:<br />

10 ft 3 water making 11 ft 3 of ice<br />

Hexagonal shape<br />

60°<br />

…, and Ice Floats (less<br />

dense)<br />

60°<br />

…, and breaks lines<br />

P a g e 52


Sea Level<br />

Pressure<br />

4) Phases Pressure vs Temperature of Water Chart<br />

Pressure vs. Temperature<br />

CW<br />

Freeze Point<br />

Curve<br />

Evaporation<br />

Curve<br />

14.7 psia<br />

= 0 psig<br />

= 1 atm<br />

= 1 bar<br />

Solid<br />

As Pressure increases, H 2O favors<br />

the state that takes up less space,<br />

NOTICE: the slight backwards freeze<br />

Sea Level<br />

curve and the forward boiling curve.<br />

Vapor<br />

Triple<br />

Point<br />

(not to scale)<br />

Absolute Zero<br />

(Theoretical)<br />

Temperature<br />

32°F<br />

0°C<br />

212°F<br />

100°C<br />

Solid<br />

Vapor<br />

Where Freeze Point Curve, Evaporation Curve and Sublimation Curves Meet<br />

= 0.09psia and 32.02°F<br />

Triple<br />

Point<br />

P a g e 53


CW<br />

i. Sublimation/Deposition<br />

Home Unit<br />

Freeze Dryer<br />

Sublimation<br />

= Freeze Dryers<br />

Low temperature and pressure<br />

Vacuum<br />

Chamber<br />

2. About 90% of the food’s<br />

moisture is drawn off by<br />

sublimating the ice at<br />

temperature as low as -60º F<br />

P a g e 54


CW<br />

ii. Freezing/Melting<br />

Newly formed water<br />

from the higher<br />

pressure on the ice<br />

directly underneath the<br />

blades acts as a<br />

lubricant.<br />

Regelation: with pressure<br />

gone, liquid returns to sold.<br />

Lake Mille Lacs, MN<br />

On rare occasions, regelation can<br />

occur when the water at the bank<br />

of a heavily ice covered, deep lake<br />

is exposed to lower psi and the<br />

water in the lake is at or below<br />

freezing. Water will “flash” into<br />

ice and move forward until<br />

backpressure stops the reaction.<br />

P a g e 55


CW<br />

iii. Boiling/Condensing<br />

Vapor Cone: condensation by extreme high pressure<br />

High altitude vapor cones are<br />

actually suspended ice crystal<br />

cones…. Deposition !<br />

As a result of the sudden expansion of the nuclear explosion, high psi<br />

increase condenses vapor into suspended water droplets. This water then<br />

evaporates back to invisible vapor as the high-pressure shock wave passes.<br />

P a g e 56


CW<br />

iv. Gauge vs Absolute<br />

psig<br />

(gauge)<br />

psia<br />

(absolute)<br />

H 2O<br />

boiling pt<br />

Perfect Vacuum -14.7 0 °F<br />

Near Vacuum -14.5 0.2 53°<br />

Mt. Everest -5.6 9.1 157°<br />

Milwaukee, WI -0.3 14.4 210.9°<br />

Sea Level 0 14.7 212°<br />

Dead Sea 0.8 15.5 215°<br />

Example: a boiler psi 100 114.7 337°<br />

Sea Level =<br />

1 atmosphere<br />

= 14.7 psia<br />

= 0 psig<br />

Space = a vacuum<br />

psia = 0<br />

psig = -14.7<br />

Mt. Everest = 29,029 ft<br />

Dead Sea = -1378 ft<br />

Milwaukee = 617 ft<br />

The boiling point changes about 1˚<br />

for each 550 ft change in elevation<br />

High altitude cooking instructions: 3500 to 6500 ft<br />

Increase simmer time to 19 min (with lower boiling<br />

temperature, it takes longer to cook food.)<br />

Vacuum<br />

pump<br />

Vacuum<br />

jar<br />

P a g e 57


Psig<br />

Inches of Hg (Vacuum)<br />

CW<br />

5) Steam Table<br />

Gauge<br />

Pressure<br />

Psia<br />

Boiling<br />

Point<br />

ºF<br />

Btu content of<br />

1 lb. of water<br />

at B.P.<br />

Btu needed to<br />

turn 1 lb. of water<br />

at B.P. into steam<br />

Btu content<br />

of saturated<br />

steam<br />

Volume<br />

of water<br />

ft 3 /lb at B.P.<br />

Volume<br />

of steam<br />

ft 3 /lb at B.P.<br />

29.7 0.09 32.02 0 1075.8 1075.8 0.01602 3306<br />

29.5 0.2 53 21 1063.8 1085.0 0.01603 1526<br />

27.9 1.0 102 70 1036.3 1106.0 0.01614 334<br />

19.7 5.0 162 130 1001.0 1131.0 0.01641 73.5<br />

9.6 10.0 193 161 982.1 1143.3 0.01659 38.4<br />

7.5 11.0 198 166 979.3 1145.0 0.01665 35.1<br />

5.5 12.0 202 170 976.6 1146.6 0.01667 32.4<br />

3.5 13.0 206 174 974.2 1148.1 0.01667 30.1<br />

1.4 14.0 210 178 971.9 1149.5 0.01670 28.0<br />

0 14.7 212 180 970.3 1150.3 0.01672 26.8<br />

1 15.7 216 184 967 1152 0.01675 24.8<br />

2 16.7 219 187 965 1153 0.01677 23.4<br />

5 19.7 227 196 960 1156 0.01683 20.1<br />

10 24.7 240 208 952 1160 0.01692 16.3<br />

15 29.7 250 219 945 1164 0.01700 13.8<br />

20 34.7 259 228 939 1167 0.01708 11.9<br />

25 39.7 267 236 933 1170 0.01714 10.5<br />

30 44.7 274 243 928 1172 0.01721 9.4<br />

40 54.7 287 256 919 1176 0.01732 7.8<br />

50 64.7 298 267 911 1179 0.01743 6.7<br />

60 74.7 307 277 904 1182 0.01752 5.8<br />

70 84.7 316 286 898 1184 0.01761 5.2<br />

80 94.7 324 295 891 1186 0.01769 4.7<br />

90 104.7 331 302 886 1188 0.01777 4.2<br />

100 114.7 337 309 880 1189 0.01785 3.9<br />

110 124.7 344 316 875 1191 0.01792 3.6<br />

120 134.7 350 322 870 1192 0.01799 3.3<br />

130 144.7 355 328 866 1193 0.01806 3.1<br />

140 154.7 360 333 861 1195 0.01812 2.9<br />

150 164.7 366 339 857 1196 0.01818 2.7<br />

200 214.7 388 362 837 1199 0.01847 2.1<br />

250 264.7 406 382 820 1202 0.01873 1.7<br />

etc.↓ 300 417 394 809 1203 0.01890 1.54<br />

400 446 424 781 1205 0.01934 1.16<br />

450 456 437 767 1205 0.01955 1.03<br />

500 467 449 755 1204 0.01975 0.93<br />

600 486 472 732 1203 0.02013 0.77<br />

900 532 527 669 1195 0.02123 0.50<br />

1200 567 572 612 1183 0.02232 0.36<br />

1500 596 612 556 1167 0.02346 0.28<br />

2000 636 672 463 1135 0.02565 0.19<br />

2500 668 731 361 1191 0.02860 0.13<br />

2700 680 756 312 1068 0.03027 0.11<br />

3206.2 705 903 0 903 0.05053 0.05053<br />

Sea Level<br />

Supercritical Water refers to conditions<br />

above 3206.2 psia and 705 °F where steam<br />

and water reach a new phase.<br />

P a g e 58


Temperature ˚C →<br />

Temperature vs Enthalpy<br />

6) Temperature vs Enthalpy (Btus/Pound)<br />

CW<br />

Rankine Scale<br />

Enthalpy = Btus/Pound<br />

Super Critical Vapor<br />

(= BTUs/˚F →)<br />

P a g e 59


˚F →<br />

Water<br />

Rankine Cycle: Steam Turbine<br />

CW<br />

William Rankine<br />

Superheater<br />

High Pressure Turbine<br />

Boiler<br />

Intermediate and Low<br />

Pressure Turbines<br />

Economizer<br />

Feed Water Pump<br />

Water and Steam<br />

Condenser<br />

Reheater<br />

Superheated Steam<br />

Enthalpy = BTU/˚F →<br />

P a g e 60


CW<br />

7) Boiler Operational Controllers<br />

ON/OFF Controls<br />

Operating Limit Control<br />

MAIN = minimum desired psi, burner turns on<br />

below this point. DIFF. = MAIN + selected psi<br />

at which the burner turns off.<br />

High PSI Shutoff<br />

Safety Switches always<br />

have a reset button.<br />

Must be set at < Pop Off<br />

valve popping psi.<br />

Firing Rate Controller<br />

Maintains psi in boiler<br />

MAIN = minimum psi at<br />

witch burner will go to Hi<br />

Fire DIFF. IS ADDATIVE =<br />

The value over the set point<br />

is where you are at low fire.<br />

If not properly coordinated<br />

with Operating Limit Control<br />

the boiler could trip on<br />

pressure before getting<br />

down to low fire (Short<br />

Cycling).<br />

Boiler turndown ratio is the ratio between full<br />

boiler output (High Fire) and the boiler output<br />

when operating at minimum output (Low Fire).<br />

Limit Switches<br />

Typical boiler turndown is 4:1. That is, a 400-horsepower boiler with a 4:1<br />

turndown burner is able to modulate down to 100 horsepower before cycling off.<br />

