22.10.2020 Views

Boiler and CT & Chiller Chemistry CW 10.22.20

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>CW</strong><br />

<strong>Boiler</strong>,<br />

Cooling Tower<br />

& <strong>Chiller</strong><br />

<strong>Chemistry</strong><br />

(AND Physics)<br />

Illustrations <strong>and</strong> Notes arranged by<br />

Sedley Parkinson, Instructor<br />

Oct. 2020<br />

P a g e 1


Table of Contents<br />

A) Steam <strong>Boiler</strong>s ...................................................................................................................................................................... 5<br />

1. Caustic Embrittlement .................................................................................................................................................. 5<br />

i. pH ........................................................................................................................................................................ 5<br />

ii. Stress Cracking .................................................................................................................................................. 10<br />

2. TDS Control ................................................................................................................................................................. 11<br />

i. Conductivity ...................................................................................................................................................... 11<br />

ii. Dry Pipe ............................................................................................................................................................ 14<br />

iii. Blowdown ......................................................................................................................................................... 16<br />

3. Scale Control ............................................................................................................................................................... 20<br />

i. Water Softener ................................................................................................................................................ 21<br />

ii. Demineralizers ................................................................................................................................................. 24<br />

iii. Chelates (Phosphates/Molybdates) ................................................................................................................. 26<br />

iv. Reverse Osmosis (RO) ...................................................................................................................................... 27<br />

v. Filtration .......................................................................................................................................................... 28<br />

vi. Scale Removal .................................................................................................................................................. 33<br />

4. Oxygen Pitting ............................................................................................................................................................ 34<br />

i. Deaeration ......................................................................................................................................................... 34<br />

ii. Oxygen Scavengers ............................................................................................................................................ 36<br />

5. Carbonic Acid in Condensate ...................................................................................................................................... 37<br />

6. Erosion Corrosion ....................................................................................................................................................... 40<br />

i. FAC – Flow Accelerated Corrosion .................................................................................................................... 40<br />

ii. LDI – Liquid Droplet Impingement ..................................................................................................................... 41<br />

7. Combination Chemical Treatment ............................................................................................................................. 42<br />

8. Chemical Feed Pumps................................................................................................................................................. 43<br />

9. S<strong>amp</strong>le Coolers ........................................................................................................................................................... 45<br />

B) Non-Steam <strong>Boiler</strong>s ............................................................................................................................................................ 46<br />

1. Air Removal ................................................................................................................................................................ 46<br />

2. Corrosion Inhibitors .................................................................................................................................................... 47<br />

2. PEX tubing ................................................................................................................................................................... 48<br />

3. Antifreeze ................................................................................................................................................................... 49<br />

4. Condensing <strong>Boiler</strong>: Carbonic Acid............................................................................................................................... 52<br />

5. Expansion Control ....................................................................................................................................................... 53<br />

C) Water Cooling Systems .................................................................................................................................................... 54<br />

1. Scale Prevention ......................................................................................................................................................... 54<br />

Scale Removal ....................................................................................................................................................... 56<br />

P a g e 2<br />

<strong>CW</strong>


<strong>CW</strong><br />

2. Corrosion .................................................................................................................................................................... 57<br />

a. Galvanic Corrosion ............................................................................................................................................ 57<br />

b. Rust ................................................................................................................................................................... 58<br />

c. MIC .................................................................................................................................................................... 60<br />

d. Eddie Current Testing ..................................................................................................................................... 62<br />

3. Biological Growth ...................................................................................................................................................... 63<br />

a. Algae, Yeast, Molds ...................................................................................................................................... 63<br />

b. Legionella ..................................................................................................................................................... 64<br />

4. Biological Control ........................................................................................................................................................ 66<br />

5. Regridgerants ............................................................................................................................................................. 70<br />

D) Fuel ................................................................................................................................................................................... 73<br />

1) Types .......................................................................................................................................................................... 73<br />

i. Natural Gas ....................................................................................................................................................... 73<br />

ii. Liquid Fuels ....................................................................................................................................................... 73<br />

iii. Solid Fuels / BioMass ........................................................................................................................................ 77<br />

iv. Electricity .......................................................................................................................................................... 81<br />

2) Combustion ................................................................................................................................................................ 82<br />

i. Combustion Air ................................................................................................................................................. 83<br />

ii. Spark ................................................................................................................................................................. 85<br />

iii. Flame ................................................................................................................................................................ 86<br />

iv. Air/Fuel Ratio (AFR) .......................................................................................................................................... 88<br />

3) Burners ...................................................................................................................................................................... 90<br />

i. Natural Gas ....................................................................................................................................................... 90<br />

ii. Oil ..................................................................................................................................................................... 93<br />

4) Air Pollution (Emissions)............................................................................................................................................. 95<br />

i. <strong>Boiler</strong> Mact ....................................................................................................................................................... 95<br />

ii. Acid Rain ........................................................................................................................................................... 96<br />

iii. CO, HC <strong>and</strong> Ground Level Ozone ...................................................................................................................... 97<br />

iv. NO x, HC <strong>and</strong> CO Control .................................................................................................................................... 98<br />

v. CO ₂ (Green House Gasses) .............................................................................................................................. 103<br />

E) Physics ............................................................................................................................................................................ 104<br />

1. Ideal Gas Law: PV=nRT ............................................................................................................................................. 104<br />

i. Heat Pump ...................................................................................................................................................... 106<br />

iii. Air Compressor ............................................................................................................................................... 107<br />

2) Temperature vs Heat Content .................................................................................................................................. 108<br />

3) Pressure .................................................................................................................................................................... 109<br />

P a g e 3


<strong>CW</strong><br />

i. Vapor Pressure ............................................................................................................................................... 110<br />

ii. Pressure vs Temperature Chart ...................................................................................................................... 115<br />

iii. Gauge vs Absolute .......................................................................................................................................... 119<br />

iv. Water Hammer: Valve Induced ...................................................................................................................... 120<br />

v. Water Phase Expansion .................................................................................................................................. 122<br />

4) Steam Table ............................................................................................................................................................. 123<br />

5) Temperature vs Enthalpy (Btus/Pound)................................................................................................................... 124<br />

6) Flow .......................................................................................................................................................................... 126<br />

i. Electricity ........................................................................................................................................................ 126<br />

ii. Poiseuille’s Law ............................................................................................................................................... 129<br />

iii. Water Hammer ............................................................................................................................................... 130<br />

iv. Inline Steam Separators .................................................................................................................................. 131<br />

v. Flow Change - Energy ..................................................................................................................................... 132<br />

vi. Piping .............................................................................................................................................................. 133<br />

F) <strong>Boiler</strong> Layup/Seasonal Shut Down .................................................................................................................................. 134<br />

G) Carbon Monoxide ........................................................................................................................................................... 135<br />

H) Efficiency ........................................................................................................................................................................ 136<br />

1) Causes ....................................................................................................................................................................... 136<br />

2) Effects ....................................................................................................................................................................... 140<br />

I) Appendix: Periodic Table ................................................................................................................................................. 141<br />

Section 107 of the Copyright Act provides the statutory framework for determining whether something is a fair use <strong>and</strong> identifies<br />

certain types of uses—such as criticism, comments, news reporting, teaching, scholarship, <strong>and</strong> research.<br />

