26.12.2012 Views

Medical Applications User Guide (pdf) - Freescale Semiconductor

Medical Applications User Guide (pdf) - Freescale Semiconductor

Medical Applications User Guide (pdf) - Freescale Semiconductor

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Medical</strong> <strong>Applications</strong><br />

<strong>User</strong> <strong>Guide</strong><br />

TM<br />

freescale.com/medical


“As a practicing surgeon,<br />

my first-hand exposure to the<br />

devices and the industry as a<br />

whole is instrumental in driving<br />

the innovative, high-quality<br />

medical solutions that we<br />

develop here at <strong>Freescale</strong>.”<br />

—Dr. José Fernández Villaseñor<br />

<strong>Freescale</strong> product manager,<br />

electrical engineer and practicing<br />

neurosurgeon


freescale.com/medical 3<br />

Introduction<br />

1.1 <strong>Freescale</strong> Offers Technology for Life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5<br />

1.2 Welcome to <strong>Freescale</strong> <strong>Medical</strong> Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6<br />

1.3 Why <strong>Freescale</strong>? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6<br />

Home Portable <strong>Medical</strong><br />

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9<br />

Telehealth Systems .........................................................10<br />

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10<br />

3.2 Home Health Hub (HHH) Reference Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11<br />

3.3 Power Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13<br />

3.4 Voltage Regulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14<br />

3.5 Keypad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15<br />

3.6 Touch-Sensing Software Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16<br />

3.7 How it Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17<br />

3.8 <strong>Freescale</strong> Touch Sensor Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17<br />

3.9 PWM Function for a Speaker Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17<br />

3.10 Wireless Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18<br />

3.11 Introduction to ZigBee Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18<br />

3.12 <strong>Freescale</strong> Solutions with ZigBee Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18<br />

3.13 Configuration Diagrams for <strong>Freescale</strong> ZigBee Transceiver Families . . . . . . . . . . . . . .18<br />

3.14 ZigBee Health Care Profile and IEEE 802.15.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18<br />

3.15 Why ZigBee Is Ideal for Wireless Vital Sign Monitoring . . . . . . . . . . . . . . . . . . . . . . . .19<br />

3.16 <strong>Freescale</strong> Enables ZigBee Health Care Profile for <strong>Medical</strong> Devices . . . . . . . . . . . . . .19<br />

3.17 Transceivers and Receivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20<br />

3.18 <strong>Freescale</strong> Continua Health Alliance Certified USB Library Software . . . . . . . . . . . . . .20<br />

3.19 Standard <strong>Medical</strong> USB Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21<br />

Blood Pressure Monitor .....................................................24<br />

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24<br />

4.2 Heartbeat Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25<br />

4.3 Systolic and Diastolic Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25<br />

4.4 Invasive Blood Pressure Monitors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25<br />

4.5 Obtaining Pressure Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26<br />

4.6 Blood Pressure Monitor Reference Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27<br />

Heart Rate Monitor .........................................................31<br />

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31<br />

5.2 Heart Signals Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31<br />

5.3 Filters and Amplification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32<br />

5.4 Amplifier and Filtering Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32<br />

5.5 Obtaining QRS Complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33<br />

5.6 Heart Rate Monitor Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33<br />

Blood Glucose Meter .......................................................34<br />

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34<br />

6.2 Test Strip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35<br />

6.3 Wired and Wireless Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38<br />

6.4 Liquid Crystal Display (LCD) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38<br />

Pulse Oximetry .............................................................40<br />

7.1 Theory Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40<br />

7.2 Signal Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41<br />

7.3 Circuit Design Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41<br />

7.3.1 Circuit LED Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42<br />

7.3.2 Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42<br />

Activity Monitor. ............................................................44<br />

8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44<br />

8.2 Electocardiography (ECG) Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45<br />

8.3 Pedometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45<br />

8.4 <strong>User</strong> Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46<br />

8.5 Reference Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47<br />

Hearing Aids. ...............................................................50<br />

9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50<br />

9.2 Microphone Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51<br />

9.3 Li-ion Battery Charger Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51<br />

9.4 Class D Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52<br />

9.5 Digital Signal Processor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53<br />

<strong>Freescale</strong> Technologies for Home Portable <strong>Medical</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54<br />

Diagnostic and Therapy Devices<br />

10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55<br />

10.2 Electrocardiograph and Portable ECG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56<br />

10.3 QRS Complex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56<br />

10.4 Filtering ECG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57<br />

10.5 Electrodes Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57<br />

10.6 Display Driver and Touch Screen Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60<br />

10.7 Enhanced Multiply-Accumulate (eMAC) Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60<br />

10.8 USB Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61<br />

Defibrillators. ...............................................................62<br />

11.1 Automated External Defibrillator (AED) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62<br />

11.2 Circuit for Capacitive Discharge Defibrillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63<br />

11.3 Circuit for Rectangular-Wave Defibrillators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63<br />

Ventilation and Spirometry ..................................................64<br />

12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64<br />

12.2 System Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65<br />

12.3 Spirometer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65<br />

12.4 Graphic LCD MPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66<br />

12.5 Alarm System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67<br />

12.6 Air and Oxygen Blender and Mix Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67<br />

Anesthesia Monitor .........................................................72<br />

13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72<br />

13.2 Brief Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73<br />

13.3 Pressure Sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73<br />

13.4 Valve Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73<br />

13.5 Principal MCU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73<br />

Vital Signs ..................................................................75<br />

14.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75<br />

14.2 Measuring Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76<br />

14.3 ECG Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76<br />

14.4 Pulse Oximetry Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76<br />

14.5 Blood Pressure Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .76<br />

14.6 Motor Control with <strong>Freescale</strong> Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77<br />

Hospital Admission Machine ................................................78<br />

15.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78<br />

15.2 Hospital Admission Machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78<br />

15.3 Patient Height and Weight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80<br />

15.4 Patient Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80<br />

15.5 Communication Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81<br />

15.6 Backlight Inverter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82<br />

15.7 Multimedia <strong>Applications</strong> with i.MX53 Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83<br />

Digital Stethoscope .........................................................84<br />

16.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84<br />

16.2 Ultrasonic Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85<br />

16.3 Electrical Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85<br />

16.4 Signal Conditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86<br />

16.5 LCD Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86<br />

16.6 Fetal Heart Rate Monitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88<br />

Powered Patient Bed .......................................................89<br />

17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89<br />

17.2 Using Motors for Patient Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90<br />

17.3 Integrated Real-Time Patient Monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90<br />

17.4 Integrated Tilt Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90<br />

17.5 Integrated Intercom Using VoIP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91<br />

<strong>Freescale</strong> Technologies for Diagnostics and Therapy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92<br />

<strong>Medical</strong> Imaging<br />

18.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94<br />

18.2 Ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95<br />

18.3 How Ultrasound Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95<br />

18.4 Transducer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95<br />

18.5 Multiplexer for Tx/Rx Transducers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95<br />

18.6 Instrumentation Amplifier and Variable Gain Amplifier . . . . . . . . . . . . . . . . . . . . . . . . .96<br />

18.7 Beamformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96<br />

18.8 Ultrasound Software Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .96<br />

18.9 Microprocessors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .97<br />

18.10 Digital X-Ray . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100<br />

18.11 Analog Front End . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100<br />

18.12 Photo Detector Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100<br />

18.13 Signal Processors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100<br />

18.14 Capacitive Sensing and Touch Screen Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102<br />

<strong>Freescale</strong> Technologies for <strong>Medical</strong> Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102<br />

Summary ............................................................103<br />

Application Notes . ...............................................104<br />

Appendix ...........................................................105<br />

Digital Signal Processing Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105<br />

Digital Filter Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106<br />

Signal Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106<br />

<strong>Freescale</strong> Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107<br />

Instrumentation Amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107<br />

Analog Measurement Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108<br />

Filter Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109<br />

Table of Contents


Greetings<br />

Welcome to the latest edition of the <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>, created to help you<br />

enable the development of breakthrough medical products .<br />

This edition includes some of our newest technologies, like Vybrid controller solutions, i .MX6<br />

application processors, and Bluetooth ® 4 .0 wireless solutions . These technologies play an<br />

important role in several health care applications . Vybrid single- and dual-core devices offer<br />

a mix of processing options for rich user interface and display to safety- and security-centric<br />

solutions . The ARM ® Cortex-A5 core can be leveraged for UI and application, whereas the<br />

ARM ® Cortex-M4TM core can be used for control and compute functions . Our i .MX6 application<br />

processors are the next breed of our popular ARM ® Cortex-A9 core processors offering<br />

single-, dual- and quad-core solutions with HD video, encoding and decoding, as well as 3D<br />

graphics . Bluetooth 4 .0 and Bluetooth low energy will be the kings of ubiquitous connectivity,<br />

and <strong>Freescale</strong> intends to be front and center with leading edge solution sets .<br />

As a trusted provider of MCUs, MPUs, analog and sensor components, RF amplifiers and<br />

wireless technology, <strong>Freescale</strong> meets the unique needs of medical designs . These vital<br />

technologies, along with our enablement tools, expertise and alliances, help customers to<br />

develop breakthrough medical systems and life-critical applications . <strong>Freescale</strong> also offers a<br />

formal product longevity program for the medical segment, ensuring that a broad range of<br />

program devices will be available for a minimum of 15 years1 .<br />

Thanks for considering <strong>Freescale</strong> to support you in your next medical design . We are dedicated<br />

to supporting your needs and the needs of your customer base and are proud to offer you the<br />

support you deserve . We are confident you will find significant value in working with us today<br />

and in the decades to come . We truly value your business .<br />

Best regards,<br />

Steven Dean<br />

Global Health Care<br />

Segment Lead<br />

<strong>Freescale</strong> <strong>Semiconductor</strong><br />

4<br />

1 See freescale.com/productlongevity for details, terms and conditions<br />

and to obtain a list of products included in the program.<br />

<strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


Introduction<br />

1.1<br />

<strong>Freescale</strong> Offers Technology for Life<br />

According to the World Health Organization there are over one billion overweight adults, 860<br />

million chronic disease patients and over 600 million elders age 60 or older1 . Combine that with a<br />

study from the U .S . Centers for Disease Control (CDC) showing modern medical breakthroughs<br />

have raised the average global life expectancy in developed nations to over 75 years2 . With a<br />

large percentage of the total healthcare spend addressing chronic disease, the issue of runaway<br />

healthcare costs and the need to abate them has never been more significant . Proactive and<br />

preventative approaches to healthcare are required .<br />

<strong>Semiconductor</strong> technology will continue to play a critical role in the development of new technologies<br />

that assist with patient monitoring, diagnostics, therapy and imaging . <strong>Freescale</strong> is focused on what<br />

we can do as a semiconductor company to not only help extend life, but to promote a better quality<br />

of life . By designing products with the highest safety and reliability standards, healthcare devices using<br />

<strong>Freescale</strong> technologies work when it counts . Helping to extend life, improve the quality of life, and<br />

providing technologies that enable proactive health and wellness monitoring, <strong>Freescale</strong>’s technologies<br />

are powering future healthcare devices to benefit everyone who is in contact with this technology . This<br />

is what we mean when we say, “<strong>Freescale</strong> offers technology for life .”<br />

These market factors along with advancements in semiconductor technologies provide the potential for<br />

transforming the care that we all receive . <strong>Medical</strong> imaging technology commonly found in radiology or<br />

imaging centers, can now be found in the field—ambulatory or combat situations . Clinical equipment<br />

formerly relegated to the hospital or doctor’s office is now moving into the home . Portable medical<br />

equipment such as blood pressure monitors, blood glucose meters, and weight scales are now<br />

connecting to data aggregators or hubs and transmit your personal health data to the medical cloud<br />

where it is stored in a secure place . All types of healthcare equipment are being pushed from their roots<br />

in clinics or hospitals and into the home .<br />

Developers of medical devices face several challenges . The need to balance processing<br />

requirements with power consumption, the need to provide a faster time to market, and the need<br />

to navigate the regulatory environment are common to all healthcare applications . <strong>Freescale</strong> designs<br />

a range of embedded products and applicable reference designs so that developers can choose<br />

MCUs, MPUs, analog, sensors, and wireless solutions to meet the requirements of their designs .<br />

Introduction<br />

freescale .com/medical<br />

1 World Health Organization who.int/research/en/<br />

2 CDC, U.S National Center for Health Statistics<br />

5


Introduction<br />

<br />

1.2<br />

Welcome to <strong>Freescale</strong> <strong>Medical</strong> Solutions<br />

<strong>Freescale</strong> has focused on solving some of the world’s most important technology challenges for over<br />

50 years . Whether the question has been how cell phones can connect people across the world or<br />

how to harmonize all of the safety features in a car, <strong>Freescale</strong> MCUs have been part of the solution .<br />

At <strong>Freescale</strong> we bring that same drive and innovation to the medical industry . The convergence of<br />

an aging population and breakthrough technological advances has created endless opportunities<br />

for automated medical devices . These devices help ensure the future health of millions of people<br />

by providing advances in home health care, clinical activities and medical imaging . Regardless of<br />

the end use, developers of medical devices face similar problems . The need to balance processing<br />

requirements with power consumption helps to ensure a fast time to market . Navigating the regulatory<br />

environment is common with all medical applications . <strong>Freescale</strong> has implemented a review process<br />

which supports life critical applications .<br />

At <strong>Freescale</strong> we offer a wide range of products so that developers can choose MCUs, MPUs, analog<br />

and sensor components or RF amplifiers to meet the unique needs of their designs . Developers of<br />

medical technology face many challenges today . <strong>Freescale</strong> believes that having the right silicon should<br />

not be one of them . We drive innovations that power next-generation healthcare and medical systems<br />

and applications . Our breakthrough thinking, engineering expertise, <strong>Medical</strong> Center of Excellence,<br />

<strong>Medical</strong> Advisory Board, Product Longevity Program and active membership in the Continua ® Health<br />

Alliance demonstrate our commitment to health care .<br />

1.3<br />

Why <strong>Freescale</strong>?<br />

Ecosystems<br />

Providing value beyond the responsibility of providing key semiconductor components is paramount .<br />

<strong>Freescale</strong> realizes the need to provide our customers a running start on their next medical design,<br />

which is why we embrace one of the strongest ecosystems in the world .<br />

<strong>Freescale</strong> provides the highly trusted MQX operating system free-of-charge to our customers .<br />

In addition, our partners on the operating systems side include, but are not limited to QNX<br />

Software Systems, Green Hills Software, Mentor Graphics, Wind River, and Windows Embedded .<br />

Development tool support is provided by Keil, Micrium, IAR Systems, Windows Embedded, and<br />

Linux Systems . Alliance partners also include system developers such as Digi International, our<br />

commercialization partner of the Home Health Hub (HHH) reference platform .<br />

Cactus <strong>Semiconductor</strong><br />

<strong>Freescale</strong> and Cactus <strong>Semiconductor</strong>, a medical application-specific integrated circuit (ASIC)<br />

company, are collaborating to provide customized analog mixed-signal and system-on-chip (SoC)<br />

solutions to the medical market . With more than 30 years of combined experience in the medical<br />

device market, <strong>Freescale</strong> and Cactus are focused on providing new generations of smaller, lighter,<br />

inexpensive and more efficient medical products that are designed to help improve the quality of life<br />

for millions of people . <strong>Freescale</strong> and Cactus will initially focus on solutions for implantable medical<br />

devices, blood glucose monitors and other portable medical applications, such as blood pressure<br />

monitors, electrocardiographs and pulse oximetry devices .<br />

6 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


Monebo Kenetic <br />

ECG Algorithms<br />

<strong>Freescale</strong> and Monebo Technologies are partnering to offer an ECG-on-a-chip solution that allows<br />

customers to choose from more than 300 <strong>Freescale</strong> MCUs and pair them with the Monebo Kinetic<br />

family of ECG algorithms .<br />

• Highly accurate Kinetic family of ECG algorithms provide interval measurements, beat<br />

classification and rhythm interpretation<br />

• Efficient code is ideal for use in embedded applications<br />

• Designed to optimize battery life (no “warm-up” period)<br />

• FDA 510(k) cleared software allows customers to streamline their regulatory filing<br />

• Lowers development cost by providing a tested and validated solution<br />

• Scalable solutions based on customer requirements<br />

• Optimal design based on the application<br />

• Available on the portfolio of products: Kinetis, Coldfire, Power Architecture ® , i .MX S08, and digital<br />

signal controllers<br />

<strong>Medical</strong> Specific Reference Designs<br />

<strong>Freescale</strong> understands that reducing time spent on research and development and speeding time<br />

to market are key concerns of medical device designers . That is why we strive to produce highimpact<br />

design guides in the form of reference designs and application notes . Reference designs give<br />

designers access to component configurations that have been proven to work . Application notes<br />

prepared by knowledgeable medical doctors and <strong>Freescale</strong> engineers take the guesswork out of<br />

project troubleshooting . Together, these documents offer developers a great jump-start for producing<br />

novel designs based on proven concepts .<br />

For a full list of <strong>Freescale</strong> medical reference designs and application notes, visit<br />

freescale.com/medical .<br />

Development Tools and Software. Learn Once, Use Everywhere.<br />

<strong>Freescale</strong> offers a wide variety of hardware development tools to meet the needs of the medical<br />

device designer . Most products feature a cost-effective demo platform for initial evaluation and a<br />

full featured evaluation board for advanced development . These products come packaged with<br />

CodeWarrior IDE, <strong>Freescale</strong> developed board support package (BSP), complete documentation,<br />

product specific application notes and all the necessary device drivers—everything a designer<br />

needs to get started .<br />

Introduction<br />

freescale .com/medical 7


Introduction<br />

CodeWarrior Development Studio<br />

CodeWarrior Development Studio is a comprehensive integrated development environment (IDE)<br />

that provides a highly visual and automated framework to accelerate the development of the most<br />

complex embedded applications . CodeWarrior’s single development environment is consistent<br />

across all supported workstations and personal computers within an organization, with usage<br />

and features that remain identical across the supported platforms . There is no need to worry<br />

about host-to-host incompatibilities . From text editors to compilers and debuggers, CodeWarrior<br />

Development Studio provides everything the professional embedded developer needs .<br />

Processor Expert Software<br />

Processor Expert Software, a rapid application design tool integrated into the CodeWarrior tool set,<br />

makes migrating between <strong>Freescale</strong> MCUs a breeze . Just define the functionality you need for your<br />

application and Processor Expert Software generates tested, optimized C-code . When you change<br />

the MCU with the MCU Change Wizard, Processor Expert maps the software and peripheral<br />

components that describe your applications functionality to the resources available on the new<br />

MCU . All you have to do is resolve any resource issues flagged by Processor Expert Software and<br />

you’re finished .<br />

Multimedia Alliance Network<br />

The Multimedia Alliance Network is a global program designed to provide developers with<br />

software tools, such as IDEs, compilers, debuggers and performance analysis tools, from a<br />

comprehensive network of industry leading partners that support the i .MX ARM-based family<br />

of processors . Our rich ecosystem has the essential tools developers need to help speed their<br />

design projects through to market adoption .<br />

Leadership and Longevity<br />

Through leadership in the Continua Health Alliance, <strong>Freescale</strong> helps to set standards for the<br />

industry . <strong>Freescale</strong> retains a medical doctor on staff and has a <strong>Medical</strong> Center of Excellence to<br />

develop new technologies .<br />

The product longevity program provides a minimum 15 years of assured supply for devices for<br />

medical applications . (For terms and conditions and to obtain a list of available products please<br />

see: freescale.com/productlongevity .) With an internal review defined in a standard operating<br />

procedure (SOP), <strong>Freescale</strong> supports FDA class III or life critical applications in the U .S . and<br />

globally . Quality, reliability, supply assurance, and company and product longevity are key to<br />

understanding the needs of the healthcare market .<br />

From portable medical solutions, to diagnostic, patient monitoring, and therapy systems,<br />

<strong>Freescale</strong> provides ultra-low-power mixed signal MCUs, high-performance analog, as well as<br />

wired and wireless connectivity that help solve true clinical problems . <strong>Freescale</strong> offers not only<br />

one of the strongest portfolios of semiconductor products, but also custom IC development<br />

in support of this segment . Additionally, <strong>Freescale</strong> offers a robust portfolio of medical-centric<br />

reference designs and application notes that help customers go to market faster . <strong>Freescale</strong> is<br />

much more than a semiconductor company . By offering several application specific reference<br />

designs that include schematics, layouts (Gerber files), and example application code and user<br />

interface software, customers can get up and running with their applications much more quickly .<br />

Vital technology, expertise and leadership make <strong>Freescale</strong> the trusted provider of high-quality<br />

technical solutions that enable the development of breakthrough medical systems from health and<br />

wellness to life-critical applications .<br />

8 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


Home Portable <strong>Medical</strong><br />

2.1<br />

Introduction<br />

The home portable medical market is one of the fastest growing<br />

market segments in the medical device industry. Portable home<br />

medical devices share the need for long battery life, robust data<br />

processing and a wired or wireless communication interface.<br />

<strong>Freescale</strong>’s MCUs offer the perfect mix of high processing<br />

capabilities, low-power consumption, and analog content. For this<br />

sub-segment, the 8-bit S08 JE/JM and LH/LL cores are well suited<br />

for designs where cost is a key concern. For greater performance,<br />

our Kinetis family of ARM Cortex-M4 MCUs are empowering analog<br />

intensive designs, such as blood glucose meters. Furthermore, as a<br />

pioneer in the communications market, <strong>Freescale</strong> offers solutions f<br />

or wired and wireless interfaces, including USB, IEEE ® 802.15.4,<br />

Sub-Gigahertz, and ZigBee ® technology.<br />

<strong>Freescale</strong> micro-electromechanical system (MEMS)-based<br />

pressure and acceleration sensors can be used to acquire physical<br />

parameters. <strong>User</strong> interfaces embedded with touch sensors enable<br />

medical-friendly buttons and touch screens that can be sanitized<br />

quickly and easily.<br />

Lastly, <strong>Freescale</strong> offers a focused, integrated analog portfolio that<br />

enables maximum battery life via power management integrated<br />

circuits (PMICs) and allows precise and accurate conversion of<br />

natural, continuous signals to digital signals that MPUs can process.<br />

<strong>Medical</strong> customers can also benefit from specific custom solutions<br />

that leverage <strong>Freescale</strong>’s core competencies in precision analog,<br />

mixed signal and power management technologies.<br />

freescale.com/medical 9


Telehealth Systems<br />

3.1<br />

Introduction<br />

One of the trends in the home medical market is the need to monitor<br />

patients away from a hospital or doctor’s office3 . Companies are now<br />

developing solutions that monitor a patient’s vital signs at home and<br />

relay this information to the health care provider.<br />

Physicians or home health care companies give patients a<br />

telemonitoring hub device to use at home. This telemonitoring hub<br />

connects home portable devices used to measure vital signs such as<br />

blood pressure, heart rate, body temperature and other measurements<br />

depending on their needs. This information is then sent to the hub via<br />

USB, Bluetooth wireless technology or ZigBee technology. The hub<br />

then relays the patient’s vital sign information to his or her physician at<br />

periodic intervals (usually once a day) via Ethernet, Wi-Fi ® , phone line<br />

or cellular network.<br />

As telemonitoring is in its infancy, there continue to be new<br />

approaches to address this medical application. Although solutions<br />

vary widely, most of them share similar features and the end result is<br />

the same. Data from the patient is monitored and transferred to the<br />

health care provider.<br />

Form factors for a telehealth system may vary from a simple patient<br />

monitoring system to a high-end robotic telehealth surgical assistant.<br />

The parts of a basic telehealth system are shown in Figure 3-3.<br />

10 3 who .int/medical_devices/en/<br />

<strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


3.2<br />

Home Health Hub (HHH)<br />

Reference Platform<br />

The <strong>Freescale</strong> HHH reference platform aids<br />

medical equipment manufacturers in quickly<br />

and easily creating remote-access devices<br />

that can collect, connect and securely<br />

share health data for improved healthcare<br />

management.<br />

The changing dynamics of the aging global<br />

population are creating an increased demand<br />

for new technologies and tools that can offer<br />

peace of mind to the family members of<br />

seniors living at home. There’s also a need to<br />

provide access to healthcare in remote and<br />

growing regions of the world to improve the<br />

quality of life for millions of people. The HHH<br />

reference platform is designed to simplify<br />

development of connected medical devices<br />

and help our customers more easily address<br />

these growing needs.<br />

The HHH reference platform consists of an<br />

aggregator/gateway board based on the lowpower<br />

i.MX28 applications processor (built<br />

on the ARM9 processor) running various<br />

connectivity interfaces to healthcare end<br />

devices and wireless or wired connectivity<br />

for a remote user interface. Also included is<br />

a panic alarm sensor based on <strong>Freescale</strong>’s<br />

MC12311 sub-1 GHz radio, providing<br />

personal emergency response system (PERS)<br />

functionality. To complete the reference<br />

platform, software such as board support<br />

packages (Linux ® and Windows ® Embedded<br />

Compact 7) and example code are included.<br />

The HHH reference platform comes complete<br />

with the iDigi Telehealth Application Kit,<br />

and is available for purchase through Digi<br />

International at digi.com/hhh.<br />

<strong>Freescale</strong>’s HHH reference platform, adhering<br />

to Continua device profiles, provides<br />

comprehensive functionality and can be used<br />

as the foundation for connected medical<br />

product designs, giving developers a headstart<br />

to help them get to market faster. The<br />

<strong>Freescale</strong> HHH reference platform delivers a<br />

hardware implementation and the necessary<br />

Figure 3-1: HHH Reference Platform<br />

Figure 3-2: HHH Platform Demonstration<br />

Home Health Hub Reference Platform Demonstration<br />

TELEHEALTH<br />

868 MHz RF<br />

HHH Panic Alarm<br />

MC12311<br />

i.MX53 Tablet<br />

with <strong>Medical</strong><br />

<strong>User</strong> Interface<br />

Data Aggregator<br />

Based on the<br />

QorIQ P1022RDK<br />

Bluetooth<br />

Nonin Pulse Ox<br />

MC9S08GP32<br />

®<br />

HDP<br />

Bluetooth<br />

SPP<br />

Blood Glucose<br />

Meter<br />

Bluetooth<br />

Low Energy<br />

Thermometer<br />

<strong>Freescale</strong> Technology Wired Connection<br />

Wireless Connection<br />

software components to provide prevalidated,<br />

secure connectivity for healthcare<br />

devices and user interfaces. The platform<br />

also enables connection to the Microsoft<br />

HealthVault, a privacy- and security-enhanced<br />

online data repository that lets users organize,<br />

store and share their health information.<br />

The HHH reference platform was the Ultimate<br />

Products winner in the 2012 UBM Electronics<br />

Home Portable <strong>Medical</strong><br />

Blood Pressure<br />

Monitor<br />

HOME AUTOMATION<br />

freescale .com/medical 11<br />

Ethernet<br />

Health<br />

Care<br />

USB<br />

PHDC<br />

Weight<br />

Scale<br />

Physician<br />

Monitoring Center,<br />

Loved One’s<br />

Social Network<br />

Expansion<br />

Capabilities<br />

Smart Plugs<br />

Smart Appliances<br />

Safety/Security<br />

Lighting Control<br />

Local Display<br />

ACE (Annual Creativity in Electronics) in the<br />

Development Kits, Reference Designs and<br />

SBCs category.


MCIMX28: i.MX ARM9<br />

<strong>Applications</strong> Processor<br />

Home Portable <strong>Medical</strong><br />

The i.MX28 family of applications processors<br />

is part of <strong>Freescale</strong>’s ARM9 product portfolio.<br />

The i.MX28 family integrates display, power<br />

management and connectivity features<br />

unmatched in ARM9-based devices, reducing<br />

system cost and complexity for cost-sensitive<br />

applications. The LCD controller with touch<br />

screen capability makes it possible to<br />

design creative and intuitive user interfaces<br />

required by many applications. The i.MX28<br />

family reaches new levels of integration in<br />

ARM9 devices and provides the enablement<br />

needed to help design differentiated medical,<br />

industrial, automotive and consumer products<br />

in less time.<br />

Key Features<br />

• 454 MHz ARM926EJ-S core<br />

• 16 KB/32 KB I and D cache<br />

• Power Management Unit (PMU) to power<br />

the device and drive external components<br />

supports Li-Ion batteries and direct<br />

connection to 5-volt supplies<br />

• Dual IEEE ® 1588 10/100 Ethernet with RMII<br />

support and L2 switch (i.MX287)<br />

• Single IEEE 1588 10/100 Ethernet with<br />

RMII or GMII support (i.MX280, i.MX283,<br />

i.MX286)<br />

• Dual CAN interfaces (i.MX286, i.MX287)<br />

• NAND support: SLC/MLC and eMMC 4.4<br />

(managed NAND)<br />

• Hardware BCH (up to 20-bit correction)<br />

• 200 MHz 16-bit DDR2, LV-DDR2, mDDR<br />

external memory support<br />

• Dual high-speed USB with PHY<br />

• Up to eight general-purpose 12-bit ADC<br />

channels<br />

• Temperature sensor for thermal protection<br />

• Multiple connectivity ports (UARTs,<br />

SSP,SDIO, SPI, I2C, I2S)<br />

• Product family supports various feature sets<br />

based on above feature list<br />

Figure 3-3 : i.MX28 Family Block Diagram<br />

i.MX28 Family<br />

Connectivity Advanced Connectivity<br />

I2C x 2<br />

10/100 Ethernet<br />

IEEE ® SPI x 4<br />

1588 x 2<br />

L2 Switch<br />

UART x 6<br />

GPIO<br />

MMC+/SD x 4<br />

Analog<br />

12-bit ADC x 8<br />

2 MSPS ADC x 1<br />

Thermal<br />

Protection<br />

Power<br />

Management<br />

DC/DC 4.2V<br />

LDO x4<br />

Battery Charger<br />

I2 Audio<br />

S x 2<br />

S/PDIF Tx<br />

Figure 3-4: Basic Telehealth Gateway<br />

Telehealth Gateway<br />

Power<br />

Management<br />

Voltage<br />

Regulation<br />

Keypad<br />

MCU/MPU<br />

<strong>Freescale</strong> Technology Optional<br />

CAN x 2 HS USB PHY x 2<br />

i.MX28<br />

ARM926EJ-S 454 MHz<br />

16K I-Cache 32K D-Cache<br />

Security<br />

HAB4 OTP AES Key<br />

128-bit AES SHA-2 Hashing<br />

Standard System<br />

Timer x 4 PWM x 8<br />

Watch Dog DMA<br />

System Debug<br />

ETM JTAG<br />

USB<br />

and/or<br />

Ethernet<br />

Wireless<br />

Comm<br />

IR Interface<br />

PC/Broadband or<br />

POTS Connection<br />

12 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

PWM<br />

Ext Memory I/F<br />

NAND<br />

BCH 20-bit<br />

DDR2<br />

mDDR<br />

LV-DDR2<br />

Internal<br />

Memory<br />

128 KB SRAM<br />

128 KB ROM<br />

<strong>User</strong> I/F<br />

LCD Controller<br />

Touch Screen<br />

Scaling<br />

Alpha Blending<br />

Rotation<br />

Color Space<br />

Conversion<br />

Display


3.3<br />

Power Management<br />

Every design needs a power source. If the<br />

power source is not stable, the system may<br />

fail while processing information. If the power<br />

source is not regulated, the system may get<br />

damaged. These failures might cause risks<br />

to the patient. Therefore, the design and<br />

implementation of a stable and regulated<br />

power management system must be carefully<br />

considered to mitigate these risks. <strong>Freescale</strong>’s<br />

MC34712, MC34713, MC34716 and MC34717<br />

are highly integrated, space-efficient, costeffective<br />

dual and single synchronous buck<br />

switching regulators for multiple applications.<br />

A typical application for these devices is<br />

shown in Figure 3-5.<br />

Key Features<br />

• Integrated N-channel power MOSFETs input<br />

voltage operating range from 3.0V to 6.0V<br />

• 1% accurate output voltage, ranging from<br />

0.7V to 3.6V<br />

• Voltage tracking capability in different<br />

configurations<br />

• Programmable switching frequency range<br />

from 200 kHz to 1.0 MHz with a default of<br />

1.0 MHz<br />

• Programmable soft start timing<br />

• Overcurrent limit and short-circuit<br />

protection<br />

• Thermal shutdown<br />

• Output overvoltage and undervoltage<br />

detection<br />

• Active low-power, good output signal<br />

• Active low shutdown input<br />

The use of these regulators allows the use<br />

of multiple power sources such as batteries,<br />

chargers or AC adapters.<br />

Home Portable <strong>Medical</strong><br />

Figure 3-5: 3-2: MC34713 Simplified Application Diagram Diagram<br />

V IN<br />

(3.0V–6.0V)<br />

V MASTER<br />

freescale .com/medical 13<br />

VIN<br />

VREFIN<br />

PGND<br />

VDDI<br />

FREQ<br />

ILIM<br />

GND<br />

MC34713<br />

PVIN<br />

BOOT<br />

SW<br />

INV<br />

COMP<br />

VOUT<br />

Figure 3-6: Block Diagram Using Power Regulators<br />

Figure 3-3: Block Diagram Using Power Regulators<br />

Battery Charger<br />

Battery<br />

+<br />

-<br />

PG<br />

SD<br />

V IN<br />

AC Adapter Other Blocks<br />

MC34713<br />

AC Line<br />

Figure 3-7: Linear Voltage Regulator<br />

Figure 3-4: Lineal Voltage Regulator<br />

Regulated Power Source<br />

Other Blocks<br />

+ E S<br />

+<br />

T<br />

Vin<br />

1uF 0.1uF<br />

Vout<br />

V OUT<br />

MCU<br />

DSP,<br />

FPGA,<br />

ASIC<br />

MCU


Home Portable <strong>Medical</strong><br />

3.4<br />

Voltage Regulation<br />

In systems where an MCU or DSP are used,<br />

the power source must be able to provide<br />

the complete range of voltage values to be<br />

applied to multiple VCC pins.<br />

This regulation can be implemented using the<br />

<strong>Freescale</strong> MPC18730 power management<br />

device. This device regulates five independent<br />

output voltages from either a single Li-ion cell<br />

(2.7V to 4.2V input range), a single-cell Ni-MH<br />

or dry cell (0.9V to 2.2V input range).<br />

MPC18730<br />

The MPC18730 is a 1.15 V/2.4 V 2-ch.<br />

DC-to-DC converter with three low-dropout<br />

regulators.<br />

Key Features<br />

• Operates from single-cell Li-ion, Ni-MH or<br />

alkaline battery<br />

• Two DC-DC converters<br />

• Three low-dropout regulators<br />

• Serial interface sets output voltages<br />

• Four wake inputs<br />

• Low current standby mode<br />

Regulation can also be implemented using the<br />

<strong>Freescale</strong> MC34704, a multi-channel power<br />

management IC (PMIC) used to address power<br />

management needs for various multimedia<br />

application MPUs such as <strong>Freescale</strong>’s ARM ®<br />

core-based i.MX applications processor family.<br />

Its ability to provide either five or eight<br />

independent output voltages with a single input<br />

power supply (2.7V and 5.5V), together with<br />

its high efficiency, makes it ideal for portable<br />

devices powered by Li-ion and polymer<br />

batteries or for USB powered devices.<br />

Figure 3-8: Single Synchronous Buck Switching Regulator<br />

Figure 3-5: Single Synchronous Buck Switching Regulator<br />

MCU<br />

VO<br />

VO<br />

2.7 to 4.2V<br />

input VB<br />

14 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

VB<br />

VREF<br />

RSTO1B<br />

EXT_G_ON<br />

RSTO2B<br />

CONTROL<br />

LOGIC<br />

INPUTS<br />

GND<br />

PGND<br />

MC34713<br />

Figure 3-9: MC34704 Block Diagram<br />

MC34704 Figure 3-6: Functional MC34704 Internal Block Diagram Block Diagram<br />

VCC1<br />

VO1<br />

SW1<br />

VCC2<br />

VO2<br />

SW2<br />

SREGI1<br />

SREGO1<br />

SREGI2<br />

SREGO2<br />

SREGI3<br />

SREGO3<br />

Internal Bias Circuit<br />

VREF Generator VDDI Reference<br />

Gate Driver Voltage VG<br />

Fault Detection and Protection<br />

Overvoltage Undervoltage<br />

VREF Generator Short Circuit<br />

Overcurrent<br />

Logic and Control<br />

Startup Sequencing Soft-Start Control<br />

VREF Generator Fault Register<br />

I 2 C Communication and Registers<br />

VG<br />

SWG<br />

A<br />

B<br />

C<br />

D<br />

E<br />

VB<br />

Output Groups<br />

Regulator 1*<br />

Regulator 2<br />

Regulator 3<br />

Regulator 4<br />

Regulator 5*<br />

Regulator 6*<br />

Regulator 7*<br />

Regulator 8<br />

Regulator 5<br />

Programmable<br />

1.613V to 3.2V<br />

Programmable<br />

0.805V to 1.5V<br />

Programmable<br />

0.865V to 2.8V<br />

Programmable<br />

0.011V to 2.8V<br />

Programmable<br />

2.08V to 2.8V<br />

*34704A 8-channel only


MC34704<br />

The MC34704 is a multi-channel PMIC.<br />

Key Features<br />

• Eight DC/DC (34704A) or five DC/DC<br />

(34704B) switching regulators with up to<br />

±2% output voltage accuracy<br />

• Dynamic voltage scaling on all regulators<br />

• Selectable voltage mode control or current<br />

mode control on REG8<br />

• I2C programmability<br />

• Output under-voltage and over-voltage<br />

detection for each regulator<br />

• Overcurrent limit detection and short-circuit<br />

protection for each regulator<br />

• Thermal limit detection for each regulator<br />

(except REG7)<br />

• Integrated compensation for REG1, REG3,<br />

REG6 and REG8<br />

• 5 µA maximum shutdown current<br />

(all regulators are off, 5.5V VIN)<br />

• True cutoff on all boost and buck-boost<br />

regulators<br />

3.5<br />

Keypad<br />

A touch-sensing keypad can be implemented.<br />

This technology has advantages over classic<br />

button-based technology, including:<br />

• Cost effectiveness<br />

• Smaller design<br />

• More durability because there is virtually<br />

no mechanical wear<br />

• Easy to keep clean<br />

<strong>Freescale</strong> provides software libraries that<br />

implement touch-sensing algorithms using a<br />

MCU’s general-purpose pins. The software<br />

allows the MCU to drive up to 64 touch<br />

pads. It needs only one pull-up resistor per<br />

electrode and timer to complete the circuit.<br />

<strong>Freescale</strong>’s MPR031, MPR032, MPR083<br />

and MPR084 can also provide a costeffective<br />

solution in a single-chip capacitive<br />

touch-sensing controller. These devices can<br />

be connected to an MCU through an I2C interface.<br />

Home Portable <strong>Medical</strong><br />

Figure 3-7: 3-10: Keypad Keypad Implementation Implementation Using Using Proximity Touch-Sensing Software Software<br />

Figure 3-8: 3-11: Keypad Keypad Implementation Using Using Capacitive Capacitive Touch-Sensing Controllers Controllers<br />

MCU<br />

SDA<br />

SCL<br />

MPRO84<br />

MPRO83<br />

Pull-Up<br />

Resistor<br />

MCU with<br />

Touch-Sensing Software<br />

Pull-up<br />

resistor<br />

freescale .com/medical 15<br />

VDD<br />

Up to<br />

64<br />

GPIO Port<br />

GPIO<br />

port<br />

Pull-up<br />

resistor<br />

VDD<br />

8<br />

MPRO31<br />

MPRO32<br />

I2C bus<br />

VDD<br />

8<br />

75K<br />

Touch Pads<br />

7<br />

3<br />

8<br />

6<br />

8 Touch Pads<br />

8 Position Rotary<br />

1<br />

5<br />

3 Touch Pads<br />

2<br />

4<br />

3


MPR084<br />

Home Portable <strong>Medical</strong><br />

The MPR084 is an eight-pad touch sensor<br />

controller.<br />

Key Features<br />

• Current touch pad position is available on<br />

demand for polling-based systems<br />

• Rejects unwanted multi-key detections<br />

from EMI events such as PA bursts or user<br />

handling<br />

• Ongoing pad analysis and detection is not<br />

reset by EMI events<br />

• System can set interrupt behavior<br />

immediately after event, or program<br />

a minimum time between successive<br />

interrupts<br />

• Sounder output can be enabled to<br />

generate a key-click sound when the rotary<br />

is touched<br />

• Two hardware-selectable I2C addresses<br />

allow two devices on a single I2C bus<br />

MPR083<br />

The MPR083 is a capacitive touch sensor<br />

controller, optimized to manage an 8-position<br />

rotary shaped capacitive array.<br />

Key Features<br />

• Variable low-power mode response time<br />

(32 ms–4s)<br />

• Rejects unwanted multi-key detections<br />

from EMI events such as PA bursts or user<br />

handling<br />

• Ongoing pad analysis and detection is not<br />

reset by EMI events<br />

• Data is buffered in a FIFO for shortest<br />

access time<br />

• IRQ output advises when FIFO has data<br />

• System can set interrupt behavior as<br />

immediate after event, or program a<br />

minimum time between successive<br />

interrupts<br />

• Current rotary position is always available<br />

on demand for polling-based systems<br />

• Sounder output can be enabled to generate<br />

key-click sound when the rotary is touched<br />

• Two hardware-selectable I2C addresses<br />

allowing two devices on a single I2C bus<br />

Figure 3-9: 3-12: Components Components of a Touch of a Touch-Sensing Sensing System System<br />

