17.01.2019 Views

Comprehesive Boiler Manual Jan 2019

A Preview of B&CT Training LLC - Boiler Systems I & II Comprehensive Training Manual. We can customize training manuals to include your specific equipment. The outline is specifically designed to assist with compliance to V.A. Handbook 1810 requirements. For more information please call 405-401-0156 or see www.b-ct.net

A Preview of B&CT Training LLC - Boiler Systems I & II Comprehensive Training Manual. We can customize training manuals to include your specific equipment. The outline is specifically designed to assist with compliance to V.A. Handbook 1810 requirements. For more information please call 405-401-0156 or see www.b-ct.net

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

www.b-ct.net<br />

BOILERS<br />

Comprehensive Pictoral Analysis<br />

<strong>Boiler</strong> Systems I and II<br />

Training Course <strong>Manual</strong><br />

Illustrations and Notes arranged by<br />

Sedley Parkinson, Instructor<br />

B & CT Training LLC<br />

www.b-ct.net<br />

<strong>Jan</strong> <strong>2019</strong><br />

P a g e 1


Table of Contents<br />

Preface: <strong>Boiler</strong> Design ............................................................................................................................................................. 8<br />

1) Primitive <strong>Boiler</strong>s ........................................................................................................................................................... 8<br />

2) Fire Tube ....................................................................................................................................................................... 9<br />

i. Multi-Pass ........................................................................................................................................................... 9<br />

ii. Dryback vs. Wetback ........................................................................................................................................ 10<br />

iii. Tube Connections: Roll and Bead ..................................................................................................................... 12<br />

iv. Stays ................................................................................................................................................................. 13<br />

3) Water Tube ................................................................................................................................................................. 14<br />

i. Types of water tube boilers .............................................................................................................................. 14<br />

ii. Tube Connections: Roll and Flare ..................................................................................................................... 20<br />

iii. Downcomer ...................................................................................................................................................... 21<br />

iv. Superheater ...................................................................................................................................................... 22<br />

v. Steam Scrubber: Baffles/Dry Pipe ..................................................................................................................... 23<br />

vi. Mud Drum continuous heater .......................................................................................................................... 23<br />

4) Water Cum Smoke Tube (Water and Fire Tube) ......................................................................................................... 25<br />

5) Cast Iron Sectional ...................................................................................................................................................... 26<br />

6) Closed Loop <strong>Boiler</strong>s (Hot Water Circulation) .............................................................................................................. 27<br />

Aquastat ................................................................................................................................................................ 27<br />

Air Removal ........................................................................................................................................................... 28<br />

Water Expansion Control ...................................................................................................................................... 29<br />

Exterior Circulation Pumps .................................................................................................................................... 30<br />

Closed Loop Corrosion Control ............................................................................................................................. 30<br />

PEX tubing ............................................................................................................................................................. 31<br />

Antifreeze .............................................................................................................................................................. 32<br />

Condensing <strong>Boiler</strong> ................................................................................................................................................. 35<br />

7) Co-Generation ............................................................................................................................................................ 37<br />

a. Electricity ........................................................................................................................................................... 37<br />

b. Turbo Generator ............................................................................................................................................... 38<br />

c. Steam Turbine ................................................................................................................................................... 39<br />

d. Condenser ......................................................................................................................................................... 40<br />

e. Non-Condensing Turbines ................................................................................................................................. 41<br />

f. Combined Cycle ................................................................................................................................................. 42<br />

A) <strong>Boiler</strong> Start Up, Operation and Shutdown ........................................................................................................................ 43<br />

1) Ideal Gas Law: PV=nRT ............................................................................................................................................... 43<br />

i. Heat Pump ........................................................................................................................................................ 45<br />

ii. Dehumidifier ..................................................................................................................................................... 46<br />

P a g e 2


iii. Air Compressor ................................................................................................................................................. 46<br />

2) Temperature vs Heat Content .................................................................................................................................... 48<br />

3) Pressure ...................................................................................................................................................................... 49<br />

i. Vapor Pressure .................................................................................................................................................. 50<br />

ii. Water Phase Expansion ..................................................................................................................................... 54<br />

4) Pressure vs Temperature Chart .................................................................................................................................. 56<br />

i. Sublimation/Deposition .................................................................................................................................... 56<br />

ii. Freezing/Melting .............................................................................................................................................. 58<br />

iii. Boiling/Condensing ........................................................................................................................................... 59<br />

iv. Gauge vs Absolute ............................................................................................................................................ 60<br />

5) Steam Table ............................................................................................................................................................... 61<br />

6) Temperature vs Enthalpy (Btus/Pound)..................................................................................................................... 62<br />

7) <strong>Boiler</strong> Operational Controllers ................................................................................................................................... 64<br />

i. PSI ...................................................................................................................................................................... 64<br />

ii. Water Level ....................................................................................................................................................... 66<br />

B) Fuel: Primary and Backup ................................................................................................................................................. 68<br />

1) Fuel Types ................................................................................................................................................................... 68<br />

i. Natural Gas ....................................................................................................................................................... 68<br />

ii. Liquid Fuels ....................................................................................................................................................... 70<br />

iii. Solid Fuels / BioMass ........................................................................................................................................ 71<br />

iv. Electricity .......................................................................................................................................................... 75<br />

2) Combustion ................................................................................................................................................................ 76<br />

i. Combustion Air ................................................................................................................................................. 77<br />

ii. Spark ................................................................................................................................................................. 79<br />

iii. Flame ................................................................................................................................................................ 80<br />

iv. Air/Fuel Ratio (AFR) .......................................................................................................................................... 82<br />

3. Burners ...................................................................................................................................................................... 84<br />

i. Natural Gas ....................................................................................................................................................... 84<br />

ii. Oil ..................................................................................................................................................................... 87<br />

iii. Duel Fuel: NG & Oil ........................................................................................................................................... 89<br />

iv. Solid Fuel Burners ............................................................................................................................................. 90<br />

v. Soot Blowers ..................................................................................................................................................... 94<br />

C) Plant Equipment Operations ............................................................................................................................................ 96<br />

1) Steam Traps ................................................................................................................................................................ 96<br />

i. Thermodynamic ............................................................................................................................................... 97<br />

ii. Mechanical ...................................................................................................................................................... 98<br />

iii. Thermostatic .................................................................................................................................................. 102<br />

P a g e 3


iv. Universal Mount Steam Traps ....................................................................................................................... 104<br />

v. Automatic Pump Trap (APT) = Condensate Pump ......................................................................................... 105<br />

vi. PRV ................................................................................................................................................................ 106<br />

vii. Steam Trap Troubleshooting ........................................................................................................................ 108<br />

2) Desuperheater .......................................................................................................................................................... 109<br />

3) Heat Exchangers ....................................................................................................................................................... 110<br />

i. Shell and Tube ................................................................................................................................................ 110<br />

High Capacity Instantaneous Steam Fired Water Heater...................................................................................... 111<br />

v. Steam Driven Hot Water Heaters ................................................................................................................... 112<br />

ii. Plate and Frame .............................................................................................................................................. 115<br />

iii. HVAC Mixing Boxes ......................................................................................................................................... 116<br />

iv. Steam Radiators.............................................................................................................................................. 117<br />

v. Jacketed Kettles .............................................................................................................................................. 118<br />

vi. Autoclaves ...................................................................................................................................................... 119<br />

vii. Heat Exchanger Stall ...................................................................................................................................... 120<br />

4) Pumps ....................................................................................................................................................................... 121<br />

i. Reciprocating .................................................................................................................................................. 121<br />

ii. Rotary ............................................................................................................................................................. 122<br />

iii. Centrifugal ...................................................................................................................................................... 123<br />

iv. Multi Stage Pumps .......................................................................................................................................... 124<br />

v. Motor Vibration Monitoring ........................................................................................................................... 125<br />

vi. Expansion Control ........................................................................................................................................... 126<br />

vii. Cavitation ....................................................................................................................................................... 126<br />

5) Valves ....................................................................................................................................................................... 127<br />

i. Types .............................................................................................................................................................. 127<br />

ii. Backflow Prevention ....................................................................................................................................... 128<br />

iii. Actuators ........................................................................................................................................................ 129<br />

iv. Water Hammer: Valve Induced ...................................................................................................................... 132<br />

6) Condensate Holding Tanks ....................................................................................................................................... 134<br />

i. Surge Tank / Condensate Return Tank ........................................................................................................... 134<br />

ii. Condensate Vacuum Pump ............................................................................................................................ 135<br />

7) Electricity .................................................................................................................................................................. 136<br />

i. Flow ................................................................................................................................................................. 136<br />

ii. VFD: Affinity Law ............................................................................................................................................. 137<br />

D) Piping Systems ................................................................................................................................................................ 139<br />

1) Pipes ......................................................................................................................................................................... 139<br />

i. Manufacture Style .......................................................................................................................................... 139<br />

P a g e 4


ii. Composition ................................................................................................................................................... 141<br />

iii. Sizing ............................................................................................................................................................... 142<br />

iv. Poiseuille’s Law ............................................................................................................................................... 143<br />

2) Water Hammer: Steam Driven ................................................................................................................................. 144<br />

i. Water Slug ...................................................................................................................................................... 144<br />

ii. Vacuum Induced ............................................................................................................................................. 144<br />

iii. Inline Steam Separators .................................................................................................................................. 145<br />

4) Steam Header ........................................................................................................................................................... 146<br />

E) Water Quality .................................................................................................................................................................. 147<br />

1) Water Chemistry ...................................................................................................................................................... 147<br />

i. pH .................................................................................................................................................................... 147<br />

ii. Conductivity..................................................................................................................................................... 150<br />

2) Make Up Water ........................................................................................................................................................ 153<br />

i. Water Softener .............................................................................................................................................. 154<br />

ii. Reverse Osmosis (RO).................................................................................................................................... 157<br />

iii. Filtration ........................................................................................................................................................ 159<br />

3) Feed Water: DA Tank ............................................................................................................................................... 163<br />

i. Temperature Control ...................................................................................................................................... 163<br />

ii. Dissolved Air Removal .................................................................................................................................... 164<br />

4) <strong>Boiler</strong> Water ............................................................................................................................................................. 167<br />

i. Caustic Embrittlement .................................................................................................................................... 167<br />

ii. Scale Control: Residual Hardness ................................................................................................................... 168<br />

iii. Residual Oxygen Pitting Control: Oxygen Scavengers ..................................................................................... 169<br />

iv. Surface blowdown .......................................................................................................................................... 170<br />

v. Sludge and Settlement Control: Bottom Blowdown ....................................................................................... 171<br />

vi. Water Column Blowdown............................................................................................................................... 173<br />

5) Condensate: ............................................................................................................................................................. 174<br />

i. Carbonic Acid .................................................................................................................................................. 174<br />

ii. FAC – Flow Accelerated Corrosion .................................................................................................................. 176<br />

iii. LDI – Liquid Droplet Impingement .................................................................................................................. 177<br />

6) Combination Chemical Treatment ........................................................................................................................... 178<br />

7) Chemical Feed Pumps ............................................................................................................................................... 179<br />

G) System Documentation / Plant Performance ................................................................................................................ 181<br />

1) Pressure Gauges ....................................................................................................................................................... 181<br />

i. Bourdon Tube ................................................................................................................................................. 181<br />

ii. Pressurestat .................................................................................................................................................... 182<br />

iii. Pig Tale / Syphon Loop ................................................................................................................................... 182<br />

P a g e 5


2) Flow Meters .............................................................................................................................................................. 183<br />

i. Differential Pressure ....................................................................................................................................... 183<br />

ii. Ultrasonic ....................................................................................................................................................... 185<br />

iii. Coriolis Oscillation .......................................................................................................................................... 185<br />

iv. Positive Displacement .................................................................................................................................... 186<br />

3) Energy Measurement ............................................................................................................................................... 187<br />

4) Air Pollution (Emissions)........................................................................................................................................... 188<br />

<strong>Boiler</strong> Mact .......................................................................................................................................................... 188<br />

Acid Rain ............................................................................................................................................................. 189<br />

CO, HC and Ground Level Ozone ......................................................................................................................... 190<br />

SO₂ Control .......................................................................................................................................................... 191<br />

NO x, HC and CO Control ...................................................................................................................................... 193<br />

Particulate Matter (PM) Control ......................................................................................................................... 206<br />

Residual Exhaust Acid Absorber .......................................................................................................................... 208<br />

New Technology .................................................................................................................................................. 209<br />

CO ₂ (Green House Gasses)................................................................................................................................... 211<br />

H) Emergency Generator .................................................................................................................................................... 212<br />

1) Arc Flash ................................................................................................................................................................... 212<br />

2) Generator System Components ............................................................................................................................... 213<br />

I) Routine Equipment Maintenance .................................................................................................................................... 215<br />

1) EMP (Equipment Maintenance Plans) ...................................................................................................................... 215<br />

2) Lock Out / Tag Out .................................................................................................................................................... 216<br />

3) Small <strong>Boiler</strong> Layup/Seasonal Shut Down ................................................................................................................... 217<br />

i. Wet .................................................................................................................................................................. 217<br />

ii. Dry ................................................................................................................................................................... 217<br />

J) Inspection Preparation .................................................................................................................................................... 218<br />

1) Internal vs. Operational ............................................................................................................................................ 218<br />

2) Refractory ................................................................................................................................................................. 219<br />

3) Seal Ropes ................................................................................................................................................................ 220<br />

K) Safety Systems ................................................................................................................................................................ 221<br />

1) Emergency Stop Button ............................................................................................................................................ 221<br />

2) Earthquake Shutoff .................................................................................................................................................. 221<br />

3) Pop-Off Valve............................................................................................................................................................ 222<br />

4) OS&Y ......................................................................................................................................................................... 222<br />

5) Hartford Loop ........................................................................................................................................................... 223<br />

6) Safety Limit Controls ................................................................................................................................................ 224<br />

a. <strong>Boiler</strong> Failure Examples ................................................................................................................................... 224<br />

P a g e 6


. Fuel Line Limit Controllers ............................................................................................................................... 225<br />

c. Air Flow Proving Switches ................................................................................................................................ 226<br />

d. Fuel Line Train Parts ........................................................................................................................................ 228<br />

f. Water Column .................................................................................................................................................. 238<br />

g. Carbon Monoxide ............................................................................................................................................ 240<br />

L) Facilitating and monitoring receipt of fuels .................................................................................................................... 241<br />

M) Efficiency........................................................................................................................................................................ 243<br />

1) LEED Program ........................................................................................................................................................... 243<br />

2) Causes of Inefficiency ............................................................................................................................................... 244<br />

3) Effects of Inefficiency ............................................................................................................................................... 249<br />

4) Economizer ............................................................................................................................................................... 250<br />

5) Combustion Air Preheater ........................................................................................................................................ 251<br />

i. Recuperative/Regenerative ............................................................................................................................. 251<br />

ii. Tubular ............................................................................................................................................................ 252<br />

6) Blowdown Heat Recovery ........................................................................................................................................ 253<br />

i. Surface/Continuous ......................................................................................................................................... 253<br />

ii. Surface and/or Bottom .................................................................................................................................... 254<br />

7) Flash Steam Recovery ............................................................................................................................................... 255<br />

N) Reference Charts ............................................................................................................................................................ 256<br />

1) Pipe Schedules .......................................................................................................................................................... 256<br />

2) Metric Prefixes .......................................................................................................................................................... 256<br />

3) Periodic Table ........................................................................................................................................................... 257<br />

4) Blue Print/Schematic Symbols ................................................................................................................................. 258<br />

i. Valve ............................................................................................................................................................... 258<br />

ii. HVAC ............................................................................................................................................................... 258<br />

iii. Electrical ......................................................................................................................................................... 258<br />

5) <strong>Boiler</strong> Device Nomenclature .................................................................................................................................... 259<br />

Section 107 of the Copyright Act provides the statutory framework for determining whether something is a fair use and identifies<br />

certain types of uses—such as criticism, comments, news reporting, teaching, scholarship, and research.<br />

