29.12.2012 Views

Presentation for RTD trainees - StorHy Hydrogen Storage

Presentation for RTD trainees - StorHy Hydrogen Storage

Presentation for RTD trainees - StorHy Hydrogen Storage

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

STORHY<br />

“<strong>Hydrogen</strong> <strong>Storage</strong> Systems <strong>for</strong> Automotive Application”<br />

Integrated Project n° 502667<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Volker Strubel<br />

Josef Zieger<br />

Sitra Colom<br />

Guido Bartlok<br />

Jiri Muller<br />

Georg Mair<br />

Florent Montignac<br />

Angelika Bertalanic


<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

1. Project Objectives<br />

<strong>StorHy</strong> – General Project In<strong>for</strong>mation<br />

“<strong>Hydrogen</strong> <strong>Storage</strong> Systems <strong>for</strong> Automotive Application”<br />

Integrated Project n° 502667 within the EU FP6<br />

Co-ordinator: MAGNA STEYR Fahrzeugtechnik AG & Co KG<br />

Time frame: 2004 – 2008 (4,5 years)<br />

Official project start: March 1 st , 2004<br />

Budget: € 18.7 m<br />

EU contribution: € 10.7 m<br />

Website: www.storhy.net<br />

34 partners from 13 European countries<br />

(5 OEMs, 14 research institutes and 15 supplier companies)


Source: Daimler Chrysler<br />

Gas:<br />

700 bar Technologies<br />

Source: Dynetek<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

1. Project Objectives<br />

<strong>StorHy</strong> – Overall Structure<br />

Users:<br />

Vehicle Requirements<br />

Source: BMW<br />

Source: PSA Source: Daimler Chrysler<br />

Liquid:<br />

Lightweight<br />

Free-<strong>for</strong>m Tank<br />

Source: SP Cryo<br />

Safety Aspects and Requirements<br />

Multi-Criteria Evaluation<br />

Solid:<br />

Advanced Alanates<br />

Source: IFE


<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

1. Project Objectives<br />

<strong>Hydrogen</strong> <strong>Storage</strong>: Consumer Expectations<br />

Public Acceptance of <strong>Hydrogen</strong> Applications –<br />

Study by DC<br />

Main conditions <strong>for</strong> consumer acceptance of FC vehicles*<br />

� Driving range<br />

� Refuelling process<br />

� High safety level<br />

� Vehicle costs<br />

� Communication / education<br />

*Excerpt only!


Consumer<br />

Expectations<br />

Driving range<br />

> 400 km – 600 km<br />

Driving per<strong>for</strong>mance<br />

Usable space<br />

Refuelling<br />

convenient and safe<br />

Safety<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

1. Project Objectives<br />

<strong>StorHy</strong>:<strong>Hydrogen</strong> <strong>Storage</strong> Requirements<br />