E1<br />

E2<br />

En<br />

Buzzer<br />

Capacitance<br />

to Digital<br />

Converter<br />

Feedback to<br />

<strong>User</strong><br />

Signal<br />

Processing<br />

Stage<br />

Figure 3-13: Timer Operation to Generate PWM Signal<br />

Figure 3-10: Timer Operation to Generate PWM Signal<br />

TPMxCHn<br />

Overflow<br />

3.6<br />

Touch-Sensing<br />

Software Suite<br />

Period<br />

Pulse<br />

Width<br />

Output<br />

Compare<br />

The touch-sensing software suite (TSS) is a<br />

downloadable software package that enables<br />

a <strong>Freescale</strong> 8-bit MCU as a touch sensor. This<br />

provides cost-effective and flexible solutions<br />

for human-machine interfaces. TSS is a<br />

modular and layered software that enhances<br />

forward compatibility and simplifies touch key<br />

configurations. It also enables the integration<br />

of connectivity, LCD, LED, audio and other<br />

peripherals.<br />

Key Features<br />

• Intellectual property (IP) ownership<br />

in hardware layouts and software<br />

implementations such as capacitance<br />

conversion, key detection and decoding<br />

algorithms<br />

• Modular software design to add new<br />

algorithms<br />

Overflow Overflow<br />

Output<br />

Compare<br />

16 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

Output<br />

Output<br />

Compare<br />

• Easy to use with the simple and robust<br />

API set, including algorithms, patents<br />

and system implementations that protect<br />

customer applications from noisy/not ideal<br />

environments<br />

• Capability to coexist with customer<br />

application code<br />

• Available application layer software, decoders<br />

(rotary, slider, keypads), demonstrations and<br />

reference designs to expedite customer time<br />

to market<br />

• Possible to use different materials such as<br />

electrodes, PCB, Flex PCB, membranes,<br />

glasses and foams


3.7<br />

How it Works<br />

The external capacitance is charged and<br />

discharged continuously. This depends on<br />

the sample configuration. At the time the<br />

capacitance is being charged the timer is<br />

running and counting. When the electrode<br />

voltage reaches 0.7 VDD, the timer stops<br />

and the counter value is taken. The external<br />

capacitance is modified at the touch<br />

event, modifying the time charge. When<br />

the electrode is touched, the capacitance<br />

increases. Therefore the count is higher. The<br />

number of samples taken is user-configurable<br />

and determines how many times the<br />

capacitance is charged and discharged when<br />

the scanning starts. A touch sensing system<br />

contains the following components:<br />

• Electrodes: Physical area that the user uses<br />

as the interface. Usually made of PCB or<br />

indium tin oxide (ITO)<br />

• Capacitance to digital converter: Measures<br />

capacitance on each electrode and<br />

produces a digital value as output<br />

• Signal processing stage: This stage<br />

translates measured capacitance to touch<br />

status and then to a logic behavior (rotary,<br />

keypad, slider and so on)<br />

• Output: Indicates touch detection both to<br />

the user and the application<br />

3.8<br />

<strong>Freescale</strong> Touch<br />

Sensor Summary<br />

• Extra hardware (except for pull-up resistors)<br />

is not necessary with <strong>Freescale</strong> TSS. The<br />

host’s TSS code is required to process and<br />

perform more. Each touch pad must be<br />

connected to one GPIO on the MCU.<br />

• This is a two-chip solution. Because of<br />

the I2C interface, capacitive touch-sensing<br />

controllers allow the number of electrodes to<br />

be expanded by using two pins of the MCU.<br />

• MPR083 and MPR084 can drive up to eight<br />

electrodes each. Each electrode needs a<br />

pull-up resistor.<br />

• MPR031 and MPR032 are ultra-small<br />

touch-sensing controllers that support up<br />

to three electrodes. They need one external<br />

Figure 3-11: 3-14: Variations in in Period and and Pulse Pulse Width Width<br />

Period<br />

Pulse<br />

Width<br />

Figure<br />

Figure<br />

3-12:<br />

3-15: Implementation<br />

Implementation<br />

Example<br />

Example<br />

component and do not need pull-up<br />

resistors in the electrodes.<br />

Information about touch-sensing technology and<br />

the application note titled 3-Phase AC Motor<br />

Control with V/Hz Speed Closed Loop Using the<br />

56F800/E (document AN1958), which provides<br />

information about touch panel applications, can<br />

be found at freescale.com.<br />

3.9<br />

PWM Function for a<br />

Speaker Circuit<br />

Pulse width modulation (PWM) can be<br />

implemented using a simple timer (in output<br />

compare mode) typically integrated in one<br />

of <strong>Freescale</strong>’s 8-bit MCUs. The pulse width<br />

variations determine the volume of the sound<br />

(energy average per cycle). The timer has a<br />

register for the output compare function to vary<br />

the pulse width, and therefore the volume.<br />

Home Portable <strong>Medical</strong><br />

Same Duty Cycle, Different Frequency<br />

To vary the tone of the sound, the signal<br />

period must be changed. To change<br />

the period, the timer has a register that<br />

determines the number of counts until the<br />

timer overflows.<br />

Figure 3-14 shows on the left side, the<br />

signal changing the pulse width but with a<br />

determined period. On the right side, the<br />

signal period is halved, but the percentage of<br />

the pulse is the same as the signals on the left<br />

side. This is the principle that can be used to<br />

vary the tone and volume of the sound.<br />

Figure 3-15 shows a basic implementation of<br />

the circuit to generate an audio signal. The<br />

value of R is determined by the transistor<br />

B<br />

used to amplify the signal generated by the<br />

MCU, and by the voltage level of the<br />

MCU output.<br />

freescale .com/medical 17<br />

MCU<br />

Toner Output<br />

Compare / PWM<br />

RB<br />

Speaker<br />

VDD<br />

RC<br />

Q1


Home Portable <strong>Medical</strong><br />

3.10<br />

Wireless Communication<br />

Offering a broad portfolio of RF products,<br />

<strong>Freescale</strong> primarily serves the wireless<br />

infrastructure, wireless subscriber, generalpurpose<br />

amplifier, broadcast and industrial<br />

markets. <strong>Freescale</strong> pioneered RF technology<br />

and continues to be a leader in the field<br />

by providing the quality, reliability and<br />

consistency that is associated with our<br />

RF products.<br />

3.11<br />

Introduction to ZigBee<br />

Technology<br />

The ZigBee Alliance defines low-power<br />

wireless communication protocol stacks and<br />

profiles designed for monitoring and control of<br />

devices in a variety of markets and applications.<br />

These include consumer, smart energy, control<br />

and automation and medical markets. There are<br />

two different specifications (ZigBee and ZigBee<br />

Consumer) as well as multiple profiles that focus<br />

on specific markets. <strong>Freescale</strong> provides the<br />

necessary building blocks used for both ZigBee<br />

and ZigBee Consumer solutions, including<br />

hardware, software, tools and reference designs.<br />

3.12<br />

<strong>Freescale</strong> Solutions with<br />

ZigBee Technology<br />

The ZigBee protocol stack is designed for<br />

monitoring and control applications such<br />

as building automation and smart energy. It<br />

features self-forming and self-healing mesh<br />

networks that help differentiate it from<br />

other technologies.<br />

Figure 3-16: MC1319x Family Block Diagram<br />

Figure 3-13: MC1319x Family Block Diagram<br />

Transceiver<br />

3.13<br />

Configuration Diagrams<br />

for <strong>Freescale</strong> ZigBee<br />

Transceiver Families<br />

See diagrams from Figure 3-16 to 3-19.<br />

MC1319x<br />

Impedance<br />

Coupling<br />

Figure 3-17: MC1320x Family Block Diagram<br />

Figure 3-14: MC1320x Family Block Diagram<br />

MC1320x<br />

Transceiver<br />

Switch<br />

3.14<br />

ZigBee Health Care<br />

Profile and IEEE 802.15.4<br />

For medical care providers, access to timely<br />

and accurate information improves the ability<br />

to provide the highest quality of patient care.<br />

Decision support is not limited to just the<br />

bedside. The quality of care often depends<br />

on the ability to share vital patient data with<br />

clinicians in real time outside the care facility.<br />

This means clinicians can provide immediate<br />

feedback to attending physicians based on<br />

real-life clinical research as well as track<br />

treatment paths, and give results beyond the<br />

Impedance<br />

Coupling<br />

walls of the hospital over the patient’s lifetime<br />

to improve future treatment methodologies.<br />

ZigBee technology is rapidly proving to<br />

be useful in these applications. It can help<br />

provide greater freedom of movement for<br />

the patient without compromising automated<br />

monitoring functions. ZigBee technology<br />

can be deployed in a number of products<br />

that can help ensure better patient care and<br />

more effective care tracking by providing<br />

cost-effective, low-power wireless technology<br />

that can cover large buildings and institutions<br />

with mesh networking.<br />

<strong>Freescale</strong> has received ZigBee Certified<br />

product status for its ZigBee Health Care<br />

wireless health and wellness processing<br />

platforms. The ZigBee Certified products<br />

status is awarded to products that have been<br />

tested and met criteria for interoperability<br />

that enable wireless devices to securely and<br />

18 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

Switch


eliably monitor and manage non-critical,<br />

low-acuity health care services.<br />

The <strong>Freescale</strong> processing platforms awarded<br />

the certification include the MC13202FC<br />

transceiver in combination with the<br />

MC9S08QE128 MCU, and the MC13224V<br />

integrated transceiver with a 32-bit ARM7 MCU. These products are optimized for<br />

sensing and monitoring applications requiring<br />

low-power for battery-operated or batterybacked<br />

systems.<br />

3.15<br />

Why ZigBee is Ideal<br />

for Wireless Vital Sign<br />

Monitoring<br />

A ZigBee network for long-term care consists<br />

of a patient monitoring system and the network<br />

infrastructure to communicate with a central<br />

location or caregiver station as well as other<br />

mobile devices. Wireless monitoring provides<br />

feedback through a gateway to a central server<br />

where data is maintained. This data can be<br />

accessed by doctors, nurses and other health<br />

care professionals between caregiver visits,<br />

alerting them to changing conditions that need<br />

attention. Wireless monitoring also allows<br />

institutions to track care for accountability and<br />

insurance requirements.<br />

3.16<br />

<strong>Freescale</strong> Enables ZigBee<br />

Health Care Profile for<br />

<strong>Medical</strong> Devices<br />

<strong>Freescale</strong> solutions with ZigBee technology<br />

provide the perfect combination of cost<br />

effectiveness, low power, high integration<br />

and high performance required for medical<br />

monitoring applications.<br />

These solutions include not only silicon<br />

but also software, development tools<br />

and reference designs to help simplify<br />

development. <strong>Freescale</strong>’s BeeStack ZigBeecompliant<br />

stack with BeeKit Wireless Toolkit<br />

provides a simple software environment<br />

Figure 3-18: MC1321x Family Block Diagram<br />

Figure 3-15: MC1321x Family Block Diagram<br />

MC1321x<br />

MCU and<br />

Transceiver<br />

Switch<br />

Impedance<br />

Coupling<br />

Figure<br />

Figure<br />

3-16:<br />

3-19:<br />

MC1322x<br />

MC1322x<br />

Family<br />

Family<br />

Block<br />

Block<br />

Diagram<br />

Diagram<br />

MCU<br />

Transceiver<br />

Module<br />

MC1322x<br />

Impedance<br />

Coupling<br />

Figure<br />

Figure<br />

3-17:<br />

3-20:<br />

ZigBee<br />

Zigbee<br />

Transceiver<br />

Transceiver<br />

Options<br />

Options<br />

IEEE ® 802.15.4<br />

MC1319x<br />

MC1320x<br />

MC1321x<br />

MC1322x<br />

to configure network parameters. This tool<br />

allows customers to use a wizard and dropdown<br />

menus to help configure the ZigBee<br />

network parameters.<br />

To learn more about ZigBee technology,<br />

visit freescale.com/ZigBee.<br />

Home Portable <strong>Medical</strong><br />

freescale .com/medical 19<br />

Switch<br />

For information on wireless communication,<br />

power management, keypad and speaker<br />

implementation modules, see the Introduction<br />

to this chapter.


Home Portable <strong>Medical</strong><br />

3.17<br />

Transceivers and Receivers<br />

MC13191<br />

The MC13191 is a 2.4 GHz low-power<br />

transceiver.<br />

Key Features<br />

• 16 channels<br />

• 0 dBm (typical), up to 3.6 dBm maximum<br />

output power<br />

• Buffered transmit and receive data packets<br />

for simplified use with cost-effective MCUs<br />

• Supports 250 kbps O-QPSK data in 2.0 MHz<br />

channels and full spread-spectrum encode<br />

• Link quality and energy detect functions<br />

• Three power-down modes for power<br />

conservation (Hibernate, Doze, Tx and Rx)<br />

• Rx sensitivity of -91 dBm (typical) at 1.0%<br />

packet error rate<br />

3.18<br />

<strong>Freescale</strong> Continua<br />

Health Alliance ® Certified<br />

USB Library Software<br />

One of the most considerable challenges<br />

for medical designers is medical standard<br />

compliances. The Continua Health Alliance<br />

(continuaalliance.org) consists of more than<br />

200 members that have come together to<br />

form work groups to set standards for<br />

medical systems.<br />

Having multi-vendor medical devices<br />

communicating among themselves is not an<br />

easy task. Every day, protocols such as USB<br />

are being implemented in medical devices.<br />

Continua provides guidelines to address<br />

standardization in connectivity.<br />

Figure 3-21 describes a medical device<br />

system topology.<br />

<strong>Freescale</strong> provides complimentary stacks that<br />

enable the user with ready-to-use software to<br />

begin their path to standardization. Continua<br />

Health Alliance is responsible for certifying<br />

devices for compliance.<br />

Figure 3-21: Continua Ecosystem Topology<br />

Figure 3-18: Continua Ecosystem Topology<br />

PAN Devices<br />

Application Hosting Devices LAN/WAN<br />

Figure 3-22: <strong>Medical</strong> <strong>Applications</strong> USB Stack<br />

Figure 3-19: <strong>Medical</strong> <strong>Applications</strong> USB Stack<br />

Mouse <strong>Medical</strong> USBSeries Storage<br />

HID PHD CDC MSD<br />

Device Layer<br />

S08 CF-V1 Controll<br />

S08 CF-V1 Core<br />

Controller<br />

Hardware<br />

Register<br />

20 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

Class<br />

Device


3.19<br />

Standard <strong>Medical</strong><br />

USB Communication<br />

For USB communication, two main standards<br />

must be considered:<br />

• IEEE ® 11073, which provides structure to<br />

the communication interface<br />

• Personal health care device class (PHDC),<br />

which is a standard implementation of USB<br />

for medical devices<br />

The advantage of designing medical<br />

applications with a dedicated medical stack<br />

instead of a conventional USB stack is that<br />

a medical USB stack is designed specifically<br />

for medical USB devices. It eases medical<br />

application data exchange because it has a<br />

specific device specialization layer. Designing<br />

medical applications under a conventional<br />

USB stack may not provide the added value<br />

of medical organizations’ certifications.<br />

Three main factors need to be considered<br />

when selecting a particular USB connectivity<br />

software implementation for medical devices.<br />

1. Standardization: The solution is based<br />

on well-known standards in the industry.<br />

This helps to ensure success and proper<br />

introduction of the product to the market.<br />

2. Connectivity: The implementation allows<br />

connecting multiple devices from different<br />

vendors within an ecosystem topology.<br />

A connectivity-friendly environment is<br />

sustained by a robust and easy-to-use<br />

software stack.<br />

3. Portability: Multi-device independent<br />

layered architecture eases porting of code<br />

among devices. Selecting a hardware<br />

vendor with a broad portfolio is key to<br />

ensure customization and product roadmap<br />

establishment.<br />

Software architecture ensures code<br />

robustness, portability and reliability in<br />

embedded systems development.<br />

Figure 3-23: Broadband Block Diagram<br />

Figure 3-20: Broadband Block Diagram<br />

Pedometer<br />

Weight<br />

Scale<br />

Blood-<br />

Pressure<br />

Cuff<br />

Fitness<br />

Equipment<br />

Medication<br />

Tracking<br />

Pulse<br />

Ox<br />

Home Portable <strong>Medical</strong><br />

Table 3-1. <strong>Freescale</strong> MCU/MPU Families that Support the USB Personal Health Care Device<br />

SOC Use Case<br />

S08<br />

MC9S08MM128 PAN device<br />

MC9S08JM16 Low-end PAN device<br />

MC9S08JM60 PAN device<br />

MC9S08JS16<br />

ColdFire V1<br />

Low-end PAN device<br />

MCF51JM128 PAN device, hybrid device, application hosting device<br />

MCF51MM256 PAN device, hybrid device, application hosting device<br />

MCF51JE256 PAN device, hybrid device, application hosting device<br />

MCF51(JF/JU)128<br />

ColdFire V2<br />

PAN device, hybrid device, application hosting device<br />

MCF5225x<br />

ARM<br />

PAN device, hybrid device, application hosting device<br />

® Cortex-M4<br />

Kinetis KL2x, KL4x PAN device, hybrid device, application hosting device<br />

Kinetis MK20, MK40, MK50 and MK60<br />

ARM i.MX<br />

PAN device, hybrid device, application hosting device<br />

MCIMX233 PAN device, application hosting device<br />

MCIMX28x PAN device, application hosting device<br />

MCIMX51x Application hosting device<br />

freescale .com/medical 21<br />

Implant<br />

USB Personal Health Care<br />

Device Class Specification<br />

Digital<br />

Home<br />

Cell Phone<br />

Personal Health<br />

System<br />

PC<br />

Internet<br />

Health Care<br />

Provider<br />

Service<br />

Disease<br />

Management<br />

Service<br />

Personal<br />

Health Record<br />

Service<br />

Implant<br />

Monitoring<br />

Service


Home Portable <strong>Medical</strong><br />

The medical applications USB stack provides<br />

Figure 3-24: <strong>Medical</strong> Connectivity Library (IEEE<br />

the user with a PHDC implementation that Figure 3-21: <strong>Medical</strong> Connectivity Library (IEEE 11073)<br />

is divided into layers for portability and<br />

simplicity. The stack can also be used as a<br />

Application<br />

general-purpose USB stack. The stack has<br />

been ported to 8-bit 9S08 and 32-bit ColdFire<br />

Device Specialization Interface<br />

and Kinetis devices. The stack can be<br />

downloaded at freescale.com.<br />

<strong>Medical</strong> Connectivity<br />

® 11073)<br />

The USB protocol can be further broken into<br />

PHDC and low-level driver layers. The lowlevel<br />

driver abstracts USB IP to provide a<br />

generic interface to the class driver.<br />

The PHDC is a function-specific class layer.<br />

Its responsibility is to hide transport-specific<br />

details from the data exchange protocol layer.<br />

<strong>Freescale</strong> additionally provides a medical<br />

connectivity library that provides users with<br />

standard IEEE 11073 connectivity. This library<br />

is transport-independent because of its<br />

transport independent layer (TIL). Therefore,<br />

protocols that may be used include serial,<br />

Bluetooth, USB and ZigBee. The library can<br />

be downloaded at freescale.com.<br />

USB devices compliant with industry<br />

standards such as IEEE 11073 will be<br />

developed under organizations such as<br />

Continua Health Alliance for future use. A<br />

sample application featuring a weight scale<br />

device has been created to demonstrate the<br />

value of working under the standardization<br />

scheme and allowing multi-vendor device<br />

interoperability. The demo videos are available<br />

at freescale.com.<br />

In the weight scale example, the personal<br />

health care application interacts with the host<br />

computer using IEEE 11073-20601 and IEEE<br />

11073–10415 (weight scale) protocols. It is<br />

important to note that the host computer runs<br />

the same IEEE 11073 protocols. One specific<br />

example of such implementation is covered by<br />

Continua Alliance. Member companies of the<br />

Continua Alliance can obtain CESL reference<br />

software. After installing this software the<br />

host is emulated and ready to connect to the<br />

weight scale device.<br />

USB Ethernet Transport<br />

USB TCP/IP Transport<br />

USB HW Ethernet Transport<br />

Available Functionality<br />

Table 3-2. MPC8313E Processor Highlights<br />

<strong>Medical</strong> Connectivity<br />

Library<br />

Interface API<br />

TIL Interface<br />

TIL SHIM<br />

Interface API<br />

MPC8313 MPC8313E<br />

Core e300, 2-IU, w/FPU, up to 400 Hz<br />

L1 I/D cache 16 KI/16 KD<br />

Memory controller 16/32-bit DDR2-333<br />

Local bus controller 25-bit/8-bit dedicated or 25-bit/16-bit MUX Add/Data up to 66 MHz<br />

PCI One 32-bit up to 66 MHz wake on PME<br />

Ethernet Two 10/100/1000 MACs, SGMII. 98145.452<br />

98145.452 One High-Speed USB 2.0 host/device + HS PHY, wake on USB<br />

Security None SEC 2.2<br />

UART Dual<br />

I 2 C Dual<br />

SPI 1<br />

Boot options NOR, NAND<br />

Internal controller PIC<br />

MUX/dedicated GPIO 10/16<br />

DMA 4 channels<br />

Estimated core power 1.2W<br />

Power management Standby power


<strong>Freescale</strong> has developed sample code to<br />

connect with the Continua Alliance emulator.<br />

After flashing an 8-bit 9S08JM device with<br />

this software, the device is recognized as<br />

a Continua USB interface. The supplied<br />

drivers allow the device to be recognized<br />

as a USB personal health care device. The<br />

Continua manager is then launched and<br />

transport communication starts. The weight<br />

measurements are sent from the 9S08JM<br />

device to the host. Other personal health care<br />

applications can also interact with the host<br />

system developed by Continua. These include<br />

IEEE 11073–10407 (blood pressure monitor)<br />

IEEE 11073–10417 (glucose meter) and IEEE<br />

11073–10408 (thermometer) protocols.<br />

MPC8313E: PowerQUICC II<br />

Pro Processor<br />

The MPC8313E is a cost-effective, lowpower,<br />

highly integrated processor. The<br />

MPC8313E extends the PowerQUICC family,<br />

adding higher CPU performance, additional<br />

functionality, and faster interfaces while<br />

addressing the requirements related to time<br />

to marked, price, power consumption and<br />

package size.<br />

S08JS: 8-bit MCU Family<br />

The S08JS 8-bit MCU family features a<br />

full-speed 2.0 USB device controller and<br />

integrates a USB transceiver to help save<br />

cost by eliminating off-chip components.<br />

Key Features<br />

• 48 MHz HCS08 core<br />

• Integrated full-speed USB 2.0 device<br />

controller<br />

• 16/8 KB flash, 512B SRAM, 256B USB<br />

RAM 2.7V to 5.5V operation, -40°C to<br />

+85°C operation<br />

• ROM-based USB bootloader<br />

• SCI, SPI, 8-channel KBI<br />

Figure 3-25: MPC8313E Block Diagram<br />

Figure 3-22: MPC8313E Block Diagram<br />

Security<br />

Acceleration<br />

Core<br />

Accelerators<br />

I/O<br />

2x Gigabit<br />

Ethernet<br />

2-lane SerDes<br />

• 16-bit timers: 1 x 2-channel<br />

• MTIM: 8-bit timer<br />

• One hardware CRC module<br />

• 12 general-purpose I/O and two<br />

output-only pins<br />

• Multiple purpose clock generation<br />

• 24 WFN, 20 SOIC package options<br />

e300 Core<br />

Complex<br />

Coherent System Bus<br />

Home Portable <strong>Medical</strong><br />

DDR/DDR2<br />

SDRAM Controller<br />

Local Bus<br />

Performance Monitor,<br />

DUART, I 2 C,<br />

Timers, GPIO,<br />

Interrupt Control<br />

freescale .com/medical 23<br />

SGMII<br />

USB<br />

ULPI PHY<br />

Figure 3-26: JS 16/8 Block Diagram<br />

Figure 3-23: JS 16/8 Block Diagram<br />

MTIM<br />

KBI<br />

ICE+BDM<br />

2-ch., 16-bit<br />

Timer<br />

PCI<br />

4-ch.<br />

DMA<br />

ROM-Based<br />

USB Bootloader<br />

USB 2.0<br />

MCG<br />

256B<br />

USB RAM<br />

6 KB<br />

8 KB<br />

Memory<br />

Options<br />

Flash<br />

512 KB SRAM<br />

Debugging/Interfaces Peripherals Flash RAM Core Plus Features<br />

SPI<br />

SCI COP<br />

RTC CRC<br />

S08 Core


Blood Pressure Monitor<br />

4.1<br />

Introduction<br />

Blood pressure monitors are medical devices for patients who suffer<br />

from hypertension who need to detect, measure and track their blood<br />

pressure. This is one of the vital signs that need to be measured<br />

to make a precise diagnosis. Up to 25 percent of patients who<br />

are diagnosed with hypertension do not suffer from hypertension,<br />

but instead from white-coat hypertension. This is the elevation<br />

of arterial pressure due to anxiety or stress produced by a health<br />

professional while taking a blood pressure test. This is why personal<br />

blood pressure monitors can help in detecting true hypertension as<br />

stipulated in the Joint National Committee and the 2003 guidelines<br />

from the European Society of Hypertension.<br />

Blood pressure monitoring systems use techniques such as<br />

oscillometric methods and Korotkoff measurements. The oscillometric<br />

method consists of measuring the oscillations in pressure inside<br />

the cuff that the patient wears. The Korotkoff method is based on<br />

listening to sounds when taking blood pressure.<br />

Automatic blood pressure monitoring conducted at home is<br />

increasingly used in the diagnosis and management of hypertension.<br />

This includes arm cuff and wrist cuff units. Figure 4-1 illustrates the<br />

system block diagram of a typical blood pressure monitor. This block<br />

diagram and others like it are available at freescale.com/medical.<br />

24 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


4.2<br />

Heartbeat Detection<br />

The heartbeat rate is considered one of the<br />

vital patient measurements. The following<br />

procedure is used to obtain this measurement.<br />

While deflating a cuff that is attached to a<br />

person’s arm, you can see slight variations<br />

in the overall cuff pressure (Figure 4-2). This<br />

variation in the cuff’s pressure is due to the<br />

pressure change from blood circulation. This<br />

variation is amplified through a filter designed<br />

at 1 Hz, and set to an offset. This new signal<br />

is the heartbeat signal.<br />

The signal in Figure 4-3 shows variations in the<br />

pressure signal and is a graphical representation<br />

of a patient’s heartbeat over time.<br />

4.3<br />

Systolic and Diastolic<br />

Measurements<br />

Heartbeat detection is a simple oscillometric<br />

method used to determine systolic blood<br />

pressure (SBP) and diastolic blood pressure<br />

(DBP). The simplified measurement is<br />

based on the idea that the amplitude of the<br />

heartbeat signal changes as the cuff is inflated<br />

over the SBP. While the cuff is deflated, the<br />

amplitude of the heartbeat signal grows as<br />

the cuff pressure passes the systolic pressure<br />

of the patient. As the cuff pressure is further<br />

reduced, the pulsations increase in amplitude<br />

until the pulsations reach a maximum pulse<br />

known as the mean arterial pressure (MAP),<br />

and then reduce rapidly until the diastolic<br />

pressure is reached (Figure 4-4).<br />

4.4<br />

Invasive Blood Pressure<br />

Monitors<br />

The most accurate way to measure blood<br />

pressure is to take the measurement directly<br />

from an arterial line. The advantage of this<br />

method is continuous measurement, versus<br />

a discrete measurement in the non-invasive<br />

method.<br />

<strong>Freescale</strong> has long been a provider of sensors<br />

for the invasive blood pressure monitoring<br />

segment. Figure 4-6 shows different types of<br />

packaging for <strong>Freescale</strong> pressure sensors.<br />

Home Portable <strong>Medical</strong><br />

Figure 4-1: Blood Pressure Monitor (BPM) General Block Diagram<br />

Blood Pressure Monitor (BPM)<br />

Power<br />

Management<br />

Pressure Sensor<br />

Inertial<br />

Sensor<br />

Amplifier<br />

DC Brush<br />

Motor Control<br />

Pump Motor<br />

Bleed Valve<br />

<strong>Freescale</strong> Technology Optional<br />

Figure 4-2: Heartbeat Signal<br />

Figure 4-2: Heartbeat Signal<br />

1800<br />

1600<br />

1400<br />

1200<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

Wireless<br />

Comm<br />

Keypad<br />

freescale .com/medical 25<br />

SPI/I 2 C<br />

SPI/I 2 C<br />

Main System<br />

Pressure<br />

MCU<br />

USB<br />

To PC<br />

Display<br />

Non-Volatile<br />

Memory<br />

Sensor System<br />

(Intergrated with main system<br />

for wrist applications or with cuff<br />

for all other applications)<br />

0<br />

1 449 897 1345 1793 2241 2689 3137 3585 4033 4481 4929 5377 5825 6273 6721<br />

Figure 4-3: Heartbeat over Time<br />

Figure 4-3: Heartbeat over Time<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Heartbeat<br />

1 458 915 1372 1829 2286 2743 3200 3657 4114 4571 5028 5485 5942 6399 6856<br />

Pressure<br />

Heartbeat


Home Portable <strong>Medical</strong><br />

4.5<br />

Obtaining Pressure<br />

Measurements<br />

The basic function of a blood pressure monitor<br />

is to measure arterial pressure. One method to<br />

obtain this measurement is to use a pressure<br />

sensor that measures the present pressure.<br />

The variations in pressure change the velocity<br />

of a motor that controls an air pump. The air<br />

chamber presses the arm up to the systolic<br />

pressure. When systolic pressure is reached,<br />

the valve can deflate the cuff around the arm<br />

gradually. At the same time, the pressure<br />

sensor takes the measurements. Some useful<br />

areas for <strong>Freescale</strong> sensors include the<br />

following health care monitoring applications:<br />

• Blood pressure (BP) monitors<br />

• Invasive BP monitors<br />

• Intrauterine BP monitors<br />

• Hospital bed controls<br />

• Respirators<br />

• Sleep apnea monitors<br />

• Sports diagnostic systems<br />

• Dialysis equipment<br />

• Drug delivery for inhalers<br />

• Physical therapy<br />

<strong>Freescale</strong> pressure sensors are specifically<br />

designed for applications where high quality<br />

and reliability are especially important.<br />

<strong>Freescale</strong> sensors offer a wide range of functions<br />

and features, from basic to fully amplified and<br />

temperature-compensated devices.<br />

The amplified series can easily be connected<br />

to an MCU. The low-voltage pressure sensor<br />

series is designed to meet power efficiency<br />

demands to extend longevity for simpler, costsensitive<br />

medical and portable electronics.<br />

<strong>Freescale</strong> pressure sensors combine<br />

advanced micro-machining techniques, thinfilm<br />

metallization and bipolar semiconductor<br />

processing that provides accurate and highly<br />

reliable sensors at competitive prices.<br />

Figure 4-4: Heartbeat Versus Diastolic Pressure<br />

Figure 4-4: Heartbeat Versus Diastolic Pressure<br />

2500<br />

2000<br />

1500<br />

1000<br />

Figure 4-6: <strong>Freescale</strong> Pressure Sensors<br />

Figure 4-6: <strong>Freescale</strong> Pressure Sensors<br />

MPAK<br />

MPAK Axial Port<br />

Small<br />

Outline<br />

Package<br />

(SOP)<br />

500<br />

Case<br />

482<br />

Super<br />

Small<br />

Outline<br />

Package<br />

(SSOP)<br />

Case Tire<br />

1317 Pressure Axial Basic<br />

Monitor Port Element<br />

Through<br />

Hole 492B<br />

26 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

SBP<br />

MAP<br />

0<br />

1 458 915 1372 1829 2286 2743 3200 3657 4114 4571 5028 5485 5942 6399 6856<br />

Vacuum<br />

Port<br />

Side<br />

Port<br />

DBP<br />

Dual<br />

Port<br />

Axial<br />

Port<br />

Unibody <strong>Medical</strong><br />

Chip Pak<br />

Dual<br />

Port<br />

Through<br />

Hole<br />

Axial Port<br />

Gauge<br />

Port<br />

Through<br />

Hole<br />

Axial Port<br />

Heartbeat<br />

Pressure<br />

Figure 4-5: Flexis MCU Blood Pressure Monitor Reference Design Block Diagram<br />

Figure 4-5: Flexis Microcontroller Blood Pressure Monitor Reference Design Block Diagram<br />

Motor Control<br />

Air Chamber<br />

OLED<br />

Display<br />

Valve<br />

DC Motor<br />

(Air Pump)<br />

Power Stage<br />

USB<br />

Connector<br />

(Type B)<br />

Batteries<br />

SPI (3)<br />

GPIO (3)<br />

TPM (1)<br />

Power Stage<br />

MPXV5050GP<br />

(Pressure<br />

Sensor)<br />

High Pass<br />

Filter<br />

MC9S08JM60<br />

USB MCU<br />

Power Supply<br />

(3.3, 12V)<br />

ADC (1)<br />

MCU<br />

MC9S08QE 128<br />

SCI (2)<br />

ADC (1)<br />

TPM (1)<br />

SPI (4)<br />

Ctrl (2)<br />

GPIO (1)<br />

GPIO<br />

(39)<br />

I 2 C (2)<br />

MC13202<br />

(ZigBee ®<br />

Transceiver)<br />

MPR083<br />

(Capacitive<br />

Touch)<br />

Non-Volatile<br />

Memory<br />

Low Pass<br />

Filter (RC)<br />

Audio<br />

Amplifier<br />

Electrodes (5)<br />

Speaker<br />

Case<br />

423A<br />

PCB<br />

Antenna<br />

Through<br />

Hole<br />

Axial Port


4.6<br />

Blood Pressure Monitor<br />

Reference Design<br />

For more information on how to build a<br />

blood pressure monitor with the Flexis QE<br />

MCU family, download the following PDF<br />

documents from freescale.com:<br />

• Application note AN4328: Blood<br />

Pressure Monitor Fundamentals and<br />

Design. This application note describes<br />

the implementation of a basic blood<br />

pressure monitor using the MK53N512,<br />

MC9S08MM128 or MCF51MM256 medical<br />

oriented MCUs, pressure sensors, as well<br />

as the MED-BPM development board. Code<br />

is provided so development is faster. The<br />

block diagram is shown on Figure 4-8.<br />

• Application note AN3500: Blood Pressure<br />

Monitor Using Flexis QE128 and Pressure<br />

Sensors<br />

• Design reference manual DRM101:<br />

Blood Pressure Monitor Using the Flexis<br />

QE128 Family and Pressure Sensors<br />

Find more information about the components<br />

of a blood pressure sensor in this guide:<br />

• For Inertial Sensor, see Chapter 9, Hearing<br />

Aids Introduction.<br />

• For Wireless Communication, Power<br />

Management, Keypad and Speaker<br />

Implementation modules, see Chapter 3,<br />

Telehealth Systems Introduction.<br />

• For LCD screen connection, see Chapter 6,<br />

Blood Glucose Meter Introduction.<br />

• For Pressure Sensor implementation and<br />

Motor Control devices, see Chapter 12,<br />

Ventilation and Spirometry Introduction.<br />

Figure 4-7: Pressure Gauge Block Diagram<br />

Figure 4-8: Pressure Gauge Block Diagram<br />

Motor Control<br />

Air Chamber<br />

Home Portable <strong>Medical</strong><br />

freescale .com/medical 27<br />

Valve<br />

DC Motor<br />

(Air Pump)<br />

Power Stage<br />

Figure 4-8: MED-BPM Block Diagram<br />

Figure 4-9: MED-BPM Block Diagram<br />

GPIO<br />

GPIO Optocoupler<br />

Low-Pass<br />

Filter<br />

Buffer with<br />

Internal OpAmp<br />

Air<br />

Pump<br />

Air<br />

Value<br />

ADC<br />

High-Pass<br />

Filter<br />

TPM (1)<br />

Power Stage<br />

MPXV5050GP<br />

(Pressure<br />

Sensor)<br />

Arm Cuff<br />

High Pass<br />

Filter<br />

Pressure<br />

Sensor<br />

MP3V5050<br />

ADC (1)<br />

ADC (1)<br />

Signal Amplifier<br />

with Internal OpAmp<br />

TPM (1)<br />

SPI (4)<br />

Ctrl (2)<br />

MCU<br />

MC9S08QE 128<br />

Low-Pass<br />

Filter<br />

<strong>Freescale</strong> Technology MM/KSX Internal Non Electrical Connection<br />

ADC


MCF51QE: Flexis 32-bit<br />

ColdFire V1 MCU<br />

Home Portable <strong>Medical</strong><br />

The QE family, comprised of a pin-compatible<br />

8-bit and 32-bit device duo, is the first family<br />

in the Flexis MCU series. The Flexis series<br />

of controllers is the connection point on the<br />

<strong>Freescale</strong> Controller Continuum, where 8- and<br />

32-bit compatibility becomes reality.<br />

The MCF51QE128 device extends the low end<br />

of the 32-bit ColdFire controller family with<br />

up to 128 KB flash memory and a 24-channel<br />

12-bit analog-to-digital converter (ADC). The<br />

32-bit MCF51QE128 is pin, peripheral and tool<br />

compatible with the 8-bit S08QE128 device.<br />

They share a common set of peripherals and<br />

development tools, delivering the ultimate in<br />

migration flexibility.<br />

Key Features<br />

Figure 4-10: MCF51QE Block Diagram<br />

• 50 MHz ColdFire V1 core, 25 MHz bus speed<br />

• Up to 128 KB flash memory<br />

• Up to 8 KB RAM<br />

• 1.8 to 3.6V operating voltage range<br />

• Loop-control oscillator<br />

• Highly accurate internal clock (ICS)<br />

• Single-wire background debug interface<br />

• Up to 70 GPIO ports, plus 16 bits of<br />

rapid GPIO<br />

• 16 keyboard interrupt pins<br />

• -40°C to +85°C temperature range<br />

• Pin compatibility in 64- and 80-pin<br />

LQFP packages<br />

• Common development tools including<br />

CodeWarrior for MCUs 6.0<br />

Figure 4-9: MCF51QE Block Diagram<br />

8 KB<br />

SRAM<br />

128 KB<br />

Flash<br />

4 KB<br />

SRAM<br />

64 KB<br />

Flash<br />

4 KB<br />

SRAM<br />

32 KB<br />

Flash<br />

Memory<br />

Options<br />

Core Optional<br />

Real-Time<br />

Counter<br />

ColdFire V1<br />

Core<br />

2 Rapid<br />

GPI/O Ports<br />

System<br />

Inegration<br />

28 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

BDM<br />

ICS +<br />

ULP Osc<br />

GPI/O<br />

2 KBI 2 x SPI 2 x I 2 C<br />

24-ch.,<br />

12-bit ADC<br />

COP<br />

K50 Measurement MCUs<br />

The K50 MCU family is pin, peripheral and<br />

software compatible with other Kinetis MCUs<br />

and provides designers with an analog<br />

measurement engine consisting of integrated<br />

operational and transimpedance amplifiers<br />

and high-resolution ADC and DAC modules.<br />

The family also features IEEE 1588 Ethernet<br />

and hardware encryption, full-speed USB<br />

2.0 On-The-Go with device charger detect<br />

capability and a flexible low-power segment<br />

LCD controller with support for up to 320<br />

segments. Devices start from 128 KB of<br />

flash in 64-pin QFN packages extending up<br />

to 512 KB in a 144-pin MAPBGA Package.<br />

6-ch.,<br />

16-bit<br />

Timer<br />

2 x 3-ch.,<br />

16-bit<br />

Timer<br />

2 x SCI<br />

2 x<br />

Comparator<br />

Key Features<br />

Kinetis K50 MCU features<br />

and peripherals in the integrated<br />

measurement engine:<br />

• Ultra-low-power operation<br />

• 2x OPAMP<br />

• 2x TRIAMP<br />

• 2x 12-bit DAC<br />

• 2x 16-bit SAR ADC, up to 31 channels<br />

with programmable gain amplifiers (PGA)<br />

• Programmable Delay Block (PDB)<br />

• I2C • USB connectivity<br />

• ARM Cortex-M4 core with DSP<br />

(Digital Signal Processor) instructions


MCF51MM: Flexis 32-bit<br />

ColdFire V1 MCUs<br />

The MCF51MM256/128 provides ultra-lowpower<br />

operation, USB connectivity, graphic<br />

display support and unparalleled measurement<br />

accuracy, all in a single 32-bit MCU, allowing<br />

designers to create more fully featured<br />

products at lower cost. The<br />

MCF51MM256/128 is ideal for medical<br />

applications or other applications requiring a<br />

significant amount of precision analog such as<br />

instrumentation and industrial control.<br />

The MCF51MM256/128 is part of the<br />

<strong>Freescale</strong> Flexis MCU series.<br />

Features:<br />

• ColdFire V1 core delivering a 50 MHz core<br />

speed and 25 MHz bus speed<br />

• Up to 256 KB flash and 32 KB SRAM<br />

• Low-power stop 2 current: 500 nA<br />

(32 KB of active SRAM)<br />

• 2 x general purpose opamps<br />

• 2 x transimpedance amplifiers<br />

• 16-bit SAR high resolution analog-to-digital<br />

converter (ADC)<br />

• Analog Comparator with 5-bit digital-toanalog<br />

converter (DAC)<br />

• Internal voltage reference<br />

• USB – device/host/on-the-go controller<br />

• 2 x serial peripheral interface (SPI),<br />

2 x serial communication interface (SCI)<br />

and 1 x I2C • Mini FlexBus (external bus interface EBI)<br />

• Included in <strong>Freescale</strong>’s Product<br />

Longevity Program<br />

Figure 4-10: Kinetis K50 Family Block Diagram<br />

Figure 4-11: Kinetis K50 Family<br />

Security<br />

and Integrity<br />

Cyclic<br />

Redundancy<br />

Check (CRC)<br />

Random<br />

Number<br />

Generator<br />

Cryptographic<br />

Acceleration<br />

Unit (CAU)<br />

Core<br />

ARM ® Cortex-M4<br />

72/100 MHz<br />

Debug<br />

Interfaces<br />

Interrupt<br />

Controller<br />

Standard Feature<br />

DSP<br />

Analog<br />

16-bit<br />

ADC<br />

PGA<br />

Analog<br />

Comparator<br />

6-bit<br />

DAC<br />

12-bit<br />

DAC<br />

Voltage<br />

Reference<br />

OPAMP<br />

TRIAMP<br />

Home Portable <strong>Medical</strong><br />

System Memories<br />

Internal and<br />

External<br />

Watchdogs<br />

Memory<br />

Protection Unit<br />

(MPU)<br />

Xtrinsic<br />

Low-Power<br />

Touch-Sensing<br />

Interface<br />

Segment<br />

LCD Controller<br />

freescale .com/medical 29<br />

DMA<br />

Low-Leakage<br />

Wake-Up Unit<br />

Timers<br />

FlexTimer<br />

Carrier<br />

Modulator<br />

Transmitter<br />

Programmable<br />

Delay Block<br />

Periodic<br />

Interrupt<br />

Timer<br />

Low-Power<br />

Timer<br />

Independent<br />

Real-Time<br />

Clock (IRTC)<br />

IEEE ® 1588<br />

Timer<br />

Optional Feature<br />

Program<br />

Flash<br />

(128 to 512 KB)<br />

FlexMemory<br />

(32 to 256 KB)<br />

(2 to 4 KB EE)<br />

Serial<br />

Programming<br />

Interface<br />

(EZPort)<br />

SRAM<br />

(32 to 128 KB)<br />

External<br />

Bus Interface<br />

(FlexBus)<br />

Clocks<br />

Phase-Locked<br />

Loop<br />

Frequency-<br />

Locked Loop<br />

Low/High-<br />

Frequency<br />

Oscillators<br />

Internal<br />

Reference<br />

Clocks<br />

Communication Interfaces HMI<br />

I 2 C<br />

UART<br />

(ISO 7816)<br />

SPI<br />

IEEE 1588<br />

Ethernet MAC<br />

I 2 S<br />

Secure<br />

Digital Host<br />

Controller<br />

(SDHC)<br />

USB OTG<br />

(LS/FS)<br />

USB Charger<br />

Detect (DCD)<br />

USB Voltage<br />

Regulator<br />

GPIO


S08MM: Flexis<br />

8-bit MCUs<br />

Home Portable <strong>Medical</strong><br />

The 9S08MM128/64/32 provides ultra-<br />

low-power operation, USB connectivity,<br />

graphic display support and unparalleled<br />

measurement accuracy, all in a single 8-bit<br />

MCU, allowing device designers to create<br />

more fully featured products at a lower cost. It<br />

is ideal for applications requiring a significant<br />

amount of precision analog.<br />

The 9S08MM128/64/32 is part of <strong>Freescale</strong>’s<br />

Flexis MCU series.<br />

Features:<br />

• S08 core delivering a 48 MHz core speed<br />

and 24 MHz bus speed<br />

• Up to 128 KB flash and 12 KB SRAM<br />

• Low-power stop 2 current: 450nA<br />

(12 KB of active SRAM)<br />

• 2 x OPAMP- General purpose opamps<br />

• 2 x TRIAMP- Transimpedance amplifiers<br />

• 16-bit SAR analog-to-digital converter<br />

(ADC) – high resolution ADC<br />

• Analog comparator<br />

• Internal voltage reference<br />

• USB device controller<br />

• 2 x serial peripheral interface (SPI),<br />

2 x serial communications interface (SCI)<br />

and 1 x I2C Figure 4-12: 4-11: MCF51MM256 Block Block Diagram Diagram<br />

2x OPAMP<br />

2x TRIAMP<br />

PDB<br />

MCG<br />

Figure 4-12: MC9S08MM128 Block Diagram<br />

Figure 4-13: MC9S08MM128 Block Diagram<br />

2x OPAMP<br />

2x TRIAMP<br />

16-bit SAR ADC I2 12-bit DAC LVI<br />

C<br />

PDB<br />

2 x 4-ch. TPM with PWM 2 x SCI<br />

MCG<br />

VREF TOD<br />

PRACMP CMT<br />

2 x 4-ch. TPM with PWM 2 x SPI<br />

2 x KBI 2 x SCI<br />

32-bit V1 ColdFire 50 MHz Core with MAC<br />

VREF TOD<br />

PRACMP CMT<br />

2 x KBI 2 x SPI<br />

8-bit 9S08 48 MHz Core<br />

Up to 68 GPIO/<br />

16 RGPIO<br />

16-bit SAR ADC I2 12-bit DAC LVI<br />

C<br />

MiniBus External<br />

USB<br />

Device/Host/<br />

OTG<br />

Bootloader<br />

256 KB 32 KB SRAM<br />

USB ROM<br />

Up to 68 GPIO<br />

USB<br />

Device<br />

Bootloader<br />

128 KB Flash 12 KB SRAM<br />

USB ROM<br />

30 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


Heart Rate Monitor<br />

5.1<br />

Introduction<br />

Heart rate monitors measure the heart rate during exercise or vigorous activity<br />

and gauge how hard the patient is working. Newer heart rate monitors consist<br />

of two main components: a signal acquisition sensor/transmitter and a receiver<br />