P a g e 7


Preface: <strong>Boiler</strong> Design<br />

1) Primitive <strong>Boiler</strong>s<br />

Hero’s Engine<br />

around 50 AD<br />

Alexandria,<br />

Roman Empire<br />

Cugnot’s<br />

Steam Car<br />

around 1769<br />

Paris, France<br />

Newcomen<br />

Steam Engine<br />

around 1770<br />

London, England<br />

Single, steam driven piston<br />

Primitive boilers were generally, large<br />

spheres with a fire underneath.<br />

P a g e 8


2) Fire Tube<br />

i. Multi-Pass<br />

Multi-Pass <strong>Boiler</strong>s<br />

1 Pass<br />

Electrical combustion air<br />

blowers spurred the<br />

advancement of the use of<br />

tubes in a boiler.<br />

1 and 2 pass boilers have no<br />

baffles<br />

2 Pass<br />

3 Pass<br />

Baffles control direction<br />

of flue gases<br />

4 Pass<br />

Passes: 1 2 3 4<br />

Stack & Burner: O S O S<br />

O = Opposite End<br />

S = Same End<br />

Multi-pass Vertical Firetube<br />

P a g e 9


ii. Dryback vs. Wetback<br />

P a g e 10


ICB: InterCooled Back boiler<br />

P a g e 11


iii. Tube Connections: Roll and Bead<br />

Fire tubes are often referred to as “flue tubes”.<br />

P a g e 12


iv. Stays<br />

Stays are often installed in high<br />

pressure fire tube boilers to help<br />

offset stress difference on the<br />

flat plates in the open steam<br />

section.<br />

diagonal stays<br />

Some fire tube boilers have a dry<br />

pipe which helps prevent water<br />

droplets from escaping into steam<br />

lines.<br />

When corrosion or cracks in<br />

the staybolt reach the drilled<br />

telltale hole, steam is<br />

released, alerting the<br />

operator. (Typical in some<br />

types of locomotive steam<br />

engines)<br />

P a g e 13


3) Water Tube<br />

i. Types of water tube boilers<br />

Babcock & Wilcox<br />

<strong>Boiler</strong>, 1867<br />

To greatly increase<br />

heating surface area,<br />

water was sent<br />

through tubes in the<br />

refractory.<br />

Stirling <strong>Boiler</strong>,<br />

1898<br />

Bottom tubes often became plugged with<br />

sediment. The invention of the mud drum,<br />

along with blowdown lines overcame this issue.<br />

P a g e 14


Flex Tube Bryan ®<br />

Flex Tube<br />

Closed Loop<br />

(Hot Water) Flex<br />

Tube <strong>Boiler</strong><br />

The unique flexible bent tube design prevents<br />

all possible damage from thermal shock and<br />

related problems. Bryan Flexible Tubes are<br />

easily removable and replaceable, allowing<br />

for quick and simple boiler maintenance.<br />

Steam Generating<br />

Flex Tube <strong>Boiler</strong><br />

P a g e 15


Copper Fin Tube<br />

Copper Fin Water Tube:<br />

Hot Water circulation only boiler<br />

P a g e 16


Circular Coil<br />

Circular Coil<br />

<strong>Boiler</strong><br />

Clayton ® Steam Generator<br />

with integrated superheater<br />

P a g e 17


Panel<br />

Welllons ®<br />

Panel <strong>Boiler</strong><br />

Modulated HRSG (Heat Recovery Steam Generator)<br />

P a g e 18


O, D, A Type<br />

“O” Type<br />

“A” Type<br />

“D” Type<br />

Back<br />

P a g e 19


ii. Tube Connections: Roll and Flare<br />

P a g e 20


iii. Downcomer<br />

spelling!<br />

Mud drum<br />

Downcomer tubes bring water that didn’t<br />

turn to steam back to the bottom drum.<br />

No pump is needed: water has less mass in<br />

the tubes where the water is boiling (steam<br />

bubbles) creating a natural circulation<br />

P a g e 21


iv. Superheater<br />

The superheater relief<br />

valve is set to pop before<br />

boiler relief valve.<br />

Steam Superheater<br />

Steam temperature is increased by passing though<br />

fire chamber 2 nd time (pressure stays the same).<br />

1. The additional energy in the steam<br />

allows more work to be done.<br />

2. With the steam above the saturation<br />

point (boiling point), any water droplets<br />

that may have escaped the boiler<br />

(priming), are automatically flashed into<br />

steam, this protects critical parts such as<br />

turbine blades from physical damage.<br />

The Bleeder is used to maintain a flow of steam<br />

through the super heater during light-off and shut<br />

down when the boiler main steam stops are shut.<br />

P a g e 22


v. Steam Scrubber: Baffles/Dry Pipe<br />

vi. Mud Drum continuous heater<br />

Simple interior port for water level columns<br />

P a g e 23


Steam Scrubber and outlet<br />

Downcomer tubes<br />

Surface Blowdown<br />

(skimmer)<br />

Feed water<br />

Chemical Injection<br />

(from bypass feeder)<br />

Steam is sent through mud drum on<br />

boilers that are “waiting” (standby) for<br />

a faster startup when boiler is needed<br />

P a g e 24


4) Water Cum Smoke Tube (Water and Fire Tube)<br />

Medium sized boiler with flexibility of fuels<br />

Inside refractory<br />

P a g e 25


5) Cast Iron Sectional<br />

To increase capacity, add sections<br />

Multiple stacks indicate CIS<br />

boilers, making flue gas flow<br />

over sections more uniform.<br />

CIS boilers operate at


6) Closed Loop <strong>Boiler</strong>s (Hot Water Circulation)<br />

Aquastat sets hot water<br />

Aquastat boiler temperature ranges<br />

Closed Loop (water only boilers)<br />

STRAP-ON SURFACE<br />

TEMPERATURE PROBE<br />

Temperature probe bulb<br />

fits into thermowell.<br />

Low Limit:<br />

Turns on the burner<br />

view from inside vessel<br />

Differential:<br />

Normal operating range<br />

above low limit (turns off burner)<br />

Triple Aquastat<br />

High Limit:<br />

Safety Cutoff<br />

<strong>Manual</strong> reset indicates this is a high<br />

temperature limit safety cutoff<br />

P a g e 27


Air Removal<br />

Air Removal<br />

Closed Loop Continued<br />

Air Vent<br />

Air Scoop<br />

Open<br />

Air under pressure<br />

is blown out<br />

Closing<br />

Water replaces air<br />

Closed<br />

Poppet floats and<br />

seals top<br />

Air Separator<br />

<strong>Manual</strong> Radiator<br />

Air Bleed Valves<br />

Auto Radiator Air<br />

Bleed Valves<br />

Air escapes from the radiator through the valve until water<br />

enters and expands the hygroscopic washers.<br />

P a g e 28


Water Expansion<br />

Control<br />

Water Expansion Control<br />

Closed Loop Continued<br />

Expansion tanks located at<br />

the highest point in the<br />

closed loop do not need air<br />

separators. They usually<br />

have a sight glass and should<br />

be at least 1/3 rd empty.<br />

Expansion<br />

Joints<br />

To extend the life of the<br />

diaphragm/bladder<br />

compression tank, it is<br />

usually placed on the cold<br />

end of the loop.<br />

P a g e 29


Exterior Circulation Pumps Pumps<br />

Closed Loop Continued<br />

While a steam boiler’s pressure<br />

forces the circulation of the steam,<br />

a closed loop system needs pumps<br />

to circulate the water.<br />

Closed Corrosion Loop Control<br />

Corrosion in electric closed loop boiler<br />

SPEC: Molybdates (“Moly”), Nitrites, or<br />

Silicates are added as a corrosion inhibitor to<br />

closed loop systems via bypass feeders or<br />

direct injection pumps.<br />

P a g e 30


PEX tubing<br />

Closed Loop Continued<br />

PEX: No corrosion<br />

An aluminum layer or EVOH barrier (Ethylene-Vinyl<br />

Alcohol copolymer) prevents oxygen penetration.<br />

(3 layers)<br />

(5 layers)<br />

PEX Al PEX<br />

P a g e 31


Antifreeze<br />

Safety<br />

Prevents freezing in Closed Loops<br />

during shut downs.<br />

Closed Loop Continued<br />

PG<br />

C₃H₈O₂<br />

Composition<br />

EG<br />

C2H6O2<br />

Food Grade<br />

(You can drink it)<br />

Safety<br />

Toxic<br />

(Follow proper use and<br />

disposal guidelines)<br />

Nitrites are added to<br />

prevent corrosion.<br />

Cost (as of 2014)<br />

Inhibitor = Nitrites<br />

= corrosion prevention<br />

Because of safety, food-processing closed loop<br />

boilers generally are charged with Propylene<br />

Glycol.<br />

Use<br />

Because of cost, nonfood-processing closed loop<br />

boilers generally are charged with Ethylene Glycol.<br />

Automobile engine antifreeze usually<br />

contain antifoams, coagulants, dyes and<br />

other additives which may or may not<br />

effect a boiler’s proper operation.<br />

P a g e 32


Measurement<br />

Refractometer:<br />

Chemical concentration effects<br />

refraction angle.<br />

Float Type<br />

Antifreeze testers<br />

Since non-food grade (cheaper) antifreeze is generally<br />

used in automobile engines, these type of testers<br />

indicate freeze point of Ethylene Glycol.<br />

Glycol Mixing Tanks<br />

1. Allows water to raise to room temperature before entering system, removing dissolved air.<br />

2. A convenient way to make sure your percentage is correct.<br />

P a g e 33


Concentration vs Freeze Point<br />

Glycols 70%<br />

Freeze point starts<br />

to go back up!<br />

50/50 Blend: Typical Use Recommendation<br />

P a g e 34


Condensing <strong>Boiler</strong><br />

Condensing <strong>Boiler</strong><br />

More efficient use of flue gas<br />

Closed Loop Continued<br />

A condensing boiler<br />

Non-Condensing<br />

<strong>Boiler</strong> with separate<br />

condensing chamber<br />

Acidic condensate flows<br />

across neutralizing<br />

marble type chips<br />

preventing possible<br />

damage to sewer lines<br />

Notice PVC drain line<br />

for acidic condensate<br />

P a g e 35


Expansion joints<br />

Pop Off<br />

Y Strainers<br />

Check valves<br />

Circulation pumps<br />

Neutralizing stones<br />

Condensate filter<br />

P a g e 36


7) Co-Generation<br />

a. Electricity<br />

Tesla vs. Edison<br />

Direct Current:<br />

One Way Flow<br />

Using Tesla’s new AC technology, Westinghouse<br />

entered the low bid well under Edison to produce<br />

electricity for the 1893 World’s Fair held in NY City.<br />

They used water driven turbines on the Niagara Falls.<br />

In an effort to discredit AC electricity and its inventor,<br />

Nikoli Tesla (who once worked for Edison), Thomas<br />

Edison publically electrocuted a series of animals<br />

including Topsy the elephant in 1903.<br />

Alternating Current: Switches Back and<br />

Forth from Positive to Negative<br />

Single Phase AC<br />

Hertz = rotations per second<br />

Three Phase AC<br />

P a g e 37


Turbo<br />

Generator<br />

b. Turbo Generator<br />

Stator:<br />

Stationary<br />

Wire Windings<br />

Rotor:<br />

DC induced magnetic fields<br />

When the rotor’s magnetic field passes by the<br />

stator’s wire windings, electrons are repeatedly<br />

pushed then pulled through the metal, creating<br />

an alternating electric current (AC).<br />

Same working principle as your car’s alternator<br />

P a g e 38


c. Steam Turbine<br />

Rotors<br />

(rotating)<br />

Stators<br />

(stationary)<br />

Lower pressure steam for facility use can be taken from various locations in turbine shell via extraction ports.<br />

P a g e 39


d. Condenser<br />

Condenser<br />

Condensers are located after the<br />

turbines to cool used steam.<br />

The faster steam is cooled the faster it shrinks,<br />

creating a vacuum, “pulling” on the turbines.<br />

Inside Condenser<br />

Cooling Towers Serve the Condenser<br />

hot moist air ↑<br />

heat exchange packing<br />

cool air→<br />

P a g e 40


e. Non-Condensing Turbines<br />

Non-Condensing (Back Pressure) Turbines<br />

No Condenser or Cooling Towers.<br />

Steam is used in process or<br />

heating (no energy loss through<br />

cooling tower).<br />

In the backpressure turbine configuration, the turbine does<br />

not consume steam. Instead, it simply reduces the pressure<br />

and energy content of steam that is subsequently exhausted<br />

into the process header.<br />

In essence, the turbo generator serves the same steam<br />

function as a pressure-reducing valve (PRV)—it reduces<br />

steam pressure—but uses the pressure drop to produce<br />

highly valued electricity in addition to the low-pressure<br />

steam.<br />

P a g e 41


f. Combined Cycle<br />

CCPP: Dual Shaft<br />

CCPP: Single Shaft<br />

P a g e 42


A) <strong>Boiler</strong> Start Up, Operation and Shutdown<br />

1) Ideal Gas Law: PV=nRT<br />

When Temperature↑ and Volume stays the same, then Pressure↑<br />

= BOILER<br />

When Pressure↑ and Volume stays the same, then Temperature↑ = AIR COMPRESSOR<br />

The INTERCOOLER uses water or<br />

outside air to cool compressed<br />

air in-between stages.<br />

2 nd Stage<br />

1 st Stage<br />

When Pressure↓ and Volume stays the same, then Temperature↓ = Propane Tank<br />

P↓ × V c = T↓ : Refrigeration<br />

ICE !<br />

Hot<br />

(Restricting Orifice)<br />

Cold<br />

Various types of expansion valves<br />

Air Conditioning<br />

* Simplified for training purposes. Actual:<br />

P a g e 43


If<br />

↓<br />

then<br />

↑ ↓ ↑<br />

If<br />

↑<br />

↑<br />

↑<br />

then<br />

↓ ↑ ↓<br />

P a g e 44


i. Heat Pump<br />

Around 37°F many heat pumps reach what is<br />

called the balance point where the heat pump<br />

needs to run constantly to maintain a<br />

comfortable indoor temperature. Efficiency<br />

drops as you approach this point.<br />

Reversing Valve<br />

P a g e 45


ii. Dehumidifier<br />

DEHUMIDIFIER<br />

AIR OUTLET,<br />

NEAR SAME<br />

TEMPERATURE<br />

AS INLET<br />

Dehumidification Kiln: Room<br />

Temperature Wood Drying<br />

HVAC Dehumidification Air Handler<br />

P a g e 46


iii. Air Compressor<br />

Atomizing and<br />

Control Air<br />

Holding tanks<br />

Expansion control<br />

Incoming air filters<br />

Point of use<br />

compressed air<br />

filters<br />

Inline<br />

condensation<br />

removal<br />

P a g e 47


Temperature<br />

2) Temperature vs Heat Content<br />

: through nonmoving or solid parts<br />

: through moving substances, such<br />

as water, steam, or air<br />

: through energy waves, even<br />

travels through a vacuum (such as the sun<br />

transfers heat to Earth through space)<br />

Latent heat of<br />

liquefaction<br />

Latent heat of<br />

vaporization<br />

vaporizing →<br />

BTUs<br />

Latent Heat:<br />

BTUs<br />

← condensing<br />

P a g e 48


Temperature<br />

@ 0 psig = 1 Atm = sea level<br />

Saturated Steam = steam at the boiling pt.<br />

Superheated<br />

(above the<br />

boiling pt.)<br />

32°F 212°F<br />

0°C 100°C<br />

970.3 BTUs to boil 1 # of H 2O<br />

Water at 32°F<br />

contains 0 BTUs<br />

(beginning point for<br />

BTU measurement)<br />

-144BTU 0BTU 180BTU 1150.3BTU<br />

Heat Content<br />

1 BTU = heat needed to change 1 lb. of water 1°F<br />

To change 1 lb of:<br />

Ice 1º F, add 0.5 Btu<br />

Steam 1º F, add 0.45 Btu<br />

1 BTU also is about equal<br />

to heat given off by one<br />

match stick burning<br />

How many BTUs does one pound of steam contain at 212°F at Sea Level?<br />

32 ºF water to 212 ºF water takes 180BTU/lb. 180<br />

212 ºF water to 212 ºF steam takes 970.3BTU/lb. +970.3<br />

1150.3 BTUs<br />

P a g e 49


3) Pressure<br />

i. Vapor Pressure<br />

Absolute Zero = Perfect Vacuum<br />

Vapor Pressure<br />

0<br />

Vacuum<br />

Maximum water<br />

content in air =<br />

saturation point<br />

Evaporation or<br />

Vaporization<br />

Vaporization ><br />

Condensation<br />

Vaporization =<br />

Condensation<br />

Equilibrium<br />

Pressure changes with Temperature (molecules<br />

move around more when heated)<br />

Saturation Point<br />

(Equilibrium) changes with<br />

Temperature and Pressure<br />

and becomes the<br />

Saturation Curve<br />

P a g e 50


Saturation Curve<br />

Saturation Curve<br />

Saturation Curve<br />

1000gH20 / Kg Air<br />

all air is water vapor<br />

Equilibrium = Saturation Curve = Dew Point<br />

Water vapor in air<br />

400g<br />

300g<br />

200g<br />

100g<br />

0 K= -273°C= -460°F<br />

No water vapor in air<br />

No molecular movement<br />

Absolute zero temperature<br />

temperature increase →<br />

373 K=100°C=212°F<br />

All water vaporized<br />

(@0psig)<br />

0g<br />

Water droplets, suspended in the air,<br />

form as humid air temperature drops<br />

past the saturation curve.<br />

←temperature drop<br />

H 2O falls out as dew and frost,<br />

OR rain and snow.<br />

f<br />

r<br />

o<br />

s<br />

t<br />

d<br />

e<br />

w<br />

Freeze Point<br />

P a g e 51


Air Moisture Content →<br />

Adiabatic Process<br />

Adiabatic Process<br />

Moist air rises over mountains: lower air pressure,<br />

vapor condenses on dust particles forming<br />

suspended droplets or ice crystals (clouds).<br />

Descending clouds increase in<br />

air pressure, clouds evaporate<br />

back into vapor = Rain Shadow.<br />

Rain/Snow →<br />

Temperature Increase →<br />

Same principle applies<br />

to large air masses<br />

P a g e 52


Extreme<br />

Precipitation<br />

A combination of the adiabatic process and<br />

the inability of cold air to hold moisture, the<br />

Dry Valleys of Antarctica is said not to have<br />

any measurable precipitation for over<br />

2,000,000 years.<br />

The Brahmaputra Mountains in Eastern<br />

India reports the highest average rainfall of<br />

467 inches per year.<br />

P a g e 53


ii. Water Phase Expansion<br />

Water to Vapor Expansion<br />

Water to Vapor<br />

When Temperature ↑ and Pressure stays the same, then Volume must ↑<br />

v = 0.01672 ft 3<br />

Now imagine a 500 gallon boiler rupturing and instantly filling the building with 111,700 ft 3<br />

(100 hot air balloons) of flash steam<br />

Denver: 500 gallon boiler explosion<br />

P a g e 54


Water<br />

to Ice Expansion<br />

to Ice<br />

Expansion<br />

Slightly<br />

negative<br />

Slightly<br />

positive<br />

Ice’s seed molecule has six<br />

equal sides. As more H2O<br />

molcules attach to the seed<br />

molecule, equal branches form<br />

at 60˚ angles.<br />

Electrical charge can<br />

affect water flow<br />

60°<br />

Water to Ice Volume Expands about 10%<br />

Which is about the same as:<br />

10 ft 3 water making 11 ft 3 of ice<br />

…, and Ice Floats (less dense)<br />

60°<br />

…, and breaks lines<br />

P a g e 55


Sea Level<br />

Pressure<br />

4) Pressure vs Temperature Chart Phases of Water<br />

Pressure vs. Temperature<br />

Freeze Point<br />

Curve<br />

Evaporation<br />

Curve<br />

14.7 psia<br />

= 0 psig<br />

= 1 atm<br />

= 1 bar<br />

Solid<br />

As Pressure increases, H 2O favors<br />

the state that takes up less space,<br />

NOTICE: the slight backwards freeze<br />

Sea Level<br />

curve and the forward boiling curve.<br />

Vapor<br />

Triple<br />

Point<br />

(not to scale)<br />

Absolute Zero<br />

(Theoretical)<br />

Temperature<br />

32°F<br />

0°C<br />

212°F<br />

100°C<br />

Solid<br />

Vapor<br />

Where Freeze Point Curve, Evaporation Curve and Sublimation Curves Meet<br />

= 0.09psia and 32.02°F<br />

Triple<br />

Point<br />

P a g e 56


i. Sublimation/Deposition<br />

Home Unit<br />

Freeze Dryer<br />

Sublimation<br />

= Freeze Dryers<br />

Low temperature and pressure<br />

Vacuum<br />

Chamber<br />

2. About 90% of the food’s<br />

moisture is drawn off by<br />

sublimating the ice at<br />

temperature as low as -60º F<br />

P a g e 57


ii. Freezing/Melting<br />

Newly formed water<br />

from the higher<br />

pressure on the ice<br />

directly underneath the<br />

blades acts as a<br />

lubricant.<br />

Regelation: with pressure<br />

gone, liquid returns to sold.<br />

Lake Mille Lacs, MN<br />

On rare occasions, regelation can<br />

occur when the water at the bank<br />

of a heavily ice covered, deep lake<br />

is exposed to lower psi and the<br />

water in the lake is at or below<br />

freezing. Water will “flash” into<br />

ice and move forward until<br />

backpressure stops the reaction.<br />

P a g e 58


iii. Boiling/Condensing<br />

Vapor Cone: condensation by extreme high pressure<br />

High altitude vapor cones are<br />

actually suspended ice crystal<br />

cones…. Deposition !<br />

As a result of the sudden expansion of the nuclear explosion, high psi<br />

increase condenses vapor into suspended water droplets. This water then<br />

evaporates back to invisible vapor as the high-pressure shock wave passes.<br />

P a g e 59


iv. Gauge vs Absolute<br />

psig<br />

(gauge)<br />

psia<br />

(absolute)<br />

H 2O<br />

boiling pt<br />

Perfect Vacuum -14.7 0 °F<br />

Near Vacuum -14.5 0.2 53°<br />

Mt. Everest -5.6 9.1 157°<br />

Pheonix, AZ -0.6 14.1 210.1°<br />

Sea Level 0 14.7 212°<br />

Dead Sea 0.8 15.5 215°<br />

Example: a boiler psi 100 114.7 337°<br />

Sea Level =<br />

1 atmosphere<br />

= 14.7 psia<br />

= 0 psig<br />

Space = a vacuum<br />

psia = 0<br />

psig = -14.7<br />

Mt. Everest = 29,029 ft<br />

Dead Sea = -1378 ft<br />

Pheonix, AZ = 1086 ft<br />

The boiling point changes about 1˚<br />

for each 550 ft change in elevation<br />

High altitude cooking instructions: 3500 to 6500 ft<br />

Increase simmer time to 19 min (with lower boiling<br />

temperature, it takes longer to cook food.)<br />

Vacuum<br />

pump<br />

Vacuum<br />

jar<br />

P a g e 60


5) Steam Table<br />

Gauge<br />

Pressure<br />

Inches of Hg (Vacuum)<br />

Psig<br />

Psia<br />

Boiling<br />

Point<br />

ºF<br />

Btu content of<br />

1 lb. of water<br />

at B.P.<br />

Btu needed to<br />

turn 1 lb. of water<br />

at B.P. into steam<br />

Btu content<br />

of saturated<br />

steam<br />

Volume<br />

of water<br />

ft 3 /lb at B.P.<br />

Volume<br />

of steam<br />

ft 3 /lb at B.P.<br />

29.7 0.09 32.02 0 1075.8 1075.8 0.01602 3306<br />

29.5 0.2 53 21 1063.8 1085.0 0.01603 1526<br />

27.9 1.0 102 70 1036.3 1106.0 0.01614 334<br />

19.7 5.0 162 130 1001.0 1131.0 0.01641 73.5<br />

9.6 10.0 193 161 982.1 1143.3 0.01659 38.4<br />

7.5 11.0 198 166 979.3 1145.0 0.01665 35.1<br />

5.5 12.0 202 170 976.6 1146.6 0.01667 32.4<br />

3.5 13.0 206 174 974.2 1148.1 0.01667 30.1<br />

1.4 14.0 210 178 971.9 1149.5 0.01670 28.0<br />

0 14.7 212 180 970.3 1150.3 0.01672 26.8<br />

1 15.7 216 184 967 1152 0.01675 24.8<br />

2 16.7 219 187 965 1153 0.01677 23.4<br />

5 19.7 227 196 960 1156 0.01683 20.1<br />

10 24.7 240 208 952 1160 0.01692 16.3<br />

15 29.7 250 219 945 1164 0.01700 13.8<br />

20 34.7 259 228 939 1167 0.01708 11.9<br />

25 39.7 267 236 933 1170 0.01714 10.5<br />

30 44.7 274 243 928 1172 0.01721 9.4<br />

40 54.7 287 256 919 1176 0.01732 7.8<br />

50 64.7 298 267 911 1179 0.01743 6.7<br />

60 74.7 307 277 904 1182 0.01752 5.8<br />

70 84.7 316 286 898 1184 0.01761 5.2<br />

80 94.7 324 295 891 1186 0.01769 4.7<br />

90 104.7 331 302 886 1188 0.01777 4.2<br />

100 114.7 337 309 880 1189 0.01785 3.9<br />

110 124.7 344 316 875 1191 0.01792 3.6<br />

120 134.7 350 322 870 1192 0.01799 3.3<br />

130 144.7 355 328 866 1193 0.01806 3.1<br />

140 154.7 360 333 861 1195 0.01812 2.9<br />

150 164.7 366 339 857 1196 0.01818 2.7<br />

200 214.7 388 362 837 1199 0.01847 2.1<br />

250 264.7 406 382 820 1202 0.01873 1.7<br />

etc.↓ 300 417 394 809 1203 0.01890 1.54<br />

400 446 424 781 1205 0.01934 1.16<br />

450 456 437 767 1205 0.01955 1.03<br />

500 467 449 755 1204 0.01975 0.93<br />

600 486 472 732 1203 0.02013 0.77<br />

900 532 527 669 1195 0.02123 0.50<br />

1200 567 572 612 1183 0.02232 0.36<br />

1500 596 612 556 1167 0.02346 0.28<br />

2000 636 672 463 1135 0.02565 0.19<br />

2500 668 731 361 1191 0.02860 0.13<br />

2700 680 756 312 1068 0.03027 0.11<br />

3206.2 705 903 0 903 0.05053 0.05053<br />

Sea Level<br />

Supercritical Water refers to conditions<br />

above 3206.2 psia and 705 °F where steam<br />

and water reach a new phase.<br />

P a g e 61


Temperature ˚C →<br />

Temperature vs Enthalpy<br />

6) Temperature vs Enthalpy (Btus/Pound)<br />

Rankine Scale<br />

Enthalpy = Btus/Pound<br />

Super Critical Vapor<br />

(= BTUs/˚F →)<br />

P a g e 62


˚F →<br />

Water<br />

Rankine Cycle: Steam Turbine<br />

William Rankine<br />

Superheater<br />

High Pressure Turbine<br />

<strong>Boiler</strong><br />

Intermediate and Low<br />

Pressure Turbines<br />

Economizer<br />

Feed Water Pump<br />

Water and Steam<br />

Condenser<br />

Reheater<br />

Superheated Steam<br />

Enthalpy = BTU/˚F →<br />

P a g e 63


7) <strong>Boiler</strong> Operational Controllers<br />

i. PSI<br />

PSI Controls<br />

High PSI Shutoff<br />

Safety Switches always<br />

have a reset button.<br />

Must be set at < Pop Off<br />

valve popping psi.<br />

Burn Rate<br />

Controls<br />

Operating Limit Control<br />

MAIN = minimum desired psi, burner turns on<br />

below this point. DIFF. = MAIN + selected psi<br />

at which the burner turns off.<br />

Low Fire Hold Switch<br />

Firing Rate Controller<br />

Maintains psi in boiler<br />

MAIN = minimum psi at witch burner will go to Hi Fire<br />

DIFF. IS ADDATIVE = The value over the set point is where<br />

you are at low fire.<br />

If not properly coordinated with Operating Limit Control<br />

the boiler could trip on pressure before getting down to<br />

low fire (Short Cycling).<br />

Keeps a specific pressure before allowing boiler to<br />

come out of low fire. Helps prevent thermal shock<br />

on cold boilers that are warming up. Will not go to<br />

High Fire until ready.<br />

Installing a low fire hold aquastat and wiring it<br />

into the burner sequence will enable the burner to<br />

operate on low fire until an established<br />

temperature is reached before moving to high fire.<br />

<strong>Boiler</strong> turndown ratio is the ratio between full boiler output (High Fire) and the boiler output when operating at<br />

minimum output (Low Fire).<br />

Typical boiler turndown is 4:1. That is, a 400-horsepower boiler with a 4:1<br />

turndown burner is able to modulate down to 100 horsepower before cycling off.<br />