P a g e 4


<strong>CW</strong><br />

A) Steam <strong>Boiler</strong>s<br />

1. Caustic Embrittlement<br />

i. pH<br />

pH<br />

Bypass chemical “slug”<br />

feeder for startup,<br />

layup or other<br />

specialized cases<br />

Litmus paper<br />

Chemical indicators<br />

change color at<br />

different pH ranges<br />

A universal pH indicator contains several compounds that<br />

exhibits smooth color changes over a broad pH range.<br />

P a g e 5


<strong>CW</strong><br />

Hydrochloric Acid<br />

(HCl)<br />

H + OH -<br />

10 0 = 1 = 100%<br />

10 -14 = .00000000000001<br />

Stomach Acid<br />

(weak HCl)<br />

10 -1 = .1 = 10%<br />

10 -13 = .0000000000001<br />

Vinegar<br />

Lemon Juice<br />

Soda Pop<br />

Orange Juice<br />

10 -2 = .01 = 1%<br />

10 -3 = .001 = .1%<br />

10 -12 = .000000000001<br />

10 -11 = .00000000001<br />

The concept of pH was<br />

first introduced in 1909<br />

by Danish chemist<br />

Søren Sørensen<br />

Tomato Juice<br />

Acid Rain<br />

10 -4 = .0001 = .01%<br />

10 -10 = .0000000001<br />

Eye Drops<br />

Normal Rain<br />

10 -5 = .00001<br />

10 -9 = .000000001<br />

Saliva<br />

Urine<br />

10 -6 = .000001<br />

10 -8 = .00000001<br />

Pure Water<br />

10 -7 = .0000001 =<br />

10 -7 = .0000001<br />

Sea Water<br />

Swimming Pools<br />

10 -8 = .00000001<br />

10 -6 = .000001<br />

Baking Soda<br />

10 -9 = .000000001<br />

10 -5 = .00001<br />

Great Salt Lake<br />

10 -10 = .0000000001<br />

10 -4 = .0001<br />

Ammonia (NH4OH)<br />

Soaps<br />

10 -11 = .00000000001<br />

10 -12 = .000000000001<br />

10 -3 = .001<br />

10 -2 = .01<br />

At pH > 7, OH -<br />

(hydroxide) becomes<br />

the active ion.<br />

Bleach<br />

Oven Cleaner<br />

10 -13 = .0000000000001<br />

10 -1 = .1<br />

OH -<br />

Drain Cleaner<br />

Caustic (NaOH)<br />

10 -14 = .00000000000001<br />

H +<br />

10 0 = 1<br />

HCl (acid) + NaOH (base) → H 2O (pH 7) + NaCl<br />

(salt water)<br />

P a g e 6


<strong>CW</strong><br />

pH Probe<br />

Acids have more positive ions <strong>and</strong> conduct electricity<br />

better. A pH probe measures the voltage (potential<br />

difference) of a solution.<br />

The glass bulb should be kept<br />

moist, even when not in use,<br />

non-hydrated bulbs give<br />

erratic readings.<br />

(Do not use RO, DI or Distilled water<br />

for storage)<br />

Liquid filled cap<br />

pH probes must be periodically calibrated with at least<br />

two reference buffer solutions (the reference buffers<br />

you use depends on if your s<strong>amp</strong>le is acidic or basic).<br />

P a g e 7


<strong>CW</strong><br />

Roll <strong>and</strong> Bead<br />

Fire tubes are often referred to as “flue tubes”.<br />

P a g e 8


<strong>CW</strong><br />

Roll <strong>and</strong> Flare<br />

P a g e 9


<strong>CW</strong><br />

ii. Stress Cracking<br />

CAUSTIC EMBRITTLEMENT:<br />

When iron crystals are stretched, Fe↔Fe bonds<br />

are weakened.<br />

And if pH > 12.7, then OH - ↔Fe bonds more readily<br />

<strong>and</strong> a crack forms until the stress is relieved.<br />

Stretched<br />

steel<br />

Water Tube:<br />

Caustic<br />

Embrittlement<br />

Rolling tubes also stretches<br />

the steel <strong>and</strong> can be a<br />

possible location for caustic<br />

embrittlement to take place<br />

Rivets stretch the steel <strong>and</strong> are no<br />

longer permitted on boilers.<br />

Welds are now used.<br />

SPEC: <strong>Boiler</strong> pH should be < 12.7<br />

<strong>Boiler</strong> room, Titanic<br />

P a g e 10


<strong>CW</strong><br />

Conductivity<br />

2. TDS Control<br />

i. Conductivity<br />

TDS<br />

Water s<strong>amp</strong>le coolers<br />

SALT<br />

↓<br />

Distilled water:<br />

No electrical flow<br />

Water with ionic<br />

contaminants:<br />

Electrical flow<br />

Periodic calibration is important<br />

to ensure your meter is accurate.<br />

mho = non-metric<br />

(archaic, but still used)<br />

Electrical Resistance = ohm (Ω)<br />

Electrical Conductivity = mho<br />

1 mho = 1 Siemen (S)<br />

0.000001 Siemen = 1 µS = 1 µmho<br />

Opposites<br />

(spelling too!)<br />

S = metric unit<br />

µ = micro<br />

P a g e 11


<strong>CW</strong><br />

Conductivity vs. TDS<br />

Total dissolved solids (TDS) is, technically,<br />

anything dissolved in water (including<br />

organics that do not conduct electricity).<br />

If the general chemistry of the liquid being<br />

measured is known, then a conversion factor can<br />

be applied <strong>and</strong> is usually done internally by the<br />

meter itself. Still, this new measurement is only an<br />

approximation.<br />

TDS is measured in parts per million (ppm) or mg/l (milligrams per liter).<br />

To achieve true TDS readings:<br />

True TDS measurement is very slow. For faster<br />

numbers, we rely on general conductivity<br />

conversion rules (but lose accuracy).<br />

Accurately weigh a filtered s<strong>amp</strong>le<br />

along with its container at room<br />

temperature. Evaporate liquid to<br />

dryness at 104˚C. Let cool to room<br />

temperature then reweigh.<br />

TDS = (preweight – postweight)/volume<br />

P a g e 12


Estimated conversion table for boiler<br />

water by Spirax Sarco<br />

<strong>CW</strong><br />

Conductivity vs. Temperature<br />

Conductivity increases with<br />

temperature, meters are<br />

internally auto-adjusting.<br />

1) The Hydroxide ion in boiler water is<br />

highly conductive compared to other ions.<br />

2) Since the conversion calculation from Conductivity to TDS is<br />

only an estimate (depending on what is actually in the water), high<br />

pH may skew the conversion factor.<br />

3) Therefore, it is common practice to neutralize any alkalinity<br />

with an organic acid (such as non-conductive acetic acid) prior to<br />

measuring conductivity.<br />

4) This produces a more stable conductivity<br />

measurement, thus a more reliable TDS estimate.<br />

P a g e 13


<strong>CW</strong><br />

ii. Dry Pipe<br />

Simple interior port for water level columns<br />

P a g e 14


<strong>CW</strong><br />

Steam Scrubber <strong>and</strong> outlet<br />

Downcomer tubes<br />

Surface Blowdown<br />

(skimmer)<br />

Feed water<br />

Chemical Injection<br />

(from bypass feeder)<br />

P a g e 15


<strong>CW</strong><br />

TDS Control: Surface blowdown<br />

iii. Blowdown<br />

b<br />

Surface Blowdown :<br />

High TDS can increase surface tension<br />

of water creating bubbles with “super<br />

skins”, increasing chances of priming<br />

(boiler water escaping as droplets <strong>and</strong><br />

traveling with steam), carryover (solids<br />

resulting from priming) <strong>and</strong> bouncing<br />

(fast irregular fluctuations in boiler<br />

water level).<br />

Best TDS control, bubbles are popping on the<br />

surface leaving their solids behind (highest TDS<br />

concentration in boiler).<br />

Surface (Continuous)<br />

Blowdown Valve (Skimmer):<br />

Motorized Actuator<br />

TDS probe<br />

General Recommendation for max TDS:<br />

Two pass economic<br />

4500 ppm<br />

Packaged <strong>and</strong> 3-Pass 3000 - 3500<br />

Low pressure water tube 2000 – 3000<br />

Steam generators (Coil type boilers) 2000<br />

Medium pressure water tube 1500<br />

High Pressure water tube 1000<br />

Consult your manufacturer for<br />

exact specifications.<br />

P a g e 16


<strong>CW</strong><br />

iv. Bottom Blowdown<br />

Bottom Blowdown:<br />

Removes sludge <strong>and</strong> sediment.<br />

Should be done daily, 3 second bursts.<br />

If MAWP (Maximum Allowable<br />

Working Pressure) >100 then 2<br />

blowdown valves are needed<br />

To protect boiler from<br />

sudden, excessive<br />

changes in pressure,<br />

maximum blowdown<br />

pipe size = 2½ in.<br />

Reversed order<br />

Two slow<br />

opening valves<br />

Fast valve should<br />

be closest to boiler<br />

Slow valve should be<br />

secondary to boiler<br />

Visual flow viewport<br />

Most boilers are equipped with a series of two<br />

blowdown valves. Always open the one closest to the<br />

boiler first <strong>and</strong> close it last. Any cavitation damage<br />

that may occur will happen on the valve that is easier<br />

to replace. To replace the inner valve, the entire<br />

system has to be shut down!<br />

P a g e 17


Steam vented to atmosphere<br />

<strong>CW</strong><br />

Blowdown Tank (blowdown separator)<br />

To prevent damage to sewer lines<br />

blowdown is cooled with city water in the<br />

blowdown tank before entering sewer.<br />

When a sump is used as<br />

blowdown holding tank,<br />

the water becomes<br />

sufficiently cooled without<br />

adding additional water.<br />

P a g e 18


<strong>CW</strong><br />

Water Column Blowdown<br />

Normal conditions inside<br />

the water column<br />

Inside the water column<br />

170 psi = 374°F<br />

Inside the ball float is the<br />

same @ 374°F<br />

Water flashing into steam brings the temperature<br />

inside the water column toward 212°F<br />

↓P • V c = ↓T<br />

Visual port flow indicator<br />

The float temperature drops toward<br />

212°F, the air inside the ball also<br />

drops, reducing interior ball pressure<br />

↓P • V c = ↓T<br />

Water column<br />

blowdown reciever<br />

Pressure inside the water<br />

column returns to 170 psig<br />

Alarm bypass<br />

Without sufficient time to reheat,<br />

the air in the ball is still at a lower<br />

pressure, it collapses.<br />

P a g e 19


<strong>CW</strong><br />

3. Scale Control<br />

Make Up Water<br />

The term “make up water” refers to raw water<br />

without any treatment chemicals added, such<br />

as from a well or from the city.<br />

Chlorine in city water, when unchecked, can damage RO system membranes. On the other<br />

h<strong>and</strong>, because of general treatment practices by municipal water sources, clarification,<br />

filtration, chlorination help remove contaminants such as iron, silica, bacteria, etc. Part or<br />

all of this process needs to be performed at your plant if your water is untreated.<br />

P a g e 20


<strong>CW</strong><br />

i. Water Softener<br />

From the Bronze Age into the Renaissance the<br />

average masses of wheat <strong>and</strong> barley grains were<br />

part of the legal definitions of units of mass.<br />

Grain per gallon (gpg) is a unit of water hardness defined as 1<br />

grain of calcium carbonate dissolved in 1 US gallon of water. It<br />

translates into 1 part in about 58,000 parts of water or<br />

1 grain = 17.1 ppm (parts per million)<br />

P a g e 21


<strong>CW</strong><br />

Water Softener<br />

Sodium (Na+) changes places with hardness: Calcium (Ca+ 2 ) <strong>and</strong> Magnesium (Mg+ 2 )<br />

Cationic resin beads<br />

attract positive ions:<br />

Na+, Ca+ 2 , Mg+ 2<br />

Zeolite = Plastic Resin Beads. If spilled<br />

on the floor, they act as small marbles<br />

<strong>and</strong> can make the floor very “slippery”<br />

Some softener salt eventually enters the boiler,<br />

however, the softener salt (NaCl) stays dissolved<br />

in the water <strong>and</strong> does not fall out as scale.<br />

An air-bown, salt<br />

supply bin, <strong>and</strong><br />

delivery truck<br />

Three Tanks: when one is regenerating,<br />

the other is in service, the third is held in<br />

reserve. All used as “Lag Lead”. More<br />

typical systems only use two tanks.<br />

P a g e 22


<strong>CW</strong><br />

KCl vs. NaCl<br />

The potassium (K) atom is larger than the sodium (Na) atom, that is, the center of the<br />

atom is farther away from the place where the reaction takes place (the outer electrons).<br />

To remove hardness from the resin beads, it requires 27% more potassium chloride than<br />

sodium chloride. While some argue that potassium is friendlier to the environment, it can<br />

easily be said that more waste is generated. Potassium chloride is also more expensive.<br />

NaCl<br />

KCl<br />

Salt Bridge<br />

Bridges may form <strong>and</strong> prevent<br />

salt from dissolving in water.<br />

P a g e 23


ii. Demineralizers<br />

Dual Bed<br />

<strong>CW</strong><br />

Cations have a positive charge. This bed<br />

does the same thing as a water softener<br />

by removing Ca++, Mg++, etc.<br />

Anions have a negative charge. This bed<br />

removes HCO 3−, CO 32 −, Cl−, SO 42 −, etc.<br />

By removing the carbonates (HCO 3−, CO 32 −) from the water,<br />

less carbonic acid will form in the condensate, thus reducing<br />

the need for amine neutralizers in the condensate lines.<br />

Instead of exchanging ions with Na+ (salt)<br />

as in a water softener, the undesired<br />

cations are removed with an acid...<br />

…while undesired<br />

anions are removed<br />

with a caustic.<br />

“Demin” plants also<br />

remove NaCl while<br />

softeners cannot.<br />

P a g e 24


<strong>CW</strong><br />

Demineralizer (Continued)<br />

Mixed Bed<br />

Caustic<br />

Acid<br />

P a g e 25


<strong>CW</strong><br />

For Residual Hardness that the softener (or demin plant) did not get:<br />

iii. Chelates (Phosphates/Molybdates)<br />

Phosphates (PO 4<br />

-3<br />

) or Molybdates (MoO 4<br />

-2<br />

) removes residual hardness <strong>and</strong> forms a soft sludge (easy to blowdown).<br />

10Ca +2 + 6(PO 4 -3 ) + 2OH - → 3Ca 3(PO 4 -3 ) 2·Ca(OH) 2<br />

Blown down as soft sludge<br />

OH Alkalinity is necessary in order for the above reaction to take place.<br />

Phosphates (PO 4<br />

-3<br />

) or Molybdates (MoO 4<br />

-2<br />

)<br />

Molybdates<br />

Plus<br />

Alkalinity (OH)<br />

Polymers are added which attach to the<br />

phosphate complex, making a chain which<br />

becomes heavy <strong>and</strong> falls to the bottom<br />

<strong>and</strong> then is blown down as sludge<br />

Molybdates (Moly) <strong>and</strong><br />

phosphates are generally<br />

determined with a colorimeter<br />

Scale Control chemicals are typically<br />

injected into feed water line<br />

P a g e 26


<strong>CW</strong><br />

iv. Reverse Osmosis (RO)<br />

Free Chlorine Removal<br />

RO<br />

Free chlorine is very destructive on RO membrane. Free chlorine is defined as the<br />

concentration of residual chlorine in water present as dissolved gas (Cl 2),<br />

hypochlorous acid (HOCl), <strong>and</strong>/or hypochlorite ion (OCl−). City water uses free<br />

chlorine to kill bacteria in drinking water. If free chlorine is present in makeup<br />

water, it is common practice to neutralize it with a sodium sulfite solution or filter<br />

out the chlorine with carbon, or a combination of the two.<br />

Carbon is processed using high temperature<br />

steam <strong>and</strong>/or acids which ultimately increase<br />

carbon pore size, increasing surface area.<br />

Activated charcoal carbon filters are<br />

most effective at removing chlorine,<br />

sediment, volatile organic<br />

compounds (VOCs), taste <strong>and</strong> odor<br />

from water. They are not effective<br />

at removing minerals, salts, <strong>and</strong><br />

dissolved inorganic compounds.<br />

Due to its high degree of micro porosity,<br />

just one gram of activated carbon has a<br />

surface area in excess of 32,000 ft 2 .<br />

Free Chlorine can also be stabilized with Sulfite solutions<br />

Sodium metabisulfite (Na 2S 2O 5) when dissolved in<br />

water reduces free chlorine.<br />

→ H 2SO 4 + 2HCl + Na 2SO 4<br />

(Sulfites are also used as oxygen scavengers)<br />

P a g e 27


<strong>CW</strong><br />

v. Filtration<br />

Suspended Solids<br />

Filtration<br />

psid (pounds per square inch differential)<br />

shows when filters need servicing<br />

A progressive filtration system down to 5 Microns<br />

P a g e 28


<strong>CW</strong><br />

RO<br />

Membrane Filtration<br />

Two RO systems here<br />

are used as “Lead/Lag”<br />

RO systems creat very clean water,<br />

however a great deal of waste<br />

water is also produced. This boiler<br />

system uses the waste to cool off<br />

blowdown thus saving city water.<br />

No salt or other chemicals are needed, however,<br />

the costs of replacement membranes, the<br />

electricity needed to pump the water through the<br />

membranes, <strong>and</strong> the excess higher concentration<br />

waste water all need to be calculated in when<br />

considering this form of water treatment.<br />

P a g e 29


<strong>CW</strong><br />

Slime Buildup on RO Membrane<br />

Fouling<br />

With chlorine removed, membranes are a<br />

great place for bacteria slime to grow<br />

which can plug up the system.<br />

Non-Oxidizing Biological Control Chemicals do not damage RO membranes. They<br />

are typically much more expensive than the oxidizing type.<br />

Scale Buildup on RO Membrane<br />

Organic phosphates disrupt crystal<br />

formation <strong>and</strong> extend the time<br />

between membrane changeout.<br />

(same chemical <strong>and</strong> process used in<br />

cooling towers to prevent scale)<br />

Normalized Permeate Flow (NPF) = the amount of permeate water that the RO is producing<br />

P a g e 30


<strong>CW</strong><br />

Water naturally absorbs Carbon Dioxide. This<br />

CO2 breaks down <strong>and</strong> forms Carbonic Acid.<br />

When water is stored for an extended period<br />

of time <strong>and</strong> in large enough quantities, it may<br />

be advantageous to increase the pH.<br />

A small amount of caustic (Sodium Hydroxide = NaOH)<br />

may be added to offset this acid.<br />

P a g e 31


<strong>CW</strong><br />

Magnets<br />

Some studies have shown that magnets do<br />

work to some degree, but only within about a<br />

10-foot distance from the unit. Note: magnets<br />

do not remove scale, they merely temporarily<br />

realign ionic molecules.<br />

There is a lack of peer-reviewed laboratory data,<br />

mechanistic explanations <strong>and</strong> documented field studies.<br />

However, there is this a large supply of erroneous <strong>and</strong><br />

contradictory conclusions about their efficacy based on<br />

applications with uncontrolled variables. Magnetic water<br />

treatment is regarded as unproven <strong>and</strong> unscientific.<br />

P a g e 32


<strong>CW</strong><br />

vi. Scale Removal<br />

Mechanical Scrubbing<br />

Chemical Cleaning<br />

CIP = Cleaning in Place<br />

Depending on what you are trying to remove, Caustic cleaners are generally<br />

good on organic fouling <strong>and</strong> Acid cleaners are generally good on scale.<br />

Caustic Cleaners: Keep the overall cleaning solution<br />

which comes in contact with metal surfaces below<br />

pH 12.7 (helps avoid caustic embrittlement)<br />

Acid Cleaners: Must contain an inhibitor such as<br />

Nitrites to help prevent damage to metal surfaces.<br />

If Iron or Silica is present in feed water, a<br />

very strong complex of scale may form.<br />

It becomes very difficult to remove, no<br />

matter what chemicals you use.<br />

Waste water must be neutralized in accordance with<br />

local ordinances before flushing into sewer.<br />

Typically pH 5 to pH 12.5 meets guidelines.<br />

P a g e 33


<strong>CW</strong><br />

4. Oxygen Pitting<br />

i. Deaeration<br />

DeAerator<br />

Temperature stress is reduced by using steam to bring feed<br />

water nearer to the temperature of the boiler water.<br />

Steam <strong>and</strong> water mix<br />

Sprayer plate<br />

Receiving Tray<br />

Anti-vortex<br />

baffles<br />

Sparge Tube:<br />

Perforated feed line<br />

Sparging<br />

P a g e 34


<strong>CW</strong><br />

The deaerator also removes dissolved O 2 (Oxygen Scavenger)<br />

The more oxygen you can<br />

economically remove, the<br />

less chemical you need.<br />

32º F 68º F 104º F 140º F 176º F<br />

ppm O2 (dissolved Oxygen) 69 43 31 14


<strong>CW</strong><br />

ii. Oxygen Scavengers<br />

Sulfite is added to the deaerator to<br />

absorb residual oxygen before it<br />

can get to the boiler.<br />

DA tank chemical<br />

injection quill<br />

(interior)<br />

Sulfite “fights” the<br />

Oxygen.<br />

2SO3 + O2 → 2SO4<br />

Sulfate is then blown<br />

down as waste.<br />

% Replacement Equivalent Chart<br />

Sodium Sulfite: Na₂SO₃<br />

Sodium (Meta)bisulfite: Na 2S 2O 5<br />

Sulfur Trioxide: SO₃<br />

Sulfur Dioxide: SO₂<br />

Sulfites add conductivity to boiler water. Higher psi boilers (>300psi) have tighter conductivity specifications<br />

<strong>and</strong> favor scavengers that do not add to this conductivity. Organic oxygen scavengers (Hydrazine <strong>and</strong> DEHA)<br />

High psi do <strong>Boiler</strong>s not add conductivity (>300psi) to water <strong>and</strong> thus helps to reduce the need for blowdowns.<br />