(wrist watch or smartphone). In some cases, the signal acquisition is integrated<br />

into fabric worn by the user or patient. MCUs analyze the ECG signal and<br />

determine the heart rate, making possible to implement a simple heart rate<br />

monitor with an 8-bit MCU.<br />

5.2<br />

Heart Signals Overview<br />

Figure 5-1 shows a typical heart signal. In this<br />

signal, the heart muscles generate different<br />

voltages. P represents an atrial depolarization.<br />

Q, R, S and T represent the depolarization and<br />

repolarization of the ventricles. Each time this<br />

signal is present, a heartbeat is generated.<br />

The principal purpose of this application is<br />

to provide a heartbeat average, so it is only<br />

necessary to work with the QRS complex (see<br />

section 5-4, Obtaining QRS Complexes). For<br />

this reason it is important to develop analog<br />

and digital signal conditioning. First, the signal<br />

is amplified and the noise is filtered, and then<br />

the QRS complex can be detected.<br />

freescale .com/medical 31


Home Portable <strong>Medical</strong><br />

5.3<br />

Filters and Amplification<br />

Noise and interference signals acquired<br />

in this type of system can be caused by<br />

electricity, such as radiation from electricpowered<br />

fluorescent lamps. These generate<br />

a lot of common-mode voltage and noise.<br />

Other aspects that generate noise are muscle<br />

contractions, respiration, electromagnetic<br />

interference and noise from electronic<br />

components. Because the electrical signals<br />

from the heart are not strong enough, it is<br />

necessary to amplify the signals and reduce<br />

the common-mode voltage in the system.<br />

Cardiac motion generates electrical currents<br />

with different potentials in the body. These can<br />

be sensed with electrodes, usually connected<br />

to the right and left hands. The electrical<br />

potential is an AC signal in a bandwidth<br />

from 0.1 Hz to 150 Hz with a magnitude of<br />

approximately 1 mV peak to peak, and with<br />

presence of common-mode voltage noise in<br />

a frequency range from approximately 40 Hz<br />

to 60 Hz. Knowing this information, a circuit<br />

can be designed for amplification and filtration<br />

(see figures 5-3, 5-4, 5-5 and 5-6 for details).<br />

5.4<br />

Amplifier and Filtering<br />

Requirements<br />

The amplification is fixed at 1000 with a<br />

band-pass filter and cut frequencies of 0.1 Hz<br />

and 150 Hz. The reject-band filter has cut<br />

frequencies of 40 Hz and 60 Hz.<br />

Frequency Response<br />

• Diagnostic grade monitoring<br />

-3 dB frequency, bandwidth of 0.1 Hz–150 Hz<br />

• Band-pass filter<br />

Rl = 1 kΩ R = 1.5 MΩ C = C = 1 uF<br />

p hp lp hp<br />

• AC line noise<br />

-3 dB frequency bandwidth of 40 Hz–60 Hz<br />

• Reject–band filter<br />

R = 1 kΩ R = 1.5 MΩ C = 4 uF C = 1.7 nF<br />

lp hp lp hp<br />

This application requires two types of<br />

amplifiers: an instrumentation amplifier and an<br />

operational amplifier.<br />

Figure Figure 5-1: 5-1: Typical Typical Heart Heart Signal Signal<br />

P T<br />

Figure 5-2: Heart Rate Monitor (HRM) General Block Diagram<br />

Heart Rate Monitor (HRM)<br />

Special Conductive<br />

Glove or Finger Touch<br />

to Conductive Area<br />

Amplifier<br />

Power<br />

LED<br />

Coin Cell<br />

Battery<br />

Coin Cell<br />

Battery<br />

Amplifier<br />

<strong>Freescale</strong> Technology Optional<br />

32 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

ADC<br />

ADC<br />

Conductive Rubber Chest Strap<br />

or Special Clothing<br />

Display<br />

MCU<br />

USB<br />

To PC<br />

MCU<br />

Q<br />

R<br />

S<br />

Keypad<br />

Receiver/<br />

Amplifier<br />

Antenna<br />

Figure 5-3: Signal Conditioning Block Diagram<br />

Figure 5-3: Signal Conditioning Block Diagram<br />

Instrumentation<br />

Amplifier<br />

Amp and<br />

Modulator<br />

Antenna<br />

PWM<br />

Wireless<br />

Comm<br />

Speaker Drive<br />

Circuitry<br />

To Remote<br />

Sensor System<br />

Main<br />

Receiver System<br />

To Main<br />

Receiver<br />

System<br />

Remote<br />

Sensor System<br />

ADC


Instrumentation amplifier requirements<br />

include:<br />

• Low gain 10<br />

• High common-mode rejection ratio (CMRR)<br />

• Low offset<br />

R1 = 500 Ω R2 = 4.5 kΩ<br />

Requirements for the operational amplifier, the<br />

second part of the instrumentation amplifier,<br />

include:<br />

• High gain 100<br />

• Output voltage around 1V<br />

• Low offset<br />

R3 = 1 kΩ R2 = 100 kΩ<br />

5.5<br />

Obtaining QRS Complexes<br />

The QRS complex has to be detected in<br />

every heartbeat. This complex is the highest<br />

peak generated from the heart waveform.<br />

Although the signal has been filtered and<br />

amplified, it is necessary to include a digital<br />

band-pass filter with a bandwidth of 10 Hz<br />

to 25 Hz to remove high-frequency noise and<br />

low-frequency drift. Afterwards, filtering a<br />

derivation is implemented and a threshold is<br />

taken to determine whether the data is part of<br />

the QRS signal.<br />

5.6<br />

Heart Rate Monitor Design<br />

For more information on how to design a<br />

heart rate monitor, refer to AN4323: <strong>Freescale</strong><br />

solutions for Electrocardiograph and Heart<br />

Rate Monitor <strong>Applications</strong>.<br />

This application note describes how to use the<br />

MED-EKG development board, a highly efficient<br />

board that can be connected to the <strong>Freescale</strong><br />

Tower System to obtain an electrocardiogram<br />

signal and measure heart rate.<br />

The application is implemented using<br />

either the MK53N512, MC9S08MM128 or<br />

MCF51MM256 MCUs.<br />

Home Portable <strong>Medical</strong><br />

Figure 5-4: 5-4: Instrument Instrument Amplifier Amplifier to Acquire to Acquire Heart Heart Signal Signal<br />

Vi 1<br />

Vid=<br />

(Vi 1 -Vi 2 )<br />

Vi 2<br />

2R 1<br />

Figure 5-5: Passive Band-Pass Filter Circuit Operating Frequencies 0.1 Hz-150 Hz<br />

Figure 5-5: Band-Pass Filter Circuit Operating Frequencies 0.1 Hz–150 Hz<br />

Figure 5-6: Active Band-Pass Filter Circuit Operating Frequencies 0.1 Hz-150 Hz<br />

Figure 5-6: Band-Pass Filter Circuit Operating Frequencies 0.1 Hz–150 Hz<br />

Figure 5-7: Digital Signal Processing to Obtain the QRS Complex<br />

Figure 5-7: Digital Signal Processing to Obtain the QRS Complex<br />

X(n)<br />

Raw ECG<br />

LPF<br />

HPF<br />

Differentiate<br />

Integrate<br />

freescale .com/medical 33<br />

R 2<br />

Vid/2R1 R2 Y(n)<br />

R 3<br />

R 3<br />

Q<br />

Vid(1+2R 2 /2R 1 )<br />

R<br />

S<br />

R 4<br />

R 4<br />

Square<br />

Vo=R 4 /R 3 ( 1+R 2 /R 1 )Vid<br />

A=Vo/Vid


Blood Glucose Meter<br />

6.1<br />

Introduction<br />

A glucometer is a device for determining the approximate<br />

concentration of glucose in the blood. It is a key element of homebased<br />

blood glucose monitoring (BGM) for people with diabetes<br />

mellitus (Type 1 and 2).<br />

The conductivity of blood is affected by the quantity of glucose<br />

present. This is the principle used to determine the concentration of<br />

glucose in a sample of blood. This biological phenomenon can be<br />

modeled with an electrical circuit where a variable resistor is connected<br />

in series with a resistor to a fixed voltage source. The voltage drop in<br />

the variable resistance is determined by conductivity of the resistance.<br />

When the conductivity is high, the voltage drop is low, and when the<br />

conductivity is low, the voltage drop is high. These variations can be<br />

analyzed to determine the glucose concentration.<br />

34 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


6.2<br />

Test Strip<br />

A test strip consists of an electrode with<br />

chemical elements where a blood sample is<br />

deposited. The elements present in the strip<br />

generate a reaction and an electric current is<br />

sent to a transimpedance amplifier that converts<br />

the current into voltage. The output voltage is<br />

proportional to the input current, following the<br />

equation of the transimpedance amplifier.<br />

The transimpedance amplifier embedded on<br />

the Kinetis MK50 and the Flexis MM MCUs<br />

(S08MM and MCF51MM) allows the user to<br />

acquire the current generated by the glucose’s<br />

chemical reaction to the enzyme. The external<br />

components are used to configure the desired<br />

gain value of the amplifier. The transimpedance<br />

module is called TRIAMPV1 and it is managed<br />

through the values of the TIAMPCO register.<br />

The TIAMPEN bit of this register enables the<br />

transimpedance module and the LPEN bit<br />

enables low-power mode (LPEN = 1) and<br />

high-speed mode (LPEN = 0). Low-power<br />

mode is commonly used for battery-dependent<br />

systems, but it compromises the response<br />

speed of the system.<br />

The TRIOUT pin of this module must be<br />

connected with an external resistor (gain<br />

resistor) to the VINN pin, which is the inverting<br />

input of the operational amplifier. The VINP pin<br />

must be connected to ground.<br />

A general block diagram of the test strip is<br />

shown in Figure 6-4.<br />

The basic sensor for a glucometer is an enzymatic<br />

strip. These are based on the detection of<br />

hydrogen peroxide formed in the course of<br />

enzyme-catalyzed oxidation of glucose.<br />

Glucose GOD gluconolactone hydrogen<br />

peroxide<br />

C6H12O6 → C6H10O6 + H2O2<br />

These strips are amperometric sensors that<br />

use a three-electrode design. This approach<br />

is useful when using amperometric sensors<br />

because of the reliability of measuring voltage<br />

and current in the same chemical reaction.<br />

The three-electrode model uses a working<br />

electrode (WE), reference electrode (RE) and<br />

counter electrode (CE).<br />

Home Portable <strong>Medical</strong><br />

Figure 6-1: Blood Glucose Monitor (BGM) General Block Diagram<br />

Blood Glucose Monitor (BGM)<br />

Wireless<br />

Comm<br />

Keypad<br />

MCU/MPU<br />

DAC<br />

ADC<br />

opAmp<br />

Power<br />

Management<br />

<strong>Freescale</strong> Technology Optional<br />

Figure Figure 6-2: 6-2: Equivalent Equivalent Circuit Circuit with with Rv Equal Rv Equal to Blood to Blood Conductivity Conductivity<br />

Figure 6-3: Basic Transimpedance Amplifier<br />

Figure 6-3: Basic Transimpedance Amplifier<br />

freescale .com/medical 35<br />

Vi<br />

li<br />

R<br />

R V<br />

Vo =-li x Rf<br />

R2<br />

U1<br />

Display<br />

Test Strip<br />

Vo=Vi Rv<br />

R+Rv<br />

Figure 6-4: Test Strip Basic Block Diagram Using Flexis MM<br />

Figure 6-4: Test Strip Basic Block Diagram Using Flexis MM<br />

Blood<br />

Sample<br />

Reactive<br />

Electrode<br />

External<br />

Components<br />

Vo<br />

Vo<br />

Embedded<br />

Transimpedance<br />

Amplifier<br />

MCU/MPU<br />

PWM<br />

Embedded<br />

ADC


Home Portable <strong>Medical</strong><br />

AN4364: Glucose Meter<br />

Fundamentals and Design<br />

This application note shows a basic<br />

glucometer implementing <strong>Freescale</strong> K53,<br />

S08MM128 and MCF51MM MCUs. The<br />

application uses the MED-GLU board, which<br />

is a development board to enable the rapid<br />

prototyping of glucose meters by connecting<br />

it to the <strong>Freescale</strong> Tower System through<br />

the medical connector on medical-oriented<br />

MCU modules.<br />

K50 Measurement MCUs<br />

The K50 MCU family is pin, peripheral and<br />

software compatible with other Kinetis MCUs<br />

and provides designers with an analog<br />

measurement engine consisting of integrated<br />

operational and transimpedance amplifiers<br />

and high-resolution ADC and DAC modules.<br />

The family also features IEEE 1588 Ethernet<br />

and hardware encryption, full-speed USB<br />

2.0 On-The-Go with device charger detect<br />

capability and a flexible low-power segment<br />

LCD controller with support for up to 320<br />

segments. Devices start from 128 KB of flash<br />

in 64-pin QFN packages extending up to 512<br />

KB in a 144-pin MAPBGA package.<br />

Key Features<br />

Kinetis K50 MCU features and peripherals in<br />

the integrated measurement engine:<br />

• Ultra-low-power operation<br />

• 2x OPAMP<br />

• 2x TRIAMP<br />

• 2x 12-bit DAC<br />

• 2x 16-bit SAR ADC, up to 31 channels with<br />

programmable gain amplifiers (PGA)<br />

• Programmable Delay Block (PDB)<br />

• I2C • USB connectivity<br />

• ARM Cortex-M4 core with DSP (Digital<br />

Signal Processor) instructions<br />

MCF51MM: Flexis 32-bit ColdFire<br />

V1 MCUs<br />

The MCF51MM256/128 provides ultralow-power<br />

operation, USB connectivity,<br />

graphic display support and unparalleled<br />

measurement accuracy, all in a single 32-bit<br />

MCU, allowing designers to create more<br />

Figure 6-5: Kinetis K50 Family Block Diagram<br />

Figure 9-8 Kinetis K50 Family<br />

Security<br />

and Integrity<br />

Cyclic<br />

Redundancy<br />

Check (CRC)<br />

Random<br />

Number<br />

Generator<br />

Cryptographic<br />

Acceleration<br />

Unit (CAU)<br />

Figure<br />

Figure<br />

6-6:<br />

6-6:<br />

MCF51MM256<br />

MCF51MM256<br />

Block<br />

Block<br />

Diagram<br />

Diagram<br />

2x OPAMP<br />

2x TRIAMP<br />

16-bit SAR ADC I2 12-bit DAC LVI<br />

C<br />

PDB<br />

2 x 4-ch. TPM with PWM 2 x SPI<br />

MCG<br />

Core<br />

ARM ® Cortex-M4<br />

72/100 MHz<br />

Debug<br />

Interfaces<br />

Interrupt<br />

Controller<br />

Standard Feature<br />

System Memories<br />

Internal and<br />

External<br />

Watchdogs<br />

Memory<br />

Protection Unit<br />

(MPU)<br />

VREF TOD<br />

PRACMP CMT<br />

2 x KBI 2 x SCI<br />

32-bit V1 ColdFire 50 MHz Core with MAC<br />

Up to 68 GPIO/<br />

16 RGPIO<br />

MiniBus External<br />

USB<br />

Device/Host/<br />

OTG<br />

Bootloader<br />

256 KB 32 KB SRAM<br />

USB ROM<br />

Xtrinsic<br />

Low-Power<br />

Touch-Sensing<br />

Interface<br />

Segment<br />

LCD Controller<br />

36 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

DSP<br />

Analog<br />

16-bit<br />

ADC<br />

PGA<br />

Analog<br />

Comparator<br />

6-bit<br />

DAC<br />

12-bit<br />

DAC<br />

Voltage<br />

Reference<br />

OPAMP<br />

TRIAMP<br />

DMA<br />

Low-Leakage<br />

Wake-Up Unit<br />

Timers<br />

FlexTimer<br />

Carrier<br />

Modulator<br />

Transmitter<br />

Programmable<br />

Delay Block<br />

Periodic<br />

Interrupt<br />

Timer<br />

Low-Power<br />

Timer<br />

Independent<br />

Real-Time<br />

Clock (IRTC)<br />

IEEE ® 1588<br />

Timer<br />

Optional Feature<br />

Program<br />

Flash<br />

(128 to 512 KB)<br />

FlexMemory<br />

(32 to 256 KB)<br />

(2 to 4 KB EE)<br />

Serial<br />

Programming<br />

Interface<br />

(EZPort)<br />

SRAM<br />

(32 to 128 KB)<br />

External<br />

Bus Interface<br />

(FlexBus)<br />

Clocks<br />

Phase-Locked<br />

Loop<br />

Frequency-<br />

Locked Loop<br />

Low/High-<br />

Frequency<br />

Oscillators<br />

Internal<br />

Reference<br />

Clocks<br />

Communication Interfaces HMI<br />

I 2 C<br />

UART<br />

(ISO 7816)<br />

SPI<br />

IEEE 1588<br />

Ethernet MAC<br />

I 2 S<br />

Secure<br />

Digital Host<br />

Controller<br />

(SDHC)<br />

USB OTG<br />

(LS/FS)<br />

USB Charger<br />

Detect (DCD)<br />

USB Voltage<br />

Regulator<br />

GPIO


fully featured products at lower cost. The<br />

MCF51MM256/128 is ideal for medical<br />

applications or other applications requiring a<br />

significant amount of precision analog such as<br />

instrumentation and industrial control.<br />

The MCF51MM256/128 is part of the<br />

<strong>Freescale</strong> Flexis MCU series.<br />

Features:<br />

• ColdFire V1 core delivering a 50 MHz core<br />

speed and 25 MHz bus speed<br />

• Up to 256 KB flash and 32 KB SRAM<br />

• Low-power stop 2 current: 500 nA<br />

(32 KB of active SRAM)<br />

• 2 x general purpose opamps<br />

• 2 x transimpedance amplifiers<br />

• 16-bit SAR high resolution analog-to-digital<br />

converter (ADC)<br />

• Analog Comparator with 5-bit digital-toanalog<br />

converter (DAC)<br />

• Internal voltage reference<br />

• USB – device/host/on-the-go controller<br />

• 2 x serial peripheral interface (SPI),<br />

2 x serial communication interface (SCI)<br />

and 1 x I2C • Mini FlexBus (external bus interface EBI)<br />

• Included in <strong>Freescale</strong>’s Product Longevity<br />

Program<br />

S08MM: Flexis 8-bit MCUs<br />

The 9S08MM128/64/32 provides ultralow-power<br />

operation, USB connectivity,<br />

graphic display support and unparalleled<br />

measurement accuracy, all in a single 8-bit<br />

MCU, allowing device designers to create<br />

more fully featured products at a lower cost.<br />

It is ideal for applications requiring a<br />

significant amount of precision analog.<br />

The 9S08MM128/64/32 is part of <strong>Freescale</strong>’s<br />

Flexis MCU series.<br />

Features<br />

• S08 core delivering a 48 MHz core speed<br />

and 24 MHz bus speed<br />

• Up to 128 KB flash and 12 KB SRAM<br />

• Low-power stop 2 current: 450nA<br />

(12 KB of active SRAM)<br />

• 2 x OPAMP- General purpose opamps<br />

• 2 x TRIAMP- Transimpedance amplifiers<br />

Figure 6-7: MC9S08MM128 Block Diagram<br />

Figure 6-7: MC9S08MM128 Block Diagram<br />

Figure 6-9: MED GLU Block Diagram<br />

Figure 6-5: MED GLU Block Diagram<br />

Test Strip<br />

Vref<br />

(-0.4V)<br />

Voltage<br />

Inverter<br />

2x OPAMP<br />

2x TRIAMP<br />

PDB<br />

2 x 4-ch. TPM with PWM 2 x SCI<br />

MCG<br />

3.3V<br />

Vref<br />

(1.2V)<br />

VREF TOD<br />

PRACMP CMT<br />

2 x KBI 2 x SPI<br />

8-bit 9S08 48 MHz Core<br />

Current to voltage<br />

converter<br />

<strong>Freescale</strong> Technology MM/K5x Internal<br />

Home Portable <strong>Medical</strong><br />

16-bit SAR ADC I2 12-bit DAC LVI<br />

C<br />

Low Pass<br />

Filter<br />

Low Pass<br />

Filter<br />

freescale .com/medical 37<br />

TriAmp<br />

TriAmp<br />

OpAmp<br />

OpAmp<br />

Up to 68 GPIO<br />

USB<br />

Device<br />

Bootloader<br />

128 KB Flash 12 KB SRAM<br />

USB ROM<br />

Figure 6-8: Chip Schematic<br />

Figure 6-8: Chip Schematic<br />

2<br />

3<br />

1<br />

4 5<br />

1) WE, 2) CE, 3) Ag/AgCI RE, 4) Conductive lines, 5) Pads<br />

ADC<br />

ADC


Home Portable <strong>Medical</strong><br />

• 16-bit SAR analog-to-digital converter<br />

(ADC) – high resolution ADC<br />

• Analog comparator<br />

• Internal voltage reference<br />

• USB device controller<br />

• 2 x serial peripheral interface (SPI),<br />

2 x serial communications interface (SCI)<br />

and 1 x I2C 6.3<br />

Wired and Wireless<br />

Communication<br />

The functionality of a blood glucose meter<br />

can be expanded to allow wired or wireless<br />

communication with other devices such as<br />

PDAs, smart phones, insulin dispensers or<br />

calorimeters. This can be useful for telehealth<br />

applications and remote patient monitoring.<br />

<strong>Freescale</strong> offers several cost-effective lowpower<br />

MCUs with integrated USB interfaces<br />

for wired communication. For wireless<br />

options, <strong>Freescale</strong> offers ZigBee solutions and<br />

examples in its own BeeKit. Figure 6-10 is an<br />

example of ZigBee implementation.<br />

See Chapter 3.10, Wireless Communication,<br />

for more details.<br />

6.4<br />

Liquid Crystal Display<br />

(LCD) Module<br />

The LCD module shows the glucose level.<br />

<strong>Freescale</strong> provides an application note titled<br />

LCD Driver Specification (document AN3796)<br />

about how to implement an LCD controller<br />

and the driver software. The application note<br />

is available at freescale.com.<br />

The capacity of digits is determined by the<br />

LCD used. It must be supported by the<br />

number of segments that can drive the LCD<br />

controller. The MC9S08LL16 processor<br />

supports up to 4 x 28 or 8 x 24 segments.<br />

Figure 6-10: Example of Communication Interface for Blood Glucose Monitor<br />

Figure 6-10: Example of Communication Interface for Blood Glucose Monitor<br />

Patient<br />

Blood Glucose<br />

Monitor<br />

Figure 6-11: LCD Connection<br />

Figure 6-11: LCD Connection<br />

Charge<br />

Pump<br />

Frontplanes<br />

Twisted Nematic Display<br />

Backplanes<br />

38 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

VLL<br />

S08LL: S08 Ultra-Low-Power<br />

MCU with LCD Driver<br />

Antenna<br />

ZigBee ®<br />

Transceiver<br />

MCU with<br />

LCD controller<br />

Key Features<br />

• Up to 20 MHZ HCS08 CPU from 1.8V to<br />

3.6V and across a temperature range of<br />

-40°C to +85°C<br />

• Two ultra-low-power stop modes<br />

• Advanced low-power run and wait modes<br />

• Internal clock source (ICS)<br />

• Integrated LCD driver supports both 3V and<br />

5V LCD glass standards<br />

• Configurable display for 8 x 36 or 4 x 28<br />

segment display<br />

• LCD driver pins are mixed with GPIO and<br />

other functions<br />

Antenna<br />

ZigBee<br />

Transceiver<br />

Remote<br />

Monitoring System<br />

• Up to 64 KB flash read, program and erase<br />

over full operating voltage and temperature<br />

• Analog-to-digital converter (ADC)—<br />

10-channel, 12-bit resolution<br />

• Timer—Two 2-channel<br />

• Two serial communications interface (SCI)<br />

• Analog comparator with selectable<br />

interrupt on rising, falling or either edge of<br />

comparator output<br />

• Serial peripheral interface (SPI)—<br />

One module with full-duplex or singlewire<br />

bidirectional<br />

• I²C with up to 100 kbps<br />

• 38 general purpose input and output<br />

(GPIO), two output-only pins<br />

• Single-wire background debug interface


<strong>Freescale</strong>’s Xtrinsic accelerometer MMA845xQ<br />

family offers extremely low power and pin<br />

compatibility with a broad range of resolution<br />

(14-, 12- and 10-bit) and embedded features<br />

for configurable, accurate motion analysis.<br />

To operate with extremely low power, the<br />

MMA845xQ accelerometers have six userconfigurable<br />

sample rates that can be set<br />

over a wide range of 1.5 to 800 Hz.<br />

With the increasing consumer focus in the<br />

design of medical devices, inertial sensors<br />

are also being used for simple portrait and<br />

landscape functionality to improve the enduser<br />

experience. This is especially applicable<br />

for high-end blood glucose meters with<br />

graphical displays.<br />

Xtrinsic MMA845xQ: 3-Axis Digital<br />

Output Acceleration Sensor<br />

Key Features<br />

• Low-power current consumption<br />

o Off mode: 50 nA<br />

o Standby mode: 2 uA<br />

o Active mode: 6-166 uA<br />

• Low-voltage operation: 1.95-3.6 volts<br />

• Embedded features include:<br />

o Freefall detection<br />

o Orientation detection<br />

o Tap detect<br />

o Shake detect<br />

o Auto-wake sleep<br />

Home Portable <strong>Medical</strong><br />

Figure 6-12: Implementation of the Digital Accelerometer<br />

Figure 6-12: Implementation of the Digital Accelerometer<br />

Digital Output<br />

Accelerometer<br />

2/4 Wire I²C/SPI Bus<br />

freescale .com/medical 39<br />

MCU<br />

Figure 6-13: Xtrinsic MMA845xQ 3-Axis Digital Output Acceleration Sensor<br />

MMA845xQ Block Diagram<br />

Vdd<br />

VddIO<br />

VSS<br />

X-axis<br />

Transducer<br />

Y-axis<br />

Transducer<br />

Z-axis<br />

Transducer<br />

32 Data Point<br />

Configurable<br />

FIFO Buffer<br />

with Watermark<br />

Freefall and<br />

Motion<br />

Detection<br />

C to V<br />

Converter<br />

Configurable Embedded DSP Functions<br />

Transient<br />

Detection<br />

(i.e., fast<br />

motion, jolt)<br />

Enhanced<br />

Orientation with<br />

Hysteresis<br />

and Z-lockout<br />

Shake<br />

Detection<br />

through Motion<br />

Threshold<br />

INT1<br />

INT2<br />

Single, Double<br />

& Directional<br />

Tap Detection<br />

Auto-Wake/Auto-Sleep Configurable with debounce counter and multiple motion interrupts for control<br />

MODE Options<br />

Low Power<br />

Low Noise + Power<br />

High Resolution<br />

Normal<br />

ACTIVE Mode<br />

WAKE<br />

Internal<br />

OSC<br />

Auto-WAKE/SLEEP<br />

Clock<br />

GEN<br />

14-bit<br />

ADC<br />

ACTIVE Mode<br />

SLEEP<br />

Embedded<br />

DSP<br />

Functions<br />

I 2 C<br />

MODE Options<br />

Low Power<br />

Low Noise + Power<br />

High Resolution<br />

Normal<br />

SDA<br />

SCL


Pulse Oximetry<br />

7.1<br />

Theory Overview<br />

Oxygen saturation (SpO2) is defined as the ratio of oxyhemoglobin<br />

(HbO2) to the total concentration of hemoglobin (HbO2 +<br />

deoxyhemoglobin). The percentage is calculated by multiplying this<br />

ratio by 100. Two different light wavelengths are used to measure<br />

the actual difference in the absorption spectra of HbO2 and Hb.<br />

The bloodstream is affected by the concentration of HbO2 and Hb<br />

and their absorption coefficients are measured at two measurement<br />

wavelengths. The light intensity decreases logarithmically with the path<br />

length according to the Beer-Lambert Law. It is important to mention<br />

that when the light attenuated by body tissue is measured,<br />

DC components and AC components indicate artery absorption.<br />

40 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


7.2<br />

Signal Acquisition<br />

This application is non-invasive because the<br />

optical sensor is composed of two LEDs<br />

that transmit light through the skin (finger<br />

or earlobe) to a photodiode. One LED is red<br />

with a wavelength of 660 nm and the other is<br />

infrared with a wavelength of 910 nm. The skin<br />

absorbs the light received by the photodiode.<br />

Each wavelength provides different data to<br />

calculate the percentage of hemoglobin.<br />

Deoxygenated and oxygenated hemoglobin<br />

absorb different wavelengths. Deoxygenated<br />

hemoglobin has absorption of around 660<br />

nm and oxygenated hemoglobin has higher<br />

absorption at 910 nm. These signals depend<br />

on the actual blood pressure, therefore the<br />

heart rate can also be measured.<br />

SaO2 as R<br />

R = log 10 (I ac ) λ1<br />

log10(I ac ) λ2<br />

Iac= Light intensity at λ1 or λ2, where only AC level<br />

is present λ1 or λ2 are the wavelengths used.<br />

7.3<br />

Circuit Design Overview<br />

This application starts with an optical<br />

sensor that is composed of two LEDs and<br />

a photodiode. The two LEDs have to be<br />

multiplexed to turn on. The photodiode detects<br />

when light is present by detecting current that<br />

is proportional to the intensity of the light,<br />

then the application uses a transimpedance<br />

amplifier to convert this current into voltage.<br />

Automatic gain control (AGC) controls the<br />

intensity of LEDs depending on each patient.<br />

A digital filter then extracts the DC component.<br />

The signal is passed to a digital band-pass<br />

filter (0.5 Hz–5 Hz) to get the AC component,<br />

then through a zero-crossing application to<br />

measure every heartbeat. Finally, this signal is<br />

passed as a voltage reference to the second<br />

differential amplifier to extract only the DC<br />

component and separate the AC and DC<br />

components. After this, the following ratio<br />

formula to obtain the oxygenated hemoglobin<br />

(SaO2) levels is used:<br />

R = [log (RMS value) x 660 nm] / [log (RMS<br />

value) x 940 nm]<br />

Home Portable <strong>Medical</strong><br />

Figure 7-1: Spectrum of Oxyhemoglobin and Deoxyhemoglobin<br />

Figure 7-1: Spectrum of Oxyhemoglobin and Deoxyhemoglobin<br />

Extinction Coeffiecient 10(RED)<br />

0.1<br />

freescale .com/medical 41<br />

600<br />

660 nm<br />

(INFRARED)<br />

940 nm<br />

700 800 900 1000<br />

Wavelength (nm)<br />

Figure 7-2: Pulse Oximetry Analog Interface<br />

Figure 7-2: Pulse Oximetry Analog Interface<br />

External<br />

LED and Driver<br />

Transimpedance<br />

Amplifier<br />

RBF<br />

(40 Hz-60 Hz)<br />

Display<br />

LED Red On/Off<br />

LED Red On/Off<br />

LED Red Brightness<br />

Infrared Brightness<br />

Photodiode<br />

Demultiplexer<br />

Hear Rate<br />

Monitor<br />

SaO 2<br />

Pseudo Analog<br />

Ground<br />

Differential<br />

Amplifier<br />

Zero<br />

Crossing<br />

LED Red and<br />

Infrared Sensors<br />

DAC_0<br />

DAC_1<br />

Digital Band<br />

Pass Filter<br />

HbO2<br />

Hb<br />

LED On/Off<br />

MCU Pins<br />

Select 0/1<br />

LED Range<br />

Control<br />

Multiplexer<br />

DC Tracking<br />

LPF (below<br />

0.5 Hz)<br />

Signal Conditioning<br />

AC Components<br />

ADC


Home Portable <strong>Medical</strong><br />

7.3.1<br />

Circuit LED Driver<br />

The circuit is used for both red and infrared<br />

LEDs. When the LEDs are placed in parallel<br />

they can be multiplexed. Two ports of the<br />

DAC_0 control the brightness of the LEDs.<br />

The MCU controls brightness and multiplexing<br />

frequency of the LEDs depending on the<br />

designer’s specifications. The LEDs are turned<br />

on and off to calculate the ratio between both<br />

signals and compute the amount of oxygen<br />

saturation.<br />

7.3.2<br />

Signal Processing<br />

The current proportioned by the photodiode<br />

depends on the intensity of the light. This<br />

signal has to be changed to voltage and<br />

amplified by the transimpedance amplifier.<br />

The signal generated is around 1V for DC<br />

and 10 mV for AC. <strong>Freescale</strong>’s S08MM<br />

has four integrated op-amps. Both of the<br />

transimpedance and non-inverting amplifiers<br />

shown in figure 7-5, as well as more active<br />

filters, can be developed using this MCU. The<br />

AC component is generated by the oxygen<br />

present in the blood; to process the signal it is<br />

only necessary to obtain the AC component.<br />

A digital filter is placed to remove the DC<br />

component and this filter is taken as a voltage<br />

reference for the second amplifier.<br />

The DC tracking filter allows the system to<br />

separate the DC and AC components. The AC<br />

component is used to calculate oxygen levels<br />

and to detect zero crossing to detect the<br />

heartbeat. The digital filter can be developed<br />

using <strong>Freescale</strong>’s MC56f8006 DSC. The<br />

information can be shown on any kind of<br />

display.<br />

For wireless communication, power<br />

management, keypad and speaker<br />

implementation, see Chapter 3 Introduction.<br />

Figure Figure 7-3: 7-3: Optical Optical Sensor Sensor<br />

Figure 7-4: 7-4: LED LED Drive Drive Circuit Circuit<br />

Figure 7-5: DC/AC Tracking<br />

Figure 7-5: DC/AC Tracking<br />

The extracted DC is composed of ADC-DC tracking-DAC<br />

Figure 7-6: MED-SP02 Block Diagram<br />

Figure 7-6: MED-SP02 Block Diagram<br />

PWM<br />

GPIO<br />

Red Amplifier<br />

1 Red Amplifier<br />

Current to Voltage converter<br />

R/IR Control using K53 TRIAMP R/IR Control<br />

1 Red Baseline Red Baseline<br />

Red Red LED<br />

Filter and Amplification R/IR Control<br />

Vref Generator<br />

Red Amplifier<br />

1 Red Amplifier<br />

42 K53 Measurement Engine Filter Amplifier Multiplexer <strong>Medical</strong> <strong>Applications</strong> Circuit <strong>User</strong> <strong>Guide</strong><br />

1 Red<br />

LED<br />

Driver<br />

Finger or Earlobe<br />

1 Red LED<br />

LEDs<br />

SP02<br />

Sensor<br />

ADC<br />

Vref


AN4327 Pulse Oximeter<br />

Fundamentals and Design<br />

This application note demonstrates the<br />

implementation of a pulse oximeter using the<br />

medical-oriented MCU MK53N512 together<br />

with the pulse oximeter development board<br />

MED-SPO2. Basic principles of implantation<br />

and example code are included enabling<br />

developers with an easy and effective pulse<br />

oximeter solution.<br />

Kinetis K40 MCU<br />

The Kinetis K40 72 MHz MCUs are pin,<br />

peripheral and software compatible with<br />

the K10 MCU family featuring full-speed<br />

USB 2.0 On-The-Go, with device charge<br />

detect capability and a flexible low-power<br />

segment LCD controller supporting up to<br />

288 segments.<br />

Key Features<br />

• 72 MHz, single cycle MAC, single<br />

instruction multiple data (SIMD) extensions<br />

• 64-256 KB flash. Fast access, high<br />

reliability with 4-level security protection<br />

and 16-64 KB of SRAM<br />

• USB 2.0 On-The-Go (full speed). Device<br />

charge detect optimizes charging current/<br />

time for portable USB devices enabling<br />

longer battery life. Low-voltage regulator<br />

supplies up to 120 mA off chip at 3.3V to<br />

power external components from 5V input<br />

• Flexible, low-power LCD controller with up<br />

to 288 segments (38x8 or 42x4). LCD blink<br />

mode enables low average power while<br />

remaining in low-power mode. Segment fail<br />

detect guards against erroneous readouts<br />

and reduces LCD test costs.<br />

Figure 7-7: Pulse Oximeter Block Diagram<br />

Figure 0-2: Baseline Correction Using DAC<br />

Band-Reject filter<br />

ADC<br />

<strong>Freescale</strong> Technology<br />

High-Pass filter<br />

Baseline Baseline<br />

Correction<br />

Figure 7-8: Kinetis K40 Family Block Diagram<br />

Figure 7-8: Kinetis K40 Family<br />

Security<br />

and Integrity<br />

Cyclic<br />

Redundancy<br />

Check (CRC)<br />

Core<br />

ARM ® Cortex-M4<br />

72/100 MHz<br />

Debug<br />

Interfaces<br />

Interrupt<br />

Controller<br />

Standard Feature<br />

Home Portable <strong>Medical</strong><br />

freescale .com/medical 43<br />

DSP<br />

Analog<br />

16-bit<br />

ADC<br />

PGA<br />

Analog<br />

Comparator<br />

6-bit<br />

DAC<br />

12-bit<br />

DAC<br />

Voltage<br />

Reference<br />

Timers<br />

DAC<br />

System Memories<br />

Internal and<br />

External<br />

Watchdogs<br />

Memory<br />

Protection Unit<br />

(MPU)<br />

DMA<br />

Low-Leakage<br />

Wake Up Unit<br />

Flex<br />

Timer<br />

Carrier<br />

Modulator<br />

Transmitter<br />

Programmable<br />

Delay Block<br />

Periodic<br />

Interrupt<br />

Timers<br />

Low-Power<br />

Timer<br />

Independent<br />

Real-Time<br />

Clock (RTC)<br />

Optional Feature<br />

Program Flash<br />

(64 to 512KB)<br />

FlexMemory<br />

(32 to 256KB)<br />

(2 to 4KB EE)<br />

Serial<br />

Programming<br />

Interface<br />

(EzPort)<br />

SRAM<br />

(16 to 128KB)<br />

External<br />

Bus Interface<br />

(FlexBus)<br />

ADC<br />

Clocks<br />

Phase-Locked<br />

Loop<br />

Frequency-<br />

Locked Loop<br />

Low/High-<br />

Frequency<br />

Oscillators<br />

Internal<br />

Reference<br />

Clocks<br />

Communication Interfaces HMI<br />

I 2 C<br />

UART<br />

(ISO 7816)<br />

SPI<br />

CAN<br />

I 2 S<br />

Secure<br />

Digital Host<br />

Controller<br />

(SDHC)<br />

USB OTG<br />

(LS/FS/HS)<br />

USB Charger<br />

Detect (DCD)<br />

USB Voltage<br />

Regulator<br />

GPIO<br />

Xtrinsic Low-<br />

Power<br />

Touch-Sensing<br />

Interface<br />

Segment<br />

LCD Controller


Activity Monitor<br />

8.1<br />

Introduction<br />

An activity monitor is an auxiliary healthcare device for the management of sports and fitness<br />

activities. It keeps a record of the user activities, calories burned, energy consumed in food as<br />

well as other useful features for diet control and exercise performance.<br />

This device can register the heart rate, allowing a better management of the exercise efficacy.<br />