Technical<br />

Requirements<br />

Unit <strong>StorHy</strong><br />

Targets 2010<br />

<strong>Hydrogen</strong> storage mass kg 6 - 10<br />

System grav. energy density kWh/kg<br />

wt.%<br />

System vol. energy density kWh/l<br />

kg H 2 /100l<br />

Filling cycles 3*5,000<br />

Loss of usable H2 (boil-off) g/h *stored<br />

kg H2 1<br />

Vehicle costs Costs of storage system €/ kg H2 Not defined<br />

2.0<br />

6<br />

1.5<br />

4.5<br />

Refuelling rate kg H 2 /min 1.2<br />

Burst pressure 700 bar bar 1,645<br />

Permeation rate H 2 Ncm 3 /h *l EHIP II<br />

1


International technology watch<br />

� Increase of service pressure from 350 bar – 700 bar<br />

� 700 bar Type III fully wrapped aluminum liner<br />

� 700 bar Type IV fully wrapped non-load carrying plastic liner<br />

� 700 bar system prototypes or small series announced in<br />

USA, Japan and Europe<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

Compressed <strong>Hydrogen</strong> <strong>Storage</strong>:<br />

State-of-the-Art<br />

Source: Dynetek


700 bar Type III vessel with<br />

metallic liner made by deep drawing<br />

� Material & microstructure<br />

– Modified CrMo steels<br />

� Liner material characterization<br />

– 5 steels assessed concerning H 2<br />

embrittlement<br />

� 700 bar design & calculation<br />

– Analytical + FE calculations <strong>for</strong><br />

composite thickness + optimized<br />

modulus (fibre type) + winding path<br />

� Vessel testing<br />

– Ambient T cycling < 15,000 cycles<br />

– Burst factor: > 2.35<br />

– Other EIHP-II tests were per<strong>for</strong>med<br />

successfully<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

<strong>StorHy</strong>: 700 bar C-H 2 Vessels<br />

Source: AL<br />

Source: Faber<br />

Source: Faber<br />

Technical data:<br />

• Mass of vessel: 40 kg<br />

• Internal volume: 39 l<br />

• H 2 storage capacity: 3.85 wt.%<br />

• Operating pressure: 700 bar<br />

• H 2 mass stored: 1.6 kg


700 bar Type IV vessel with<br />

rotomoulded plastic liner<br />

� Polymeric material & microstructure<br />

– Development of specific PA6 <strong>for</strong>mation<br />

(permeation / mechanical elasticity /<br />

processability)<br />

� Liner material characterization:<br />

Permeation of PA polymer liner assessed<br />

at 700 bar f (T, p):<br />

– Material level: Pe ∼1*10-16mol/(Pa.s.m) – Vessel level: ongoing<br />

� 700 bar vessel design & calculation<br />

– Analytical + FE calculations<br />

<strong>for</strong> composite thickness<br />

� Vessel testing<br />

– Ambient T cycling > 15,000 cycles<br />

– Burst factor: 2.2<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

<strong>StorHy</strong>: 700 bar C-H2 Vessels<br />

Source: CEA/Ullit<br />

Source: CEA<br />

Technical data:<br />

• Mass of vessel: 29 kg<br />

• Internal volume: 37 l<br />

• H 2 storage capacity: 5.2 wt.%<br />

• Operating pressure: 700 bar<br />

• H 2 mass stored: 1.6kg


<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

<strong>StorHy</strong>: Test Results of C-H 2 Vessels<br />

Type III<br />

(steel liner)<br />

Type IV<br />

(PA liner)<br />

Thermoplastic<br />

modular system<br />

Burst test Passed Close to target Feasibility GF/PP<br />

Cycling test Not passed Passed Not tested yet<br />

Status<br />

Cycling behaviour<br />

to be improved<br />

Burst behaviour to<br />

be improved<br />

Feasibility at<br />

300 bar<br />

Typical failure mechanisms <strong>for</strong> C-H 2 vessels identified<br />

Measured proposed <strong>for</strong> further improvements steps:<br />

� R&D activities required <strong>for</strong> a fundamental understanding of<br />

aging & failure behaviour composite and liner materials,<br />

advanced modelling and simulation concepts


Steel liner<br />

Production<br />

Polymer liner<br />

Production:<br />

Rotomolding<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

<strong>StorHy</strong> contribution (excerpt)<br />

Liner fabrication Composite manufacturing Post processing<br />

Alu liner<br />

Production<br />

Polymer liner<br />

Production:<br />

Blow<strong>for</strong>ming<br />

2. Alignment to SRA/DS<br />

C-H 2 <strong>Storage</strong>: Production Steps<br />

CF raw materials Impregnation bath<br />

Filament winding Curing<br />

Autofrettage<br />

Process<br />

Vessel testing<br />

Recycling<br />

Dismantling<br />

Shreddering<br />

CF Recycling


Ring winding head with modular siphon impregnation<br />

units and suitable advancement of the path generation<br />

� Increase of the lay-down rate (> factor 3)<br />

� Better exploitation of the fibre per<strong>for</strong>mance, which entails weight<br />

reduction potentials <strong>for</strong> pressure vessels<br />

� Clean work station due to an almost closed system<br />

� Reduction of resin consumption<br />

� Almost no hazardous waste<br />

Winner of two Innovation Awards!<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

<strong>StorHy</strong>: C-H 2 Vessel Production –<br />

Improved Winding and Impregnation<br />

Source: IVW


� Development of pre-treatment technology<br />

– Hybrid shredder (Kema) selected<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

<strong>StorHy</strong>: C-H 2 Composite Vessel<br />

Recycling Concepts<br />

� Development of recycling processes<br />

– Fluidised bed process selected<br />

– Good quality fibre (similar stiffness<br />

Clean flue<br />

and 50% strength) has been recycled gas<br />

To energy<br />

recovery<br />

� R&D to increase material recycling rate: Afterburner<br />

– Microwave pyrolysis process in a<br />

fluidised bed<br />

– 86% total material recovery achieved<br />

(increase from 63% <strong>for</strong> fluidised bed) Air Inlet<br />

� Recycling of a thermoplastic composite<br />

vessel by granulation and injection moulding<br />

demonstrated (GF/PP COMAT system)<br />

Recovered<br />

Source: UNOTT<br />

CF fibre<br />

Twin screw shredder<br />

Fluidised Bed Recycling<br />

Cyclone<br />

300 mm<br />

Scrap CFRP<br />

Fan<br />

Recovered Fluidised<br />

Fibre<br />

Bed<br />

Electric Pre-heaters<br />

Air distributor<br />

plate


High pressure H 2<br />

V 1<br />

Booster Cooler<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

Refuelling C-H 2 : State-of-the-Art<br />

V 2<br />

700 bar filling nozzle<br />

Source: Weh<br />

� For fast filling, gaseous<br />

hydrogen needs to be cooled<br />

down to prevent excessive<br />

pressure and temperature<br />

levels<br />

� <strong>Hydrogen</strong> cooler required in<br />

the refuelling station!<br />

Source: Linde / Aral


Fast filling demonstrated on vessel<br />

level<br />

� Filling temperature down to -100°C<br />

demonstrated<br />

� 100% filling rate easy to reach<br />

� Gentle cylinder treatment compared to<br />

warm filling – but thermal stress <strong>for</strong><br />

storage components, esp. sealing<br />

� Cooling down to -40 °C seems to be<br />

good compromise<br />

� Deeper cooling still needs to be<br />

evaluated with regard to costs and<br />

material exposure<br />

700 bar cold (–40°C) filling test in<br />

F-Cell vehicle<br />

� Safe and optimized filling demonstrated Source: ET, AL, Dynetek, DC, Weh<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