Hydrazine<br />

N 2H 4 +O 2 → N 2 + H 2O<br />

Works great, but is considered a carcinogen <strong>and</strong> is being<br />

phased out.<br />

Diethyl hydroxylamine (DEHA)<br />

C 4H 11NO +O 2 → C 4H 9NO + H 2O 2<br />

Volatile, that is, it evaporates with the boiler water <strong>and</strong><br />

travels with the steam. Not only does this help with any<br />

possibility of oxygen pitting in condensate lines, DEHA also<br />

has been shown to help passivate metal (prevents carbonic<br />

acid corrosion).<br />

Organic Oxygen Scavengers are typically only used in high PSI<br />

applications where TDS limits are a greater challenge.<br />

P a g e 36


<strong>CW</strong><br />

5. Carbonic<br />

Acid in Condensate<br />

Acid Corrosion<br />

CO2 + 2H2O → H2(g) + H2CO3<br />

Carbon dioxide, that we breathe out, is absorbed by water,<br />

breaks down <strong>and</strong> forms Carbonic Acid<br />

Rain is simply another form of condensate<br />

<strong>and</strong> contains carbonic acid.<br />

Dissolved tombstone from rain.<br />

Due to Carbonic Acid,<br />

untreated condensate can<br />

reach down to pH 5.5<br />

CARBONIC ACID disrupts<br />

the protective magnetite<br />

surface of steel.<br />

Condensate<br />

S<strong>amp</strong>le Port<br />

SPEC: When using neutralizing<br />

amines, Condensate should be<br />

pH > 8.3<br />

P a g e 37


Most common amines<br />

<strong>CW</strong><br />

pH controlling amines <strong>and</strong> are highly volatile.<br />

They evaporate <strong>and</strong> travel along with boiler<br />

steam neutralizing carbonic acid as the steam<br />

condenses back into water.<br />

Temperature <strong>and</strong> psi can affect when various<br />

types of amines re-condense. These properties<br />

are applied in condensate line distance.<br />

Morpholine (short range)<br />

Diethyl aminoethanol (DEAE) (medium range)<br />

Cyclohexylamine (long range)<br />

Injection quill: generally<br />

directly into steam line<br />

Neutralizing amines can be injected into feed<br />

water, however, during blowdowns, product is<br />

lost. Direct steam line injection is more common.<br />

Filming Amines<br />

Filming amines are not always soluble in<br />

water, <strong>and</strong> therefore, should always be<br />

injected directly into steam lines.<br />

For food production facilities <strong>and</strong> live<br />

steam applications, non-toxic filming<br />

amines travel along with boiler steam<br />

forming a thin protective waterproof<br />

layer on the metal surface, repelling the<br />

acidic condensate.<br />

Inserting <strong>and</strong> monitoring corrosion coupons<br />

directly into condensate lines can be helpful in<br />

chemical distribution troubleshooting.<br />

P a g e 38


Steam Trap Trouble Shooting<br />

Steam Trap Troubleshooting<br />

<strong>CW</strong><br />

Mechanic’s Stethoscope<br />

Each type of steam trap has its own fingerprint<br />

signature sound when functioning properly.<br />

Electronic<br />

stethoscope<br />

Screwdriver to Ear method!<br />

Flow<br />

Infrared<br />

Pyrometer<br />

A significant drop in temperature<br />

indicates that a steam trap is<br />

functioning properly.<br />

For every 8 inches away, the meter reads a circle<br />

of 1 inch diameter. The laser dot only acts as a<br />

pointer <strong>and</strong> has nothing to do with IR light.<br />

Thermal Imager (preferred)<br />

P a g e 39


<strong>CW</strong><br />

6. Erosion Corrosion<br />

i. – Flow Accelerated Corrosion<br />

FAC: Flow Accelerated Corrosion<br />

FAC is a concern in plants where low<br />

oxygen content (as in condensate), high<br />

velocity flow <strong>and</strong> high temperature<br />

water (around 300˚F) exist.<br />

Some power boilers reintroduce<br />

oxygen into condensate to help<br />

prevent FAC<br />

Stainless steel’s chromium oxide surface virtually stops any FAC,<br />

while Carbon steel’s oxide surface (Magnetite) is succeptable.<br />

P a g e 40


LDI – Liquid Droplet Impingement<br />

ii. LDI – Liquid Droplet Impingement<br />

LDI = FAC on a small scale<br />

As irregularities in the metal<br />

surface increase from prior<br />

impacts, corrosion accelerates.<br />

<strong>CW</strong><br />

Flow<br />

Installation of periodic<br />

drip legs helps reduce LDI<br />

Power plants use<br />

superheated steam<br />

(zero chance of<br />

water droplets in<br />

steam) which helps<br />

avoid LDI damage on<br />

turbine blades<br />

P a g e 41


<strong>CW</strong><br />

7. Combination Chemical Treatment<br />

Because of chemical dem<strong>and</strong> is less in<br />

smaller boilers, it is simpler to inject<br />

combination chemicals into boiler itself.<br />

Only one pump <strong>and</strong> one chemical container<br />

is required. However, it is more difficult to<br />

control chemistry specifications.<br />

Oxygen Scavenger<br />

Scale Inhibitor<br />

Also: by injecting all chemicals into the DA<br />

tank, some of the amines are lost in both<br />

the DA vent <strong>and</strong> boiler blowdowns.<br />

Steam Treatment<br />

P a g e 42


<strong>CW</strong><br />

8. Chemical Feed Pumps<br />

Peristaltic Pumps<br />

Pinch process does not lose prime, but<br />

tube needs to be replaced periodically<br />

Diaphragm Pumps<br />

Long lasting <strong>and</strong> durable, however,<br />

these are a “pain” when they lose prime<br />

Speed:<br />

How often<br />

Stroke:<br />

How deep<br />

Chemical<br />

injection<br />

quill<br />

Check<br />

valve<br />

P a g e 43


<strong>CW</strong><br />

Four Function Valve (4FV):<br />

Suction valve<br />

Discharge valve<br />

P a g e 44


<strong>CW</strong><br />

9. S<strong>amp</strong>le Coolers<br />

S<strong>amp</strong>le Coolers<br />

P a g e 45


<strong>CW</strong><br />

B) Non-Steam <strong>Boiler</strong>s<br />

1. Air Removal<br />

Air Removal<br />

Closed Loop<br />

Air Vent<br />

Air Scoop<br />

Open<br />

Air under pressure<br />

is blown out<br />

Closing<br />

Water replaces air<br />

Closed<br />

Poppet floats <strong>and</strong><br />

seals top<br />

Air Separator<br />

Manual Radiator<br />

Air Bleed Valves<br />

Auto Radiator Air<br />

Bleed Valves<br />

Air escapes from the radiator through the valve until water<br />

enters <strong>and</strong> exp<strong>and</strong>s the hygroscopic washers.<br />

P a g e 46


<strong>CW</strong><br />

2. Corrosion Inhibitors<br />

Closed Loop Continued<br />

Closed Loop Corrosion Control<br />

Corrosion Control<br />

Corrosion in electric closed loop boiler<br />

SPEC: Molybdates (“Moly”), Nitrites, or<br />

Silicates are added as a corrosion inhibitor to<br />

closed loop systems via bypass feeders or<br />

direct injection pumps.<br />

P a g e 47


2. PEX tubing<br />

<strong>CW</strong><br />

Closed Loop Continued<br />

PEX: No corrosion<br />

An aluminum layer or EVOH barrier (Ethylene-Vinyl<br />

Alcohol copolymer) prevents oxygen penetration.<br />

(3 layers)<br />

(5 layers)<br />

PEX Al PEX<br />

P a g e 48


<strong>CW</strong><br />

Antifreeze<br />

3. Antifreeze<br />

Closed Loop Continued<br />

Prevents freezing in Closed Loops<br />

during shut downs.<br />

PG<br />

C₃H₈O₂<br />

Composition<br />

EG<br />

C2H6O2<br />

Food Grade<br />

(You can drink it)<br />

Safety<br />

Toxic<br />

(Follow proper use <strong>and</strong><br />

disposal guidelines)<br />

Nitrites are added to<br />

prevent corrosion.<br />

Cost (as of 2014)<br />

Inhibitor = Nitrites<br />

= corrosion prevention<br />

Because of safety, food-processing closed loop<br />

boilers generally are charged with Propylene<br />

Glycol.<br />

Use<br />

Because of cost, nonfood-processing closed loop<br />

boilers generally are charged with Ethylene Glycol.<br />

Automobile engine antifreeze usually<br />

contain antifoams, coagulants, dyes <strong>and</strong><br />

other additives which may or may not<br />

effect a boiler’s proper operation.<br />

P a g e 49


<strong>CW</strong><br />

Measurement<br />

Refractometer:<br />

Chemical concentration effects<br />

refraction angle.<br />

Float Type<br />

Antifreeze testers<br />

Since non-food grade (cheaper) antifreeze is generally<br />

used in automobile engines, these type of testers<br />

indicate freeze point of Ethylene Glycol.<br />

Glycol Mixing Tanks<br />

1. Allows water to raise to room temperature before entering system, removing dissolved air.<br />

2. A convenient way to make sure your percentage is correct.<br />

P a g e 50


<strong>CW</strong><br />

Concentration vs Freeze Point<br />

Glycols 70%<br />

Freeze point starts<br />

to go back up!<br />

50/50 Blend: Typical Use Recommendation<br />

P a g e 51


4. Condensing <strong>Boiler</strong>: Carbonic Acid<br />

Condensing <strong>Boiler</strong><br />

More efficient use of flue gas<br />

Closed Loop Continued<br />

A condensing boiler<br />

<strong>CW</strong><br />

Non-Condensing<br />

<strong>Boiler</strong> with separate<br />

condensing chamber<br />

Acidic condensate flows<br />

across neutralizing<br />

marble type chips<br />

preventing possible<br />

damage to sewer lines<br />

Notice PVC drain line<br />

for acidic condensate<br />

P a g e 52


<strong>CW</strong><br />

Expansion Control<br />

5. Expansion Control<br />

Closed Loop Continued<br />

Expansion tanks located at<br />

the highest point in the<br />

closed loop do not need air<br />

separators. They usually<br />

have a sight glass <strong>and</strong> should<br />

be at least 1/3 rd empty.<br />

Expansion<br />

Joints<br />

To extend the life of the<br />

diaphragm/bladder<br />

compression tank, it is<br />

usually placed on the cold<br />

end of the loop.<br />

P a g e 53


Hardness →<br />

<strong>CW</strong><br />

C) Water Cooling Systems<br />

1.<br />

SCALE<br />

Scale Prevention<br />

CONTROL #1<br />

Bleed Off<br />

Stay under the saturation point. Keep the cycles<br />

of concentration in check by using bleedoff<br />

controls.<br />

Scale<br />

forms<br />

Saturation<br />

maximum<br />

Supersaturated<br />

Conductivity<br />

set point.<br />

1 cycle<br />

= raw water<br />

2 cycles<br />

= twice as concentrated<br />

due to evaporation<br />

3 cycles<br />

= three times<br />

4 cycles<br />

Electric Motor Actuator slowly opens<br />

(helps prevent water hammer)<br />

Signals actuator to bleed off<br />

system until conductivity drops<br />

Inline probe measures<br />

how well electricity flows<br />

between electrodes in<br />

water then converts<br />

reading to Conductivity.<br />

Electromagnetic<br />

Solenoid<br />

P a g e 54


Hardness→<br />

OH¯ Concentration→<br />

SCALE CONTROL #2<br />

Phosphates <strong>and</strong> pH<br />

<strong>CW</strong><br />

Use scale control chemicals.<br />

Polymers/HEDP keep crystals in suspension.<br />

Phosphonates disrupt formation of crystal lattices.<br />

Nalco solid chemical dissolver/dispenser<br />

New maximum<br />

Proper use of chemicals<br />

raises the saturation line,<br />

enabling higher cycles <strong>and</strong><br />

water conservation.<br />

Supersaturated<br />

New conductivity<br />

set point.<br />

Old saturation<br />

maximum<br />

From 2.5<br />

to 3.4 cycles<br />

1 cycle 2 cycles<br />

3 cycles<br />

4 cycles<br />

SCALE CONTROL #3<br />

IF pH is high, add acid.<br />

High concentration of<br />

OH¯ ions (high pH)<br />

lowers the solubility of<br />

calcium carbonate, it<br />

precipitates out <strong>and</strong> scale<br />

forms.<br />

Scale<br />

forms<br />

7 pH → 9 10 11 12 13 14<br />

P a g e 55


<strong>CW</strong><br />

Scale Removal<br />

Pressure Spray & Vacuum<br />

CaCO 3 + 2HCl (acid) CaCl 2 + H 2 O + CO 2 (gas)<br />

Dilute HCl<br />

Scale Chips<br />

Acid<br />

(Inhibited with Nitrites)<br />

Municipalities generally do not accept pH


Cathode<br />

<strong>CW</strong><br />

2. Corrosion<br />

Galvanic<br />

a. Galvanic Corrosion<br />

Corrosion<br />

mild steel vs stainless steel<br />

brass vs steel<br />

Metal<br />

Oxides↓<br />

Cathode<br />

(zero corrosion)<br />

Anode<br />

e -<br />

Cathode<br />

(zero corrosion)<br />

Metal<br />

Oxides→<br />

Anode<br />

e -<br />

Anode<br />

Tubercles<br />

←(zero corrosion)<br />

Cathodic ←<br />

→Anodic<br />

Plastic/Nylon<br />

sleeves/gaskets<br />

More anodic→ corrodes first<br />

←Further apart, stronger galvanic effect→<br />

Coated bolts/screws<br />

Dielectric Union<br />

P a g e 57


<strong>CW</strong><br />

b. Rust<br />

Dissolved oxygen “steels” (oxidizes) electrons<br />

from Iron. A weak but significant electrical<br />

current forms creating Anode (+) <strong>and</strong><br />

Cathode (-) areas.<br />

O 2 + 4e¯+ 2H 2O → 4OH¯<br />

Fe +2<br />

Anode<br />

2e¯<br />

Cathode<br />

Fe +2 ions are released into the water along with<br />

the newly formed OH¯ ions.<br />

Fe +2<br />

Fe<br />

Anode<br />

Cathode<br />

Fe +2 combines with 2OH¯ <strong>and</strong> precipitates out as rust.<br />

Fe +2 + 2OH¯ → Fe(OH) 2<br />

rust<br />

rust<br />

Cathode<br />

Fe<br />

Fe<br />

Cathode<br />

Anode<br />

Iron Rust<br />

White Rust = Zinc rust on<br />

galvanized metal<br />

(selective leeching).<br />

P a g e 58


H + Concentration→<br />

<strong>CW</strong><br />

.<br />

Acidic waters have high H + ion concentrations which react with electrons at<br />

the cathode releasing hydrogen gas: 2H + + 2e¯ → H 2 (g).<br />

Corrosion is accelerated.<br />

0 ← pH 3 5 7<br />

Group VII<br />

Halogens<br />

Like Oxygen, the halides Bromine, Chlorine <strong>and</strong> Iodine are<br />

also “looking” for electrons which are readily available at the<br />

cathode. At high levels, these oxidizing biocides have a<br />

tendency to cause corrosion.<br />

Oxidizing<br />

Biocides<br />

Road Salt (NaCl) Corrosion<br />

P a g e 59


<strong>CW</strong><br />

c. MIC<br />

MIC<br />

Microbiologically Induced Corrosion<br />

Biofilm = Slime<br />

Under the slime is an<br />

area where Anerobic<br />

bacteria thrive.<br />

Cathode<br />

←e¯<br />

M +<br />

Anode<br />

e¯→ Cathode<br />

Anaerobic bacteria “eat” metal by means<br />

of reduction reaction.<br />

Its waste is food for the aerobic bacteria in the<br />

slime. These colonies form tubercles.<br />

Aerobic = breaths 0xygen<br />

Anaerobic = does not breath O2<br />

Tubercle grows,<br />

penetrating completely<br />

through metal.<br />

←e¯<br />

↑<br />

M +<br />

e¯→<br />

Upon removing Tubercles,<br />

shiny, raw metal is exposed.<br />

P a g e 60


<strong>CW</strong><br />

MIC Prevention <strong>and</strong> control<br />

Water Treatment Biocides + Non-penetrable, Non-metallic Coatings<br />

Fouling prevention <strong>and</strong> control<br />

Manually “punching ” tubes<br />

Automatically punching tubes<br />

P a g e 61


<strong>CW</strong><br />

d. Eddie Current Testing<br />

Cracks, corrosion, or other imperfections<br />

create out of specification signals.<br />

P a g e 62


<strong>CW</strong><br />

3. Biological Growth<br />

a. Algae, Yeast, Molds Unchecked mold <strong>and</strong> algae growth restricts air<br />

flow plugs lines <strong>and</strong> ultimately reduces efficiency.<br />

P a g e 63


<strong>CW</strong><br />

Bacteria b. Legionella<br />

History<br />

The first recognized outbreak occurred at the Bellevue Stratford during an American<br />