P a g e 64


Digital psi sensor<br />

Aux. operations limit switch<br />

<strong>Manual</strong> Reset Switch = High<br />

psi shut off = “High High”<br />

Operations limit switch<br />

P a g e 65


ii. Water Level<br />

When feed water regulator calls for water,<br />

Feed water pump is turned on<br />

OR<br />

Feed water actuator is activated (for those systems which<br />

have the feed water pump continuously running)<br />

Feed water is cooler than boiler water. When large amounts of feed<br />

water is introduced into the boiler, the boiler water stops boiling for a<br />

moment until the water comes up to temperature. This drops the psi for<br />

just a moment. This fluctuation is avoided by using VFD to adjust the flow<br />

on feed line PRVs and keeping the feed water pumps on continuously.<br />

Feed water flow meter<br />

To prevent possible stagnation and<br />

temperature drop of feed water when<br />

boiler demand is low, water is<br />

sometimes kept in constant circulation<br />

P a g e 66


Water level indicator using Differential Pressure (DP)<br />

Wet Leg method used on boilers<br />

(condensate quickly fills the leg)<br />

Steam psi does not effect DP as<br />

that it is exherted the same on<br />

both sides of the diapragm<br />

P a g e 67


B) Fuel: Primary and Backup<br />

1) Fuel Types<br />

i. Natural Gas<br />

Natural Gas<br />

Typical composition of NG<br />

(Methane = 87%)<br />

1011 btu/ft 3<br />

2516 btu/ft 3<br />

3225 btu/ft 3<br />

6239 btu/ft 3<br />

P a g e 68


(Hydraulic Fracturing)<br />

Downward trend? →<br />

Methane gas from welltap<br />

water, purportedly<br />

due to fracking.<br />

Exploitation vs. proper extraction should always be a<br />

concern when dealing with any natural resource.<br />

P a g e 69


ii. Liquid Fuels<br />

No. 1 Fuel Oil<br />

No. 2 Fuel Oil<br />

No. 6 Fuel Oil<br />

Viscosity = resistance to flow.<br />

When oil is heated, its viscosity decreases.<br />

P a g e 70


iii. Solid Fuels / BioMass<br />

Wood<br />

Solid Fuels:<br />

WOOD<br />

Hogged Fuel<br />

Wood chips or shavings usually along with sawdust,<br />

residue and bark from sawmills is used as fuel for boilers,<br />

landfill, animal feed, surfacing paths and running tracks.<br />

The word for chopped (hacked) in Norwegian<br />

is hogge (hogde past tense); chopped wood<br />

has been hogde. Hogde fuel likely morphed<br />

into hogged fuel.<br />

Black Out:<br />

If moisture is too great,<br />

flame cannot burn.→<br />

Saw Dust/Wood Pellet<br />

Forced Draft Burners<br />

P a g e 71


Syngas<br />

Syngas (biogas) contains between<br />

50% and 75% Methane (CH 4)<br />

Syngas and charcoal<br />

are burned: 500˚C to 1200˚C<br />

Drying: 100˚C to 150˚C<br />

Pyrolysis: Decomposition of organic<br />

material to char and tar by heating<br />

in low O2 environment<br />

150˚C to 500˚C<br />

Burning matchstick<br />

CxHy : Volatile hydrocarbons (pyrolysis<br />

gas = Syngas) is expelled (cracked)<br />

from pyrolyzed biomaterial (tar) as<br />

temperature increases.<br />

500˚C to 1000˚C<br />

Further burning reduces<br />

all charcoal to ash<br />

1200˚C<br />

Unburned CH 4 (Methane) is expelled (craked) as temperature increases and<br />

pyrolysis takes place. Leaving tar and eventually char and then, finally, ash behind.<br />

Pyrolyzed test rabbit<br />

Some biomass facilities are<br />

equipped with Syngas separators.<br />

P a g e 72


Solid Fuels:<br />

Garbage<br />

Municipal Waste<br />

Woody slowly moving<br />

forward in a solid waste,<br />

biomass burner!<br />

P a g e 73


Coal<br />

Powder River Basin, WY,<br />

mainly subbituminous coal<br />

(with low sulfur content),<br />

supplies fuel for about 40% of<br />

all coal fired US Power Plants<br />

Solid Fuels:<br />

COAL<br />

6,000 BTU/lb.<br />

10,000 BTU/lb.<br />

13,000 BTU/lb.<br />

2014 US Electricity<br />

Production by Source<br />

(http://www.c2es.org/technolog<br />

y/overview/electricity)<br />

15,000 BTU/lb.<br />

P a g e 74


iv. Electricity<br />

Very small wall mount<br />

electric steam boiler<br />

P a g e 75


2) Combustion<br />

Combustion Air<br />

Spark<br />

CH 4<br />

Take any of these away, no flame.<br />

P a g e 76


i. Combustion Air<br />

Atmospheric Draft<br />

Natural Draft Burners = Pipe Burners = Atmospheric Burners<br />

= No Air Blower<br />

Air Shutter<br />

Forced Draft →<br />

Forced Draft<br />

Blower and burner: combined unit<br />

Blower and burner: separate units<br />

Fan Motor<br />

VFD<br />

P a g e 77


Air in<br />

M<br />

Modulation Motors directly link<br />

incoming air flow with incoming fuel supply. (Mod Motor)<br />

Mod motor for incoming air<br />

Mod Motor limit switches<br />

Linkage controls<br />

internal air opening<br />

P a g e 78


ii. Spark<br />

Ignition Transformer<br />

Spark Ignition Transformer<br />

Primary 120V in<br />

Secondary 6000V out<br />

Spark temperature approaches 60,000˚F<br />

Spark Plug<br />

and pilot line<br />

P a g e 79


Convection<br />

iii. Flame<br />

Diffusion Flame<br />

All combustion air comes<br />

from outside of the flame.<br />

With too little air inside the<br />

flame envelope, the gas<br />

mixture will not burn<br />

completely. The unburned<br />

carbon particles become<br />

heated to glowing, making<br />

the flame luminous.<br />

Hottest part<br />

(non-luminous)<br />

CO2<br />

1400˚C<br />

H2O<br />

If the outer zone is disrupted, complete<br />

combustion is also disrupted and soot<br />

deposits form (unburned carbon)<br />

Outer Zone: Complete combustion of soot<br />

particles and any remaining wax vapor<br />

Unburned carbon particles (soot)<br />

glow from the heat energy.<br />

1200˚C<br />

O 2<br />

1000˚C<br />

800˚C<br />

Partial Combustion: Fuel Rich = not enough<br />

oxygen, soot particles form<br />

Outer Zone: Complete<br />

combustion of wax vapor<br />

O2<br />

600˚C<br />

Conduction<br />

O2<br />

Dark Zone: Pyrolysis of<br />

wax to combustible vapor<br />

= Straight-chain Wax<br />

= 14,200 btu/ft 3<br />

Diffusion flame<br />

in microgravity<br />

(Space Station)<br />

No updraft of<br />

air flow<br />

P a g e 80


Premix Flame<br />

Diffusion Flame:<br />

no Oxidizer<br />

Acetylene = C 2H 2 =<br />

Combustion air is mixed with<br />

fuel before the flame.<br />

Roaring Flame=Reducing Flame:<br />

Air hole open, venturi effect<br />

sucks in air.<br />

Hottest point<br />

for cutting<br />

Roaring Premix Flame<br />

Diffusion Flame=<br />

Oxidizing Flame:<br />

Air hole closed<br />

Unburned carbon<br />

particles (soot)<br />

incandesces<br />

(glows) from the<br />

heat energy.<br />

Indication of<br />

incomplete<br />

combustion.<br />

1540˚C<br />

Convection<br />

CO2 H2O<br />

Outer Cone = Flame Envelope<br />

Combustion Completion<br />

Hottest part of flame<br />

1560˚C<br />

1450˚C<br />

O2<br />

Inner Cone: Air<br />

and unburned fuel<br />

350˚C<br />

Inner Cone border:<br />

Initial fuel burn<br />

O2<br />

O2<br />

O2<br />

P a g e 81


A stoichiometric Air to Fuel Ratio (AFR) has the correct amount of air<br />

and fuel to produce a chemically complete combustion event.<br />

iv. Air/Fuel Ratio (AFR)<br />

Mod motor for incoming<br />

combustion air<br />

UEL = Upper Explosive Limit<br />

LEL = Lower Explosive Limit<br />

Soot buildup<br />

Increased CO<br />

Decreased CO2<br />

Stack Temperature drop<br />

RICH flame<br />

LEAN flame<br />

Increased O2<br />

Decreased CO2<br />

Stack Temperature drop<br />

Turbulent Flame<br />

Laminar Flame<br />

To increase heat output, fuel velocity is<br />

increased. If sufficient combustion air is not<br />

provided, the flame will extinguish itself.<br />

The increase of both fuel and air velocity<br />

creates a turbulent flame.<br />

Composition<br />

of Air<br />

P a g e 82


Swirler and Nozzle<br />

The diffuser, or swirl vanes, slows incoming air,<br />

increasing pressure, increasing available O 2<br />

molecules available for combustion (basically,<br />

the swirl action “forces” more air into the<br />

combustion zone = Turbulent Flame).<br />

The nozzle increases velocity of fuel,<br />

reducing fuel pressure. Spreading<br />

fuel molecules farther apart<br />

improves air/fuel combustion ratio.<br />

Smaller oil burner<br />

nozzles usually include<br />

a filter<br />

Fuel oil compressor:<br />

increases fuel pressure<br />

Proper combination of swirler diffusion and nozzle<br />

spray should maximize combustion efficiency<br />

P a g e 83


3. Burners<br />

i. Natural Gas<br />

Staged Burners<br />

Staged Air Burner<br />

Radiant Tube burner<br />

Staged Fuel Burner<br />

P a g e 84


Burners<br />

Premix Burner<br />

Premix Mesh Burners<br />

Metal Fiber<br />

premix burner<br />

Perforated Plate<br />

burner<br />

Ceramic Mesh<br />

Premix<br />

Condensing, closed loop<br />

boilers with premix burners<br />

P a g e 85


Turbine Jet Burner<br />

Natural Gas Turbine Jet “PreMix” Burner<br />

Incoming<br />

Filtered Air<br />

Rooftop<br />

lubricating oil<br />

cooler<br />

Exhaust to Stack or<br />

Waste Heat<br />

Water Tube <strong>Boiler</strong><br />

P a g e 86


ii. Oil<br />

Oil Burners<br />

Light Oil<br />

Steam or Compressed Air<br />

Atomizing Air compressor<br />

For heavier oils, steam is preferred as it<br />

also preheats the oil reducing its<br />

viscosity and is also easily available at<br />

high pressure.<br />

However, compressed air gives better<br />

fuel/air mixing<br />

Mixing of fuel and steam/air can take<br />

place inside the burner or completely<br />

outside (premix or nozzle mix)<br />

Steam<br />

injection<br />

line for<br />

oil burner<br />

Propane is used for pilot light<br />

during oil burning<br />

Propane PRV<br />

P a g e 87


Heavy Oil: Mechanical Atomizing<br />

Rotary Cup Burner: No. 6 Oil<br />

Air Supply Fan<br />

Rotating Cup Motor<br />

P a g e 88


Dual iii. Duel Fuel: NG & and Oil Light Oil<br />

Interruptible Rate = lower natural gas cost, but must<br />

use alternate fuel source at request of supplier. Stiff<br />

penalties if unable to comply when asked.<br />

Firm Rate = normal charge for natural gas<br />

Interchangeable Fuel Oil<br />

Lance and insertion port<br />

Lance Insertion<br />

verification switch<br />

(fuel oil cannot flow<br />

unless switch is<br />

activated)<br />

Air and Oil connections<br />

Some boilers have the ability of switching fuels when<br />

needed. Hospitals are required to have an<br />

emergency fuel source. Separate burner guns for oil<br />

and natural gas are switched out as needed.<br />

More convenient dual fuel burner assemblies<br />

simplify the process: simply turn a button.<br />

P a g e 89


iv. Solid Fuel Burners<br />

Solid Fuel Burners<br />

Forced Draft Saw Dust Burner<br />

HRT Biomass Burners<br />

(Horizontal Return Tubular)<br />

P a g e 90


Grate<br />

Bed<br />

Bed<br />

Step Grate<br />

Chain Grate<br />

Reciprocating Step Grate:<br />

grates slowly move back and forth<br />

pushing fuel down, step-wise.<br />

Revolving Chain Grate<br />

P a g e 91


Fluidized Bed<br />

Fluidized Bed<br />

Bubbling<br />

Because of continual movement of the bed, there is a significant improvement of air contact with fuel. As<br />

compared to other types of burners, fluidized beds can achieve complete combustion of solid fuels at a lower<br />

overall temperature.<br />

Lower temperature burning = lower NOx emissions.<br />

BFB = Bubbling Fluidized Bed<br />

A 20” layer of sand is<br />

sprayed over the bed<br />

Air is bubbled up<br />

through the sand<br />

Sand is preheated<br />

to 750°F<br />

Solid fuel instantly ignites<br />

as it falls out of the chutes<br />

Start-up burners are<br />

turned off<br />

Furnace raises to 1500°F as overfire<br />

air completes combustion<br />

P a g e 92


Circulating<br />

CFB = Circulating Fluidized Bed<br />

With a greater air flow, high temperature<br />

sand travels with exhaust gasses. This<br />

allows more time for heat transfer. Sand<br />

returns to bed via separator.<br />

With a more uniform temperature<br />

throughout the entire furnace and higher air<br />

flow to lift and suspend burning solids, CFBs<br />

enable use of more diverse, larger mass<br />

particles, and higher moisture content fuel<br />

sources.<br />

Since a more gradual heat transfer takes<br />

place over a larger distance, excessive<br />

flame temperature can be avoided, and<br />

NO x emissions are significantly reduced.<br />

P a g e 93


v. Soot Blowers<br />

High Pressure Steam<br />

The boiler’s own high pressure steam is<br />

used in the soot blower removing soot<br />

from water walls (water tube boilers).<br />

Water wall with<br />

cavity for soot<br />

blower<br />

Non retractable rotating<br />

Retractable rotating<br />

Fire Tube soot<br />

blower<br />

P a g e 94


Sonic Blast Soot Blower<br />

Uses compressed air making<br />

sound wave blast.<br />

Retrofit replacing conventional soot blower<br />

Sonic soot blowers can be retrofitted to any<br />

location where soot may build up.<br />

ESP<br />

P a g e 95


C) Plant Equipment Operations<br />

1) Steam Traps<br />

Thermodynamic<br />

Steam velocity (flash steam)<br />

operates valve.<br />

Traps that have fewer moving<br />

parts generally last longer<br />

Mechanical<br />

Density difference between<br />

condensate and steam operates valve.<br />

Uses float type of apparatus. Because<br />

unit uses water filled chamber, it is<br />

more difficult to thaw out if it freezes.<br />

Thermostatic<br />

Condensate temperature<br />

change operates valve<br />

P a g e 96


i. Thermodynamic<br />

Thermodisc<br />

When condensate is present, disc is pushed up,<br />

when only steam is present, disc is pushed down<br />

Universal Mount Steam Traps<br />

have only one opening for both<br />

inlet steam and outlet<br />

condensate.<br />

Impulse<br />

During high load, piston is<br />

propelled up enabling<br />

additional condensate to<br />

escape through opening “E”.<br />

P a g e 97


ii. Mechanical<br />

Mechanical<br />

Fixed Orifice<br />

Advantage: No moving parts to<br />

possibly fail.<br />

Disadvantage: Only works<br />

within a set parameter range,<br />

depending on size of orifice.<br />

Not designed for modulating<br />

steam demand.<br />

With attached “Y”<br />

strainer<br />

P a g e 98


Mechanical continued<br />

Inverted Bucket<br />

Water in trap is<br />

always above top of<br />

bucket<br />

Valve closes as steam<br />

fills rising bucket<br />

Vent for non-condensable<br />

gases<br />

Steam shrinks as it condenses and bucket<br />

sinks as it then fills with condensate, thus<br />

opening the valve.<br />

Plug bolt for<br />

trap cleaning<br />

With built<br />

in Y strainer<br />

Hermetically sealed<br />

(you can’t open it)<br />

Built-in isolation valves<br />

P a g e 99


Inverted Bucket vertical flow<br />

High Pressure<br />

Applications<br />

Hermetically sealed<br />

(you can’t open it)<br />

Universal Mount Steam Traps have only one<br />

opening for both inlet steam and outlet condensate.<br />

Connect<br />

P a g e 100


Mechanical continued<br />

Float & Thermostatic (F&T)<br />

Attached Float<br />

Thermostatic vent valve closes when hot<br />

and opens when cold, expelling air (nonsteam<br />

= non-condensables) on startup<br />

and preventing a vacuum on shut down.<br />

External vent valve<br />

Universal Mount Steam Traps have only one<br />

opening for both inlet steam and outlet condensate.<br />

Connect<br />

Universal Mount<br />

Free Float Trap<br />

Free Float (ball not attached)<br />

Thermostatic vent valve opens when cold.<br />

P a g e 101


iii. Thermostatic<br />

Thermostatic<br />

Bi-Metallic<br />

Cold:<br />

Contracted<br />

Hot:<br />

Expanded<br />

Hermetically sealed bimetallic<br />

(you can’t open it)<br />

Universal Mount<br />

Steam Traps have only<br />

one opening for both<br />

inlet steam and outlet<br />

condensate.<br />

Balanced Pressure<br />

At higher temperatures (when steam is<br />

present), alcohol in disc flashes to vapor,<br />

pushing ball down and closing the valve.<br />

Universal Mount<br />

Balanced Pressure Trap<br />

P a g e 102


Thermostatic continued<br />

Spring Expansion<br />

Alcohol Filled Bellows<br />

Metallic Spring:<br />

a.k.a. Radiator trap<br />

Liquid expansion metallic bellows: Hollow<br />

spring is filled with alcohol which flashes to<br />

vapor at a specific temperature, expands the<br />

spring and closes the trap.<br />

Straight Flow →<br />

Hermetically sealed<br />

(you can’t open it)<br />

P a g e 103


iv. Universal Mount Steam Traps<br />

Universal Mounts enable easy removal<br />

for steam trap cleaning or replacement<br />

Universal Mount with isolation valves built in<br />

P a g e 104


v. Automatic Pump Trap (APT) = Condensate Pump<br />

Non-electric Pump Traps have 4 openings.<br />

1) Incoming live steam (when float rises, motive steam enters and pushes out condensate),<br />

2) steam vent out (steam exhaust),<br />

3) incoming condensate with check valve, and<br />

4) outgoing condensate with check valve.<br />

P a g e 105


vi. PRV<br />

Ice forming after PRV on ammonia line<br />

P↓ × V c = T↓ (Ideal Gas Law)<br />

<strong>Manual</strong>-Bolt<br />

adjust<br />

Auto-Thermostatic<br />

adjust<br />

Hollow Capillary<br />

Tubes<br />

Auto-Pressurestatic adjust<br />

Steam Pressure/Temperature Reducers<br />

operate on the exact same principles as<br />

Chiller/AC TXVs<br />

Compressed air<br />

PRV<br />

Internally Equalized<br />

Externally Equalized<br />

P a g e 106


PRV Let Down Station<br />

P a g e 107


Steam Trap Trouble Shooting<br />

vii. Steam Trap Troubleshooting<br />

Mechanic’s Stethoscope<br />

Each type of steam trap has its own fingerprint<br />

signature sound when functioning properly.<br />

Electronic<br />

stethoscope<br />

Screwdriver to Ear method!<br />

Flow<br />

Infrared<br />

Pyrometer<br />

A significant drop in temperature<br />

indicates that a steam trap is<br />

functioning properly.<br />

Flow<br />

For every 8 inches away, the meter reads a circle<br />

of 1 inch diameter. The laser dot only acts as a<br />

pointer and has nothing to do with IR light.<br />

Thermal Imager (preferred)<br />

P a g e 108


Desuperheater<br />

2) Keeping steam temperature constant and below 1000°F is important for minimizing thermal stresses on the superheater tubes and turbine.<br />