<strong>StorHy</strong>: C-H 2 Cold Filling<br />

Technical data:<br />

• Filling T: -85°C<br />

• Filling time:


Advanced C-H 2 700 bar filling devices<br />

developed and tested:<br />

� Filling nozzle with infrared<br />

communication interface<br />

� Linear shut-off valve<br />

� Break-away device<br />

Sources: WEH<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

<strong>StorHy</strong>: C-H 2 700 bar Filling Devices<br />

Source: Weh<br />

Break-away device with<br />

infrared communications<br />

interface<br />

Linear shut-off valve<br />

Filling nozzle with/without infrared<br />

communication interface<br />

Start of commercialization


Source: MAGNA STEYR<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

Cryogenic Liquid <strong>Storage</strong> System<br />

International technology watch<br />

� Small series, automotive, approved L-H 2 storage systems with<br />

double-walled stainless cylinders<br />

� First cylindrical prototypes with lightweight aluminum tank<br />

shells<br />

� First flat-shaped prototypes with lightweight steel tank shells<br />

Source: Linde<br />

Source: Air Liquide


Structure and coating concepts <strong>for</strong> liner<br />

Moisture, air, oil, etc<br />

<strong>Hydrogen</strong><br />

Outgassing<br />

Outgassing<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

<strong>StorHy</strong>: L-H2 Lightweight Design<br />

Lightweight cylindrical tank<br />

Carbon fibre composite structure of inner tank and outer jacket<br />

Liner<br />

Outer Jacket Composite<br />

High Vacuum: 10 -5 – 10 -6 Liner<br />

mBar<br />

Liner<br />

Inner Tank Composite<br />

<strong>Hydrogen</strong><br />

Aluminium sheet (outer jacket)<br />

Galvanic copper coating<br />

(inner tank)<br />

Source: SP Cryo


Free-<strong>for</strong>m tank system with auxiliary system box<br />

Free-<strong>for</strong>m design<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

<strong>StorHy</strong>: L-H 2 Free-<strong>for</strong>m Design<br />

Risk analysis<br />

(FMEA and FTA)<br />

Free-<strong>for</strong>m tank<br />

demonstrator<br />

Source: SP Cryo<br />

Concept calculation<br />

(e.g. showing de<strong>for</strong>mation<br />

at 10.8 bar)<br />

Vehicle integration<br />

concepts


Weight [kg]<br />

Mass comparison of gasoline and L-H 2 tank systems<br />

Energy content equivalent to 10 kg hydrogen<br />

200<br />

175<br />

150<br />

125<br />

100<br />

75<br />

50<br />

25<br />

0<br />

10 kg<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

<strong>StorHy</strong>: L-H 2 Weight Reduction Potential<br />

3<br />

30<br />

65<br />

100 kg<br />

Gasoline 38 dm³ LH2 Steel<br />

E 68<br />

cylindrical shape<br />

25<br />

40 kg<br />

10 10 10<br />

LH2 Lightweight<br />

<strong>StorHy</strong><br />

cylindrical shape<br />

Auxiliary System<br />

Tank<br />

Fuel<br />

20<br />

25 kg<br />

LH2 Lightweight<br />

2010<br />

complex shape<br />

Source: SP Cryo


Pre-processing<br />

Component<br />

production<br />

Valves, Sensor<br />

Prepreg<br />

(e.g. knitting)<br />

Piping<br />

Insulation<br />

Alu liner<br />

<strong>StorHy</strong> contribution (excerpt SP Cryo)<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

Manufacturing process CFRP tank<br />

CFRP inner tank manufacturing<br />

Tension<br />

sheet<br />

Dome &<br />

pipes<br />

Inner tank - coating of liner<br />

CFRP outer jacket manufacturing<br />

Impregnation<br />

Curing<br />

Source: SP Cryo<br />

Post-processing<br />

Assembly<br />

Welding<br />

Evacuation of<br />

insulation gap<br />

Testing


International technology watch<br />

� Intensive international R&D ef<strong>for</strong>ts focus on different types of materials<br />

and storage systems<br />

But:<br />

� None of these materials fulfills automotive targets (storage density,<br />

operation temperature etc.) yet!<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

Solid <strong>Storage</strong><br />

• Metal and complex<br />

hydrides<br />

• Chemical hydrides<br />

• Nanoporous<br />

structures<br />

Source: DoE 2007


<strong>Storage</strong> Material<br />

Magnesium Alanate<br />

• Mg(AlH4 ) 2 : Solvent-free and fast synthesis<br />

• Deuterised Mg(AlD4 ) 2 <strong>for</strong> neutron diffraction<br />

• Structure of Mg(AlH 4 ) 2 : Neutron and<br />

synchrotron X-ray diffraction<br />

• Details of thermal and isothermal<br />

decomposition of Mg(AlH4 ) 2<br />

Sodium Alanate<br />

• Purification of NaAlH4 and synthesis of<br />

NaAlD4 Catalyst<br />

• Improved synthesis of catalyst: Ti13 *6THF<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