P a g e 61


CW<br />

B) Fuel: Primary and Backup<br />

1) Fuel Types<br />

i. Natural Gas<br />

Natural Gas<br />

Typical composition of NG<br />

(Methane = 87%)<br />

1011 btu/ft 3<br />

2516 btu/ft 3<br />

3225 btu/ft 3<br />

6239 btu/ft 3<br />

P a g e 62


CW<br />

(Hydraulic Fracturing)<br />

Downward trend? →<br />

Methane gas from welltap<br />

water, purportedly<br />

due to fracking.<br />

Exploitation vs. proper extraction should always be a<br />

concern when dealing with any natural resource.<br />

P a g e 63


CW<br />

ii. Liquid Fuels<br />

No. 1 Fuel Oil<br />

No. 2 Fuel Oil<br />

No. 6 Fuel Oil<br />

Viscosity = resistance to flow.<br />

When oil is heated, its viscosity decreases.<br />

P a g e 64


CW<br />

2) Combustion<br />

Combustion Air<br />

Spark<br />

CH 4<br />

Take any of these away, no flame.<br />

P a g e 65


CW<br />

i. Combustion Air<br />

Atmospheric Draft<br />

Natural Draft Burners = Pipe Burners = Atmospheric Burners<br />

= No Air Blower<br />

Air Shutter<br />

Forced Draft →<br />

Forced Draft<br />

Blower and burner: combined unit<br />

Blower and burner: separate units<br />

Fan Motor<br />

VFD<br />

P a g e 66


Air in<br />

CW<br />

M<br />

Modulation Motors directly link<br />

incoming air flow with incoming fuel supply. (mod motor)<br />

Mod Motor limit switches<br />

Red Mod Motors on fuel<br />

and air<br />

Linkage controls<br />

internal air opening<br />

P a g e 67


CW<br />

ii. Spark<br />

Ignition Transformer<br />

Spark Ignition Transformer<br />

Primary 120V in<br />

Secondary 6000V out<br />

Spark temperature approaches 60,000˚F<br />

Spark Plug<br />

and pilot line<br />

P a g e 68


Convection<br />

CW<br />

iii. Flame<br />

Diffusion Flame<br />

All combustion air comes<br />

from outside of the flame.<br />

With too little air inside the<br />

flame envelope, the gas<br />

mixture will not burn<br />

completely. The unburned<br />

carbon particles become<br />

heated to glowing, making<br />

the flame luminous.<br />

Hottest part<br />

(non-luminous)<br />

CO2<br />

1400˚C<br />

H2O<br />

If the outer zone is disrupted, complete<br />

combustion is also disrupted and soot<br />

deposits form (unburned carbon)<br />

Outer Zone: Complete combustion of soot<br />

particles and any remaining wax vapor<br />

Unburned carbon particles (soot)<br />

glow from the heat energy.<br />

1200˚C<br />

O 2<br />

1000˚C<br />

800˚C<br />

Partial Combustion: Fuel Rich = not enough<br />

oxygen, soot particles form<br />

Outer Zone: Complete<br />

combustion of wax vapor<br />

O2<br />

600˚C<br />

Conduction<br />

O2<br />

Dark Zone: Pyrolysis of<br />

wax to combustible vapor<br />

= Straight-chain Wax<br />

= 14,200 btu/ft 3<br />

Diffusion flame<br />

in microgravity<br />

(Space Station)<br />

No updraft of<br />

air flow<br />

P a g e 69


CW<br />

Premix Flame<br />

Diffusion Flame:<br />

no Oxidizer<br />

Acetylene = C 2H 2 =<br />

Combustion air is mixed with<br />

fuel before the flame.<br />

Roaring Flame=Reducing Flame:<br />

Air hole open, venturi effect<br />

sucks in air.<br />

Hottest point<br />

for cutting<br />

Roaring Premix Flame<br />

Diffusion Flame=<br />

Oxidizing Flame:<br />

Air hole closed<br />

Unburned carbon<br />

particles (soot)<br />

incandesces<br />

(glows) from the<br />

heat energy.<br />

Indication of<br />

incomplete<br />

combustion.<br />

1540˚C<br />

Convection<br />

CO2 H2O<br />

Outer Cone = Flame Envelope<br />

Combustion Completion<br />

Hottest part of flame<br />

1560˚C<br />

1450˚C<br />

O2<br />

Inner Cone: Air<br />

and unburned fuel<br />

350˚C<br />

Inner Cone border:<br />

Initial fuel burn<br />

O2<br />

O2<br />

O2<br />

P a g e 70


CW<br />

A stoichiometric Air to Fuel Ratio (AFR) has the correct amount of air<br />

and fuel to produce a chemically complete combustion event.<br />

iv. Air/Fuel Ratio (AFR)<br />

Mod motor for incoming<br />

combustion air<br />

UEL = Upper Explosive Limit<br />

LEL = Lower Explosive Limit<br />

Soot buildup<br />

Increased CO<br />

Decreased CO2<br />

Stack Temperature drop<br />

RICH flame<br />

LEAN flame<br />

Increased O2<br />

Decreased CO2<br />

Stack Temperature drop<br />

Turbulent Flame<br />

Laminar Flame<br />

To increase heat output, fuel velocity is<br />

increased. If sufficient combustion air is not<br />

provided, the flame will extinguish itself.<br />

The increase of both fuel and air velocity<br />

creates a turbulent flame.<br />

Composition<br />

of Air<br />

P a g e 71


CW<br />

Swirler and Nozzle<br />

The diffuser, or swirl vanes, slows incoming air,<br />

increasing pressure, increasing available O 2<br />

molecules available for combustion (basically,<br />

the swirl action “forces” more air into the<br />

combustion zone = Turbulent Flame).<br />

The nozzle increases velocity of fuel,<br />

reducing fuel pressure. Spreading<br />

fuel molecules farther apart<br />

improves air/fuel combustion ratio.<br />

Smaller oil burner<br />

nozzles usually include<br />

a filter<br />

Fuel oil compressor:<br />

increases fuel pressure<br />

Proper combination of swirler diffusion and nozzle<br />

spray should maximize combustion efficiency<br />

P a g e 72


CW<br />

3. Burners<br />

i. Natural gas<br />

Staged Burners<br />

Staged Air Burner<br />

Radiant Tube burner<br />

Staged Fuel Burner<br />

P a g e 73


Burners<br />

Premix Burner<br />

Premix Mesh Burners<br />

CW<br />

Metal Fiber<br />

premix burner<br />

Perforated Plate<br />

burner<br />

Ceramic Mesh<br />

Premix<br />

Condensing, closed loop<br />

boilers with premix burners<br />

P a g e 74


CW<br />

Turbine Jet Burner<br />

Natural Gas Turbine Jet “PreMix” Burner<br />

Incoming<br />

Filtered Air<br />

Rooftop<br />

lubricating oil<br />

cooler<br />

Exhaust to Stack or<br />

Waste Heat<br />

Water Tube Boiler<br />

P a g e 75


CW<br />

ii. Oil Burners<br />

Oil Burners<br />

Steam or Compressed Air<br />

Atomizing Air compressor<br />

For heavier oils, steam is preferred as it<br />

also preheats the oil reducing its<br />

viscosity and is also easily available at<br />

high pressure.<br />

However, compressed air gives better<br />

fuel/air mixing<br />

Mixing of fuel and steam/air can take<br />

place inside the burner or completely<br />

outside (premix or nozzle mix)<br />

Steam<br />

injection<br />

line for<br />

oil burner<br />

Propane is used for pilot light<br />

during oil burning<br />

PRV<br />

Safety NC Solenoid<br />

on incoming pilot<br />

propane<br />

P a g e 76


CW<br />

iii . Duel Fuel Burners<br />

Dual Fuel Burners<br />

Interruptible Rate = lower natural gas cost, but must<br />

use alternate fuel source at request of supplier. Stiff<br />

penalties if unable to comply when asked.<br />

Firm Rate = normal charge for natural gas<br />

Interchangeable Fuel Oil<br />

Lance and insertion port<br />

Lance Insertion verification<br />

switch (fuel oil cannot flow<br />

unless switch is activated)<br />

Air and Oil connections<br />

Some boilers have the ability of switching fuels when<br />

needed. Hospitals are required to have an<br />

emergency fuel source. Separate burner guns for oil<br />

and natural gas are switched out as needed.<br />

More convenient dual fuel burner assemblies<br />

simplify the process: simply turn a button.<br />

P a g e 77


CW<br />

C) Plant Equipment Operations<br />

1) Steam Traps<br />

Thermodynamic<br />

Steam velocity (flash steam)<br />

operates valve.<br />

Traps that have fewer moving<br />

parts generally last longer<br />

Mechanical<br />

Density difference between<br />

condensate and steam operates valve.<br />

Uses float type of apparatus. Because<br />

unit uses water filled chamber, it is<br />

more difficult to thaw out if it freezes.<br />

Thermostatic<br />

Condensate temperature<br />

change operates valve<br />

P a g e 78


i. Thermodynamic<br />

CW<br />

Thermodisc<br />

When condensate is present, disc is pushed up,<br />

when only steam is present, disc is pushed down<br />

Universal Mount Steam Traps<br />

have only one opening for both<br />

inlet steam and outlet<br />

condensate.<br />

Impulse<br />

During high load, piston is<br />

propelled up enabling<br />

additional condensate to<br />

escape through opening “E”.<br />

P a g e 79


CW<br />

ii. Mechanical<br />

Mechanical<br />

Fixed Orifice<br />

Advantage: No moving parts to<br />

possibly fail.<br />

Disadvantage: Only works<br />

within a set parameter range,<br />

depending on size of orifice.<br />

Not designed for modulating<br />

steam demand.<br />

With attached “Y”<br />

strainer<br />

P a g e 80


CW<br />

Mechanical continued<br />

Inverted Bucket<br />

Water in trap is<br />

always above top of<br />

bucket<br />

Valve closes as steam<br />

fills rising bucket<br />

Vent for non-condensable<br />

gases<br />

Steam shrinks as it condenses and bucket<br />

sinks as it then fills with condensate, thus<br />

opening the valve.<br />

Plug bolt for<br />

trap cleaning<br />

With built<br />

in Y strainer<br />

Hermetically sealed<br />

(you can’t open it)<br />

Built-in isolation valves<br />

P a g e 81


CW<br />

Inverted Bucket vertical flow<br />

High Pressure<br />

Applications<br />

Hermetically sealed<br />

(you can’t open it)<br />

Universal Mount Steam Traps have only one<br />

opening for both inlet steam and outlet condensate.<br />

Connect<br />

P a g e 82


CW<br />

Mechanical continued<br />

Float & Thermostatic (F&T)<br />

Attached Float<br />

Thermostatic vent valve closes when hot<br />

and opens when cold, expelling air (nonsteam<br />

= non-condensables) on startup<br />

and preventing a vacuum on shut down.<br />

External vent valve<br />

Universal Mount Steam Traps have only one<br />

opening for both inlet steam and outlet condensate.<br />

Connect<br />

Universal Mount<br />

Free Float Trap<br />

Free Float (ball not attached)<br />

Thermostatic vent valve opens when cold.<br />

P a g e 83


CW<br />

iii. Thermostatic<br />

Thermostatic<br />

Bi-Metallic<br />

Cold:<br />

Contracted<br />

Hot:<br />

Expanded<br />

Hermetically sealed bimetallic<br />

(you can’t open it)<br />

Universal Mount<br />

Steam Traps have only<br />

one opening for both<br />

inlet steam and outlet<br />

condensate.<br />

Balanced Pressure<br />

At higher temperatures (when steam is<br />

present), alcohol in disc flashes to vapor,<br />

pushing ball down and closing the valve.<br />

Universal Mount<br />

Balanced Pressure Trap<br />

P a g e 84


CW<br />

Thermostatic continued<br />

Spring Expansion<br />

Alcohol Filled Bellows<br />

Metallic Spring:<br />

a.k.a. Radiator trap<br />

Liquid expansion metallic bellows: Hollow<br />

spring is filled with alcohol which flashes to<br />

vapor at a specific temperature, expands the<br />

spring and closes the trap.<br />

Straight Flow →<br />

Hermetically sealed<br />

(you can’t open it)<br />

P a g e 85


CW<br />

iv. Universal Mount Steam Traps<br />

Universal Mounts enable easy removal<br />

for steam trap cleaning or replacement<br />

Universal Mount with isolation valves built in<br />

P a g e 86


CW<br />

v. Automatic Pump Trap (APT) = Condensate Pump<br />

Non-electric Pump Traps have 4 openings.<br />

1) Incoming live steam (when float rises, motive steam enters and pushes out condensate),<br />

2) steam vent out (steam exhaust),<br />

3) incoming condensate with check valve, and<br />

4) outgoing condensate with check valve.<br />

P a g e 87


CW<br />

vi. PRV<br />

Ice forming after PRV on ammonia line<br />

P↓ × V c = T↓ (Ideal Gas Law)<br />

Manual-Bolt<br />

adjust<br />

Auto-Thermostatic<br />

adjust<br />

Hollow Capillary<br />

Tubes<br />

Auto-Pressurestatic adjust<br />

Steam Pressure/Temperature Reducers<br />

operate on the exact same principles as<br />

Chiller/AC TXVs<br />

Compressed air<br />

PRV<br />

Internally Equalized<br />

Externally Equalized<br />

P a g e 88


CW<br />

PRV: 1/3 rd 2/3 rd Split<br />

Load is typically split 1/3 - 2/3. Small valve is sized for 1/3 of load<br />

and is lead valve set for desired delivery pressure. Large valve is<br />

lag valve set 2 - 3 psi lower than delivery pressure of small valve.<br />

On low flow demand, only the small valve only will be open. As<br />

flow increases passed the capacity of the smaller valve, delivery<br />

pressure drops, and the large valve opens.<br />

P a g e 89


Steam Trap Trouble Shooting<br />

vii. Steam Trap Troubleshooting<br />

CW<br />

Mechanic’s Stethoscope<br />

Each type of steam trap has its own fingerprint<br />

signature sound when functioning properly.<br />

Electronic<br />

stethoscope<br />

Screwdriver to Ear method!<br />

Flow<br />

Infrared<br />

Pyrometer<br />

A significant drop in temperature<br />

indicates that a steam trap is<br />

functioning properly.<br />

Flow<br />

For every 8 inches away, the meter reads a circle<br />

of 1 inch diameter. The laser dot only acts as a<br />

pointer and has nothing to do with IR light.<br />

Thermal Imager (preferred)<br />

P a g e 90


Desuperheater<br />

2) CW<br />

Keeping steam temperature constant and below 1000°F is important for minimizing thermal stresses on the superheater tubes and turbine.<br />

Pretreated and<br />

preheated boiler<br />

feed water is<br />

generally used as<br />

desuperheater feed<br />

water<br />

Technically, a Desuperheater and Attemperator<br />

are one in the same, that is, a unit that reduces the<br />

temperature of super-heated steam. However, in<br />

the power plant arena, attemperators generally<br />

refer to the unit between stages in a superheater.<br />

Venturi<br />

Desuperheater<br />

Variable Orifice Desuperheater<br />

Atomizing Desuperheater<br />

(steam and water sprayer)<br />

Spring loaded<br />

plunger (plug)<br />

Steam<br />

Flow<br />

Spring loaded plunger<br />

lifts up when high<br />

pressure steam is<br />

present, opening up the<br />

cooling water inlet.<br />

P a g e 91


3) Heat Exchangers<br />

i. Shell and Tube<br />

CW<br />

Shell and Tube<br />

U-Tube<br />

= Two pass<br />

Fixed Tube Sheet Heat Exchanger<br />

Stationary Tube Sheets<br />

Easy to clean (punch) tubes.<br />

May incur expansion stress<br />

during high and low loads.<br />

U-shaped bundle is only attached on one side:<br />

expands easily with temperature change.<br />

Difficult to clean tubes.<br />

Interior head is only attached to end tube<br />

sheet, not to the shell, this permits free<br />

expansion and contraction of tubes with little<br />

stress. The straight tubes are easy to clean.<br />

Domestic use hot water heaters<br />

P a g e 92


CW<br />

High Capacity Instantaneous<br />

Steam Fired Water Heater<br />

Condesated Return<br />

Visual port flow sensor<br />

P a g e 93


CW<br />

Heat Stall<br />

Heat Exchanger Stall<br />

Heat exchanger stall: When no steam demand, reducer stops incoming steam, steam in exchanger cools and<br />

shrinks making a vacuum. This vacuum “sucks” condensate back into the exchanger, filling it with water. When<br />

steam demand is needed again, the reducer is opened again, hot steam hitting cold water: WATER HAMMER.<br />

Symptoms:<br />

Steam trap is cold.<br />

Heat Exchanger becomes waterlogged (pooling of condensate).<br />

Temperature is uneven in heat exchanger.<br />

Water hammer (vacuum-implosion induced shock waves)<br />

occurs as hot steam hits cold condensate, damaging tubes.<br />

Water Hammer on heat<br />

exchanger pipes.<br />

Back pressure<br />

prevents condensate<br />

from escaping.<br />

Cure: Check unit’s vacuum breaker,<br />

consider using Automatic Pump Traps (APT)<br />

P a g e 94


CW<br />

ii. Plate and Frame<br />

Plate and Frame<br />

A unit this size, if dismantled for<br />

cleaning, would fill a football field!<br />

BPHE: Brazed Plate Heat Exchanger<br />

Higher efficiency means<br />

equivalent heat transfer can be<br />

achieved with much smaller units<br />

However, they cannot be<br />

dismantled<br />

Cross section:<br />

No gaskets!<br />

P a g e 95


CW<br />

iii. HVAC Mixing Boxes Boxes (air handlers)<br />

v. Mixing Boxes (HVAC) Mixing boxes<br />

Steam driven air heaters<br />

Safety PopOff<br />

PRVs controlling steam<br />

supply for Air Handler<br />

Constant Air Volume: constant airflow<br />

& variable temperature. Less efficient.<br />

Variable Air Volume: variable airflow<br />

(using modern VFDs) & constant<br />

temperature. More efficient.<br />

Many systems have computer interface<br />

options for remote control.<br />

P a g e 96


CW<br />

4) Pumps<br />

i. Reciprocating<br />

Reciprocating Pumps<br />

Triplex Plunger Pump<br />

3 plungers make a more smooth flow<br />

6 check valves<br />

P a g e 97


CW<br />

ii. Rotary<br />

Rotary Pumps<br />

Gear<br />

Internal Gear<br />

External Gear<br />

Peristaltic<br />

Vane<br />

Screw<br />

Progressive<br />

Cavity<br />

Single Screw<br />

Back<br />

Front<br />

Double Screw<br />

P a g e 98


CW<br />

iii. Centrifugal<br />

Series vs Parallel<br />

Centrifugal Pumps<br />

Impellers<br />

P a g e 99


CW<br />

Pressure differential driven centrifugal pump<br />

P a g e 100


Multistage iv. Stage Pumps<br />

4 Stage<br />

CW<br />

2 Stage<br />

Also called a “can pump”<br />

(like a tin can)<br />

Vertical Multistage Pump<br />

P a g e 101


CW<br />

v. Motor Vibration Monitoring<br />

All rotating machines, pumps included,<br />

vibrate to some extent due to various<br />

reasons, the most common of which are<br />

typically the following:<br />

Improper installation at site<br />

Improper balancing of pump rotor<br />

Excessively turbulent fluid flow<br />

Pressure fluctuations<br />

Cavitation or internal recirculation in<br />

pumps<br />

Normal pump wear after prolonged<br />

operation.<br />

Remote vibration monitoring<br />

Inline vibration monitoring<br />

P a g e 102


5) Valves<br />

i. Types<br />

Ball<br />

CW<br />

Gate<br />

Butterfly<br />

Globe<br />

Pressure Regulators<br />

are usually globe<br />

valves<br />

Diaphragm<br />

Stem pushes down on<br />

rubber gasket<br />

Spring Check<br />

Swing<br />

Check<br />

Lift<br />

Check<br />

P a g e 103


CW<br />

ii. Backflow Prevention<br />

Symbol<br />

Backflow is the undesirable reversal of flow of a<br />

liquid, gas or solid into the potable water supply.<br />

Q.: How often does the backflow prevention assembly<br />

need to be tested?<br />

A.: On installation and at least once a year thereafter by<br />

a licensed backflow tester.<br />

P a g e 104


CW<br />

iii. Actuators<br />

Actuators remotely open and close valves<br />

Motorized actuators close slowly,<br />

avoiding water hammer<br />

Instrument Air Compressor<br />

and Dryer<br />

P a g e 105


CW<br />

Linear: pushes a shaft in or out<br />

Rotary:<br />

turns a shaft ¼ rotation to opened or closed<br />

electric<br />

pneumatic<br />

Some rotary actuators use<br />

external limit control boxes<br />

Pneumatic actuator<br />

and bypass<br />

P a g e 106


A Solenoid: Electricity creates a temporary magnet pushing the permanent magnet up<br />