Pretreated and<br />

preheated boiler<br />

feed water is<br />

generally used as<br />

desuperheater feed<br />

water<br />

Technically, a Desuperheater and Attemperator<br />

are one in the same, that is, a unit that reduces the<br />

temperature of super-heated steam. However, in<br />

the power plant arena, attemperators generally<br />

refer to the unit between stages in a superheater.<br />

Venturi<br />

Desuperheater<br />

Variable Orifice Desuperheater<br />

Atomizing Desuperheater<br />

(steam and water sprayer)<br />

Spring loaded<br />

plunger (plug)<br />

Steam<br />

Flow<br />

Spring loaded plunger<br />

lifts up when high<br />

pressure steam is<br />

present, opening up the<br />

cooling water inlet.<br />

P a g e 109


3) Heat Exchangers<br />

i. Shell and Tube<br />

Shell and Tube<br />

U-Tube<br />

= Two pass<br />

Fixed Tube Sheet Heat Exchanger<br />

Stationary Tube Sheets<br />

Easy to clean (punch) tubes.<br />

May incur expansion stress<br />

during high and low loads.<br />

U-shaped bundle is only attached on one side:<br />

expands easily with temperature change.<br />

Difficult to clean tubes.<br />

Interior head is only attached to end tube<br />

sheet, not to the shell, this permits free<br />

expansion and contraction of tubes with little<br />

stress. The straight tubes are easy to clean.<br />

Domestic use hot water heaters<br />

P a g e 110


High Capacity Instantaneous<br />

Steam Fired Water Heater<br />

Condesated Return<br />

Visual port, flow sensor<br />

P a g e 111


v. Steam Driven Hot Water Heaters<br />

Steam driven domestic use hot water heaters<br />

Temperature /<br />

incoming steam<br />

controller<br />

Interior circulation<br />

pump helps<br />

maintain uniform<br />

temperature<br />

Hot water<br />

expansion tank<br />

Safety Popoff<br />

Cold city water in<br />

Condensate out<br />

Vacuum<br />

breaker<br />

Emergency High<br />

Temperature NC<br />

solenoid cut out valve<br />

P a g e 112


Motorized solenoid<br />

incoming steam controller<br />

Outgoing condensate<br />

to F&T Trap<br />

Safety Popoffs<br />

Thermocouples<br />

Expansion Tank<br />

Check Valve<br />

Circulation pumps<br />

Air Separator<br />

P a g e 113


Spiral Heat Exchangers<br />

Spiral Heat Exchangers<br />

Typically used for heating or cooling viscous liquids<br />

Door gasket<br />

Welded Stud<br />

Spacers<br />

Sample Coolers<br />

P a g e 114


ii. Plate and Frame<br />

Plate and Frame<br />

A unit this size, if dismantled for<br />

cleaning, would fill a football field!<br />

BPHE: Brazed Plate Heat Exchanger<br />

Higher efficiency means<br />

equivalent heat transfer can be<br />

achieved with much smaller units<br />

However, they cannot be<br />

dismantled<br />

Cross section:<br />

No gaskets!<br />

P a g e 115


iii. HVAC Mixing Boxes Boxes (air handlers)<br />

v. Mixing Boxes (HVAC) Mixing boxes<br />

Steam driven air heaters<br />

Safety PopOff<br />

PRVs controlling steam<br />

supply for Air Handler<br />

Incoming steam via controlling solenoid<br />

Outgoing condensate to inverted bucket trap<br />

P a g e 116


iv. Steam Radiators<br />

Adjustable<br />

Thermostatic<br />

One Pipe Steam Radiators<br />

One pipe systems<br />

require radiator<br />

vent valves.<br />

Internal spring<br />

expands and closes<br />

when hot.<br />

Two Pipe Steam Radiators<br />

Releases non-steam air<br />

on start up and allows<br />

air back in on shut<br />

down preventing<br />

damage from vacuum<br />

(acts as a vacuum<br />

breaker).<br />

(Radiator vent valve not required)<br />

P a g e 117


v. Jacketed Kettles<br />

Steam creates uniform heat<br />

throughout the vessel.<br />

Breweries have high steam demand<br />

P a g e 118


vi. Autoclaves<br />

High temperature and pressure<br />

steam sterilizer<br />

Medical Waste<br />

Ceramics<br />

Vulcanizing<br />

P a g e 119


vii. Heat Exchanger Stall<br />

Heat Exchanger Stall<br />

Heat Exchanger Stall<br />

Heat exchanger stall: When no steam demand, reducer stops incoming steam, steam in exchanger cools and<br />

shrinks making a vacuum. This vacuum “sucks” condensate back into the exchanger, filling it with water. When<br />

steam demand is needed again, the reducer is opened again, hot steam hitting cold water: WATER HAMMER.<br />

Symptoms:<br />

Steam trap is cold.<br />

Heat Exchanger becomes waterlogged (pooling of condensate).<br />

Temperature is uneven in heat exchanger.<br />

Water hammer (vacuum-implosion induced shock waves)<br />

occurs as hot steam hits cold condensate, damaging tubes.<br />

Water Hammer on heat<br />

exchanger pipes.<br />

Back pressure<br />

prevents condensate<br />

from escaping.<br />

Cure: Check unit’s vacuum breaker,<br />

consider using Automatic Pump Traps (APT)<br />

P a g e 120


4) Pumps<br />

i. Reciprocating<br />

Reciprocating Pumps<br />

Triplex Plunger Pump<br />

3 plungers make a more smooth flow<br />

6 check valves<br />

P a g e 121


ii. Rotary<br />

Rotary Pumps<br />

Gear<br />

Internal Gear<br />

External Gear<br />

Peristaltic<br />

Vane<br />

Screw<br />

Progressive<br />

Cavity<br />

Single Screw<br />

Back<br />

Front<br />

Double Screw<br />

Loab<br />

P a g e 122


iii. Centrifugal<br />

Series vs Parallel<br />

Centrifugal Pumps<br />

Impellers<br />

P a g e 123


Multistage iv. Stage Pumps<br />

4 Stage<br />

2 Stage<br />

Also called a “can pump”<br />

(like a tin can)<br />

Vertical Multistage Pump<br />

P a g e 124


v. Motor Vibration Monitoring<br />

All rotating machines, pumps included,<br />

vibrate to some extent due to various<br />

reasons, the most common of which are<br />

typically the following:<br />

Improper installation at site<br />

Improper balancing of pump rotor<br />

Excessively turbulent fluid flow<br />

Pressure fluctuations<br />

Cavitation or internal recirculation in<br />

pumps<br />

Normal pump wear after prolonged<br />

operation.<br />

Remote vibration monitoring<br />

Inline vibration monitoring<br />

P a g e 125


vi. Expansion Control<br />

vii. Cavitation<br />

Feed Water Pumps<br />

are located below water source<br />

to avoid cavitation<br />

P a g e 126


5) Valves<br />

i. Types<br />

Ball<br />

Gate<br />

Butterfly<br />

Globe<br />

Pressure Regulators<br />

are usually globe<br />

valves<br />

Diaphragm<br />

Stem pushes down on<br />

rubber gasket<br />

Spring Check<br />

Swing<br />

Check<br />

Lift<br />

Check<br />

P a g e 127


ii. Backflow Prevention<br />

Symbol<br />

Backflow is the undesirable reversal of flow of a<br />

liquid, gas or solid into the potable water supply.<br />

Q.: How often does the backflow prevention assembly<br />

need to be tested?<br />

A.: On installation and at least once a year thereafter by<br />

a licensed backflow tester.<br />

P a g e 128


iii. Actuators<br />

Actuators remotely open and close valves<br />

<strong>Manual</strong> override<br />

Motorized actuators close slowly,<br />

avoiding water hammer<br />

Instrument Air Compressor<br />

and Dryer<br />

P a g e 129


Linear: pushes a shaft in or out<br />

Rotary:<br />

turns a shaft ¼ rotation to opened or closed<br />

pneumatic<br />

electric<br />

Some rotary actuators use<br />

external limit control boxes<br />

This actuator is<br />

controlled by a PRV<br />

P a g e 130


A Solenoid: Electricity creates a temporary magnet pushing the permanent magnet up<br />

(NC =normally closed) or down (NO=normally open).<br />

NC are typically used for natural gas and fuel oil lines for boilers<br />

as that if there is a power outage, the fuel is instantly shut off.<br />

Direct: moving piston plugs outlet<br />

Indirect: moving piston opens orifice allowing<br />

pressure change which moves spring plunger<br />

Typically used in sprinkler<br />

irrigation systems<br />

P a g e 131


iv. Water Hammer: Valve Induced<br />

P a g e 132


Cavitation:<br />

Sudden implosion of low pressure steam bubbles back to<br />

water causes miniature shock waves, damaging metal<br />

surface.<br />

Propeller Cavitation<br />

Flashing: when<br />

water drops in<br />

pressure by passing<br />

through a<br />

restrictive orifice, it<br />

boils. Damage<br />

from flashing is<br />

smooth.<br />

Valve Cavitation:<br />

sounds like gravel<br />

moving through pipe<br />

Cavitation is when<br />

the bubbles violently<br />

implode back to<br />

liquid. Damage from<br />

cavitation is rough<br />

P a g e 133


6) Condensate Holding Tanks<br />

i. Surge Tank / Condensate Return Tank<br />

Surge Tanks handle volume swings<br />

in condensate return. The water is<br />

then sent forward to the DA Tank.<br />

Condensate Return/Receiving Tank sends water from<br />

steam system forward towards the deaerator<br />

Level controllers and alarms<br />

Incoming<br />

Condensate<br />

Overflow<br />

Condensate<br />

Pumps<br />

P a g e 134


ii. Condensate Vacuum Pump<br />

During mild weather when the boiler is on only<br />

part-time, the vacuum pump’s main job is to<br />

mechanically remove air from the system so we<br />

don’t have to use steam pressure to push air out.<br />

Condensate psi<br />

(vacuum) controllers<br />

During cold weather when the boiler is<br />

always on, air removal is not much of a<br />

concern so the vacuum pump’s job now is<br />

pressure reduction; allowing the system to<br />

operate with the lowest possible steam<br />

pressure.<br />

Emergency Vacuum<br />

Breaker<br />

Candensate level pump switches<br />

P a g e 135


7) Electricity<br />

i. Flow<br />

Parallel:<br />

Amps increase, volts stay the same<br />

Series:<br />

Volts increase, amps stay the same<br />

Volts measure how hard the electricity is pushing (Electrical Force)<br />

Amps measure current, or how much electricity is flowing [Ah = Amp-hours]<br />

Watts measure how much electricity is going through the circuit (Power)<br />

Ohms (Ω) measures Resistance<br />

Note correlation<br />

Pressure: psi → Volts<br />

Flow: gpm → Amps<br />

Hydraulic HP → Watts<br />

P a g e 136


Variable Frequency Drive<br />

ii. VFD: Affinity Law<br />

The Affinity Law<br />

Law 1a) Air flow is directly proportional to fan speed.<br />

Example: When fan speed doubles, air flow doubles.<br />

1a) Fan Speed ↑ = Air Flow ↑<br />

Law 1b) Torque increase is proportional to the square of the fan speed increase.<br />

Example: When fan speed doubles, torque increases four times<br />

When fan speed triples, torque increases nine times 1b) (Fan Speed ↑ ) 2 = Torque ↑<br />

Law 1c) Power required is proportional to the cube of fan speed increase.<br />

Example: When fan speed doubles, power required is six times<br />

1c) (Fan Speed ↑ )<br />

When fan speed triples, power required is 27 times<br />

3 = Power ↑<br />

Significant Energy Savings<br />

Use only the fan speed your system is calling for.<br />

A 100 HP fan running at half speed uses the<br />

same energy as a 13 HP motor!<br />

(½) 3 x 100HP = (1/8) x 100HP = 13HP<br />

Equipment Savings<br />

Single-speed motors start abruptly:<br />

High starting torque<br />

High starting current surges (up to 8 times)<br />

Variable speed drives gradually ramp up the motor.<br />

P a g e 137


Energy: measuring the flow change<br />

252 calories = 1 Btu<br />

1 ft 3 of natural gas ≈ 1020 Btu<br />

1 kilowatt·hr (kwh) of electricity = 3413 Btu<br />

1 pound of Coal ≈ 9,200 Btu<br />

1 pound of gasoline ≈ 14,300 Btu<br />

1 pound of diesel or fuel oil ≈ 16,000 Btu<br />

1 Therm = 100,000 Btu<br />

1 Dekatherm (DTH) = 1,000,000 Btu<br />

0.293 Watts = 1 Btu/hr<br />

1 Bhp (<strong>Boiler</strong> horsepower) = 33,472 Btu/hr<br />

1 Bhp = 34.5 lbs of steam per hr (@0psig)<br />

The Tom Thumb is especially remembered as a<br />

participant in an impromptu race with a horse-drawn car,<br />

which the horse won after Tom Thumb suffered a<br />

mechanical failure. However, the demonstration was<br />

successful, and the railroad committed to the use of<br />

steam locomotion. The boiler was pulling 40% more<br />

weight than the horse, therefore Tom Thumb was<br />

officially labelled a 1.4 horse power boiler. And BHP<br />

designation was born.<br />

Tom Thumb = 1.4 BHP<br />

P a g e 138


D) Piping Systems<br />

1) Pipes<br />

i. Manufacture Style<br />

Seamless<br />

Welded Seam<br />

Seamless (No Weld)<br />

Solid steel bar forced over cone<br />

shape ended cylinder<br />

Welded Seam<br />

Electrical Resistance Welding (ERW): Strong<br />

electromagnetic current is “resisted” by the<br />

steel and heat is created.<br />

Inside excess weld trimmer<br />

P a g e 139


Ends<br />

The PE (Plane End) pipes will generally be used for<br />

smaller diameters pipe systems and in combination with<br />

Slip On flanges and Socket Weld fittings and flanges.<br />

Beveled End (BE) for butt welding<br />

Threaded End (TE)<br />

P a g e 140


ii. Composition<br />

Carbon Steel<br />

Black Galvanized Steel Pipe<br />

Stainless Steel<br />

When bare steel is exposed to air, it quickly<br />

forms an oxide layer (Fe 2O 3). This passivating<br />

layer will not corrode further unless disrupted.<br />

Galvanized Pipe<br />

Metallic Zinc coated surface. Zinc (Zn) acts as a sacrificial anode and corrodes<br />

first, leaving the structurally strong steel undamaged (…until all the zinc is gone).<br />

Primary White Rust (ZnO)<br />

Secondary Iron Rust<br />

Stainless Steel Pipe<br />

Very durable Dichromium Trioxide surface; 1 to 10 molecules thick.<br />

Chromium<br />

P a g e 141


iii. Sizing<br />

Flow increases exponentially with<br />

diameter<br />

NPS = Nominal Pipe Size: OD measured in<br />

Inches<br />

Area = πr 2 = π(½D) 2<br />

DN = Diametre Nominel: OD measured in<br />

Millimeters (Metric)<br />

SCH or Schedule<br />

= a Strength Reference Number<br />

Is related to thickness<br />

SCH 40: typically<br />

SCH 80: typically<br />

for steam < 165psi<br />

for steam > 165psi<br />

SCH 10 SCH 120<br />

P a g e 142


iv. Poiseuille’s Law<br />

Poiseuille’s Law<br />

Basically:<br />

1) If you double the radius of the pipe,<br />

you can increase the flow by 16 times<br />

(r 4 = 2 4 = 16)<br />

2) If flow remains constant and pipe is<br />

extended, then, in order to maintain a<br />

constant output pressure (P1), input<br />

pressure (P2) must increase.<br />

Note: Water is almost 8 times more viscous<br />

thinner at freezing (32˚F) than at the boiling<br />

point (212˚F).<br />

P a g e 143


2) Water Hammer: Steam Driven<br />

i. Water Slug<br />

ii. Vacuum Induced<br />

Water slug arrestor<br />

Condensate/Vacuum Induced Water Hammer<br />

P a g e 144


Inline Steam Separators<br />

iii. Inline Steam Separators<br />

Removing water from<br />

steam is critical to<br />

reduce damage from<br />

water hammer, TDS<br />

erosion, oxygen<br />

corrosion and<br />

condensate inline sludge<br />

and scale buildup.<br />

Drip Legs<br />

P a g e 145


4) Steam Header<br />

Steam Header = manifold where<br />

branch lines can be attached<br />

Muffler for relief of excess PSI,<br />

such as during PopOff tests<br />

(acts like the muffler on a car)<br />

Steam trap on drip<br />

leg at bottom<br />

P a g e 146


E) Water Quality<br />

1) Water Chemistry<br />

i. pH<br />

Water cooled<br />

sample port<br />

pH<br />

Bypass chemical “slug”<br />

feeder for startup,<br />

layup or other<br />

specialized cases<br />

Litmus paper<br />

Chemical indicators<br />

change color at<br />

different pH ranges<br />

A universal pH indicator contains several compounds that<br />

exhibits smooth color changes over a broad pH range.<br />

P a g e 147


Hydrochloric Acid<br />

(HCl)<br />

H + OH -<br />

10 0 = 1 = 100%<br />

10 -14 = .00000000000001<br />

Stomach Acid<br />

(weak HCl)<br />

10 -1 = .1 = 10%<br />

10 -13 = .0000000000001<br />

Vinegar<br />

Lemon Juice<br />

Soda Pop<br />

Orange Juice<br />

10 -2 = .01 = 1%<br />

10 -3 = .001 = .1%<br />

10 -12 = .000000000001<br />

10 -11 = .00000000001<br />

The concept of pH was<br />

first introduced in 1909<br />

by Danish chemist<br />

Søren Sørensen<br />

Tomato Juice<br />

Acid Rain<br />

10 -4 = .0001 = .01%<br />

10 -10 = .0000000001<br />

Eye Drops<br />

Normal Rain<br />

10 -5 = .00001<br />

10 -9 = .000000001<br />

Saliva<br />

Urine<br />

10 -6 = .000001<br />

10 -8 = .00000001<br />

Pure Water<br />

10 -7 = .0000001 =<br />

10 -7 = .0000001<br />

Sea Water<br />

Swimming Pools<br />

10 -8 = .00000001<br />

10 -6 = .000001<br />

Baking Soda<br />

10 -9 = .000000001<br />

10 -5 = .00001<br />

Great Salt Lake<br />

10 -10 = .0000000001<br />

10 -4 = .0001<br />

Ammonia (NH4OH)<br />

Soaps<br />

10 -11 = .00000000001<br />

10 -12 = .000000000001<br />

10 -3 = .001<br />

10 -2 = .01<br />

At pH > 7, OH -<br />

(hydroxide) becomes<br />

the active ion.<br />

Bleach<br />

Oven Cleaner<br />

10 -13 = .0000000000001<br />

10 -1 = .1<br />

OH -<br />

Drain Cleaner<br />

Caustic (NaOH)<br />

10 -14 = .00000000000001<br />

H +<br />

10 0 = 1<br />

HCl (acid) + NaOH (base) → H 2O (pH 7) + NaCl<br />

(salt water)<br />

P a g e 148


pH Probe<br />

Acids have more positive ions and conduct electricity<br />

better. A pH probe measures the voltage (potential<br />

difference) of a solution.<br />

The glass bulb should be kept<br />

moist, even when not in use,<br />

non-hydrated bulbs give<br />

erratic readings.<br />

(Do not use RO, DI or Distilled water<br />

for storage)<br />

Liquid filled cap<br />

pH probes must be periodically calibrated with at least<br />

two reference buffer solutions (the reference buffers<br />

you use depends on if your sample is acidic or basic).<br />

P a g e 149


Conductivity<br />

ii. Conductivity<br />

TDS<br />

Water sample coolers<br />

SALT<br />

↓<br />

Distilled water:<br />

No electrical flow<br />

Water with ionic<br />

contaminants:<br />

Electrical flow<br />

Periodic calibration is important<br />

to ensure your meter is accurate.<br />

mho = non-metric<br />

(archaic, but still used)<br />

Electrical Resistance = ohm (Ω)<br />

Electrical Conductivity = mho<br />

1 mho = 1 Siemen (S)<br />

0.000001 Siemen = 1 µS = 1 µmho<br />

Opposites<br />

(spelling too!)<br />

S = metric unit<br />

µ = micro<br />

P a g e 150


Conductivity vs. TDS<br />

Total dissolved solids (TDS) is, technically,<br />

anything dissolved in water (including<br />

organics that do not conduct electricity).<br />

If the general chemistry of the liquid being<br />

measured is known, then a conversion factor can<br />

be applied and is usually done internally by the<br />

meter itself. Still, this new measurement is only an<br />

approximation.<br />

TDS is measured in parts per million (ppm) or mg/l (milligrams per liter).<br />

To achieve true TDS readings:<br />

True TDS measurement is very slow. For faster<br />

numbers, we rely on general conductivity<br />

conversion rules (but lose accuracy).<br />

Accurately weigh a filtered sample<br />

along with its container at room<br />

temperature. Evaporate liquid to<br />

dryness at 104˚C. Let cool to room<br />

temperature then reweigh.<br />

TDS = (preweight – postweight)/volume<br />

P a g e 151


Estimated conversion table for boiler<br />

water by Spirax Sarco<br />

Conductivity vs. Temperature<br />

Conductivity increases with<br />

temperature, meters are<br />

internally auto-adjusting.<br />

1) The Hydroxide ion in boiler water is<br />

highly conductive compared to other ions.<br />

2) Since the conversion calculation from Conductivity to TDS is<br />

only an estimate (depending on what is actually in the water), high<br />

pH may skew the conversion factor.<br />

3) Therefore, it is common practice to neutralize any alkalinity<br />

with an organic acid (such as non-conductive acetic acid) prior to<br />

measuring conductivity.<br />

4) This produces a more stable conductivity<br />

measurement, thus a more reliable TDS estimate.<br />

P a g e 152


2) Make Up Water Up Water<br />

The term “make up water” refers to raw water<br />

without any treatment chemicals added, such<br />

as from a well or from the city.<br />

Chlorine in city water, when unchecked, can damage RO system membranes. On the other<br />

hand, because of general treatment practices by municipal water sources, clarification,<br />

filtration, chlorination help remove contaminants such as iron, silica, bacteria, etc. Part or<br />

all of this process needs to be performed at your plant if your water is untreated.<br />

P a g e 153


i. Water Softener<br />

From the Bronze Age into the Renaissance the<br />

average masses of wheat and barley grains were<br />

part of the legal definitions of units of mass.<br />

Grain per gallon (gpg) is a unit of water hardness defined as 1<br />

grain of calcium carbonate dissolved in 1 US gallon of water. It<br />

translates into 1 part in about 58,000 parts of water or<br />

1 grain = 17.1 ppm (parts per million)<br />

P a g e 154


Water Softener<br />

Sodium (Na+) changes places with hardness: Calcium (Ca+ 2 ) and Magnesium (Mg+ 2 )<br />

Three Tanks: when one is<br />

regenerating, the other is in<br />

service, the third is held in<br />

reserve. All used as “Lag Lead”<br />

Air blown<br />

supply salt<br />

bin<br />

Zeolite = Plastic Beads<br />

Some of the softener salt will eventually<br />

make it into the boiler, however, the<br />

softener salt (NaCl) stays dissolved in the<br />

water and does not fall out as scale.<br />

Cation resin beads<br />

attract positive ions:<br />

Na+, Ca+ 2 , Mg+ 2<br />

P a g e 155


Yo Yo type level meter: periodical lowering<br />

of weight until tension stops. Level is<br />

digitally conveyed to controller. Weight is<br />

then brought back up.<br />

Air flow line enables air to<br />

be relieved during filling,<br />

with bag capturing any salt<br />

dust.<br />

Salt Transfer line<br />

with solenoid<br />

P a g e 156


KCl vs. NaCl<br />

The potassium (K) atom is larger than the sodium (Na) atom, that is, the center of the<br />

atom is farther away from the place where the reaction takes place (the outer electrons).<br />

To remove hardness from the resin beads, it requires 27% more potassium chloride than<br />

sodium chloride. While some argue that potassium is friendlier to the environment, it can<br />

easily be said that more waste is generated. Potassium chloride is also more expensive.<br />

