05.01.2013 Views

Effect of Oxidation on the Chemistry of Asphalt and its Fractions

Effect of Oxidation on the Chemistry of Asphalt and its Fractions

Effect of Oxidation on the Chemistry of Asphalt and its Fractions

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Oxidati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>the</strong> <strong>Chemistry</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Asphalt</strong> <strong>and</strong> <strong>its</strong> Fracti<strong>on</strong>s<br />

ABSTRACT<br />

Mohammad Nahid Siddiqui<br />

Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Chemistry</strong><br />

King Fahd University <str<strong>on</strong>g>of</str<strong>on</strong>g> Petroleum & Minerals<br />

Dhahran 31261, Saudi Arabia<br />

E-mail: mnahid@kfupm.edu.sa<br />

The compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> asphalt is very important as it plays a vital role in determining <strong>its</strong><br />

performance-related properties. The main problem in studying asphalt compositi<strong>on</strong> is <strong>its</strong><br />

chemical complexity; however, <strong>the</strong> characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> asphalt can better be achieved by<br />

separating into different fracti<strong>on</strong>s. In this work, <strong>the</strong> chemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> commercial grade<br />

asphalt procured from Al-Ahmadi refinery, Kuwait was evaluated. The rolling thin film oven<br />

(RTFO), termed as short-term aging, <strong>and</strong> pressurized aging vessel (PAV), termed as l<strong>on</strong>g-term<br />

aging, tests were used to simulate <strong>the</strong> laboratory aging <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> asphalt. The asphalt was<br />

fracti<strong>on</strong>ated using normal alkane chiefly into two fracti<strong>on</strong>s such as insoluble asphaltenes <strong>and</strong><br />

soluble maltenes. The maltenes were fur<strong>the</strong>r fracti<strong>on</strong>ated into polar aromatics, naph<strong>the</strong>ne<br />

aromatics, <strong>and</strong> saturates. Different spectroscopic <strong>and</strong> analytical techniques were used to<br />

investigate <strong>the</strong> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> oxidati<strong>on</strong> <strong>on</strong> <strong>the</strong> chemical compositi<strong>on</strong> <strong>and</strong> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> asphaltenes.<br />

Nuclear magnetic res<strong>on</strong>ance <strong>and</strong> infrared combined have provided very useful informati<strong>on</strong><br />

c<strong>on</strong>cerning <strong>the</strong> changes in <strong>the</strong> chemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> asphaltenes occurred during <strong>the</strong> oxidati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> asphalt.<br />

INTRODUCTION<br />

<strong>Asphalt</strong> is a black viscous liquid or solid obtained by refinery processes from petroleum.<br />

<strong>Asphalt</strong>s are manufactured by <strong>the</strong> following processes: (1) atmospheric <strong>and</strong> vacuum distillati<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> crude oils, (2) oxidati<strong>on</strong> or air blowing <str<strong>on</strong>g>of</str<strong>on</strong>g> residues from distillati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crude oils, (3)<br />

deasphalting <str<strong>on</strong>g>of</str<strong>on</strong>g> petroleum residues <str<strong>on</strong>g>of</str<strong>on</strong>g> lubricating oil <strong>and</strong> asphalt origin, <strong>and</strong> (4) blending hard<br />

propane asphalt from deasphalting unit with resins <strong>and</strong> oils (extracts). The chemical compositi<strong>on</strong>


<str<strong>on</strong>g>of</str<strong>on</strong>g> asphalt is complex <strong>and</strong> varies c<strong>on</strong>siderably dependent up<strong>on</strong> feedstock <strong>and</strong> method <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

manufacture. The most widely accepted c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> c<strong>on</strong>stituti<strong>on</strong> is that asphalt is made up <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

three major comp<strong>on</strong>ents: asphaltenes, resins <strong>and</strong> oils. The c<strong>on</strong>sistency <str<strong>on</strong>g>of</str<strong>on</strong>g> asphalt can vary almost<br />

infinitely by <strong>the</strong> variati<strong>on</strong>s in <strong>the</strong> proporti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> comp<strong>on</strong>ents. Relatively high asphaltenes<br />

c<strong>on</strong>tent is generally desirable. The absence <str<strong>on</strong>g>of</str<strong>on</strong>g> sufficient asphaltenes tends to result in an asphalt<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> oily character <strong>and</strong> poor quality [1].<br />

<strong>Asphalt</strong>enes are a dark brown to black material c<strong>on</strong>taining large fused aromatic rings bearing<br />

l<strong>on</strong>g aliphatic substituents <strong>and</strong> saturated paraffins as straight chain <strong>and</strong> branched compounds<br />

al<strong>on</strong>g with metals <strong>and</strong> heteroatoms as part <str<strong>on</strong>g>of</str<strong>on</strong>g> a ring system. The asphaltenes have been<br />

c<strong>on</strong>sidered to be repeating un<strong>its</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> similar compositi<strong>on</strong> with <strong>the</strong> major difference being mainly in<br />