(NC =normally closed) or down (NO=normally open).<br />

CW<br />

NC are typically used for natural gas and fuel oil lines for boilers<br />

as that if there is a power outage, the fuel is instantly shut off.<br />

Direct: moving piston plugs outlet<br />

Indirect: moving piston opens orifice allowing<br />

pressure change which moves spring plunger<br />

Typically used in sprinkler<br />

irrigation systems<br />

P a g e 107


CW<br />

iv. Water Hammer: Valve Induced<br />

P a g e 108


CW<br />

Cavitation:<br />

Sudden implosion of low pressure steam bubbles back to<br />

water causes miniature shock waves, damaging metal<br />

surface.<br />

Propeller Cavitation<br />

Valve Cavitation:<br />

sounds like gravel<br />

moving through pipe<br />

P a g e 109


6) Electricity<br />

i. Flow<br />

Parallel:<br />

Amps increase, volts stay the same<br />

Series:<br />

Volts increase, amps stay the same<br />

CW<br />

Volts measure how hard the electricity is pushing (Electrical Force)<br />

Amps measure current, or how much electricity is flowing [Ah = Amp-hours]<br />

Watts measure how much electricity is going through the circuit (Power)<br />

Ohms (Ω) measures Resistance<br />

Note correlation<br />

Pressure: psi → Volts<br />

Flow: gpm → Amps<br />

Hydraulic HP → Watts<br />

P a g e 110


Variable Frequency Drive<br />

ii. VFD: Affinity Law<br />

CW<br />

The Affinity Law<br />

Law 1a) Air flow is directly proportional to fan speed.<br />

Example: When fan speed doubles, air flow doubles.<br />

1a) Fan Speed ↑ = Air Flow ↑<br />

Law 1b) Torque increase is proportional to the square of the fan speed increase.<br />

Example: When fan speed doubles, torque increases four times<br />

When fan speed triples, torque increases nine times<br />

1b) (Fan Speed ↑ ) 2 = Torque ↑<br />

Law 1c) Power required is proportional to the cube of fan speed increase.<br />

Example: When fan speed doubles, power required is six times<br />

1c) (Fan Speed ↑ )<br />

When fan speed triples, power required is 27 times<br />

3 = Power ↑<br />

Significant Energy Savings<br />

Use only the fan speed your system is calling for.<br />

A 100 HP fan running at half speed uses the<br />

same energy as a 13 HP motor!<br />

(½) 3 x 100HP = (1/8) x 100HP = 13HP<br />

Equipment Savings<br />

Single-speed motors start abruptly:<br />

High starting torque<br />

High starting current surges (up to 8 times)<br />

Variable speed drives gradually ramp up the motor.<br />

P a g e 111


CW<br />

Energy: measuring the flow change<br />

252 calories = 1 Btu<br />

1 ft 3 of natural gas ≈ 1020 Btu<br />

1 kilowatt·hr (kwh) of electricity = 3413 Btu<br />

1 pound of Coal ≈ 9,200 Btu<br />

1 pound of gasoline ≈ 14,300 Btu<br />

1 pound of diesel or fuel oil ≈ 16,000 Btu<br />

1 Therm = 100,000 Btu<br />

1 Dekatherm (DTH) = 1,000,000 Btu<br />

0.293 Watts = 1 Btu/hr<br />

1 Bhp (Boiler horsepower) = 33,472 Btu/hr<br />

1 Bhp = 34.5 lbs of steam per hr (@0psig)<br />

The Tom Thumb is especially remembered as a<br />

participant in an impromptu race with a horse-drawn car,<br />

which the horse won after Tom Thumb suffered a<br />

mechanical failure. However, the demonstration was<br />

successful, and the railroad committed to the use of<br />

steam locomotion. The boiler was pulling 40% more<br />

weight than the horse, therefore Tom Thumb was<br />

officially labelled a 1.4 horse power boiler. And BHP<br />

designation was born.<br />

Tom Thumb = 1.4 BHP<br />

P a g e 112


CW<br />

D) Hot Piping Systems<br />

1) Pipes<br />

i. Manufacture Style<br />

Seamless<br />

Welded Seam<br />

Seamless (No Weld)<br />

Solid steel bar forced over cone<br />

shape ended cylinder<br />

Welded Seam<br />

Electrical Resistance Welding (ERW): Strong<br />

electromagnetic current is “resisted” by the<br />

steel and heat is created.<br />

Inside excess weld trimmer<br />

P a g e 113


CW<br />

Ends<br />

The PE (Plane End) pipes will generally be used for<br />

smaller diameters pipe systems and in combination with<br />

Slip On flanges and Socket Weld fittings and flanges.<br />

Beveled End (BE) for butt welding<br />

Threaded End (TE)<br />

P a g e 114


CW<br />

ii. Composition<br />

Carbon Steel<br />

Black Galvanized Steel Pipe<br />

Stainless Steel<br />

When bare steel is exposed to air, it quickly<br />

forms an oxide layer (Fe 2O 3). This passivating<br />

layer will not corrode further unless disrupted.<br />

Galvanized Pipe<br />

Metallic Zinc coated surface. Zinc (Zn) acts as a sacrificial anode and corrodes<br />

first, leaving the structurally strong steel undamaged (…until all the zinc is gone).<br />

Primary White Rust (ZnO)<br />

Secondary Iron Rust<br />

Stainless Steel Pipe<br />

Very durable Dichromium Trioxide surface; 1 to 10 molecules thick.<br />

Chromium<br />

P a g e 115


CW<br />

iii. Sizing<br />

Flow increases exponentially with<br />

diameter<br />

NPS = Nominal Pipe Size: OD measured in<br />

Inches<br />

Area = πr 2 = π(½D) 2<br />

DN = Diametre Nominel: OD measured in<br />

Millimeters (Metric)<br />

SCH or Schedule<br />

= a Strength Reference Number<br />

Is related to thickness<br />

SCH 40: typically<br />

SCH 80: typically<br />

for steam < 165psi<br />

for steam > 165psi<br />

SCH 10 SCH 120<br />

P a g e 116


CW<br />

2) Water Hammer: Steam Driven<br />

i. Water Slug<br />

ii. Vacuum Induced<br />

Water slug arrestor<br />

Condensate/Vacuum Induced Water Hammer<br />

P a g e 117


CW<br />

Inline Steam Separators<br />

iii. Inline Steam Separators<br />

Removing water from<br />

steam is critical to<br />

reduce damage from<br />

water hammer, TDS<br />

erosion, oxygen<br />

corrosion and<br />

condensate inline sludge<br />

and scale buildup.<br />

Drip Legs<br />

P a g e 118


Condensate Surge/Holding Tank<br />

3) Condensate/Surge Return/Receiving Tank Tank sends water from<br />

steam system forward towards the deaerator<br />

CW<br />

Surge Tanks handle volume swings<br />

in condensate return. The water is<br />

then sent forward to the DA Tank.<br />

Level controllers and alarms<br />

P a g e 119


CW<br />

Steam 4) Steam Header = manifold where<br />

branch lines can be attached<br />

Muffler for<br />

relief of excess<br />

PSI, such as<br />

during PopOff<br />

tests (acts like<br />

the muffler on<br />

a car)<br />

Steam trap on drip<br />

leg at bottom<br />

P a g e 120


CW<br />

5) Feed Water Pumps<br />

Feed Water Pumps<br />

are located below water source<br />

to avoid losing prime<br />

Vertical Multistage<br />

(multiple impellers)<br />

Feed Water Pumps<br />

Horizontal Centrifugal<br />

Feed Water Pumps<br />

DA tanks are often shared by multiple boilers<br />

Expansion Control Device<br />

When feed water regulator calls for water,<br />

Feed water pump is turned on<br />

OR<br />

Feed water actuator is activated (for those systems which<br />

have the feed water pump continuously running)<br />

Feed water is cooler than boiler water. When large amounts of feed<br />

water is introduced into the boiler, the boiler water stops boiling for a<br />

moment until the water comes up to temperature. This drops the psi for<br />

just a moment. This fluctuation is avoided by using VFD to adjust the flow<br />

on feed line PRVs and keeping the feed water pumps on continuously.<br />

To prevent possible stagnation and<br />

temperature drop of feed water when<br />

boiler demand is low, water is<br />

sometimes kept in constant circulation<br />

P a g e 121


CW<br />

E) Water Quality<br />

1) Boiler Water Chemistry<br />

i. pH<br />

pH<br />

Water cooled<br />

sample port<br />

Bypass chemical “slug”<br />

feeder for startup,<br />

layup or other<br />

specialized cases<br />

Litmus paper<br />

Chemical indicators<br />

change color at<br />

different pH ranges<br />

A universal pH indicator contains several compounds that<br />

exhibits smooth color changes over a broad pH range.<br />

P a g e 122


CW<br />

Hydrochloric Acid<br />

(HCl)<br />

H + OH -<br />

10 0 = 1 = 100%<br />

10 -14 = .00000000000001<br />

Stomach Acid<br />

(weak HCl)<br />

10 -1 = .1 = 10%<br />

10 -13 = .0000000000001<br />

Vinegar<br />

Lemon Juice<br />

Soda Pop<br />

Orange Juice<br />

10 -2 = .01 = 1%<br />

10 -3 = .001 = .1%<br />

10 -12 = .000000000001<br />

10 -11 = .00000000001<br />

The concept of pH was<br />

first introduced in 1909<br />

by Danish chemist<br />

Søren Sørensen<br />

Tomato Juice<br />

Acid Rain<br />

10 -4 = .0001 = .01%<br />

10 -10 = .0000000001<br />

Eye Drops<br />

Normal Rain<br />

10 -5 = .00001<br />

10 -9 = .000000001<br />

Saliva<br />

Urine<br />

10 -6 = .000001<br />

10 -8 = .00000001<br />

Pure Water<br />

10 -7 = .0000001 =<br />

10 -7 = .0000001<br />

Sea Water<br />

Swimming Pools<br />

10 -8 = .00000001<br />

10 -6 = .000001<br />

Baking Soda<br />

10 -9 = .000000001<br />

10 -5 = .00001<br />

Great Salt Lake<br />

10 -10 = .0000000001<br />

10 -4 = .0001<br />

Ammonia (NH4OH)<br />

Soaps<br />

10 -11 = .00000000001<br />

10 -12 = .000000000001<br />

10 -3 = .001<br />

10 -2 = .01<br />

At pH > 7, OH -<br />

(hydroxide) becomes<br />

the active ion.<br />

Bleach<br />

Oven Cleaner<br />

10 -13 = .0000000000001<br />

10 -1 = .1<br />

OH -<br />

Drain Cleaner<br />

Caustic (NaOH)<br />

10 -14 = .00000000000001<br />

H +<br />

10 0 = 1<br />

HCl (acid) + NaOH (base) → H 2O (pH 7) + NaCl<br />

(salt water)<br />

P a g e 123


CW<br />

pH Probe<br />

Acids have more positive ions and conduct electricity<br />

better. A pH probe measures the voltage (potential<br />

difference) of a solution.<br />

The glass bulb should be kept<br />

moist, even when not in use,<br />

non-hydrated bulbs give<br />

erratic readings.<br />

(Do not use RO, DI or Distilled water<br />

for storage)<br />

Liquid filled cap<br />

pH probes must be periodically calibrated with at least<br />

two reference buffer solutions (the reference buffers<br />

you use depends on if your sample is acidic or basic).<br />

P a g e 124


CW<br />

Conductivity<br />

ii. Conductivity<br />

TDS<br />

SALT<br />

↓<br />

Distilled water:<br />

No electrical flow<br />

Water with ionic<br />

contaminants:<br />

Electrical flow<br />

Periodic calibration is important<br />

to ensure your meter is accurate.<br />

mho = non-metric<br />

(archaic, but still used)<br />

Electrical Resistance = ohm (Ω)<br />

Electrical Conductivity = mho<br />

1 mho = 1 Siemen (S)<br />

0.000001 Siemen = 1 µS = 1 µmho<br />

Opposites<br />

(spelling too!)<br />

S = metric unit<br />

µ = micro<br />

P a g e 125


CW<br />

Conductivity vs. TDS<br />

Total dissolved solids (TDS) is, technically,<br />

anything dissolved in water (including<br />

organics that do not conduct electricity).<br />

If the general chemistry of the liquid being<br />

measured is known, then a conversion factor can<br />

be applied and is usually done internally by the<br />

meter itself. Still, this new measurement is only an<br />

approximation.<br />

TDS is measured in parts per million (ppm) or mg/l (milligrams per liter).<br />

To achieve true TDS readings:<br />

True TDS measurement is very slow. For faster<br />

numbers, we rely on general conductivity<br />

conversion rules (but lose accuracy).<br />

Accurately weigh a filtered sample<br />

along with its container at room<br />

temperature. Evaporate liquid to<br />

dryness at 104˚C. Let cool to room<br />

temperature then reweigh.<br />

TDS = (preweight – postweight)/volume<br />

P a g e 126


Estimated conversion table for boiler<br />

water by Spirax Sarco<br />

CW<br />

Conductivity vs. Temperature<br />

Conductivity increases with<br />

temperature, meters are<br />

internally auto-adjusting.<br />

1) The Hydroxide ion in boiler water is<br />

highly conductive compared to other ions.<br />

2) Since the conversion calculation from Conductivity to TDS is<br />

only an estimate (depending on what is actually in the water), high<br />

pH may skew the conversion factor.<br />

3) Therefore, it is common practice to neutralize any alkalinity<br />

with an organic acid (such as non-conductive acetic acid) prior to<br />

measuring conductivity.<br />

4) This produces a more stable conductivity<br />

measurement, thus a more reliable TDS estimate.<br />

P a g e 127


CW<br />

2) Make Up Water Up Water<br />

The term “make up water” refers to raw water<br />

without any treatment chemicals added, such<br />

as from a well or from the city.<br />

Chlorine in city water, when unchecked, can damage RO system membranes. On the other<br />

hand, because of general treatment practices by municipal water sources, clarification,<br />

filtration, chlorination help remove contaminants such as iron, silica, bacteria, etc. Part or<br />

all of this process needs to be performed at your plant if your water is untreated.<br />