It monitors physical performance using auxiliary modules like a pedometer, timer, and<br />

chronometer. A personal data record including age, height and weight provide a more accurate<br />

calculation of caloric consumption.<br />

By monitoring individual parameters of a person, the health and fitness ecosystem can be built<br />

online so data can be utilized for individual performance. This goes beyond simply tracking<br />

calories and other data to create more personalization and behavior modification.<br />

The information is stored in a microSD memory card and can be accessed with a computer<br />

either directly from the memory, via USB cable or wirelessly and then can be analyzed.<br />

44 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


8.2<br />

Electrocardiography<br />

(ECG) Acquisition<br />

The heart rate calculation is performed using<br />

the ECG signal. The heart beat frequency is<br />

determined by measuring the time between<br />

QRS complex intervals. The ECG signal<br />

is acquired using two finger sensors, one<br />

on each side of the device. The first one<br />

takes the signal from the left index finger.<br />

The second one is divided in two parts: one<br />

takes the signal from the right index finger,<br />

the other works as reference.<br />

The signal is amplified using an<br />

instrumentation amplifier built by using the<br />

internal op amps of the Flexis MM MCU<br />

or the Kinetis K5x MCU, which has a high<br />

common mode rejection ratio (CMRR) that<br />

allows it to work as an initial filter. Then,<br />

the signal must go through a 0.1 Hz – 150<br />

Hz band-pass filter in order to remove the<br />

environmental noise. A second filter must<br />

be applied. In this case, a 50 Hz – 60 Hz<br />

notch filter, depending on the country’s<br />

electrical service frequency. This second<br />

filter is intended to remove the power<br />

line noise, which equals 50 Hz or 60 Hz,<br />

depending on the region. Finally, the signal<br />

must be acquired by an MCU using an ADC.<br />

Optionally, the MCU can perform digital<br />

filtering algorithms in order to have a more<br />

reliable signal.<br />

8.3<br />

Pedometer<br />

The pedometer counts the quantity of steps<br />

taken by the user while the activity monitor<br />

is activated. Accelerometers can be used<br />

to determine the overall activity level of the<br />

user. This module uses an accelerometer to<br />

determine device movement, and it must be<br />

able to detect when a step has been taken<br />

or whether the user starts running. The<br />

acceleration measurements recorded by the<br />

accelerometer are sent to an MCU either<br />

by using analog voltages to represent the<br />

movement, or by using digital methods such<br />

as I2C to send previously processed signals.<br />

Figure 8-1: Activity Monitor Block Diagram<br />

Magnetic Sensor:<br />

eCompass<br />

Heart Rate<br />

Monitor<br />

USB<br />

Mini-AB<br />

Power Management:<br />

Battery Charger<br />

Inertial<br />

Sensor:<br />

Pedometer<br />

OPAMPS<br />

TRIAMPS<br />

<strong>Freescale</strong> Technology Optional<br />

External<br />

Bus/GPIO<br />

Touch Sensing<br />

freescale .com/medical 45<br />

VREF<br />

Pressure<br />

Sensor<br />

Altimeter<br />

MicroSD<br />

Card<br />

I 2 C I 2 C SPI 1 SPI 2<br />

MCU/MPU<br />

GPIO<br />

USB PWM<br />

Li-Polymer<br />

Battery<br />

Display<br />

Figure 8-2: ECG Acquisition Block Diagram<br />

Figure 10-3: Block Diagram ECG Acquisition Block Diagram<br />

LA<br />

RA Ref<br />

Finger Electrodes Instrumentation Amplifier<br />

<strong>Freescale</strong> Technology<br />

Home Portable <strong>Medical</strong><br />

0.1 Hz – 150 Hz<br />

Band Pass<br />

Wireless Communication:<br />

ZigBee ®<br />

50 Hz – 60 Hz<br />

Band Reject<br />

Buzzer<br />

MCU


Home Portable <strong>Medical</strong><br />

MMA845xQ Accelerometers<br />

<strong>Freescale</strong>’s Xtrinsic accelerometer MMA845xQ<br />

family offers extremely low power and pin<br />

compatibility with a broad range of resolution<br />

(14-, 12- and 10-bit) and embedded features<br />

for configurable, accurate motion analysis.<br />

To operate with extremely low power, the<br />

MMA845xQ accelerometers have six userconfigurable<br />

sample rates that can be set over<br />

a wide range of 1.5 to 800 Hz. The power<br />

scheme contains four different power modes<br />

from high resolution to low power, offering<br />

best-in-class savings in supply current and<br />

extremely high resolution for very small motion<br />

detection.<br />

Features<br />

• Low-power current consumption<br />

o Off mode: 50 nA<br />

o Standby mode: 2 uA<br />

o Active mode: 6-166 uA<br />

• Low-voltage operation: 1.95-3.6 volts<br />

• Embedded features include:<br />

o Freefall detection<br />

o Orientation detection<br />

o Tap detect<br />

o Shake detect<br />

o Auto-wake sleep<br />

MMA9553L Intelligent Motion<br />

Sensing Platform<br />

<strong>Freescale</strong>’s Xtrinsic MMA9550L intelligent<br />

motion sensing platform is an industry first<br />

with integration of a MEMS accelerometer,<br />

a 32-bit embedded ColdFire MCU, flash<br />

memory and a dedicated architecture to<br />

manage other sensors. <strong>Freescale</strong> has now<br />

expanded the MMA9550L offering with the<br />

MMA9553L to enable pedometer functionality.<br />

The MMA9553L intelligent motion sensing<br />

platform performs activity monitoring beyond<br />

step counting. This entails recognition of<br />

motion such as rest, walking, jogging and<br />

running.<br />

Figure 8-3: MMA845xQ Block Diagram<br />

MMA845xQ Block Diagram<br />

Vdd<br />

VddIO<br />

VSS<br />

X-axis<br />

Transducer<br />

Y-axis<br />

Transducer<br />

Z-axis<br />

Transducer<br />

32 Data Point<br />

Configurable<br />

FIFO Buffer<br />

with Watermark<br />

Freefall and<br />

Motion<br />

Detection<br />

C to V<br />

Converter<br />

Configurable Embedded DSP Functions<br />

Transient<br />

Detection<br />

(i.e., fast<br />

motion, jolt)<br />

Enhanced<br />

Orientation with<br />

Hysteresis<br />

and Z-lockout<br />

Shake<br />

Detection<br />

through Motion<br />

Threshold<br />

46 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

INT1<br />

INT2<br />

Single, Double<br />

& Directional<br />

Tap Detection<br />

Auto-Wake/Auto-Sleep Configurable with debounce counter and multiple motion interrupts for control<br />

MODE Options<br />

Low Power<br />

Low Noise + Power<br />

High Resolution<br />

Normal<br />

ACTIVE Mode<br />

WAKE<br />

Internal<br />

OSC<br />

Auto-WAKE/SLEEP<br />

Features<br />

• Communication protocols: I2C/SPI • Low-voltage operation: 1.71 V to 1.89 V<br />

• Embedded smart FIFO for data processing<br />

while apps processor is asleep<br />

• Configurable sample rate: 1–1024<br />

samples/sec<br />

• Auto-wake monitors change in activity/<br />

position<br />

• Embedded features include:<br />

o Orientation detection<br />

o Single, Double and Directional Tap detect<br />

o Single, Double and Directional Shake<br />

o Threshold detection<br />

o Linear and rotational freefall<br />

o Flick detection<br />

o Tilt angle<br />

Clock<br />

GEN<br />

14-bit<br />

ADC<br />

ACTIVE Mode<br />

SLEEP<br />

Embedded<br />

DSP<br />

Functions<br />

8.4<br />

<strong>User</strong> Interface<br />

I 2 C<br />

MODE Options<br />

Low Power<br />

Low Noise + Power<br />

High Resolution<br />

Normal<br />

SDA<br />

SCL<br />

The user interface is an essential part in the<br />

activity monitor development. It must be<br />

simple and intuitive, as well as attractive for<br />

the user. The use of graphic displays makes<br />

the activity monitor easier and more intuitive<br />

to use, and it also adds aesthetics to the<br />

design. MCUs with External Bus Interface<br />

(EBI) reduce the processor’s load allowing for<br />

better quality graphics with reduced processor<br />

intervention.<br />

The touch-sensing interfaces (TSI) make the<br />

design an attractive and functional application<br />

by removing the need for mechanic buttons.<br />

In addition, the TSIs are easier to clean and<br />

are more hygienic.


Xtrinsic Touch-Sensing Software<br />

Xtrinsic Touch-Sensing Software (TSS)<br />

transforms any standard MCU into a touch<br />

sensor with the ability to manage multiple<br />

configurations of touchpads, sliders, rotary<br />

positions and mechanical keys, all while<br />

maintaining standard MCU functionality.<br />

8.5<br />

Reference Designs<br />

<strong>Freescale</strong> provides ready-to-develop<br />

applications intended to reduce the<br />

development time and, therefore, time to<br />

market and costs. The following documents<br />

include useful information in the development<br />

of activity monitor applications:<br />

DRM125 Activity Monitor<br />

AN4323 <strong>Freescale</strong> Solutions for<br />

Electrocardiograph and Heart Rate Monitor<br />

<strong>Applications</strong><br />

AN4519 Data Manipulation and Basic<br />

Settings of the MPL3115A2 Command<br />

Line Interface Driver Code<br />

S08MM: Flexis 8-bit MCUs<br />

The 9S08MM128/64/32 provides ultralow-power<br />

operation, USB connectivity,<br />

graphic display support and unparalleled<br />

measurement accuracy, all in a single 8-bit<br />

MCU, allowing device designers to create<br />

more fully featured products at a lower cost. It<br />

is ideal for applications requiring a significant<br />

amount of precision analog.<br />

The 9S08MM128/64/32 is part of <strong>Freescale</strong>’s<br />

Flexis MCU series.<br />

Figure 8-4: Xtrinsic MMA9553L Intelligent Motion Sensing Block Diagram<br />

Xtrinsic MMA9550L Block Diagram<br />

Power<br />

Management<br />

Inertial<br />

Sensor<br />

MMA9550L Sensor Sensing Software<br />

V1 ColdFire<br />

32-Bit Processor<br />

16K Flash,<br />

8K <strong>User</strong> Programmable,<br />

2K RAM, 1K <strong>User</strong> RAM<br />

Connectivity:<br />

I2C/SPI<br />

Gyro Pressure Touch Magnetics<br />

Figure<br />

Figure<br />

9-10:<br />

8-5:<br />

MC9S08MM128<br />

MC9S08MM128<br />

Block<br />

Block<br />

Diagram<br />

Diagram<br />

2x OPAMP<br />

2x TRIAMP<br />

PDB<br />

MCG<br />

VREF TOD<br />

PRACMP CMT<br />

2 x 4-ch. TPM with PWM 2 x SCI<br />

2 x KBI 2 x SPI<br />

8-bit 9S08 48 MHz Core<br />

Home Portable <strong>Medical</strong><br />

Customer/Third-Party<br />

Innovation<br />

<strong>Applications</strong><br />

Software Libraries<br />

Basic OS Drivers<br />

Up to 12<br />

Sensor Components<br />

Up to 68 GPIO<br />

16-bit SAR ADC I2 12-bit DAC LVI<br />

C<br />

USB<br />

Device<br />

Bootloader<br />

128 KB Flash 12 KB SRAM<br />

USB ROM<br />

freescale .com/medical 47


Features:<br />

Home Portable <strong>Medical</strong><br />

• S08 core delivering a 48 MHz core speed<br />

and 24 MHz bus speed<br />

• Up to 128 KB flash and 12 KB SRAM<br />

• Low-power stop 2 current: 450nA<br />

(12 KB of active SRAM)<br />

• 2 x OPAMP—General purpose opamps<br />

• 2 x TRIAMP—Transimpedance amplifiers<br />

• 16-bit SAR analog-to-digital converter<br />

(ADC) – high resolution ADC<br />

• Analog comparator<br />

• Internal voltage reference<br />

• USB device controller<br />

• 2 x serial peripheral interface (SPI),<br />

2 x serial communications interface (SCI)<br />

and 1 x I2C MCF51MM: Flexis 32-bit<br />

ColdFire V1 MCUs<br />

The MCF51MM256/128 provides ultralow-power<br />

operation, USB connectivity,<br />

graphic display support and unparalleled<br />

measurement accuracy, all in a single 32-bit<br />

MCU, allowing designers to create more<br />

fully featured products at lower cost. The<br />

MCF51MM256/128 is ideal for medical<br />

applications or other applications requiring a<br />

significant amount of precision analog such as<br />

instrumentation and industrial control.<br />

The MCF51MM256/128 is part of the<br />

<strong>Freescale</strong> Flexis MCU series.<br />

Features:<br />

• ColdFire V1 core delivering a 50 MHz core<br />

speed and 25 MHz bus speed<br />

• Up to 256 KB flash and 32 KB SRAM<br />

• Low-power stop 2 current: 500 nA<br />

(32 KB of active SRAM)<br />

• 2 x general purpose opamps<br />

• 2 x transimpedance amplifiers<br />

• 16-bit SAR high resolution analog-to-digital<br />

converter (ADC)<br />

• Analog Comparator with 5-bit digital-toanalog<br />

converter (DAC)<br />

Figure 8-6: MCF51MM256 Block Diagram<br />

Figure 9-9: MCF51MM256 Block Diagram<br />

2x OPAMP<br />

2x TRIAMP<br />

PDB<br />

MCG<br />

Figure 8-7: Kinetis K50 Family Block Diagram<br />

Figure 9-8 Kinetis K50 Family<br />

Debug<br />

Interfaces<br />

Interrupt<br />

Controller<br />

Security<br />

and Integrity<br />

Cyclic<br />

Redundancy<br />

Check (CRC)<br />

Random<br />

Number<br />

Generator<br />

Cryptographic<br />

Acceleration<br />

Unit (CAU)<br />

Core<br />

ARM ® Cortex-M4<br />

72/100 MHz<br />

Standard Feature<br />

System Memories<br />

Internal and<br />

External<br />

Watchdogs<br />

Memory<br />

Protection Unit<br />

(MPU)<br />

Xtrinsic<br />

Low-Power<br />

Touch-Sensing<br />

Interface<br />

Segment<br />

LCD Controller<br />

48 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

DSP<br />

Analog<br />

16-bit<br />

ADC<br />

PGA<br />

Analog<br />

Comparator<br />

6-bit<br />

DAC<br />

12-bit<br />

DAC<br />

Voltage<br />

Reference<br />

OPAMP<br />

TRIAMP<br />

VREF TOD<br />

16-bit SAR ADC I2 12-bit DAC LVI<br />

C<br />

PRACMP CMT<br />

2 x 4-ch. TPM with PWM 2 x SPI<br />

2 x KBI 2 x SCI<br />

32-bit V1 ColdFire 50 MHz Core with MAC<br />

DMA<br />

Low-Leakage<br />

Wake-Up Unit<br />

Timers<br />

FlexTimer<br />

Carrier<br />

Modulator<br />

Transmitter<br />

Programmable<br />

Delay Block<br />

Periodic<br />

Interrupt<br />

Timer<br />

Low-Power<br />

Timer<br />

Independent<br />

Real-Time<br />

Clock (IRTC)<br />

IEEE ® 1588<br />

Timer<br />

Optional Feature<br />

Program<br />

Flash<br />

(128 to 512 KB)<br />

FlexMemory<br />

(32 to 256 KB)<br />

(2 to 4 KB EE)<br />

Serial<br />

Programming<br />

Interface<br />

(EZPort)<br />

SRAM<br />

(32 to 128 KB)<br />

External<br />

Bus Interface<br />

(FlexBus)<br />

Clocks<br />

Phase-Locked<br />

Loop<br />

Frequency-<br />

Locked Loop<br />

Low/High-<br />

Frequency<br />

Oscillators<br />

Internal<br />

Reference<br />

Clocks<br />

Communication Interfaces HMI<br />

I 2 C<br />

UART<br />

(ISO 7816)<br />

SPI<br />

IEEE 1588<br />

Ethernet MAC<br />

I 2 S<br />

Secure<br />

Digital Host<br />

Controller<br />

(SDHC)<br />

USB OTG<br />

(LS/FS)<br />

USB Charger<br />

Detect (DCD)<br />

USB Voltage<br />

Regulator<br />

Up to 68 GPIO/<br />

16 RGPIO<br />

MiniBus External<br />

USB<br />

Device/Host/<br />

OTG<br />

Bootloader<br />

256 KB 32 KB SRAM<br />

USB ROM<br />

GPIO


• Internal voltage reference<br />

• USB – device/host/on-the-go controller<br />

• 2 x serial peripheral interface (SPI),<br />

2 x serial communication interface (SCI)<br />

and 1 x I2C • Mini FlexBus (external bus interface EBI)<br />

K50 Measurement MCUs<br />

The K50 MCU family is pin, peripheral and<br />

software compatible with other Kinetis MCUs<br />

and provides designers with an analog<br />

measurement engine consisting of integrated<br />

operational and transimpedance amplifiers<br />

and high-resolution ADC and DAC modules.<br />

The family also features IEEE 1588 Ethernet<br />

and hardware encryption, full-speed USB<br />

2.0 On-The-Go with device charger detect<br />

capability and a flexible low-power segment<br />

LCD controller with support for up to 320<br />

segments. Devices start from 128 KB of flash<br />

in 64-pin QFN packages extending up to 512<br />

KB in a 144-pin MAPBGA package.<br />

Key Features<br />

Kinetis K50 MCU features and peripherals in<br />

the integrated measurement engine:<br />

• Ultra-low-power operation<br />

• 2x OPAMP<br />

• 2x TRIAMP<br />

• 2x 12-bit DAC<br />

• 2x 16-bit SAR ADC, up to 31 channels with<br />

programmable gain amplifiers (PGA)<br />

• Programmable Delay Block (PDB)<br />

• I2C • USB connectivity<br />

• ARM Cortex-M4 core with DSP (Digital<br />

Signal Processor) instructions<br />

Home Portable <strong>Medical</strong><br />

freescale .com/medical 49


Hearing Aids<br />

9.1<br />

Introduction<br />

A hearing aid is a small electronic device worn in or behind the ear that<br />

amplifies incoming sounds. A hearing aid can help people with hearing<br />

loss hear better in both quiet and noisy situations. Low power, digital<br />

and adaptative filtering are key design elements for battery-operated<br />

hearing aids to reduce the environmental noise so that only the desired<br />

signals are amplified and sent to the speaker. An inertial sensor can be<br />

used for gesture recognition in high-end units where a shake motion<br />

could turn the hearing aid on or change volume.<br />

50 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


9.2<br />

Microphone Amplifier<br />

The microphone and amplifier are used to<br />

convert sound into electrical signals. The<br />

microphone is a transducer that converts<br />

vibrations in the air to electrical signals.<br />

The microphone can be connected to a<br />

preamplifier to couple the impedances and<br />

normalize the audio levels. The preamplifier<br />

output is connected to the amplifier input to<br />

condition the signal-in voltage levels used by<br />

the analog-to-digital converter (ADC).<br />

The ADC converter transforms the continuous<br />

audio signal into digital samples to be<br />

processed and filtered by a digital signal<br />

processor (DSP).<br />

9.3<br />

Li-Ion Battery Charger<br />

Circuit<br />

Because this device is designed to be worn<br />

in or behind the ear, the power source must<br />

be batteries. Using rechargeable batteries<br />

eliminates the need to replace or purchase<br />

batteries.<br />

MC13883: Integrated Charger,<br />

USB On-the-Go Transceiver and<br />

Carkit Interface<br />

The <strong>Freescale</strong> MC13883 is a monolithic<br />

integration of a lithium ion battery charger with<br />

a CEA-936 carkit with interfacing support and<br />

a USB OTG transceiver.<br />

Key Features<br />

• Li-ion battery charging through a USB<br />

connector<br />

• Multiple charger modes and configurations<br />

supported<br />

• Overvoltage protection for shielding<br />

products from faulty (high-voltage) charging<br />

sources<br />

• Trickle pre-charge of deeply discharged<br />

batteries<br />

• Reverse path capability allows power to be<br />

sourced to the VBUS pin from the battery<br />

and can be used to support phone-powered<br />

devices through the USB connector<br />

• Charge indicator LED driver<br />

Figure 9-1: Hearing Aid General Block Diagram<br />

Hearing Aid<br />

AC Mains<br />

Li-Ion Battery<br />

Charger Circuit<br />

Microphone<br />

Amplifier<br />

Power<br />

Management<br />

Voltage<br />

Regulation<br />

<strong>Freescale</strong> Technology Optional<br />

Figure 9-2: Signal Acquisition Block Diagram<br />

Figure 8-2: Signal Acquisition Block Diagram<br />

Pre-Amplifier<br />

Home Portable <strong>Medical</strong><br />

Non-Volatile<br />

Memory<br />

DSP/DSC<br />

Loudspeaker<br />

Class D Amplifier<br />

Wireless<br />

Comm<br />

Keypad<br />

Inertial<br />

Sensor<br />

freescale .com/medical 51<br />

Amplifier<br />

SPI/I 2 C<br />

High-Speed<br />

Analog-to-Digitial<br />

Converter<br />

Microphone Digital Signal Processor<br />

(DSP)<br />

Figure 9-3: MC13883 Block Diagram<br />

Figure 8-3: MC13883 Block Diagram<br />

10-bit ADC<br />

Battery Monitoring<br />

Li-Ion Battery Charger,<br />

USB Charging,<br />

Overvoltage Protection<br />

MC13883<br />

SPI/I 2 C<br />

Interface<br />

USB OTG<br />

Transceiver<br />

and Car Kit<br />

Interface<br />

n<br />

BB Processor


Home Portable <strong>Medical</strong><br />

• USB 2.0 OTG transceiver with regulated<br />

supplies, ID detection and interrupt<br />

generation<br />

• Communication and audio control follows<br />

the protocol defined by the CEA-936 carkit<br />

specification<br />

• Serial peripheral interface (SPI) and<br />

inter-integrated circuit (I2C) support for<br />

flexible processor interfacing and system<br />

integration<br />

• 40-pin QFN package, 6 mm x 6 mm<br />

9.4<br />

Class D Amplifier<br />

For applications in audio amplification<br />

there are several available technologies.<br />

Analog Class AB has been the predominant<br />

technology for these applications, however,<br />

the industry uses Class D amplifier<br />

technology. Class D amplification offers many<br />

advantages over other technologies. Pulse<br />

width modulation is often used to improve<br />

power performance. This results in lower heat<br />

dissipation which allows more audio channels<br />

and higher wattage in smaller form factors.<br />

<strong>Freescale</strong> DSP5680x devices offer a combination<br />

of peripherals and software to enable Class D<br />

amplifiers to work at peak performance.<br />

DSP5680x Architecture<br />

The architecture of the DSP5680x device<br />

captures the best of the DSP and MCU<br />

worlds. Its key features include:<br />

• Advanced pulse width modulation<br />

• Dual analog-to-digital converters<br />

• Programmable 16-bit timers<br />

• 8 MHz crystal oscillator and PLL with<br />

integrated pre- and post-scalars<br />

• On-board power conversion and<br />

management<br />

• JTAG/OnCE debug programming interface<br />

Figure 8-4: 9-4: General General Diagram Diagram of Class of Class D Amplifier D Amplifier Implementation Implementation<br />

PWM signals<br />

Digital Signal Processor<br />

(DSP)<br />

Figure 9-5: Principle of PWM Modulation<br />

Figure 8-5: Principle of PWM Modulation<br />

Amplitude<br />

Amplitude<br />

Amplitude<br />

Amplifier H-bridge<br />

52 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

f vin<br />

V in<br />

V mod<br />

V in<br />

V mod<br />

n<br />

Low Pass<br />

Figure 9-6: DSP Audio Application<br />

Figure 8-6: DSP Audio Application<br />

Input<br />

Audio<br />

Channels<br />

Digital<br />

Input<br />

Audio<br />

Codec<br />

DSP56F80x<br />

SPI GPIO<br />

SPI<br />

GPIO<br />

PWM<br />

f mod<br />

Buttons<br />

Display<br />

Power<br />

Stage<br />

Time<br />

Time<br />

Frequency<br />

Speaker<br />

Low Pass<br />

Filter


9.5<br />

Digital Signal Processor<br />

The digital signal processor (DSP) performs<br />

the signal’s digital filtering. The audio signal<br />

samples taken from the ADC are stored in<br />

memory. A filter algorithm is applied to the<br />

sampled signal.<br />

A DSC such as <strong>Freescale</strong>’s MC56F8006 can<br />

take the place of an amplifier, ADC and PWM/<br />

timers. See Figure 9-7. The advantages to<br />

replacing these discrete devices with one DSC<br />

include board real estate savings (critical for<br />

small hearing aids), increased reliability by<br />

reducing the number of failure points and a<br />

reduced cost.<br />

The <strong>Freescale</strong> MC56F8006 DSC provides the<br />

following features:<br />

• 16-bit 56800E core<br />

• Programmable gain amplifier connected to<br />

ADC inputs<br />

• Dual 12-bit ADC<br />

• Six-channel, 15-bit PWM<br />

For wireless communication, power<br />

management, keypad and speaker<br />

implementation, see Chapter 3 Introduction.<br />

MC56F800x: MC56F8006 and<br />

MCF56F8002 Digital Signal<br />

Controllers<br />

Key features of these DSCs include:<br />

• Single-cycle 16 × 16-bit parallel multiplieraccumulator<br />

(MAC)<br />

• Four 36-bit accumulators including<br />

extension bits<br />

• Two 2x-16x programmable gain amplifiers<br />

(PGAs)<br />

• Three analog comparators<br />

• Two 12-bit ADCs<br />

• Six output PWMs with programmable fault<br />

capability<br />

• Two 16-bit timers, one 16-bit periodic<br />

interval timer and a programmable delay<br />

timer<br />

• Ultra-low-power operation (nine different<br />

power modes)<br />

Home Portable <strong>Medical</strong><br />

Figure 9-7: Simplified Application Using Digital Signal Controller<br />

Figure 8-7: Simplified Application Using Digital Signal Controller<br />

Microphone<br />

Digital Signal Controller<br />

Pre-Amplifier Amplifier<br />

Embedded<br />

Analog-to-Digital<br />

Embedded<br />

Timers<br />

n<br />

Pre-Amplifier<br />

Converter<br />

(PWN function)<br />

PWN<br />

signals<br />

Figure 9-8: MC56F800x Block Diagram<br />

Figure 8-8: MC56F800x Block Diagram<br />

6 KB<br />

8 KB<br />

Memory<br />

Options<br />

Three Analog<br />

Comparators<br />

Two 2x-16x<br />

Wideband PGAs<br />

High-Speed SCI<br />

System Clock Control<br />

(COSC, ROSC, PLL)<br />

Two 12-bit<br />

ADCs<br />

2 KB SRAM<br />

Application Notes<br />

• Static Serial Bootloader for<br />

MC56F800x/801x/802x/803x (document<br />

AN3814)<br />

freescale .com/medical 53<br />

Flash<br />

Power<br />

SuperVisor<br />

16-bit Periodic<br />

Interval Timer<br />

Programmable<br />

Delay Block (PDB)<br />

Six Output PWM<br />

Voltage<br />

Regulators<br />

Interrupt<br />

Controller<br />

H-Bridge<br />

Two 16-bit Timers<br />

SPI PC COP<br />

56800E Core/32MIPS<br />

System Integration<br />

Module (SIM)<br />

Peripherals Flash RAM Core Plus Features<br />

Speaker


Home Portable <strong>Medical</strong><br />

Table 9-1 <strong>Freescale</strong> Technologies for Home Portable <strong>Medical</strong><br />

Device Description Key Features Alternate Options<br />

Blood Glucose Monitor<br />

i.MX28x ARM9TM <strong>Applications</strong> Processor 454 MHz ARM9 core, power management, LCD controller, touch screen, DDR2/mDDR/<br />

NAND, Ethernet, USB PHY x2,


Diagnostic and Therapy Devices<br />

10.1<br />

Introduction<br />

Reliability and accuracy are key considerations for diagnostics and<br />

therapy devices. These devices are used in critical situations when<br />

physiological events need to be recognized quickly and addressed<br />

appropriately. These medical devices need a processing core that is<br />

powerful enough to acquire, process and interpret several parameters<br />

at once.<br />

A full spectrum of 32-bit processors (Vybrid, Kinetis, ColdFire,<br />

i.MX and Power Architecture technology) offers performance and<br />

integration. Integrated USB and Ethernet drivers facilitate convenient<br />

data transfer from a device to a PC for processing or long-term<br />

storage. LCD interfaces common across ARM-based product<br />

portfolios (Vybrid, Kinetis and the i.MX family) provide clinicians and<br />

patients a meaningful way to visualize clinical data in real time. The<br />

i.MX53 processor, in particular, is being designed into several patient<br />

monitoring applications.<br />

Diagnostic and therapeutic medical devices can be positioned for<br />

both the home and clinical market. <strong>Freescale</strong>’s controller continuum<br />