Legion conference in 1976 in Philadelphia. As many as 221 people were given<br />

medical treatment, <strong>and</strong> 34 died from extreme pneumonia symptoms. The U.S.<br />

Centers for Disease Control <strong>and</strong> Prevention mounted an unprecedented investigation<br />

<strong>and</strong>, by September, the focus had shifted from outside causes, such as a disease<br />

carrier, to the hotel itself. After 5 months of research, the Legionellosis bacterium<br />

was finally identified; it was in the cooling tower. Normally, the bacterium dies<br />

when the water droplets in the mist spray leaving the cooling tower dries up in the air.<br />

However, at the Stratford, the mist spray from the cooling tower exhaust fans was<br />

being sucked back in by the building’s fresh air intake!<br />

Major Legionella Outbreaks<br />

Non-communicable<br />

(cannot be transferred<br />

between humans)<br />

Year Location Cases Died Bacteria Source<br />

1976 Philadelphia 221 34 Cooling Tower<br />

1985 Stafford, UK 175 28 Cooling Tower<br />

1999 Bovenkarspel, Netherl<strong>and</strong>s 200 32 Humidifier & Whirlpool<br />

2000 Melbourne, Australia 125 4 Cooling Tower<br />

2001 Murcia, Spain 449 6 Cooling Tower<br />

2002 Barrow, UK 172 7 Cooling Tower<br />

2003 Pas-de-Calais, France 86 18 Cooling Tower<br />

2005 Fredrikstad, Norway 56 10 Air Scrubber<br />

2011 Playboy Mansion, Los Angeles 123 0 Hot Tub<br />

Due to early<br />

intervention<br />

Legionella are more<br />

difficult to kill in areas<br />

with high slime build up.<br />

Between 1995 <strong>and</strong> 2005, over 32,000<br />

worldwide cases of Legionnaires'<br />

disease <strong>and</strong> more than 600 outbreaks<br />

were reported to the European Working<br />

Group for Legionella Infections (EWGLI).<br />

P a g e 64


<strong>CW</strong><br />

Infected lung<br />

Water test<br />

Urine test<br />

P a g e 65


<strong>CW</strong><br />

4. Biological Control<br />

BIOCIDES<br />

Oxidizing antimicrobials kill by “stealing” electrons from critical atoms<br />

disrupting internal functions or damaging cell walls.<br />

Nonoxidizing kill by replacing critical molecules with “poison” molecules.<br />

Oxidizing<br />

Biocides<br />

Chlorine, Bromine, <strong>and</strong> Iodine “steel” (oxidize)<br />

electrons from molecules of living cells <strong>and</strong><br />

they die or fail to reproduce.<br />

Note: No. 53 Iodine (I)<br />

is also a medicinal<br />

disinfectant.<br />

Hypochlorite Ion<br />

Hypochlorous Acid<br />

Chlorine Gas/ Tablets /Bleach + H 2 O → OCl ¯ + HOCl + OH¯<br />

Ions attack<br />

cell walls.<br />

Acids attack<br />

internal cell<br />

functions.<br />

Bromine Tablets + H 2 O →<br />

OBr ¯ + HOBr + OH¯<br />

Chlorine<br />

Hypobromite Ion<br />

Hypobromous Acid<br />

Bromine<br />

Oxidizing Biocides<br />

Ozone (O3)<br />

Nalco OxySlugger dispenser<br />

1) 1) Generated on site <strong>and</strong> does not<br />

require storage.<br />

2)<br />

2)You cannot over-dose as unused<br />

P a g e 66


P a g e 67<br />

<strong>CW</strong>


Oxidizing Biocides<br />

Sodium Hypochlorite =<br />

NaClO<br />

<strong>CW</strong><br />

Bleach: Inexpensive but decomposes<br />

with heat <strong>and</strong> light.<br />

Solution: On site bleach generator. MIOX ®<br />

Salt (NaCl) + Electricity (via electrolysis) = Bleach<br />

P a g e 68


<strong>CW</strong><br />

Nonoxidizing<br />

Biocides<br />

Surface Acting<br />

Quaternary ammonium<br />

compounds (quats) are<br />

cationic surface-active<br />

molecules. They damage<br />

the cell walls of bacteria,<br />

fungi, <strong>and</strong> algae. The cell<br />

“bleeds” <strong>and</strong> dies.<br />

Metabolism (internal) Acting<br />

Many antimicrobials interfere with energy metabolism inside the cell. The cell gets “sick”<br />

<strong>and</strong> cannot reproduce. The following are ex<strong>amp</strong>les of these types of biocides:<br />

organotins<br />

bis(trichloromethyl) sulfone<br />

methylenebis(thiocyanate) (MBT)<br />

Beta-bromo-Beta-nitrostyrene (BNS)<br />

dodecylguanidine salts<br />

bromonitropropanediol (BNPD)<br />

P a g e 69


<strong>CW</strong><br />

Refrigerants<br />

5. Regridgerants<br />

It is suspected that a variety of biological<br />

consequences such as increases in sunburn, skin<br />

cancer, cataracts, damage to plants, <strong>and</strong> reduction of<br />

certain plankton in the ocean may result from the<br />

increased UV-B exposure due to ozone depletion.<br />

Image of the largest Antarctic<br />

ozone hole recorded (September<br />

2006), over the Southern pole.<br />

1920’s Sulfur Dioxide . . . . . . . Corrosive, Toxic<br />

Methyl Formate . . . . . Flammable, Toxic<br />

Ammonia . . . . . . . . . . . Toxic<br />

1930’s Chlorofluorocarbons Ozone Depletion<br />

CFC’s<br />

1960’s Hydrochloroflourocarbons Ozone Depletion<br />

HCFC’s<br />

1990’s Hydrofluorocarbons Safe<br />

HFC’s<br />

CFCs: Banned in US <strong>and</strong> Canada HCFCs: Being phased out HFCs: OK<br />

P a g e 70


<strong>CW</strong><br />

Refrigerants (continued)<br />

>>>>CFC refrigerants<br />

CARBON, FLORINE, CHLORINE.<br />

Banned from use or production within all<br />

countries covered by the Montreal<br />

Protocol.<br />

>>>>HCFC refrigerants<br />

HYDROGEN, CARBON, FLORINE, CHLORINE.<br />

Being phased out.<br />

>>>>HFC refrigerants<br />

HYDROGEN, FLORINE, CARBON.<br />

HFC’s contain no chlorine:<br />

NO OZONE DEPLETION.<br />

It is estimated that the Ozone layer will<br />

revert back to its original level by 2050!<br />

P a g e 71


<strong>CW</strong><br />

ANHYDROUS<br />

= Contains no water<br />

Being Phased Out<br />

Acceptable<br />

Natural Refrigerants:<br />

R717 Ammonia NH 3 BP -28°F<br />

R290 Propane C 3H 8 BP -44°F<br />

R600a Iso-butane C 4H 10 BP 11°F<br />

R600 Butane C 4H 10 BP 31°F<br />

R744 Carbon Dioxide CO 2 BP -109°F<br />

Azeotrope<br />

- A mixture made up of two or more refrigerants<br />

with similar boiling points that act as a single fluid.<br />

The components of azeotropic mixtures will not<br />

separate under normal operating conditions <strong>and</strong><br />

can be charged as a vapor or liquid.<br />

Zeotrope<br />

- A mixture made up of two or more refrigerants<br />

with different boiling points which creates a<br />

boiling point “glide”. Therefore: Zeotropic<br />

mixtures should be charged in the liquid state.<br />

P a g e 72


<strong>CW</strong><br />

D) Fuel<br />

1) Types<br />

i. Natural Gas<br />

Natural Gas<br />

Typical composition of NG<br />

(Methane = 87%)<br />

1011 btu/ft 3<br />

2516 btu/ft 3<br />

3225 btu/ft 3<br />

6239 btu/ft 3<br />

P a g e 73


<strong>CW</strong><br />

ii. Liquid Fuels<br />

No. 1 Fuel Oil<br />

No. 2 Fuel Oil<br />

No. 6 Fuel Oil<br />

Viscosity = resistance to flow.<br />

When oil is heated, its viscosity decreases.<br />

P a g e 74


<strong>CW</strong><br />

Operators must confirm fuel oil levels on a<br />

regular basis.<br />

Paper readout for tank<br />

level verification<br />

A 10 day fuel oil supply (based on average<br />

daily fuel consumption in January) is<br />

required as an onsite minimum<br />

Red dye is added for tax<br />

free off road use.<br />

P a g e 75


<strong>CW</strong><br />

Above ground tanks are more susseptible to<br />

temperature swings, any moisture in air space<br />

above the fuel runs a higher risk of forming<br />

condensate on the cooler side tank walls.<br />

Below ground tanks are more<br />

sussecptible to exterior surface corrosion<br />

If water contaminates Diesel, bacteria can start to grow.<br />

Bacterial waste products (bacterial poop) is acidic <strong>and</strong> can<br />

cause MIC (Microbiologiaclly Induced Corrosion). This fouling<br />

can also plug filters <strong>and</strong> increase exhaust soot.<br />

MIC<br />

Water content test<br />

P a g e 76


<strong>CW</strong><br />

iii. Solid Fuels / BioMass<br />

Wood<br />

Solid Fuels:<br />

WOOD<br />

Hogged Fuel<br />

[Grab your reader’s attention with a great<br />

quote from the document or use this space<br />

to emphasize a key point. To place this text<br />

box anywhere on the page, just drag it.]<br />

Wood chips or shavings usually along with sawdust,<br />

residue <strong>and</strong> bark from sawmills is used as fuel for boilers,<br />

l<strong>and</strong>fill, animal feed, surfacing paths <strong>and</strong> running tracks.<br />

The word for chopped (hacked) in Norwegian<br />

is hogge (hogde past tense); chopped wood<br />

has been hogde. Hogde fuel likely morphed<br />

into hogged fuel.<br />

Saw Dust/Wood Pellet<br />

Forced Draft Burners<br />

Moisture meter fails if<br />

water is frozen in fuel<br />

Black Out:<br />

If moisture is too great,<br />

flame cannot burn.→<br />

P a g e 77


<strong>CW</strong><br />

Syngas<br />

Syngas (biogas) contains between<br />

50% <strong>and</strong> 75% Methane (CH 4)<br />

Syngas <strong>and</strong> charcoal<br />

are burned: 500˚C to 1200˚C<br />

Drying: 100˚C to 150˚C<br />

Pyrolysis: Decomposition of organic<br />

material to char <strong>and</strong> tar by heating<br />

in low O2 environment<br />

150˚C to 500˚C<br />

Burning matchstick<br />

CxHy : Volatile hydrocarbons (pyrolysis<br />

gas = Syngas) is expelled (cracked)<br />

from pyrolyzed biomaterial (tar) as<br />

temperature increases.<br />

500˚C to 1000˚C<br />

Further burning reduces<br />

all charcoal to ash<br />

1200˚C<br />

Unburned CH 4 (Methane) is expelled (craked) as temperature increases <strong>and</strong><br />

pyrolysis takes place. Leaving tar <strong>and</strong> eventually char <strong>and</strong> then, finally, ash behind.<br />

Pyrolyzed test rabbit<br />

Some biomass facilities are<br />

equipped with Syngas separators.<br />

P a g e 78


<strong>CW</strong><br />

Solid Fuels:<br />

Garbage<br />

Municipal Waste<br />

Woody slowly moving<br />

forward in a solid waste,<br />

biomass burner!<br />

P a g e 79


<strong>CW</strong><br />

Coal<br />

Powder River Basin, WY,<br />

mainly subbituminous coal<br />

(with low sulfur content),<br />

supplies fuel for about 40% of<br />

all coal fired US Power Plants<br />

Solid Fuels:<br />

COAL<br />

6,000 BTU/lb.<br />

10,000 BTU/lb.<br />

13,000 BTU/lb.<br />

2014 US Electricity<br />

Production by Source<br />

(http://www.c2es.org/technolog<br />

y/overview/electricity)<br />

15,000 BTU/lb.<br />

P a g e 80


<strong>CW</strong><br />

iv. Electricity<br />

Very small wall mount<br />

electric steam boiler<br />

P a g e 81


<strong>CW</strong><br />

2) Combustion<br />

Combustion Air<br />

Spark<br />

CH 4<br />

Take any of these away, no flame.<br />

P a g e 82


<strong>CW</strong><br />

i. Combustion Air<br />

Atmospheric Draft<br />

Natural Draft Burners = Pipe Burners = Atmospheric Burners<br />

= No Air Blower<br />

Air Shutter<br />

Forced Draft →<br />

Forced Draft<br />

Blower <strong>and</strong> burner: combined unit<br />

Blower <strong>and</strong> burner: separate units<br />

Fan Motor<br />

VFD<br />

P a g e 83


Air in<br />

<strong>CW</strong><br />

M<br />

Modulation Motors directly link<br />

incoming air flow with incoming fuel supply. (Mod Motor)<br />

Mod motor for incoming air<br />

Mod Motor limit switches<br />

Linkage controls<br />

internal air opening<br />

P a g e 84


<strong>CW</strong><br />

ii. Spark<br />

Ignition Transformer<br />

Spark Ignition Transformer<br />

Primary 120V in<br />

Secondary 6000V out<br />

Spark temperature approaches 60,000˚F<br />

Spark Plug<br />

<strong>and</strong> pilot line<br />

P a g e 85


Convection<br />

<strong>CW</strong><br />

iii. Flame<br />

Diffusion Flame<br />

All combustion air comes<br />

from outside of the flame.<br />

With too little air inside the<br />

flame envelope, the gas<br />

mixture will not burn<br />

completely. The unburned<br />

carbon particles become<br />

heated to glowing, making<br />

the flame luminous.<br />

Hottest part<br />

(non-luminous)<br />

CO2<br />

1400˚C<br />

H2O<br />

If the outer zone is disrupted, complete<br />

combustion is also disrupted <strong>and</strong> soot<br />

deposits form (unburned carbon)<br />

Outer Zone: Complete combustion of soot<br />

particles <strong>and</strong> any remaining wax vapor<br />

Unburned carbon particles (soot)<br />

glow from the heat energy.<br />

1200˚C<br />

O 2<br />

1000˚C<br />

800˚C<br />

Partial Combustion: Fuel Rich = not enough<br />

oxygen, soot particles form<br />

Outer Zone: Complete<br />

combustion of wax vapor<br />

O2<br />

600˚C<br />

Conduction<br />

O2<br />

Dark Zone: Pyrolysis of<br />

wax to combustible vapor<br />

= Straight-chain Wax<br />

= 14,200 btu/ft 3<br />

Diffusion flame<br />

in microgravity<br />

(Space Station)<br />

No updraft of<br />

air flow<br />

P a g e 86


<strong>CW</strong><br />

Premix Flame<br />

Diffusion Flame:<br />

no Oxidizer<br />

Acetylene = C 2H 2 =<br />

Combustion air is mixed with<br />

fuel before the flame.<br />

Roaring Flame=Reducing Flame:<br />

Air hole open, venturi effect<br />

sucks in air.<br />

Hottest point<br />

for cutting<br />

Roaring Premix Flame<br />

Diffusion Flame=<br />

Oxidizing Flame:<br />

Air hole closed<br />

Unburned carbon<br />

particles (soot)<br />

inc<strong>and</strong>esces<br />

(glows) from the<br />

heat energy.<br />

Indication of<br />

incomplete<br />

combustion.<br />

1540˚C<br />

Convection<br />

CO2 H2O<br />

Outer Cone = Flame Envelope<br />

Combustion Completion<br />

Hottest part of flame<br />

1560˚C<br />

1450˚C<br />

O2<br />

Inner Cone: Air<br />

<strong>and</strong> unburned fuel<br />

350˚C<br />

Inner Cone border:<br />

Initial fuel burn<br />

O2<br />

O2<br />

O2<br />

P a g e 87


<strong>CW</strong><br />

A stoichiometric Air to Fuel Ratio (AFR) has the correct amount of air<br />

<strong>and</strong> fuel to produce a chemically complete combustion event.<br />