NaCl<br />

KCl<br />

Salt Bridge<br />

Bridges may form and prevent<br />

salt from dissolving in water.<br />

P a g e 157


ii. Reverse Osmosis (RO)<br />

Free Chlorine Removal<br />

RO<br />

Free chlorine is very destructive on RO membrane. Free chlorine is defined as the<br />

concentration of residual chlorine in water present as dissolved gas (Cl 2),<br />

hypochlorous acid (HOCl), and/or hypochlorite ion (OCl−). City water uses free<br />

chlorine to kill bacteria in drinking water. If free chlorine is present in makeup<br />

water, it is common practice to neutralize it with a sodium sulfite solution or filter<br />

out the chlorine with carbon, or a combination of the two.<br />

Carbon is processed using high temperature<br />

steam and/or acids which ultimately increase<br />

carbon pore size, increasing surface area.<br />

Activated charcoal carbon filters are<br />

most effective at removing chlorine,<br />

sediment, volatile organic<br />

compounds (VOCs), taste and odor<br />

from water. They are not effective<br />

at removing minerals, salts, and<br />

dissolved inorganic compounds.<br />

Due to its high degree of micro porosity,<br />

just one gram of activated carbon has a<br />

surface area in excess of 32,000 ft 2 .<br />

Free Chlorine can also be stabilized with Sulfite solutions<br />

Sodium metabisulfite (Na 2S 2O 5) when dissolved in<br />

water reduces free chlorine.<br />

→ H 2SO 4 + 2HCl + Na 2SO 4<br />

(Sulfites are also used as oxygen scavengers)<br />

P a g e 158


iii. Filtration<br />

Suspended Solids<br />

Filtration<br />

psid (pounds per square inch differential)<br />

shows when filters need servicing<br />

A progressive filtration system down to 5 Microns<br />

P a g e 159


RO<br />

Membrane Filtration<br />

Two RO systems here<br />

are used as “Lead/Lag”<br />

[Grab your reader’s attention with a great<br />

quote from the document or use this space<br />

to emphasize a key point. To place this text<br />

box anywhere on the page, just drag it.]<br />

RO systems creat very clean water,<br />

however a great deal of waste<br />

water is also produced. This boiler<br />

system uses the waste to cool off<br />

blowdown thus saving city water.<br />

No salt or other chemicals are needed, however,<br />

the costs of replacement membranes, the<br />

electricity needed to pump the water through the<br />

membranes, and the excess higher concentration<br />

waste water all need to be calculated in when<br />

considering this form of water treatment.<br />

P a g e 160


Slime Buildup on RO Membrane<br />

Fouling<br />

With chlorine removed, membranes are a<br />

great place for bacteria slime to grow<br />

which can plug up the system.<br />

Non-Oxidizing Biological Control Chemicals do not damage RO membranes. They<br />

are typically much more expensive than the oxidizing type.<br />

Scale Buildup on RO Membrane<br />

Organic phosphates disrupt crystal<br />

formation and extend the time<br />

between membrane changeout.<br />

(same chemical and process used in<br />

cooling towers to prevent scale)<br />

Normalized Permeate Flow (NPF) = the amount of permeate water that the RO is producing<br />

P a g e 161


P a g e 162


3) Feed Water: DA Tank<br />

DeAerator<br />

i. Temperature Control<br />

Temperature stress is reduced by using steam to bring feed<br />

water nearer to the temperature of the boiler water.<br />

Steam and water mix<br />

Sprayer plate<br />

Receiving Tray<br />

Anti-vortex<br />

baffles<br />

Sparge Tube:<br />

Perforated feed line<br />

Sparging<br />

P a g e 163


ii.<br />

Deaerator<br />

Dissolved Air Removal (continued)<br />

The deaerator also removes dissolved O 2 (Oxygen Scavenger)<br />

The more oxygen you can<br />

economically remove, the<br />

less chemical you need.<br />

32º F 68º F 104º F 140º F 176º F<br />

ppm O2 (dissolved Oxygen) 69 43 31 14


Page 3<br />

Overflow Valve<br />

controller, High<br />

Water Alarm,<br />

Makeup Water<br />

Controller, Low<br />

water alarm<br />

High pressure PRV to low<br />

pressure steam for DA Tank<br />

Steam Injection<br />

Water Injection<br />

Sulfite<br />

injection quill<br />

P a g e 165


DA Tank PopOff<br />

Page 4<br />

Overflow Valve<br />

Supply Steam<br />

Emergency PopOff<br />

Vacuum breaker<br />

and bypass<br />

Incoming remote<br />

control<br />

Feedwater<br />

Pumps<br />

Outgoing<br />

remote control<br />

Expansion Joint<br />

Y strainers<br />

P a g e 166


4) <strong>Boiler</strong> Water<br />

i. Caustic Embrittlement<br />

CAUSTIC EMBRITTLEMENT:<br />

When iron crystals are stretched, Fe↔Fe bonds<br />

are weakened.<br />

And if pH > 12.7, then OH - ↔Fe bonds more readily<br />

and a crack forms until the stress is relieved.<br />

Stretched<br />

steel<br />

Water Tube:<br />

Caustic<br />

Embrittlement<br />

Rolling tubes also stretches<br />

the steel and can be a<br />

possible location for caustic<br />

embrittlement to take place<br />

Rivets stretch the steel and are no<br />

longer permitted on boilers.<br />

Welds are now used.<br />

SPEC: <strong>Boiler</strong> pH should be < 12.7<br />

<strong>Boiler</strong> room, Titanic<br />

P a g e 167


For Residual Hardness that the softener (or demin plant) did not get:<br />

ii. Scale Control: Residual Hardness<br />

Molybdate(MoO 4<br />

-3<br />

) removes residual hardness and forms a soft sludge (easy to blowdown).<br />

10Ca +2 + 6MoO 4<br />

-3<br />

+ 2OH - → 3Ca 3(MoO 4) 2·Ca(OH) 2<br />

blowndown as soft sludge<br />

OH Alkalinity is necessary in order for the above reaction to take place.<br />

Phosphates (PO 4)<br />

Plus<br />

Alkalinity (OH)<br />

Polymers are added which attach to the<br />

phosphate complex, making a chain which<br />

becomes heavy and falls to the bottom<br />

and then is blown down as sludge<br />

Molybdates (Moly) and<br />

phosphates are generally<br />

determined with a colorimeter<br />

Scale Control chemicals are typically<br />

injected into feed water line<br />

P a g e 168


iii. Residual Oxygen Pitting Control: Oxygen Scavengers<br />

Sulfite “fights” the<br />

Oxygen.<br />

Sulfite is added to the deaerator to<br />

absorb residual oxygen before it<br />

can get to the boiler.<br />

2SO3 + O2 → 2SO4<br />

Sulfate is then blown<br />

down as waste.<br />

DA tank chemical<br />

injection quill<br />

(interior)<br />

% Replacement Equivalent Chart<br />

Sodium Sulfite: Na₂SO₃<br />

Sodium Metabisulfite: Na 2S 2O 5<br />

Sulfur Trioxide: SO₃<br />

Sulfur Dioxide: SO₂<br />

Sulfites add conductivity to boiler water. Higher psi boilers (>300psi) have tighter conductivity specifications<br />

and favor scavengers that do not add to this conductivity thus helping to reduce the need for blowdowns.<br />

High psi <strong>Boiler</strong>s (>300psi)<br />

Hydrazine<br />

Works great, but is considered a carcinogen and is being<br />

phased out.<br />

N 2H 4 +O 2 → N 2 + H 2O<br />

Diethyl hydroxylamine (DEHA)<br />

C 4H 11NO +O 2 → C 4H 9NO + H 2O 2<br />

Volatile, that is, it evaporates with the boiler water and<br />

travels with the steam. Not only does this help with any<br />

possibility of oxygen pitting in condensate lines, DEHA also<br />

has been shown to help passivate metal in those lines.<br />

P a g e 169


iv. TDS Control: Surface blowdown<br />

iv. Surface blowdown<br />

b<br />

Surface Blowdown :<br />

High TDS can increase surface tension<br />

of water creating bubbles with “super<br />

skins”, increasing chances of priming<br />

(boiler water escaping as droplets and<br />

traveling with steam), carryover (solids<br />

resulting from priming) and bouncing<br />

(fast irregular fluctuations in boiler<br />

water level).<br />

Best TDS control, bubbles are popping on the<br />

surface leaving their solids behind (highest TDS<br />

concentration in boiler).<br />

Surface (Continuous)<br />

Blowdown Valve (Skimmer):<br />

Motorized Actuator<br />

TDS probe<br />

General Recommendation for max TDS:<br />

Two pass economic<br />

4500 ppm<br />

Packaged and 3-Pass 3000 - 3500<br />

Low pressure water tube 2000 – 3000<br />

Steam generators (Coil type boilers) 2000<br />

Medium pressure water tube 1500<br />

High Pressure water tube 1000<br />

Consult your manufacturer for<br />

exact specifications.<br />

P a g e 170


v. Sludge and Settlement Control: Bottom Blowdown<br />

Bottom Blowdown:<br />

Removes sludge and sediment.<br />

Should be done daily, 3 second bursts.<br />

If MAWP (Maximum Allowable<br />

Working Pressure) >100 then 2<br />

blowdown valves are needed<br />

To protect boiler from<br />

sudden, excessive<br />

changes in pressure,<br />

maximum blowdown<br />

pipe size = 2½ in.<br />

Reversed order<br />

Two slow<br />

opening valves<br />

Fast valve should<br />

be closest to boiler<br />

Slow valve should be<br />

secondary to boiler<br />

Visual flow viewport<br />

Most boilers are equipped with a series of two<br />

blowdown valves. Always open the one closest to the<br />

boiler first and close it last. Any cavitation damage<br />

that may occur will happen on the valve that is easier<br />

to replace. To replace the inner valve, the entire<br />

system has to be shut down!<br />

P a g e 171


Steam vented to atmosphere<br />

Blowdown Tank (blowdown separator)<br />

To prevent damage to sewer lines<br />

blowdown is cooled with city water in the<br />

blowdown tank before entering sewer.<br />

When a sump is used as<br />

blowdown holding tank,<br />

the water becomes<br />

sufficiently cooled without<br />

adding additional water.<br />

P a g e 172


vi. Water Column Blowdown<br />

Normal conditions inside<br />

the water column<br />

Inside the water column<br />

170 psi = 374°F<br />

Inside the ball float is the<br />

same @ 374°F<br />

Water flashing into steam brings the temperature<br />

inside the water column toward 212°F<br />

↓P • V c = ↓T<br />

Visual port flow indicator<br />

The float temperature drops toward<br />

212°F, the air inside the ball also<br />

drops, reducing interior ball pressure<br />

↓P • V c = ↓T<br />

Water column<br />

blowdown reciever<br />

Pressure inside the water<br />

column returns to 170 psig<br />

Alarm bypass<br />

Without sufficient time to reheat,<br />

the air in the ball is still at a lower<br />

pressure, it collapses.<br />

P a g e 173


Carbonic Acid Corrosion<br />

5) Condensate:<br />

i. Carbonic Acid<br />

CO2 + 2H2O → H2(g) + H2CO3<br />

Carbon dioxide, that we breathe out, is absorbed by water,<br />

breaks down and forms Carbonic Acid<br />

Rain is simply another form of condensate<br />

and contains carbonic acid.<br />

Dissolved tombstone from rain.<br />

Due to Carbonic Acid,<br />

untreated condensate can<br />

reach down to pH 5.5<br />

CARBONIC ACID disrupts<br />

the protective magnetite<br />

surface of steel.<br />

Condensate<br />

Sample Port<br />

SPEC: When using neutralizing<br />

amines, Condensate should be<br />

pH > 8.3<br />

P a g e 174


Most common amines<br />

pH controlling amines and are highly volatile.<br />

They evaporate and travel along with boiler<br />

steam neutralizing carbonic acid as the steam<br />

condenses back into water.<br />

Temperature and psi can affect when various<br />

types of amines re-condense. These properties<br />

are applied in condensate line distance.<br />

Morpholine (short range)<br />

Diethyl aminoethanol (DEAE) (medium range)<br />

Cyclohexylamine (long range)<br />

Injection quill: generally<br />

directly into steam line<br />

Filming Amines<br />

Filming amines are not always soluble in<br />

water, and therefore, should always be<br />

injected directly into steam lines.<br />

Neutralizing amines can be injected into feed<br />

water, however, during blowdowns, product is<br />

lost. Direct steam line injection is more common.<br />

For food production facilities and live<br />

steam applications, non-toxic filming<br />

amines travel along with boiler steam<br />

forming a thin protective waterproof<br />

layer on the metal surface, repelling the<br />

acidic condensate.<br />

Inserting and monitoring corrosion coupons<br />

directly into condensate lines can be helpful in<br />

chemical distribution troubleshooting.<br />

P a g e 175


ii. – Flow Accelerated Corrosion<br />

FAC: Flow Accelerated Corrosion<br />

FAC is a concern in plants where low<br />

oxygen content (as in condensate), high<br />

velocity flow and high temperature<br />

water (around 300˚F) exist.<br />

Some power boilers reintroduce<br />

oxygen into condensate to help<br />

prevent FAC<br />

Stainless steel’s chromium oxide surface virtually stops any FAC,<br />

while Carbon steel’s oxide surface (Magnetite) is succeptable.<br />

P a g e 176


LDI – Liquid Droplet Impingement<br />

iii. LDI – Liquid Droplet Impingement<br />

LDI = FAC on a small scale<br />

As irregularities in the metal<br />

surface increase from prior<br />

impacts, corrosion accelerates.<br />

Flow<br />

Installation of periodic<br />

drip legs helps reduce LDI<br />

Power plants use<br />

superheated steam<br />

(zero chance of<br />

water droplets in<br />

steam) which helps<br />

avoid LDI damage on<br />

turbine blades<br />

P a g e 177


6) Combination Chemical Treatment<br />

Because of chemical demand is less in<br />

smaller boilers, it is simpler to inject<br />

combination chemicals into boiler itself.<br />

Only one pump and one chemical container<br />

is required. However, it is more difficult to<br />

control chemistry specifications.<br />

Oxygen Scavenger<br />

Scale Inhibitor<br />

Also: by injecting all chemicals into the DA<br />

tank, some of the amines are lost in both<br />

the DA vent and boiler blowdowns.<br />

Steam Treatment<br />

P a g e 178


7) Chemical Feed Pumps<br />

Peristaltic Pumps<br />

Pinch process does not lose prime, but<br />

tube needs to be replaced periodically<br />

Diaphragm Pumps<br />

Long lasting and durable, however,<br />

these are a “pain” when they lose prime<br />

Speed:<br />

How often<br />

Stroke:<br />

How deep<br />

Chemical<br />

injection<br />

quill<br />

Check<br />

valve<br />

P a g e 179


Four Function Valve (4FV):<br />

Suction valve<br />

Discharge valve<br />

P a g e 180


G) System Documentation / Plant Performance<br />

1) Pressure Gauges<br />

i. Bourdon Tube<br />

Bourdon Tube<br />

Digital pressure<br />

gauges do not<br />

need a pig tail<br />

and can<br />

automatically log<br />

measurements<br />

into a computer.<br />

Compound gauges measure both pressure<br />

and vacuum. Note: inches of mercury<br />

(a perfect vacuum = 30” Hg)<br />

Which gauge is technically correct?<br />

-30 or +30 ?<br />

0 psia = -1 bar (metric) = -100 kPa (metric)<br />

Vacuum gauge<br />

1 atm = 100 kPa = 1013 mbars = 760 mmHg = 30 inHg = 14.7 psia = 0 psig<br />

P a g e 181


ii. Pressurestat sets steam psi range<br />

iii. Pig Tale / Syphon Loop<br />

(PRESSURETROL® = Honeywell® brand name)<br />

Mercury<br />

Switch<br />

Snap<br />

Switch<br />

Trapped condensate in siphon<br />

loops and pigtails form a<br />

barrier which prevent live<br />

steam temperature from<br />

expanding the gauge and<br />

giving false readings.<br />

Oil filled protects from vibration<br />

and corrosion damage<br />

To avoid sideways tilting from<br />

temperature flexing, and thus<br />

erroneous on/off signals, mercury<br />

gauges should be situated<br />

perpendicular to the loop.<br />

P a g e 182


2) Flow Meters<br />

i. Differential Pressure<br />

Water slug arrestor on steam guage line<br />

1. Differential Pressure Flow Meters<br />

Venturi Suction Nozzle<br />

P a g e 183


Venturi Flowmeter<br />

Pitot Tube Flowmeter<br />

Cone Flowmeter<br />

Orifice Flowmeter<br />

P a g e 184


ii. Ultrasonic<br />

2. Ultrasonic Doppler Flow Meters<br />

iii. Coriolis Oscillation<br />

3. Coriolis Oscillation Flow Meters<br />

Tubes oscillate at different<br />

rates, depending on liquid<br />

flow. Electromagnetic<br />

sensors read oscillation rate<br />

and convert to flow reading.<br />

P a g e 185


iv. Positive Displacement<br />

4. Positive Displacement Flow Meters<br />

Nutating Disc<br />

Rotating Lobe<br />

Turbine<br />

Electromagnetic sensor<br />

reads turbine rotation.<br />

P a g e 186


3) Energy Measurement<br />

Energy: measuring the flow change<br />

252 calories = 1 Btu<br />

1 ft 3 of natural gas ≈ 1020 Btu<br />

1 kilowatt·hr (kwh) of electricity = 3413 Btu<br />

1 pound of Coal ≈ 9,200 Btu<br />

1 pound of gasoline ≈ 14,300 Btu<br />

1 pound of diesel or fuel oil ≈ 16,000 Btu<br />

1 Therm = 100,000 Btu<br />

1 Dekatherm (DTH) = 1,000,000 Btu<br />

0.293 Watts = 1 Btu/hr<br />

1 Bhp (<strong>Boiler</strong> horsepower) = 33,472 Btu/hr<br />

1 Bhp = 34.5 lbs of steam per hr (@0psig)<br />

The Tom Thumb is especially remembered as a<br />

participant in an impromptu race with a horse-drawn car,<br />

which the horse won after Tom Thumb suffered a<br />

mechanical failure. However, the demonstration was<br />

successful, and the railroad committed to the use of<br />

steam locomotion. The boiler was pulling 40% more<br />

weight than the horse, therefore Tom Thumb was<br />

officially labelled a 1.4 horse power boiler. And BHP<br />

designation was born.<br />

Tom Thumb = 1.4 BHP<br />

P a g e 187


4) Air Pollution (Emissions)<br />

<strong>Boiler</strong> Mact<br />

NO x, SO 2, CO, Hg, Hydrocarbons (HC = unburned fuel = H xC x =<br />

VOCs = Volatile Organic Compounds) and particulates are major<br />

contributors to smog. When breathed in, they combine with<br />

water and irritates throat and lungs, aggravating conditions such<br />

as asthma.<br />

Some countries in the world have<br />

comparatively little pollution control.<br />

A few decades ago, the US faced similar<br />

health and environmental threats.<br />

EPA <strong>Boiler</strong> MACT<br />

(Maximum Achievable Control Technology).<br />

US federal EPA standards and incentives to reduce boiler emissions.<br />

Mandatory restrictions, along<br />

with simple social environmental<br />

awareness (which drives<br />

voluntary restrictions), has<br />

dramatically improved air quality<br />

across the country.<br />

P a g e 188


Acid Rain<br />

Acid Rain<br />

Nitric Acid<br />

Sulfuric Acid<br />

pH 4 and less damage leaves and<br />

needles, preventing a plant from<br />

getting energy from the sun.<br />

Fish are seriously affected<br />

when pH drops under 4.0<br />

Prior NOx levels<br />

Current<br />

From 1970 to 2015, aggregate national emissions of the six common pollutants alone dropped<br />

an average of 70 percent while gross domestic product grew by 246 percent. This progress<br />

reflects efforts by state, local and tribal governments; EPA; private sector companies;<br />

environmental groups and others.<br />

Prior<br />

Current<br />

P a g e 189


Ground Level<br />

Ozone (O 3 )<br />

CO, HC and Ground Level Ozone<br />

+ Heat<br />

Good Ozone: Nothing lives in the<br />

Stratosphere, so upper atmosphere ozone<br />

doesn’t harm anything. All UV-C and most<br />

UV-B (95-99%) radiation does not pass<br />

through the ozone layer, protecting life<br />

from skin cancer and sun burn.<br />

Unstable ozone (O3) quickly reverts back to more<br />

stable O2 releasing heat (exothermic reaction)<br />

Ozone<br />

concentration<br />

quickly dissipates<br />

with no light<br />

(+O2)<br />

Bad, Ground Level Ozone:<br />

Extended exposure irritates and<br />

damages lung tissue.<br />

Ozone also damages vegetation and ecosystems<br />

by inhibiting the ability of plants to open the<br />

microscopic pores on their leaves to breathe.<br />

Open stomata<br />

Closed stomata<br />

Ozone burn damage<br />

P a g e 190


SO₂ Control<br />

Sulfur Dioxide Control<br />

Limestone Forced Oxidation (LSFO) Scrubber<br />

SO2 + CaCO3 (pulverized limestone sorbent) → CaSO3 (safe dry byproduct) + CO2 (gas to stack)<br />

Pre-boiler limestone injection<br />

Post-boiler limestone injection<br />

Dry byproduct to<br />

reuse or dispose<br />

P a g e 191


Sulfur Dioxide Control (continued)<br />

Wet Lime Spray Dryer (LSD) Scrubber<br />

SO2 + Ca(OH)2 (hydrated limestone slurry sorbent sprayed into flue gas) → CaSO3 + H2O (Gypsum)<br />

CaSO 3 + H 2O = Gypsum, main ingredient of drywall.<br />

Can be a sellable byproduct.<br />

P a g e 192


Stoichiometric flame →<br />

Flame extinction →<br />

NOx, HC and CO Control<br />

NO x<br />

NO forms alongside CO 2 in any<br />

flame during combustion<br />

In high temperature environments, N 2 and O 2 become<br />

less stable, NO formation becomes more frequent.<br />

NO then forms to more stable NO 2<br />

NOx formation grows exponentially as<br />

flame temperature increases<br />

1) Reduce NOx by reducing peak flame temperature<br />

Naturally occurring<br />

NO x in any flame<br />

Elevated flame temperature, along with more available<br />

O 2, NO x emissions reaches maximum concentration<br />

around 6% excess O 2 (around 35% Excess Air)<br />

Lowest flame NO x at stoichiometric<br />

flame and at flame extinction<br />

More air, cooler flame (Less NOx) →<br />

Near flame extinction<br />

(too much air / not<br />

enough fuel)<br />

2) Reduce NO x by controlling excess O 2<br />

P a g e 193


Pre-Combustion Control<br />

Staged Combustion<br />

Staged Combustion<br />

Staged Air Burner: Insufficient air for full combustion in<br />

primary zone limits flame temperature. Peak flame<br />

temperature is reduced.<br />

Staged Air Burner: Secondary (and sometimes tertiary) air is introduced later where lower<br />

temperature complete combustion takes place. Lean Zone burning enables Carbon to<br />