<strong>StorHy</strong>: Characterisation of Alanates<br />

First step: Magnesium and Sodium Alanates<br />

Automotive Challenges<br />

Scale-up strategies<br />

promising, but<br />

reversibility not sufficient!<br />

Source: IFE<br />

Source: FZK<br />

Scale-up strategies<br />

promising, but material<br />

storage density of 3 wt. %<br />

not sufficient<br />

Source: IFE, FZK


<strong>Storage</strong> Material<br />

Screening experiments <strong>for</strong> synthesis and<br />

characterization <strong>for</strong> new mixed alanates:<br />

• Mg-Al-Li-H, Mg-Al-Ca-H, Ca-Al-Li-H, Ca-Al-Na-H<br />

• Mg-Al-Li-H, Mg-Al-Ca-H, Mg-Al-Na-H, Mg-Al-K-H<br />

• Mg-Al-Li-H, Mg-Al-Ca-H, Ca-Al-K-H<br />

Synthesis and stabilisation of aluminium hydride<br />

AlH3 (Alane) – basic research purpose<br />

vial<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

<strong>StorHy</strong>: Screening <strong>for</strong> new Alanates<br />

Second step: Adaptation of work programme<br />

stainless<br />

steel<br />

impactor<br />

liquid nitrogen<br />

Spex 6750 freezer mill <strong>for</strong> cryomilling<br />

Source: IFE, FZK, GKSS<br />

INTENSITY (arb. units)<br />

8000<br />

6000<br />

4000<br />

2000<br />

800<br />

0<br />

α'-AlD 3 and α-AlD 3<br />

PND, Kjeller<br />

-800<br />

10 20 30 40 50 60 70 80 90 100 110 120 130<br />

2θ(º)<br />

Automotive Challenges<br />

No new reversible<br />

hydrogen storage<br />

compound found<br />

No break-through up to<br />

now<br />

High material storage<br />

density 10.1%, but not<br />

reversible!<br />

Simplified method to<br />

synthesize AlH 3 by milling at<br />

liquid nitrogen temperature,<br />

compared to wet chemistry<br />

Work in progress to change<br />

the stability of AlH 3


H 2 -concentration [wt.%]<br />

5<br />

4<br />

3<br />

2<br />

1<br />

2nd absorption<br />

Concept <strong>for</strong> upscaling of material production processes<br />

preparation<br />

from NaAlH4 simple preparation with Ti-nano<br />

from NaH/Al clusters,<br />

with TiCl , 125°C 100°C, 100 bar<br />

4<br />

100 bar (STORHY)<br />

(Fichtner et al.)<br />

preparation from<br />

NaAlH with TiCl , 125°C, 79-88 bar<br />

4 3<br />

(Sandrock et al.)<br />

0<br />

0 10 20 30 40 50 60<br />

Time [min.]<br />

Design and development of operational prototype solid storage tanks<br />

Laboratory tank <strong>for</strong> 0.5 kg of alanate<br />

Length: 40 cm / Diameter: 6 cm<br />

Capacity: 20 g H 2<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

2. Alignment to SRA/DS<br />

<strong>StorHy</strong>: Upscaling of Solid <strong>Storage</strong> Tank<br />

� Evaluation of low cost<br />

production routes <strong>for</strong> complex<br />

hydrides using catalysed NaAlH 4<br />

as model material<br />

� Up-scaling to kg amounts<br />

demonstrated at GKSS mechanical<br />

processing facility<br />

Source: GKSS/TUHH<br />

8 kg alanate Pilot tank<br />

(currently manufactured)<br />

Length: 120 cm, Diameter: 22 cm<br />

Capacity: 0.4 kg H 2,


Calculated per<strong>for</strong>mance of tanks based on lab-scale data (NaAlH 4 )<br />

<strong>Hydrogen</strong> absorbed in g<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Concept <strong>for</strong> filling<br />

� Hydride tank is cooled by external heat<br />

consumer working at approx. 100°C<br />

� Coupling of hydrogen and heat transfer<br />

medium prior to filling<br />

Concept <strong>for</strong> driving<br />

� Fuel cell is cooled to 80°C by hydride<br />

tank and internal heat exchanger<br />

0<br />

Alpha version<br />

100°C<br />

130°C<br />

290 s 458 s 540 s<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

273<br />

Oil<br />

625<br />

10<br />

1<br />

2 3<br />

9<br />

8<br />

7 6<br />

5 4 3<br />

2<br />

0 200 400 600 800 1000<br />

tins<br />

Ø 6<br />

Ø 10<br />

1236<br />

310 g<br />

4<br />

8<br />

5<br />

Simulation based on kinetic<br />

data obtained from optimized<br />

<strong>StorHy</strong> material produced in<br />

kg scale<br />

2. Alignment to SRA/DS<br />

<strong>StorHy</strong>: Solid Filling<br />

External<br />

Heat<br />

Consumer<br />

Quick coupling<br />

Internal heat<br />

exchanger<br />

Fuel cell<br />

Vehicle<br />

Source: NCSRD/GKSS/TUHH<br />

Heat<br />

transfer<br />

medium<br />

Hydride<br />

Tank<br />

<strong>Hydrogen</strong><br />

Less than 10 min. charging<br />

time expected even in costeffective<br />

design (pilot tank)