iv. Air/Fuel Ratio (AFR)<br />

Mod motor for incoming<br />

combustion air<br />

UEL = Upper Explosive Limit<br />

LEL = Lower Explosive Limit<br />

Soot buildup<br />

Increased CO<br />

Decreased CO2<br />

Stack Temperature drop<br />

RICH flame<br />

LEAN flame<br />

Increased O2<br />

Decreased CO2<br />

Stack Temperature drop<br />

Turbulent Flame<br />

Laminar Flame<br />

To increase heat output, fuel velocity is<br />

increased. If sufficient combustion air is not<br />

provided, the flame will extinguish itself.<br />

The increase of both fuel <strong>and</strong> air velocity<br />

creates a turbulent flame.<br />

Composition<br />

of Air<br />

P a g e 88


<strong>CW</strong><br />

Swirler <strong>and</strong> Nozzle<br />

The diffuser, or swirl vanes, slows incoming air,<br />

increasing pressure, increasing available O 2<br />

molecules available for combustion (basically,<br />

the swirl action “forces” more air into the<br />

combustion zone = Turbulent Flame).<br />

The nozzle increases velocity of fuel,<br />

reducing fuel pressure. Spreading<br />

fuel molecules farther apart<br />

improves air/fuel combustion ratio.<br />

Smaller oil burner<br />

nozzles usually include<br />

a filter<br />

Fuel oil compressor:<br />

increases fuel pressure<br />

Proper combination of swirler diffusion <strong>and</strong> nozzle<br />

spray should maximize combustion efficiency<br />

P a g e 89


<strong>CW</strong><br />

3) Burners<br />

i. Natural Gas<br />

Staged Burners<br />

Staged Air Burner<br />

Radiant Tube burner<br />

Staged Fuel Burner<br />

P a g e 90


Burners<br />

Premix Burner<br />

Premix Mesh Burners<br />

<strong>CW</strong><br />

Metal Fiber<br />

premix burner<br />

Perforated Plate<br />

burner<br />

Ceramic Mesh<br />

Premix<br />

Condensing, closed loop<br />

boilers with premix burners<br />

P a g e 91


<strong>CW</strong><br />

Turbine Jet Burner<br />

Natural Gas Turbine Jet “PreMix” Burner<br />

Incoming<br />

Filtered Air<br />

Rooftop<br />

lubricating oil<br />

cooler<br />

Exhaust to Stack or<br />

Waste Heat<br />

Water Tube <strong>Boiler</strong><br />

P a g e 92


<strong>CW</strong><br />

ii. Oil<br />

Oil Burners<br />

Light Oil<br />

Steam or Compressed Air<br />

Atomizing Air compressor<br />

For atomizing heavier oils, steam is<br />

preferred as it also preheats the oil<br />

reducing its viscosity <strong>and</strong> is also easily<br />

available at high pressure.<br />

However, compressed air gives better<br />

fuel/air mixing<br />

Mixing of fuel <strong>and</strong> steam/air can take<br />

place inside the burner or completely<br />

outside (premix or nozzle mix)<br />

Steam<br />

injection<br />

line for<br />

oil burner<br />

Propane is used for pilot light<br />

during oil burning<br />

Propane PRV<br />

P a g e 93


<strong>CW</strong><br />

Heavy Oil: Mechanical Atomizing<br />

Rotary Cup Burner: No. 6<br />

Oil<br />

Air Supply Fan<br />

Rotating Cup Motor<br />

P a g e 94


<strong>CW</strong><br />

4) Air Pollution (Emissions)<br />

i. <strong>Boiler</strong> Mact<br />

NO x, SO 2, CO, Hg, Hydrocarbons (HC = unburned fuel = H xC x =<br />

VOCs = Volatile Organic Compounds) <strong>and</strong> particulates are major<br />

contributors to smog. When breathed in, they combine with<br />

water <strong>and</strong> irritates throat <strong>and</strong> lungs, aggravating conditions such<br />

as asthma.<br />

Some countries in the world have<br />

comparatively little pollution control.<br />

A few decades ago, the US faced similar<br />

health <strong>and</strong> environmental threats.<br />

EPA <strong>Boiler</strong> MA<strong>CT</strong><br />

(Maximum Achievable Control Technology).<br />

US federal EPA st<strong>and</strong>ards <strong>and</strong> incentives to reduce boiler emissions.<br />

M<strong>and</strong>atory restrictions, along<br />

with simple social environmental<br />

awareness (which drives<br />

voluntary restrictions), has<br />

dramatically improved air quality<br />

across the country.<br />

P a g e 95


<strong>CW</strong><br />

ii. Acid Rain<br />

Acid Rain<br />

Nitric Acid<br />

Sulfuric Acid<br />

pH 4 <strong>and</strong> less damage leaves <strong>and</strong><br />

needles, preventing a plant from<br />

getting energy from the sun.<br />

Fish are seriously affected<br />

when pH drops under 4.0<br />

Prior NOx levels<br />

Current<br />

From 1970 to 2015, aggregate national emissions of the six common pollutants alone dropped<br />

an average of 70 percent while gross domestic product grew by 246 percent. This progress<br />

reflects efforts by state, local <strong>and</strong> tribal governments; EPA; private sector companies;<br />

environmental groups <strong>and</strong> others.<br />

Prior<br />

Current<br />

P a g e 96


<strong>CW</strong><br />

Ground Level<br />

Ozone (O 3 )<br />

iii. CO, HC <strong>and</strong> Ground Level Ozone<br />

+ Heat<br />

Good Ozone: Nothing lives in the<br />

Stratosphere, so upper atmosphere ozone<br />

doesn’t harm anything. All UV-C <strong>and</strong> most<br />

UV-B (95-99%) radiation does not pass<br />

through the ozone layer, protecting life<br />

from skin cancer <strong>and</strong> sun burn.<br />

Unstable ozone (O3) quickly reverts back to more<br />

stable O2 releasing heat (exothermic reaction)<br />

Ozone<br />

concentration<br />

quickly dissipates<br />

with no light<br />

(+O2)<br />

Bad, Ground Level Ozone:<br />

Extended exposure irritates <strong>and</strong><br />

damages lung tissue.<br />

Ozone also damages vegetation <strong>and</strong> ecosystems<br />

by inhibiting the ability of plants to open the<br />

microscopic pores on their leaves to breathe.<br />

Open stomata<br />

Closed stomata<br />

Ozone burn damage<br />

P a g e 97


Stoichiometric flame →<br />

Flame extinction →<br />

<strong>CW</strong><br />

iv. NOx, HC <strong>and</strong> CO Control<br />

NO x<br />

NO forms alongside CO 2 in any<br />

flame during combustion<br />

In high temperature environments, N 2 <strong>and</strong> O 2 become<br />

less stable, NO formation becomes more frequent.<br />

NO then forms to more stable NO 2<br />

NOx formation grows exponentially as<br />

flame temperature increases<br />

1) Reduce NOx by reducing peak flame temperature<br />

Naturally occurring<br />

NO x in any flame<br />

Elevated flame temperature, along with more available<br />

O 2, NO x emissions reaches maximum concentration<br />

around 6% excess O 2 (around 35% Excess Air)<br />

Lowest flame NO x at stoichiometric<br />

flame <strong>and</strong> at flame extinction<br />

More air, cooler flame (Less NOx) →<br />

Near flame extinction<br />

(too much air / not<br />

enough fuel)<br />

2) Reduce NO x by controlling excess O 2<br />

P a g e 98


<strong>CW</strong><br />

Pre-Combustion Control<br />

Staged Combustion<br />

Staged Combustion<br />

Staged Air Burner: Insufficient air for full combustion in<br />

primary zone limits flame temperature. Peak flame<br />

temperature is reduced.<br />

Staged Air Burner: Secondary (<strong>and</strong> sometimes tertiary) air is introduced later where lower<br />

temperature complete combustion takes place. Lean Zone burning enables Carbon to<br />

“take back” some of the Oxygen from the NO molecules, further reducing NO x.<br />

4NO + CH 4 → 2H 2O + 2N 2 + CO 2<br />

Lean Zone Burning<br />

Some burners inject steam or even water<br />

at the quench zone to help cool the flame.<br />

Over fire air completes<br />

combustion at a lower<br />

temperature.<br />

The fuel itself, if introduced in stages, can also<br />

reduce flame temperature.<br />

P a g e 99


<strong>CW</strong><br />

Premix Low NO x Burners<br />

By mixing the exact proportion of air <strong>and</strong> fuel<br />

ahead of the flame, premix ultra-low NO x<br />

burners focus on minimum excess air to help<br />

control emissions.<br />

To help keep the fine mesh holes from<br />

plugging, it is very common to have a filter<br />

for incoming air<br />

P a g e 100


<strong>CW</strong><br />

FGR<br />

Flue Gas Recirculation, recycles a portion of used, inert (low O2) combustion gases. Two results: 1) the burning of the flame<br />

becomes “stretched out”, lowering peak flame temperature <strong>and</strong> 2) lower excess O2, reducing chance of NOx formation.<br />

Exhaust recirculation at<br />

inner flame burn zone<br />

Exhaust recirculation at<br />

outer flame burn zone<br />

P a g e 101


<strong>CW</strong><br />

Flue Gas Recirculation, recycles a portion of used, inert (low O2) combustion gases from the stack to the burner.<br />

Two results: 1) the burning of the flame becomes “stretched out”, lowering peak flame temperature <strong>and</strong> 2)<br />

lower excess O2, reducing chance of NOx formation.<br />

No FGR, higher peak<br />

temperature flames<br />

Less concentrated, lower<br />

temperature burning points<br />

in FGR, less NO x emissions<br />

A mod motor controls this<br />

d<strong>amp</strong>er for incoming flue gas.<br />

(Closes when boiler is off)<br />

EGR valves (Exhaust Gas Recirculation) on<br />

automobile motors operate under the<br />

same principle as FGR<br />

P a g e 102


v. CO₂ (Green House Gasses)<br />

Greenhouse Gasses (CO 2 ) causes:<br />

Global Cooling (1970’s)<br />

Global Warming (1990’s)<br />

Climate Change (2010’s)<br />

<strong>CW</strong><br />

P a g e 103


<strong>CW</strong><br />

E) Physics<br />

1. Ideal Gas Law: PV=nRT<br />

When Temperature↑ <strong>and</strong> Volume stays the same, then Pressure↑<br />

= BOILER<br />

When Pressure↑ <strong>and</strong> Volume stays the same, then Temperature↑ = AIR COMPRESSOR<br />

The INTERCOOLER uses water or<br />

outside air to cool compressed<br />

air in-between stages.<br />

2 nd Stage<br />

1 st Stage<br />

When Pressure↓ <strong>and</strong> Volume stays the same, then Temperature↓ = Propane Tank<br />