P a g e 128


CW<br />

i. Water Softener<br />

From the Bronze Age into the Renaissance the<br />

average masses of wheat and barley grains were<br />

part of the legal definitions of units of mass.<br />

Grain per gallon (gpg) is a unit of water hardness defined as 1<br />

grain of calcium carbonate dissolved in 1 US gallon of water. It<br />

translates into 1 part in about 58,000 parts of water or<br />

1 grain = 17.1 ppm (parts per million)<br />

P a g e 129


CW<br />

Water Softener<br />

Sodium (Na+) changes places with hardness: Calcium (Ca+ 2 ) and Magnesium (Mg+ 2 )<br />

Dual Tanks: when one<br />

is regenerating, the<br />

other is in service.<br />

Salt brine tank<br />

Zeolite = Plastic Beads<br />

Some of the softener salt will eventually<br />

make it into the boiler, however, the<br />

softener salt (NaCl) stays dissolved in the<br />

water and does not fall out as scale.<br />

Cation resin beads<br />

attract positive ions:<br />

Na+, Ca+ 2 , Mg+ 2<br />

P a g e 130


CW<br />

KCl vs. NaCl<br />

The potassium (K) atom is larger than the sodium (Na) atom, that is, the center of the<br />

atom is farther away from the place where the reaction takes place (the outer electrons).<br />

To remove hardness from the resin beads, it requires 27% more potassium chloride than<br />

sodium chloride. While some argue that potassium is friendlier to the environment, it can<br />

easily be said that more waste is generated. Potassium chloride is also more expensive.<br />

NaCl<br />

KCl<br />

Salt Bridge<br />

Bridges may form and prevent<br />

salt from dissolving in water.<br />

P a g e 131


CW<br />

ii. Reverse Osmosis (RO)<br />

Free Chlorine Removal<br />

RO<br />

Free chlorine is very destructive on RO membrane. Free chlorine is defined as the<br />

concentration of residual chlorine in water present as dissolved gas (Cl 2),<br />

hypochlorous acid (HOCl), and/or hypochlorite ion (OCl−). City water uses free<br />

chlorine to kill bacteria in drinking water. If free chlorine is present in makeup<br />

water, it is common practice to neutralize it with a sodium sulfite solution or filter<br />

out the chlorine with carbon, or a combination of the two.<br />

Carbon is processed using high temperature<br />

steam and/or acids which ultimately increase<br />

carbon pore size, increasing surface area.<br />

Activated charcoal carbon filters are<br />

most effective at removing chlorine,<br />

sediment, volatile organic<br />

compounds (VOCs), taste and odor<br />

from water. They are not effective<br />

at removing minerals, salts, and<br />

dissolved inorganic compounds.<br />

Due to its high degree of micro porosity,<br />

just one gram of activated carbon has a<br />

surface area in excess of 32,000 ft 2 .<br />

Free Chlorine can also be stabilized with Sulfite solutions<br />

Sodium metabisulfite (Na 2S 2O 5) when dissolved in<br />

water reduces free chlorine.<br />

→ H 2SO 4 + 2HCl + Na 2SO 4<br />

(Sulfites are also used as oxygen scavengers)<br />

P a g e 132


CW<br />

iii. Filtration<br />

Suspended Solids<br />

Filtration<br />

psid (pounds per square inch differential)<br />

shows when filters need servicing<br />

A progressive filtration system down to 5 Microns<br />

P a g e 133


CW<br />

RO<br />

Membrane Filtration<br />

Two RO systems here<br />

are used as “Lead/Lag”<br />

[Grab your reader’s attention with a great<br />

quote from the document or use this space<br />

to emphasize a key point. To place this text<br />

box anywhere on the page, just drag it.]<br />

RO systems creat very clean water,<br />

however a great deal of waste<br />

water is also produced. This boiler<br />

system uses the waste to cool off<br />

blowdown thus saving city water.<br />

No salt or other chemicals are needed, however,<br />

the costs of replacement membranes, the<br />

electricity needed to pump the water through the<br />

membranes, and the excess higher concentration<br />

waste water all need to be calculated in when<br />

considering this form of water treatment.<br />

P a g e 134


CW<br />

Slime Buildup on RO Membrane<br />

Fouling<br />

With chlorine removed, membranes are a<br />

great place for bacteria slime to grow<br />

which can plug up the system.<br />

Non-Oxidizing Biological Control Chemicals do not damage RO membranes. They<br />

are typically much more expensive than the oxidizing type.<br />

Scale Buildup on RO Membrane<br />

Organic phosphates disrupt crystal<br />

formation and extend the time<br />

between membrane changeout.<br />

(same chemical and process used in<br />

cooling towers to prevent scale)<br />

Normalized Permeate Flow (NPF) = the amount of permeate water that the RO is producing<br />

P a g e 135


CW<br />

Where RO water is strored, Carbonic acid<br />

may form. A small amount of caustic helps<br />

neutralize the water.<br />

P a g e 136


CW<br />

3) Feed Water: DA Tank<br />

DeAerator<br />

i. Temperature Control<br />

Temperature stress is reduced by using steam to bring feed<br />

water nearer to the temperature of the boiler water.<br />

Steam and water mix<br />

Sprayer plate<br />

Receiving Tray<br />

Anti-vortex<br />

baffles<br />

Sparge Tube:<br />

Perforated feed line<br />

Sparging<br />

P a g e 137


CW<br />

ii.<br />

Deaerator<br />

Dissolved Air Removal (continued)<br />

The deaerator also removes dissolved O 2 (Oxygen Scavenger)<br />

The more oxygen you can<br />

economically remove, the<br />

less chemical you need.<br />

32º F 68º F 104º F 140º F 176º F<br />

ppm O2 (dissolved Oxygen) 69 43 31 14


CW<br />

Level Controllers<br />

and alarms<br />

Feedwater<br />

and<br />

Circulation<br />

Pumps<br />

Sulfite<br />

injection quill<br />

Steam Injection<br />

Overflow<br />

P a g e 139


CW<br />

4) Boiler Water<br />

i. Caustic Embrittlement<br />

CAUSTIC EMBRITTLEMENT:<br />

When iron crystals are stretched, Fe↔Fe bonds<br />

are weakened.<br />

And if pH > 12.7, then OH - ↔Fe bonds more readily<br />

and a crack forms until the stress is relieved.<br />

Stretched<br />

steel<br />

Water Tube:<br />

Caustic<br />

Embrittlement<br />

OH<br />

← Stretch →<br />

Fe<br />

Fe<br />

Fe<br />

Fe<br />

Fe (iron)<br />

Rolling tubes also stretches<br />

the steel and can be a<br />

possible location for caustic<br />

embrittlement to take place<br />

Rivets stretch the steel and are no<br />

longer permitted on boilers.<br />

Welds are now used.<br />

SPEC: Boiler pH should be < 12.7<br />

Boiler room, Titanic<br />

P a g e 140


CW<br />

For Residual Hardness that the softener (or demin plant) did not get:<br />

ii. Scale Control: Residual Hardness<br />

Molybdate(MoO 4<br />

-3<br />

) removes residual hardness and forms a soft sludge (easy to blowdown).<br />

10Ca +2 + 6MoO 4<br />

-3<br />

+ 2OH - → 3Ca 3(MoO 4) 2·Ca(OH) 2<br />

blowndown as soft sludge<br />

OH Alkalinity is necessary in order for the above reaction to take place.<br />

Moly or Phosphates (PO 4)<br />

Plus Alkalinity (OH)<br />

Polymers are added which attach to the<br />

phosphate complex, making a chain which<br />

becomes heavy and falls to the bottom<br />

and then is blown down as sludge<br />

Molybdate (Moly) and<br />

Phosphate content is generally<br />

determined with a colorimeter<br />

P a g e 141


CW<br />

iii. Residual Oxygen Pitting Control: Oxygen Scavengers<br />

Sulfite “fights” the<br />

Oxygen.<br />

2SO3 + O2 → 2SO4<br />

Sulfite is added to the deaerator to<br />

absorb residual oxygen before it<br />

can get to the boiler.<br />

Sulfate is then blown<br />

down as waste.<br />

% Replacement Equivalent Chart<br />

Sodium Sulfite: Na₂SO₃<br />

Sodium Metabisulfite: Na 2S 2O 5<br />

Sulfur Trioxide: SO₃<br />

Sulfur Dioxide: SO₂<br />

Sulfites add conductivity to boiler water. Higher psi boilers (>300psi) have tighter conductivity specifications<br />

and favor scavengers that do not add to this conductivity thus helping to reduce the need for blowdowns.<br />