� Assessment of test procedures <strong>for</strong> C-H 2 vessels<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Bonfire<br />

� Interlaboratory tests at various European test facilities<br />

� Validation of hydrogen sensors<br />

3. Cross-cutting Issues:<br />

<strong>StorHy</strong>: Safety Assessment


-90°<br />

Development of test procedures <strong>for</strong> C-H 2 vessels:<br />

Impact test<br />

Estimation of<br />

statistical crash energies<br />

-60°<br />

-120°<br />

Polarplot Crashenergy [KJ]<br />

-30°<br />

-150°<br />

300<br />

250<br />

200<br />

150<br />

100<br />

50<br />

0<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

0°<br />

180°<br />

10%<br />

50%<br />

90%<br />

99%<br />

Source: BAM, Cidaut<br />

3. Cross-cutting Issues:<br />

<strong>StorHy</strong>: Safety Assessment of C-H 2 <strong>Storage</strong><br />

30°<br />

150 °<br />

60°<br />

120°<br />

90°<br />

Estimation of energy<br />

impacting on storage<br />

system in crash models<br />

Assessment of the<br />

residual burst strength<br />

Vessel impact tests


of Solid <strong>Storage</strong> Materials<br />

Alanate powder release experiments<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Ignition by water droplets<br />

Flame 240 ms 240 ms<br />

560 ms<br />

3. Cross-cutting Issues:<br />

<strong>StorHy</strong>: Chemical Safety Experiments<br />

1. Disk bursts at p = 10 bar<br />

2. Material is released into various environments<br />

30 ms 60 ms<br />

3. High speed images<br />

4. Assessment of sound levels<br />

Source: FZK<br />

opening of burst disc<br />

560 ms<br />

Pure hydrogen<br />

reproduction<br />

2005<br />

Water mist<br />

Spark ignition


Multi-criteria evaluation<br />

� Five different evaluation domains addressed<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Technical per<strong>for</strong>mance<br />

Costs Safety<br />

Environmental impact<br />

3. Cross-cutting Issues:<br />

<strong>StorHy</strong>: Evaluation<br />

� Focus on technical and environmental parameters<br />

Social acceptance<br />

Source: CEA


Volumetric energy density [kg H 2 /100 l]<br />

Comparison of system storage densities<br />

5.00<br />

4.00<br />

3.00<br />

2.00<br />

1.00<br />

0.00<br />

Solid <strong>Storage</strong><br />

System Reference<br />

Solid <strong>Storage</strong> <strong>StorHy</strong><br />

System NaAlH 4<br />

(Not yet optimised)<br />

0.00 2.00 4.00 6.00 8.00 10.00 12.00 14.00 16.00 18.00 20.00<br />

Gravimetric energy density [wt.%]<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

?<br />

C-H 2 <strong>StorHy</strong> 700 bar<br />

Swap Rack<br />

C-H 2 Referenc 350 bar<br />

Swap Rack<br />

<strong>StorHy</strong> target<br />

6 wt.%<br />

<strong>StorHy</strong> Target<br />

4.5 kg H 2 /100 l<br />

C-H 2 <strong>StorHy</strong> System Type IV 700<br />

bar (extrap.)<br />

C-H 2 Reference System<br />

Typ III H 2 350 bar<br />

4. Future Perspectives<br />

<strong>StorHy</strong>: Evaluation<br />

L-H 2 <strong>StorHy</strong> System<br />

Lightweight Free-<strong>for</strong>m<br />

(extrap.)<br />

L-H 2 <strong>StorHy</strong> System<br />

Lightweight Cylindrical<br />

L-H 2 Reference System<br />

Stainless Steel


Medium-class Car: Fuel cell vehicle with C-H 2 storage<br />

Today:<br />

� Driving range lower<br />

than 400 km<br />

e.g. F-Cell 2002<br />

Source: DC<br />

Power el.: 72 kW<br />

<strong>Hydrogen</strong> mass: 1.9 kg<br />

C-H2 storage: 350 bar<br />

Max. speed: 150 km/h<br />

Range: 150 km<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

4. Future Perspectives<br />

<strong>Hydrogen</strong> <strong>Storage</strong> in different<br />

Vehicle Concepts<br />

Tomorrow:<br />

� Driving range of 400 km to 500 km by<br />

700 bar C-H2 storage systems<br />

e.g. F600 Hygenius Concept Car<br />

Source: DC<br />

Cooling<br />

System<br />

System<br />

module<br />

Power: 60/85 kW<br />

<strong>Hydrogen</strong> mass: 4 kg<br />

C-H2 storage: 700 bar<br />

Max. speed: 174 km/h<br />

Range: >400 km<br />

Source: DC<br />

Battery


Delivery van: FC City Car with range extender<br />

Today: Tomorrow:<br />

Source: PSA<br />

Power el. 28 kW<br />

Max. speed: 95 km/h<br />

FC power 5 kW<br />

Battery: 15 kWh<br />

<strong>Hydrogen</strong> C-H2 @350bar: 1,6 kg<br />

Range H2 : 70 km<br />

Range Battery: 80 km<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

4. Future Perspectives<br />

<strong>Hydrogen</strong> <strong>Storage</strong> in different<br />

Vehicle Concepts<br />

Source: PSA<br />

Power 28 kW<br />

Max. speed: 95 km/h<br />

FC power: 10 kW<br />

Battery: 15 kWh<br />

<strong>Hydrogen</strong> C-H2 @700bar: 2,7 kg<br />

Range H2 : 170 km<br />

Range Battery: 80 km


Today: Tomorrow:<br />

Bi-Fuel (L-H 2 + Gasoline)<br />

Source: MAGNA STEYR<br />

Power: 191 kW (260 bhp)<br />

<strong>Hydrogen</strong> mass: > 8 kg<br />

L-H2 storage: Stainless steel<br />

Cylindrical<br />

Range H2 : > 200 km<br />

+ Range Gasoline: > 500 km<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Source: BMW<br />