P↓ × V c = T↓ : Refrigeration<br />

ICE !<br />

Hot<br />

(Restricting Orifice)<br />

Cold<br />

Various types of expansion valves<br />

Air Conditioning<br />

* Simplified for training purposes. Actual:<br />

P a g e 104


<strong>CW</strong><br />

If<br />

↓<br />

then<br />

↑ ↓ ↑<br />

If<br />

↑<br />

↑ ↑<br />

then<br />

↓ ↑ ↓<br />

P a g e 105


<strong>CW</strong><br />

i. Heat Pump<br />

Around 37°F many heat pumps reach what is<br />

called the balance point where the heat pump<br />

needs to run constantly to maintain a<br />

comfortable indoor temperature. Efficiency<br />

drops as you approach this point.<br />

Reversing Valve<br />

P a g e 106


<strong>CW</strong><br />

iii. Air Compressor<br />

Atomizing <strong>and</strong><br />

Control Air<br />

Holding tanks<br />

Expansion control<br />

Incoming air filters<br />

Point of use<br />

compressed air<br />

filters<br />

Inline<br />

condensation<br />

removal<br />

P a g e 107


Temperature<br />

<strong>CW</strong><br />

2) Temperature vs Heat Content<br />

: through nonmoving or solid parts<br />

: through moving substances, such<br />

as water, steam, or air<br />

: through energy waves, even<br />

travels through a vacuum (such as the sun<br />

transfers heat to Earth through space)<br />

Latent heat of<br />

liquefaction<br />

Latent heat of<br />

vaporization<br />

vaporizing →<br />

BTUs<br />

Latent Heat:<br />

BTUs<br />

← condensing<br />

P a g e 108


Temperature<br />

<strong>CW</strong><br />

@ 0 psig = 1 Atm = sea level<br />

Saturated Steam = steam at the boiling pt.<br />

Superheated<br />

(above the<br />

boiling pt.)<br />

32°F 212°F<br />

0°C 100°C<br />

970.3 BTUs to boil 1 # of H 2O<br />

Water at 32°F<br />

contains 0 BTUs<br />

(beginning point for<br />

BTU measurement)<br />

-144BTU 0BTU 180BTU 1150.3BTU<br />

Heat Content<br />

1 BTU = heat needed to change 1 lb. of water 1°F<br />

To change 1 lb of:<br />

Ice 1º F, add 0.5 Btu<br />

Steam 1º F, add 0.45 Btu<br />

1 BTU also is about equal<br />

to heat given off by one<br />

match stick burning<br />

How many BTUs does one pound of steam contain at 212°F at Sea Level?<br />

32 ºF water to 212 ºF water takes 180BTU/lb. 180<br />

212 ºF water to 212 ºF steam takes 970.3BTU/lb. +970.3<br />

1150.3 BTUs<br />

P a g e 109


<strong>CW</strong><br />

3) Pressure<br />

i. Vapor Pressure<br />

Absolute Zero = Perfect Vacuum<br />

Vapor Pressure<br />

0<br />

Vacuum<br />

Maximum water<br />

content in air =<br />

saturation point<br />

Evaporation or<br />

Vaporization<br />

Vaporization ><br />

Condensation<br />

Vaporization =<br />

Condensation<br />

Equilibrium<br />

Pressure changes with Temperature (molecules<br />

move around more when heated)<br />

Saturation Point<br />

(Equilibrium) changes with<br />

Temperature <strong>and</strong> Pressure<br />

<strong>and</strong> becomes the<br />

Saturation Curve<br />

P a g e 110


<strong>CW</strong><br />

Saturation Curve<br />

Saturation Curve<br />

Saturation Curve<br />

1000gH20 / Kg Air<br />

all air is water vapor<br />

Equilibrium = Saturation Curve = Dew Point<br />

Water vapor in air<br />

400g<br />

300g<br />

200g<br />

100g<br />

0 K= -273°C= -460°F<br />

No water vapor in air<br />

No molecular movement<br />

Absolute zero temperature<br />

temperature increase →<br />

373 K=100°C=212°F<br />

All water vaporized<br />

(@0psig)<br />

0g<br />

Water droplets, suspended in the air,<br />

form as humid air temperature drops<br />

past the saturation curve.<br />

←temperature drop<br />

H 2O falls out as dew <strong>and</strong> frost,<br />

OR rain <strong>and</strong> snow.<br />

f<br />

r<br />

o<br />

s<br />

t<br />

d<br />

e<br />

w<br />

Freeze Point<br />

P a g e 111


Air Moisture Content →<br />

<strong>CW</strong><br />

Adiabatic Process<br />

Adiabatic Process<br />

Moist air rises over mountains: lower air pressure,<br />

vapor condenses on dust particles forming<br />

suspended droplets or ice crystals (clouds).<br />

Descending clouds increase in<br />

air pressure, clouds evaporate<br />

back into vapor = Rain Shadow.<br />

Rain/Snow →<br />

Temperature Increase →<br />

Same principle applies<br />

to large air masses<br />

P a g e 112


Extreme<br />

Precipitation<br />

<strong>CW</strong><br />

A combination of the adiabatic process <strong>and</strong><br />

the inability of cold air to hold moisture, the<br />

Dry Valleys of Antarctica is said not to have<br />

any measurable precipitation for over<br />

2,000,000 years.<br />

The Brahmaputra Mountains in Eastern<br />

India reports the highest average rainfall of<br />

467 inches per year.<br />

P a g e 113


Water<br />

to Ice Expansion<br />

to Ice<br />

Expansion<br />

<strong>CW</strong><br />

Slightly<br />

negative<br />

Slightly<br />

positive<br />

Ice’s seed molecule has six<br />

equal sides. As more H2O<br />

molcules attach to the seed<br />

molecule, equal branches form<br />

at 60˚ angles.<br />

Electrical charge can<br />

affect water flow<br />

60°<br />

Water to Ice Volume Exp<strong>and</strong>s about 10%<br />

Which is about the same as:<br />

10 ft 3 water making 11 ft 3 of ice<br />

…, <strong>and</strong> Ice Floats (less dense)<br />

60°<br />

…, <strong>and</strong> breaks lines<br />

P a g e 114


Sea Level<br />

Pressure<br />

ii. Pressure vs Temperature Chart<br />

Phases of Water<br />

Pressure vs. Temperature<br />

<strong>CW</strong><br />

Freeze Point<br />

Curve<br />

Evaporation<br />

Curve<br />

14.7 psia<br />

= 0 psig<br />

= 1 atm<br />

= 1 bar<br />

Solid<br />

As Pressure increases, H 2O favors<br />

the state that takes up less space,<br />

NOTICE: the slight backwards freeze<br />

Sea Level<br />

curve <strong>and</strong> the forward boiling curve.<br />

Vapor<br />

Triple<br />

Point<br />

(not to scale)<br />

Absolute Zero<br />

(Theoretical)<br />

Temperature<br />

32°F<br />

0°C<br />

212°F<br />

100°C<br />

Solid<br />

Vapor<br />

Where Freeze Point Curve, Evaporation Curve <strong>and</strong> Sublimation Curves Meet<br />

= 0.09psia <strong>and</strong> 32.02°F<br />

Triple<br />

Point<br />

P a g e 115


<strong>CW</strong><br />

i. Sublimation/Deposition<br />

Home Unit<br />

Freeze Dryer<br />

Sublimation<br />

= Freeze Dryers<br />

Low temperature <strong>and</strong> pressure<br />

Vacuum<br />

Chamber<br />

2. About 90% of the food’s<br />

moisture is drawn off by<br />

sublimating the ice at<br />

temperature as low as -60º F<br />

P a g e 116


<strong>CW</strong><br />

Freezing/Melting<br />

Newly formed water<br />

from the higher<br />

pressure on the ice<br />

directly underneath the<br />

blades acts as a<br />

lubricant.<br />

Regelation: with pressure<br />

gone, liquid returns to sold.<br />

Lake Mille Lacs, MN<br />

On rare occasions, regelation can<br />

occur when the water at the bank<br />

of a heavily ice covered, deep lake<br />

is exposed to lower psi <strong>and</strong> the<br />

water in the lake is at or below<br />

freezing. Water will “flash” into<br />

ice <strong>and</strong> move forward until<br />

backpressure stops the reaction.<br />

P a g e 117


<strong>CW</strong><br />

Boiling/Condensing<br />

Vapor Cone: condensation by extreme high pressure<br />

High altitude vapor cones are<br />

actually suspended ice crystal<br />

cones…. Deposition !<br />

As a result of the sudden expansion of the nuclear explosion, high psi<br />

increase condenses vapor into suspended water droplets. This water then<br />

evaporates back to invisible vapor as the high-pressure shock wave passes.<br />

P a g e 118


<strong>CW</strong><br />

iii. Gauge vs Absolute<br />

psig<br />

(gauge)<br />

psia<br />

(absolute)<br />

H 2O<br />

boiling pt<br />

Perfect Vacuum -14.7 0 °F<br />

Near Vacuum -14.5 0.2 53°<br />

Mt. Everest -5.6 9.1 157°<br />

Pheonix, AZ -0.6 14.1 210.1°<br />

Sea Level 0 14.7 212°<br />

Dead Sea 0.8 15.5 215°<br />

Ex<strong>amp</strong>le: a boiler psi 100 114.7 337°<br />

Sea Level =<br />

1 atmosphere<br />

= 14.7 psia<br />

= 0 psig<br />

Space = a vacuum<br />

psia = 0<br />

psig = -14.7<br />

Mt. Everest = 29,029 ft<br />

Dead Sea = -1378 ft<br />

Pheonix, AZ = 1086 ft<br />

The boiling point changes about 1˚<br />

for each 550 ft change in elevation<br />

High altitude cooking instructions: 3500 to 6500 ft<br />

Increase simmer time to 19 min (with lower boiling<br />

temperature, it takes longer to cook food.)<br />

Vacuum<br />

pump<br />

Vacuum<br />

jar<br />

P a g e 119


<strong>CW</strong><br />

iv. Water Hammer: Valve Induced<br />

P a g e 120


<strong>CW</strong><br />

Cavitation:<br />

Sudden implosion of low pressure steam bubbles back to<br />

water causes miniature shock waves, damaging metal<br />

surface.<br />

Propeller Cavitation<br />

Flashing: when<br />

water drops in<br />

pressure by passing<br />

through a<br />

restrictive orifice, it<br />

boils. Damage<br />

from flashing is<br />

smooth.<br />

Valve Cavitation:<br />

sounds like gravel<br />

moving through pipe<br />

Cavitation is when<br />

the bubbles violently<br />

implode back to<br />

liquid. Damage from<br />

cavitation is rough<br />

P a g e 121


<strong>CW</strong><br />

v. Water Phase Expansion<br />

Water to Vapor Expansion<br />

Water to Vapor<br />

When Temperature ↑ <strong>and</strong> Pressure stays the same, then Volume must ↑<br />

v = 0.01672 ft 3<br />

Now imagine a 500 gallon boiler rupturing <strong>and</strong> instantly filling the building with 111,700 ft 3<br />

(100 hot air balloons) of flash steam<br />

Denver: 500 gallon boiler explosion<br />

P a g e 122


Psig<br />

Inches of Hg (Vacuum)<br />

<strong>CW</strong><br />

4) Steam Table<br />

Gauge<br />

Pressure<br />

Psia<br />

Boiling<br />

Point<br />

ºF<br />

Btu content of<br />

1 lb. of water<br />

at B.P.<br />

Btu needed to<br />

turn 1 lb. of water<br />

at B.P. into steam<br />

Btu content<br />

of saturated<br />

steam<br />

Volume<br />

of water<br />

ft 3 /lb at B.P.<br />

Volume<br />

of steam<br />

ft 3 /lb at B.P.<br />

29.7 0.09 32.02 0 1075.8 1075.8 0.01602 3306<br />

29.5 0.2 53 21 1063.8 1085.0 0.01603 1526<br />

27.9 1.0 102 70 1036.3 1106.0 0.01614 334<br />

19.7 5.0 162 130 1001.0 1131.0 0.01641 73.5<br />

9.6 10.0 193 161 982.1 1143.3 0.01659 38.4<br />

7.5 11.0 198 166 979.3 1145.0 0.01665 35.1<br />

5.5 12.0 202 170 976.6 1146.6 0.01667 32.4<br />

3.5 13.0 206 174 974.2 1148.1 0.01667 30.1<br />

1.4 14.0 210 178 971.9 1149.5 0.01670 28.0<br />

0 14.7 212 180 970.3 1150.3 0.01672 26.8<br />

1 15.7 216 184 967 1152 0.01675 24.8<br />

2 16.7 219 187 965 1153 0.01677 23.4<br />

5 19.7 227 196 960 1156 0.01683 20.1<br />

10 24.7 240 208 952 1160 0.01692 16.3<br />

15 29.7 250 219 945 1164 0.01700 13.8<br />

20 34.7 259 228 939 1167 0.01708 11.9<br />

25 39.7 267 236 933 1170 0.01714 10.5<br />

30 44.7 274 243 928 1172 0.01721 9.4<br />

40 54.7 287 256 919 1176 0.01732 7.8<br />

50 64.7 298 267 911 1179 0.01743 6.7<br />

60 74.7 307 277 904 1182 0.01752 5.8<br />

70 84.7 316 286 898 1184 0.01761 5.2<br />

80 94.7 324 295 891 1186 0.01769 4.7<br />

90 104.7 331 302 886 1188 0.01777 4.2<br />

100 114.7 337 309 880 1189 0.01785 3.9<br />

110 124.7 344 316 875 1191 0.01792 3.6<br />

120 134.7 350 322 870 1192 0.01799 3.3<br />

130 144.7 355 328 866 1193 0.01806 3.1<br />

140 154.7 360 333 861 1195 0.01812 2.9<br />

150 164.7 366 339 857 1196 0.01818 2.7<br />

200 214.7 388 362 837 1199 0.01847 2.1<br />

250 264.7 406 382 820 1202 0.01873 1.7<br />

etc.↓ 300 417 394 809 1203 0.01890 1.54<br />

400 446 424 781 1205 0.01934 1.16<br />

450 456 437 767 1205 0.01955 1.03<br />

500 467 449 755 1204 0.01975 0.93<br />

600 486 472 732 1203 0.02013 0.77<br />

900 532 527 669 1195 0.02123 0.50<br />

1200 567 572 612 1183 0.02232 0.36<br />

1500 596 612 556 1167 0.02346 0.28<br />

2000 636 672 463 1135 0.02565 0.19<br />

2500 668 731 361 1191 0.02860 0.13<br />

2700 680 756 312 1068 0.03027 0.11<br />

3206.2 705 903 0 903 0.05053 0.05053<br />

Sea Level<br />

Supercritical Water refers to conditions<br />

above 3206.2 psia <strong>and</strong> 705 °F where steam<br />

<strong>and</strong> water reach a new phase.<br />

P a g e 123


Temperature ˚C →<br />

Temperature vs Enthalpy<br />

5) Temperature vs Enthalpy (Btus/Pound)<br />

<strong>CW</strong><br />

Rankine Scale<br />

Enthalpy = Btus/Pound<br />

Super Critical Vapor<br />

(= BTUs/˚F →)<br />

P a g e 124


˚F →<br />

Water<br />

Rankine Cycle: Steam Turbine<br />

<strong>CW</strong><br />

William Rankine<br />

Superheater<br />

High Pressure Turbine<br />

<strong>Boiler</strong><br />

Intermediate <strong>and</strong> Low<br />

Pressure Turbines<br />

Economizer<br />

Feed Water Pump<br />

Water <strong>and</strong> Steam<br />

Condenser<br />

Reheater<br />

Superheated Steam<br />

Enthalpy = BTU/˚F →<br />

P a g e 125


6) Flow<br />

i. Electricity<br />

Parallel:<br />

Amps increase, volts stay the same<br />

Series:<br />

Volts increase, <strong>amp</strong>s stay the same<br />

<strong>CW</strong><br />

Volts measure how hard the electricity is pushing (Electrical Force)<br />

Amps measure current, or how much electricity is flowing [Ah = Amp-hours]<br />

Watts measure how much electricity is going through the circuit (Power)<br />

Ohms (Ω) measures Resistance<br />

Note correlation<br />

Pressure: psi → Volts<br />

Flow: gpm → Amps<br />

Hydraulic HP → Watts<br />

P a g e 126


Variable Frequency Drive<br />

VFD: Affinity Law<br />

<strong>CW</strong><br />

The Affinity Law<br />

Law 1a) Air flow is directly proportional to fan speed.<br />

Ex<strong>amp</strong>le: When fan speed doubles, air flow doubles.<br />

1a) Fan Speed ↑ = Air Flow ↑<br />

Law 1b) Torque increase is proportional to the square of the fan speed increase.<br />

Ex<strong>amp</strong>le: When fan speed doubles, torque increases four times<br />

When fan speed triples, torque increases nine times 1b) (Fan Speed ↑ ) 2 = Torque ↑<br />

Law 1c) Power required is proportional to the cube of fan speed increase.<br />

Ex<strong>amp</strong>le: When fan speed doubles, power required is six times<br />