High psi <strong>Boilers</strong> (>300psi)<br />

Hydrazine<br />

Works great, but is considered a carcinogen and is being<br />

phased out.<br />

N 2H 4 +O 2 → N 2 + H 2O<br />

Diethyl hydroxylamine (DEHA)<br />

C 4H 11NO +O 2 → C 4H 9NO + H 2O 2<br />

Volatile, that is, it evaporates with the boiler water and<br />

travels with the steam. Not only does this help with any<br />

possibility of oxygen pitting in condensate lines, DEHA also<br />

has been shown to help passivate metal in those lines.<br />

P a g e 142


CW<br />

iv. TDS Control: Surface blowdown<br />

iv. Surface blowdown<br />

b<br />

Surface Blowdown :<br />

High TDS can increase surface tension<br />

of water creating bubbles with “super<br />

skins”, increasing chances of priming<br />

(boiler water escaping as droplets and<br />

traveling with steam), carryover (solids<br />

resulting from priming) and bouncing<br />

(fast irregular fluctuations in boiler<br />

water level).<br />

Best TDS control, bubbles are popping on the<br />

surface leaving their solids behind (highest TDS<br />

concentration in boiler).<br />

Surface (Continuous)<br />

Blowdown Valve (Skimmer):<br />

Motorized Actuator<br />

TDS probe<br />

General Recommendation for max TDS:<br />

Two pass economic<br />

4500 ppm<br />

Packaged and 3-Pass 3000 - 3500<br />

Low pressure water tube 2000 – 3000<br />

Steam generators (Coil type boilers) 2000<br />

Medium pressure water tube 1500<br />

High Pressure water tube 1000<br />

Consult your manufacturer for<br />

exact specifications.<br />

P a g e 143


CW<br />

v. Sludge and Settlement Control: Bottom Blowdown<br />

Bottom Blowdown:<br />

Removes sludge and sediment.<br />

Should be done daily, 3 second bursts.<br />

If MAWP (Maximum Allowable<br />

Working Pressure) >100 then 2<br />

blowdown valves are needed<br />

To protect boiler from<br />

sudden, excessive<br />

changes in pressure,<br />

maximum blowdown<br />

pipe size = 2½ in.<br />

Two slow<br />

opening valves<br />

Fast valve should<br />

be closest to boiler<br />

Slow valve should be<br />

secondary to boiler<br />

Visual flow viewport<br />

Most boilers are equipped with a series of two<br />

blowdown valves. Always open the one closest to the<br />

boiler first and close it last. Any cavitation damage<br />

that may occur will happen on the valve that is easier<br />

to replace. To replace the inner valve, the entire<br />

system has to be shut down!<br />

P a g e 144


Steam vented to atmosphere<br />

CW<br />

Blowdown Tank (blowdown separator)<br />

To prevent damage to sewer lines<br />

blowdown is cooled with city water in the<br />

blowdown tank before entering sewer.<br />

P a g e 145


CW<br />

vi. Water Column Blowdown<br />

Normal conditions inside<br />

the water column<br />

Inside the water column<br />

170 psi = 374°F<br />

Inside the ball float is the<br />

same @ 374°F<br />

Water flashing into steam brings the temperature<br />

inside the water column toward 212°F<br />

↓P • V c = ↓T<br />

Visual port flow indicator<br />

The float temperature drops toward<br />

212°F, the air inside the ball also<br />

drops, reducing interior ball pressure<br />

↓P • V c = ↓T<br />

Pressure inside the water<br />

column returns to 170 psig<br />

Alarm bypass<br />

Without sufficient time to reheat,<br />

the air in the ball is still at a lower<br />

pressure, it collapses.<br />

P a g e 146


CW<br />

5) Condensate: Carbonic Acid<br />

Carbonic Acid Corrosion<br />

CO2 + 2H2O → H2(g) + H2CO3<br />

Carbon dioxide, that we breathe out, is absorbed by water,<br />

breaks down and forms Carbonic Acid<br />

Rain is simply another form of condensate<br />

and contains carbonic acid.<br />

Dissolved tombstone from rain.<br />

Due to Carbonic Acid,<br />

untreated condensate can<br />

reach down to pH 5.5<br />

CARBONIC ACID disrupts<br />

the protective magnetite<br />

surface of steel.<br />

Condensate<br />

Sample Port<br />

SPEC: When using neutralizing<br />

amines, Condensate should be<br />

pH > 8.3<br />

P a g e 147


Most common amines<br />

CW<br />

pH controlling amines and are highly volatile.<br />

They evaporate and travel along with boiler<br />

steam neutralizing carbonic acid as the steam<br />

condenses back into water.<br />

Temperature and psi can affect when various<br />

types of amines re-condense. These properties<br />

are applied in condensate line distance.<br />

Morpholine (short range)<br />

Diethyl aminoethanol (DEAE) (medium range)<br />

Cyclohexylamine (long range)<br />

Injection quill: generally<br />

directly into steam line<br />

Filming Amines<br />

Filming amines are not always soluble in<br />

water, and therefore, should always be<br />

injected directly into steam lines.<br />

Neutralizing amines can be injected into feed<br />

water, however, during blowdowns, product is<br />

lost. Direct steam line injection is more common.<br />

For food production facilities and live<br />

steam applications, non-toxic filming<br />

amines travel along with boiler steam<br />

forming a thin protective waterproof<br />

layer on the metal surface, repelling the<br />

acidic condensate.<br />

Inserting and monitoring corrosion coupons<br />

directly into condensate lines can be helpful in<br />

chemical distribution troubleshooting.<br />

P a g e 148


CW<br />

6) Combination Chemical Treatment<br />

Because of chemical demand is less in<br />

smaller boilers, it is simpler to inject<br />

combination chemicals into boiler itself.<br />

Only one pump and one chemical container<br />

is required. However, It is more difficult to<br />

control chemistry specifications.<br />

Oxygen Scavenger<br />

Scale Inhibitor<br />

Steam Treatment<br />

P a g e 149


CW<br />

7) Chemical Feed Pumps<br />

Peristaltic Pumps<br />

Pinch process does not lose prime, but<br />

tube needs to be replaced periodically<br />

Diaphragm Pumps<br />

Long lasting and durable, however,<br />

these are a “pain” when they lose prime<br />

a<br />

Stroke:<br />

How deep<br />

Speed:<br />

How often<br />

Emergency bypass chemical pot feeder<br />

Manual addition<br />

bypass chemical<br />

pot feeder<br />

Chemical<br />

injection<br />

quill<br />

P a g e 150


CW<br />

G) System Documentation / Plant Performance<br />

1) Pressure Gauges<br />

i. Bourdon Tube<br />

Bourdon Tube<br />

Digital pressure<br />

gauges do not<br />

need a pig tail<br />

and can<br />

automatically log<br />

measurements<br />

into a computer.<br />

Compound gauges measure both pressure<br />

and vacuum. Note: inches of mercury<br />

(a perfect vacuum = 30” Hg)<br />

Which gauge is technically correct?<br />

-30 or +30 ?<br />

0 psia = -1 bar (metric) = -100 kPa (metric)<br />

Vacuum gauge<br />

1 atm = 100 kPa = 1013 mbars = 760 mmHg = 30 inHg = 14.7 psia = 0 psig<br />

P a g e 151


CW<br />

ii. Pressurestat sets steam psi range<br />

iii. Pig Tale / Syphon Loop<br />

(PRESSURETROL® = Honeywell® brand name)<br />

Mercury<br />

Switch<br />

Snap<br />

Switch<br />

Trapped condensate in siphon<br />

loops and pigtails form a<br />

barrier which prevent live<br />

steam temperature from<br />

expanding the gauge and<br />

giving false readings.<br />

Oil filled protects from vibration<br />

and corrosion damage<br />

To avoid sideways tilting from<br />

temperature flexing, and thus<br />

erroneous on/off signals, mercury<br />

gauges should be situated<br />

perpendicular to the loop.<br />

P a g e 152


CW<br />

2) Flow Meters<br />

i. Differential Pressure<br />

Water slug arrestor on guage steam line<br />

1. Differential Pressure Flow Meters<br />

P a g e 153


CW<br />

Venturi Flowmeter<br />

Pitot Tube Flowmeter<br />

Cone Flowmeter<br />

Orifice Flowmeter<br />

P a g e 154


CW<br />

ii. Ultrasonic<br />

2. Ultrasonic Doppler Flow Meters<br />

iii. Coriolis Oscillation<br />

3. Coriolis Oscillation Flow Meters<br />

Tubes oscillate at different<br />

rates, depending on liquid<br />

flow. Electromagnetic<br />

sensors read oscillation rate<br />

and convert to flow reading.<br />

P a g e 155


CW<br />

iv. Positive Displacement<br />

4. Positive Displacement Flow Meters<br />

Nutating Disc<br />

Rotating Lobe<br />

Turbine<br />

Electromagnetic sensor<br />

reads turbine rotation.<br />

P a g e 156


CW<br />

3) Energy Measurement<br />

Energy: measuring the flow change<br />

252 calories = 1 Btu<br />

1 ft 3 of natural gas ≈ 1020 Btu<br />

1 kilowatt·hr (kwh) of electricity = 3413 Btu<br />

1 pound of Coal ≈ 9,200 Btu<br />

1 pound of gasoline ≈ 14,300 Btu<br />

1 pound of diesel or fuel oil ≈ 16,000 Btu<br />

1 Therm = 100,000 Btu<br />

1 Dekatherm (DTH) = 1,000,000 Btu<br />

0.293 Watts = 1 Btu/hr<br />

1 Bhp (Boiler horsepower) = 33,472 Btu/hr<br />

1 Bhp = 34.5 lbs of steam per hr (@0psig)<br />

The Tom Thumb is especially remembered as a<br />

participant in an impromptu race with a horse-drawn car,<br />

which the horse won after Tom Thumb suffered a<br />

mechanical failure. However, the demonstration was<br />

successful, and the railroad committed to the use of<br />

steam locomotion. The boiler was pulling 40% more<br />

weight than the horse, therefore Tom Thumb was<br />

officially labelled a 1.4 horse power boiler. And BHP<br />

designation was born.<br />

Tom Thumb = 1.4 BHP<br />

P a g e 157


CW<br />

4) Emissions (Air Pollution)<br />

i. Boiler Mact<br />

NO x, SO 2, CO, Hg, Hydrocarbons (HC = unburned fuel = H xC x =<br />

VOCs = Volatile Organic Compounds) and particulates are major<br />

contributors to smog. When breathed in, they combine with<br />

water and irritates throat and lungs, aggravating conditions such<br />

as asthma.<br />

Some countries in the world have<br />

comparatively little pollution control.<br />

A few decades ago, the US faced similar<br />

health and environmental threats.<br />

EPA Boiler MACT<br />

(Maximum Achievable Control Technology).<br />

US federal EPA standards and incentives to reduce boiler emissions.<br />

Mandatory restrictions, along<br />

with simple social environmental<br />

awareness (which drives<br />

voluntary restrictions), has<br />

dramatically improved air quality<br />

across the country.<br />

P a g e 158


CW<br />

ii. Acid Rain<br />

Acid Rain<br />

Nitric Acid<br />

Sulfuric Acid<br />

pH 4 and less damage leaves and<br />

needles, preventing a plant from<br />

getting energy from the sun.<br />

Fish are seriously affected<br />

when pH drops under 4.0<br />

Prior NOx levels<br />

Current<br />

From 1970 to 2015, aggregate national emissions of the six common pollutants alone dropped<br />

an average of 70 percent while gross domestic product grew by 246 percent. This progress<br />

reflects efforts by state, local and tribal governments; EPA; private sector companies;<br />

environmental groups and others.<br />

Prior<br />

Current<br />

P a g e 159


Stoichiometric flame →<br />

Flame extinction →<br />

CW<br />

iii. NOx, HC and CO Control<br />

NO x<br />

NO forms alongside CO 2 in any<br />

flame during combustion<br />

In high temperature environments, N 2 and O 2 become<br />

less stable, NO formation becomes more frequent.<br />

NO then forms to more stable NO 2<br />

NOx formation grows exponentially as<br />

flame temperature increases<br />

1) Reduce NOx by reducing peak flame temperature<br />

Naturally occurring<br />

NO x in any flame<br />

Elevated flame temperature, along with more available<br />

O 2, NO x emissions reaches maximum concentration<br />

around 6% excess O 2 (around 35% Excess Air)<br />

Lowest flame NO x at stoichiometric<br />

flame and at flame extinction<br />

More air, cooler flame (Less NOx) →<br />

Near flame extinction<br />

(too much air / not<br />

enough fuel)<br />

2) Reduce NO x by controlling excess O 2<br />

P a g e 160


CW<br />

Pre-Combustion Control<br />

Staged Combustion<br />

Staged Combustion<br />

Staged Air Burner: Insufficient air for full combustion in<br />

primary zone limits flame temperature. Peak flame<br />

temperature is reduced.<br />

Staged Air Burner: Secondary (and sometimes tertiary) air is introduced later where lower<br />

temperature complete combustion takes place. Lean Zone burning enables Carbon to<br />

“take back” some of the Oxygen from the NO molecules, further reducing NO x.<br />

4NO + CH 4 → 2H 2O + 2N 2 + CO 2<br />

Lean Zone Burning<br />

Some burners inject steam or even water<br />

at the quench zone to help cool the flame.<br />

Over fire air completes<br />

combustion at a lower<br />

temperature.<br />

The fuel itself, if introduced in stages, can also<br />

reduce flame temperature.<br />

P a g e 161


CW<br />

Premix Low NO x Burners<br />

By mixing the exact proportion of air and fuel<br />

ahead of the flame, premix ultra-low NO x<br />

burners focus on minimum excess air to help<br />

control emissions.<br />

Nitrogen absorbent material is injected into<br />

the flame along with the fuel and acts as a<br />

catalyst to help prevent NO x formation.<br />

P a g e 162


CW<br />

FGR<br />

Flue Gas Recirculation, recycles a portion of used, inert (low O2) combustion gases. Two results: 1) the burning of the flame<br />

becomes “stretched out”, lowering peak flame temperature and 2) lower excess O2, reducing chance of NOx formation.<br />

Exhaust recirculation at<br />

inner flame burn zone<br />

Exhaust recirculation at<br />

outer flame burn zone<br />

P a g e 163


CW<br />

Flue Gas Recirculation, recycles a portion of used, inert (low O2) combustion gases from the stack to the burner.<br />

Two results: 1) the burning of the flame becomes “stretched out”, lowering peak flame temperature and 2)<br />

lower excess O2, reducing chance of NOx formation.<br />

No FGR, higher peak<br />

temperature flames<br />

Less concentrated, lower<br />

temperature burning points<br />

in FGR, less NO x emissions<br />

Flue gas shut off<br />

valve closes during<br />

purge cycle<br />

EGR valves (Exhaust Gas Recirculation) on<br />

automobile motors operate under the<br />

same principle as FGR<br />

P a g e 164


CW<br />

iv. CO₂ (Green House Gasses)<br />

Greenhouse Gasses (CO 2 ) causes:<br />

Global Cooling (1970’s)<br />

Global Warming (1990’s)<br />

Climate Change (2010’s)<br />

P a g e 165


CW<br />

H) Emergency Generator<br />

1) Arc Flash<br />

Arc Flash<br />

NFPA 70E<br />

The ATPV (Arc Thermal Proformance<br />

Value) is measured in cal/cm 2 (calories<br />

per square centimeter), and is defined<br />

as the maximum incident heat energy<br />

that a fabric can absorb and lessen the<br />

injury to a 2nd degree burn.<br />

P a g e 166


CW<br />

2) Generator System Components<br />

Turbo Generator<br />

(alternator)<br />

Auto open air louvres<br />

and actuator<br />

Antifreeze coolant<br />

radiator and fan<br />

Antifreeze coolant circulation control valve<br />

Starter and 12 V<br />

Batteries<br />

connected in series<br />

P a g e 167


CW<br />

Pressurized<br />

circulating fuel oil<br />

Crank Case and<br />

Fuel oil filters<br />

Remote safety<br />

alarm panel<br />

P a g e 168


CW<br />

I) Routine Equipment Maintenance<br />

1) EMP (Equipment Maintenance Plans)<br />

Equipment<br />

Maintenance Plans<br />

• A descriptive title for each maintenance task to be performed<br />

• A frequency assigned for performing of each task<br />

• Equipment condition required for performance of the task (i.e. running or shut down)<br />

• Type of Work – Preventive Maintenance (PM), Predictive Maintenance (PdM), Corrective<br />

Maintenance (CM), Situational Maintenance (SIT), etc.<br />

• Procedure number – Unique identifier for the task, or file name if linked to another document<br />

that gives the individual task instructions<br />

• Estimated time to perform the task<br />

• Special tools, materials and equipment required to perform the task<br />

P a g e 169


CW<br />

2) Lock Out / Tag Out<br />

Step 1: Provide detailed procedures for starting and stopping<br />

equipment involved<br />

Step 2: Notify affected employees<br />

Step 3: Shut down equipment properly<br />

Step 4: Disconnect all primary energy sources<br />

Whether the primary energy sources include electricity, steam, water, gas, compressed air, or others.<br />

Step 5: Address all secondary sources<br />

While disconnecting the primary energy sources may remove much of the potential danger, it’s possible that there<br />

sources of residual energy, such as trapped heat in a thermal system, fumes that may need to be vented, or even<br />

tension in a spring assembly. Identify the process that will relieve any remaining pressure or other energy. Also consider<br />

other hazards, such as moving equipment that must be secured before work begins.<br />