4. Future Perspectives<br />

<strong>Hydrogen</strong> <strong>Storage</strong> in different<br />

Vehicle Concepts<br />

<strong>Hydrogen</strong> ICE with L-H 2 <strong>Storage</strong><br />

Monofuel (L-H 2)<br />

- Highly efficient hydrogen ICE<br />

- Lightweight cryogenic storage<br />

Power: > 100 kW (136 bhp)<br />

<strong>Hydrogen</strong> mass: > 7 kg<br />

L-H2 storage: Lightweight<br />

Free-<strong>for</strong>m shape<br />

Range H2 : > 500 km<br />

+


C-H 2 storage<br />

� <strong>Storage</strong> densities of ~4.5 wt.% and ~2.4 kg H 2/100 l are achievable<br />

on system level<br />

� <strong>StorHy</strong> results regarding C-H 2 vessels close up to worldwide R&D<br />

� Further optimisation requires fundamental understanding of<br />

ageing and failure behaviour of composite and liner materials,<br />

modelling and simulation concepts<br />

� <strong>StorHy</strong> results on filling components and production concepts<br />

show promising advanced solutions<br />

� Further cost reduction requires new industrialisation concepts <strong>for</strong><br />

mass production and new CF fibres<br />

� Higher storage densities and further cost reduction require change<br />

of Regulations, Codes & Standards as well as new vehicle<br />

plat<strong>for</strong>ms (e.g. compatible with single cylinder storage concepts)<br />

� New advanced safety approach necessary in the future, e.g. based<br />

on Probabilistic Safety Assessment<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

4. Future Perspectives<br />

<strong>StorHy</strong>: Preliminary Conclusions


L-H 2 storage<br />

� <strong>Storage</strong> densities up to 14 wt.% and 4 kg H 2/100 l are achievable on<br />

system level <strong>for</strong> metal design, even up to 18 wt.% using advanced<br />

composite materials<br />

� <strong>StorHy</strong> results demonstrate a free <strong>for</strong>m tank design with improved<br />

con<strong>for</strong>mability to better enable vehicle integration<br />

� <strong>StorHy</strong> results show promising advanced solutions beyond<br />

worldwide R&D, but still further R&D ef<strong>for</strong>ts are required <strong>for</strong><br />

industrialisation and system validation<br />

� Substantial cost reduction is indispensable<br />

� Lightweight L-H 2 storage systems show considerable potential in<br />

combination with new H 2 ICE<br />

� Further L-H 2 specific challenges, such as boil-off and permeation,<br />

have to be addressed<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

4. Future Perspectives<br />

<strong>StorHy</strong>: Preliminary Conclusions


Solid <strong>Storage</strong> (1)<br />

� Up to now, storage densities of ~2 wt.% are achieveable on system<br />

level with complex hydrides on alanate basis<br />

� At present, no solid storage material fulfils the major targets <strong>for</strong><br />

automotive applications<br />

� <strong>StorHy</strong> tank development demonstrates feasibility of a fast heat<br />

removal using lightweight complex hydrides<br />

� <strong>StorHy</strong> safety study shows minimised explosion in case of<br />

hydrogen release<br />

� <strong>StorHy</strong> up-scaling results show high potential <strong>for</strong> mass production<br />

of complex light weight hydrides at low costs<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

4. Future Perspectives<br />

<strong>StorHy</strong>: Preliminary Conclusions


Solid <strong>Storage</strong> (2)<br />

� Further research <strong>for</strong> novel storage materials with improved storage<br />

densities, kinetics and thermodynamic behaviour as well as <strong>for</strong><br />

advanced system components, e.g. heat exchanger, is still required<br />

� Automotive solutions are not realistic in the medium term<br />

� Stationary or marine applications have more potentials <strong>for</strong> a market<br />

entry in the near future<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

4. Future Perspectives<br />

<strong>StorHy</strong>: Preliminary Conclusions


General conclusions<br />

Beyond <strong>StorHy</strong>, further R&D activities are proposed <strong>for</strong>:<br />

� In-depth system/vehicle validation in demonstration projects<br />

� Industrialisation and cost reduction concepts<br />

� Safety assessment and new advanced safety approaches<br />

� Optimisation of Regulations, Codes & Standards (e.g design<br />

requirements <strong>for</strong> pressure vessels)<br />

� New storage concepts, such as pressure tanks with new high<br />

per<strong>for</strong>mance tensile fibres, hybrid tanks (pressure / cryogenic /<br />

solid storage), etc.<br />

� User-oriented fundamental research on solid storage materials,<br />

their safety and technical development of solid storage tanks<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

4. Future Perspectives<br />

<strong>StorHy</strong>: Preliminary Conclusions


<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

More in<strong>for</strong>mation?<br />

Join the<br />

4. Future Perspectives<br />

<strong>StorHy</strong> Dissemination<br />

<strong>StorHy</strong> Dissemination Event:<br />

“<strong>Hydrogen</strong> <strong>Storage</strong> Perspectives of the Future”<br />

Date: June 2008<br />

Further in<strong>for</strong>mation shortly on www.storhy.net!<br />

Or contact: volker.strubel@magnasteyr.com


<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Backup only!