1c) (Fan Speed ↑ ) 3 = Power ↑<br />

When fan speed triples, power required is 27 times<br />

Significant Energy Savings<br />

Use only the fan speed your system is calling for.<br />

A 100 HP fan running at half speed uses the<br />

same energy as a 13 HP motor!<br />

(½) 3 x 100HP = (1/8) x 100HP = 13HP<br />

Equipment Savings<br />

Single-speed motors start abruptly:<br />

High starting torque<br />

High starting current surges (up to 8 times)<br />

Variable speed drives gradually r<strong>amp</strong> up the motor.<br />

P a g e 127


<strong>CW</strong><br />

Energy: measuring the flow change<br />

252 calories = 1 Btu<br />

1 ft 3 of natural gas ≈ 1020 Btu<br />

1 kilowatt·hr (kwh) of electricity = 3413 Btu<br />

1 pound of Coal ≈ 9,200 Btu<br />

1 pound of gasoline ≈ 14,300 Btu<br />

1 pound of diesel or fuel oil ≈ 16,000 Btu<br />

1 Therm = 100,000 Btu<br />

1 Dekatherm (DTH) = 1,000,000 Btu<br />

0.293 Watts = 1 Btu/hr<br />

1 Bhp (<strong>Boiler</strong> horsepower) = 33,472 Btu/hr<br />

1 Bhp = 34.5 lbs of steam per hr (@0psig)<br />

The Tom Thumb is especially remembered as a<br />

participant in an impromptu race with a horse-drawn car,<br />

which the horse won after Tom Thumb suffered a<br />

mechanical failure. However, the demonstration was<br />

successful, <strong>and</strong> the railroad committed to the use of<br />

steam locomotion. The boiler was pulling 40% more<br />

weight than the horse, therefore Tom Thumb was<br />

officially labelled a 1.4 horse power boiler. And BHP<br />

designation was born.<br />

Tom Thumb = 1.4 BHP<br />

P a g e 128


<strong>CW</strong><br />

ii. Poiseuille’s Law<br />

Poiseuille’s Law<br />

Basically:<br />

1) If you double the radius of the pipe,<br />

you can increase the flow by 16 times<br />

(r 4 = 2 4 = 16)<br />

2) If flow remains constant <strong>and</strong> pipe is<br />

extended, then, in order to maintain a<br />

constant output pressure (P1), input<br />

pressure (P2) must increase.<br />

Note: Water is almost 8 times more viscous<br />

thinner at freezing (32˚F) than at the boiling<br />

point (212˚F).<br />

P a g e 129


<strong>CW</strong><br />

iii. Water Hammer<br />

Water slug arrestor<br />

Condensate/Vacuum Induced Water Hammer<br />

P a g e 130


<strong>CW</strong><br />

Inline Steam Separators<br />

iv. Inline Steam Separators<br />

Removing water from<br />

steam is critical to<br />

reduce damage from<br />

water hammer, TDS<br />

erosion, oxygen<br />

corrosion <strong>and</strong><br />

condensate inline sludge<br />

<strong>and</strong> scale buildup.<br />

Drip Legs<br />

P a g e 131


<strong>CW</strong><br />

v. Flow Change - Energy<br />

Energy: measuring the flow change<br />

252 calories = 1 Btu<br />

1 ft 3 of natural gas ≈ 1020 Btu<br />

1 kilowatt·hr (kwh) of electricity = 3413 Btu<br />

1 pound of Coal ≈ 9,200 Btu<br />

1 pound of gasoline ≈ 14,300 Btu<br />

1 pound of diesel or fuel oil ≈ 16,000 Btu<br />

1 Therm = 100,000 Btu<br />

1 Dekatherm (DTH) = 1,000,000 Btu<br />

0.293 Watts = 1 Btu/hr<br />

1 Bhp (<strong>Boiler</strong> horsepower) = 33,472 Btu/hr<br />

1 Bhp = 34.5 lbs of steam per hr (@0psig)<br />

The Tom Thumb is especially remembered as a<br />

participant in an impromptu race with a horse-drawn car,<br />

which the horse won after Tom Thumb suffered a<br />

mechanical failure. However, the demonstration was<br />

successful, <strong>and</strong> the railroad committed to the use of<br />

steam locomotion. The boiler was pulling 40% more<br />

weight than the horse, therefore Tom Thumb was<br />

officially labelled a 1.4 horse power boiler. And BHP<br />

designation was born.<br />

Tom Thumb = 1.4 BHP<br />

P a g e 132


<strong>CW</strong><br />

vi. Piping<br />

Carbon Steel<br />

Black Galvanized Steel Pipe<br />

Stainless Steel<br />

When bare steel is exposed to air, it quickly<br />

forms an oxide layer (Fe 2O 3). This passivating<br />

layer will not corrode further unless disrupted.<br />

Iron Rust<br />

Galvanized Pipe<br />

Metallic Zinc coated surface. Zinc (Zn) acts as a sacrificial anode <strong>and</strong> corrodes<br />

first, leaving the structurally strong steel undamaged (…until all the zinc is gone).<br />

Primary White Rust (ZnO)<br />

Secondary Iron Rust<br />

Stainless Steel Pipe<br />

Very durable Dichromium Trioxide surface; 1 to 10 molecules thick.<br />

Chromium<br />

P a g e 133


<strong>CW</strong><br />

Temporary/Seasonal<br />

F) <strong>Boiler</strong> Layup/Seasonal Shut Down<br />

Shutdown<br />

WET LAYUP<br />

Steel <strong>Boiler</strong>s < 30 days <strong>and</strong> Cast-Iron Sectionals<br />

Two to seven days before a wet layup, water chemistry should be<br />

increased to the following levels:<br />

• 200 to 400 PPM sulfite<br />

• 600 to 800 ppm hydroxide alkalinity<br />

• Scale/corrosion inhibitor in normal ranges for on-line operations<br />

• Periodically check water level for leaks<br />

DRY LAYUP<br />

Steel <strong>Boiler</strong>s > 30 days<br />

days<br />

• Drain <strong>and</strong> mechanically dry inside of boiler to prevent stagnant water corrosion (rust).<br />

• A moisture absorbing material, such as quicklime (2 #s/30 ft³) or silica gel (5 #s/30 ft³ of<br />

boiler volume) may be placed on trays inside the drums to absorb residual moisture from the<br />

air.<br />

• Use Humidity Cards to confirm internals are dry.<br />

• Check Humidity Cards monthly during shutdown.<br />

Dessicants can be reused by drying between uses.<br />

Simply warm dessicant to 200˚F for 1 hour to<br />

expel any moisture.<br />

P a g e 134


<strong>CW</strong><br />

G) Carbon Monoxide<br />

Carbon Monoxide<br />

Carbon monoxide absorbs an additional<br />

oxygen atom from the sensor which then<br />

sends a positive hydrogen atom to the<br />

counter electrode producing a small current<br />

(detection of CO)<br />

P a g e 135


<strong>CW</strong><br />

H) Efficiency<br />

1) Causes<br />

Causes<br />

Improper air/fuel ratio, soot blower failure <strong>and</strong>/or poor cleaning scheduling.<br />

No. 6 Fuel Oil<br />

Natural Gas fired<br />

Cast Iron Sectional<br />

Soot actually protects the tube from flame<br />

temperature. However, since the tube represents<br />

the cooler section of the refractory <strong>and</strong> since soot<br />

is very hydroscopic (water attracting), condensate<br />

(H 2O is a combustion byproduct) may form in the<br />

soot. This then absorbs Carbon dioxide from the<br />

exhaust. CO 2 breaks down <strong>and</strong> forms carbonic<br />

acid (pH 5.5) <strong>and</strong> fire side corrosion takes place.<br />

Biomass water<br />

tube failure<br />

Scale Thickness (inches) 1/32 1/25 1/20 1/16 1/11 1/9<br />

% Fuel Loss 7 9 11 13 15 16<br />

Tube becomes insulated. Water unable to remove<br />

heat. Steel temperature increases <strong>and</strong> softens.<br />

There are only two ways to quickly remove scale<br />

build up: acid flush <strong>and</strong> mechanical scrubbing.<br />

Fire tube scale<br />

Bulging boiler tubes<br />

due to scale buildup<br />

A broken baffle causes a sudden increase in stack temperature.<br />

P a g e 136


<strong>CW</strong><br />

Hole Size 20 psi 25 psi 100 psi 200 psi<br />

.05 inch 20 MBtu/yr 25 MBtu/yr 100 MBtu/yr 150 MBtu/yr<br />

.10 inch 100 MBtu/yr 200 MBtu/yr 500 MBtu/yr 800 MBtu/yr<br />

Damaged tubes may leak. The escaping boiler<br />

water will cool the fire <strong>and</strong> the stack<br />

temperature drops. Note water stains on metal.<br />

Serious Problems!<br />

P a g e 137


<strong>CW</strong><br />

Flue gas analyzer<br />

O 2 Sensor<br />

Ground level air<br />

Very good<br />

Burner is<br />

off<br />

P a g e 138


<strong>CW</strong><br />

The difference in Oxygen<br />

concentration between stack<br />

gases <strong>and</strong> normal air creates an<br />

electrical current across the ZrO2<br />

(zirconia) layer on the platinum<br />

(Pt) electrodes.<br />

Opacity meters measure visible<br />

smoke in stack<br />

P a g e 139


Increase<br />

<strong>CW</strong><br />

Effects (symptoms)<br />

2) Effects<br />

Broken<br />

Baffle<br />

Unchecked Spalling<br />

.<br />

Soot<br />

Gradual Increase<br />

FD (forced draft) <strong>and</strong>/or<br />

ID (induced draft) Fan Failure<br />

Smoke<br />

Water cannot carry<br />

the heat away<br />

Softener <strong>and</strong>/or RO unit failure<br />

<strong>and</strong>/or improper chemical balance<br />

Scale<br />

(Soot does not damage tubes, soot actually<br />

protects tubes from high flue gas temperature)<br />

Inadequate boiler tune-up scheduling<br />

Decrease<br />

Regular, yearly boiler<br />

tune-ups recalibrate<br />

air/fuel mixture to help<br />

maximize efficiency.<br />

P a g e 140


<strong>CW</strong><br />

I) Appendix: Periodic Table<br />

P a g e 141


<strong>CW</strong><br />

µ<br />

µmho ...................................................................................... 11<br />

4<br />

4FV ......................................................................................... 44<br />

A<br />

Absolute Zero Psi ................................................................. 110<br />

Absolute Zero Temperature ......................................... 111, 115<br />

Acid .................................................................................. 6, 37<br />

Acid Rain ................................................................................ 95<br />

Activated Carbon ................................................................... 27<br />

Actuator ...................................................................... 16, 54<br />

Adiabatic Process ................................................................. 112<br />

Aerobic .................................................................................. 60<br />

Affinity Law .......................................................................... 127<br />

AFR ................................................................................... 88, 89<br />

Air Bleed Valve ....................................................................... 46<br />

Air Composition ...................................................................... 88<br />

Air Compressor ............................................................ 104, 107<br />

Air Conditioner ..................................................................... 104<br />

Air Scoop ................................................................................ 46<br />

Air Separator .......................................................................... 46<br />

Air to Fuel Ratio ...................................................................... 88<br />

Air Vent .................................................................................. 46<br />

Air/Fuel Ratio ............................................................ 138<br />

Algae ...................................................................................... 63<br />

Alkaline .............................................................................. 6<br />

Alkalinity ....................................................................... 22<br />

American Legion ................................................................... 64<br />

Amines ................................................................................... 38<br />

Ammonia .................................................................................. 6<br />

Amperes ............................................................................... 126<br />

Amps ................................................................................... 126<br />

Anerobic ................................................................................ 60<br />

Anions .................................................................................... 24<br />

Anode ............................................................................... 57, 58<br />

Antarctica ............................................................................. 113<br />

Anthracite .............................................................................. 80<br />

Antifreeze......................................................................... 49, 50<br />

Anti-Syphon ........................................................................... 44<br />

Aquifer ................................................................................... 20<br />

Atmospheric Burner ............................................................... 83<br />

Azeotrope .............................................................................. 72<br />

B<br />

Bacteria ............................................................................ 27, 60<br />

Balance Point ....................................................................... 106<br />

Ball Valve ............................................................................... 17<br />

Base ....................................................................................... 6<br />

Bellevue Stratford Hotel ........................................................ 64<br />

Bernoulli .............................................................................. 130<br />

BHP .............................................................................. 128, 132<br />

Biocide ................................................................................... 66<br />

Bituminous ............................................................................. 80<br />

Black Out ................................................................................ 77<br />

Black Steel Pipe .................................................................... 133<br />

Bleach .............................................................................. 66, 68<br />

Blowdown ............................................................................ 16<br />

Blowdown Separator .................................................... 17<br />

Blowdown Tank .......................................................... 17, 18<br />

<strong>Boiler</strong> Horsepower ....................................................... 128, 132<br />

<strong>Boiler</strong> MA<strong>CT</strong> ........................................................................... 95<br />

Bottom Blowdown ........................................................... 17<br />

Bromine ........................................................................... 59, 66<br />

BTU content ......................................................................... 109<br />

Burners .............................................................................. 80<br />

C<br />

CaCO3 .................................................................................... 54<br />

Calcium .............................................................................. 22<br />

Calcium Carbonate ................................................................ 54<br />

Calcium Sulfate ...................................................................... 54<br />

Calorie .......................................................................... 128, 132<br />

C<strong>and</strong>y Bar ..................................................................... 128, 132<br />

Carbon Dioxide .................................................................... 103<br />

Carbon Monoxide ................................................................ 135<br />

Carryover.......................................................................... 16<br />

Cast Iron Sectional ............................................................... 134<br />

Catalytic Sorbent Injection .................................................. 100<br />

Cathode ...................................................................... 57, 58, 59<br />

Cations ................................................................................... 24<br />

Caustic Embrittlement ............................................. 10<br />

Cavitation ............................................................................. 121<br />

Ceramic Mesh Burner ............................................................ 91<br />

CFCs ................................................................................. 70, 72<br />

Charcoal ................................................................................. 27<br />

Chemical Feed Pump ............................................................. 43<br />

Cherrapunjee ....................................................................... 113<br />

Chlorine ............................................................... 20, 59, 66, 71<br />

Chromium ............................................................................ 133<br />

Climate Change .................................................................... 103<br />

Coal ............................................................... 80, 128, 132, 138<br />

Combustion Triangle .............................................................. 82<br />

Complete Combustion ................................................ 138<br />

P a g e 142


<strong>CW</strong><br />

Compressed Air ...................................................................... 93<br />

Compression Tank .................................................................. 53<br />

Condensate .......................................................................... 37<br />

Condensate Neutralizing Tubes ............................................. 52<br />

Condensation ............................................................... 110, 115<br />

Condensing <strong>Boiler</strong> .................................................................. 52<br />

Conduction ........................................................................... 108<br />

Conductivity ............................................................... 11, 12, 16<br />

Continuous Blowdown .................................................. 16<br />

Convection ...................................................................... 87, 108<br />

Cyclohexylamine .................................................................... 38<br />

D<br />

Dead Sea .............................................................................. 119<br />

DEAE ....................................................................................... 38<br />

Deaerator ......................................................................... 34, 35<br />

Decatherm ................................................................... 128, 132<br />

DEHA ...................................................................................... 36<br />

Demineralizer ................................................................... 24, 25<br />

Deposition .................................................................... 115, 118<br />

Dessicant .............................................................................. 134<br />

Dielectric Union ..................................................................... 57<br />

Diesel ..................................................................... 74, 128, 132<br />