“take back” some of the Oxygen from the NO molecules, further reducing NO x.<br />

4NO + CH 4 → 2H 2O + 2N 2 + CO 2<br />

Lean Zone Burning<br />

Some burners inject steam or even water<br />

at the quench zone to help cool the flame.<br />

Over fire air completes<br />

combustion at a lower<br />

temperature.<br />

The fuel itself, if introduced in stages, can also<br />

reduce flame temperature.<br />

P a g e 194


Premix Low NO x Burners<br />

By mixing the exact proportion of air and fuel<br />

ahead of the flame, premix ultra-low NO x<br />

burners focus on minimum excess air to help<br />

control emissions.<br />

Nitrogen absorbent material is injected into<br />

the flame along with the fuel and acts as a<br />

catalyst to help prevent NO x formation.<br />

P a g e 195


FGR<br />

Flue Gas Recirculation, recycles a portion of used, inert (low O2) combustion gases. Two results: 1) the burning of the flame<br />

becomes “stretched out”, lowering peak flame temperature and 2) lower excess O2, reducing chance of NOx formation.<br />

Exhaust recirculation at<br />

inner flame burn zone<br />

Exhaust recirculation at<br />

outer flame burn zone<br />

P a g e 196


Flue Gas Recirculation, recycles a portion of used, inert (low O2) combustion gases from the stack to the burner.<br />

Two results: 1) the burning of the flame becomes “stretched out”, lowering peak flame temperature and 2)<br />

lower excess O2, reducing chance of NOx formation.<br />

No FGR, higher peak<br />

temperature flames<br />

Less concentrated, lower<br />

temperature burning points<br />

in FGR, less NO x emissions<br />

A mod motor controls this<br />

damper for incoming flue gas.<br />

(Closes when boiler is off)<br />

EGR valves (Exhaust Gas Recirculation) on<br />

automobile motors operate under the<br />

same principle as FGR<br />

P a g e 197


Post Combustion Control<br />

SNCR<br />

6NO + 4NH 3 → 5N 2 + 6H 2O<br />

4NO + 4NH 3 + O 2<br />

→ 4N 2 + 6H 2O<br />

6NO + 8NH 3 → 7N 2 + 12H 2O<br />

2NO + 4NH 3 + O 2<br />

→ 3N 2 + 6H 2O<br />

NO + NO 2 + 2NH 3 →<br />

2N 2 + 3H 2O<br />

Preferred reaction temp.<br />

> 1400˚F<br />

AIG = ammonia injection grid<br />

For chemical reaction to come to<br />

completion, ammonia must be<br />

injected in high temperature zone<br />

before boiler.<br />

P a g e 198


SCR<br />

Ammonia Free 3 Way Catalytic Converter →<br />

1) NOx 2) CO 3) HC<br />

P a g e 199


DEF = water + urea<br />

(which breaks down<br />

into ammonia)<br />

P a g e 200


SCR<br />

Ammonia Injection Grid = AIG<br />

The use of ammonia and catalytic beds<br />

enables removal of NO x at a lower<br />

temperature. Therefore, liquid<br />

ammonia is injected after the boiler<br />

tubes, saving energy loss.<br />

P a g e 201


Diesel Engine Catalytic Converter<br />

Excess ammonia that is released with flue gasses (ammonia slip)<br />

is also considered an air pollutant.<br />

The ASC bed changes NH3 and O2 to non-toxic N2O and N2 gas.<br />

2NH 3 + 2O 2<br />

→ N 2O+ 3H 2O<br />

4NH 3 + 3O 2 → 2N 2 + 6H 2O<br />

N 2O = Nitrous Oxide = Laughing Gas<br />

Air Straightener<br />

NO x Reducer and<br />

CO Oxidizer Bed<br />

Residual CO Oxidizer<br />

Bed<br />

Ammonia Slip<br />

Catalyst = ASC Bed<br />

P a g e 202


3 Way Dual Bed<br />

3 Way Single Bed<br />

Platinum & Rhodium<br />

imbed in ceramic<br />

Pt/<br />

(Ceramic)<br />

N will bond with the<br />

Pt/Rh particles and<br />

leave the O behind<br />

N will more readily bond with<br />

N leaving the Pt/Rh particle<br />

and is expelled with exhaust<br />

The remaining O binds with<br />

Pt/Rh particles<br />

The C in CO has a higher affinity for the O<br />

than the Pt/Rh particle and forms CO 2. It<br />

is then expelled with the exhaust.<br />

P a g e 203


Incomplete Combustion Byproduct Control<br />

Platinum and Palladium<br />

Pd/Pt particles imbed in Al2O3 (Ceramic)<br />

The O in O 2 has a higher attraction to the<br />

Pl/Pd particle and separates out.<br />

The C in CO has a higher affinity for the O<br />

than the Pt/Pd particle and forms CO 2. It<br />

is then expelled with the exhaust.<br />

After the O becomes “free standing” by attaching to<br />

Pt/Pd particles, the C in unburned fuel easily “absorbs”<br />

these O atoms and becomes CO 2. This completes the<br />

combustion cycle. The left over O and H atoms combine<br />

to form H 20 (water vapor) and is expelled along with the<br />

CO 2 as exhaust.<br />

Other metals may also be combined and used as a catalyst such as:<br />

Vanadium (V), Titanium (Ti) and Tungsten (W)<br />

P a g e 204


(Particulate Matter) Control Electrostatic Precipitator =<br />

Rectifier<br />

Transformer<br />

1) This diode only lets the positive<br />

part of the flow through.<br />

2) This diode only lets the<br />

negative part of the flow<br />

through.<br />

When combined, alternating<br />

current is converted to a<br />

“choppy” type of DC current.<br />

A capacitor, , is a like a rechargeable battery, it stores and then releases an electrical charge. It<br />

is also like a balloon, when it receives a charge of air, it expands, as soon as the pressure starts to<br />

drop, it will relieve some of its air until it gets the next charge.<br />

The capacitor smooths out the choppy DC wave form.<br />

The relatively smooth DC flow is used to negatively charge the<br />

hanging electrodes in the ESP. The ionized dust particles in<br />

the flue gasses have a slight positive charge and will<br />

magnetically “stick” to the electrodes.<br />

P a g e 205


Particulate Matter (PM) Control<br />

ESP (Particulate Matter) Control<br />

Electrostatic Precipitator = ESP<br />

The weak magnetic bond of the particulate matter<br />

is broken by a sudden rapping of the hanging<br />

electrodes and the dust particles fall.<br />

Location for<br />

rapping motors<br />

Suspended<br />

Electrodes<br />

Rapper<br />

Rectifier transformer<br />

Internal Rectifier<br />

transformer<br />

Fine ash particles can<br />

be used as fertilizer.<br />

P a g e 206


,<br />

Bag House<br />

(Particulate Matter) Control<br />

Bag House Filtration<br />

Pulsed Jet Bag House<br />

Mechanical Shaker Bag House<br />

P a g e 207


Water Scrubbing<br />

(Particulate Matter) Control<br />

Wet Scrubber Filtration<br />

Residual Exhaust Acid Absorber<br />

Scrubber<br />

NO x and SO 2 are removed with scrubbers by rearranging the<br />

atoms. However, a small fraction of the N and S molecules<br />

are absorbed by the H 2O vapors in exhaust and is<br />

transformed into HNO 3 and H 2SO 4, Nitric and Sulfuric Acid.<br />

Wet scrubbers, when circulating alkaline<br />

water (high pH) can also serve a second<br />

function. Besides removing PM, they can<br />

be used to neutralize acids in flue gasses.<br />

P a g e 208


New Technology<br />

New Technology Emissions Control<br />

All in One Scrubber System<br />

A Tri-Mer® system can be configured to be all-in-one:<br />

PM, NOx, SO2, Acidic Gas, Hg, CO and certain HxCx.<br />

P a g e 209


Flameless Combustion<br />

In 1989, a surprising condition occurred during experiments in a furnace burner. At 1000˚C and preheated<br />

combustion air at 650˚C, no flame could be seen and no UV signal could be detected. CO content was


CO₂ (Green House Gasses)<br />

Greenhouse Gasses (CO 2 ) causes:<br />

Global Cooling (1970’s)<br />

Global Warming (1990’s)<br />

Climate Change (2010’s)<br />

P a g e 211


H) Emergency Generator<br />

1) Arc Flash<br />

Arc Flash<br />

NFPA 70E<br />

The ATPV (Arc Thermal Proformance<br />

Value) is measured in cal/cm 2 (calories<br />

per square centimeter), and is defined<br />

as the maximum incident heat energy<br />

that a fabric can absorb and lessen the<br />

injury to a 2nd degree burn.<br />

P a g e 212


2) Generator System Components<br />

Turbo Generator<br />

(alternator)<br />

Auto open air louvres<br />

and actuator<br />

Antifreeze coolant<br />

radiator and fan<br />

Antifreeze coolant circulation control valve<br />

Starter and 12 V<br />

Batteries<br />

connected in series<br />

P a g e 213


Pressurized<br />

circulating fuel oil<br />

Crank Case and<br />

Fuel oil filters<br />

Remote safety<br />

alarm panel<br />

P a g e 214


I) Routine Equipment Maintenance<br />

1) EMP (Equipment Maintenance Plans)<br />

Equipment<br />

Maintenance Plans<br />

<br />

A descriptive title for each maintenance task to be performed<br />

<br />

A frequency assigned for performing of each task<br />

<br />

Equipment condition required for performance of the task (i.e. running or shut down)<br />

<br />

Type of Work – Preventive Maintenance (PM), Predictive Maintenance (PdM), Corrective<br />

Maintenance (CM), Situational Maintenance (SIT), etc.<br />

<br />

Procedure number – Unique identifier for the task, or file name if linked to another document<br />

that gives the individual task instructions<br />

<br />

Estimated time to perform the task<br />

<br />

Special tools, materials and equipment required to perform the task<br />

P a g e 215


2) Lock Out / Tag Out<br />

Step 1: Provide detailed procedures for starting and stopping equipment involved<br />

Step 2: Notify affected employees<br />

Step 3: Shut down equipment properly<br />

Step 4: Disconnect all primary energy sources<br />

Whether the primary energy sources include electricity, steam, water, gas, compressed air, or others.<br />

Step 5: Address all secondary sources<br />

While disconnecting the primary energy sources may remove much of the potential danger, it’s possible that there<br />

sources of residual energy, such as trapped heat in a thermal system, fumes that may need to be vented, or even<br />

tension in a spring assembly. Identify the process that will relieve any remaining pressure or other energy. Also consider<br />

other hazards, such as moving equipment that must be secured before work begins.<br />

Step 6: Verify the lockout<br />

Once you’ve disconnected all primary and secondary sources of energy, attempt to start the equipment to verify that<br />

the lockout has been successful. Assuming that the procedures have been successful, return all switches and other<br />

equipment back to their “off” positions so the machine won’t start unexpectedly when the energy sources are<br />

reconnected. Once you’ve verified the lockout, attach a lockout or tagout device to the equipment to ensure that it<br />

cannot be started without removing the device.<br />

Step 7: Keep it in force during shift changes<br />

Equipment must remain in lockout/tagout condition across shift changes, so that workers arriving at the site are aware<br />

that the equipment is out of service.<br />

Step 8: Bring the equipment back on line<br />

When work is done and all tools and other materials have been removed, the machine can be brought back into<br />

operation.<br />

P a g e 216


3) Small <strong>Boiler</strong> Layup/Seasonal Down<br />

Seasonal Shutdown<br />

i. Wet<br />

WET ii. Dry LAYUP<br />

Two to seven days before a wet layup, water chemistry should be<br />

increased to the following levels:<br />

• 200 to 400 PPM sulfite<br />

Steel <strong>Boiler</strong>s < 30 days and Cast-Iron Sectionals<br />

• 600 to 800 ppm hydroxide alkalinity<br />

• Scale/corrosion inhibitor in normal ranges for on-line operations<br />

• Periodically check water level for leaks<br />

DRY LAYUP<br />

Steel <strong>Boiler</strong>s > 30 days<br />

days<br />

• Drain and mechanically dry inside of boiler to prevent stagnant water corrosion (rust).<br />

• A moisture absorbing material, such as quicklime (2 #s/30 ft³) or silica gel (5 #s/30 ft³ of<br />

boiler volume) may be placed on trays inside the drums to absorb residual moisture from the<br />

air.<br />

• Use Humidity Cards to confirm internals are dry.<br />

• Check Humidity Cards monthly during shutdown.<br />

Dessicants can be reused by drying between<br />

seasons. Simply warm dessicant to 200˚F for 1<br />

hour to expel any moisture.<br />

P a g e 217


J) Inspection Preparation<br />

1) Internal vs. Operational<br />

While some states require yearly inspections by a licensed<br />

boiler inspector (a state employee or an insurance<br />

representative), some states have no requirements.<br />

Internal (<strong>Boiler</strong> Off and Opened):<br />

Drain boiler, open all plates and ports to include low water cutoff<br />

float devices.<br />

Have replacement gasket material on hand for reassembly.<br />

Test pressure gauges for functionality.<br />

Operational (<strong>Boiler</strong> Running):<br />

Have on hand the boiler permit of operation, a copy of any repair or<br />

alteration reports, any state required standard forms and the ASME data<br />

report obtained from the boiler manufacturer during initial startup.<br />

Line the boiler up to fire.<br />

All burner management interlocks should be operational.<br />

P a g e 218


2) Refractory<br />

Fire box lining (brick and or ceramic)<br />

that insulates and protects steel from<br />

flame temperature.<br />

Ceramic floor tiles<br />

Extreme changes in firebox<br />

temperature and age may<br />

result in spalling (cracking)<br />

of the refractory.<br />

Through the<br />

boiler’s view port<br />

Asbestos fiber as an insulation<br />

material has been replaced<br />

with safer, modern ceramics.<br />

P a g e 219


3) Seal Ropes<br />

Fiberglass seal rope installed incorrectly on a<br />

boiler door. It hung down into refractory and<br />

melted. Parts of the liquefied rope traveled with<br />

the flue gas and re-deposited as solid glass on the<br />

cooler interior walls of the fire tubes.<br />

P a g e 220


K) Safety Systems<br />

1) Emergency Stop Button<br />

NC Valves close if<br />

manual safety<br />

override is pushed.<br />

2) Earthquake Shutoff<br />

Normal<br />

Weak Magnet<br />

Tripped<br />

Reset Screw<br />

Leveling chain<br />

P a g e 221


3) Pop-Off Valve<br />

4) OS&Y<br />

Safety Pop Off /<br />

Pressure Relief Valves<br />

Steam venting during<br />

Relief Valve test<br />

Only manufacture’s<br />

rep.’s can work on<br />

safety pop off valves.<br />

Accumulation Test determines if safety<br />

valve capacity is large enough to<br />

protect boiler. All steam outlets are<br />

shut and firing rate is increased to<br />

maximum. Safety valve should relieve<br />

all excess pressure.<br />

Hydrostatic Test determines strength of parts or welds on<br />

new and repaired boilers. Safety valves are gagged with a<br />

clamp or removed and replaced with plugs. <strong>Boiler</strong> is not<br />

fired. Water pressure is then pumped up 1½ times safety<br />

valve setting. Check for leaks.<br />

2 pop-offs are required for<br />

boilers when heating surface<br />

area > 500 ft 2<br />

When checking safety valves manually, boiler psi<br />

should be at least 75% of popping pressure.<br />

75% of 210 psig = 158 psig<br />

Steam line stop valves are typically OS&Y<br />

(Outside Screw & Yoke a.k.a. Outside Stem and Yoke)<br />

Drip legs relieve condensate on main<br />

steam line if line is down.<br />

Pop off openings inside steam drum<br />

P a g e 222


5) Hartford Loop<br />

The Hartford Loop invented in 1919<br />

by the boiler insurance company<br />

made steam boilers safer as the<br />

low water cutoff had not yet been<br />

invented.<br />

1895, Denver: Gumry Hotel, 22 deaths.<br />

Cold water into a partially empty boiler.<br />

<strong>Boiler</strong>s in these systems are usually<br />

located at or below ground level<br />

for proper gravity flow of<br />

condensate. No condensate tank<br />

is needed.<br />

The Hartford Loop prevents<br />

water from draining<br />

backwards into leaking<br />

condensate lines (wet return)<br />

Dry return is above<br />

the water line and<br />

wet return in below<br />

the water line<br />

Check valve in lieu<br />

of Hartford Loop<br />

P a g e 223


6) Safety Limit Controls<br />

a. <strong>Boiler</strong> Failure Examples<br />

Most people who died from a boiler explosion<br />

The Sultana’s boiler engineers had requested to<br />

stop the ship to make repairs on leaking tubes.<br />

Because of scheduling pressures, the request was<br />

denied by the captain.<br />

It is speculated that the excessive list (slanting) of the Sultana<br />

due to overload, caused the water in the boiler to shift suddenly<br />

when the ship made a turn, which burst the weak pipes.<br />

Both the low water safety cutoff and the feed water<br />

regulator were bypassed. Feed water valve was<br />

manually operated. The operator had forgot to add<br />

water when the boiler began to get low. He did add<br />

water, but too late!<br />

It is determined that the most probable<br />

cause of this accident was the sudden<br />

introduction of feed water to the boiler<br />

that at the time of the explosion was<br />

operating in a dry-fired state.<br />

Today, the most common reasons for<br />

boiler explosions are improper purge<br />

cycle and low water cut-off failure.<br />

P a g e 224


. Fuel Line Limit Controllers<br />

Any of these safety controls<br />

will close fuel solenoids<br />

Simpler/smaller natural gas only steam<br />

boilers are required to have<br />

1. High and Low Gas Pressure sensors<br />

2. Low Water Cutoff<br />

Which shuts off the Fuel line solenoids<br />

Simpler/smaller natural gas only hot water<br />

boilers are required to have<br />

1. High and Low Gas Pressure sensors<br />

2. High Water Temperature sensor<br />

Which shuts off the Fuel line solenoids<br />

Not all safety devices shut off the fuel,<br />

some, like this High Steam Pressure<br />

sensor, are only alarms.<br />

P a g e 225


c. Air Flow Proving Switches<br />

The goal of the purge cycle is for approximately<br />

4 volumes of fresh air to be admitted into the<br />

combustion chamber to drive out any<br />

unwanted combustible gas or vapor.<br />

P a g e 226


Using positive pressure air flow from the<br />

front of the boiler, condensate cannot<br />

build up and view port is always clear.<br />

P a g e 227


d. Fuel Line Train Parts<br />

Incoming Gas Main<br />

<strong>Manual</strong> emergency<br />

shutoff valve<br />

Primary NC<br />

emergency shutoff<br />

valve<br />

Some systems have electronic volume<br />

correctors which take the incoming pulse<br />

signal from a gas meter and also record the<br />

local pressure and temperature to calculate<br />

the standard (corrected volume) of gas that<br />

has passed through the gas flow meter.<br />

Secondary NC<br />

emergency shutoff<br />

valve<br />

P a g e 228


<strong>Boiler</strong> Gas Train<br />

PRVs<br />

Strainers<br />

Isolation Valves<br />

Flow<br />

Meter<br />

Strainer<br />

NG flow<br />

control valves<br />

Gas shutoff valves are NC valves<br />

(Normally Closed). If the power goes<br />

out they close. Note: Redundancy: the<br />

chance of both valves failing is very slim.<br />

NO solenoid gas<br />

relief line<br />

Low and High gas<br />

pressure safety<br />

cutoffs<br />

Block and Bleed<br />

P a g e 229


<strong>Boiler</strong> Gas Train<br />

Example 2<br />

Isolation Valves<br />

Low and High gas<br />

pressure safety<br />

cutoffs<br />

Block and Bleed<br />

Flow meter<br />

Mod Motor linking<br />

air and fuel<br />

P a g e 230


Pilot Line:<br />

NG pilot line<br />

extraction port<br />

Pilot fuel, dual emergency<br />

shutoff NC solenoids<br />

(Block and Bleed)<br />

NG Proving<br />

switch<br />

Pilot fuel, NO bleed<br />

solenoid<br />

Pilot PRV<br />

Pilot fuel<br />

Strainer<br />

Three way pilot valve<br />

for fuel selection<br />

Propane supply<br />

and PRV<br />

Normal propane<br />

operational psi<br />

P a g e 231


Fuel Oil Train<br />

Oil Strainer and PRV<br />

Oil strainer and Kunkle safety valve<br />

High and Low oil<br />

pressure safety<br />

switch<br />

Fuel Oil flow meter<br />

Flow Control<br />

motorized<br />

valve<br />

This burner contains an internal<br />

block and bleed system<br />

2 Safety solenoid NC cut offs<br />

(Redundancy for safety)<br />

P a g e 232


Atomizing Air/Steam for Fuel Oil<br />

Atomizing air<br />

proving switches<br />

Atomizing air NC<br />

safety solenoid<br />

P a g e 233


e. Flame Scanner<br />

Light<br />

If flame is not detected, purge<br />

cycle is initiated removing<br />

unburned fuel, then relight is<br />

automatically reattempted.<br />

Soot build up<br />

on fire eye<br />

Fire eyes can “see” flame using any or all parts<br />

of the light spectrum:<br />

UV (ultraviolet), VIS (visible), IR (infrared)<br />

UV<br />

As metal is heated to high<br />

temperatures, it also emits VIS and<br />

IR light. Therefore, to avoid false<br />

readings, hospitals and other<br />

facilities with multi-fuel capability,<br />

usually only use UV scanners.<br />

UV-VIS-IR<br />

IR<br />

P a g e 234


K = Potassium, Ag = Silver, Cs = Cesium<br />

Self-Checking Flame Scanner<br />

• Every few seconds, oscillating shutter<br />

interrupts ultraviolet radiation reaching the<br />

UV sensor. Zero flame is confirmed and<br />

self-check complete.<br />

P a g e 235


Thermocouple<br />

A small electric current is<br />

created when heated.<br />

Thermopile:<br />

End bulb has multiple wire “twistings”,<br />

produces larger electron flow.<br />

Thermocouple:<br />

Single twisted wire sensor<br />

Temperature probe<br />

Thermopile<br />

Pilot<br />

Copper capillary tube protects the<br />

inner insulated single strand wire<br />

and also conducts electricity back<br />

to the head where voltage can be<br />

measured (usually in millivolts).<br />

Spark Igniter<br />

Common in<br />

atmospheric burners<br />

P a g e 236


Flame Rod<br />

Flame Rod =<br />

Ionization Sensor<br />

Flame Rectifier<br />

Flame rectification<br />

Flames conduct electricity.<br />

No flame, no current.<br />

Fuel is shut off.<br />

P a g e 237


f. Water Column<br />

Low Water Cutoff: Activated<br />

when feed water regulator fails,<br />

turns off boiler, preventing dry firing.<br />

Always has a manual reset switch.<br />

Feed Water Regulator<br />

signals for more water.<br />

Always has a sight glass<br />

Notice cutoff is lower than the<br />

feed water regulator<br />

Float replaced<br />

with electric<br />

water sensor<br />

Tricock valves:<br />

Top should be steam,<br />

bottom – water,<br />

middle indicates water level<br />

Water level<br />

controllers<br />

High water sensors are<br />

usually only alarms and do<br />

not shut off the boiler.<br />

Red manual reset button<br />

indicates this is the low<br />

water cutoff.<br />

P a g e 238


Magnetic Float<br />

= gauge glass<br />

tubular<br />

Thick wall vs. thin<br />

flat<br />

Small bi-colored metal plates<br />

flip up or down depending on<br />

location of built-in magnetic<br />

float in water column.<br />

electronic<br />

Electric probes sends a<br />

signal to the control<br />

room.<br />

P a g e 239


g. Carbon Monoxide<br />

Carbon Monoxide<br />

Carbon monoxide absorbs an additional<br />

oxygen atom from the sensor which then<br />

sends a positive hydrogen atom to the<br />

counter electrode producing a small current<br />

(detection of CO)<br />

P a g e 240


L) Facilitating and monitoring receipt of fuels<br />

Operators must confirm fuel oil levels on a<br />

regular basis.<br />

Paper readout for tank<br />

level verification<br />

A 10 day fuel oil supply (based on average<br />

daily fuel consumption in <strong>Jan</strong>uary) is<br />

required as an onsite minimum<br />

Red dye is added for tax<br />

free off road use.<br />

P a g e 241


Storage Tank manual<br />

valves<br />

Dual interchangeable<br />

filters<br />

Overpressure Safety<br />

Kunkle Valve<br />

Visual flow<br />

indicator<br />

port<br />

Pressure<br />

Reduction Valve<br />

Check Valve<br />

P a g e 242


M) Efficiency<br />

1) LEED Program<br />

In the United States and in a number of<br />

other countries around the world, LEED<br />

certification is the recognized standard for<br />

measuring building sustainability.<br />

Four Certification Levels<br />

pts possible)<br />

The LEED green building rating system -- developed<br />

and administered by the U.S. Green Building<br />

Council, a Washington D.C.-based, nonprofit<br />

coalition of building industry leaders -- is designed<br />

to promote design and construction practices that<br />

increase profitability while reducing the negative<br />

environmental impacts of buildings and improving<br />

occupant health and well-being.<br />

Out of 110 possible points<br />

LEED certification is helping to steer the HVAC industry towards higher efficient<br />

boilers and chillers. In the long run, these systems pay for themselves.<br />

<br />

<br />

Out <br />

In <br />

P a g e 243


2) Causes of Inefficiency<br />

Causes<br />

Improper air/fuel ratio, soot blower failure and/or poor cleaning scheduling.<br />