enables development on an 8-bit platform for simple home devices,<br />

which can then be upgraded to 32-bit platforms as new application<br />

needs arise for the clinical market. The controller continuum serves<br />

as a powerful resource for building fully integrated, scalable medical<br />

solutions for the home or the clinic.<br />

freescale .com/medical 55


Diagnostic and Therapy Devices<br />

10.2<br />

Electrocardiograph and<br />

Portable ECG<br />

An electrocardiogram (ECG or EKG) is a<br />

graph produced by an electrocardiograph<br />

that records the electrical activity of the heart<br />

over time. This allows health care providers to<br />

diagnose a wide range of heart conditions.<br />

A portable ECG is a device which plots the<br />

electrical activity generated in the heart<br />

against time. It is the test most used to<br />

measure the functionality and pathologies of<br />

the heart, such as arrhythmias. The function<br />

of the electrocardiograph is based on the<br />

electrical activity of heart cells due to the<br />

depolarization that contracts the heart and<br />

creates heartbeats. The obtained signal is<br />

called a QRS complex.<br />

10.3<br />

QRS Complex<br />

A typical ECG period consists of P, Q, R,<br />

S and T waves (see Chapter 5, page 32,<br />

Heart Rate Monitor). Each wave represents<br />

something and helps in diagnosis. Sometimes<br />

the signal is represented as QRS complex<br />

and P and T waves. The QRS complex is<br />

separated from the signal to receive specific<br />

information.<br />

To obtain the QRS complex, a digital highpass<br />

filter is implemented to remove noise<br />

and drift. A differential is used to emphasize R<br />

and smooth T, square the signal and integrate<br />

it to smooth noise. This is done over a short<br />

period so as not to smooth the R wave.<br />

The beating heart generates an electric<br />

signal that helps to diagnose or examine<br />

the heart. This signal can be represented as<br />

a vector quantity. Therefore, the location of<br />

the electrical signal that is being detected<br />

needs to be known. To get a typical signal it<br />

is necessary to place three electrodes: one<br />

on the patient’s left arm, the other on the right<br />

arm, and the ground electrode on the patient’s<br />

stomach or left leg.<br />

Figure 10-1: Electrocardiograph Block Diagram<br />

Electrocardiograph (ECG)<br />

Precordial<br />

RA LA<br />

FPO<br />

JTAG<br />

Use updated version<br />

RL LL<br />

with CR Touch<br />

added. Currently in<br />

progress with Alle.<br />

Inverted<br />

Common<br />

Mode Voltage<br />

Feedback<br />

<strong>Freescale</strong> Technology<br />

Electrical<br />

Protection<br />

and Mux<br />

Power<br />

Management<br />

Optional<br />

Display Driver<br />

Keypad or<br />

Touch Screen<br />

Y(n)<br />

56 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

In<br />

Amp<br />

Portable Figure 10-2: ECG Block Portable Diagram ECG Block Diagram<br />

Electrodes<br />

Keypad<br />

Signal<br />

Conditioning<br />

USB and/or<br />

Ethernet<br />

Wireless<br />

Comm<br />

<strong>Freescale</strong> Technology Optional<br />

ADC<br />

ADC<br />

Power<br />

Management<br />

MCU<br />

12-Lead EKG System<br />

MCU/MPU/DSC<br />

Wireless<br />

Comm<br />

USB and/or<br />

Ethernet<br />

SPI/I 2 C<br />

PWM<br />

Display with<br />

Touch Screen<br />

Non-Volatile<br />

Memory<br />

Figure<br />

Figure<br />

9-3:<br />

10-3:<br />

Digital<br />

Digital<br />

Signal<br />

Signal<br />

Processing<br />

Processing<br />

to Obtain<br />

to Obtain<br />

the QRS<br />

the<br />

Complex<br />

QRS Complex<br />

X(n)<br />

Raw ECG<br />

LPF<br />

HPF<br />

Q<br />

R<br />

S<br />

Differentiate<br />

Integrate<br />

Square<br />

Speaker/Piezo


10.4<br />

Filtering ECG<br />

The ECG has three common noise sources:<br />

• Baseline wander<br />

• Power line interference<br />

• Muscle noise<br />

The baseline wander is caused by electrode<br />

impedance, respiration, body movements and<br />

low- and high-frequency noise. This makes<br />

it necessary to use a band-pass filter as<br />

described in Chapter 5, Heart Rate Monitor. To<br />

eliminate the low-frequency noise, a high-pass<br />

filter with a cut-off frequency of 0.67 Hz is used,<br />

because this corresponds to the slowest heart<br />

rate of around 40 beats per minute. However,<br />

because this is not an absolute data point, it<br />

is better to use a cut-off frequency of 0.5 Hz.<br />

Figure 10-5 shows a basic implementation<br />

circuit that detects the electrical currents<br />

through the electrodes.<br />

10.5<br />

Electrodes Interface<br />

The amplitude of the signals detected by<br />

the electrodes is too small. The signals are<br />

connected to operational amplifier inputs<br />

through series limiter resistors (typically 100K),<br />

and amplified a little. The feedback network<br />

helps to stabilize the system at the beginning<br />

of the capture time, reducing fluctuations.<br />

Finally, the signal is sent to an active low-pass<br />

filter. The filter eliminates the high-frequency<br />

noise which might be induced by the AC line.<br />

Other noise sources such as respiration and<br />

muscular movement (low-frequency noise) are<br />

filtered using a high-pass filter. These noise<br />

sources require a band-pass filter and not just<br />

a low-pass filter.<br />

AN4323: <strong>Freescale</strong>’s Solutions for<br />

Electrocardiograph and Heart Rate<br />

Monitor <strong>Applications</strong><br />

This application note describes how to use<br />

the MED-EKG development board, a highly<br />

efficient board that can be connected to<br />

the <strong>Freescale</strong> Tower System to obtain an<br />

electrocardiogram signal and measure<br />

heart rate.<br />

Figure 10-4: Einthoven Triangle<br />

Figure 9-4: Einthoven Triangle<br />

Right<br />

Arm<br />

Diagnostic and Therapy Devices<br />

freescale .com/medical 57<br />

–<br />

-<br />

Y<br />

II III<br />

Figure 10-5: Electrodes Connection Circuit and Signal Conditioning<br />

Figure 9-5: Electrodes Connection Circuit and Signal Conditioning<br />

Right Hand<br />

Right Leg Left Leg<br />

Left Hand<br />

+<br />

Analog<br />

Frond End<br />

Electrodes<br />

Multiplexer<br />

and Isolator<br />

Figure 10-6: ECG Analog Front End<br />

Figure 9-6: ECG Analog Front End<br />

Left<br />

Electrode<br />

Right<br />

Electrode<br />

100K<br />

100K<br />

Differential Amplifier<br />

+<br />

Left<br />

Leg<br />

I<br />

+<br />

Instrumentation<br />

Amplifier<br />

Feedback Network<br />

–<br />

Left<br />

Arm<br />

X<br />

Band Pass<br />

Filter<br />

Filter Network<br />

To MCU<br />

ADC input<br />

Output


Diagnostic and Therapy Devices<br />

The application is implemented using<br />

either the MK53N512, MC9S08MM128 or<br />

MCF51MM256 MCUs.<br />

K50 Measurement MCUs<br />

The K50 MCU family is pin, peripheral and<br />

software compatible with other Kinetis MCUs<br />

and provides designers with an analog<br />

measurement engine consisting of integrated<br />

operational and transimpedance amplifiers<br />

and high-resolution ADC and DAC modules.<br />

The family also features IEEE 1588 Ethernet<br />

and hardware encryption, full-speed USB<br />

2.0 On-The-Go with device charger detect<br />

capability and a flexible low-power segment<br />

LCD controller with support for up to 320<br />

segments. Devices start from 128 KB of flash<br />

in 64-pin QFN packages extending up to 512<br />

KB in a 144-pin MAPBGA package.<br />

Key Features<br />

Kinetis K50 MCU features and peripherals in<br />

the integrated measurement engine:<br />

• Ultra-low-power operation<br />

• 2x OPAMP<br />

• 2x TRIAMP<br />

• 2x 12-bit DAC<br />

• 2x 16-bit SAR ADC, up to 31 channels with<br />

programmable gain amplifiers (PGA)<br />

• Programmable Delay Block (PDB)<br />

• I2C • USB connectivity<br />

• ARM Cortex-M4 core with DSP instructions<br />

MCF51MM: Flexis 32-bit<br />

ColdFire V1 MCUs<br />

The MCF51MM256/128 provides ultralow-power<br />

operation, USB connectivity,<br />

graphic display support and unparalleled<br />

measurement accuracy, all in a single 32-bit<br />

MCU, allowing designers to create more<br />

fully featured products at lower cost. The<br />

MCF51MM256/128 is ideal for medical<br />

applications or other applications requiring a<br />

significant amount of precision analog such as<br />

instrumentation and industrial control.<br />

The MCF51MM256/128 is part of the<br />

<strong>Freescale</strong> Flexis MCU series.<br />

Figure<br />

Figure 9-7:<br />

10-7:<br />

MED<br />

MED<br />

EKG<br />

EKG<br />

Block<br />

Block<br />

Diagram<br />

Diagram<br />

Instrumentation<br />

Amplifier<br />

Band Pass Filter<br />

Operational<br />

Amplifier<br />

Electrodes<br />

• On-board<br />

• External<br />

Low Pass Filter<br />

Notch Filter<br />

Low Pass Filter<br />

DSC<br />

MC56F8006<br />

MCU Internal Configuration<br />

(Instrumentation Amplifier)<br />

<strong>Freescale</strong> Technology <strong>User</strong> Selectable<br />

Low Pass Filter<br />

High Pass Filter<br />

58 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

PWM<br />

ADC<br />

TriAmp<br />

TriAmp<br />

Operational<br />

Amplifier<br />

OpAmp<br />

Figure 10-8: Kinetis K50 Family Block Diagram<br />

Figure 9-8 Kinetis K50 Family<br />

Security<br />

and Integrity<br />

Cyclic<br />

Redundancy<br />

Check (CRC)<br />

Random<br />

Number<br />

Generator<br />

Cryptographic<br />

Acceleration<br />

Unit (CAU)<br />

Core<br />

ARM ® Cortex-M4<br />

72/100 MHz<br />

Debug<br />

Interfaces<br />

Interrupt<br />

Controller<br />

Standard Feature<br />

DSP<br />

Analog<br />

16-bit<br />

ADC<br />

PGA<br />

Analog<br />

Comparator<br />

6-bit<br />

DAC<br />

12-bit<br />

DAC<br />

Voltage<br />

Reference<br />

OPAMP<br />

TRIAMP<br />

Timers<br />

I 2 C<br />

ADC<br />

System Memories<br />

Internal and<br />

External<br />

Watchdogs<br />

Memory<br />

Protection Unit<br />

(MPU)<br />

DMA<br />

Low-Leakage<br />

Wake-Up Unit<br />

FlexTimer<br />

Carrier<br />

Modulator<br />

Transmitter<br />

Programmable<br />

Delay Block<br />

Periodic<br />

Interrupt<br />

Timer<br />

Low-Power<br />

Timer<br />

Independent<br />

Real-Time<br />

Clock (IRTC)<br />

IEEE ® 1588<br />

Timer<br />

Optional Feature<br />

Program<br />

Flash<br />

(128 to 512 KB)<br />

FlexMemory<br />

(32 to 256 KB)<br />

(2 to 4 KB EE)<br />

Serial<br />

Programming<br />

Interface<br />

(EZPort)<br />

MCU<br />

MK53N512<br />

or<br />

MCF51MM256<br />

or<br />

MC9S08MM128<br />

DAC ADC<br />

Band Pass Filter<br />

SRAM<br />

(32 to 128 KB)<br />

External<br />

Bus Interface<br />

(FlexBus)<br />

Host PC<br />

with GUI<br />

USB<br />

Internal<br />

OpAmp<br />

Clocks<br />

Phase-Locked<br />

Loop<br />

Frequency-<br />

Locked Loop<br />

Low/High-<br />

Frequency<br />

Oscillators<br />

Internal<br />

Reference<br />

Clocks<br />

Communication Interfaces HMI<br />

I 2 C<br />

UART<br />

(ISO 7816)<br />

SPI<br />

IEEE 1588<br />

Ethernet MAC<br />

I 2 S<br />

Secure<br />

Digital Host<br />

Controller<br />

(SDHC)<br />

USB OTG<br />

(LS/FS)<br />

USB Charger<br />

Detect (DCD)<br />

USB Voltage<br />

Regulator<br />

GPIO<br />

Xtrinsic<br />

Low-Power<br />

Touch-Sensing<br />

Interface<br />

Segment<br />

LCD Controller


Features:<br />

• ColdFire V1 core delivering a 50 MHz core<br />

speed and 25 MHz bus speed<br />

• Up to 256 KB flash and 32 KB SRAM<br />

• Low-power stop 2 current: 500 nA<br />

(32 KB of active SRAM)<br />

• 2 x general purpose opamps<br />

• 2 x transimpedance amplifiers<br />

• 16-bit SAR high resolution analog-to-digital<br />

converter (ADC)<br />

• Analog Comparator with 5-bit digital-toanalog<br />

converter (DAC)<br />

• Internal voltage reference<br />

• USB – device/host/on-the-go controller<br />

• 2 x serial peripheral interface (SPI),<br />

2 x serial communication interface (SCI)<br />

and 1 x I2C • Mini FlexBus (external bus interface EBI)<br />

• Included in <strong>Freescale</strong>’s Product Longevity<br />

Program<br />

S08MM: Flexis 8-bit MCUs<br />

The 9S08MM128/64/32 provides ultralow-power<br />

operation, USB connectivity,<br />

graphic display support and unparalleled<br />

measurement accuracy, all in a single 8-bit<br />

MCU, allowing device designers to create<br />

more fully featured products at a lower cost.<br />

It is ideal for applications requiring a<br />

significant amount of precision analog.<br />

The 9S08MM128/64/32 is part of <strong>Freescale</strong>’s<br />

Flexis MCU series.<br />

Features:<br />

• S08 core delivering a 48 MHz core speed<br />

and 24 MHz bus speed<br />

• Up to 128 KB flash and 12 KB SRAM<br />

• Low-power stop 2 current: 450nA<br />

(12 KB of active SRAM)<br />

• 2 x OPAMP- General purpose opamps<br />

• 2 x TRIAMP- Transimpedance amplifiers<br />

• 16-bit SAR analog-to-digital converter<br />

(ADC) – high resolution ADC<br />

• Analog comparator<br />

• Internal voltage reference<br />

• USB device controller<br />

• 2 x serial peripheral interface (SPI),<br />

2 x serial communications interface (SCI)<br />

and 1 x I2C Figure 9-9: 10-9: MCF51MM256 Block Block Diagram Diagram<br />

2x OPAMP<br />

2x TRIAMP<br />

PDB<br />

MCG<br />

MCF5227X: V2 MCU with a Touch<br />

Screen, LCD Controller and USB<br />

Key Features<br />

• 8 KB configurable I/D cache<br />

• 128 KB RAM<br />

• Integrated LCD controller<br />

• CSTN and TFT w/up to 800 x 600<br />

(SVGA) resolution<br />

• 8 x 12-bit ADC w/touch-screen controller<br />

• Real touch screen controller<br />

• USB 2.0 full-speed On-The-Go controller<br />

• CAN 2.0B controller (FlexCAN)<br />

VREF TOD<br />

PRACMP CMT<br />

2 x 4-ch. TPM with PWM 2 x SPI<br />

2 x KBI 2 x SCI<br />

32-bit V1 ColdFire 50 MHz Core with MAC<br />

Diagnostic and Therapy Devices<br />

Up to 68 GPIO/<br />

16 RGPIO<br />

16-bit SAR ADC I2 12-bit DAC LVI<br />

C<br />

MiniBus External<br />

USB<br />

Device/Host/<br />

OTG<br />

Bootloader<br />

256 KB 32 KB SRAM<br />

USB ROM<br />

Figure<br />

Figure<br />

9-10:<br />

10-10:<br />

MC9S08MM128<br />

MC9S08MM128<br />

Block<br />

Block<br />

Diagram<br />

Diagram<br />

2x OPAMP<br />

2x TRIAMP<br />

PDB<br />

MCG<br />

VREF TOD<br />

16-bit SAR ADC I2 12-bit DAC LVI<br />

C<br />

PRACMP CMT<br />

2 x 4-ch. TPM with PWM 2 x SCI<br />

2 x KBI 2 x SPI<br />

8-bit 9S08 48 MHz Core<br />

Up to 68 GPIO<br />

USB<br />

Device<br />

Bootloader<br />

128 KB Flash 12 KB SRAM<br />

USB ROM<br />

• Three UARTs<br />

• DMA serial peripheral interface (DSPI)<br />

• I2C bus interface<br />

• Synchronous serial interface (SSI)<br />

• 4-ch., 32-bit timers with DMA support<br />

• Real-time clock<br />

• 16-ch. DMA controller<br />

• 16-bit DDR /32-bit SDR SDRAM controller<br />

• Up to 55 general-purpose I/O<br />

• System integration (PLL, SW watchdog)<br />

• 1.5V core, 1.8V/2.5V/3.3V bus I/O<br />

freescale .com/medical 59


Diagnostic and Therapy Devices<br />

Power management and wireless<br />

communication blocks are explained in<br />

Chapter 3, Telehealth Systems.<br />

10.6<br />

Display Driver and Touch<br />

Screen Controller<br />

An LCD screen shows graphically the heart’s<br />

electrical signals and allows for a diagnosis of<br />

any cardiac anomalies or other problems. A<br />

touch screen offers developers an easy way to<br />

enhance their applications with touch-based<br />

user interfaces.<br />

Connecting screens to the MCF5227x is<br />

shown in Figure 10-12.<br />

For more information about these<br />

connections, see the MCF5227x reference<br />

manual and application notes about touch<br />

screens and LCD memory, available at<br />

freescale.com.<br />

10.7<br />

Enhanced Multiply-<br />

Accumulate (eMAC)<br />

Module<br />

A ColdFire or Kinetis MCU such as the<br />

MCF5227x, MCF51MM256 or MK53N512 can<br />

process the digital signals of the heartbeat,<br />

avoiding the need to use a separate DSP<br />

or DSC.<br />

The eMAC design provides a set of DSP<br />

operations that can improve the performance<br />

of embedded code while supporting the<br />

integer multiply instructions of the baseline<br />

ColdFire architecture.<br />

The ColdFire family supports two MAC<br />

implementations with different performance<br />

levels and capabilities. The original MAC features<br />

a three-stage execution pipeline optimized for<br />

16-bit operands with a 16 x 16 multiply array<br />

and a single 32-bit accumulator. The eMAC<br />

features a four-stage pipeline optimized for<br />

32-bit operands with a fully pipelined 32 × 32<br />

multiply array and four 48-bit accumulators.<br />

Figure 9-11: 10-11: MCF522x MCF522x Family Family Block Block Diagram Diagram<br />

12-bit color<br />

16-bit color<br />

LCD<br />

Controller<br />

Figure 10-13: Typical DSP Chain<br />

Figure 9-13: Typical DSP Chain<br />

Analog<br />

Low-Pass<br />

Filter<br />

BDM PLL CCM GPIO JTAG<br />

USB OTG EPORT SSI<br />

8 KB Cache<br />

Sample<br />

and Hold<br />

ADC<br />

60 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

ASP<br />

Digital<br />

Filters<br />

SW/HW on ColdFire<br />

INTC I 2 C<br />

LCDC RTC DSPI<br />

32-bit<br />

4 DMA Timers<br />

EMAC<br />

2-ch.<br />

4 PWM<br />

ColdFire V2<br />

Core<br />

XBS FlexCAN<br />

2 PIT 3 UART<br />

DC/PWM<br />

DC/PWM<br />

128 KB SRAM<br />

System<br />

Integration<br />

Debugging/Interface Peripherals Flash RAM Core Plus Feature<br />

Figure 9-12: 10-12: Screen Screen Connection Connection on MCF5227x on MCF5227x<br />

MPU<br />

Red bus<br />

Green bus<br />

Blue bus<br />

6<br />

6<br />

6<br />

Horizontal Sync<br />

Vertical Sync<br />

Pixel Clock<br />

Output Enable<br />

I2C/ADC Channel<br />

Touch Screen Controller<br />

RGB Screen<br />

with Touch Screen<br />

Analog<br />

Low-Pass<br />

Filter<br />

Analog<br />

Low-Pass<br />

Filter


The eMAC improvements target three<br />

primary areas:<br />

• Improved performance of 32 × 32 multiply<br />

operation<br />

• Addition of three more accumulators to<br />

minimize MAC pipeline stalls caused by<br />

exchanges between the accumulator and<br />

the pipeline’s general-purpose registers<br />

• A 48-bit accumulation data path to allow a<br />

40-bit product plus eight extension bits to<br />

increase the dynamic number range when<br />

implementing signal processing algorithms<br />

The logic required to support this functionality<br />

is contained in a MAC module (Figure 10-14).<br />

Figure 10-15 is a typical implementation of<br />

digital signal processing using ColdFire.<br />

<strong>Freescale</strong> provides two documents describing<br />

DSP algorithms functionality:<br />

- ColdFire DSP Library Reference Manual Rev 0.4<br />

- Digital Signal Processing Libraries Using the<br />

ColdFire eMAC and MAC<br />

- Fast-Fourier transform (FFT)<br />

- Finite impulse filter (FIR)<br />

- Infinite impulse filter (IIR)<br />

ColdFire MPUs such as the MCF5227x can<br />

perform digital signal processing using the<br />

enhanced multiply-accumulate module.<br />

This allows medical applications such as an<br />

electrocardiograph to perform heart signal<br />

filtering more efficiently.<br />

10.8<br />

USB Connection<br />

The USB connection allows the EGC to<br />

communicate with other devices such as<br />

hospital servers, remote monitoring systems<br />

and computers. This can be implemented<br />

using the USB On-the-Go module in the<br />

MCF5227x, or in the MK20, MK40, MK50 or<br />

MK60 family members.<br />

Shift 0,1,-1<br />

Diagnostic and Therapy Devices<br />

Figure 9-14: 10-14: Multiply-Accumulate Functionality Functionality Diagram Diagram<br />

Operand Y<br />

Figure 9-15: 10-15: DSP DSP Library Library Structure Structure<br />

freescale .com/medical 61<br />

X<br />

+/-<br />

Accumulator(s)<br />

eMAC Library<br />

Operand X<br />

FFT FIR IIR<br />

FFT 16 Bits FIR 16 Bits IIR 16 Bits<br />

MAC MAC MAC<br />

eMAC eMAC eMAC<br />

FFT 32 Bits FIR 32 Bits IIR 32 Bits<br />

MAC MAC MAC<br />

eMAC eMAC eMAC<br />

Figure 9-16: 10-16: Hardware Hardware Configuration Configuration in Host in Mode Host Mode<br />

MCU with<br />

USB module<br />

D-<br />

D+<br />

Pull-down resistors<br />

Figure 9-17: 10-17: Hardware Configuration in Device in Device Mode Mode<br />

MCU with<br />

USB module<br />

Pull-up resistor<br />

D-<br />

D+<br />

VDD<br />

VDD<br />

USB power<br />

VBUS D- D+ G<br />

VBUS D- D+ G


Defibrillators<br />

11.1<br />

Automated External Defibrillator (AED)<br />

An AED is a portable device used to restore normal heart rhythm to<br />

patients in cardiac arrest by delivering an electrical shock to a patient<br />

through the chest wall. Cardiac arrest is an abrupt loss of heart<br />

function. This medical emergency occurs mainly because of ventricular<br />

fibrillation.<br />

Ventricular fibrillation is a condition where there is an uncoordinated<br />

contraction of the ventricles in the heart, making them tremble rather<br />

than contract properly. The urgency of ventricular fibrillation requires<br />

that the heart must be defibrillated quickly, as a victim’s chance of<br />

surviving drops by seven to 10 percent for every minute a normal<br />

heartbeat is not restored.<br />

An MCU or MPU calculates whether defibrillation is needed and a<br />

recorded voice indicates whether to press the shock button on the<br />

AED. This shock momentarily stuns the heart and stops all activity,<br />

giving the heart an opportunity to resume beating effectively.<br />

The charge is generated by high-voltage generation circuits from<br />

energy stored in a capacitor bank in the control box. The capacitor<br />

bank can hold up to 7 kV of electricity. The shock delivered from this<br />

system can be anywhere from 30 to 400 joules.<br />

62 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


11.2<br />

Circuit for Capacitive<br />

Discharge Defibrillators<br />

In Figure 11-2, a step-up transformer (T2)<br />

drives a half-wave rectifier and charges<br />

the capacitor (C1). The voltage where C1<br />

is charged is determined by a variable<br />

autotransformer (T1) in the primary circuit.<br />

A series resistor (R1) limits the charging<br />

current to protect the circuit components, and<br />

determines the time constant Tao (T = R x C).<br />

Five times the time constant for the circuit is<br />

required to reach 99 percent of a full charge.<br />

The time constant must be less than two<br />

seconds to allow a complete charge in less<br />

than 10 seconds.<br />

11.3<br />

Circuit for Rectangular-<br />

Wave Defibrillators<br />

In a rectangular-wave defibrillator, the<br />

capacitor is discharged through the patient<br />

by turning on a series of silicon-controlled<br />

rectifiers (SCR). When sufficient energy has<br />

been delivered to the patient, a shunt SCR<br />

short circuits the capacitor and terminates<br />

the pulse. This eliminates the long discharge<br />

tail of the waveform. The output may be<br />

controlled by varying either the voltage on the<br />

capacitor or the duration of discharge. Figure<br />

11-3 shows a general diagram of circuit<br />

implementation.<br />

Bipolar defibrillators are more efficient<br />

because they need less energy while<br />

providing the same results as unipolar<br />

defibrillators. A bipolar defibrillator needs just<br />

120 J to discharge. It has the same efficiency<br />

as the 200 J of discharge used by a unipolar<br />

defibrillator.<br />

An ECG unit must be included in the<br />

defibrillator’s system to monitor heart<br />

activity and to control the moment when<br />

the discharge can be applied to the patient.<br />

The electrodes perform both functions,<br />

capturing the patient’s ECG and delivering<br />

a high current.<br />

Defibrillator<br />

Defibrillator<br />

Figure 11-1: Defibrillators General Block Diagram<br />

Syncronization<br />

Circuit<br />

Syncronization<br />

Circuit<br />

Electrodes<br />

Electrodes<br />

Discharge<br />

Circuit<br />

Discharge<br />

Circuit<br />

ECG<br />

Amplifier<br />

ECG<br />

Amplifier<br />

<strong>Freescale</strong> Technology<br />

<strong>Freescale</strong> Technology<br />

Optional<br />

MCU/MPU<br />

Diagnostic and Therapy Devices<br />

Signal<br />

Conditioning<br />

Signal<br />

Conditioning<br />

Unipolar Bipolar<br />

freescale .com/medical 63<br />

Electrical Isolation<br />

Electrical Isolation<br />

Display<br />

Optional<br />

Display<br />

MCU/MPU<br />

Keypad or<br />

Touch Screen<br />

Keypad or<br />

Touch Screen<br />

USB<br />

USB<br />

Wireless<br />

Comm<br />

Wireless<br />

Comm<br />

Power<br />

Management<br />

Power<br />

Management<br />

Figure 10-2: Basic Circuit Diagram for a Capacitive Discharge Defibrillator<br />

Figure 11-2: Basic Circuit Diagram for a Capacitive Discharge Defibrillator<br />

Figure 10-3: 11-3: Block Block Diagram Diagram for for a Rectangular-Wave a Rectangular-Wave Defibrillator Defibrillator<br />

Figure 10-4: Unipolar Defibrillator Waveform<br />

Volts<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0<br />

1<br />

2 4 6 8 10<br />

Time (ms)<br />

12 14 16 18<br />

Charge<br />

Control A<br />

Charge<br />

Circuit A<br />

Charge<br />

Circuit B<br />

Charge<br />

Control B<br />

Capacitor<br />

Bank A<br />

Capacitor<br />

Bank B<br />

Monitor<br />

Circuit<br />

Monitor<br />

Circuit<br />

Figure 11-4: Unipolar and Bipolar Defibrillator Waveforms<br />

Figure 10-5: Bipolar Defibrillator Waveform<br />

Volts<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0<br />

1<br />

5 10 15 20 25<br />

Time (ms)<br />

30 35 40 45


Ventilation and Spirometry<br />

12.1<br />

Introduction<br />

A ventilator is a machine designed to mechanically move air in and<br />

out of the lungs to intermittently or continuously assist or control<br />

pulmonary ventilation. This apparatus is principally used in intensive<br />

therapy to help improve the patient’s breathing by regulating the<br />

flow of gas in the lungs. The most common indices of the ventilation<br />

apparatus are the absolute volume and changes of volume of the gas<br />

space in the lungs achieved during a few breathing maneuvers. The<br />

ventilator is constantly monitored and adjusted to maintain appropriate<br />

arterial pH and PaO2.<br />

This system requires a set of sensors for pressure, volume and flow.<br />

The information from the sensors modulates the operations in the<br />

MCU/MPU. This MCU/MPU receives information from the airways,<br />

lungs and chest wall through the sensors and decides how the<br />

ventilator pump responds.<br />

64 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


12.2<br />

System Sensors<br />

Figure 12-1: Ventilation/Respiration General Block Diagram<br />

Ventilation/Respiration<br />

The signal that shows lung volume is a differential<br />

AIR O2 signal, but this is not the signal measured<br />

directly from the lungs. To get this signal, it is<br />

PWR<br />

PWR<br />

necessary to transduce the pressure to voltage.<br />

This is done by using a pneumotachometer<br />

that contains a pressure sensor.<br />

PWF<br />

Sensor<br />

Nebulizer<br />

Accumulator/<br />

Compressor<br />

Blender Display<br />

<strong>Freescale</strong> provides a variety of sensors that<br />

Pressure<br />

Sensor<br />

Volume<br />

Wireless<br />

Comm<br />

use integrated circuits for signal conditioning.<br />

This is an advantage because external<br />

components are not necessary. However, it<br />

Sensor<br />

Flow<br />

Sensor<br />

Power<br />

AMP<br />

MCU/MPU<br />

USB<br />

is necessary to check the resolution of the<br />

sensor and the ADC. If the resolution of the<br />

Management<br />

ADC is greater than the sensor, amplifying<br />

the signal is recommended. Some sensors<br />

provide differential outputs for when it is<br />

Alarm<br />

Keypad or<br />

Touch Screen<br />

necessary to pass the signal through an<br />

instrument amplifier. The sensor used is a<br />

differential pressure sensor that can accept<br />

two sources of pressure simultaneously. The<br />

output is proportional to the difference of<br />

the two sources. It is important to mention<br />

<strong>Freescale</strong> Technology Optional<br />

that the normal pipeline gas source of a<br />

Ventilation/Respiration<br />

hospital is 50 PSI, a measurement that<br />

Figure 12-2: Spirometer<br />

can be taken by <strong>Freescale</strong>’s pressure Figure 11-2: Spirometer<br />

sensors. <strong>Freescale</strong> pressure sensors include<br />

AIR O2 MPX2300DT1, MPX2301DT1, MPXC2011DT1,<br />

PWR<br />

PWR<br />

MPXC2012DT1, MPX2050 and MPX5050.<br />

12.3<br />

PWF<br />

Sensor<br />

MPX2300DT1<br />

Accumulator/<br />

Nebulizer MPX2301DT1<br />

Compressor<br />

MPXC2011DT1<br />

Blender Display<br />

Spirometer<br />

Spirometers measure static pulmonary<br />

Pressure<br />

Sensor<br />

Volume<br />

MPXC2012DT1<br />

MPX5050<br />

MPX2050<br />

Wireless<br />

Comm<br />

volumes, except the functional residual<br />

capacity (FRC) and total pulmonary capacity<br />

Sensor<br />

Flow<br />

Sensor<br />

AMP<br />

Amplification<br />

MCU/MPU<br />

USB<br />

(TPC). The measurement is done after a<br />

Power<br />

Circuit<br />

maximum inspiration that requires the patient<br />

to expel the entire volume of air that he or she<br />

Management<br />

can. The results are interpreted and compared<br />

with the values for age, height, sex and race<br />

of the patient. Due to variations among normal<br />

Alarm<br />

Keypad or<br />

Touch Screen<br />

individuals, normal values can fall between 80<br />

to 120 percent of the expected volume. Figure<br />

12-2 illustrates how to configure a spirometer<br />

using a pressure sensor. The next two figures<br />

observe the different volumes of lungs.<br />

<strong>Freescale</strong> Technology Optional<br />

Lung volume measurements include:<br />

• Tidal volume (TV)—The amount of gas<br />

inspired or expired with each breath (500 ml)<br />

Diagnostic and Therapy Devices<br />

freescale .com/medical 65


Diagnostic and Therapy Devices<br />

• Inspiratory reserve volume (IRV)—Maximum<br />

amount of additional air that can be inspired<br />

at the end of a normal inspiration (2500 ml)<br />

• Expiratory reserve volume (ERV)—The<br />

maximum volume of additional air that can<br />

be expired at the end of a normal expiration<br />

(1500 ml)<br />

• Residual volume (RV)—The volume of air<br />

remaining in the lungs after a maximum<br />

expiration (1500 ml)<br />

These measurements can be used in the<br />

following equations to express lung capacities:<br />

• Total lung capacity (TLC)<br />

TLC=RV+IRV+TV+ERV (6000 ml)<br />

• Vital capacity (VC)<br />

VC=IRV+TV+ERV=TLC-RV (4500 ml)<br />

• Functional residual capacity (FRC)<br />

FRC=RV+ERV (3000 ml)<br />

• Inspiratory capacity (IC)<br />

IC=TV+IRV (3000 ml)<br />

AN4325: Spirometer Demo<br />

with <strong>Freescale</strong> MCUs<br />

The contents of this application note show<br />

how it is possible to use the Kinetis K50, Flexis<br />

S08MM and Flexis MCF51MM MCUs along<br />

with the <strong>Freescale</strong> Tower System to implement<br />

a device capable to quantify human respiration<br />

capacities, by measuring volumes and flow<br />

rates. It uses the MED-SPI development<br />

board, which is an analog front end designed<br />

to enable the prototyping of spirometry<br />

devices.<br />

12.4<br />

Graphic LCD MPU<br />

<strong>Freescale</strong> offers the following devices that<br />

generate graphics. These devices can be used<br />

to illustrate lung volume.<br />

• Kinetis MCUs<br />

The Kinetis K70 MCU family includes<br />

512KB-1MB of Flash memory, a single<br />

precision floating point unit, and a Graphic<br />

LCD Controller that supports color QVGA<br />

displays as single chip or up to 24-bit SVGA<br />

Figure 11-3: 12-3: MED SPI SPI Block Block Diagram<br />

Mouthpiece<br />

<strong>Freescale</strong> Technology<br />

MPXV7025DP<br />

(Pressure Sensor)<br />

Figure 12-4: 11-4: Normal Spirometer<br />

66 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

Volume (L)<br />

displays using external memory. Supported<br />

by <strong>Freescale</strong>’s Portable Embedded GUI<br />

(PEG) Library with simple WindowBuilder<br />

interface for powerful GUI development.<br />

• Vybrid Controller Solutions<br />

Part of the Vybrid platform, the VF7xx<br />

family of devices are dual heterogeneous<br />

core SoCs meant for solutions that want<br />

to concurrently run Linux ® or Android on<br />

FFF<br />

MCU<br />

ADC MK53N512<br />

or<br />

MCF51MM256<br />

or<br />

MC9S08MM128<br />

USB Host PC<br />

with GUI<br />

FEV 1<br />

FVC<br />

0 1 2<br />

Time (sec)<br />

3 4<br />

the ARM ® Cortex-A class core and an<br />

RTOS like MQX on the ARM ® Cortex-M<br />

class core optimized power-performance<br />

core with very high integration. The VF7xx<br />

devices have been designed to replace at<br />

least the MPU and the MCU products on a<br />

system needing Rich HMI plus Real Time<br />

control at the same time.


• i.MX Processors<br />

The most versatile platform for multimedia<br />

and display applications, <strong>Freescale</strong> ARMbased<br />

i.MX processors deliver an optimal<br />

balance of power, performance and<br />

integration to enable next-generation smart<br />

devices. i.MX solutions include processors<br />

based on ARM9 , ARM11 , ARM ®<br />

Cortex-A8 and ARM Cortex-A9 core<br />

technologies, and are powering applications<br />

across a rapidly growing number of<br />

consumer, automotive and industrial<br />

markets. Our solutions bring interactivity<br />

to a whole new world of products.<br />

12.5<br />

Alarm System<br />

An important part of this application is an<br />

alarm that can indicate different patient<br />

parameters such as exhaled volume or airway<br />

pressure. The ventilation system must be able<br />

to detect whether a breath has been taken.<br />

The MCU measures changes in aspiratory<br />

flow and pressure by using sensors. If no<br />

inspiration is detected within a certain period<br />

of time, the monitor sounds an alarm. The<br />

conditions to be programmed depend on each<br />

system. PWM cycles can be programmed to<br />

sound the alarms. Sometimes, the ventilation<br />

system uses different alarms for different<br />

situations. For more information on the alarm<br />

circuit, refer to Chapter 3, Telehealth Systems.<br />

12.6<br />

Air and Oxygen Blender<br />

and Mix Control<br />

The air and oxygen blender provides a precise<br />

oxygen concentration by mixing air and<br />

oxygen. The concentration may be adjusted<br />

to any value from controlled air to 100 percent<br />

oxygen. Internally, a proportioning valve mixes<br />

the incoming air and oxygen as the oxygen<br />

percentage dial is adjusted. Variation in line<br />

pressure, flow or pressure requirements for<br />

any attached device will not affect the oxygen<br />

concentration.<br />

Figure 11-5: 12-5: Normal Lung Lung Volume Volume<br />

TLC<br />

0<br />

Diagnostic and Therapy Devices<br />

freescale .com/medical 67<br />

V T<br />

ERV<br />

IRV<br />

FRC<br />

Figure 12-6: Blender Configuration<br />

Figure 11-8: Blender Configuration<br />

PWR<br />

Accumulator/<br />

Compressor<br />

IC<br />

Time<br />

AIR O2<br />

PWR<br />

Blender<br />

MCU/MPU<br />

VC<br />

RV


Diagnostic and Therapy Devices<br />

The preparation of an air and oxygen blender<br />

generally consists of attaching a 50 PSI air<br />

and oxygen source to the device. After the<br />

source gases are attached, inlet pressures<br />

may be checked on some blenders by<br />

checking the pressure-attached pressure<br />

gauge. After the inlet gases are attached and<br />

the air and oxygen blender is well secured<br />

to a stand or wall mount, it is ready for use.<br />

The MCU uses a PWM to control the blender<br />

electro valves through a motor control design.<br />

Early ventilator designs relied on mechanical<br />

blenders to provide premixed gas to a single<br />

flow control valve. With the availability of<br />

high-quality flow sensors and processing<br />

capabilities, accurate mixing becomes<br />

possible by using separate flow valves for<br />

air and oxygen. Because air already contains<br />

about 21 percent oxygen, the total flow<br />

control command between the oxygen and air<br />

valve is divided ratiometrically. For extreme<br />

mix settings, the valve that supplies the minor<br />

flow at low total flow requirements may fall<br />

below the resolution limits that either flow<br />

delivery or measurement can provide. An<br />

accurate delivered mix depends on accurate<br />

flow delivery, but if accurate and reliable<br />

oxygen sensors are used, improved mix<br />

accuracy may be possible by feeding back a<br />

measured concentration for mix correction.<br />

Then, if the patient needs more pressure, the<br />

MCU activates the compressor.<br />

For more information on how to build a<br />

ventilator/respirator, download Ventilator/<br />

Respirator Hardware and Software Design<br />

Specification (document DRM127) from<br />

freescale.com.<br />

Kinetis K20 MCUs<br />

The K20 MCU family is pin, peripheral and<br />

software compatible with the K10 MCU family<br />

and adds full-speed USB 2.0 On-The-Go<br />

with device charge detect capability. Devices<br />

start from 128 KB of flash in 80-pin LQFP<br />

packages extending up to 512 KB in a 144pin<br />

MAPBGA package with a rich suite of<br />

analog, communication, timing and control<br />

peripherals.<br />

Figure Figure 11-9: 12-7: Kinetis Kinetis K20 K20 Block Block Diagram Diagram<br />