Step 6: Verify the lockout<br />

Once you’ve disconnected all primary and secondary sources of energy, attempt to start the equipment to verify that<br />

the lockout has been successful. Assuming that the procedures have been successful, return all switches and other<br />

equipment back to their “off” positions so the machine won’t start unexpectedly when the energy sources are<br />

reconnected. Once you’ve verified the lockout, attach a lockout or tagout device to the equipment to ensure that it<br />

cannot be started without removing the device.<br />

Step 7: Keep it in force during shift changes<br />

Equipment must remain in lockout/tagout condition across shift changes, so that workers arriving at the site are aware<br />

that the equipment is out of service.<br />

Step 8: Bring the equipment back on line<br />

When work is done and all tools and other materials have been removed, the machine can be brought back into<br />

operation.<br />

P a g e 170


CW<br />

J) Inspection Preparation<br />

1) Internal vs. Operational<br />

While some states require yearly inspections by a licensed<br />

boiler inspector (a state employee or an insurance<br />

representative), some states have no requirements.<br />

Internal (Boiler Off and Opened):<br />

Drain boiler, open all plates and ports to include low water cutoff<br />

float devices.<br />

Have replacement gasket material on hand for reassembly.<br />

Test pressure gauges for functionality.<br />

Operational (Boiler Running):<br />

Have on hand the boiler permit of operation, a copy of any repair or<br />

alteration reports, any state required standard forms and the ASME data<br />

report obtained from the boiler manufacturer during initial startup.<br />

Line the boiler up to fire.<br />

All burner management interlocks should be operational.<br />

P a g e 171


CW<br />

2) Refractory<br />

Fire box lining (brick and or ceramic)<br />

that insulates and protects steel from<br />

flame temperature.<br />

Ceramic floor tiles<br />

Extreme changes in firebox<br />

temperature and age may<br />

result in spalling (cracking)<br />

of the refractory.<br />

Through the<br />

boiler’s view port<br />

Asbestos fiber as an insulation<br />

material has been replaced<br />

with safer, modern ceramics.<br />

P a g e 172


CW<br />

3) Seal Ropes<br />

Fiberglass seal rope installed incorrectly on a<br />

boiler door. It hung down into refractory and<br />

melted. Parts of the liquefied rope traveled with<br />

the flue gas and re-deposited as solid glass on the<br />

cooler interior walls of the fire tubes.<br />

P a g e 173


CW<br />

K) Safety Systems<br />

1) Emergency Stop Button<br />

NC Valves close if<br />

manual safety<br />

override is pushed.<br />

2) Earthquake Shutoff<br />

Normal<br />

Weak Magnet<br />

Tripped<br />

Reset Screw<br />

Leveling chain<br />

P a g e 174


CW<br />

3) Pop-Off Valve<br />

4) OS&Y<br />

Safety Pop Off /<br />

Pressure Relief Valves<br />

Steam venting during<br />

Relief Valve test<br />

Only manufacture’s<br />

rep.’s can work on<br />

safety pop off valves.<br />

Accumulation Test determines if safety<br />

valve capacity is large enough to<br />

protect boiler. All steam outlets are<br />

shut and firing rate is increased to<br />

maximum. Safety valve should relieve<br />

all excess pressure.<br />

Hydrostatic Test determines strength of parts or welds on<br />

new and repaired boilers. Safety valves are gagged with a<br />

clamp or removed and replaced with plugs. Boiler is not<br />

fired. Water pressure is then pumped up 1½ times safety<br />

valve setting. Check for leaks.<br />

2 pop-offs are required for<br />

boilers when heating surface<br />

area > 500 ft 2<br />

When checking safety valves manually, boiler psi<br />

should be at least 75% of popping pressure.<br />

75% of 210 psig = 158 psig<br />

Steam line stop valves are typically OS&Y<br />

(Outside Screw & Yoke a.k.a. Outside Stem and Yoke)<br />

Drip legs relieve condensate on main<br />

steam line if line is down.<br />

Pop off openings inside steam drum<br />

P a g e 175


CW<br />

5) Safety Limit Controls<br />

a. Boiler Failure Examples<br />

Most people who died from a boiler explosion<br />

The Sultana’s boiler engineers had requested to<br />

stop the ship to make repairs on leaking tubes.<br />

Because of scheduling pressures, the request was<br />

denied by the captain.<br />

It is speculated that the excessive list (slanting) of the Sultana<br />

due to overload, caused the water in the boiler to shift suddenly<br />

when the ship made a turn, which burst the weak pipes.<br />

Both the low water safety cutoff and the feed water<br />

regulator were bypassed. Feed water valve was<br />

manually operated. The operator had forgot to add<br />

water when the boiler began to get low. He did add<br />

water, but too late!<br />

It is determined that the most probable<br />

cause of this accident was the sudden<br />

introduction of feed water to the boiler<br />

that at the time of the explosion was<br />

operating in a dry-fired state.<br />

Today, the most common reasons for<br />

boiler explosions are improper purge<br />

cycle and low water cut-off failure.<br />

P a g e 176


CW<br />

b. Fuel Line Limit Controllers<br />

Any of these safety controls<br />

will close fuel solenoids<br />

Simpler/smaller natural gas only steam<br />

boilers are required to have<br />

1. High and Low Gas Pressure sensors<br />

2. Low Water Cutoff<br />

Which shuts off the Fuel line solenoids<br />

Simpler/smaller natural gas only hot water<br />

boilers are required to have<br />

1. High and Low Gas Pressure sensors<br />

2. High Water Temperature sensor<br />

Which shuts off the Fuel line solenoids<br />

Not all safety devices shut off the fuel,<br />

some, like this High Steam Pressure<br />

sensor, are only alarms.<br />

P a g e 177


CW<br />

c. Air Flow Proving Switches<br />

The goal of the purge cycle is for approximately<br />

4 volumes of fresh air to be admitted into the<br />

combustion chamber to drive out any<br />

unwanted combustible gas or vapor.<br />

Using positive pressure air flow from the<br />

front of the boiler, condensate cannot<br />

build up and view port is always clear.<br />

P a g e 178


CW<br />

d. Fuel Line Train Parts<br />

Incoming Gas Main<br />

Manual emergency<br />

shutoff valve<br />

Primary NC<br />

emergency shutoff<br />

valve<br />

Electronic volume correctors ‘calculate’<br />

corrected volume of gas using pressure and<br />

temperature. These devices have generally<br />

gone by the wayside and are not used<br />

anymore.<br />

Secondary NC<br />

emergency shutoff<br />

valve<br />

P a g e 179


CW<br />

Boiler Gas Train<br />

Gas shutoff valves are NC valves<br />

(Normally Closed). If the power goes<br />

out they close. Note: Redundancy: the<br />

chance of both valves failing is very slim.<br />

P a g e 180


CW<br />

Fuel Oil Train<br />

Hospitals are required to have an<br />

alternate fuel supply. Typically, Fuel Oil<br />

(Diesel) is used. Propane as an alternate<br />

source simplifies the fuel train and safety<br />

devices.<br />

PRV<br />

Oil strainer<br />

Low oil pressure<br />

safety switch<br />

Fuel Oil flow meter<br />

Flow Control<br />

motorized<br />

valve<br />

2 Safety solenoid NC cut offs<br />

(Redundancy for safety)<br />

P a g e 181


CW<br />

Atomizing Air/Steam for FO<br />

P a g e 182


CW<br />

e. Flame Scanner<br />

Light<br />

If flame is not detected, purge<br />

cycle is initiated removing<br />

unburned fuel, then relight is<br />

automatically reattempted.<br />

Soot build up<br />

on fire eye<br />

Fire eyes can “see” flame using any or all parts<br />

of the light spectrum:<br />

UV (ultraviolet), VIS (visible), IR (infrared)<br />

UV<br />

As metal is heated to high<br />

temperatures, it also emits VIS and<br />

IR light. Therefore, to avoid false<br />

readings, hospitals and other<br />

facilities with multi-fuel capability,<br />

usually only use UV scanners.<br />

UV-VIS-IR<br />

IR<br />

P a g e 183


CW<br />

K = Potassium, Ag = Silver, Cs = Cesium<br />

Self-Checking Flame Scanner<br />

• Every few seconds, oscillating shutter<br />

interrupts ultraviolet radiation reaching the<br />

UV sensor. Zero flame is confirmed and<br />

self-check complete.<br />

P a g e 184


CW<br />

Thermocouple<br />

A small electric current is<br />

created when heated.<br />

Thermopile:<br />

End bulb has multiple wire “twistings”,<br />

produces larger electron flow.<br />

Thermocouple:<br />

Single twisted wire sensor<br />

Temperature probe<br />

Thermopile<br />

Pilot<br />

Copper capillary tube protects the<br />

inner insulated single strand wire<br />

and also conducts electricity back<br />

to the head where voltage can be<br />

measured (usually in millivolts).<br />

Spark Igniter<br />

Common in<br />

atmospheric burners<br />

P a g e 185


CW<br />

Flame Rod<br />

Flame Rod =<br />

Ionization Sensor<br />

Flame Rectifier<br />

Flame rectification<br />

Flames conduct electricity.<br />

No flame, no current.<br />

Fuel is shut off.<br />

P a g e 186


CW<br />

f. Water Column<br />

Low Water Cutoff: Activated<br />

when feed water regulator fails,<br />

turns off boiler, preventing dry firing.<br />

Always has a manual reset switch.<br />

Feed Water Regulator<br />

signals for more water.<br />

Always has a sight glass<br />

Notice cutoff is lower than the<br />

feed water regulator<br />

Float replaced<br />

with electric<br />

water sensor<br />

Tricock valves:<br />

Top should be steam,<br />

bottom – water,<br />

middle indicates water level<br />

Water level<br />

controllers<br />

High water sensors are<br />

usually only alarms and do<br />

not shut off the boiler.<br />

Red manual reset button<br />

indicates this is the low<br />

water cutoff.<br />

P a g e 187


Magnetic Float<br />

CW<br />

= gauge glass<br />

tubular<br />

Thick wall vs. thin<br />

flat<br />

Small bi-colored metal plates<br />

flip up or down depending on<br />

location of built-in magnetic<br />

float in water column.<br />

electronic<br />

Electric probes sends a<br />

signal to the control<br />

room.<br />

P a g e 188


CW<br />

g. Carbon Monoxide<br />

Carbon Monoxide &<br />

Combustible Gases<br />

Carbon monoxide absorbs an additional<br />

oxygen atom from the sensor which then<br />

sends a positive hydrogen atom to the<br />

counter electrode producing a small current<br />

(detection of CO)<br />

P a g e 189


CW<br />

L) Facilitating and monitoring receipt of fuels<br />

Operators must confirm fuel oil levels on a<br />

regular basis.<br />

Paper readout for tank<br />

level verification<br />

A 10 day fuel oil supply (based on average<br />

daily fuel consumption in January) is<br />

required as an onsite minimum<br />

4 x tanks and valves<br />

Pressure<br />

Reduction Valve<br />

Emergency NC supply<br />

shutoff valve<br />

Visual flow indicator port<br />

Overpressure<br />

Safety Valve<br />

Check Valve<br />

Dual interchangeable<br />

filters<br />

P a g e 190


CW<br />

M) Efficiency<br />

1) Causes of Inefficiency<br />

Causes<br />

Improper air/fuel ratio, soot blower failure and/or poor cleaning scheduling.<br />

No. 6 Fuel Oil<br />

Natural Gas fired<br />

Cast Iron Sectional<br />

Soot actually protects the tube from flame<br />

temperature. However, since the tube represents<br />

the cooler section of the refractory and since soot<br />

is very hydroscopic (water attracting), condensate<br />

(H 2O is a combustion byproduct) may form in the<br />

soot. This then absorbs Carbon dioxide from the<br />

exhaust. CO 2 breaks down and forms carbonic<br />

acid (pH 5.5) and fire side corrosion takes place.<br />

Biomass water<br />

tube failure<br />

Scale Thickness (inches) 1/32 1/25 1/20 1/16 1/11 1/9<br />

% Fuel Loss 7 9 11 13 15 16<br />

Tube becomes insulated. Water unable to remove<br />

heat. Steel temperature increases and softens.<br />

There are only two ways to quickly remove scale<br />

build up: acid flush and mechanical scrubbing.<br />

Fire tube scale<br />

Bulging boiler tubes<br />

due to scale buildup<br />

A broken baffle causes a sudden increase in stack temperature.<br />

P a g e 191


CW<br />

Hole Size 20 psi 25 psi 100 psi 200 psi<br />

.05 inch 20 MBtu/yr 25 MBtu/yr 100 MBtu/yr 150 MBtu/yr<br />

.10 inch 100 MBtu/yr 200 MBtu/yr 500 MBtu/yr 800 MBtu/yr<br />

Damaged tubes may leak. The escaping boiler<br />

water will cool the fire and the stack<br />

temperature drops. Note water stains on metal.<br />

Serious Problems!<br />

P a g e 192


CW<br />

Flue gas analyzer<br />

O 2 Sensor<br />

Ground level air<br />

Very good<br />

Burner is<br />

off<br />

P a g e 193


CW<br />

Calibration<br />

Oxygen.<br />

The difference in Oxygen<br />

concentration between stack<br />

gases and normal air creates an<br />

electrical current across the ZrO2<br />

(zirconia) layer on the platinum<br />

(Pt) electrodes.<br />

This Oxygen sensor is for<br />

performance and tuning<br />

purposes<br />

Opacity meters measure visible<br />

smoke in stack<br />

P a g e 194


CW<br />

Why not?!<br />

ROI = Return on Investment<br />

Removable<br />

Jackets<br />

P a g e 195


Increase<br />

CW<br />

Effects (symptoms)<br />

2) Effects of Inefficiency<br />

Broken<br />

Baffle<br />

Unchecked Spalling<br />

.<br />

Soot<br />

Gradual Increase<br />

FD (forced draft) and/or<br />

ID (induced draft) Fan Failure<br />

Smoke<br />

Water cannot carry<br />

the heat away<br />

Softener and/or RO unit failure<br />

and/or improper chemical balance<br />

Scale<br />

(Soot does not damage tubes, soot actually<br />

protects tubes from high flue gas temperature)<br />

Inadequate boiler tune-up scheduling<br />

Decrease<br />

Regular, yearly boiler<br />

tune-ups recalibrate<br />

air/fuel mixture to help<br />

maximize efficiency.<br />

P a g e 196


CW<br />

3) Economizer<br />

Vertical Stack Mounted<br />

Economizers preheat feed<br />

water using flue gas<br />

Stand Alone Unit<br />

P a g e 197


CW<br />

4) LEED Program<br />

In the United States and in a number of<br />

other countries around the world, LEED<br />

certification is the recognized standard for<br />

measuring building sustainability.<br />

Four Certification Levels<br />

pts possible)<br />

The LEED green building rating system -- developed<br />

and administered by the U.S. Green Building<br />

Council, a Washington D.C.-based, nonprofit<br />

coalition of building industry leaders -- is designed<br />

to promote design and construction practices that<br />

increase profitability while reducing the negative<br />

environmental impacts of buildings and improving<br />

occupant health and well-being.<br />

Out of 110 possible points<br />

LEED certification is helping to steer the HVAC industry towards higher efficient<br />

boilers and chillers. In the long run, these systems pay for themselves.<br />

<br />

☺<br />

Out <br />

In ☺<br />

P a g e 198


CW<br />

µ<br />

µmho .................................................................................... 125<br />