No. 6 Fuel Oil<br />

Natural Gas fired<br />

Cast Iron Sectional<br />

Soot actually protects the tube from flame<br />

temperature. However, since the tube represents<br />

the cooler section of the refractory and since soot<br />

is very hydroscopic (water attracting), condensate<br />

(H 2O is a combustion byproduct) may form in the<br />

soot. This then absorbs Carbon dioxide from the<br />

exhaust. CO 2 breaks down and forms carbonic<br />

acid (pH 5.5) and fire side corrosion takes place.<br />

Biomass water<br />

tube failure<br />

Scale Thickness (inches) 1/32 1/25 1/20 1/16 1/11 1/9<br />

% Fuel Loss 7 9 11 13 15 16<br />

Tube becomes insulated. Water unable to remove<br />

heat. Steel temperature increases and softens.<br />

There are only two ways to quickly remove scale<br />

build up: acid flush and mechanical scrubbing.<br />

Fire tube scale<br />

Bulging boiler tubes<br />

due to scale buildup<br />

A broken baffle causes a sudden increase in stack temperature.<br />

P a g e 244


Hole Size 20 psi 25 psi 100 psi 200 psi<br />

.05 inch 20 MBtu/yr 25 MBtu/yr 100 MBtu/yr 150 MBtu/yr<br />

.10 inch 100 MBtu/yr 200 MBtu/yr 500 MBtu/yr 800 MBtu/yr<br />

Damaged tubes may leak. The escaping boiler<br />

water will cool the fire and the stack<br />

temperature drops. Note water stains on metal.<br />

Serious Problems!<br />

P a g e 245


Flue gas analyzer<br />

O 2 Sensor<br />

Ground level air<br />

Very good<br />

Burner is<br />

off<br />

P a g e 246


The difference in Oxygen<br />

concentration between stack<br />

gases and normal air creates an<br />

electrical current across the ZrO2<br />

(zirconia) layer on the platinum<br />

(Pt) electrodes.<br />

Opacity meters measure visible<br />

smoke in stack<br />

P a g e 247


Why not?!<br />

ROI = Return on Investment<br />

Removable<br />

Jackets<br />

P a g e 248


Increase<br />

Effects (symptoms)<br />

3) Effects of Inefficiency<br />

Broken<br />

Baffle<br />

Unchecked Spalling<br />

.<br />

Soot<br />

Gradual Increase<br />

FD (forced draft) and/or<br />

ID (induced draft) Fan Failure<br />

Smoke<br />

Water cannot carry<br />

the heat away<br />

Softener and/or RO unit failure<br />

and/or improper chemical balance<br />

Scale<br />

(Soot does not damage tubes, soot actually<br />

protects tubes from high flue gas temperature)<br />

Inadequate boiler tune-up scheduling<br />

Decrease<br />

Regular, yearly boiler<br />

tune-ups recalibrate<br />

air/fuel mixture to help<br />

maximize efficiency.<br />

P a g e 249


4) Economizer<br />

Vertical Stack Mounted<br />

Economizers preheat feed<br />

water using flue gas<br />

Stand Alone Unit<br />

Motorized actuator<br />

on stack closes when<br />

boiler is off<br />

P a g e 250


Combustion Air Pre-Heaters<br />

5) Combustion Air Preheater<br />

Dew point moisture corrosion becomes a serious concern on the cool<br />

ends. Parts for air pre-heaters are usually made of special non-corrosive<br />

metals with nonmetallic coatings such as ceramic or Teflon ® .<br />

i. Recuperative/Regenerative<br />

Recuperative/Regenerative Air Pre-Heaters<br />

transfer flue stack heat through a slow<br />

rotation (1 to 3 rpm) of heat absorbing<br />

material<br />

Corrugated metal media<br />

P a g e 251


ii. Tubular<br />

Tubular Air Pre-Heaters<br />

transfer flue stack heat<br />

through series of tubes or air<br />

ducts. No moving parts, but<br />

take up more space than<br />

rotating plate preheaters.<br />

P a g e 252


6) Blowdown Heat Recovery<br />

i. Surface/Continuous Blowdown Heat Recovery<br />

Blowdown heat recovery systems should be considered when<br />

continuous (surface) blowdown > 1 gpm<br />

Uses only shell and tube type<br />

exchanger for heat extraction<br />

3 boiler input<br />

Caution: to prevent pitting corrosion, a chemical oxygen scavenger<br />

should always be added where ever cold water is heated.<br />

4 boiler input<br />

P a g e 253


Surface and/or<br />

ii. Surface and/or Bottom<br />

Blowdown Heat Recovery<br />

Flash Tank<br />

When blowdown enters the flash tank, created steam is sent to<br />

low pressure applications, (DA tank). Remaining hot blowdown<br />

transfers heat to makeup water via heat exchanger. Now, cooled<br />

off, it is sent down drain. Flash tanks can handle sludge and<br />

sediment from bottom blowdowns.<br />

Safety Pop Off<br />

Water Level<br />

Controller<br />

Shell and Tube<br />

Heat Exchanger<br />

Plate and Frame<br />

Heat Exchanger<br />

P a g e 254


Usable low psi steam<br />

7) Flash Steam Recovery<br />

Flash steam is formed when high pressure<br />

water changes to low pressure such as when<br />

HPC (High Pressure Condensate) enters a DA<br />

Tank.<br />

Flash Recovery Vessels separate this low pressure<br />

flash steam and adds it to the low pressure system.<br />

1. There must be sufficient high pressure condensate<br />

to release enough flash steam to make recovery<br />

economically effective.<br />

2. There must be a suitable low pressure application<br />

for the recovered flash steam. Clearly, demand for<br />

flash steam must be in step with its availability.<br />

3. The application for the flash steam should be<br />

reasonably close to the high pressure condensate<br />

source. Piping for low pressure steam is relatively<br />

large and can be costly to install in long runs.<br />

P a g e 255


N) Reference Charts<br />

1) Pipe Schedules<br />

Metric Prefixes<br />

2) Metric Prefixes<br />

P a g e 256


3) Periodic Table<br />

P a g e 257


4) Blue Print/Schematic Symbols<br />

i. Valve<br />

ii. HVAC<br />

iii. Electrical<br />

Plumbing & Valves<br />

P a g e 258


5) <strong>Boiler</strong> Device Nomenclature<br />

AFOSV<br />

Automatic Fuel Oil Shutoff Valves<br />

LFGPCS<br />

Low Fuel Gas Pressure Cutoff Switch<br />

ALWCO<br />

Auxiliary Low Water Cutoff<br />

LFOPCS<br />

Low Fuel Oil Pressure Cutoff Switch<br />

AMSOV<br />

Atomizing Media Shut Off Valve<br />

LFPS<br />

Low-Fire Proving Switch<br />

APFGSOV<br />

Automatic Pilot Fuel Gas Shutoff Valves<br />

LPFGPCS<br />

Low Pilot Fuel Gas Pressure Cutoff Switch<br />

APFGSVV<br />

Automatic Pilot Fuel Gas Solenoid Vent Valve<br />

LRVE<br />

Liquid Relief Valve on Economizer<br />

CAPI<br />

Control Air Pressure Interlock<br />

LRVOPS<br />

Liquid Relief Valve on Oil Pump Set<br />

CAPS<br />

Combustion Air Pressure Switch<br />

LWA<br />

Low Water Alarm<br />

DA<br />

Deaerator<br />

LWACT<br />

Low Water Alarm on Condensate Tank<br />

DAODS<br />

Deaerator Overflow Drain System<br />

LWADT<br />

Low Water Alarm on Deaerator Tank<br />

DASV<br />

Deaerator Safety Valve<br />

LWCO<br />

Low Water Cutoff<br />

FDDWOPS<br />

Forced Draft Damper Wide-Open Pre-Purge Proving Switch<br />

MFIT<br />

Main Flame Ignition Timing<br />

FDMIS<br />

Forced Draft Motor Interlock Switches<br />

MV<br />

<strong>Manual</strong> Valve<br />

FGRDI<br />

Flue Gas Recirculation Damper Interlock<br />

NRBSPLS<br />

Non-Recycle <strong>Boiler</strong> Steam Pressure Limit Switch<br />

AFGSOV<br />

Automatic Fuel Gas Shutoff Valves and Solenoid Vent Valve<br />

OADI<br />

Outside Air Damper Interlock<br />

AFGSVV<br />

Automatic Fuel Gas Shutoff Solenoid Vent Valve<br />

OBPS<br />

Oil Burner Position Switch<br />

FPI<br />

Furnace Pressure Interlock<br />

OSDI<br />

Outlet Stack Damper Interlock Switch<br />

FSMFO<br />

Flame Scanner-for main flame out<br />

PAPS<br />

Purge Airflow Proving Switch<br />

FSNSIS<br />

Flame Scanner Not Sensing Igniter Spark<br />

POC_AFOSV<br />

Proof of Closure on Automatic Fuel Oil Shutoff Valves<br />

HFGPCS<br />

High Fuel Gas Pressure Cutoff Switch<br />

POC-AFGSOV<br />

Proof of Closure on Automatic Fuel Shutoff Valves<br />

HFOPCS<br />

High Fuel Oil Pressure Cutoff Switch<br />

PPT<br />

Pre-Purge and Post-Purge Timing<br />

HWAB<br />

High Water Alarm on <strong>Boiler</strong><br />

PRV<br />

Pressure Reducing Valve<br />

HWACT<br />

High Water Alarm on Condensate Tank<br />

RBSPLS<br />

Recycle <strong>Boiler</strong> Steam Pressure Limit Switch<br />

HWADT<br />

High Water Alarm on Deaerator Tank<br />

SVB<br />

Steam Safety Valves on <strong>Boiler</strong><br />

IT<br />

Igniter Timing<br />

SVFPRV<br />

Safety Valve Following<br />

LAMDPS<br />

Low Atomizing Media Differential Pressure Switch<br />

PRV<br />

Pressure Reducuction Valve<br />

LAMPS<br />

Low Atomizing Media Pressure Switch<br />

TP<br />

Test Port<br />

LFGOLI<br />

Low Flue Gas Oxygen Level Interlock<br />

P a g e 259


µ<br />

µmho .................................................................................... 150<br />

4<br />

4FV ....................................................................................... 180<br />

A<br />

Absolute Zero Psi ................................................................... 50<br />

Absolute Zero Temperature ............................................. 51, 56<br />

AC .......................................................................................... 37<br />

AC Current .............................................................................. 37<br />

Acid ............................................................................ 148, 174<br />

Acid Rain .............................................................................. 188<br />

Activated Carbon ................................................................. 158<br />

Actuator ............................................................... 129, 170, 229<br />

Adblue .................................................................................. 200<br />

Adiabatic Process ................................................................... 52<br />

Affinity Law .......................................................................... 137<br />

AFR ................................................................................... 82, 83<br />

Air Bleed Valve ....................................................................... 28<br />

Air Composition ...................................................................... 82<br />

Air Compressor ................................................................ 43, 47<br />

Air Conditioner ....................................................................... 43<br />

Air Differntial Switch ............................................................ 232<br />

Air Preheater .............................................................. 250<br />

Air Scoop ................................................................................ 28<br />

Air Separator .......................................................................... 28<br />

Air to Fuel Ratio ...................................................................... 82<br />

Air Vent .................................................................................. 28<br />

Air/Fuel Ratio ............................................................ 246<br />

Alkaline .......................................................................... 148<br />

Alkalinity ..................................................................... 155<br />

Alternating Current .............................................................. 37<br />

Alternator ............................................................................... 38<br />

Amines ................................................................................. 175<br />

Ammonia ...................................................... 148, 198, 200, 201<br />

Ammonia NOx Scrubber .................................................. 201<br />

Ammonia Slip Catalyst ......................................................... 202<br />

Amperes ............................................................................... 136<br />

Amps ................................................................................... 136<br />

Annunciator ......................................................................... 225<br />

Antarctica ............................................................................... 53<br />

Anthracite .............................................................................. 74<br />

Antifreeze......................................................................... 32, 33<br />

Anti-Syphon ......................................................................... 180<br />

APT ............................................................................... 105, 113<br />

Aquastat ................................................................................ 27<br />

Aquifer ................................................................................. 153<br />

Arc Flash .............................................................................. 212<br />

Asbestos............................................................................... 219<br />

ASC ....................................................................................... 202<br />

Atmospheric Burner ...................................................... 77, 236<br />

Attemperator ....................................................................... 109<br />

Autoclave ............................................................................. 119<br />

Automatic Pump Trap .................................................. 105, 113<br />

B<br />

Babcock & Wilcox .................................................................. 14<br />

Back Siphonage ............................................................ 128<br />

Backflow .......................................................................... 128<br />

Bacteria ................................................................................ 158<br />

Baffle ....................................................................................... 9<br />

Bag House ............................................................................ 207<br />

Balance Point ......................................................................... 45<br />

Balanced Pressure Steam Trap ............................................ 102<br />

Ball ....................................................................................... 127<br />

Ball Valve .............................................................................. 171<br />

Barometer ............................................................................ 181<br />

Barometric Pressure ............................................................ 181<br />

Base ................................................................................... 148<br />

Bernoulli ...................................................................... 144, 183<br />

Beveled End Pipes ................................................................. 140<br />

BHP .............................................................................. 138, 187<br />

Bi-metalic steam trap ..................................................... 98, 102<br />

Biomass .................................................................................. 90<br />

Bituminous ............................................................................. 74<br />

Black Out ................................................................................ 71<br />

Black Steel Pipe .................................................................... 141<br />

Blowdown .......................................................................... 170<br />

Blowdown Heat Recovery.................................................... 253<br />

Blowdown Separator .................................................. 171<br />

Blowdown Tank ...................................................... 171, 172<br />

Blue Def ............................................................................... 200<br />

<strong>Boiler</strong> Horsepower ....................................................... 138, 187<br />

<strong>Boiler</strong> MACT ......................................................................... 188<br />

Boiling Point ......................................................................... 26<br />

Bottom Blowdown ......................................................... 171<br />

Bourdon Tube ...................................................................... 181<br />

BPHE .................................................................................... 115<br />

Braized Plate ........................................................................ 115<br />

Bryan <strong>Boiler</strong> ........................................................................... 15<br />

BTU content ........................................................................... 49<br />

Burn Rate Control .................................................................. 64<br />

Burners .............................................................................. 74<br />

Butterfly ............................................................................... 127<br />

P a g e 260


Bypass Feeder ........................................................................ 30<br />

C<br />

Calcium ............................................................................. 155<br />

Calorie .......................................................................... 138, 187<br />

Can Pump ....................................................................... 66, 123<br />

Candy Bar ..................................................................... 138, 187<br />

Capacitor .............................................................................. 205<br />

Carbon Dioxide..................................................................... 211<br />

Carbon Monoxide ................................................................ 240<br />

Carryover ........................................................................ 170<br />

Cast Iron Sectional ................................................................ 217<br />

Catalytic Converter .............................................................. 198<br />

Catalytic Sorbent Injection ................................................... 195<br />

Caustic Embrittlement ........................................... 167<br />

Cavitation ............................................................................. 133<br />

CCPP .................................................................................... 42<br />

Ceramic ........................................................................ 203, 219<br />

Ceramic Mesh Burner ............................................................ 85<br />

Ceramic Seal Rope ............................................................... 220<br />

Ceramics ............................................................................... 119<br />

Cesium Oxide ....................................................................... 235<br />

Charcoal ............................................................................... 158<br />

Chemical Feed Pump ........................................................... 179<br />

Cherrapunjee ......................................................................... 53<br />

Chlorine ................................................................................ 153<br />

Chromium ............................................................................ 141<br />

Circulation Pumps .................................................................. 30<br />

Clayton Steam Generator ....................................................... 17<br />

Climate Change .................................................................... 211<br />

Closed Loop <strong>Boiler</strong>s ................................................................ 27<br />

Coal ............................................................... 74, 138, 187, 246<br />

Combined Cycle Power Plant ............................................ 42<br />

Combustion Triangle .............................................................. 76<br />

Complete Combustion ................................................ 246<br />

Compound Guage ................................................................ 181<br />

Compressed Air ...................................................................... 87<br />

Compression Tank .............................................................. 29<br />

Condensate .......................................................... 40, 174, 182<br />

Condensate Neutralizing Tubes ............................................. 35<br />

Condensate Pump ............................................................ 105<br />

Condensate Receiver ........................................................... 134<br />

Condensation ................................................................... 50, 56<br />

Condenser .............................................................................. 40<br />

Condensing <strong>Boiler</strong> .................................................................. 35<br />

Conduction ............................................................................. 48<br />

Conductivity ......................................................... 150, 151, 170<br />

Cone Flowmeter ................................................................... 184<br />

Continuous Blowdown ................................................ 170<br />

Controllers ............................................................................ 27<br />

Convection ....................................................................... 48, 81<br />

Cooling Tower ..................................................................... 40<br />

Copper ................................................................................. 212<br />

Coriolis ................................................................................. 185<br />

Cugnot's Steam Car .................................................................. 8<br />

Cyclohexylamine .................................................................. 175<br />

D<br />

D Type <strong>Boiler</strong> ......................................................................... 19<br />

DC ......................................................................................... 37<br />

DC Current ..................................................................... 37, 205<br />

Dead Sea ................................................................................ 60<br />

DEAE .................................................................................... 175<br />

Deaerator ..................................................................... 163, 164<br />

Decatherm ................................................................... 138, 187<br />

DEF ....................................................................................... 200<br />

DEHA .................................................................................... 169<br />

Dehumidifier .......................................................................... 46<br />

Deposition ....................................................................... 56, 59<br />

Dessicant .............................................................................. 217<br />

Desuperheater ..................................................................... 109<br />

Diametre Nominel ............................................................... 142<br />

Diaphragm ........................................................................... 127<br />

Diesel ..................................................................... 70, 138, 187<br />

Diesel Exhaust Fluid ............................................................. 200<br />

Diethyl Aminoethanol .......................................................... 175<br />

Diethyl Hydroxylamine ........................................................ 169<br />

Diffuser .................................................................................. 83<br />

Diffusion Flame ...................................................................... 80<br />

Diode ................................................................................... 205<br />

Direct Current ...................................................................... 37<br />

DN ........................................................................................ 142<br />

Doppler ................................................................................ 185<br />

Downcomer ..................................................................... 21, 22<br />

Drip Legs .............................................................................. 145<br />

Dry Firing ..................................................................... 238<br />

Dry Layup ............................................................................. 217<br />

Dry Pipe ................................................................................. 22<br />

Dry Pipe Separator .................................................... 13<br />

Dry Steam .............................................................................. 62<br />

Dry Valleys ............................................................................. 53<br />

Dryback boiler ........................................................................ 10<br />

Dual Fuel Burners .................................................................. 87<br />

E<br />

Earth Quake Emergency Stop .............................................. 221<br />

Economizer ..................................................................... 250<br />

Edison, Thomas .................................................................. 37<br />

Efficiency ............................................................. 244, 249<br />

EGR ...................................................................................... 197<br />

Electrical Resistance Welding ............................................... 139<br />

Electromagnetic Sensor ....................................................... 185<br />

P a g e 261


Electrostatic Precipitator ..................................................... 205<br />

Elephant ............................................................................... 136<br />