Security<br />

and Integrity<br />

Cyclic<br />

Redundancy<br />

Check (CRC)<br />

Core<br />

ARM ® Cortex-M4<br />

50/72/100/120 MHz<br />

Debug<br />

Interfaces<br />

Interrupt<br />

Controller<br />

Standard Feature<br />

Key Features<br />

• ARM Cortex-M4 core with DSP, 100MHz<br />

clock, single cycle MAC, and single<br />

instruction multiple data (SIMD) extensions<br />

• 128 KB - 512 KB flash. Fast access, high<br />

reliability with four-level security protection<br />

• Hardware touch-sensing interface with up<br />

to 16 inputs. Operates in all low-power<br />

modes (minimum current adder when<br />

enabled). Hardware implementation avoids<br />

software polling method. High sensitivity<br />

level allows use of overlay surfaces up to<br />

5 mm thick<br />

System Memories<br />

Internal and<br />

External<br />

Watchdogs<br />

Memory<br />

Protection Unit<br />

(MPU)<br />

Xtrinsic<br />

Low-Power<br />

Touch-Sensing<br />

Interface<br />

• Memory protection unit provides memory<br />

protection for all masters on the cross bar<br />

switch, increasing software reliability<br />

• Cyclic redundancy check engine validates<br />

memory contents and communication data,<br />

increasing system reliability<br />

68 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

DSP<br />

Floating Point<br />

Unit (FPU)<br />

Analog<br />

16-bit<br />

ADC<br />

PGA<br />

Analog<br />

Comparator<br />

6-bit<br />

DAC<br />

12-bit<br />

DAC<br />

Voltage<br />

Reference<br />

DMA<br />

Low-Leakage<br />

Wake-Up Unit<br />

Timers<br />

FlexTimer<br />

Carrier<br />

Modulator<br />

Transmitter<br />

Programmable<br />

Delay Block<br />

Periodic<br />

Interrupt<br />

Timers<br />

Low-Power<br />

Timer<br />

Independent<br />

Real-Time<br />

Clock (RTC)<br />

Optional Feature<br />

Program Flash<br />

(32 KB to 1 MB)<br />

FlexMemory<br />

(32 KB to 512 KB)<br />

(2 to 16 KB EE)<br />

Serial<br />

Programming<br />

Interface<br />

(EzPort)<br />

NAND Flash<br />

Controller<br />

SRAM<br />

(8 KB to 128 KB)<br />

External<br />

Bus Interface<br />

(FlexBus)<br />

Cache<br />

Clocks<br />

Phase-Locked<br />

Loop<br />

Frequency-<br />

Locked Loop<br />

Low/High-<br />

Frequency<br />

Oscillators<br />

Internal<br />

Reference<br />

Clocks<br />

Communication Interfaces HMI<br />

I 2 C<br />

UART<br />

(ISO 7816)<br />

SPI<br />

CAN<br />

I 2 S<br />

Secure<br />

Digital Host<br />

Controller<br />

(SDHC)<br />

USB On-the-Go<br />

(LS/FS)<br />

USB On-the-Go<br />

(HS)<br />

USB Device<br />

Charger Detect<br />

(DCD)<br />

USB Voltage<br />

Regulator<br />

Table 12-1: MPXx2050 Packaging Information<br />

Device Type Packing Options Case<br />

MPX2050D Differential 344<br />

MPC2050DP Differential, Dual Port 423 A<br />

MPX2050GP Gauge 344B<br />

MPX2050GSX Gauge Axial PC Mount 344F<br />

GPIO


MPX230xDT1: High Volume<br />

Pressure Sensor<br />

Key Features<br />

• Cost effectiveness<br />

• Integrated temperature compensation and<br />

calibration<br />

• Ratiometric to supply voltage<br />

• Polysulfone case material (ISO 10993)<br />

• Provided in tape and reel<br />

MPXx5050: –50 to 0 kPa and 0 to<br />

50 kPa Integrated Silicon Pressure<br />

Sensor, Temperature Compensated<br />

and Calibrated<br />

Key Features<br />

• 2.5% maximum error over 0° to +85°C<br />

• Ideally suited for MPU or MCU-based<br />

systems<br />

• Temperature compensated from over -40°C<br />

to +125°C<br />

• Patented silicon shear stress strain gauge<br />

MPXx2050: 50 kPa Pressure Sensor<br />

Key Features<br />

• Temperature compensated over 0°C to +85°C<br />

• Silicon shear stress strain gauge<br />

• Available in rails or tape-in-reel shipping<br />

options<br />

• Ratiometric to supply voltage<br />

• Differential and gauge options<br />

• ±0.25% linearity<br />

Integrated Peripherals<br />

• Flexible 16-bit DDR/32-bit SDR SDRAM<br />

memory controller<br />

• Four channels, 32-bit timers with DMA<br />

support<br />

• 16 channels, DMA controller<br />

• 16-bit DDR/32-bit SDR SDRAM controller<br />

• 50 general-purpose I/O<br />

Figure 12-8: Kinetis K50 Family Block Diagram<br />

Figure 11-10: Kinetis K50 Family<br />

Security<br />

and Integrity<br />

Cyclic<br />

Redundancy<br />

Check (CRC)<br />

Random<br />

Number<br />

Generator<br />

Cryptographic<br />

Acceleration<br />

Unit (CAU)<br />

Core<br />

ARM ® Cortex-M4<br />

72/100 MHz<br />

Debug<br />

Interfaces<br />

Interrupt<br />

Controller<br />

Standard Feature<br />

MCF532X: ColdFire V3 MPU with<br />

LCD Driver, Ethernet, USB and CAN<br />

Key Features<br />

• ColdFire V3 core delivering up to 211<br />

(Dhrystone 2.1) MIPS at 240 MHz<br />

• 32 KB RAM<br />

• 16 KB I/D-cache<br />

• Enhanced MAC module, manages DSP-like<br />

instructions<br />

Integrated Peripherals<br />

• USB host/USB OTG<br />

• 10/100 Fast Ethernet Controller (FEC)<br />

• QSPI<br />

• Serial synchronous interface (SSI)<br />

• PWM—Four channels<br />

• DMA—16 channels<br />

• 16-bit DDR/32-bit SDR SDRAM controller<br />

• Integrated SVGA LCD controller<br />

Diagnostic and Therapy Devices<br />

System Memories<br />

Internal and<br />

External<br />

Watchdogs<br />

Memory<br />

Protection Unit<br />

(MPU)<br />

Xtrinsic<br />

Low-Power<br />

Touch-Sensing<br />

Interface<br />

Segment<br />

LCD Controller<br />

K50 Measurement MCUs<br />

The K50 MCU family is pin, peripheral and<br />

software compatible with other Kinetis MCUs<br />

and provides designers with an analog<br />

measurement engine consisting of integrated<br />

operational and transimpedance amplifiers<br />

and high-resolution ADC and DAC modules.<br />

The family also features IEEE 1588 Ethernet<br />

and hardware encryption, full-speed USB<br />

2.0 On-The-Go with device charger detect<br />

capability and a flexible low-power segment<br />

LCD controller with support for up to 320<br />

segments. Devices start from 128 KB of flash<br />

in 64-pin QFN packages extending up to 512<br />

KB in a 144-pin MAPBGA package.<br />

freescale .com/medical 69<br />

DSP<br />

Analog<br />

16-bit<br />

ADC<br />

PGA<br />

Analog<br />

Comparator<br />

6-bit<br />

DAC<br />

12-bit<br />

DAC<br />

Voltage<br />

Reference<br />

OPAMP<br />

TRIAMP<br />

DMA<br />

Low-Leakage<br />

Wake-Up Unit<br />

Timers<br />

FlexTimer<br />

Carrier<br />

Modulator<br />

Transmitter<br />

Programmable<br />

Delay Block<br />

Periodic<br />

Interrupt<br />

Timer<br />

Low-Power<br />

Timer<br />

Independent<br />

Real-Time<br />

Clock (IRTC)<br />

IEEE ® 1588<br />

Timer<br />

Optional Feature<br />

Program<br />

Flash<br />

(128 to 512 KB)<br />

FlexMemory<br />

(32 to 256 KB)<br />

(2 to 4 KB EE)<br />

Serial<br />

Programming<br />

Interface<br />

(EZPort)<br />

SRAM<br />

(32 to 128 KB)<br />

External<br />

Bus Interface<br />

(FlexBus)<br />

Clocks<br />

Phase-Locked<br />

Loop<br />

Frequency-<br />

Locked Loop<br />

Low/High-<br />

Frequency<br />

Oscillators<br />

Internal<br />

Reference<br />

Clocks<br />

Communication Interfaces HMI<br />

I 2 C<br />

UART<br />

(ISO 7816)<br />

SPI<br />

IEEE 1588<br />

Ethernet MAC<br />

I 2 S<br />

Secure<br />

Digital Host<br />

Controller<br />

(SDHC)<br />

USB OTG<br />

(LS/FS)<br />

USB Charger<br />

Detect (DCD)<br />

USB Voltage<br />

Regulator<br />

GPIO


Diagnostic and Therapy Devices<br />

Key Features<br />

Kinetis K50 MCU features and peripherals in<br />

the integrated measurement engine:<br />

• Ultra-low-power operation<br />

• 2x OPAMP<br />

• 2x TRIAMP<br />

• 2x 12-bit DAC<br />

• 2x 16-bit SAR ADC, up to 31 channels with<br />

programmable gain amplifiers (PGA)<br />

• Programmable Delay Block (PDB)<br />

• I2C • USB connectivity<br />

• ARM Cortex-M4 core with DSP instructions<br />

MCF51MM: Flexis 32-bit<br />

ColdFire V1 MCUs<br />

The MCF51MM256/128 provides ultralow-power<br />

operation, USB connectivity,<br />

graphic display support and unparalleled<br />

measurement accuracy, all in a single 32-bit<br />

MCU, allowing designers to create more<br />

fully featured products at lower cost. The<br />

MCF51MM256/128 is ideal for medical<br />

applications or other applications requiring a<br />

significant amount of precision analog such as<br />

instrumentation and industrial control.<br />

The MCF51MM256/128 is part of the<br />

<strong>Freescale</strong> Flexis MCU series.<br />

Figure 12-9: MCF51MM256 Block Diagram<br />

Figure 11-11: MCF51MM256 Block Diagram<br />

2x OPAMP<br />

2x TRIAMP<br />

16-bit SAR ADC I2 12-bit DAC LVI<br />

C<br />

PDB<br />

2 x 4-ch. TPM with PWM 2 x SPI<br />

MCG<br />

Features<br />

• ColdFire V1 core delivering a 50 MHz core<br />

speed and 25 MHz bus speed<br />

• Up to 256 KB flash and 32 KB SRAM<br />

• Low-power stop 2 current: 500 nA<br />

(32 KB of active SRAM)<br />

• 2 x general purpose opamps<br />

• 2 x transimpedance amplifiers<br />

• 16-bit SAR high resolution analog-to-digital<br />

converter (ADC)<br />

VREF TOD<br />

PRACMP CMT<br />

2 x KBI 2 x SCI<br />

32-bit V1 ColdFire 50 MHz Core with MAC<br />

Up to 68 GPIO/<br />

16 RGPIO<br />

MiniBus External<br />

USB<br />

Device/Host/<br />

OTG<br />

Bootloader<br />

256 KB 32 KB SRAM<br />

USB ROM<br />

• Analog Comparator with 5-bit digital-toanalog<br />

converter (DAC)<br />

• Internal voltage reference<br />

• USB – device/host/on-the-go controller<br />

• 2 x serial peripheral interface (SPI),<br />

2 x serial communication interface (SCI)<br />

and 1 x I2C • Mini FlexBus (external bus interface EBI)<br />

• Included in <strong>Freescale</strong>’s Product Longevity<br />

Program<br />

70 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


S08MM: Flexis 8-bit MCUs<br />

The 9S08MM128/64/32 provides ultra-<br />

low-power operation, USB connectivity,<br />

graphic display support and unparalleled<br />

measurement accuracy, all in a single 8-bit<br />

MCU, allowing device designers to create<br />

more fully featured products at a lower cost.<br />

It is ideal for applications requiring a<br />

significant amount of precision analog.<br />

The 9S08MM128/64/32 is part of <strong>Freescale</strong>’s<br />

Flexis MCU series.<br />

Features<br />

• S08 core delivering a 48 MHz core speed<br />

and 24 MHz bus speed<br />

• Up to 128 KB flash and 12 KB SRAM<br />

• Low-power stop 2 current: 450nA<br />

(12 KB of active SRAM)<br />

• 2 x OPAMP- General purpose opamps<br />

• 2 x TRIAMP- Transimpedance amplifiers<br />

• 16-bit SAR analog-to-digital converter<br />

(ADC) – high resolution ADC<br />

• Analog comparator<br />

• Internal voltage reference<br />

• USB device controller<br />

• 2 x serial peripheral interface (SPI),<br />

2 x serial communications interface (SCI)<br />

and 1 x I2C Figure 12-10: MC9S08MM128 Block Diagram<br />

Figure 11-12: MC9S08MM128 Block Diagram<br />

2x OPAMP<br />

2x TRIAMP<br />

PDB<br />

MCG<br />

VREF TOD<br />

PRACMP CMT<br />

2 x 4-ch. TPM with PWM 2 x SCI<br />

2 x KBI 2 x SPI<br />

8-bit 9S08 48 MHz Core<br />

Diagnostic and Therapy Devices<br />

Up to 68 GPIO<br />

16-bit SAR ADC I2 12-bit DAC LVI<br />

C<br />

USB<br />

Device<br />

Bootloader<br />

128 KB Flash 12 KB SRAM<br />

USB ROM<br />

freescale .com/medical 71


Anesthesia Monitor<br />

13.1<br />

Introduction<br />

An anesthesia monitor is a machine that administers anesthesia to<br />

patients by one of two ways: intravenous or inhaled gas anesthesia.<br />

It exchanges respiratory gases and administers anesthetic gases,<br />

maintaining a balance of gases through the respiratory and<br />

cardiovascular system.<br />

72 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


13.2<br />

Brief Theory<br />

As mentioned in Chapter 12, Ventilation<br />

and Spirometry, the hospital pipeline is the<br />

primary gas source at 50 PSI. This is the<br />

normal working pressure of gas machines.<br />

Oxygen is supplied at approximately 2000<br />

PSI. Anesthesia flow is composed of different<br />

sections. The first is the gas supply and<br />

substance-delivery (Halotane, O2, and N2O)<br />

system. In this part the O2 and the N2O<br />

are mixed in the desired proportion. The<br />

mass flow controller indicates the amount of<br />

anesthetic substance delivered to the patient.<br />

The MCU controls the electromechanical valve<br />

that adjusts the flow rate and the volume of<br />

the gases (Halotane, O2, and N2O).<br />

13.3<br />

Pressure Sensor<br />

This sensor helps the principal MCU take the<br />

pressure of the O2 and N2O. This measurement<br />

and the concentration of the substance are the<br />

variables that control the valves.<br />

To see the configuration of the pressure<br />

sensor and the <strong>Freescale</strong> portfolio, see<br />

Chapter 12, Ventilation and Spirometry.<br />

13.4<br />

Valve Control<br />

Using a sensor, the MCU takes the<br />

concentration of the substances in the blood.<br />

With these parameters, the MCU knows how<br />

much drug/air/oxygen needs to be delivered<br />

to the patient and the required power to apply<br />

to the valves.<br />

13.5<br />

Principal MCU<br />

The remainder of the process occurs in the<br />

vaporizer (there is a special apparatus to<br />

make this). Here, Halotane, O2 and N2O<br />

are mixed. These substances need to be<br />

vaporized so that the patient can breathe<br />

them and receive the necessary anesthesia.<br />

Therefore the principal MCU has to control<br />

the rate by adjusting the valves, depending<br />

on the pressure of the substances and their<br />

concentrations in the patient.<br />

Figure Anesthesia 12-1: 13-1: Anesthesia Unit Anesthesia MonitorUnit<br />

Unit Monitor Monitor<br />

Mass Flow Controller<br />

Mass Flow Controller<br />

Halotane<br />

Halotane<br />

O 2<br />

O 2<br />

N 2 O<br />

N 2 O<br />

Pressure<br />

Sensor<br />

Pressure<br />

Sensor<br />

Infrared<br />

Infrared Sensor<br />

Sensor<br />

Spectometer<br />

Sensor<br />

Finally, the patient breathes the anesthesia<br />

mixed through the mass flow controller.<br />

The <strong>Freescale</strong> Kinetis and the PXS20 MCUs<br />

are recommended for this application.<br />

Kinetis K60 MCUs<br />

The Kinetis K60 MCU family includes<br />

512KB-1MB of flash memory, a single<br />

precision floating point unit, IEEE 1588<br />

Ethernet, full- and high-speed USB 2.0<br />

On-The-Go with device charge detect,<br />

Valve Valves<br />

Controls<br />

Display<br />

Display<br />

MCU/MPU<br />

Diagnostic and Therapy Devices<br />

<strong>Freescale</strong> Technology Optional<br />

MCU Optional Peripherals Analog Sensors<br />

<strong>Freescale</strong> Technology<br />

Optional<br />

USB<br />

Wireless<br />

Comm<br />

Wireless<br />

Comm<br />

Power<br />

Management<br />

Power<br />

Management<br />

hardware encryption, tamper detection<br />

capabilities and a NAND flash controller.<br />

256-pin devices include a DRAM controller<br />

for system expansion. The Kinetis K60 family<br />

is available in 144 LQFP, 144 MAPBGA, and<br />

256 pin MAPBGA packages.<br />

freescale .com/medical 73<br />

Alarm Alarm<br />

Signal<br />

Conditioning Signal<br />

Conditioning<br />

MCU/MPU<br />

Keypad or<br />

Touch Screen<br />

Keyboard<br />

SPI/I 2 C<br />

SPI/I 2 C<br />

SPI/I 2 C<br />

Anesthesia Unit Monitor<br />

Figure 13-2: Anesthesia Application General Overview<br />

Figure 12-2: Anesthesia Application General Overview<br />

Mass Flow Controller<br />

Valve<br />

Controls<br />

Halotane<br />

O 2<br />

N 2 O<br />

Pressure<br />

Sensor<br />

Infrared<br />

Sensor<br />

Spectometer<br />

Sensor<br />

Infrared<br />

Sensor<br />

Spectometer<br />

Sensor<br />

Display<br />

MCU/MPU<br />

MCU/MPU<br />

Alarm<br />

Signal<br />

Conditioning<br />

Halotane<br />

Keypad or<br />

Touch Screen<br />

SPI/I 2 C<br />

SPI/I 2 C<br />

SPI/I2 Valves Controls<br />

C<br />

MC9S08QG4<br />

O 2<br />

Mass Flow Controller<br />

USB<br />

N 2 O<br />

USB<br />

Wireless<br />

Comm<br />

Power<br />

Management


Diagnostic and Therapy Devices<br />

Key Features<br />

• ARM Cortex-M4 core + DSP. 120-150 MHz,<br />

single cycle MAC, single instruction multiple<br />

data (SIMD) extensions, single precision<br />

floating point unit<br />

• 512 KB-1 MB flash. Fast access, high<br />

reliability with four-level security protection<br />

• Up to four high-speed 16-bit analog-todigital<br />

converter (ADC) with configurable<br />

resolution. Single or differential output mode<br />

operation for improved noise rejection.<br />

500 ns conversion time achievable with<br />

programmable delay block triggering<br />

• System security and tamper detect with<br />

secure real-time clock with independent<br />

battery supply. Secure key storage with<br />

internal/external tamper detect for unsecure<br />

flash, temperature, clock, and supply<br />

voltage variations and physical attack<br />

detection<br />

PXS20 Family of 32-bit Power<br />

Architecture MCUs<br />

The PXS20 targets industrial applications<br />

which require compliance with IEC61508<br />

(SIL 3) safety standard. It reduces design<br />

complexity and component count by putting<br />

key functional safety features on a single chip<br />

with a dual-core, dual-issue architecture,<br />

which can be statically switched between<br />

lockstep mode (redundant processing and<br />

calculations) to decoupled parallel mode<br />

(independent core operation). The PXS20<br />

MCUs are SafeAssure functional safety<br />

solutions.<br />

Key Features<br />

• Dual e200z4 CPU architecture<br />

• Dual processing spheres including: CPU,<br />

DMA, interrupt controller, crossbar and<br />

MPU for logic level fault detection<br />

• Two statically configurable modes of<br />

operation: Lockstep operation (redundant<br />

processing and calculations) and Dual<br />

Parallel Mode (independent core operation)<br />

• Fault Collection Unit, which monitors and<br />

manages fault events<br />

• Error correction coding on RAM and flash<br />

memory allows detection/correction of<br />

memory errors<br />

Figure 12-3: 13-3: Kinetis K60 K60 Family Family Block Block Diagram Diagram<br />

Figure 12-3: Kinetis K60 Family Block Diagram<br />

Core<br />

System Memories<br />

Clocks<br />

Internal and<br />

ARM External<br />

Watchdogs<br />

Debug<br />

Memory<br />

DSP<br />

Interfaces<br />

Protection Unit<br />

(MPU)<br />

Interrupt Floating Point<br />

Controller Unit (FPU)<br />

DMA<br />

Low-Leakage<br />

Wake-Up Unit<br />

Security Analog Timers<br />

and Integrity<br />

Cyclic<br />

Redundancy<br />

Carrier<br />

Check (CRC)<br />

Modulator<br />

Transmitter<br />

Random<br />

Number<br />

Generator<br />

Cryptographic<br />

Periodic<br />

Acceleration<br />

Interrupt<br />

Unit (CAU)<br />

Timers<br />

H/W Tamper<br />

Detection<br />

Unit<br />

Independent<br />

Phase-Locked<br />

Loop<br />

Frequency-<br />

Locked Loop<br />

Low/High-<br />

Frequency<br />

Oscillators<br />

Internal<br />

Reference<br />

Clocks<br />

Communication Interfaces HMI<br />

Xtrinsic<br />

Low-Power<br />

Touch-Sensing<br />

Interface<br />

Real-Time<br />

Clock (RTC)<br />

® Cortex-M4<br />

100/120/150 MHz<br />

16-bit<br />

ADC<br />

FlexTimer<br />

PGA<br />

Analog<br />

Comparator Programmable<br />

Delay Block<br />

6-bit<br />

DAC<br />

12-bit<br />

DAC<br />

Low-Power<br />

Timer<br />

Voltage<br />

Reference<br />

IEEE ® Program Flash SRAM<br />

(256 KB to 1 MB) (64 to 128 KB)<br />

FlexMemory External<br />

(256 to 512 KB) Bus Interface<br />

(4 to 16 KB EE) (FlexBus)<br />

Serial<br />

Cache<br />

Programming<br />

Interface<br />

(EzPort) DDR Controller<br />

NAND Flash<br />

Controller<br />

I GPIO<br />

1588<br />

Timer<br />

2C I<br />

UART<br />

(ISO 7816)<br />

SPI<br />

CAN<br />

IEEE 1588<br />

Ethernet MAC<br />

2 Core<br />

System Memories<br />

Clocks<br />

Internal and<br />

ARM External<br />

Watchdogs<br />

Debug<br />

Memory<br />

DSP<br />

Interfaces<br />

Protection Unit<br />

(MPU)<br />

Interrupt Floating Point<br />

Controller Unit (FPU)<br />

DMA<br />

Low-Leakage<br />

Wake-Up Unit<br />

Security Analog Timers<br />

and Integrity<br />

Cyclic<br />

Redundancy<br />

Carrier<br />

Check (CRC)<br />

Modulator<br />

Transmitter<br />

Random<br />

Number<br />

Generator<br />

Cryptographic<br />

Periodic<br />

Acceleration<br />

Interrupt<br />

Unit (CAU)<br />

Timers<br />

H/W Tamper<br />

Detection<br />

Unit<br />

Independent<br />

Real-Time<br />

Clock (RTC)<br />

Standard Feature<br />

Phase-Locked<br />

Loop<br />

Frequency-<br />

Locked Loop<br />

Low/High-<br />

Frequency<br />

Oscillators<br />

Internal<br />

Reference<br />

Clocks<br />

Communication Interfaces HMI<br />

Xtrinsic<br />

Low-Power<br />

Touch-Sensing<br />

S Interface<br />

Secure<br />

Digital Host<br />

Controller<br />

(SDHC)<br />

USB On-the-Go<br />

(LS/FS)<br />

USB On-the-Go<br />

(HS)<br />

USB Device<br />

Charger Detect<br />

(DCD)<br />

USB Voltage<br />

Regulator<br />

® Cortex-M4<br />

100/120/150 MHz<br />

16-bit<br />

ADC<br />

FlexTimer<br />

PGA<br />

Analog<br />

Comparator Programmable<br />

Delay Block<br />

6-bit<br />

DAC<br />

12-bit<br />

DAC<br />

Low-Power<br />

Timer<br />

Voltage<br />

Reference<br />

IEEE ® 1588<br />

Timer<br />

Program Flash SRAM<br />

(256 KB to 1 MB) (64 to 128 KB)<br />

FlexMemory External<br />

(256 to 512 KB) Bus Interface<br />

(4 to 16 KB EE) (FlexBus)<br />

Serial<br />

Cache<br />

Programming<br />

Interface<br />

(EzPort) DDR Controller<br />

NAND Flash<br />

Controller<br />

I GPIO<br />

2C I<br />

UART<br />

(ISO 7816)<br />

SPI<br />

CAN<br />

IEEE 1588<br />

Ethernet MAC<br />

2 Optional Feature<br />

S<br />

Secure<br />

Digital Host<br />

Controller<br />

(SDHC)<br />

USB On-the-Go<br />

(LS/FS)<br />

USB On-the-Go<br />

(HS)<br />

USB Device<br />

Charger Detect<br />

(DCD)<br />

USB Voltage<br />

Regulator<br />

Figure 12-4: PXS20 Family Block Diagram<br />

Figure 12-4: 13-4: PXS20 PXS20 Family Family Block Block Diagram Diagram<br />

Standard Feature Optional Feature<br />

Core<br />

Core<br />

System<br />

System<br />

Debug<br />

System<br />

System<br />

Core<br />

Core<br />

Frequency<br />

Frequency Modulated PLL<br />

JTAG<br />

JTAG<br />

Nexus<br />

Frequency<br />

Modulated Frequency PLL<br />

e200z4<br />

e200z4<br />

Modulated Software PLL<br />

Watchdog<br />

Software<br />

System<br />

Watchdog Timer<br />

Nexus<br />

System<br />

Boot Assist<br />

Module System (BAM)<br />

Software Modulated PLL<br />

Watchdog<br />

Software<br />

System<br />

Timer Watchdog<br />

e200z4<br />

e200z4<br />

FPU System Interrupt<br />

Controller<br />

Timer<br />

Boot Clock Monitor Assist<br />

Unit<br />

Module (BAM)<br />

Interrupt System<br />

Controller<br />

Timer<br />

FPU<br />

FPU<br />

VLE<br />

VLE<br />

CACHE<br />

MMU<br />

DMA<br />

Interrupt (up to 32-ch.)<br />

Controller<br />

Crossbar<br />

Switch<br />

DMA<br />

(up to 32-ch.) Memory<br />

Protection Unit<br />

Semaphone<br />

Clock Unit Monitor<br />

Unit<br />

VReg<br />

Semaphone<br />

4 x Redundancy Unit<br />

Checker<br />

DMA<br />

(up to 32-ch.) Interrupt<br />

Controller<br />

Crossbar<br />

Switch<br />

DMA<br />

Memory (up to 32-ch.)<br />

Protection Unit<br />

VLE<br />

CACHE<br />

MMU<br />

FPU<br />

VLE<br />

CACHE<br />

Crossbar<br />

Memory Switch<br />

Control<br />

VReg<br />

Crossbar<br />

Switch Communication<br />

CACHE<br />

MMU<br />

3 x<br />

2 x<br />

Memory Timer 4 (6-ch.) x Redundancy Fault Control Memory<br />

Up MMU<br />

Protection to 1 MB<br />

UART<br />

Unit Checker and Protection Unit<br />

Flash<br />

3 x<br />

Collection Unit<br />

3 x<br />

w/ECC<br />

PWM (4-ch.)<br />

SPI<br />

Memory<br />

Up to 4 ADC Control<br />

Communication<br />

2 x<br />

Up to 128 KB<br />

(34-ch.)<br />

Cyclic<br />

CAN<br />

3 x<br />

Redundancy<br />

2 x<br />

SRAM<br />

Timer Cross (6-ch.) Trigger Fault Checker Control External<br />

Up to 1 MBw/ECC<br />

UART<br />

Unit<br />

and<br />

Bus<br />

(32 KB S/B)<br />

Flash<br />

3 Periodic x<br />

Collection Sine Wave Unit<br />

3 x<br />

w/ECC<br />

PWM Interrupt (4-ch.) Timer Generator<br />

SPI<br />

Up to 128 KB<br />

SRAM<br />

w/ECC<br />

(32 KB S/B)<br />

Temperature<br />

Up to Sensor 4 ADC<br />

(34-ch.)<br />

Cross Trigger<br />

Unit<br />

Cyclic<br />

Redundancy<br />

Checker<br />

2 x<br />

CAN<br />

External<br />

Bus<br />

Periodic<br />

Interrupt Timer<br />

Temperature<br />

Sine Wave<br />

Generator<br />

• Designed to address safety requirements<br />

Sensor<br />

outlined in IEC61511 and IEC61508 (SIL3)<br />

• Robust communications CAN/safety port<br />

high speed low latency messaging<br />

• Cross-triggering unit coordinates ADC,<br />

timer and PWM generation and minimizes<br />

CPU interrupt load<br />

• Integrated timer and analog peripherals<br />

support precise control of integrated<br />

electric motor control periphery, enables<br />

the device to control of up to two brushless<br />

3-phase motors or multiple valves with only<br />

minimum interrupt load<br />

74 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


Vital Signs<br />

14.1<br />

Introduction<br />

A vital sign monitor is a multi-parameter device that measures blood<br />

pressure, temperature, oxygen saturation and heart electrical activity to<br />

give a clear view of patient information.<br />

This application constantly monitors the measurements from the ECG,<br />

pulse oximetry, blood pressure and temperature of the patient. For this<br />

application, <strong>Freescale</strong> offers medical solutions that use our product<br />

expertise in MCUs, sensors, analog and wireless technology for home<br />

portable medical devices, diagnostic and therapy devices and medical<br />

imaging devices. <strong>Freescale</strong> is dedicated to helping patients live a better<br />

life by driving innovation and enabling medical device manufacturers to<br />

leverage the latest available technology.<br />

freescale .com/medical 75


Diagnostic and Therapy Devices<br />

14.2<br />

Measuring Temperature<br />

The <strong>Freescale</strong> S08QG family includes<br />

a temperature sensor whose output is<br />

connected to one of the ADC analog channel<br />

inputs. The approximate transfer function of<br />

the temperature sensor can be expressed by<br />

this equation:<br />

Temp = 25 – ((VTEMP – VTEMP25)/m)<br />

For more information about the temperature<br />

sensor, see the document MC9S08QG8/QG4<br />

Device Data Sheet, available at freescale.com.<br />

Features of the ADC module include:<br />

• Linear successive approximation algorithm<br />

with a 10-bit resolution<br />

• Output formatted in 10- or 8-bit rightjustified<br />

format<br />

• Single or continuous conversion (automatic<br />

return to idle after a single conversion)<br />

• Configurable sample time, conversion<br />

speed and power<br />

• Conversion complete flag and interrupt<br />

• Input clock selectable from up to four<br />

sources<br />

• Operation in Wait or Stop3 modes for low<br />

noise operation<br />

For more information about how to send<br />

the ADC values to the main MCU, see the<br />

application note titled Analog-to-Digital<br />

Converter on an I2C Bus Using<br />

MC9S08QG8 (document AN3048),<br />

available at freescale.com.<br />

14.3<br />

ECG Monitoring<br />

For more information about designing<br />

ECG, pulse oximetry and blood pressure<br />

applications, see the relevant chapters.<br />

Figure 14-1: Vital Signs Monitoring General Block Diagram<br />

Vital Signs Monitor<br />

Temp<br />

Sensor<br />

12 Leads<br />

Finger<br />

Clamp<br />

Amp<br />

<strong>Freescale</strong> Technology<br />

Electrical<br />

Protection and Mux<br />

Switching Module<br />

Red and<br />

Infrared LEDs<br />

Receptor Diode<br />

Arm Valve Pressure Sensor<br />

Pump Motor<br />

Motor Control<br />

Optional<br />

Signal<br />

Conditioning<br />

Signal<br />

Conditioning<br />

SensorAmp<br />

14.4<br />

Pulse Oximetry Monitoring<br />

A pulse oximeter is a device that measures<br />

the amount of oxygen saturation in the blood.<br />

This parameter is useful for patients with<br />

metabolic disorders like respiratory acidosis,<br />

alcalosis, chronic obstructive pulmonary<br />

disease (COPD) and restrictive pulmonary<br />

disease.<br />

Keypad or<br />

Touch Screen<br />

MCU/MPU<br />

14.5<br />

Blood Pressure<br />

Monitoring<br />

Power<br />

Management<br />

A blood pressure monitor is a device that<br />

measures the systolic and diastolic blood<br />

pressure by inflating a cuff until it equals<br />

the systolic pressure and then deflates until<br />

the diastolic pressure is bypassed. Other<br />

parameters can be measured like mean<br />

arterial pressure and heart rate.<br />

76 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

ADC<br />

Figure 14-2: General Overview of Temperature Measurement<br />

Figure 13-2: General Overview of Temperature Measurement<br />

AD26<br />

ADC Channel<br />

PWM<br />

Figure 14-3: ECG Monitoring General Overview<br />

Figure 13-3: ECG Monitoring General Overview<br />

AD26<br />

ADC Channel<br />

I 2 C<br />

I 2 C<br />

Principal<br />

MCU/MPU<br />

Principal<br />

MCU/MPU<br />

USB<br />

Wireless<br />

Comm


14.6<br />

Motor Control with<br />

<strong>Freescale</strong> Devices<br />

The <strong>Freescale</strong> MPC17C724 is a 0.4 amp dual<br />

H-bridge motor driver IC with the following<br />

features:<br />

• Built in 2-channel H-bridge driver<br />

• Provides four driving modes<br />

• Forward<br />

• Reverse<br />

• Break<br />

• High impedance<br />

• Direct interface to the MCU<br />

• Low ON-resistance, RDS(ON) = 1.0 Ω<br />

(typical)<br />

• PWM control frequency 200 kHz (max)<br />

To design keypad, power management,<br />

wireless communications and USB modules,<br />

see Chapter 3 Telehealth Systems Introduction.<br />

For a display with a touch screen, see Chapter<br />

10.2, Electrocardiograph and Portable ECG.<br />

For wireless communication, power<br />

management, keypad and speaker<br />

implementation modules, see Chapter 3,<br />

Telehealth Systems Introduction.<br />

Table 13-1. S08QG MCU Family<br />

Features S08QG<br />

Core HCS08<br />

Flash (byte) 8K/4K<br />

RAM (byte) 512/256<br />

Bus frequency 10 MHz<br />

ADC Up to 8 channels (10 bits)<br />

Analog comparator Yes<br />

Keyboard interrupt Up to 8 pins<br />

Timers (up to) 1- to 16-bit timer (2<br />

channels), one 16-bit timer<br />

SCI 1<br />

SPI 1<br />

I2C 1<br />

Operational voltage 1.8V to 3.6V<br />

Figure 13-4: 14-4: Signal Conditioning to ECG to ECG Monitoring Monitoring<br />

Right Hand<br />

Right Leg Left Leg<br />

Diagnostic and Therapy Devices<br />

To MCU<br />

ADC input<br />

freescale .com/medical 77<br />

Left Hand<br />

Analog<br />

Frond End<br />

Electrodes<br />

Multiplexer<br />

and Isolator<br />

Instrumentation<br />

Amplifier<br />

Figure 14-5: General Overview of Pulse Oximetry Monitoring<br />

Figure 13-5: General Overview of Pulse Oximetry Monitoring<br />

Finger<br />

Clamp<br />

Switching Module<br />

Red and<br />

Infrared LEDs<br />

Receptor Diode<br />

Signal<br />

Conditioning<br />

Band Pass<br />

Filter<br />

To Principal<br />

MCU/MPU<br />

Figure 14-6: Signal Conditioning for Pulse Oximetry Monitoring<br />

Figure 13-6: Signal Conditioning for Pulse Oximetry Monitoring<br />

Figure 14-7: General Overview of Pressure Monitoring<br />

Figure 13-7: General Overview of Pressure Monitoring<br />

Arm<br />

Valve<br />

Pump<br />

Motor<br />

Pressure<br />

Sensor<br />

Motor<br />

Control<br />

PWM<br />

Sensor<br />

Amp<br />

To Principal<br />

MCU/MPU


Hospital Admission Machine<br />

15.1<br />

Introduction<br />

With the increasing prevalance of technology in the medical market,<br />

administrators are open to infusing that technology into hospitals to<br />

help increase the quality of service.<br />

Automated hospital admission machines, tracking devices/bracelets<br />

and automatic inventory control are just some of the applications the<br />

medical team is working on at <strong>Freescale</strong>. By leveraging our strengths<br />

in Vybrid Controller Solutions, Kinetis MCUs, ColdFire MCUs, and<br />

i.MX processors, wireless communications and PowerQUICC network<br />

processing, <strong>Freescale</strong> strives to bring connected intelligence to hospitals.<br />

15.2<br />

Hospital Admission<br />

Machine<br />

A hospital admission machine helps patients<br />

and doctors increase the efficiency of a<br />

hospital through automating procedures<br />

which usually take time from the nurses and<br />

administrative employees.<br />

These solutions need to integrate a broad<br />

range of medical devices in order to perform<br />

necessary functions for the physician and<br />

increase the range of early diagnosis/<br />

symptoms and signs that can alert medical<br />

staff to acute complications in patients being<br />

monitored at home (using portable mode) or in<br />

specific strategic places such as malls (using<br />

medical kiosks).<br />

78 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


State-of-the-art technology—including<br />

integrated MCUs such as <strong>Freescale</strong>’s Kinetis<br />

8-bit 9SS08MM, and 32-bit MCF51MM—<br />

allow the designer to achieve portability<br />

for touch sensing and medical-grade<br />

communication (following Continua Health<br />

Alliance guidelines) with libraries that are<br />

downloadable from freescale.com/medical.<br />

These elements enable solutions focused on<br />

preventive medicine, which ultimately reduce<br />

patients’ acute complications and costs<br />

related to their treatment. This can help health<br />

institutions redirect money used for treatment<br />

toward prevention and can help insurance<br />

companies cut costs.<br />

The hospital kiosk includes a touch-sensing<br />

interface that allows the user to navigate the<br />

machine’s interface. This flat surface makes<br />

the machine easier to disinfect after each user.<br />

It is more difficult to disinfect a machine with<br />

mechanical buttons that can hold pathogens<br />

such as bacteria and viruses in the edge of<br />

the buttons.<br />

The kiosk includes a magnetic card reader<br />

used to identify the patient and to keep a<br />

record of the patient’s abbreviated e-chart.<br />

The e-chart contains the following data:<br />

• ID fields: First name, last name, birth date,<br />

gender, contact information<br />

• Family medical history: Cancer,<br />

cardiovascular disease, chronic<br />

degenerative diseases such as arthritis,<br />

kidney disease, asthma, neurological<br />

disorders, etc.<br />

• Personal medical history: Medicines,<br />

surgeries, diseases, etc.<br />

• Non-pathological personal history: Blood<br />

type, alcohol and tobacco use, drug abuse,<br />

allergies, etc.<br />

Once the patient is identified through the<br />

magnetic card, the machine can take the<br />

following measurements:<br />

• Capillary blood glucose levels<br />

• Systolic, diastolic and mean arterial<br />

pressure<br />

• Weight, height and body mass index<br />

• Temperature<br />

• Heart rate<br />

• EKG DI<br />

• Oxygen saturation level (SaO2)<br />

• Maximum expiratory and inspiratory<br />

flow peak<br />

• Inspiratory and expiratory lung volume<br />

After this information is entered, a test result<br />

paper is printed and a remote database is<br />

updated with these readings. If the kiosk<br />

detects a critical problem, it sends the report<br />

to a mobile device that could report the<br />

finding to a physician or health care provider.<br />

A step-by-step video shows how to perform<br />

these tests so that the user can perform<br />

the tests without help from a health care<br />

professional. With language support in<br />

English, Spanish and Japanese, the user<br />

sees and hears how to perform these tests.<br />

As users become more familiar with the<br />

device, they may pay less attention to the<br />

instructions. This is why we also offer the<br />

patient monitor interface.<br />

Diagnostic and Therapy Devices<br />

Figure 15-1: Hospital Admission Machine General Block Diagram<br />

Hospital Admission Machine<br />

Height<br />

Ultrasonic<br />

Sensor<br />

Electronic Wireless<br />

Patient’s Chart<br />

Pulse Oximetry/<br />

Heart Rate/<br />

Glucometer<br />

Digital Weight<br />

<strong>Freescale</strong> Technology Optional<br />

Blood Pressure<br />

Monitoring<br />

For an easy-to-use mode, the main core of<br />

the kiosk can be separated. This creates a<br />

USB-powered portable device for home use<br />

or use at remote facilities when a physician is<br />

not nearby.<br />

The following sections describe the parts of<br />

the system (some of them have already been<br />

described in previous chapters):<br />

• Weight scale<br />

• Height ultrasonic sensor<br />

• Thermometer<br />

• Blood pressure monitor (systolic, diastolic,<br />

mean arterial pressure)<br />

• Heart rate monitor<br />

• One-lead EKG (DI)<br />

• Pulse oximeter<br />

• Blood glucose meter<br />

• Spirometer (air flow and lung volume)<br />

freescale .com/medical 79<br />

ITO Glass<br />

Electrodes<br />

USB<br />

LEDs<br />

RS-232<br />

Xcvr<br />

Secondary<br />

MCU<br />

Ethernet<br />

PHY(100 Mbps)<br />

USB<br />

Power<br />

Switch<br />

Buzzer<br />

4 x 5<br />

Keypad<br />

Matrix<br />

BDM<br />

Keypad<br />

or<br />

Touch<br />

Screen<br />

Figure 15-2: Analog Configuration for LEDs and Buzzer<br />

Figure 14-2: Analog Configuration for LEDs and Buzzer<br />

330Ω<br />

A K<br />

o.1 uF<br />

120Ω<br />

1kΩ<br />

Display<br />

MCU/MPU<br />

32 MB<br />

DDR<br />

SDRAM<br />

Backlight<br />

Inverter<br />

Level<br />

Shift<br />

Xcvr<br />

Wireless<br />

Comm<br />

Power<br />

Management<br />

Non-<br />

Volatile<br />

Memory


Diagnostic and Therapy Devices<br />

15.3<br />

Patient Height and Weight<br />

The patient’s height is taken by an ultrasonic<br />

sensor which measures the distance between<br />

the head and the sensor. An MCU takes the<br />

data produced by the transducer and uses an<br />

equation to calculate the distance between<br />

the sensor and the head, then calculates the<br />

difference between this distance and the total<br />

distance to the floor.<br />

The patient’s weight is taken by a pressure<br />

sensor. This operation is explained in the<br />

“Ventilation and Respiration” application<br />

article. In general, after signal conditioning<br />

produces a voltage, this voltage is passed<br />

through the ADC of a MCU to be processed<br />

and then passed by RS-232 or USB to the<br />

principal MPU. The general block diagram<br />

shows that the weight of the patient is passed<br />

through RS-232, although you can transmit<br />

by USB (optional). If RS-232 is used, it is<br />

necessary to add a MAX232 device according<br />

to the protocol (see Figure 15-4).<br />

15.4<br />

Patient Interface<br />

The patient has an interface to communicate<br />

with the admission machine. This interface is<br />

composed of a touch screen display, LEDs<br />

and a buzzer to warn if a decision must be<br />

made or if a process is finished. This module<br />

is developed with a secondary MCU, such as<br />

the <strong>Freescale</strong> S08QE.<br />

Figure 14-3: Portable Monitoring System<br />

Figure 15-3: Portable Monitoring System<br />

Figure 14-4: 15-4: Measuring Patient Height Height<br />

Anesthesia Unit Monitor<br />

Mass Flow Controller<br />

Halotane<br />

Height<br />

Ultrasonic<br />

Sensor<br />

Transmitter Receptor<br />

D=1/2Vt<br />

O<br />

Pressure<br />

2<br />

Sensor<br />

Figure 15-5: Configuration to Measure Patient Weight<br />

Figure 14-5: Configuration to Measure Patient Weight<br />

N O 2<br />

Infrared<br />

SPI/I<br />

Sensor<br />

MCU/MPU<br />

<strong>Freescale</strong> Pressure Sensors<br />

MPXx5004<br />

MPXx5004<br />

Optional Instrument<br />

Amplifier<br />

MPXC2011DT1<br />

MPXx12<br />

MPXx5010<br />

MPXx2010<br />

Spectometer<br />

Sensor<br />

MPXV 2053GVO<br />

MPXV5100<br />

ADC<br />

Display<br />

Keypad or<br />

Touch Screen<br />

2 SPI/I<br />

C<br />

2C <strong>Freescale</strong> Technology<br />

Optional<br />

Valve<br />

Controls<br />

Wireless<br />

Comm<br />

SCI<br />

Power<br />

Management<br />

MAX232<br />

80 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

Alarm<br />

Signal<br />

Conditioning<br />

USB


15.5<br />

Communication Interfaces<br />

USB Power Switch<br />

When the patient arrives at the hospital,<br />

special devices take the principal vital signs of<br />

height, weight and heart rate. These devices<br />

are connected to the principal system. When<br />

the devices are connected by USB, the<br />

devices are powered on and the principal<br />

MPU starts the communication as host.<br />

The USB port is implemented in a regulator<br />

(MC33730) that provides 5V at 2A out.<br />

However, the devices only support 500 mA.<br />

Therefore, it is necessary to add a 500 mA<br />

fuse to regulate the current. The USB module<br />

of the principal MPU is configured as a host<br />

that can turn on the external devices and start<br />

communication between the external devices<br />

and the principal MPU.<br />

The MPUs recommended for this application<br />

integrate two or more hosts, allowing more<br />

than one USB device without using a hub.<br />

For a list of recommended MPUs, visit<br />

freescale.com/medical.<br />

Serial Communication Interface<br />

Serial communications interface (SCI) is an<br />

asynchronous serial communications bus<br />

that an MCU uses to communicate with other<br />

MCUs or external devices using SCI. Two<br />

signal lines are used with SCI: TXD (transmit)<br />

and RXD (receive). The two-wire SCI bus<br />

operates in full-duplex mode (transmitting and<br />

receiving at the same time). SCI uses either an<br />

8- or 9-bit data format, with data sent using<br />

non-return-to-zero (NRZ). The SCI bus may<br />

also be set up as a single wire interface, using<br />

the TXD pin to both send and receive data.<br />

The SCI is a generic controller which allows<br />

the integration of RS232, RS422 and RS485<br />

serial transceivers.<br />

Figure 15-6: USB Port Connections<br />

Figure 14-6: USB Port Connections<br />

Power<br />

Source<br />

Figure 15-7: USB General Configuration<br />

Figure 14-7: USB General Configuration<br />

Figure 15-8: SCI Tram<br />

Figure 14-8: SCI Tram<br />

Diagnostic and Therapy Devices<br />

MC33730<br />

0 1 0 0 1 1 0 1 1 1<br />

freescale .com/medical 81


Diagnostic and Therapy Devices<br />

Data can be sent as 8- or 9-bit words, least<br />

significant bit (LSB). A START bit marks<br />

the beginning of the frame, and is active<br />

low. Figure 14-8 shows a framed 8-bit data<br />

word. The data word follows the start bit.<br />

A parity bit may follow the data word after<br />

the most significant bit (MSB) depending on<br />

the protocol used. A mark parity bit (always<br />

set high), a space parity bit (always set low)<br />

or an even/odd parity bit may be used. The<br />

even parity bit will be a one if the number of<br />

ones/zeros is even or a zero if there is an odd<br />

number. The odd parity bit will be high if there<br />

are an odd number of ones/zeros in the data<br />

field. A stop bit will normally follow the data<br />

field. The stop bit is used to bring the signal<br />

rests at logic high following the end of the<br />

frame, so when the next start bit arrives it will<br />

bring the bus from high to low. Idle characters<br />

are sent as all ones with no start or stop bits.<br />

<strong>Freescale</strong> MCUs provide 13-bit baud. The SCI<br />

modules can operate in low-power modes.<br />

Ethernet PHY (100 Mbps)<br />

To connect the MCU to the Internet or<br />

to control the system remotely, you can<br />

implement an Ethernet communication<br />

interface. This needs coupling impedance for<br />

the RJ-45 connection.<br />

15.6<br />

Backlight Inverter<br />

A backlight is a form of illumination used<br />

in liquid crystal displays (LCDs). Backlights<br />

illuminate the LCD from the side or back of<br />

the display panel, unlike front lights, which are<br />

placed in front of the LCD.<br />

Figure 14-9: 15-9: Serial Serial Communication Interface Interface General General Configuration Configuration<br />

+<br />

+<br />

+<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

ADC<br />

SCI<br />

+<br />

MAX 232<br />

82 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

Rx<br />

Tx<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

Figure 14-10: 15-10: Ethernet Interface Circuitry<br />

+<br />

+<br />

+<br />

+<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

MPU/<br />

SCI<br />

+<br />

MAX 232<br />

Rx<br />

Tx<br />

16<br />

15<br />

14<br />

13<br />

12<br />

11<br />

10<br />

9<br />

+


15.7<br />

Multimedia <strong>Applications</strong><br />

with i.MX53 Family<br />

The i.MX53 family of processors represents<br />

our next-generation of advanced multimedia<br />

and power-efficient implementation of the<br />

ARM ® Cortex-A8 core with core processing<br />

speeds up to 1.2 GHz. It is optimized for<br />

both performance and power to meet the<br />

demands of high-end, advanced applications.<br />

Ideal for a broad range of applications in the<br />

consumer, automotive, medical and industrial<br />

markets, the i.MX53 includes an integrated<br />

display controller, full HD capability, enhanced<br />

graphics and connectivity features. The<br />

i.MX53 family also boasts a companion power<br />

management IC (PMIC)—MC34708—designed<br />

exclusively for i.MX processors.<br />

CPU Complex<br />

• Up to 1.2 GHz ARM Cortex-A8 CPU<br />

• 32 KB instruction and data caches<br />

• Unified 256 KB L2 cache<br />

• NEON SIMD media accelerator<br />

• Vector floating point coprocessor<br />

Multimedia<br />

• Multi-format HD1080p video decoder and<br />

720p video encoder hardware engine<br />

• 24-bit primary display support up to<br />

WsXGA resolution<br />

• OpenGL ES 2.0 and OpenVG 1.1 hardware<br />

graphics accelerators<br />

• 18-bit secondary display support<br />

• Analog HD720p component TV output<br />

• High quality hardware video de-interlacing<br />

• Image and video resize, inversion and<br />

rotation hardware<br />

• Alpha blending and color space conversion<br />

• Display quality enhancement: Color<br />

correction, gamut mapping, gamma<br />

correction<br />

Figure 15-11: i.MX53 Family Block Diagram<br />

i.MX536 Block Diagram<br />

Smart DMA<br />

External Memory Interface<br />

• LP-DDR2, LV-DDR2 and DDR3 SDRAM,<br />

16/32-bit<br />

• SLC/MLC NAND flash, NOR, 8/16-bit<br />

Graphic LCD <strong>Applications</strong> with<br />

ColdFire<br />

For other applications in which graphic LCD<br />

display is fundamental, the ColdFire products<br />

offer a wide range of on-chip drivers for<br />

different screen resolution.<br />

Diagnostic and Therapy Devices<br />

Clock Reset<br />

Temp<br />

Monitor<br />

ARM ® System Control Core/Internal Memory Standard Connectivity<br />

Cortex-A8<br />

Fast IrDA<br />

UART x 5<br />

GPT<br />

PWM x 2<br />

System<br />

Buses<br />

Timers<br />

Watchdog<br />

x 2<br />

EPIT x 2<br />

Power Mgmt. and Analog<br />

LDO Supply<br />

32 kHz Osc<br />

x 2<br />

PLL x 4<br />

Security<br />

eFuses RTIC<br />

Sahara v4<br />

TrustZone<br />

SCC v2<br />

SRTC<br />

Secure JTAG<br />

ESAI<br />

SSI/I2 System Debug Audio Display I/F<br />

S x 3<br />

SPDIF Tx/Rx<br />

ASRC<br />

Analog VGA Out<br />

LVDS<br />

Parallel (from IPU)<br />

freescale .com/medical 83<br />

Cache<br />

Neon<br />

ETM<br />

VFP<br />

ROM RAM<br />

Multimedia<br />

GPU<br />

OpenGL ES 2.0 OpenVG 1.1<br />

Video Encode/<br />

Decode<br />

Resizing and<br />

Blending<br />

Inversion and<br />

Rotation<br />

De-Interlacing/<br />

Combining<br />

VPU<br />

IPU<br />

TV Out<br />

Image<br />

Enhancement<br />

Camera<br />

Interface<br />

CSPI<br />

I 2 C x 3<br />

HS USB OTG + PHY<br />

HS Host + PHY<br />

Keypad<br />

GPIO<br />

Advanced Connectivity<br />

Ethernet + IEEE ® 1588<br />

CAN x2/MLB 50<br />

HS ULPI Host x 2 Camera Interface<br />

External Memory I/F<br />

2 GB DDR2/DDR3/LV-DDR2/LP-DDR2<br />

External Storage I/F<br />

SLC/MLC NAND<br />

NOR<br />

PATA<br />

SATA<br />

eMMC/SD


Digital Stethoscope<br />

16.1<br />

Introduction<br />

A digital stethoscope is a device that uses ultrasound waves to detect<br />

different types of tissue and movements within the body, such as<br />

produced by heart contractions and relaxation or even blood flow<br />

through the arteries, using an ultrasonic probe.<br />

The functioning is based on the Doppler Effect, which consists of the<br />

wavelength variation of any wave sent or received by a moving object.<br />

In this case, the source sends acoustic waves to the heart. Part of<br />

the energy bounces back. However, because the heart is beating, the<br />

bounced waves are affected by the Doppler Effect. This changes their<br />

frequency. Therefore with simple algorithms the heartbeats<br />

are detected.<br />

84 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


16.2<br />

Ultrasonic Probe<br />

The ultrasonic probe may consist of an<br />

oscillator (X1 in Figure 16-2) that generates an<br />

ultrasound frequency (for these applications,<br />

the range is 1–3 MHz) followed by an amplifier<br />

(U2 in Figure 16-2) to condition the sine<br />

waveform in volts.<br />

This waveform is applied to the transmitter<br />

transducer to send vibrations through the<br />

body and bounce back when the density of<br />

the medium changes. Another transducer is<br />

used to receive the bounced vibrations and<br />

convert them to electrical signals. This signal<br />

is amplified using an instrumental amplifier<br />

and is sent to a band-pass filter. The filtered<br />

signal is sent to a phase-locked loop to<br />

generate a voltage signal, which depends on<br />

the frequency applied.<br />

For implementations of the instrumentation<br />

amplifier and band-pass filter, see the<br />

Appendix of this document.<br />

16.3<br />

Electrical Protection<br />

Any time an AC-powered medical device<br />

comes into contact with a patient, the system<br />

must be designed with electrical protection in<br />

mind. Electrical protection limits the current to<br />

a non-harmful range of 6–10 mA maximum,<br />

avoiding the probability of electrical discharge.<br />

This also should provide isolation between the<br />

power source of the device and the sensor<br />

that is in contact with the person.<br />

In the transmitter ultrasound probe example<br />

(Figure 16-2) the resistor R3 limits the current<br />

to transformer T1. Transformer T2 provides<br />

isolation between the circuit and the patient’s<br />

body. Transformers T1 and T2 must have a<br />

1:1 relationship, and should not be affected by<br />

the operational frequency of the transducers.<br />

Figure 16-1: Digital Stethoscope General Block Diagram<br />

Digital Stethoscope<br />

Ultrasound Transducer<br />

<strong>Freescale</strong> Technology<br />

Core<br />

• ARM ® Core<br />

• ARM Cortex-M4<br />

Core 72/100 MHz<br />

• DSP<br />

® Cortex-M4<br />

Core 72/100 MHz<br />

• DSP<br />

Signal Conditioning<br />

• ADC<br />

• DAC<br />

• OPAMP<br />

• TRIAMP<br />

Audio Power<br />

Amplifier<br />

Potentiometer<br />

Volume<br />

Diagnostic and Therapy Devices<br />

freescale .com/medical 85<br />

MCU<br />

HMI<br />

• External<br />

Bus Interface<br />

(FlexBus)<br />

Figure 15-3: 16-2: Transmitter Ultrasonic Ultrasonic Probe Probe Example Example<br />