A<br />

Absolute Zero Psi ................................................................... 47<br />

Absolute Zero Temperature ............................................. 48, 53<br />

AC .......................................................................................... 24<br />

AC Current .............................................................................. 24<br />

Acid ............................................................................ 123, 147<br />

Acid Rain .............................................................................. 158<br />

Activated Carbon ................................................................. 132<br />

Actuator ............................................................... 105, 143, 180<br />

Adiabatic Process ................................................................... 49<br />

Affinity Law .......................................................................... 111<br />

AFR ................................................................................... 71, 72<br />

Air Bleed Valve ....................................................................... 32<br />

Air Composition ...................................................................... 71<br />

Air Compressor ................................................................ 40, 44<br />

Air Conditioner ....................................................................... 40<br />

Air Differntial Switch ............................................................ 181<br />

Air Preheater .............................................................. 197<br />

Air Scoop ................................................................................ 32<br />

Air Separator .......................................................................... 32<br />

Air to Fuel Ratio ...................................................................... 71<br />

Air Vent .................................................................................. 32<br />

Air/Fuel Ratio ............................................................ 193<br />

Alkaline .......................................................................... 123<br />

Alkalinity ..................................................................... 130<br />

Alternating Current .............................................................. 24<br />

Alternator ............................................................................... 26<br />

Amines ................................................................................. 148<br />

Ammonia .............................................................................. 123<br />

Amperes ............................................................................... 110<br />

Amps ................................................................................... 110<br />

Annunciator ......................................................................... 177<br />

Antarctica ............................................................................... 50<br />

Antifreeze......................................................................... 36, 37<br />

APT ................................................................................... 87, 94<br />

Aquastat ................................................................................ 31<br />

Aquifer ................................................................................. 128<br />

Arc Flash ............................................................................... 166<br />

Asbestos ............................................................................... 172<br />

Atmospheric Burner ....................................................... 66, 185<br />

Attemperator ......................................................................... 91<br />

Automatic Pump Trap ...................................................... 87, 94<br />

B<br />

Babcock & Wilcox .................................................................. 13<br />

Back Siphonage ............................................................ 104<br />

Backflow .......................................................................... 104<br />

Bacteria ................................................................................ 132<br />

Baffle ....................................................................................... 8<br />

Balance Point ......................................................................... 42<br />

Balanced Pressure Steam Trap .............................................. 84<br />

Ball ....................................................................................... 103<br />

Ball Valve .............................................................................. 144<br />

Barometer ............................................................................ 151<br />

Barometric Pressure ............................................................ 151<br />

Base ................................................................................... 123<br />

Base Load ............................................................................... 25<br />

Bernoulli ...................................................................... 117, 153<br />

Beveled End Pipes ................................................................. 114<br />

BHP .............................................................................. 112, 157<br />

Bi-metalic steam trap ....................................................... 80, 84<br />

Black Steel Pipe .................................................................... 115<br />

Blowdown .......................................................................... 143<br />

Blowdown Separator .................................................. 144<br />

Blowdown Tank ...................................................... 144, 145<br />

Boiler Horsepower ....................................................... 112, 157<br />

Boiler MACT ......................................................................... 158<br />

Boiling Point ......................................................................... 23<br />

Bottom Blowdown ......................................................... 144<br />

Bourdon Tube ...................................................................... 151<br />

BPHE ...................................................................................... 95<br />

Braized Plate .......................................................................... 95<br />

Bryan Boiler ........................................................................... 14<br />

BTU content ........................................................................... 46<br />

Burn Rate Control .................................................................. 61<br />

Butterfly ............................................................................... 103<br />

Bypass Feeder ........................................................................ 34<br />

C<br />

Calcium ............................................................................ 130<br />

Calorie .......................................................................... 112, 157<br />

Can Pump ....................................................................... 99, 121<br />

Candy Bar ..................................................................... 112, 157<br />

Carbon Dioxide .................................................................... 165<br />

Carbon Monoxide ................................................................ 189<br />

Carryover........................................................................ 143<br />

Catalytic Sorbent Injection ................................................... 162<br />

Caustic Embrittlement ........................................... 140<br />

Cavitation ............................................................................. 109<br />

CCPP .................................................................................... 30<br />

Ceramic ................................................................................ 172<br />

Ceramic Mesh Burner ............................................................ 74<br />

Ceramic Seal Rope ............................................................... 173<br />

Cesium Oxide ....................................................................... 184<br />

Charcoal ............................................................................... 132<br />

Chemical Feed Pump ........................................................... 150<br />

Cherrapunjee ......................................................................... 50<br />

Chlorine ............................................................................... 128<br />

Chromium ............................................................................ 115<br />

Circulation Pumps .................................................................. 34<br />

Clayton Steam Generator ....................................................... 15<br />

P a g e 199


Climate Change .................................................................... 165<br />

Closed Loop <strong>Boilers</strong> ................................................................ 31<br />

Coal ...................................................................... 112, 157, 193<br />

Combined Cycle Power Plant ............................................ 30<br />

Combustion Triangle .............................................................. 65<br />

Complete Combustion ................................................ 193<br />

Compound Guage ................................................................ 151<br />

Compressed Air ...................................................................... 76<br />

Compression Tank .............................................................. 33<br />

Condensate .......................................................... 28, 147, 152<br />

Condensate Neutralizing Tubes ............................................. 39<br />

Condensate Pump .............................................................. 87<br />

Condensate Receiver ........................................................... 119<br />

Condensation ................................................................... 47, 53<br />

Condenser .............................................................................. 28<br />

Condensing Boiler .................................................................. 39<br />

Conduction ............................................................................. 45<br />

Conductivity ......................................................... 125, 126, 143<br />

Cone Flowmeter ................................................................... 154<br />

Continuous Blowdown ................................................ 143<br />

Controllers ............................................................................ 31<br />

Convection ....................................................................... 45, 70<br />

Cooling Tower ...................................................................... 28<br />

Copper.................................................................................. 166<br />

Coriolis ................................................................................. 155<br />

Cugnot's Steam Car .................................................................. 7<br />

Cyclohexylamine .................................................................. 148<br />

Cyclone Separator .................................................................. 23<br />

D<br />

D Type Boiler .......................................................................... 17<br />

DC.......................................................................................... 24<br />

DC Current ............................................................................. 24<br />

Dead Sea ................................................................................ 57<br />

DEAE ..................................................................................... 148<br />

Deaerator ..................................................................... 137, 138<br />

Decatherm ................................................................... 112, 157<br />

DEHA .................................................................................... 142<br />

Dehumidifier .......................................................................... 43<br />

Deposition ........................................................................ 53, 56<br />

Desuperheater ....................................................................... 91<br />

Diametre Nominel ................................................................ 116<br />

Diaphragm ........................................................................... 103<br />

Diesel ..................................................................... 64, 112, 157<br />

Diethyl Aminoethanol .......................................................... 148<br />

Diethyl Hydroxylamine ......................................................... 142<br />

Diffuser .................................................................................. 72<br />

Diffusion Flame ....................................................................... 69<br />

Direct Current....................................................................... 24<br />

DN ........................................................................................ 116<br />

CW<br />

Doppler ................................................................................ 155<br />

Downcomer ..................................................................... 19, 20<br />

Drip Legs .............................................................................. 118<br />

Dry Firing ..................................................................... 187<br />

Dry Pipe ........................................................................... 20, 23<br />

Dry Pipe Separator .................................................... 12<br />

Dry Steam .............................................................................. 59<br />

Dry Valleys ............................................................................. 50<br />

Dryback boiler .......................................................................... 9<br />

Dual Fuel Burners .................................................................. 76<br />

E<br />

Earth Quake Emergency Stop .............................................. 174<br />

Economizer ..................................................................... 197<br />

Edison, Thomas .................................................................. 24<br />

Efficiency ............................................................. 191, 196<br />

EGR ...................................................................................... 164<br />

Electrical Resistance Welding ............................................... 113<br />

Electromagnetic Sensor ....................................................... 155<br />

Elephant ............................................................................... 110<br />

Emergency Generator .......................................................... 167<br />

Emergency Stop Button ....................................................... 174<br />

Emissions ............................................................................. 158<br />

Energy .......................................................................... 112, 157<br />

Enthalpy ................................................................................. 59<br />

EPA ....................................................................................... 158<br />

ERW ..................................................................................... 113<br />

Ethylene Glycol ................................................................ 36, 39<br />

Evaporation ........................................................................... 53<br />

EVOH ...................................................................................... 35<br />

Excess Air ..................................................................... 193<br />

Excess Oxygen ...................................................................... 160<br />

Exhaust Gas Recirculation ................................................... 164<br />

Expander .......................................................................... 11, 18<br />

Expansion Joint ................................................................... 33<br />

Expansion Tank .................................................................. 33<br />

Expansion Valve ..................................................................... 40<br />

Expansion, water to ice ....................................................... 123<br />

F<br />

F&T Steam Trap .................................................................. 83<br />

Fan Speed ............................................................................ 111<br />

Feed Water .................................................................. 137, 197<br />

Feed Water Pump .......................................................... 99, 121<br />

Feed Water Regulator ........................................... 99, 121, 187<br />

FGR............................................................................... 163, 164<br />

Fiberglass ............................................................................. 173<br />

Filming Amines .................................................................... 148<br />

Fire Eye ............................................................................ 24, 68<br />

Fire Tube .......................................................................... 8, 12<br />

P a g e 200


Firebox .................................................................................. 23<br />

Firing Rate Control ................................................................. 61<br />

Firm Rate ................................................................................ 76<br />

Fixed Orifice Steam Trap ........................................................ 80<br />

Flame Envelope ...................................................................... 70<br />

Flame Extinction .................................................................. 160<br />

Flame Rectifier ..................................................................... 186<br />

Flame Rod ............................................................................ 186<br />

Flame Scanners/Sensors ....................................................... 183<br />

Flash Tank ..................................................................... 144<br />

Flat Sight Glass ................................................................. 190<br />

Flex Tube Boiler...................................................................... 14<br />

Float and Thermostatic Steam Trap ................................. 83<br />

Floating Head Heat Exchanger ............................................... 94<br />

Flue Gas Analyzer ..................................................... 193<br />

Flue Gas Recirculation .................................................. 163, 164<br />

Food Grade Antifreeze ........................................................... 36<br />

Foot Valve ............................................................................ 150<br />

Forced Draft Burner ............................................................... 66<br />

Fracking .................................................................................. 63<br />

Free Chlorine ........................................................................ 132<br />

Freeze Drying ......................................................................... 54<br />

Freeze Point ........................................................................... 36<br />

Freeze Point Curve ................................................................. 53<br />

Fuel Oil ............................................................ 64, 112, 157<br />

Fuel Oil Train ........................................................................ 181<br />

G<br />

Galvanized Pipe .................................................................... 115<br />

Gas Train .............................................................................. 180<br />

Gasoline ....................................................................... 112, 157<br />

Gate...................................................................................... 103<br />

Generator ............................................................................... 26<br />

Global Warming ................................................................... 165<br />

Globe .................................................................................... 103<br />

Golden Gate Bridge ................................................................ 57<br />

Grain of Hardness ................................................................ 129<br />

Gravel ................................................................................... 109<br />

Greenhouse Gas ................................................................... 165<br />

Grid ........................................................................................ 25<br />

Grundfos ................................................................................ 34<br />

H<br />

Hambuger Helper ................................................................... 57<br />

Hardness .......................................................................... 130<br />

Heat Content .......................................................................... 46<br />

Heat Exchanger ................................................................... 95<br />

Heat Exchanger Stall .............................................................. 94<br />

Heat Gun ................................................................................ 90<br />

Heat Pump ............................................................................. 42<br />

CW<br />

Heat Recovery Steam Generator ........................................... 16<br />

Heros Engine ............................................................................ 7<br />

Herz ........................................................................................ 24<br />

Hexagonal ............................................................................ 123<br />

Hexagonal Crystal .................................................................. 52<br />

High Fire ................................................................................. 61<br />

High PSI Steam Pressure Gauge ........................................... 177<br />

Holding Tank ........................................................................ 119<br />

HRSG ...................................................................................... 16<br />

Hydrastep ............................................................................ 190<br />

Hydraulic Fracturing .............................................................. 63<br />

Hydraulic HP ........................................................................ 110<br />

Hydrazine ............................................................................. 142<br />

Hydrogen .......................................................................... 123<br />

Hydrostatic Test ................................................................... 175<br />

Hydroxide........................................................................ 123<br />

Hygroscopic Washers ........................................................ 33<br />

I<br />

Ice Scates ............................................................................... 55<br />

Ice Tsunami ............................................................................ 55<br />

Ideal Gas Law ..................................................... 40, 51, 88, 146<br />

Ignition Transformer .............................................................. 68<br />

Impeller................................................................................ 109<br />

Implosion ............................................................................. 117<br />

Impulse Steam Trap ............................................................... 79<br />

Incandence ............................................................................. 70<br />

Infrared ................................................................................ 183<br />

Inspection ............................................................................ 171<br />

Insulation ............................................................................. 195<br />

Intercooler ............................................................................. 40<br />

Internal ................................................................................ 171<br />

Interruptible Rate .................................................................. 76<br />

Inverted Bucket Steam Trap .................................................. 81<br />

Ionization Sensor ................................................................. 186<br />

IR Lightr ................................................................................ 183<br />

Iron Crystals .............................................................. 140<br />

K<br />

Keep Up Coil .......................................................................... 17<br />

Kelvin ..................................................................................... 48<br />

Kerosene ................................................................................ 64<br />

Kilowatt ........................................................................ 112, 157<br />

KWH ............................................................................. 112, 157<br />

L<br />

Lake Tahoe ............................................................................. 57<br />

Laminar Flame........................................................................ 71<br />