<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Source: MAGNA STEYR<br />

Back up<br />

L-H 2 <strong>Storage</strong> System<br />

Outer jacket<br />

- Outer vessel<br />

- Thermal insulation<br />

- Refueling interface<br />

- Outer support<br />

Inner tank<br />

- Inner vessel<br />

- Level measurement<br />

-Pipework<br />

- Cryogenic shut-off valves<br />

- Inner tank support<br />

Auxiliary System Box<br />

- Shut-off valves<br />

- Control valve<br />

- Safety relief valves<br />

- Sensors (p, T, H 2 )<br />

- Heat exchanger


Solenoid<br />

valve<br />

Venting<br />

pipe<br />

Fixing<br />

Electrical<br />

connections<br />

Source: Dynetek<br />

Valves,<br />

Fittings<br />

Pressure<br />

regulator<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Sensors<br />

Low<br />

pressure<br />

connection<br />

Back up<br />

C-H 2 <strong>Storage</strong> System<br />

High<br />

pressure<br />

vessel<br />

High<br />

pressure<br />

connection<br />

Type 3<br />

Type 4<br />

Fully wrapped<br />

cylinder &<br />

metallic liner<br />

Fully wrapped<br />

cylinder &<br />

non-load carrying<br />

(plastic) liner


Source: Dynetek<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Back up<br />

C-H 2 <strong>Storage</strong> Reference System<br />

Source: SP Users


Source: Magna Steyr<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Back up<br />

L-H 2 <strong>Storage</strong> Reference System<br />

Source: SP Users


Source: DC<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Back up<br />

Solid <strong>Storage</strong> Reference System<br />

Source: SP Users


� Material & microstructure<br />

– Extruded multi-layer based PA<br />

� Liner material characterization<br />

– 8 multilayer polymers assessed: f (p,T)<br />

– Permeation: 2*10-18mol/(Pa.s.m) -> OK<br />

� 700 bar vessel design & calculation<br />

– Optimized end cap design<br />

– CF/PA 700 bar system<br />

– GF/PP 200 bar system<br />

� CF <strong>for</strong> this thermoplastic composite not<br />

available yet!<br />

� Vessel testing (GF/PP)<br />

– Burst pressure = 460 bar<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Back up<br />

<strong>StorHy</strong>: 700 bar C-H 2 Vessels<br />

700 bar modular system with extruded plastic liner<br />

and thermoplastic composite<br />

Source: COMAT<br />

Technical data (CF/PA design):<br />

• Mass of vessel: 10.9 kg<br />

• Internal volume: 9 l<br />

• H 2 storage capacity: 3.5 wt.%<br />

• Design pressure: 700 bar<br />

• H 2 mass stored: 0.4 kg


Type Measure Ef<strong>for</strong>t Contribution<br />

IV<br />

IV<br />

IV<br />

III<br />

III/IV<br />

III/IV<br />

III/IV<br />

III/IV<br />

III/IV<br />

Improve burst behavior<br />

(design, process)<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Low 100% burst<br />

Temperature cycling + burst Low Reliability of Type IV<br />

Evaluate tightness after thermal &<br />

mechanical ageing (=> depending on<br />

permeation results)<br />

Low Improved permeation<br />

reliability of Type IV<br />

Improve cycling behaviour Medium Cycling feasibility<br />

Low / high temperature exposure risk Medium Safety<br />

Long term behavior (creep…) Medium Safety<br />

Improve design requirements (safety<br />

factors)<br />

Back up<br />

<strong>StorHy</strong>: Recommendations <strong>for</strong> C-H 2<br />

High Weight, costs<br />

Innovative manufacturing concepts High Weight, costs<br />

New innovative fibers High Weight, costs<br />

Reliable and low cost components Medium Weight, costs, reliability


Source: BAM<br />

AE<br />

criterion<br />

10<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

Back up<br />

<strong>StorHy</strong>: C-H 2 Vessel Production -<br />

Quality Survey during Autofrettage<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