Diethyl Aminoethanol ............................................................ 38<br />

Diethyl Hydroxylamine ........................................................... 36<br />

Diffuser .................................................................................. 89<br />

Diffusion Flame ....................................................................... 86<br />

Drip Legs .............................................................................. 131<br />

Dry Layup ............................................................................. 134<br />

Dry Steam............................................................................. 124<br />

Dry Valleys ........................................................................... 113<br />

Dual Fuel Burners ................................................................... 93<br />

E<br />

Eddie Current ......................................................................... 62<br />

Efficiency ............................................................. 136, 140<br />

EGR ....................................................................................... 102<br />

Electrodes .............................................................................. 54<br />

Electrolysis ............................................................................. 68<br />

Electromagnet ........................................................................ 54<br />

Elephant ............................................................................... 126<br />

Emissions ............................................................................... 95<br />

Energy .......................................................................... 128, 132<br />

Enthalpy ............................................................................... 124<br />

EPA ................................................................................... 80, 95<br />

Ethylene Glycol ...................................................................... 49<br />

Evaporation .......................................................................... 115<br />

EVOH ...................................................................................... 48<br />

Excess Air ..................................................................... 138<br />

Excess Oxygen ........................................................................ 98<br />

Exhaust Gas Recirculation .................................................... 102<br />

Exp<strong>and</strong>er .............................................................................. 8, 9<br />

Expansion Joint ...................................................................... 53<br />

Expansion Tank ...................................................................... 53<br />

Expansion Valve ................................................................... 104<br />

Expansion, water to ice ........................................................... 6<br />

F<br />

Fan Speed ............................................................................ 127<br />

Feed Water ............................................................................ 34<br />

FGR .............................................................................. 101, 102<br />

Filming Amines ...................................................................... 38<br />

Fire Eye .................................................................................. 85<br />

Firm Rate ............................................................................... 93<br />

Flame Envelope ...................................................................... 87<br />

Flame Extinction .................................................................... 98<br />

Flash Tank ....................................................................... 17<br />

Flat Sight Glass ................................................................... 75<br />

Flue Gas Analyzer .................................................... 138<br />

Flue Gas Recirculation ................................................. 101, 102<br />

Food Grade Antifreeze........................................................... 49<br />

Foot Valve .............................................................................. 43<br />

Forced Draft Burner ............................................................... 83<br />

Four Function Valve ............................................................... 44<br />

Free Chlorine ......................................................................... 27<br />

Freeze Drying ....................................................................... 116<br />

Freeze Point ........................................................................... 49<br />

Freeze Point Curve ............................................................... 115<br />

Fuel Oil ............................................................ 74, 128, 132<br />

G<br />

Galvanic corrosion ................................................................. 57<br />

Galvanized Pipe ................................................................... 133<br />

Gasoline ....................................................................... 128, 132<br />

Glide ....................................................................................... 72<br />

Global Warming ................................................................... 103<br />

Golden Gate Bridge ............................................................. 119<br />

Grain of Hardness .................................................................. 21<br />

Gravel .................................................................................. 121<br />

Greenhouse Gas .................................................................. 103<br />

H<br />

Halides ................................................................................... 59<br />

Hambuger Helper ................................................................ 119<br />

Hardness ............................................................................ 22<br />

HCFCs ............................................................................... 70, 72<br />

Heat Content ....................................................................... 109<br />

Heat Gun ................................................................................ 39<br />

Heat Pump ........................................................................... 106<br />

HEDP ..................................................................................... 55<br />

Hexagonal ................................................................................ 6<br />

Hexagonal Crystal ................................................................ 114<br />

HFCs ................................................................................. 70, 72<br />

Hogged Fuel ........................................................................... 77<br />

Humidity Cards .................................................................... 134<br />

Hydrastep .............................................................................. 75<br />

Hydraulic HP ........................................................................ 126<br />

Hydrazine ............................................................................... 36<br />

P a g e 143


<strong>CW</strong><br />

Hydrofluorocarbons ............................................................... 70<br />

Hydrogen .............................................................................. 6<br />

Hydroxide ............................................................................ 6<br />

Hypobromous Acid ................................................................ 66<br />

Hypochlorous Acid ................................................................ 66<br />

I<br />

Ice Scates ............................................................................. 117<br />

Ice Tsunami .......................................................................... 117<br />

Ideal Gas Law ...................................................... 19, 104, 122<br />

Ignition Transformer .............................................................. 85<br />

Impeller ................................................................................ 121<br />

Implosion ............................................................................. 130<br />

Inc<strong>and</strong>ence ............................................................................. 87<br />

Induction Coil ......................................................................... 62<br />

Intercooler ........................................................................... 104<br />

Interruptible Rate .................................................................. 93<br />

Iodine ..................................................................................... 66<br />

Iron Crystals ................................................................ 10<br />

K<br />

Kelvin.................................................................................... 111<br />

Kerosene ................................................................................ 74<br />

Kilowatt ........................................................................ 128, 132<br />

KWH ............................................................................. 128, 132<br />

L<br />

Lake Tahoe ........................................................................... 119<br />

Laminar Flame ........................................................................ 88<br />

Lance ...................................................................................... 93<br />

Latent Heat .......................................................................... 108<br />

Layup .................................................................................... 134<br />

Lean Flame ....................................................................... 88, 98<br />

Legionella ........................................................................ 64, 65<br />

LEL .......................................................................................... 88<br />

Let Down Station............................................................ 39, 131<br />

Lignite .................................................................................... 80<br />

Liquifaction .......................................................................... 108<br />

Litmus Paper ............................................................................ 5<br />

LMI Pumps ............................................................................. 43<br />

Lower Explosive Limit ............................................................. 88<br />

Lubricant .............................................................................. 117<br />

M<br />

MA<strong>CT</strong> ............................................................................... 80, 95<br />

Magnesium .......................................................................... 22<br />

Magnetic Float ....................................................................... 75<br />

Magnetic Softener ................................................................. 32<br />

Make Up Water ...................................................................... 20<br />

Marble chips .......................................................................... 52<br />

MAWP ...................................................................................... 17<br />

Maximum Allowable Working Pressure .............. 17<br />

Membrane ....................................................................... 29, 30<br />

Mercury................................................................................ 123<br />

Metabolism ............................................................................ 69<br />

Methane ................................................................................ 74<br />

MIC ................................................................................. 60, 61<br />

Modulation Motor ............................................................... 102<br />

Mold ...................................................................................... 63<br />

Mono Lake............................................................................. 55<br />

Morpholine ............................................................................ 38<br />

Mt Everest ........................................................................... 119<br />

Myox ...................................................................................... 68<br />

N<br />

Natural Gas Composition ....................................................... 74<br />

Neutral Water .................................................................. 6<br />

Neutralizing Amines ............................................................... 38<br />

Nitogen Dioxide ..................................................................... 98<br />

Nitric Oxide ............................................................................ 98<br />

Nitrites ................................................................................... 49<br />

Nitrogen Gas .......................................................................... 53<br />

Non-metallic Coating ............................................................. 61<br />

NOx .................................................................................. 95, 98<br />

Nozzle .................................................................................... 89<br />

Nuclear Explosion ................................................................ 118<br />

O<br />

Oak ......................................................................................... 77<br />

Octane ................................................................................... 74<br />

Ohms.................................................................................... 126<br />

Oil Burners ............................................................................. 93<br />

ORP ....................................................................................... 67<br />

Over Fire Air ........................................................................... 99<br />

Oxides .................................................................................... 57<br />

Oxidizing ............................................................................... 66<br />

Oxygen barrier ....................................................................... 48<br />

Ozone ............................................................................... 67, 97<br />

Ozone Layer ........................................................................... 70<br />

P<br />

Peak Flame Temperature ...................................................... 98<br />

Peat ........................................................................................ 80<br />

Peristaltic ............................................................................... 43<br />

Peristaltic Feed Pump ............................................................ 43<br />

Pete ....................................................................................... 80<br />

PEX ......................................................................................... 48<br />

pH Chart ................................................................................... 6<br />

pH Paper .................................................................................. 5<br />

pH Probe .................................................................................. 7<br />

Phases of Water ........................................................... 109, 115<br />

Phenolphthalein ...................................................................... 5<br />

Philadelphia ........................................................................... 64<br />

Phosphate.................................................................... 22, 26<br />

Phosphates ............................................................................. 55<br />

Pickup Coil ............................................................................. 62<br />

Pitting .............................................................................. 48<br />

Pitting Corrosion .................................................................... 35<br />

P a g e 144


<strong>CW</strong><br />

Positive Displacement ............................................................ 43<br />

Potassium Chloride ................................................................ 34<br />

Pour Point ....................................................................... 74<br />

Powder River .......................................................................... 80<br />

Premix Burner ........................................................................ 91<br />

Premix Flame .......................................................................... 87<br />

Primary Air ............................................................................. 74<br />

Priming ............................................................................... 16<br />

Propane .................................................................................. 74<br />

Propane Tank ....................................................................... 104<br />

Propeller .............................................................................. 121<br />

Propylene Glycol .............................................................. 49, 50<br />

Psia ............................................................................... 119, 123<br />

Psig ............................................................................ 119, 123<br />

Punching Tubes ...................................................................... 61<br />

PxV=T ................................................................................... 104<br />

Pyrolysis .................................................................................. 86<br />

Pyrometer .............................................................................. 39<br />

Q<br />

Quaternary ammonia .............................................................. 69<br />

Quench ................................................................................... 99<br />

Quiet Pipes ........................................................................... 120<br />

Quill ........................................................................................ 43<br />

R<br />

Radiation ........................................................................ 87, 108<br />

Radiators ................................................................................ 53<br />

Rain Shadow ......................................................................... 112<br />

Rankine Scale ....................................................................... 124<br />

Raw Water ............................................................................. 20<br />

Reducing Flame ...................................................................... 87<br />

Refrigeration ........................................................................ 104<br />

Regelation ............................................................................ 117<br />

Resin Beads ..................................................................... 22<br />

Resistance ............................................................................ 126<br />

Reverse Osmosis ........................................................ 27, 29, 30<br />

Reversing Valve .................................................................... 106<br />

Rich Flame ........................................................................ 88, 98<br />

Rivets ................................................................................. 10<br />

Roaring Flame ........................................................................ 87<br />

Roll <strong>and</strong> Bead ................................................................ 10<br />

Roll <strong>and</strong> Flare................................................................... 9, 10<br />

Rotary Cup ............................................................................. 94<br />

Rotary Cup Burner ....................................................... 74<br />

Rust .................................................................................. 58, 59<br />

S<br />

Salt Bridge .............................................................................. 34<br />

Satiration Curve ................................................................... 111<br />

Saturated Steam .................................................................. 109<br />

Saturated Water .................................................................. 124<br />

Saturation Point ..................................................................... 54<br />

Saw Dust ................................................................................ 77<br />

Scale ............................................................. 22, 55, 136, 140<br />

Sea Level ...................................................................... 109, 123<br />

Seasonal Shut Down ............................................................ 134<br />

Secondary Air ................................................................ 74<br />

Sensible Heat ....................................................................... 108<br />

Siemen ................................................................................... 11<br />

Sierra Nevada Range ............................................................ 112<br />

Silica ....................................................................................... 54<br />

Slime ...................................................................................... 60<br />

Slug ...................................................................................... 130<br />

Sodium Chloride .................................................................... 34<br />

Sodium Hypochlorite ............................................................. 68<br />

Sodium Metabisulfite ............................................................ 36<br />

Solar Salt ................................................................................ 34<br />

Solenoid ................................................................................. 54<br />

Soot ................................................................................ 88, 136<br />

Soot Blower ................................................................... 136<br />

Sørensen, Søren ............................................................. 6<br />

Sparge Tube ........................................................................... 34<br />

Spark ...................................................................................... 85<br />

Spark Plug .............................................................................. 85<br />

Stack ................................................................................. 138<br />

Stack Temperature ......................................................... 88, 138<br />

Staged Air Burner................................................................... 90<br />

Staged Combustion ................................................................ 99<br />

Staged Fuel Burner ................................................................ 90<br />

Stainless Steel ...................................................................... 133<br />

Steam Separators ................................................................ 131<br />

Steam Table ......................................................................... 123<br />

Step Up Transformer ............................................................. 85<br />

Stethoscope ........................................................................... 39<br />

Stoichiometric ........................................................................ 88<br />

Stomata ................................................................................. 97<br />

Stress ........................................................................... 10, 34<br />

Stroke..................................................................................... 43<br />

Sub Saturated Water ........................................................... 124<br />

Sub-bituminous ..................................................................... 80<br />

Sublimation .................................................................. 115, 116<br />

Sulfate .................................................................................... 35<br />

Sulfite ......................................................................... 27, 35, 36<br />

Super Skins ..................................................................... 16<br />

Supercritical Steam .............................................................. 123<br />

Superheated Steam ..................................................... 109, 124<br />

Surface Blowdown ...................................................... 16<br />

Surface Tension ........................................................... 16<br />

Swirler .................................................................................... 89<br />

T<br />

TDS ................................................................................... 12, 16<br />

Termperature Glide ............................................................... 72<br />

Therm .......................................................................... 128, 132<br />

Thermal Imager ..................................................................... 39<br />

Thermocouple ....................................................................... 35<br />

P a g e 145


<strong>CW</strong><br />

Tom Thumb .................................................................. 128, 132<br />

Torque .................................................................................. 127<br />

Total Dissolved Solids ........................................... 16<br />

Triple Point ........................................................................... 115<br />

TSP ......................................................................................... 26<br />

Tubercle ................................................................................. 60<br />

Turbulent Flame ..................................................................... 88<br />

U<br />

UEL ......................................................................................... 88<br />

Ultra Low NOx ...................................................................... 100<br />

Ultra Violet Light .................................................................... 97<br />

Universal Test Paper ................................................................ 5<br />

Upper Explosive Limit ............................................................. 88<br />

V<br />

Vacuum ........................................................................ 110, 119<br />

Vacuum Chamber ................................................................ 116<br />

Vapor Cone .......................................................................... 118<br />

Vapor Pressure ..................................................................... 109<br />

Vaporization ................................................................. 108, 110<br />

Variable Frequency Drive ..................................................... 127<br />

Vavle Induced Water Hammer............................................. 120<br />

VFD ...................................................................................... 127<br />

Viscosity.................................................................... 74, 93<br />

Volts .................................................................................... 126<br />

W<br />

Water Column ...................................................................... 19<br />

Water Column Blowdown ..................................................... 19<br />

Water Hammer .................................................................... 120<br />

Water Slug ........................................................................... 130<br />

Water Softener ........................................................ 22, 34<br />

Water Tube ............................................................................ 9<br />

Watts ................................................................................... 126<br />

Wax ........................................................................................ 86<br />

Wet Layup ............................................................................ 134<br />

Wet Steam ........................................................................... 124<br />

White rust .............................................................................. 58<br />

Wood Fuel ............................................................................. 77<br />

Z<br />

Zeolite .............................................................................. 22<br />

Zeotrope ................................................................................ 72<br />

Zinc ...................................................................................... 133<br />

P a g e 146

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!