Lance ...................................................................................... 76<br />

Latent Heat ............................................................................ 45<br />

Lean Flame ..................................................................... 71, 160<br />

P a g e 201


LEED Certification................................................................. 198<br />

LEL .......................................................................................... 71<br />

Let Down Station............................................................ 90, 118<br />

Lift Check .............................................................................. 103<br />

Linear Actuator .................................................................... 106<br />

Liquid Expansion Trap ........................................................ 85<br />

Liquifaction ............................................................................ 45<br />

Litmus Paper ........................................................................ 122<br />

LMI Pumps ........................................................................... 150<br />

Low Fire .................................................................................. 61<br />

Low Fire Hold Switch .............................................................. 61<br />

Low Water Cutoff ....................................................... 187<br />

Lower Explosive Limit ............................................................. 71<br />

Lubricant ................................................................................ 55<br />

M<br />

MACT ................................................................................... 158<br />

Magnesium ........................................................................ 130<br />

Magnetic Float ..................................................................... 190<br />

Make Up Water .................................................................... 128<br />

Marble chips .......................................................................... 39<br />

MAWP .................................................................................... 144<br />

Maximum Allowable Working Pressure ............ 144<br />

Mechanical Steam Traps ........................................................ 78<br />

Membrane ................................................................... 134, 135<br />

Mercury.......................................................................... 58, 151<br />

Mercury Switch ............................................................ 31, 152<br />

Methane ................................................................................ 62<br />

Mixing Boxes .......................................................................... 96<br />

Modulation Motor ............................................................... 164<br />

Molybdates ............................................................................ 34<br />

Morpholine .......................................................................... 148<br />

Motor Vibrations.................................................................. 102<br />

Mt Everest .............................................................................. 57<br />

Mud Drum ........................................................................ 13, 20<br />

Multistage Pump ............................................................ 99, 121<br />

N<br />

Natural Gas Composition ....................................................... 62<br />

NC Valves ............................................................................. 180<br />

Neutral Water .............................................................. 123<br />

Neutralizing Amines ............................................................. 148<br />

Newcomen Steam Engine ........................................................ 7<br />

NFPA 70E .............................................................................. 166<br />

Niagara Falls ........................................................................... 24<br />

Nitogen Dioxide ................................................................... 160<br />

Nitrates .................................................................................. 34<br />

Nitric Oxide .......................................................................... 160<br />

Nitrites ................................................................................... 36<br />

Nitrogen Gas ........................................................................ 33<br />

CW<br />

Non-condensable ................................................................ 83<br />

Non-Condensing Turbine ....................................................... 29<br />

Normal Pipe Size .................................................................. 116<br />

NOx .............................................................................. 158, 160<br />

Nozzle .................................................................................... 72<br />

NPS....................................................................................... 116<br />

Nuclear Explosion .................................................................. 56<br />

O<br />

O Type Boiler ......................................................................... 17<br />

Octane ................................................................................... 62<br />

Ohms.................................................................................... 110<br />

Oil Burners ............................................................................. 76<br />

Oil Filter ............................................................................... 181<br />

Operating Limit Control ......................................................... 61<br />

Operational Inspection ........................................................ 171<br />

Orifice Flowmeter ................................................................ 154<br />

OS&Y .................................................................................... 175<br />

Oscillation ............................................................................ 155<br />

Outside Screw and Yoke ...................................................... 175<br />

Over Fire Air ......................................................................... 161<br />

Oxygen barrier ....................................................................... 35<br />

Oxygen Scavenger................................................................ 138<br />

P<br />

Panel Boiler ............................................................................ 16<br />

Paris, TN ............................................................................... 176<br />

Parralel Connection ............................................................... 99<br />

Parrallel pumps ...................................................................... 99<br />

Peak Flame Temperature .................................................... 160<br />

Peristaltic ............................................................................. 150<br />

Peristaltic Feed Pump .......................................................... 150<br />

PEX ......................................................................................... 35<br />

pH Chart ............................................................................... 123<br />

pH Paper .............................................................................. 122<br />

pH Probe .............................................................................. 124<br />

Phases of Water ............................................................... 46, 53<br />

Phenolphthalein .................................................................. 122<br />

Phosphate................................................................ 130, 141<br />

Pig Tale................................................................................. 152<br />

Pilot Light ............................................................................. 185<br />

Pipes..................................................................................... 113<br />

Pitot Tube ............................................................................ 154<br />

Pitting .............................................................................. 35<br />

Pitting Corrosion .................................................................. 138<br />

Plain End Pipes ..................................................................... 114<br />

Plate and Frame .................................................................. 95<br />

Pneumatics .......................................................................... 105<br />

Positive Displacement ......................................................... 150<br />

Pot Feeder ............................................................................. 34<br />

Potassium Chloride .............................................................. 137<br />

P a g e 202


Potassium Oxide .................................................................. 184<br />

Pour Point ....................................................................... 64<br />

Premix Burner ........................................................................ 74<br />

Premix Flame .......................................................................... 70<br />

Pressure Reducing Valve .................................................. 88<br />

Pressure Regulator ............................................................... 103<br />

Pressure Stat ........................................................................ 152<br />

Pressurestat ......................................................................... 31<br />

Pressuretrol .......................................................................... 31<br />

Pressuretroll ......................................................................... 152<br />

Primary Air ............................................................................. 64<br />

Priming ............................................................................. 143<br />

Propane .................................................................................. 62<br />

Propane Tank ......................................................................... 40<br />

Propeller .............................................................................. 109<br />

Propylene Glycol .............................................................. 36, 37<br />

PRV ......................................................................................... 88<br />

Psia ........................................................................... 57, 58, 151<br />

Psig ........................................................................ 57, 58, 151<br />

PxV=T ..................................................................................... 40<br />

Pyrolysis .................................................................................. 69<br />

Pyrometer .............................................................................. 90<br />

Q<br />

Quarter Turn Valve .............................................................. 106<br />

Quench ................................................................................. 161<br />

Quiet Pipes ........................................................................... 108<br />

Quill ...................................................................................... 150<br />

R<br />

Radiation .......................................................................... 45, 70<br />

Radiator Steam Trap .............................................................. 85<br />

Radiators ........................................................................ 33, 85<br />

Rain Shadow ........................................................................... 49<br />

Rankine Scale ......................................................................... 59<br />

Raw Water ........................................................................... 128<br />

Reducing Flame ...................................................................... 70<br />

Refractory .............................................................................. 20<br />

Refrigeration .......................................................................... 40<br />

Regelation .............................................................................. 55<br />

Resin Beads ................................................................... 130<br />

Resistance ............................................................................ 110<br />

Restricting Orifice ................................................................ 88<br />

Reverse Osmosis .................................................. 132, 134, 135<br />

Reversing Valve ...................................................................... 42<br />

Rich Flame ...................................................................... 71, 160<br />

Rivets ............................................................................... 140<br />

Roaring Flame ........................................................................ 70<br />

ROI ....................................................................................... 195<br />

Roll and Bead .............................................................. 140<br />

CW<br />

Roll and Flare .............................................................. 18, 140<br />

Rope seal ............................................................................. 172<br />

Rotary Actuator ................................................................... 106<br />

Rotary Cup Burner ...................................................... 64<br />

Rotor ...................................................................................... 26<br />

S<br />

Safety Inspection ................................................................. 171<br />

Safety Pop Off ...................................................................... 175<br />

Safety Solenoid .................................................................... 181<br />

Salt Bridge ............................................................................ 137<br />

Satiration Curve ..................................................................... 48<br />

Saturated Steam .................................................................... 46<br />

Saturated Water .................................................................... 59<br />

Scale ................................................................. 130, 191, 196<br />

SCH....................................................................................... 116<br />

Schedule .............................................................................. 116<br />

Sea Level .......................................................................... 46, 58<br />

Seal Ropes ............................................................................ 173<br />

Seamless Pipes ..................................................................... 113<br />

Secondary Air ................................................................ 64<br />

Self Checking Flame Scanner ............................................... 184<br />

Sensible Heat ......................................................................... 45<br />

Series Connection .................................................................. 99<br />

Series Pumps ......................................................................... 99<br />

Shell and Tube .................................................................... 95<br />

Shell and Tube Heat Exchanger ............................................. 94<br />

Shutoff Cock......................................................................... 180<br />

Shuttered Flame Scanner .................................................... 184<br />

Siemen ................................................................................. 125<br />

Sierra Nevada Range .............................................................. 49<br />

Sight Glass ................................................................... 187<br />

Silica ..................................................................................... 173<br />

Silicates .................................................................................. 34<br />

Silicone ................................................................................. 173<br />

Silver Oxide .......................................................................... 184<br />

Sine wave ............................................................................. 24<br />

Single Phase ........................................................................ 24<br />

Siphon Loop ......................................................................... 152<br />

Slug ...................................................................................... 117<br />

Snap Switch ................................................................. 31, 152<br />

Sodium Chloride .................................................................. 137<br />

Sodium Metabisulfite .......................................................... 142<br />

Solar Salt .............................................................................. 137<br />

Solenoid ............................................................................... 180<br />

Soot ................................................................................ 71, 191<br />

Soot Blower ................................................................... 191<br />

Sørensen, Søren ......................................................... 123<br />

Spalling ................................................................................ 172<br />

Sparge Tube ......................................................................... 137<br />

P a g e 203


Spark ...................................................................................... 68<br />

Spark Ignitor ................................................................... 24, 185<br />

Spark Plug .............................................................................. 68<br />

Spring Check......................................................................... 103<br />

Stack ......................................................................... 193, 197<br />

Stack Temperature ......................................................... 71, 193<br />

Staged Air Burner ................................................................... 73<br />

Staged Combustion .............................................................. 161<br />

Staged Fuel Burner ................................................................. 73<br />

Stainless Steel ...................................................................... 115<br />

Stall ........................................................................................ 94<br />

Stator ..................................................................................... 26<br />

Steam Drum ........................................................................... 23<br />

Steam Generator .................................................................... 15<br />

Steam Separators ................................................................. 118<br />

Steam Table ........................................................................... 58<br />

Step Down Transformer ......................................................... 25<br />

Step Up Transformer.................................................. 24, 25, 68<br />

Stethoscope ........................................................................... 90<br />

Stirling Boiler .......................................................................... 13<br />

Stoichiometric ........................................................................ 71<br />

Stress ................................................................. 12, 137, 140<br />

Stroke ................................................................................... 150<br />

Sub Saturated Water.............................................................. 59<br />

Sublimation ...................................................................... 53, 54<br />

Sulfate .................................................................................. 138<br />

Sulfite ................................................................... 132, 138, 142<br />

Sultana ................................................................................. 176<br />

Super Skins ................................................................... 143<br />

Supercritical Steam ................................................................ 58<br />

Superheated Steam ......................................................... 46, 59<br />

Superheater ...................................................................... 15, 20<br />

Surface Blowdown ..................................................... 143<br />

Surface Tension.......................................................... 143<br />

Surge Tank ........................................................................... 119<br />

Swing Check ......................................................................... 103<br />

Swirler .................................................................................... 72<br />

T<br />

TDS ............................................................................... 126, 143<br />

Telltale Hole ................................................................ 12<br />

Tesla, Nikola ........................................................................... 24<br />

Therm ........................................................................... 112, 157<br />

Thermal Imager ...................................................................... 90<br />

Thermocouple .............................................................. 138, 185<br />

Thermodisc ............................................................................ 79<br />

Thermodynamic Steam Traps ................................................ 78<br />

Thermopile ........................................................................... 185<br />

Thermostatic Steam Traps ..................................................... 78<br />

Thermowell ........................................................................... 31<br />

CW<br />

Threaded End Pipes .............................................................. 114<br />

Three phase ......................................................................... 24<br />

Tom Thumb ................................................................. 112, 157<br />

Topsy the Elephant ................................................................ 24<br />

Torque ................................................................................. 111<br />

Total Dissolved Solids ......................................... 143<br />

Transformer ........................................................................... 25<br />

Transmission .......................................................................... 25<br />

Tricock Valve .............................................................. 187<br />

Triple Point ............................................................................ 53<br />

TSP ....................................................................................... 141<br />

Turbine ............................................................................ 27, 28<br />

Turbo Generator .................................................................... 26<br />

Turbulent Flame ..................................................................... 71<br />

TXV ......................................................................................... 88<br />

U<br />

UEL ......................................................................................... 71<br />

Ultra Low NOx ...................................................................... 162<br />

Ultra Violet........................................................................... 184<br />

Ultrasonic ............................................................................. 155<br />

Ultraviolet ............................................................................ 183<br />

Universal Mounts for Steam Traps ......................................... 86<br />

Universal Test Paper ............................................................ 122<br />

Upper Explosive Limit ............................................................. 71<br />

UV light ................................................................................ 183<br />

V<br />

Vacuum .............................................................. 28, 47, 57, 94<br />

Vacuum Chamber .................................................................. 54<br />

Valves ................................................................................... 103<br />

Vapor Cone ............................................................................ 56<br />

Vapor Pressure ...................................................................... 46<br />

Vaporization .................................................................... 45, 47<br />

Variable Frequency Drive .................................................... 111<br />

Vavle Induced Water Hammer ............................................ 108<br />

Venturi ......................................................................... 153, 154<br />

VFD ...................................................................................... 111<br />

Vibrations ............................................................................ 102<br />

VIS Light ............................................................................... 183<br />

Viscosity.................................................................... 64, 76<br />

Voltage ................................................................................... 24<br />

Volts .................................................................................... 110<br />

W<br />

Water Column ............................................................ 146, 187<br />

Water Column Blowdown ................................................... 146<br />

Water Hammer ............................................................ 105, 108<br />

Water Slug ........................................................................... 117<br />

Water Softener .................................................... 130, 137<br />

Water Tube ................................................................ 13, 17, 18<br />

P a g e 204


Watts ................................................................................... 110<br />

Wax ........................................................................................ 69<br />

Welded Seam Pipes .............................................................. 113<br />

Wellons <strong>Boilers</strong> ...................................................................... 16<br />

Westinghouse ........................................................................ 24<br />

Wet Steam ............................................................................. 59<br />

CW<br />

Wetback Boiler ........................................................................ 9<br />

Z<br />

Zeolite ............................................................................ 130<br />

Zinc ...................................................................................... 115<br />

P a g e 205

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!