U1<br />

X1<br />

C1 C2<br />

Figure 16-3: Receiver Ultrasonic Probe Example<br />

Figure 15-4: Receiver Ultrasonic Probe Example<br />

Transducer<br />

T2<br />

R1<br />

Instrumentation<br />

Amplifier<br />

R2<br />

U2<br />

Band-Pass<br />

Filter<br />

LCD<br />

Active<br />

Speaker<br />

R3 T1 Transducer<br />

Phase-Locked Loop<br />

fin<br />

feedback<br />

Vout<br />

To MCU<br />

ADC input


Diagnostic and Therapy Devices<br />

16.4<br />

Signal Conditioning<br />

Signal conditioning can be implemented using<br />

a band-pass filter to reject noise. Using an<br />

active filter, the signal can be conditioned<br />

to determine values. For details about filter<br />

design, refer to the Appendix.<br />

The signal at the output of the band-pass filter<br />

is sent to a phase-locked loop to generate<br />

a frequency-dependent voltage. The phaselocked<br />

loop must be configured so that the<br />

frequency of the look-in range matches the<br />

band-pass filter bandwidth. This signal is<br />

applied to an input of the analog-to-digital<br />

converter embedded on the MCU.<br />

16.5<br />

LCD Display<br />

The MCU is responsible for processing<br />

the information acquired according to an<br />

algorithm and displaying the data on an<br />

LCD screen. <strong>Freescale</strong> provides 8-bit MCUs<br />

with embedded LCD controllers such as the<br />

MC9S08LL, MC9RS08LE, MC9RS08LA and<br />

MC9S08LC families. Ultra-low-power MCUs<br />

with LCD drivers are in the LL family. On the<br />

high end, consider Kinetis or Vybrid MCUs.<br />

For more information about LCD devices<br />

and connections, see Chapter 6, Blood<br />

Glucose Meter.<br />

For information about a digital stethoscope<br />

reference design, download DRM132 <strong>Medical</strong><br />

Stethoscope Design Reference Manual.<br />

K50 Measurement MCUs<br />

The K50 MCU family is pin, peripheral and<br />

software compatible with other Kinetis MCUs<br />

and provides designers with an analog<br />

measurement engine consisting of integrated<br />

operational and transimpedance amplifiers<br />

and high-resolution ADC and DAC modules.<br />

The family also features IEEE 1588 Ethernet<br />

and hardware encryption, full-speed USB<br />

2.0 On-The-Go with device charger detect<br />

capability and a flexible low-power segment<br />

LCD controller with support for up to 320<br />

Figure 16-4: Ultrasonic Probe Elements Block Diagram<br />

Figure 15-5: Ultrasonic Probe Elements Block Diagram<br />

Oscillator<br />

Phase-Locked<br />

Loop<br />

to MCU<br />

ADC input<br />

Amplifier<br />

Band-Pass<br />

Filter<br />

Instrumentation<br />

Amplifier<br />

Probe Electrical Protection Amplifier Signal Conditioning<br />

86 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

Current<br />

Limiter<br />

Figure Figure 15-2: 16-5: Doppler Doppler Effect Effect Example Example<br />

Waves emitted<br />

by a static object<br />

Electrical<br />

Isolation<br />

Waves emitted<br />

by a moving object<br />

Transmitter<br />

Transducer<br />

Receiver<br />

Transducer<br />

Signal sent<br />

Signal<br />

bounced


segments. Devices start from 128 KB of flash<br />

in 64-pin QFN packages extending up to 512<br />

KB in a 144-pin MAPBGA package.<br />

Key Features<br />

The Kinetis K50 MCU has the next features<br />

and peripherals in its integrated measurement<br />

engine:<br />

• Ultra-low-power operation<br />

• 2x OPAMP<br />

• 2x TRIAMP<br />

• 2x 12-bit DAC<br />

• 2x 16-bit SAR ADC, up to 31 channels with<br />

programmable gain amplifiers (PGA)<br />

• Programmable Delay Block (PDB)<br />

• I2C • USB connectivity<br />

• ARM Cortex-M4 core with DSP (Digital<br />

Signal Processor) instructions<br />

MCF51MM: Flexis 32-bit<br />

ColdFire V1 MCUs<br />

The MCF51MM256/128 provides ultralow-power<br />

operation, USB connectivity,<br />

graphic display support and unparalleled<br />

measurement accuracy, all in a single 32-bit<br />

MCU, allowing designers to create more<br />

fully featured products at lower cost. The<br />

MCF51MM256/128 is ideal for medical<br />

applications or other applications requiring a<br />

significant amount of precision analog such as<br />

instrumentation and industrial control.<br />

The MCF51MM256/128 is part of the<br />

<strong>Freescale</strong> Flexis MCU series.<br />

Features:<br />

• ColdFire V1 core delivering a 50 MHz core<br />

speed and 25 MHz bus speed<br />

• Up to 256 KB flash and 32 KB SRAM<br />

• Low-power stop 2 current: 500 nA<br />

(32 KB of active SRAM)<br />

• 2 x general purpose opamps<br />

• 2 x transimpedance amplifiers<br />

• 16-bit SAR high resolution analog-to-digital<br />

converter (ADC)<br />

• Analog Comparator with 5-bit digital-toanalog<br />

converter (DAC)<br />

• Internal voltage reference<br />

• USB – device/host/on-the-go controller<br />

Figure 16-6: Kinetis K50 Family Block Diagram<br />

Figure 15-6: Kinetis K50 Family<br />

Security<br />

and Integrity<br />

Cyclic<br />

Redundancy<br />

Check (CRC)<br />

Random<br />

Number<br />

Generator<br />

Cryptographic<br />

Acceleration<br />

Unit (CAU)<br />

Core<br />

ARM ® Cortex-M4<br />

72/100 MHz<br />

Debug<br />

Interfaces<br />

Interrupt<br />

Controller<br />

Standard Feature<br />

Diagnostic and Therapy Devices<br />

System Memories<br />

Internal and<br />

External<br />

Watchdogs<br />

Memory<br />

Protection Unit<br />

(MPU)<br />

Xtrinsic<br />

Low-Power<br />

Touch-Sensing<br />

Interface<br />

Segment<br />

LCD Controller<br />

freescale .com/medical 87<br />

DSP<br />

Analog<br />

16-bit<br />

ADC<br />

PGA<br />

Analog<br />

Comparator<br />

6-bit<br />

DAC<br />

12-bit<br />

DAC<br />

Voltage<br />

Reference<br />

OPAMP<br />

TRIAMP<br />

DMA<br />

Low-Leakage<br />

Wake-Up Unit<br />

Timers<br />

FlexTimer<br />

Carrier<br />

Modulator<br />

Transmitter<br />

Programmable<br />

Delay Block<br />

Periodic<br />

Interrupt<br />

Timer<br />

Low-Power<br />

Timer<br />

Independent<br />

Real-Time<br />

Clock (IRTC)<br />

IEEE ® 1588<br />

Timer<br />

Optional Feature<br />

Figure 16-7: MCF51MM256 Block Diagram<br />

Figure 15-7: MCF51MM256 Block Diagram<br />

2x OPAMP<br />

2x TRIAMP<br />

PDB<br />

MCG<br />

Program<br />

Flash<br />

(128 to 512 KB)<br />

FlexMemory<br />

(32 to 256 KB)<br />

(2 to 4 KB EE)<br />

Serial<br />

Programming<br />

Interface<br />

(EZPort)<br />

SRAM<br />

(32 to 128 KB)<br />

External<br />

Bus Interface<br />

(FlexBus)<br />

Clocks<br />

Phase-Locked<br />

Loop<br />

Frequency-<br />

Locked Loop<br />

Low/High-<br />

Frequency<br />

Oscillators<br />

Internal<br />

Reference<br />

Clocks<br />

Communication Interfaces HMI<br />

I 2 C<br />

UART<br />

(ISO 7816)<br />

SPI<br />

IEEE 1588<br />

Ethernet MAC<br />

VREF TOD<br />

PRACMP CMT<br />

2 x 4-ch. TPM with PWM 2 x SPI<br />

2 x KBI 2 x SCI<br />

I 2 S<br />

Secure<br />

Digital Host<br />

Controller<br />

(SDHC)<br />

USB OTG<br />

(LS/FS)<br />

USB Charger<br />

Detect (DCD)<br />

USB Voltage<br />

Regulator<br />

16-bit SAR ADC I2 12-bit DAC LVI<br />

C<br />

32-bit V1 ColdFire 50 MHz Core with MAC<br />

GPIO<br />

Up to 68 GPIO/<br />

16 RGPIO<br />

MiniBus External<br />

USB<br />

Device/Host/<br />

OTG<br />

Bootloader<br />

256 KB 32 KB SRAM<br />

USB ROM


Diagnostic and Therapy Devices<br />

• 2 x serial peripheral interface (SPI),<br />

2 x serial communication interface (SCI)<br />

and 1 x I2C • Mini FlexBus (external bus interface EBI)<br />

• Included in <strong>Freescale</strong> Product Longevity<br />

Program.<br />

S08MM: Flexis 8-bit MCUs<br />

The 9S08MM128/64/32 provides ultralow-power<br />

operation, USB connectivity,<br />

graphic display support and unparalleled<br />

measurement accuracy, all in a single 8-bit<br />

MCU, allowing device designers to create<br />

more fully featured products at a lower cost.<br />

It is ideal for applications requiring a<br />

significant amount of precision analog.<br />

The 9S08MM128/64/32 is part of <strong>Freescale</strong>’s<br />

Flexis MCU series.<br />

Features:<br />

• S08 core delivering a 48 MHz core speed<br />

and 24 MHz bus speed<br />

• Up to 128 KB flash and 12 KB SRAM<br />

• Low-power stop 2 current: 450nA<br />

(12 KB of active SRAM)<br />

• 2 x OPAMP- General purpose opamps<br />

• 2 x TRIAMP- Transimpedance amplifiers<br />

• 16-bit SAR analog-to-digital converter<br />

(ADC) – high resolution ADC<br />

• Analog comparator<br />

• Internal voltage reference<br />

• USB device controller<br />

• 2 x serial peripheral interface (SPI),<br />

2 x serial communications interface (SCI)<br />

and 1 x I2C 16.6<br />

Fetal Heart Rate Monitor<br />

A fetal heart rate monitor is a target<br />

application of digital stethoscopes. It provides<br />

an audible simulation of the heart beats of a<br />

fetus inside the mother’s womb and displays<br />

the number of beats per minute. Fetal heart<br />

rate monitors are increasingly being used in<br />

the home, allowing parents to listen to their<br />

baby’s heart beat.<br />

Figure 16-9 shows the basic block diagram of<br />

a fetal heart rate monitor.<br />

Figure 16-8: MC9S08MM128 Block Diagram<br />

Figure 15-8: MC9S08MM128 Block Diagram<br />

2x OPAMP<br />

2x TRIAMP<br />

PDB<br />

MCG<br />

Figure 16-9: Fetal Heart Rate Monitor General Block Diagram<br />

Fetal Heart Rate Monitor General<br />

Signal<br />

Conditioning<br />

Electrical<br />

Protection<br />

Ultrasonic Probe<br />

Power<br />

Management<br />

Amplifier<br />

<strong>Freescale</strong> Technology Optional<br />

VREF TOD<br />

16-bit SAR ADC I2 12-bit DAC LVI<br />

C<br />

PRACMP CMT<br />

2 x 4-ch. TPM with PWM 2 x SCI<br />

2 x KBI 2 x SPI<br />

8-bit 9S08 48 MHz Core<br />

Pressure Sensor Wireless Comm<br />

88 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

ADC<br />

Keypad<br />

MCU<br />

PWM<br />

Up to 68 GPIO<br />

USB<br />

Device<br />

Bootloader<br />

128 KB Flash 12 KB SRAM<br />

USB ROM<br />

Segment LCD


Powered Patient Bed<br />

17.1<br />

Introduction<br />

A simple hospital bed has evolved into a highly networked appliance<br />

that integrates sophisticated processors to monitor patient status<br />

and control the bed’s power-assisted functions. The result is a more<br />

comfortable bed and one that is easier for health care professionals<br />

to move and adjust.<br />

freescale .com/medical 89


Diagnostic and Therapy Devices<br />

17.2<br />

Using Motors for Patient<br />

Positioning<br />

Pressure ulcers or decubitus ulcers (bedsores)<br />

are one of the most common complications of<br />

patients who cannot change position in a bed.<br />

Bedsores can be caused by sweat, humidity<br />

and temperature but are mainly the result<br />

of unrelieved pressure applied by the bones<br />

to the skin and tissue. This is why the most<br />

common places for bedsores are the sacrum,<br />

elbows, knees and ankles.<br />

To avoid bedsores, hospitals and health<br />

care providers use irregular bed surfaces to<br />

distribute pressure along the whole body while<br />

electric motors allow the patient easily switch<br />

positions with just the push of a few buttons.<br />

Electric motors are clean and relatively<br />

efficient. This makes them a much better fit<br />

for use in hospital beds rather than pneumatic<br />

or hydraulic alternatives. An electronic motor<br />

system can be used to adjust the height of<br />

the bed and provide movement to the bed’s<br />

wheels. A typical system containing an MCU,<br />

an H-bridge and a motor is shown in<br />

Figure 17-2.<br />

The requirements for an MCU vary based<br />

on the size of the motor and the required<br />

efficiency. Most patient bed applications<br />

require between 32 to 100 MHz, 16 to 156 KB<br />

of flash memory, 2 to 64 KB of SRAM, a highly<br />

accurate timer and the ability to synchronize<br />

the timer with the analog to digital converter<br />

(ADC). The requirements for an H-bridge<br />

also vary, but most beds require a monolithic<br />

power IC comprising control logic, charge<br />

pump, gate drive and low RDS(ON) MOSFET<br />

output H-bridge circuitry in a small surface<br />

mount package.<br />

<strong>Freescale</strong> offers a wide variety of products<br />

specifically for motor control systems ranging<br />

from digital signal controllers (DSC) to MCUs<br />

and H-bridges. An ideal MCU and H-bridge<br />

solution for a bed is an MCF51AC256 paired<br />

with the flexible, low-power MC33926. In<br />

Figure 17-1: Powered Patient Bed General Block Diagram<br />

Powered Patient Bed<br />

Infusion<br />

Pump<br />

Motor<br />

Driver<br />

Patient<br />

Monitor<br />

Power<br />

Management<br />

Infusion<br />

Pump<br />

Control<br />

Patient<br />

Monitor<br />

Control<br />

Other<br />

Devices<br />

<strong>Freescale</strong> Technology<br />

Optional<br />

some cases, depending on the complexity<br />

of the motor system, a single DSC may be<br />

sufficient to control the motor. <strong>Freescale</strong>’s<br />

MC56F800x family is an alternative costoptimized<br />

solution for real-time motor control.<br />

17.3<br />

Integrated Real-Time<br />

Patient Monitoring<br />

A powered patient bed must be equipped to<br />

monitor the status of the patient and transmit<br />

the data remotely to a nurse station. Typical<br />

patient monitoring functions consist of blood<br />

pressure monitoring, heart rate monitoring,<br />

a pulse oximetry unit, ECG, blood glucose<br />

meters and an infusion pump.<br />

The modules shown in Figure 17-1 provide<br />

extra features allowing health care providers<br />

and the patient’s relatives to offer comfort to<br />

the patient. Some of these modules include a<br />

tilt accelerometer and motor driver to control<br />

the bed’s tilt, powered wheels to facilitate<br />

movement of the patient to different areas<br />

of the hospital, USB and Ethernet ports to<br />

provide connection with a PC or the hospital<br />

network, VoIP gateway to provide direct<br />

communication to the nurses’ station, and an<br />

LCD screen and keypad for user interface.<br />

17.4<br />

Integrated Tilt Control<br />

The tilt control module is used mainly for the<br />

safety and comfort of the patient. Although<br />

hospital beds are often maneuvered in many<br />

directions and in some cases, in an urgent<br />

manner, the safety of the patient must be<br />

paramount at all times. Electronic sensors<br />

can be used to monitor the tilt of the bed and<br />

provide an alarm if the bed is at an unsafe<br />

angle. Furthermore, the tilt control module is<br />

used to position the patient in the bed at the<br />

most ideal angle for the patient’s comfort.<br />

This is the most prevalent use of the tilt<br />

control module.<br />

Accelerometers can be used to measure<br />

both dynamic and static acceleration. Tilt is<br />

a static measurement where gravity is the<br />

acceleration being measured. Therefore, to<br />

achieve the highest degree of resolution of<br />

a tilt measurement, a low-g, high-sensitivity<br />

90 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

UART<br />

UART<br />

UART<br />

LCD<br />

Controller<br />

LCD<br />

Display<br />

MCU/MPU<br />

SPI<br />

USB<br />

MII<br />

Keypad or<br />

Touch<br />

Screen<br />

Wireless Comm<br />

IEEE ® 802.11x Wi-Fi ®<br />

10/100 Ethernet PHY<br />

CAN<br />

XSCVR<br />

Accelerometer<br />

CAN Bus<br />

CAN<br />

XSCVR<br />

Bed Tilt<br />

Control<br />

Motor<br />

Driver<br />

Bed Tilt<br />

Motors<br />

Nursing<br />

Station<br />

Wired<br />

Network<br />

CAN<br />

XSCVR<br />

Wheel Motor<br />

Control<br />

Motor<br />

Driver<br />

Wheel<br />

Motors<br />

VoIP<br />

Gateway to<br />

Public Phone<br />

Network<br />

Pressure<br />

Sensor<br />

CAN<br />

XSCVR<br />

Pump<br />

Control<br />

Motor<br />

Driver<br />

Pump<br />

Motors


accelerometer is required. The <strong>Freescale</strong><br />

MMA845xQ series accelerometers are ideal<br />

solutions for XY and XYZ tilt sensing.<br />

A simple tilt application can be implemented<br />

using an MCU that has one or two ADC<br />

channels to read the analog output voltage of<br />

the accelerometers. For a safety application,<br />

an I/O channel can be used to send a signal<br />

to the MCU to turn power a particular medical<br />

device at a determined angle.<br />

Selecting the right accelerometer depends on<br />

the angle of reference and how the device is<br />

mounted. This allows the designer to achieve<br />

a high degree of resolution for a given solution<br />

due to the nonlinearity of the technology.<br />

To obtain the most resolution per degree<br />

of change, the sensor must be mounted<br />

with the sensitive axis parallel to the plane<br />

of movement where the most sensitivity is<br />

desired. For example, if the degree range<br />

that an application is measuring is 0° to 45°,<br />

then the printed circuit board (PCB) would be<br />

mounted perpendicular to gravity. An X-axis<br />

device would be the best solution.<br />

17.5<br />

Integrated Intercom<br />

Using VoIP<br />

VoIP intercom applications can improve<br />

communication throughout a facility across<br />

either wired or wireless networks. Maintaining<br />

support resources for only one network can<br />

lead to substantial cost savings, however, the<br />

greatest opportunity lies in the ability to deploy<br />

and integrate new productivity applications<br />

and enhanced voice services. A VoIP gateway,<br />

for instance, can help seamlessly integrate a<br />

patient’s monitored data into the underlying<br />

hospital network.<br />

Figure 17-2: Electronic Motor System<br />

V DD<br />

MCU<br />

A VoIP intercom application should deliver<br />

an attractive and intuitive user interface and<br />

maintain good audio quality from end to<br />

end with options for video connectivity. No<br />

additional switching equipment is required to<br />

implement these systems across an existing<br />

network. To meet these needs, the system<br />

MPU must feature a high level of integration<br />

to simplify a design for seamless video,<br />

voice and network connectivity. It must have<br />

enough processing performance and network<br />

bandwidth to simultaneously transfer data<br />

from many sources, including a keypad, touch<br />

screen display panel and voice inputs and<br />

outputs.<br />

<strong>Freescale</strong> offers a comprehensive hardware<br />

and software solution for commercial<br />

VoIP applications that meet these specific<br />

requirements. The i.MX product family contains<br />

processors up to 800 MHz with the proper mix<br />

of memory and peripherals for creating the<br />

VoIP solution.<br />

freescale .com/medical 91<br />

SF<br />

FB<br />

IN1<br />

IN2<br />

INV<br />

SLEW<br />

D1<br />

D2<br />

EN<br />

Diagnostic and Therapy Devices<br />

33926<br />

VPWR<br />

CCP<br />

OUT1<br />

OUT2<br />

PGND<br />

AGND<br />

Motor<br />

V PWR


Diagnostic and Therapy Devices<br />

Table 17-1. <strong>Freescale</strong> Technologies for Diagnostic and Therapy<br />

Device Description Key Features Application Notes and<br />

Alternate Options<br />

Electrocardiograph (ECG)<br />

i.MX28x ARM9 <strong>Applications</strong> Processor 454 MHz ARM9 core, power management, LCD controller, touch screen,<br />

DDR2/mDDR/NAND, Ethernet, USB PHY x2,


Table 17-1. <strong>Freescale</strong> Technologies for Diagnostic and Therapy continued<br />

Diagnostic and Therapy Devices<br />

Device Description Key Features Application Notes and<br />

Alternate Options<br />

Vital Signs<br />

S08MM Flexis 8-bit MCU Ultra-low-power MCU, analog measurement engine, USB Flexis S08JE<br />

MCF5227X ColdFire V2 MCU with Touch Screen,<br />

LCD Controller and USB<br />

32-bit low-cost MPU, LCD, USB OTG, CAN MCF5221X<br />

MC13224V 2.4 GHz RF Transceiver Platform in a Package MC13213<br />

CRTOUCHB10VFM Xtrinsic Capacitive and Resistive<br />

Touch-Sensing Platform<br />

Capacitive and resistive touch sensing with gesture recognition to allow<br />

zoom and rotation<br />

MPR03x Touch Sensor 2- or 3-pad touch sensor Xtrinsic Touch Sensing Software<br />

MPC17C724 H-Bridge Motor Drive 0.4 amp, dual h-bridge<br />

MPXx5050 Pressure Sensor 7.5 psi, 50 kPA temperature compensated and calibrated pressure sensor<br />

VF3xx Vybrid Controller Solutions Single-chip solution with Dual XiP Quad SPI, Dual Ethernet and L2 Switch VF4xx, VF5xx<br />

Hospital Admission Machine: Height and Weight<br />

S08JE Flexis 8-bit HCS08 MCU 8-bit ultra-low-power MCU with USB S08JS<br />

MCF5445X ColdFire V2 MCU 32-bit MPU, 10/100 Ethernet, USB OTG MCF5227X<br />

i.MX28x ARM9 <strong>Applications</strong> Processor 454 MHz ARM9 core, power management, LCD controller, touch screen,<br />

DDR2/mDDR/NAND, Ethernet, USB PHY x2,


<strong>Medical</strong> Imaging<br />

18.1<br />

Introduction<br />

The complexities of medical imaging require extraordinary processing<br />

and RF power. Modalities, such as magnetic resonance imaging<br />

(MRI), computed tomography (CT) scans and ultrasound all push<br />

the performance limits for advanced integrated I/O, rigorous<br />

data processing, powerful display capabilities and high levels of<br />

connectivity. Many of these needs are addressed by <strong>Freescale</strong>’s<br />

family of Power Architecture multicore processors, StarCore DSPs<br />

and high-power RF devices.<br />

The Power Architecture family is designed for applications that<br />

require a rich user interface with complex displays and connectivity<br />

options with various standard protocols. StarCore DSPs offer<br />

unprecedented high-processing capacity to support data intensive<br />

applications, such as medical imaging reconstruction. <strong>Freescale</strong>’s RF<br />

power amplifiers provide the high output power required to achieve<br />

the desired frequency of resonance.<br />

94 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


18.2<br />

Ultrasound<br />

Ultrasound is a non-invasive medical imaging<br />

technique used to visualize muscles, tendons,<br />

pathological lesions and many internal organs<br />

and other structures. It plays an important role<br />

during prenatal care and is commonly used as<br />

a diagnostic tool.<br />

One of the most common uses of ultrasound<br />

is for fetal monitoring. Ultrasound uses sound<br />

waves to create images of a fetus inside<br />

a uterus. Because it uses sound waves<br />

instead of radiation, ultrasound is safer than<br />

X-rays. Gradually, ultrasound has become an<br />

increasingly important part of prenatal care,<br />

providing information that can help the doctor<br />

to plan the monitoring of a pregnant woman,<br />

thus improving the chances of successful<br />

pregnancy.<br />

18.3<br />

How Ultrasound Works<br />

Ultrasound is based on bouncing sound<br />

waves into the body of the developing fetus.<br />

The echoes produced by these waves are<br />

converted into a picture called a sonogram,<br />

which appears on a monitor. This technique is<br />

also often referred to as sonography or sonar.<br />

Propagation and reflection rules that govern<br />

electric signals are also applied to ultrasound.<br />

A transmission line must be terminated in its<br />

characteristic impedance to avoid reflections.<br />

In the equation below, acoustic impedance<br />

Z is a fundamental property of matter and<br />

is related to the density ρ and the velocity<br />

of sound v : Z = ρv. The fraction of energy<br />

R refracted at the normal interface of two<br />

different tissue types is:<br />

R = (Z 2 -Z 1 )<br />

(Z 2 +Z 1 )<br />

2<br />

Figure 18-1: Ultrasound General Block Diagram<br />

Ultrasound<br />

<strong>Freescale</strong> Technology Optional<br />

18.4<br />

Transducer<br />

The transducer is the element that converts<br />

electrical signals into ultrasound waves. It<br />

consists of a set of transmitter and receiver<br />

transducers arranged in a linear array. A<br />

unique transducer is explained in Chapter<br />

16.6, Fetal Heart Rate Monitor. Pulse trains<br />

are sent by transmitter transducers, and<br />

receiver transducers receive bounced waves.<br />

The operating frequency for this kind of device<br />

is from 5 MHz to 8 MHz.<br />

<strong>Medical</strong> Imaging<br />

HV Pulse<br />

Transducer DAC<br />

TX Beamformer<br />

Generator<br />

Tx/Rx<br />

Switches<br />

LNA<br />

Signal Conditioning<br />

The blocks needed for signal conditioning/<br />

pulse generator blocks are shown in<br />

Figure 18-3.<br />

18.5<br />

Multiplexer for Tx/Rx<br />

Transducers<br />

This block may be implemented using analog<br />

gates controlled by the MCU/MPU. This<br />

allows the use of transducers as transmitters,<br />

and later the ability to switch the multiplexer<br />

to use as receivers. Multiplexing reduces the<br />

freescale .com/medical 95<br />

VGA<br />

CW (Analog)<br />

Beamformer<br />

AAF<br />

Power<br />

Management<br />

Keypad<br />

DAC<br />

ADC<br />

ADC<br />

<strong>User</strong> Interface<br />

Spectral<br />

Doppler<br />

Processing<br />

(D Mode)<br />

Display Memory Audio<br />

Output<br />

Figure 17-2: 18-2: Ultrasound Transducer Diagram Diagram<br />

TX<br />

RX<br />

TX<br />

RX<br />

TX<br />

RX<br />

TX<br />

RX<br />

RX Beamformer<br />

RF<br />

Demodulation<br />

B-Mode<br />

Processing<br />

Scan<br />

Conversion<br />

USB<br />

Patient<br />

Beamforming<br />

Control<br />

DSP/DSC<br />

Color<br />

Doppler<br />

(PW)<br />

Processing<br />

(F Mode)<br />

Wireless<br />

Comm


<strong>Medical</strong> Imaging<br />

number of connections needed, because the<br />

transducers array can range from eight to<br />

more than 256.<br />

18.6<br />

Instrumentation Amplifier<br />

and Variable Gain<br />

Amplifier<br />

Ultrasonic wave energy sent though a<br />

patient’s body is very attenuated by multiple<br />

factors (absorbing, attenuation due to the<br />

medium, inverse square law, etc.). Before<br />

processing information, the instrumentation<br />

amplifier conditions the signal to adequate<br />

levels and eliminates common-mode noise.<br />

A variable gain amplifier is used due to<br />

exponential attenuation of the bounced<br />

waves. Applying an exponential gain reduces<br />

the effect of the attenuation. Figure 18-4<br />

shows the behavior of this element.<br />

Figure 18-5 shows a simple analog<br />

implementation of the circuit (left side). At the<br />

right side, a block diagram of a control system<br />

is shown. This can be implemented by an<br />

MPU using software.<br />

18.7<br />

Beamformer<br />

A beamformer is a device that directs waves<br />

in a specific direction by means of algorithms<br />

that control the transducer array to form<br />

a wave front that generates constructive<br />

interference. This is used to generate the<br />

sweep required to build the image to be<br />

shown. Figure 18-7 is a diagram of the<br />

direction of propagation of waves controlled<br />

by a beamformer.<br />

18.8<br />

Ultrasound Software<br />

Library<br />

The ultrasound software library produces an<br />

ultrasound image from a beamforming signal.<br />

The beam is stored in the memory and passes<br />

through the ultrasound library algorithms to<br />

generate an output image with the specified<br />

height and width.<br />

Figure Figure 17-3: 18-3: Ultrasound Ultrasound Probe Probe Block Block Diagram Diagram<br />

Transducer Array<br />

Figure 18-4: Variable Gain Amplifier Function<br />

Figure 17-4: Variable Gain Amplifier Function<br />

Amplitude<br />

Multiplexer<br />

for TX/RX<br />

Transducers<br />

Instrumentation<br />

Amplifier<br />

High-Voltage<br />

TX Amplifier<br />

Figure 18-5: Analog Implementation of Variable Gain Amplifier<br />

96 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

Gain<br />

Fixed<br />

Gain<br />

Variable Gain<br />

Amplifier<br />

High-Speed<br />

DAC<br />

Time<br />

High-Speed<br />

High-Resolution<br />

ADC<br />

TX<br />

Beamformer<br />

Amplitude<br />

RX<br />

Beamformer<br />

Beamformer<br />

Control<br />

System<br />

Time<br />

To DSP Blocks


The depth in color used in the final image runs<br />

from 0 to 255 where 0 represents the brightest<br />

point and 255 represents the darkest. The<br />

output image from the MSC8156 DSP is<br />

stored in the DDR0 memory.<br />

The MSC8156 DSP is used throughout the<br />

document because the library adapts perfectly<br />

to it. This library is suitable to develop<br />

embedded software for the MSC8156 DSP<br />

which involves working with a beamforming<br />

signal or grayscale output images. Knowledge<br />

in CW IDE and C programming language<br />

is necessary.<br />

The library uses different algorithms to<br />

generate the final output image:<br />

• FIR filter<br />

• Envelope detection<br />

• Log compression<br />

• Histogram equalization<br />

• Speckle noise reduction<br />

• Scan conversion<br />

Key target applications:<br />

• Digital stethoscope<br />

• <strong>Medical</strong> ultrasonography<br />

• Ultrasonic lithotripsy<br />

Ultrasound Software Library<br />

Reference Design<br />

For more information on how to use the<br />

Ultrasound Software Library, download<br />

Ultrasound Software Library (document<br />

MEDIMGLIBUG) from the <strong>Freescale</strong> website.<br />

18.9<br />

Microprocessors<br />

MPC5121e<br />

The <strong>Freescale</strong> MPC5121e integrated<br />

processor uses an e300 CPU core based on<br />

Power Architecture technology. It provides<br />

an exceptional computing platform for<br />

multimedia and is excellent for embedded<br />

solutions with a graphical user interface and<br />

network connectivity.<br />

Figure 17-6: 18-6: Control System Block Block Diagram Diagram<br />

In<br />

To display the processed images received by<br />

the ultrasound probe, this processor includes<br />

the following:<br />

• MBX Lite 2-D/3-D graphics engine licensed<br />

from Imagination Technologies Group Plc.<br />

Includes PowerVR ® geometry processing<br />

acceleration.<br />

• Integrated display controller with support<br />

for a wide variety of TFT LCD displays with<br />

resolution up to 1280 × 720 at a maximum<br />

refresh rate of 60 Hz and a color depth up<br />

to 24 bits per pixel.<br />

Variable Gain<br />

Amplifier<br />

Extracted<br />

Output Signal<br />

<strong>Medical</strong> Imaging<br />

Figure 18-7: Concentrated Enegry Diagram of a Beanformer<br />

Figure 17-7: Concentrated Energy Diagram of a Beamformer<br />

X<br />

Key Features<br />

• e300 core built on Power Architecture<br />

technology<br />

• Up to 400 MHz performance and 760 MIPS<br />

• AXE, a 32-bit RISC audio accelerator<br />

engine<br />

• PowerVR MBX Lite 2-D/3-D graphics<br />

engine (not included in the MPC5123)<br />

• DIU integrated display controller supports<br />

up to XGA resolution<br />

• 12 programmable serial controllers (PSC)<br />

freescale .com/medical 97<br />

Z<br />

G<br />

H<br />

Out<br />

Y


mobileGT Products<br />

<strong>Medical</strong> Imaging<br />

The MPC5121e and MPC5123 are the latest<br />

addition to the mobileGT family of processors.<br />

<strong>Freescale</strong> is working closely with mobileGT<br />

alliance member companies to provide<br />

widespread firmware and software driver<br />

support.<br />

K50 Measurement MCUs<br />

The K50 MCU family is pin, peripheral and<br />

software compatible with other Kinetis MCUs<br />

and provides designers with an analog<br />

measurement engine consisting of integrated<br />

operational and transimpedance amplifiers<br />

and high-resolution ADC and DAC modules.<br />

The family also features IEEE 1588 Ethernet<br />

and hardware encryption, full-speed USB<br />

2.0 On-The-Go with device charger detect<br />

capability and a flexible low-power segment<br />

LCD controller with support for up to 320<br />

segments. Devices start from 128 KB of flash<br />

in 64-pin QFN packages extending up to<br />

512 KB in a 144-pin MAPBGA package.<br />

Key Features<br />

Kinetis K50 MCU features and peripherals in<br />

the integrated measurement engine:<br />

• Ultra-low-power operation<br />

• 2x OPAMP<br />

• 2x TRIAMP<br />

• 2x 12-bit DAC<br />

• 2x 16-bit SAR ADC, up to 31 channels with<br />

programmable gain amplifiers (PGA)<br />

• Programmable Delay Block (PDB)<br />

• I2C • USB connectivity<br />

• ARM Cortex-M4 core with DSP instructions<br />

MCF51MM: Flexis 32-bit<br />

ColdFire V1 MCUs<br />

The MCF51MM256/128 provides ultralow-power<br />

operation, USB connectivity,<br />

graphic display support and unparalleled<br />

measurement accuracy, all in a single 32-bit<br />

MCU, allowing designers to create more<br />

fully featured products at lower cost. The<br />

MCF51MM256/128 is ideal for medical<br />

applications or other applications requiring a<br />

Figure 18-8: Ultrasound Library Flow<br />

Figure 17-8: Ultrasound Library Block Diagram<br />

Beamforming Process<br />

Digital Signal<br />

Filter<br />

Figure 18-9: Kinetis K50 Family Block Diagram<br />

Figure 17-9: Kinetis K50 Family<br />

Security<br />

and Integrity<br />

Cyclic<br />

Redundancy<br />

Check (CRC)<br />

Random<br />

Number<br />

Generator<br />

Cryptographic<br />

Acceleration<br />

Unit (CAU)<br />

Core<br />

ARM ® Cortex-M4<br />

72/100 MHz<br />

Debug<br />

Interfaces<br />

Interrupt<br />

Controller<br />

Standard Feature<br />

System Memories<br />

Internal and<br />

External<br />

Watchdogs<br />

Memory<br />

Protection Unit<br />

(MPU)<br />

Xtrinsic<br />

Low-Power<br />

Touch-Sensing<br />

Interface<br />

Segment<br />

LCD Controller<br />

98 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

DSP<br />

Analog<br />

16-bit<br />

ADC<br />

PGA<br />

Analog<br />

Comparator<br />

6-bit<br />

DAC<br />

12-bit<br />

DAC<br />

Voltage<br />

Reference<br />

OPAMP<br />

TRIAMP<br />

Envelope<br />

Detection<br />

Image Enhancement<br />

Histogram<br />

Equalization<br />

DMA<br />

Low-Leakage<br />

Wake-Up Unit<br />

Timers<br />

FlexTimer<br />

Carrier<br />

Modulator<br />

Transmitter<br />

Programmable<br />

Delay Block<br />

Periodic<br />

Interrupt<br />

Timer<br />

Low-Power<br />

Timer<br />

Independent<br />

Real-Time<br />

Clock (IRTC)<br />

IEEE ® 1588<br />

Timer<br />

Optional Feature<br />

Noise Filter<br />

(speckle)<br />

2D Image Forming<br />

Log<br />

Compression<br />

Program<br />

Flash<br />

(128 to 512 KB)<br />

FlexMemory<br />

(32 to 256 KB)<br />

(2 to 4 KB EE)<br />

Serial<br />

Programming<br />

Interface<br />

(EZPort)<br />

SRAM<br />

(32 to 128 KB)<br />

External<br />

Bus Interface<br />

(FlexBus)<br />

Clocks<br />

Phase-Locked<br />

Loop<br />

Frequency-<br />

Locked Loop<br />

Low/High-<br />

Frequency<br />

Oscillators<br />

Internal<br />

Reference<br />

Clocks<br />

Communication Interfaces HMI<br />

I 2 C<br />

UART<br />

(ISO 7816)<br />

SPI<br />

IEEE 1588<br />

Ethernet MAC<br />

Scan<br />

Convention<br />

I 2 S<br />

Secure<br />

Digital Host<br />

Controller<br />

(SDHC)<br />

USB OTG<br />

(LS/FS)<br />

USB Charger<br />

Detect (DCD)<br />

USB Voltage<br />

Regulator<br />

B-Mode Ultrasound<br />

Brightness<br />

GPIO


significant amount of precision analog such as<br />

instrumentation and industrial control.<br />

The MCF51MM256/128 is part of the<br />

<strong>Freescale</strong> Flexis MCU series.<br />

Features:<br />

• ColdFire V1 core delivering a 50 MHz core<br />

speed and 25 MHz bus speed<br />

• Up to 256 KB flash and 32 KB SRAM<br />

• Low-power stop 2 current: 500 nA<br />

(32 KB of active SRAM)<br />

• 2 x general purpose opamps<br />

• 2 x transimpedance amplifiers<br />

• 16-bit SAR high resolution analog-to-digital<br />

converter (ADC)<br />

• Analog Comparator with 5-bit digital-toanalog<br />

converter (DAC)<br />

• Internal voltage reference<br />

• USB – device/host/on-the-go controller<br />

• 2 x serial peripheral interface (SPI),<br />

2 x serial communication interface (SCI)<br />

and 1 x I2C • Mini FlexBus (external bus interface EBI)<br />

• Included in <strong>Freescale</strong>’s Product Longevity<br />

Program<br />

S08MM: Flexis 8-bit MCUs<br />

The 9S08MM128/64/32 provides ultra-lowpower<br />

operation, USB connectivity, graphic<br />

display support and unparalleled measurement<br />

accuracy, all in a single 8-bit MCU, allowing<br />

device designers to create more fully featured<br />

products at a lower cost. It is ideal for<br />

applications requiring a significant amount of<br />

precision analog.<br />

The 9S08MM128/64/32 is part of <strong>Freescale</strong>’s<br />

Flexis MCU series.<br />

Features:<br />

• S08 core delivering a 48 MHz core speed<br />

and 24 MHz bus speed<br />

• Up to 128 KB flash and 12 KB SRAM<br />

• Low-power stop 2 current: 450nA<br />

(12 KB of active SRAM)<br />

• 2 x OPAMP- General purpose opamps<br />

• 2 x TRIAMP- Transimpedance amplifiers<br />

• 16-bit SAR analog-to-digital converter (ADC)<br />

– high resolution ADC<br />

• Analog comparator<br />

• Internal voltage reference<br />

Figure 18-10: MCF51MM256 Block Diagram<br />

Figure 17-10: MCF51MM256 Block Diagram<br />

2x OPAMP<br />

2x TRIAMP<br />

PDB<br />

MCG<br />

Figure 18-11: MC9S08MM128 Block Diagram<br />

Figure 17-11: MC9S08MM128 Block Diagram<br />

2x OPAMP<br />

2x TRIAMP<br />

PDB<br />

MCG<br />

VREF TOD<br />

PRACMP CMT<br />

VREF TOD<br />

PRACMP CMT<br />

8-bit 9S08 48 MHz Core<br />

<strong>Medical</strong> Imaging<br />

2 x 4-ch. TPM with PWM 2 x SPI<br />

2 x KBI 2 x SCI<br />

32-bit V1 ColdFire 50 MHz Core with MAC<br />

16-bit SAR ADC I2 12-bit DAC LVI<br />

C<br />

2 x 4-ch. TPM with PWM 2 x SCI<br />

2 x KBI 2 x SPI<br />

Up to 68 GPIO/<br />

16 RGPIO<br />

16-bit SAR ADC I2 12-bit DAC LVI<br />

C<br />

MiniBus External<br />

USB<br />

Device/Host/<br />

OTG<br />

Bootloader<br />

256 KB 32 KB SRAM<br />

USB ROM<br />

Up to 68 GPIO<br />

USB<br />

Device<br />

Bootloader<br />

128 KB Flash 12 KB SRAM<br />

USB ROM<br />

freescale .com/medical 99


• USB device controller<br />

<strong>Medical</strong> Imaging<br />

• 2 x serial peripheral interface (SPI),<br />

2 x serial communications interface (SCI)<br />

and 1 x I2C Digital Signal Processors<br />

Image reconstruction and processing can<br />

be best realized on Freesacale’s single- or<br />

multicore DSPs. These devices are capable of<br />

performing the data-intensive B mode image<br />

reconstruction and the different modes of<br />

Doppler processing, all of which are integral<br />

parts of any ultrasound system. In addition,<br />

these DSPs are ideal for running other signal<br />

processing functions, such as filtering,<br />

demodulation and scan conversion, to achieve<br />

the desired output image.<br />

MSC815x and MSC825x StarCore-based,<br />

DSP families feature the SC3850 core running<br />

at 1 GHz and delivering up to 48 GMACs<br />

per device. All the devices featured are pin<br />

compatible, allowing system scalability from<br />

one to six cores.<br />

<strong>Freescale</strong>’s multicore DSP devices offer<br />

unprecedented I/O and memory bandwidth<br />

with the ability to combine Serial RapidIO ® ,<br />

Gigabit Ethernet and/or PCI Express, typically<br />

used for high bandwidth FPGA connectivity.<br />

One or two 64-bit DDR2/3 interfaces will<br />

support the most data-intensive applications,<br />

such as medical image reconstruction.<br />

MSC815x device family also features a<br />

dedicated DFT/FFT hardware accelerator<br />

capable of running up to 350 Mega samples/<br />

sec. Offloading these functions from the<br />

Table 18.1 <strong>Freescale</strong>’s StarCore SC3850-Based<br />

Digital Signal Processors<br />

MSC8151 Single-core DSP, 8GMAC, FFT/DFT<br />

accelerator<br />

MSC8152 Dual-core DSP, 16GMAC, FFT/DFT<br />

accelerator<br />

MSC8154 Quad-core DSP, 32GMAC, FFT/DFT<br />

accelerator<br />

MSC8156 Six-core DSP, 48GMAC, FFT/DFT<br />

accelerator<br />

MSC8251 Single-core DSP, 8GMAC, PCIe,


All the devices featured are pin compatible,<br />

allowing system scalability from one to<br />

six cores.<br />

<strong>Freescale</strong>’s multicore DSP devices offer<br />

unprecedented I/O and memory bandwidth with<br />

the ability to combine Serial RapidIO, Gigabit<br />

Ethernet and/or PCI Express, typically used for<br />

high bandwidth FPGA connectivity. One or two<br />

64-bit DDR2/3 interfaces will support the most<br />

data-intensive applications, such as medical<br />

image reconstruction.<br />

The MSC815x device family features the MAPLE<br />

hardware accelerator with dedicated DFT/FFT<br />

functions capable of running up to 350 Mega<br />

samples/sec. Offloading these functions from<br />

the cores leaves ample processing headroom<br />

for additional system requirements or enables<br />

the use of single- or dual-core devices (such as<br />

the MSC8151 and MSC8152 DSPs).<br />

The MSC825x family features one to six<br />

DSP SC3850 cores without the hardware<br />

accelerator for maximum flexibility in algorithm<br />

implementation and improved power efficiency.<br />

Digital Signal Processor Products<br />

16-bit StarCore-based DSPs<br />

• StarCore SC3850 (MSC815x)<br />

• StarCore SC3400 (MSC8144)<br />

• StarCore SC140 (MSC811x, MSC812x)<br />

• StarCore SC1400 (MSC711x, MSC712x)<br />

24-bit general purpose DSPs<br />

• MC56F81xx/83xx<br />

• MC56F80xx<br />

Digital signal controllers<br />

• 56800/E<br />

• MC56F82xx<br />

• MC56F84xx<br />

Figure Figure 17-13: 18-13: General General Analog Analog Configuration Configuration<br />