Emergency Generator .......................................................... 213<br />

Emergency Stop Button ....................................................... 221<br />

Emissions ............................................................................. 188<br />

Energy .......................................................................... 138, 187<br />

Enthalpy ................................................................................. 62<br />

EPA ................................................................................. 74, 188<br />

ERW ...................................................................................... 139<br />

ESP ............................................................................... 205, 206<br />

Ethylene Glycol ...................................................................... 32<br />

Evaporation ............................................................................ 56<br />

EVOH ...................................................................................... 31<br />

Excess Air ..................................................................... 246<br />

Excess Oxygen ...................................................................... 193<br />

Exhaust Gas Recirculation .................................................... 197<br />

Expander .......................................................................... 12, 20<br />

Expansion Joint ................................................................... 29<br />

Expansion Tank ................................................................... 29<br />

Expansion Valve ..................................................................... 43<br />

Expansion, water to ice ........................................................ 148<br />

F<br />

F&T Steam Trap ................................................................ 101<br />

Fan Speed ............................................................................. 137<br />

Feed Water .................................................................. 163, 250<br />

Feed Water Pump .......................................................... 66, 123<br />

Feed Water Regulator ............................................ 66, 123, 238<br />

FGR ............................................................................... 196, 197<br />

Fiberglass ............................................................................. 220<br />

Filming Amines ..................................................................... 175<br />

Fin Tube Radiator ............................................................. 117<br />

Fire Eye............................................................................. 37, 79<br />

Fire Tube .......................................................................... 9, 13<br />

Firebox .................................................................................. 26<br />

Firing Rate Control ................................................................. 64<br />

Firm Rate ................................................................................ 87<br />

Fixed Orifice Steam Trap ........................................................ 98<br />

Flame Envelope ...................................................................... 81<br />

Flame Extinction .................................................................. 193<br />

Flame Rectifier ..................................................................... 237<br />

Flame Rod ............................................................................ 237<br />

Flame Scanners/Sensors ....................................................... 234<br />

Flamess Combustion ............................................................ 210<br />

Flash Tank ..................................................................... 171<br />

Flat Sight Glass ................................................................. 241<br />

Flex Tube <strong>Boiler</strong>...................................................................... 15<br />

Float and Thermostatic Steam Trap ............................... 101<br />

Flue Gas Analyzer ..................................................... 246<br />

Flue Gas Recirculation .................................................. 196, 197<br />

Food Grade Antifreeze ........................................................... 32<br />

Foot Valve ............................................................................ 179<br />

Forced Draft Burner ............................................................... 77<br />

Four Function Valve ............................................................. 180<br />

Fracking ................................................................................. 69<br />

Free Chlorine ....................................................................... 158<br />

Freeze Drying ......................................................................... 57<br />

Freeze Point ........................................................................... 32<br />

Freeze Point Curve ................................................................. 56<br />

Fuel Oil ............................................................ 70, 138, 187<br />

Fuel Oil Train ........................................................................ 232<br />

G<br />

Galvanized Pipe ................................................................... 141<br />

Gas Train .............................................................................. 229<br />

Gasoline ....................................................................... 138, 187<br />

Gate ..................................................................................... 127<br />

Generator .............................................................................. 38<br />

Global Warming ................................................................... 211<br />

Globe ................................................................................... 127<br />

Golden Gate Bridge ............................................................... 60<br />

Grain of Hardness ................................................................ 154<br />

Gravel .................................................................................. 133<br />

Greenhouse Gas .................................................................. 211<br />

Grundfos ................................................................................ 30<br />

Gypsum ................................................................................ 192<br />

H<br />

Hambuger Helper .................................................................. 60<br />

Hardness .......................................................................... 155<br />

Hartford Loop ..................................................................... 117<br />

Heat Content ......................................................................... 49<br />

Heat Exchanger ................................................................ 115<br />

Heat Exchanger Stall ............................................................ 113<br />

Heat Gun .............................................................................. 108<br />

Heat Pump ............................................................................. 45<br />

Heat Recovery Steam Generator ........................................... 18<br />

Heros Engine ............................................................................ 8<br />

Herz ........................................................................................ 37<br />

Hexagonal ............................................................................ 148<br />

Hexagonal Crystal .................................................................. 55<br />

High Fire ................................................................................. 64<br />

High PSI Steam Pressure Gauge ........................................... 225<br />

Hogged Fuel ........................................................................... 71<br />

Holding Tank ........................................................................ 134<br />

HRSG ...................................................................................... 18<br />

HRT ........................................................................................ 90<br />

Humidity Cards ..................................................................... 217<br />

Hydrastep ............................................................................ 241<br />

Hydraulic Fracturing .............................................................. 69<br />

Hydraulic HP ........................................................................ 136<br />

Hydrazine ............................................................................. 169<br />

Hydrocarbons ...................................................................... 203<br />

P a g e 262


Hydrogen .......................................................................... 148<br />

Hydrostatic Test ................................................................... 222<br />

Hydroxide ........................................................................ 148<br />

Hygroscopic Washers ......................................................... 29<br />

I<br />

Ice Scates ............................................................................... 58<br />

Ice Tsunami ............................................................................ 58<br />

Ideal Gas Law ................................................... 43, 54, 106, 173<br />

Ignition Transformer .............................................................. 79<br />

Impeller ................................................................................ 133<br />

Implosion ............................................................................. 144<br />

Impulse Steam Trap ............................................................... 97<br />

Incandence ............................................................................. 81<br />

Infrared................................................................................. 234<br />

Inspection ............................................................................ 218<br />

Insulation ............................................................................. 248<br />

Intercooler ............................................................................. 43<br />

Internal ................................................................................. 218<br />

Interruptible Rate .................................................................. 87<br />

Inverted Bucket Steam Trap .................................................. 99<br />

Ionization Sensor ................................................................. 237<br />

IR Lightr ................................................................................ 234<br />

Iron Crystals .............................................................. 167<br />

J<br />

Jacketed Kettle ..................................................................... 118<br />

K<br />

Keep Up Coil ........................................................................... 19<br />

Kelvin...................................................................................... 51<br />

Kerosene ................................................................................ 70<br />

Kilowatt ........................................................................ 138, 187<br />

KWH ............................................................................. 138, 187<br />

L<br />

Lake Tahoe ............................................................................. 60<br />

Laminar Flame ........................................................................ 82<br />

Lance ...................................................................................... 87<br />

Latent Heat ............................................................................ 48<br />

Laughing Gas ........................................................................ 202<br />

Layup .................................................................................... 217<br />

Lean Flame ..................................................................... 82, 193<br />

LEED Certification................................................................. 243<br />

LEL .......................................................................................... 82<br />

Let Down Station.......................................................... 108, 145<br />

Lift Check .............................................................................. 127<br />

Lignite .................................................................................... 74<br />

Limestone ............................................................................ 192<br />

Linear Actuator .................................................................... 130<br />

Liquid Expansion Trap ...................................................... 103<br />

Liquifaction ............................................................................ 48<br />

Litmus Paper ........................................................................ 147<br />

LMI Pumps ........................................................................... 179<br />

Low Fire ................................................................................. 64<br />

Low Fire Hold Switch ............................................................. 64<br />

Low Water Cutoff ...................................................... 117, 238<br />

Lower Explosive Limit ............................................................. 82<br />

LSD ....................................................................................... 192<br />

Lubricant ................................................................................ 58<br />

M<br />

MACT ............................................................................. 74, 188<br />

Magnesium........................................................................ 155<br />

Magnetic Float ..................................................................... 241<br />

Make Up Water ................................................................... 153<br />

Marble chips .......................................................................... 35<br />

MAWP ................................................................................... 171<br />

Maximum Allowable Working Pressure ............ 171<br />

Mechanical Steam Traps ........................................................ 96<br />

Medical Waste ..................................................................... 119<br />

Membrane ................................................................... 160, 161<br />

Mercury ......................................................................... 61, 181<br />

Mercury Switch ............................................................ 27, 182<br />

Methane ................................................................................ 68<br />

Mixing Boxes ........................................................................ 116<br />

Modulation Motor ............................................................... 197<br />

Molybdates ............................................................................ 30<br />

Morpholine .......................................................................... 175<br />

Motor Vibrations ................................................................. 125<br />

Mt Everest ............................................................................. 60<br />

Mud Drum ....................................................................... 14, 22<br />

Multistage Pump ........................................................... 66, 123<br />

N<br />

Natural Gas Composition ....................................................... 68<br />

NC Valves ............................................................................. 229<br />

Neutral Water .............................................................. 148<br />

Neutralizing Amines ............................................................. 175<br />

Newcomen Steam Engine ........................................................ 8<br />

NFPA 70E ............................................................................. 212<br />

Niagara Falls........................................................................... 37<br />

Nitogen Dioxide ................................................................... 193<br />

Nitrates .................................................................................. 30<br />

Nitric Oxide .......................................................................... 193<br />

Nitrites ................................................................................... 32<br />

Nitrogen Gas ........................................................................ 29<br />

Nitrous Oxide ....................................................................... 202<br />

Non-condensable .............................................................. 101<br />

Non-Condensing Turbine ....................................................... 41<br />

Normal Pipe Size .................................................................. 142<br />

NOx .............................................................................. 188, 193<br />

Nozzle .................................................................................... 83<br />

P a g e 263


NPS ....................................................................................... 142<br />

Nuclear Explosion .................................................................. 59<br />

Nutating Disc ........................................................................ 186<br />

O<br />

O Type <strong>Boiler</strong> .......................................................................... 19<br />

Oak ......................................................................................... 71<br />

Octane .................................................................................... 68<br />

Ohms .................................................................................... 136<br />

Oil Burners ............................................................................. 87<br />

Oil Filter ................................................................................ 232<br />

One Pipe System .............................................................. 117<br />

Operating Limit Control ......................................................... 64<br />

Operational Inspection ........................................................ 218<br />

Orifice Flowmeter ................................................................ 184<br />

OS&Y .................................................................................... 222<br />

Oscillation ............................................................................ 185<br />

Outside Screw and Yoke ...................................................... 222<br />

Over Fire Air ......................................................................... 194<br />

Oxygen barrier ....................................................................... 31<br />

Oxygen Scavenger ................................................................ 164<br />

Ozone ................................................................................... 190<br />

P<br />

Paladium .............................................................................. 203<br />

Panel <strong>Boiler</strong> ............................................................................ 18<br />

Paris, TN ............................................................................... 224<br />

Parralel Connection ............................................................. 123<br />

Parrallel pumps .................................................................... 123<br />

Peak Flame Temperature ..................................................... 193<br />

Peat ........................................................................................ 74<br />

Peristaltic ............................................................................. 179<br />

Peristaltic Feed Pump .......................................................... 179<br />

Pete ....................................................................................... 74<br />

PEX ......................................................................................... 31<br />

pH Chart ............................................................................... 148<br />

pH Paper .............................................................................. 147<br />

pH Probe .............................................................................. 149<br />

Phases of Water ............................................................... 49, 56<br />

Phenolphthalein ................................................................... 147<br />

Phosphate ................................................................ 155, 168<br />

Pig Tale ................................................................................. 182<br />

Pilot Light ............................................................................. 236<br />

Pipes ..................................................................................... 139<br />

Pitot Tube ............................................................................. 184<br />

Pitting ............................................................................... 31<br />

Pitting Corrosion .................................................................. 164<br />

Plain End Pipes ..................................................................... 140<br />

Plate and Frame ................................................................ 115<br />

Platinum ............................................................................... 203<br />

Pneumatics........................................................................... 129<br />

Positive Displacement .................................................. 179, 186<br />

Pot Feeder ............................................................................. 30<br />

Potassium Chloride .............................................................. 163<br />

Potassium Oxide .................................................................. 235<br />

Pour Point ....................................................................... 70<br />

Powder River ......................................................................... 74<br />

Power Outage ...................................................................... 131<br />

Premix Burner ........................................................................ 85<br />

Premix Flame ......................................................................... 81<br />

Pressure Reducing Valve ................................................ 106<br />

Pressure Regulator .............................................................. 127<br />

Pressure Stat ........................................................................ 182<br />

Pressurestat ......................................................................... 27<br />

Pressuretrol .......................................................................... 27<br />

Pressuretroll ........................................................................ 182<br />

Primary Air ............................................................................. 70<br />

Priming ............................................................................ 170<br />

Propane ................................................................................. 68<br />

Propane Tank ......................................................................... 43<br />

Propeller .............................................................................. 133<br />

Propylene Glycol .............................................................. 32, 33<br />

PRV ...................................................................................... 106<br />

Psia........................................................................... 60, 61, 181<br />

Psig ....................................................................... 60, 61, 181<br />

PxV=T ..................................................................................... 43<br />

Pyrolysis ................................................................................. 80<br />

Pyrometer ............................................................................ 108<br />

Q<br />

Quarter Turn Valve .............................................................. 130<br />

Quench ................................................................................ 194<br />

Quiet Pipes........................................................................... 132<br />

Quill ..................................................................................... 179<br />

R<br />

Radiation .......................................................................... 48, 81<br />

Radiator Steam Trap ............................................................ 103<br />

Radiator Vent Valve .......................................................... 117<br />

Radiators .............................................................. 29, 103, 117<br />

Rain Shadow........................................................................... 52<br />

Rankine Scale ......................................................................... 62<br />

Rapper ................................................................................. 206<br />

Raw Water ........................................................................... 153<br />

Reciprocating Step Grate ....................................................... 91<br />

Rectifier ............................................................................... 205<br />

Reducing Flame ...................................................................... 81<br />

Refractory ...................................................................... 22, 252<br />

Refrigeration .......................................................................... 43<br />

Regelation .............................................................................. 58<br />

Resin Beads ................................................................... 155<br />

Resistance ............................................................................ 136<br />

Restricting Orifice .............................................................. 106<br />

P a g e 264


Reverse Osmosis .................................................. 158, 160, 161<br />

Reversing Valve ...................................................................... 45<br />

Revolving Chain Grate ............................................................ 91<br />

Rhodium ............................................................................... 203<br />

Rich Flame ...................................................................... 82, 193<br />

Rivets ............................................................................... 167<br />

Roaring Flame ........................................................................ 81<br />

ROI ....................................................................................... 248<br />

Roll and Bead .............................................................. 167<br />

Roll and Flare............................................................... 20, 167<br />

Rope seal .............................................................................. 219<br />

Rotary Actuator .................................................................... 130<br />

Rotary Cup ............................................................................. 88<br />

Rotary Cup Burner ....................................................... 70<br />

Rotating Lobe ....................................................................... 186<br />

Rotor ...................................................................................... 38<br />

S<br />

Safety Inspection.................................................................. 218<br />

Safety Pop Off ...................................................................... 222<br />

Safety Solenoid .................................................................... 232<br />

Salt Bridge ............................................................................ 163<br />

Satiration Curve ..................................................................... 51<br />

Saturated Steam .................................................................... 49<br />

Saturated Water .................................................................... 62<br />

Saw Dust .......................................................................... 71, 90<br />

Scale ................................................................. 155, 244, 249<br />

SCH ....................................................................................... 142<br />

Schedule ............................................................................... 142<br />

SCR ....................................................................... 198, 201, 203<br />

Sea Level .......................................................................... 49, 61<br />

Seal Ropes ............................................................................ 220<br />

Seamless Pipes ..................................................................... 139<br />

Seasonal Shut Down ............................................................. 217<br />

Secondary Air ................................................................ 70<br />

Selective Catalytic Reduction ............................................... 198<br />

Selective Non-Catalytic Reduction ....................................... 198<br />

Self Checking Flame Scanner ............................................... 235<br />

Sensible Heat ......................................................................... 48<br />

Series Connection ................................................................ 123<br />

Series Pumps ........................................................................ 123<br />

Shell and Tube................................................................... 115<br />

Shutoff Cock ......................................................................... 229<br />

Shuttered Flame Scanner ..................................................... 235<br />

Siemen ................................................................................. 150<br />

Sierra Nevada Range .............................................................. 52<br />

Sight Glass ................................................................... 238<br />

Silica ..................................................................................... 220<br />

Silicates .................................................................................. 30<br />

Silicone ................................................................................. 220<br />

Silver Oxide .......................................................................... 235<br />

Sine wave ............................................................................. 37<br />

Single Phase ........................................................................ 37<br />

Siphon Loop ......................................................................... 182<br />

Slug ...................................................................................... 144<br />

Snap Switch ................................................................. 27, 182<br />

SNCR .................................................................................... 198<br />

Sodium Chloride .................................................................. 163<br />

Sodium Metabisulfite .......................................................... 169<br />

Solar Salt .............................................................................. 163<br />

Solenoid ....................................................................... 131, 229<br />

Sonic Blast .............................................................................. 94<br />

Soot ................................................................................ 82, 244<br />

Soot Blower ................................................................... 94, 244<br />

Sørensen, Søren ......................................................... 148<br />

Spalling ................................................................................ 219<br />

Sparge Tube ......................................................................... 163<br />

Spark ...................................................................................... 79<br />

Spark Ignitor .................................................................. 37, 236<br />

Spark Plug .............................................................................. 79<br />

Spring Check ........................................................................ 127<br />

Stack ......................................................................... 246, 250<br />

Stack Temperature ......................................................... 82, 246<br />

Staged Air Burner................................................................... 84<br />

Staged Combustion .............................................................. 194<br />

Staged Fuel Burner ................................................................ 84<br />

Stainless Steel ...................................................................... 141<br />

Stall ...................................................................................... 113<br />

Stator ..................................................................................... 38<br />

Steam Generator .................................................................... 17<br />

Steam Separators ................................................................ 145<br />

Steam Table ........................................................................... 61<br />

Step Up Transformer ....................................................... 37, 79<br />

Sterilization .......................................................................... 119<br />

Sterilzer ................................................................................ 119<br />

Stethoscope ......................................................................... 108<br />

Stirling <strong>Boiler</strong> ......................................................................... 14<br />

Stoichiometric ........................................................................ 82<br />

Stomata ............................................................................... 190<br />

Stress ................................................................. 13, 163, 167<br />

Stroke................................................................................... 179<br />

Sub Saturated Water ............................................................. 62<br />

Sub-bituminous ..................................................................... 74<br />

Sublimation ...................................................................... 56, 57<br />

Sulfate .................................................................................. 164<br />

Sulfite ................................................................... 158, 164, 169<br />

Sulfur Dioxide .............................................................. 191, 192<br />

Sultana ................................................................................. 224<br />

Super Skins ................................................................... 170<br />

Supercritical Steam ................................................................ 61<br />

Superheated Steam ......................................................... 49, 62<br />

Superheater ...................................................................... 17, 22<br />

P a g e 265


Surface Blowdown ..................................................... 170<br />

Surface Tension.......................................................... 170<br />

Surge Tank ........................................................................... 134<br />

Swing Check ......................................................................... 127<br />

Swirler .................................................................................... 83<br />

T<br />

TDS ............................................................................... 151, 170<br />

Telltale Hole ................................................................ 13<br />

Tesla, Nikola ........................................................................... 37<br />

Therm ........................................................................... 138, 187<br />

Thermal Imager .................................................................... 108<br />

Thermocouple .............................................................. 164, 236<br />

Thermodisc ............................................................................ 97<br />

Thermodynamic Steam Traps ................................................ 96<br />

Thermopile ........................................................................... 236<br />

Thermostatic Steam Traps ..................................................... 96<br />

Thermowell ........................................................................... 27<br />

Threaded End Pipes .............................................................. 140<br />

Three phase ......................................................................... 37<br />

Tom Thumb .................................................................. 138, 187<br />

Topsy the Elephant ................................................................ 37<br />

Torque .................................................................................. 137<br />

Total Dissolved Solids ......................................... 170<br />

Tricock Valve .............................................................. 238<br />

Triple Point ............................................................................. 56<br />

TSP ....................................................................................... 168<br />

Turbine ............................................................................. 39, 40<br />

Turbine Flow Meter ............................................................. 186<br />

Turbo Generator .................................................................... 38<br />

Turbulent Flame ..................................................................... 82<br />

Two Pipe System .............................................................. 117<br />

TXV ....................................................................................... 106<br />

U<br />

UEL ......................................................................................... 82<br />

Ultra Low NOx ...................................................................... 195<br />

Ultra Violet ........................................................................... 235<br />

Ultra Violet Light .................................................................. 190<br />

Ultrasonic ............................................................................. 185<br />

Ultraviolet............................................................................. 234<br />

Universal Mounts for Steam Traps ....................................... 104<br />

Universal Test Paper ............................................................ 147<br />

Upper Explosive Limit ............................................................. 82<br />

Urea ..................................................................................... 200<br />

UV light ................................................................................ 234<br />

V<br />

Vacuum ............................................................ 40, 50, 60, 120<br />

Vacuum Chamber .................................................................. 57<br />

Valves ................................................................................... 127<br />

Vapor Cone ............................................................................ 59<br />

Vapor Pressure ...................................................................... 49<br />

Vaporization .................................................................... 48, 50<br />

Variable Frequency Drive .................................................... 137<br />

Vavle Induced Water Hammer ............................................ 132<br />

Venturi ......................................................................... 183, 184<br />

VFD ...................................................................................... 137<br />

Vibrations ............................................................................ 125<br />

VIS Light ............................................................................... 234<br />

Viscosity.................................................................... 70, 87<br />

Voltage ................................................................................... 37<br />

Volts .................................................................................... 136<br />

Vulcanization ....................................................................... 119<br />

Vulcanizing ........................................................................... 119<br />

W<br />

Water Column ............................................................ 173, 238<br />

Water Column Blowdown ................................................... 173<br />

Water Hammer ............................................................ 129, 132<br />

Water Slug ........................................................................... 144<br />

Water Softener .................................................... 155, 163<br />

Water Tube ................................................................ 14, 19, 20<br />

Watts ................................................................................... 136<br />

Wax ........................................................................................ 80<br />

Welded Seam Pipes.............................................................. 139<br />

Wellons <strong>Boiler</strong>s ...................................................................... 18<br />

Westinghouse ........................................................................ 37<br />

Wet Layup ............................................................................ 217<br />

Wet Lime Spray Dryer .......................................................... 192<br />

Wet Scrubber ....................................................................... 208<br />

Wet Steam ............................................................................. 62<br />

Wetback <strong>Boiler</strong> ...................................................................... 10<br />

Wood Fuel ............................................................................. 71<br />

Z<br />

Zeolite ............................................................................ 155<br />

Zinc ...................................................................................... 141<br />

P a g e 266

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!