Normalized internal pressure<br />

Defect<br />

type I<br />

1<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

(cylinder 1)<br />

test pressure<br />

autofrettage pressure (yileding of metal liner)<br />

nominal working pressure (15°C)<br />

residual strain of wrapping after autofrettage<br />

burst pressure<br />

0<br />

0 0,2 0,4 0,6 0,8 1<br />

Defect<br />

type I<br />

(cylinder 2)<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

Defect<br />

type II<br />

(cylinder 3)<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

Normalized strain<br />

Acoustic Emission (AE)<br />

Example:<br />

Typ III (CNG) cylinder = metal liner<br />

with full CF/Epoxy wrapping<br />

Defect<br />

type II<br />

(cylinder 4)<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

“Defect”<br />

type III<br />

(cylinder 5)<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

��<br />

fibre break<br />

Normalised values<br />

1,0<br />

0,8<br />

0,6<br />

0,4<br />

0,2<br />

strain intensity<br />

0,0<br />

0,0 0,2 0,4 0,6 0,8 1,0<br />

Normalised autofrettage pressure<br />

AE accumulation<br />

AE Quality Survey<br />

Concepts:<br />

� Successful in<br />

detecting every<br />

manufacturing<br />

defect by at least 2<br />

of 10 developed AEcriteria!<br />

see: �


Development of test procedures <strong>for</strong> C-H2 vessels:<br />

Bonfire test<br />

Concept of modular testing<br />

Test of<br />

Pressure Relief<br />

Devices (PRD)<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Back up<br />

<strong>StorHy</strong>: Safety Assessment of C-H 2 <strong>Storage</strong><br />

Validation of<br />

combination<br />

Pressure or burst pressure p in [MPa]<br />

pBurst<br />

p0<br />

tIgnition<br />

pBurst<br />

m > m0<br />

Burst pressure line as a function of the filling<br />

m0<br />

insufficient PRD<br />

well adjusted PRD<br />

m < m0<br />

m


AL<br />

Interlaboratory tests to evaluate<br />

C-H 2 testing facilities<br />

BAM<br />

Faber<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Back up<br />

<strong>StorHy</strong>: Safety Assessment of C-H 2 <strong>Storage</strong><br />

WUT<br />

Tool kit<br />

Measuring<br />

Device<br />

Sensors<br />

� Tests per<strong>for</strong>med at BAM,<br />

WUT, Faber and AL<br />

� Tests show relevance of<br />

influence of testing facilities<br />

on life-time of C-H 2 vessels<br />

Source: BAM<br />

Adapter<br />

Test cylinder<br />

Paris Paris<br />

Wroclaw Wroclaw<br />

Udine Udine


Tests of optical fibre sensors <strong>for</strong><br />

detecting defects of C-H 2 vessels<br />

� Sensor technologies<br />

– Fibre Bragg gratings<br />

– Microbending optical fibres<br />

� Cycling tests<br />

– Type III: detectable increase in local de<strong>for</strong>mation<br />

– Type IV: correlation of optical signals and CF fibre<br />

fatigue level to be demonstrated<br />

� Burst test (<strong>for</strong> type IV)<br />

– Linear de<strong>for</strong>mation of vessel<br />

– Detection depends on sensor localization<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Back up<br />

<strong>StorHy</strong>: On-board Monitoring System<br />

Source: WUT


Training Course ‘<strong>StorHy</strong> TRAIN-IN 2006’<br />

� One week full time training course<br />

on hydrogen storage technologies<br />

� Date: September 25 th -29 th , 2006<br />

� Location: University of Applied<br />

Sciences, Ingolstadt, Germany<br />

� Over 80 participants from 20 countries<br />

(students, PhD students, scientists,<br />

researchers and company representatives)<br />

� 25 theoretical and practical lectures,<br />

hardware exhibitions and excursions<br />

� Very good feedback by participants<br />

� All lecture handouts and results online<br />

on www.storhy.net<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Back-up<br />

<strong>StorHy</strong> Training Course


Cost reduction of C-H 2 storage systems<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Back up<br />

<strong>StorHy</strong>: Cost Estimation<br />

Source: DC


Magnesium Alanate:<br />

Fundamental work on synthesis, structural and thermal properties<br />

allowed a complete characterization of this promising complex<br />

hydride. However, the unfavourable thermodynamic properties of<br />

this material made the Mg-Alanate not suitable <strong>for</strong> hydrogen<br />

storage.<br />

Sodium Alanate:<br />

Fundamental work carried out with this material in order to<br />

improve the kinetics allowed gaining insight into the reaction<br />

upon cycling under hydrogen. Indeed, XAS studies explained why<br />

the capacity decreases after some dehydrogenation /<br />

hydrogenation cycles and why the kinetics slow down at the same<br />

time. This knowledge in turn allowed a cost-effective production<br />

method of Al-based hydrogen storage material.<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Back up<br />

<strong>StorHy</strong>: Work on Alanates


Complex mixed Alanates:<br />

The following systems {[MgH 2 + Al + LiH] and [MgH 2 + LiAlH 4 ]} are<br />

extremely lightweight compounds, with a potential to achieve high<br />

gravimetric storage densities <strong>for</strong> hydrogen. (MgH 2 + LiAlH 4 ) appear<br />

as the most promising systems in terms of the <strong>for</strong>mation of a new<br />

phase and the subsequent decomposition kinetics. However,<br />

further work is necessary to identify and isolate this new phase in<br />

order to conclude on the suitability of the material <strong>for</strong> hydrogen<br />

storage.<br />

<strong>Hydrogen</strong> and Fuel Cell Review Days 2007, Brussels 10th-11th October<br />

Back up<br />

<strong>StorHy</strong>: Work on mixed Alanates

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!