Core<br />

Memory<br />

256 KB Flash<br />

FlexMemory<br />

32 KB Flash or<br />

2 KB EEPROM<br />

32 KB SRAM<br />

DAC<br />

1-ch./12-bit<br />

56800EX<br />

100 MHz<br />

High-Res<br />

PWM<br />

8-ch. +<br />

PWM 4-ch.<br />

X-Ray<br />

Emissor<br />

<strong>Medical</strong> Imaging<br />

Figure 18-15: MC56F84xx Digital Signal Controller<br />

MC56F84xx<br />

System Communication<br />

4-ch. DMA 3x UART<br />

3x SPI<br />

CAN<br />

2x I<br />

EOnCE (Debug Module)<br />

JTAG<br />

2 Memory Resource<br />

Protection Unit<br />

Quadrature Decoder<br />

CRC<br />

C/SMBus<br />

Voltage Regulator<br />

Internal Watchdog<br />

Clocks and Timer<br />

freescale .com/medical 101<br />

PWM<br />

12-ch.<br />

External Watchdog<br />

Inter-Module Cross Bar<br />

4x Analog<br />

CMP<br />

+ 6-bit DAC<br />

Photo<br />

Detector Grid<br />

MUX<br />

Figure 18-14: Photo Detector Configuration<br />

Figure 17-14: MC9S08MM128 Block Diagram<br />

Transimp<br />

Amp<br />

2x HS ADC<br />

8-ch./12-bit<br />

with PGA<br />

ADC<br />

Timers<br />

SAR ADC<br />

16-ch./16-bit


<strong>Medical</strong> Imaging<br />

18.14<br />

Capacitive Sensing and<br />

Touch Screen Display<br />

The MC34940 is intended for cost-sensitive<br />

applications where non-contact sensing<br />

of objects is desired. When connected to<br />

external electrodes, an electric field is created.<br />

The MC34940 detects objects in this electric<br />

field. The IC generates a low-frequency sine<br />

wave, which is adjustable by using an external<br />

resistor and is optimized for 120 kHz. The<br />

sine wave has very low harmonic content to<br />

reduce harmonic interference. The MC34940<br />

also contains support circuits for an MCU to<br />

allow the construction of a two-chip E-field<br />

system.<br />

For more information about touch panel<br />

applications, see the application note titled<br />

Touch Panel <strong>Applications</strong> Using the MC34940/<br />

MC33794 E-Field IC (document AN1985),<br />

available at freescale.com.<br />

For wireless communication, power<br />

management, keypad and speaker<br />

implementation modules, see Chapter 3<br />

Telehealth Systems Introduction.<br />

Table 18.2: FFT/DFT Hardware Accelerator Features<br />

Standard Compliance Data Rates Comments<br />

FFT sizes: 128, 256, 512, 1024, 2048 FFT2048: Up to 280 Mega samples/sec Advanced scaling options<br />

points<br />

FFT1024: Up to 350 Mega samples/sec Guard bands insertion in iFFT<br />

DFT sizes: Variable lengths DFT/IDFT<br />

processing of the form 2 k ·3 m ·5 n ·12, up<br />

to 1536 points<br />

DFT: Up to 175 Mega samples/sec<br />

Table 18.3: MSC815x and MSC825x Family Comparison Chart<br />

Device 8156 8154 8152 8151 8256 8254 8252 8251<br />

SC8350 DSP Cores 6 4 2 1 6 4 2 1<br />

Core Speed (MHz) 1 GHz 1 GHz 1 GHz 1 GHz 1 GHz<br />

800 MHz<br />

Core Performance (16-bit<br />

MMACs)<br />

Table 18.4: <strong>Freescale</strong> Technologies for <strong>Medical</strong> Imaging<br />

1 GHz<br />

800 MHz<br />

1 GHz 1 GHz<br />

102 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

Up to<br />

48000<br />

Up to<br />

32000<br />

Up to<br />

16000<br />

Up to<br />

8000<br />

Up to<br />

48000<br />

Up to<br />

32000<br />

Shared M3 Memory 1 MB 1 MB<br />

I-Cache (per core) 32 KB 32 KB<br />

D-Cache (per core) 32 KB 32 KB<br />

L2 I-Cache (per core) 512 KB 512 KB<br />

DDR2/3 2 (800 MHz) 2 (800 MHz)<br />

PCIe 1 1<br />

GEMAC (RGMII, SGMII) 2 2<br />

sRIO 2 2<br />

TDM 4 4<br />

SPI 1 1<br />

UART 1 1<br />

I 2 C 1 1<br />

FFT/DFT Accelerators 1<br />

Proc. Tech. 45 nm SOI 45 nm SOI<br />

Package 783 Ball<br />

FC-PBGA<br />

Device Description Key Features Alternate Options<br />

Ultrasound Imaging<br />

MPC5121e 32-bit Power Architecture ® MCU 400 MHz e300 core and 760 MIPS built on<br />

Power Architecture<br />

i.MX53 ARM ® Cortex-A8 <strong>Applications</strong> Processor i.MX53 ARM Cortex-A8 <strong>Applications</strong> Processor<br />

1GHz ARM Cortex A8, DDR3, Ethernet, 720P<br />

Encode/1080P Decode, 2D/3D Graphics<br />

MSC8156 Six-Core High-Performance DSP Digital signal controller, built on multicore<br />

StarCore DSP<br />

783 Ball<br />

FC-PBGA<br />

MPC8536E, MPC5125, MPC83xx<br />

i.MX28x, i.MX 6 Series<br />

MSC8154, MSC8152<br />

MPR03x Touch Sensor 2 or 3-Pad touch sensors Xtrinsic Touch Sensing Software<br />

MC13224V 2.4 GHz RF Transceiver Platform in a Package MC13213<br />

Digital X-Ray<br />

i.MX28x ARM9 <strong>Applications</strong> Processor 454 MHz ARM9 core, power management, LCD<br />

controller, touch screen, DDR2/mDDR/NAND,<br />

Ethernet, USB PHY x2,


Summary<br />

Summary<br />

<strong>Applications</strong> <strong>Freescale</strong> Productus <strong>Freescale</strong> Differentiators<br />

Home Portable<br />

Blood Pressure Monitor<br />

(BPM)<br />

Diabetes Care (blood<br />

glucose monitor and<br />

insulin pumps)<br />

Digital Scale<br />

Digital Thermometer<br />

Heart Rate Monitor (HRM)<br />

Pulse Oximetry<br />

Telehealth/Telemonitoring<br />

Diagnostics and Therapy<br />

Ablation Laser<br />

Anesthesia Unit Monitors<br />

Clinical Patient Monitoring<br />

Clinical/Surgical Equipment<br />

Defibrillators/AEDS<br />

Dialysis Equipment<br />

Electrocardiogram (ECG<br />

or EKG)<br />

Electromyograph<br />

Fetal Heart Rate Monitor<br />

Fitness/Wellness<br />

Hospital Admission<br />

Machines<br />

Implantable Devices<br />

Infusion Pumps<br />

RF Ablation<br />

Ventilator/Respirators<br />

Wound Management<br />

Imaging<br />

Bone Densitometer<br />

Computed Tomography (CT)<br />

Fluoroscopy, Angiography<br />

Magnetic Resonance<br />

Imaging (MRI)<br />

Positron Emission<br />

Tomographer (PET)<br />

Ultrasound<br />

X-Ray and Related<br />

<strong>Applications</strong><br />

Flexis families (8- and 32-bit)<br />

- MC9S08MM, MCF51MM: <strong>Medical</strong>-oriented MCUs<br />

- MC9S08QE, MCF51QE: general purpose, low power<br />

- MC9S08JM, MCF51JM: USB, low power<br />

- MC9S08AC, MCF51AC: FlexTimer<br />

8-bit MCUs<br />

- MC9S08LL: low power, segment LCD<br />

- MC9S08JS: low power, USB<br />

Ultra-low-end 8-bit MCUs<br />

- MC9RS08KA: general purpose<br />

- MC9RS908LA, MC9RS08LE: segment LCD controllers<br />

ColdFire technology<br />

- MCF5225x: 32-bit, USB, Ethernet<br />

Kinetis ARM Cortex-M4 family: MK10, MK20, MK40, MK50<br />

i.MX series (ARM core, 32-bit)<br />

- i.MX233: USB, LCD controller with touch screen<br />

- i.MX28x: power management, LCD controller with touch screen, USB, Ethernet<br />

Wireless: MC1322x (IEEE ® 802.15.4/ZigBee ® technology)<br />

Pressure sensors: MPL3115A2, MPX2300DT1, MPXV5050GC6, MPXM2053GS (blood<br />

pressure monitoring)<br />

Touch sensors: MPR03x, MPR121QR2, Touch-Sensing Software IP<br />

Accelerometers: MMA8451Q, MMA8452Q, MMA8453Q (arm angle detection for blood<br />

pressure monitoring), MMA8451Q, MMA8452Q, MMA8453Q (portrait/landscape)<br />

Power management: MPC18730, MC13883, MC3467x, MC34704, MC13892<br />

Motor drivers (H-bridges): MC33887, MPC17511, MPC17C724, MC33931,<br />

MC33932, MC33926<br />

LED backlight: MC34844, MC34845<br />

Flexis family: Low-end to high-end pin-to-pin compatibility, 8- and 32-bit<br />

ColdFire technology: MCF5225x 32-bit, USB, Ethernet<br />

Digital signal controllers (DSCs): MC56F801x, MC56F802x, MC56F8100, MC56F8300<br />

Kinetis ARM Cortex M4 family: MK40, MK50, MK60<br />

i.MX Series (ARM core, 32-bit)<br />

−i.MX287: power management, LCD controller with touch screen, USB, Dual Ethernet<br />

−i.MX357: adds graphics<br />

−i.MX53: adds video<br />

−i.MX 6 Series: adds multicore<br />

High-performance 32-bit MPUs: MPC5121e, MPC8377, MPC8641, MPC8535, P1022,<br />

P1013<br />

Wireless: MC1322x (IEEE 802.15.4/ZigBee technology)<br />

Pressure sensors: MPL3115A2, MPXV5004G, MPXV4006G, MPXC2011DT1, MPX12GS,<br />

MPX5010DP, MPX2010DP, MPXV2053GVP, MPXV5100G, MPX2300DT1<br />

Touch sensors: MPR03x, MPR121QR2<br />

Accelerometers: MMA8451Q, MMA8452Q, MMA8453Q<br />

Power management: MPC18730, MC13883, MC13892, MC34700, MC34712, MC34713,<br />

MC34716, MC34717<br />

Motor drivers (H-bridges): MC33887, MPC17511, MPC17C724<br />

LED backlight: MC34844, MC34845<br />

Radio frequency (RF) LDMOS power transistors: MRF6VP41KH, MRF6S24140H,<br />

MRF6P24190H<br />

E Series high-power enhanced ruggedness RF amplifiers: MRFE6VP100H, MRFE6VS25N,<br />

MRFE6VP5600H, MRFE6VP6300H, MRFE6VP61K25H, MRF6VP8600H<br />

High performance: MPC837x, MPC831x, MPC85xx, P2020<br />

High-end image processing: MPC512x, MPC8610, MSC8122, MSC8144, MPC8536,<br />

MPC8315, MSC8144, MAC8154, MSC8156, P1022<br />

i.MX series (ARM core)<br />

−i.MX357: 32-bit, LCD, USB, Ethernet, video and camera<br />

−i.MX53: 32-bit, video, graphics, Ethernet, LCD with touch screen, USB<br />

Wireless: MC132xx ZigBee technology<br />

Accelerometers: MMA8451Q, MMA8452Q, MMA8453Q (vibration sensing)<br />

Touch sensors: MPR03x, MPR121QR2<br />

Power management: MPC18730, MC13883, MC13892, MC34704, MC34712,<br />

MC34713, MC34716, MC34717<br />

LED backlight: MC34844, MC34845<br />

General purpose amplifiers<br />

High-power RF amplifiers: MRF6VP41KH, MRF6S24140H, MRF6P24190H<br />

E Series high-power enhanced ruggedness RF amplifiers: MRFE6VP100H,<br />

MRFE6VS25N, MRFE6VP5600H, MRFE6VP6300H, MRFE6VP61K25H,<br />

MRF6VP8600H<br />

Product differentiators<br />

• Highest quality standards<br />

• Product life: 15-year longevity<br />

• MC9S08QE, MC9S08LL: low power consumption to enable longer<br />

battery life<br />

- 370 nA, 1.8V, 6 usec wake up in lowest power mode<br />

• MC9S08LL: superior LCD controller IP<br />

• Connectivity: USB, ZigBee<br />

• Pressure sensors: packaged specifically for medical applications<br />

• High-end MPUs with graphics acceleration<br />

Solution differentiators<br />

• Solutions that enable a lower system cost<br />

• Touch U/I suited for sterile hand-held monitors<br />

• Cost-effective, amplified, small form factor sensors with high<br />

sensitivity<br />

• USB for medical: Continua ready, IEEE compliant PHDC USB<br />

software stack available<br />

Product differentiators<br />

• Highest quality standards<br />

• Product life: 15-year longevity<br />

• Breadth and scalability of portfolio<br />

• Low-power solutions<br />

• i.MX series, Flexis, ColdFire: high level of integration<br />

- Connectivity (USB and Ethernet)<br />

- LCD control (graphic and segment)<br />

- Internal memory<br />

- High precision analog<br />

• ColdFire: embedded high-performance digital signal processor<br />

(DSP) functionality with integrated MAC<br />

• i.MX series: video and graphics acceleration<br />

• Strong/comprehensive RF power LDMOS portfolio<br />

- Best ruggedness in the market<br />

- Broadest line of enhanced ruggedness devices<br />

- Exceptional efficiency<br />

- Highest gain<br />

Solution differentiators<br />

• Touch U/I suited for sterile clinical equipment<br />

• Cost-effective, amplified, small form factor sensors with high<br />

sensitivity<br />

USB for medical<br />

• Continua ready, IEEE compliant PHDC USB software stack available<br />

Product differentiators<br />

• Highest quality standards<br />

• Product life: 15-year longevity<br />

• Breadth and scalability of portfolio<br />

• Low-power solutions<br />

• i.MX series, Flexis, ColdFire: high level of integration<br />

- Connectivity (USB and Ethernet)<br />

- LCD control<br />

- Internal memory<br />

- High precision analog<br />

• ColdFire: embedded high-performance DSP functionality with<br />

integrated MAC<br />

• i.MX series: video and graphics acceleration<br />

• Strong/comprehensive RF power LDMOS portfolio<br />

- Best ruggedness in the market<br />

- Broadest line of enhanced ruggedness devices<br />

- Highest gain<br />

- Exceptional efficiency<br />

• High-performance processors: PCI Express ® support and Serial<br />

ATA (SATA) for storing images<br />

Solution differentiators<br />

• Touch U/I suited for sterile clinical equipment<br />

• Cost-effective, amplified, small form factor sensors with high<br />

sensitivity<br />

• AltiVec engine for image processing<br />

freescale .com/medical 103


Application Notes<br />

Application Notes<br />

Application Notes<br />

AN2975: IEEE 802.15.4 and ZigBee <strong>Applications</strong><br />

AN3231: SMAC Based Demonstration <strong>Applications</strong><br />

AN3761: Using <strong>Freescale</strong> Devices for Contactless Touch <strong>Applications</strong><br />

AN3583: Using Low-Power Mode on the MPR083 and MPR084<br />

AN3796: LCD Driver Specification<br />

AN4059: Heart Rate Monitor and ECG Fundamentals<br />

AN4223: Connecting Low-Cost External Electrodes to MED-EKG<br />

AN4115: IrDA Driver and SD Card File System on the MM/JE Flexis Families<br />

AN3460: Low-Power Enabled by QE128 (S08 and MCF51)<br />

AN3465: Migrating within the Controller Continuum<br />

AN1326: Barometric Pressure Measurement using <strong>Semiconductor</strong> Pressure Sensors<br />

AN1097: Calibration-Free Pressure Sensor System<br />

AN3870: Developing an Application for the i.MX Devices on Linux<br />

AN3632: Using the Touch Screen Controller on the MCF5227x<br />

AN3552: Analog Comparator Tips and Tricks<br />

AN4153: Using <strong>Freescale</strong> eGUI with TWR-LCD on MCF51MM Family<br />

ANPERIPHQRUG: Quick Reference <strong>User</strong> <strong>Guide</strong> for Analog Peripherals on the MM and JE Family<br />

AN3827: Differences Between Controller Continuum ADC Modules<br />

AN3412: Dynamic LCD Driver Using GPIO Pins<br />

AN3949: ADC16 Calibration Procedure and Programmable Delay Block Synchronization<br />

AN2731: Compact Integrated Antennas<br />

AN4318: Histogram Equalization<br />

AN4323: <strong>Freescale</strong> Solutions for Electrocardiograph and Heart Rate Monitor <strong>Applications</strong><br />

AN4325: Spirometer Demo with <strong>Freescale</strong> MCUs<br />

AN4327: Pulse Oximeter Fundamentals and Design<br />

AN4328: Blood Pressure Monitor Fundamentals and Design<br />

AN4364: Glucose Meter Fundamentals and Design<br />

AN4496: Pulse Oximeter Using USB PHDC<br />

104 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


Appendix<br />

Digital Signal Processing<br />

Concepts<br />

A digital filter is characterized by its transfer<br />

function, or equivalently, its difference<br />

equation. Mathematical analysis of the transfer<br />

function can describe how it will respond to<br />

any input. As such, designing a filter consists<br />

of developing specifications appropriate to<br />

the problem, and then producing a transfer<br />

function which meets the specifications.<br />

Figure A-1: Signal Responses<br />

Figure A-1: Signal Responses<br />

Signal Amplitude<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

0<br />

Low Pass Filtered Signal<br />

High Pass Filtered Signal<br />

Input Signal<br />

3000 Hz Sample Rate<br />

1000 2000 3000 4000<br />

Sample Number<br />

5000 6000<br />

Appendix<br />

Low, High and Band Pass Data<br />

1000 2000 3000 4000 5000 6000<br />

Sample Number<br />

Signal Spectrum<br />

freescale .com/medical 105<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

-500<br />

-1000<br />

-1500<br />

0<br />

Signal Amplitude<br />

Time<br />

Log(Meg)<br />

40<br />

30<br />

20<br />

10<br />

0<br />

-10<br />

-20<br />

-30<br />

0 500 1000<br />

Sample Number<br />

Figure A-2: Signal Processing for HRM and Pulse Oximetry<br />

Figure A-2: Signal Processing for HRM and Pulse Oximetry<br />

Analog<br />

Low Pass<br />

Filter<br />

Sample<br />

and Hold<br />

ADC<br />

Digital<br />

Filters<br />

P T<br />

Q<br />

R<br />

S<br />

DC/PWM<br />

DC/PWM<br />

Time<br />

Analog<br />

Low Pass<br />

Filter<br />

Analog<br />

Low Pass<br />

Filter<br />

1500


Appendix<br />

Digital Filter Examples<br />

Digital FIR vs. IIR Filters<br />

A digital finite impulse response (FIR) filter can<br />

implement non-realizable analog functions,<br />

with many more multiplies, adds and data<br />

moves.<br />

y(n) =<br />

N-1<br />

a(i)x(n-i)<br />

i=0<br />

A digital infinite impulse response (IIR) filter<br />

provides a digital imitation of analog filters.<br />

It generally has the fewest operations, but is<br />

often 10x more efficient.<br />

y(n) =<br />

N-1<br />

M<br />

a(i)x(n-i) + b(j)y(n-j), M>N<br />

i=0<br />

j=1<br />

Signal Reconstruction<br />

To reconstruct the signal to the original, we<br />

use the digital signal reconstructed by the<br />

DAC and then use passive filters to shape it in<br />

a smooth manner. See Figure A-5.<br />

Figure A-3: Anti-Aliasing Filter and Sampling<br />

Figure A-3: Anti-Aliasing Filter and Sampling<br />

Signal + Noise LPF (Signal + Noise) Numbers that we can<br />

use in DSP techniques<br />

Volts<br />

Volts<br />

Time<br />

Analog<br />

Low-Pass<br />

Filter<br />

Figure A-4: Low- and High-Pass Filters<br />

Figure A-4: Low- and High-Pass Filters<br />

Sample<br />

and Hold<br />

ADC<br />

Sample Rate<br />

Numbers that we can<br />

use in DSP techniques<br />

1.6060e+000<br />

2.4394e+000<br />

2.2457e+000<br />

1.4378e+000<br />

7.7448e-001<br />

7.9937e-001<br />

1.4447e+000<br />

2.0849e+000<br />

2.0000e+000<br />

9.1704e-001<br />

-7.6317e-001<br />

-2.2173e+000<br />

y(n)+0.0732x(n)=0.1464x(n-1)+0.0732x(n-2)<br />

+1.099y(n-1)-0.3984y(n-2)<br />

Figure A-5: Signal Reconstruction<br />

Figure A-5: Signal Reconstruction<br />

1.6060e+000<br />

2.4394e+000<br />

2.2457e+000<br />

1.4378e+000<br />

7.7448e-001<br />

7.9937e-001<br />

1.4447e+000<br />

2.0849e+000<br />

2.0000e+000<br />

9.1704e-001<br />

-7.6317e-001<br />

-2.2173e+000<br />

1.6060e+000<br />

2.4394e+000<br />

2.2457e+000<br />

1.4378e+000<br />

7.7448e-001<br />

7.9937e-001<br />

1.4447e+000<br />

2.0849e+000<br />

2.0000e+000<br />

9.1704e-001<br />

-7.6317e-001<br />

-2.2173e+000<br />

Sample Rate<br />

Sample<br />

and Hold<br />

ADC<br />

Sample Rate<br />

1.6060e+000<br />

2.4394e+000<br />

2.2457e+000<br />

1.4378e+000<br />

7.7448e-001<br />

7.9937e-001<br />

1.4447e+000<br />

2.0849e+000<br />

2.0000e+000<br />

9.1704e-001<br />

-7.6317e-001<br />

-2.2173e+000<br />

106 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

DAC<br />

Volts<br />

Volts<br />

Time<br />

Low Pass<br />

Digital Filters<br />

High Pass<br />

Time<br />

1.6060e+000<br />

2.4394e+000<br />

2.2457e+000<br />

1.4378e+000<br />

7.7448e-001<br />

7.9937e-001<br />

1.4447e+000<br />

2.0849e+000<br />

2.0000e+000<br />

9.1704e-001<br />

-7.6317e-001<br />

-2.2173e+000<br />

1.6060e+000<br />

2.4394e+000<br />

2.2457e+000<br />

1.4378e+000<br />

7.7448e-001<br />

7.9937e-001<br />

1.4447e+000<br />

2.0849e+000<br />

2.0000e+000<br />

9.1704e-001<br />

-7.6317e-001<br />

-2.2173e+000<br />

Analog<br />

Low-Pass<br />

Filter<br />

Reconstruction Filters<br />

Time<br />

Analog<br />

Low-Pass<br />

Filter<br />

Sample Rate<br />

Volts<br />

Volts<br />

DAC<br />

Time<br />

Time


<strong>Freescale</strong> Technologies<br />

• ColdFire MAC architecture enables DSP<br />

algorithms<br />

• IIR and FIR filters gain performance with<br />

MAC instructions<br />

• Single instruction: Multiply-accumulate with<br />

load<br />

• Multiply two 16-bit word or 32-bit<br />

longword operands<br />

• Add 32-bit product to 32-bit accumulator<br />

(ACC) register<br />

• Load 32-bit longword for next instruction<br />

and increment address register (ptr)<br />

• Sample analog accelerometer data with<br />

ADC (3 kHz)<br />

• Execute two parallel digital filters<br />

• Send via USB: raw and filtered data,<br />

timestamp, filter execution cycles<br />

For more information, download the PDF<br />

ColdFire Technology and DSP from<br />

freescale.com/files/dsp/doc/ref_manual/<br />

CFDSPTechnology_DSP.<strong>pdf</strong>.<br />

Instrumentation Amplifier<br />

In medical instrumentation it is common<br />

to process signals with a lot of noise and<br />

small amplitude. For these reasons an<br />

instrumentation amplifier, which has high<br />

entrance impedance and high CMRR, is often<br />

used. This device can be built with discrete<br />

elements or can be obtained pre-built. The<br />

amplifier gets the differential between the<br />

signal and amplifier depending on the gain,<br />

which determines the signal amplitude.<br />

The gain recommended for medical<br />

applications is 1000 because the signal<br />

oscillates around 1 mV, and with this gain<br />

the signal can be amplified up to 1V. It is<br />

also recommended that for the first part you<br />

generate a gain of only 10 to avoid amplifier<br />

common-mode signals. Only filter the noise<br />

signals with this part, and amplify the rest of<br />

the signal with the differential amplifier.<br />

A =1+ 1 R2 R1 R +R 1 2<br />

A = 1<br />

R1 R 2 =(A 1 R 1 )-R 1<br />

A 2 = R 4<br />

R 3<br />

R 4 = A 2 R 3<br />

Appendix<br />

Figure A-6: ColdFire Demo Board (M52221 DEMO)<br />

Figure A-6: ColdFire Demo Board (M52221DEMO)<br />

Accelerometer<br />

Mechanical<br />

Oscillator<br />

A 1 = A 1 A 2<br />

Values to obtain a signal around 1V: Low gain: 10, High gain: 100, Total gain: 1000<br />

freescale .com/medical 107<br />

ADC<br />

Timers<br />

Filter 1<br />

Filter 2<br />

USB<br />

Debug<br />

Lab View<br />

ColdFire V2 MCU Laptop Host<br />

Figure A-7: Instrumentation Amplifier Design Diagram<br />

Figure A-7: Instrumentation Amplifier Design Diagram<br />

Vi 1<br />

Vid=<br />

(Vi 1 -Vi 2 )<br />

Vi 2<br />

2R 1<br />

R 2<br />

Vid/2R1 R2 R 3<br />

R 3<br />

Vid(1+2R 2 /2R 1 )<br />

R 4<br />

R 4<br />

Vo=R 4 /R 3 ( 1+R 2 /R 1 )Vid<br />

A=Vo/Vid


Appendix<br />

Analog Measurement<br />

Engine<br />

Some of the analog modules are commonly<br />

used in most of the medical applications.<br />

Therefore, it is necessary to add them in the<br />

design separately, which increases the<br />

PCB size and increases the cost. <strong>Freescale</strong><br />

medical-oriented solutions embed these<br />

modules—reducing PCB size, cost and<br />

increasing the design performance. Modules<br />

included in the analog measurement engine<br />

are: OPAMP, TRIAMP, ADC, DAC, ACMP, VREF<br />

and PDB. These modules are explained below.<br />

OPAMP<br />

Operational amplifiers (OPAMPS) have several<br />

purposes. They can be configured as simple<br />

as a buffer circuit or as complex as an N order<br />

filter, OPAMPS have a huge application field in<br />

the medical industry.<br />

<strong>Freescale</strong> medical oriented MCUs integrate<br />

operational amplifiers on chip. These OPAMPS<br />

can be configured to work as general purpose<br />

OPAMPS, buffer circuit or configurable gain<br />

inverting and non-inverting amplifiers.<br />

TRIAMPS<br />

Transimpedance amplifiers (TRIAMP) are<br />

special general purpose OPAMPS with<br />

reduced input offset voltage and bias current,<br />

ideal for applications which requires low<br />

amounts of voltage and current. TRIAMPS<br />

can be also used as general purpose OPAMPS<br />

to reduce BOM and PCB size.<br />

ACMP<br />

Analog comparators (ACMP) compare two<br />

analog inputs and generate a high or low<br />

state depending on the input values. Output<br />

is high when the positive input is greater than<br />

the negative input and low when the negative<br />

input is greater than the positive input. Analog<br />

comparators can be constantly checking the<br />

value of both inputs and generate an interrupt<br />

when a change occurs.<br />

Figure A-8: Test Strip Basic Block Diagram Using Flexis MM<br />

Figure A-8: Test Strip Basic Block Diagram Using Flexis MM<br />

Blood<br />

Sample<br />

Reactive<br />

Electrode<br />

External<br />

Components<br />

Embedded<br />

Transimpedance<br />

Amplifier<br />

Figure A-9: Kinetis K50 Family Block Diagram<br />

Figure A-9: Kinetis K50 Family<br />

Security<br />

and Integrity<br />

Cyclic<br />

Redundancy<br />

Check (CRC)<br />

Random<br />

Number<br />

Generator<br />

Cryptographic<br />

Acceleration<br />

Unit (CAU)<br />

Core<br />

ARM ® Cortex-M4<br />

72/100 MHz<br />

Debug<br />

Interfaces<br />

Interrupt<br />

Controller<br />

Standard Feature<br />

MCU/MPU<br />

System Memories<br />

Internal and<br />

External<br />

Watchdogs<br />

Memory<br />

Protection Unit<br />

(MPU)<br />

Embedded<br />

ADC<br />

Xtrinsic<br />

Low-Power<br />

Touch-Sensing<br />

Interface<br />

Segment<br />

LCD Controller<br />

Kinetis K50 Family of MCUs can provide up to 31 16-bit ADC channels<br />

108 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong><br />

DSP<br />

Analog<br />

16-bit<br />

ADC<br />

PGA<br />

Analog<br />

Comparator<br />

6-bit<br />

DAC<br />

12-bit<br />

DAC<br />

Voltage<br />

Reference<br />

OPAMP<br />

TRIAMP<br />

DMA<br />

Low-Leakage<br />

Wake-Up Unit<br />

Timers<br />

FlexTimer<br />

Carrier<br />

Modulator<br />

Transmitter<br />

Programmable<br />

Delay Block<br />

Periodic<br />

Interrupt<br />

Timer<br />

Low-Power<br />

Timer<br />

Independent<br />

Real-Time<br />

Clock (IRTC)<br />

IEEE ® 1588<br />

Timer<br />

Optional Feature<br />

Program<br />

Flash<br />

(128 to 512 KB)<br />

FlexMemory<br />

(32 to 256 KB)<br />

(2 to 4 KB EE)<br />

Serial<br />

Programming<br />

Interface<br />

(EZPort)<br />

SRAM<br />

(32 to 128 KB)<br />

External<br />

Bus Interface<br />

(FlexBus)<br />

Clocks<br />

Phase-Locked<br />

Loop<br />

Frequency-<br />

Locked Loop<br />

Low/High-<br />

Frequency<br />

Oscillators<br />

Internal<br />

Reference<br />

Clocks<br />

Communication Interfaces HMI<br />

I 2 C<br />

UART<br />

(ISO 7816)<br />

SPI<br />

IEEE 1588<br />

Ethernet MAC<br />

I 2 S<br />

Secure<br />

Digital Host<br />

Controller<br />

(SDHC)<br />

USB OTG<br />

(LS/FS)<br />

USB Charger<br />

Detect (DCD)<br />

USB Voltage<br />

Regulator<br />

GPIO


ADC<br />

Analog-to-digital converters (ADC) are one of<br />

the most important modules on the medical<br />

and overall electronics field. This module<br />

allows the conversion of an analog input<br />

into a digital value that can be processed<br />

by a MCU or MPU. ADCs output an N-bits<br />

value as a result of the conversion, and can<br />

take significant amount of PCB size placed<br />

separately. Embedded ADCs reduce PCB size<br />

and processing efforts reducing the access<br />

time to the result value.<br />

DAC<br />

The digital-to-analog converter (DAC)<br />

generates an analog voltage depending on<br />

the value in its input register and the module<br />

resolution. DACs are useful in the generation of<br />

reference voltages or as wave form generators.<br />

Electrocardiography uses DACs for ECG<br />

baseline adjustment.<br />

PDB<br />

The programmable delay block (PDB) provides<br />

controllable delays from either an internal<br />

or an external trigger, or a programmable<br />

interval tick, to the hardware trigger inputs of<br />

ADCs and/or generates the interval triggers<br />

to DACs, so that the precise timing between<br />

ADC conversions and/or DAC updates can<br />

be achieved. The PDB can optionally provide<br />

pulse outputs (pulse-outs) that are used as the<br />

sample window in the Analog Comparator.<br />

VREF<br />

VREF module generates a static voltage that<br />

can be used as a reference on an OPAMP,<br />

DAC, ACMP or other application without<br />

need of external regulators. Embedded VREF<br />

modules are programmable and can reduce<br />

the amount of external components on a PCB<br />

eliminating the need of external regulators or<br />

voltage dividers for VREF applications.<br />

Table A-1: Filters for <strong>Medical</strong> <strong>Applications</strong><br />

Appendix<br />

Type Circuit Cut frequency Equation<br />

Band-pass<br />

passive<br />

Reject-band<br />

passive<br />

0.1 Hz–150 Hz<br />

Heart operating range<br />

40 Hz–60 Hz<br />

Noise signal<br />

from the line<br />

Band-pass active 400 Hz–4 KHz<br />

Sound wave<br />

bounced (range<br />

depends of the<br />

transducer)<br />

Low-pass active 150 Hz<br />

Heart operating range (if<br />

the passive filter is not<br />

enough, use an active<br />

filter)<br />

High-pass filter<br />

active<br />

Filter Design<br />

A lot of noise is present in biophysical signals.<br />

To attenuate this noise, low pass filters and<br />

high pass filters are used to amplify the small<br />

AC components and reject DC components.<br />

The filters allow only the useful signals, which<br />

helps to attain a more accurate diagnosis.<br />

These filters can be built with passives<br />

or actives (op amps) depending on the<br />

application, although active filters are more<br />

effective at rejecting noise. Passive filters are<br />

more cost-effective and are suitable in some<br />

cases. Sometimes the MCU does not have a<br />

DAC. This can be built by the PWM module<br />

and external low pass filter to convert digital<br />

data to analog data.<br />

Some medical applications<br />

Not specific<br />

freescale .com/medical 109


Appendix<br />

Figure A-10: <strong>Applications</strong> Based on <strong>Medical</strong> Specialties<br />

110 <strong>Medical</strong> <strong>Applications</strong> <strong>User</strong> <strong>Guide</strong>


freescale .com/medical


How to<br />

Reach Us<br />

For additional information about <strong>Freescale</strong> medical solutions,<br />

please visit freescale.com/medical or email us at<br />

medicalsolutions@freescale.com<br />

Information in this document is provided solely to enable system and software implementers to use <strong>Freescale</strong> <strong>Semiconductor</strong> products.<br />

There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits<br />

based on the information in this document.<br />

<strong>Freescale</strong> <strong>Semiconductor</strong> reserves the right to make changes without further notice to any products herein. <strong>Freescale</strong> <strong>Semiconductor</strong><br />

makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does <strong>Freescale</strong><br />

<strong>Semiconductor</strong> assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any liability,<br />

including without limitation consequential or incidental damages. “Typical” parameters that may be provided in <strong>Freescale</strong> <strong>Semiconductor</strong><br />

data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating<br />

parameters, including “Typicals,” must be validated for each customer application by customer’s technical experts. <strong>Freescale</strong> <strong>Semiconductor</strong><br />

does not convey any license under its patent rights nor the rights of others. <strong>Freescale</strong> <strong>Semiconductor</strong> products are not designed, intended,<br />

or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or<br />

sustain life, or for any other application in which failure of the <strong>Freescale</strong> <strong>Semiconductor</strong> product could create a situation where personal<br />

injury or death may occur. Should Buyer purchase or use <strong>Freescale</strong> <strong>Semiconductor</strong> products for any such unintended or unauthorized<br />

application, Buyer shall indemnify <strong>Freescale</strong> <strong>Semiconductor</strong> and its officers, employees, subsidiaries, affiliates, and distributors harmless<br />

against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal<br />

injury or death associated with such unintended or unauthorized use, even if such claims alleges that <strong>Freescale</strong> <strong>Semiconductor</strong> was<br />

negligent regarding the design or manufacture of the part.<br />

RoHS-compliant and/or Pb-free versions of <strong>Freescale</strong> products have the functionality and electrical characteristics as their non-RoHScomplaint<br />

and/or non-Pb-free counterparts. For further information, visit freescale.com or contact your <strong>Freescale</strong> sales representative.<br />

For information on <strong>Freescale</strong>’s Environmental Products program, visit freescale.com/epp.<br />

<strong>Freescale</strong>, the <strong>Freescale</strong> logo, AltiVec, C-5, CodeTEST, CodeWarrior, ColdFire, C-Ware, Energy Efficient Solutions logo, Kinetis, mobileGT,<br />

PowerQUICC, Processor Expert, QorIQ, Qorivva, StarCore, Symphony and VortiQa are trademarks of <strong>Freescale</strong> <strong>Semiconductor</strong>, Inc., Reg.<br />

U.S. Pat. & Tm. Off. Airfast, BeeKit, BeeStack, ColdFire+, CoreNet, ColdFire+, Flexis, MagniV, MXC, Platform in a Package, QorIQ Qonverge,<br />

QUICC Engine, Ready Play, SafeAssure, SMARTMOS, TurboLink, Vybrid and Xtrinsic are trademarks of <strong>Freescale</strong> <strong>Semiconductor</strong>, Inc.<br />

All other product or service names are the property of their respective owners. © 2010, 2011, 2012 <strong>Freescale</strong> <strong>Semiconductor</strong>, Inc.<br />

Document Number: MDAPPUSGDRM118 REV 4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!