<strong>the</strong> aromaticity [2].<br />

Nuclear Magnetic Res<strong>on</strong>ance (NMR) spectroscopy provides both statistical <strong>and</strong> structural<br />

informati<strong>on</strong> about <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <strong>and</strong> hydrogen atoms present in different chemical<br />

envir<strong>on</strong>ments <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> complex petroleum matrix. 1 H NMR has been employed to estimate <strong>the</strong><br />

aromatic ring distributi<strong>on</strong> in heavy oils <strong>and</strong> bitumen assuming equal degree <str<strong>on</strong>g>of</str<strong>on</strong>g> substituti<strong>on</strong> i.e.<br />

equal number <str<strong>on</strong>g>of</str<strong>on</strong>g> substituents <strong>on</strong> aromatic rings. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> 13C NMR spectroscopy has been<br />

applied extensively for <strong>the</strong> characterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> crudes <strong>and</strong> <strong>the</strong>ir fracti<strong>on</strong> [3]. 13 C NMR is<br />

employed to make a clear distincti<strong>on</strong> between aliphatic <strong>and</strong> aromatic hydrocarb<strong>on</strong>s. By using 1 H<br />

<strong>and</strong> 13 C NMR <strong>on</strong>e can obtain informati<strong>on</strong> in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> average structural parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> asphalt<br />

<strong>and</strong> asphaltenes such as percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> aromatic carb<strong>on</strong>s, aliphatic carb<strong>on</strong>s, bridged carb<strong>on</strong>s,<br />

methyl carb<strong>on</strong>s, ring carb<strong>on</strong>s, naph<strong>the</strong>nic carb<strong>on</strong>s, paraffinic chain lengths <strong>and</strong> o<strong>the</strong>r parameters<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> such nature in c<strong>on</strong>juncti<strong>on</strong> with elemental analysis data [4]. Important average structural<br />

parameters like total C/H ratio; Csat/Hsat ratio, aromaticity <strong>and</strong> compactness index (fc) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

aromatic part <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> asphaltenes has also been derived. The aromaticity (fa) is defined as <strong>the</strong><br />

ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> aromatic carb<strong>on</strong>s to <strong>the</strong> total carb<strong>on</strong> c<strong>on</strong>tent estimated respectively from 13 C <strong>and</strong> 1 H-<br />

NMR spectra, <strong>and</strong> is explained due to n<strong>on</strong>-accountability <str<strong>on</strong>g>of</str<strong>on</strong>g> quaternary aromatic carb<strong>on</strong>s in 1 H-<br />

NMR spectra.<br />

2


Infrared spectroscopy provides both supplementary <strong>and</strong> complimentary data to NMR<br />

spectroscopy to enable fairly detailed informati<strong>on</strong> <strong>on</strong> <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> CHn groups <strong>and</strong> widely<br />

used to identify <strong>the</strong> functi<strong>on</strong>al groups in asphalt <strong>and</strong> <strong>the</strong>ir sub-fracti<strong>on</strong>s. The characteristic<br />

frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al groups which include free <strong>and</strong> hydrogen b<strong>on</strong>ded OH <strong>and</strong> NH groups,<br />

carb<strong>on</strong>yls, carboxylic acids, pyridines, pyrroles, e<strong>the</strong>r linkages <strong>and</strong> some o<strong>the</strong>rs are well<br />

documented in <strong>the</strong> literature [5,6]. It has also been used for quantitative determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various<br />

functi<strong>on</strong>al groups like phenol, pyrrole, carboxyl, ket<strong>on</strong>e, amide <strong>and</strong> sulfoxide in Vacuum<br />

Residue <strong>and</strong> <strong>the</strong>ir solvent extracted fracti<strong>on</strong> [7]. In o<strong>the</strong>r studies, methods are proposed for <strong>the</strong><br />

quantitative estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> compounds absorbing in <strong>the</strong> carb<strong>on</strong>yl regi<strong>on</strong> in bitumen samples<br />

[8] <strong>and</strong> determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur compound types (i.e. sulfoxides, sulfides <strong>and</strong> thiopenes) in<br />

asphaltenes by IR spectroscopy [9,10].<br />

<strong>Asphalt</strong> Sample Collecti<strong>on</strong><br />

EXPERIMENTAL<br />

<strong>Asphalt</strong> sample were collected from Al-Ahmadi refinery, Kuwait (KW), which supplies all <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong><br />

asphalt cement needed for c<strong>on</strong>structi<strong>on</strong> in <strong>the</strong> state <str<strong>on</strong>g>of</str<strong>on</strong>g> Kuwait. A Ratawi-Burgan crude oil mix is<br />

used to produce 750-1000 t<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> asphalt per day using vacuum distillati<strong>on</strong> <strong>and</strong> air blowing to<br />

produce <strong>the</strong> required asphalt grade.<br />

Fracti<strong>on</strong>ati<strong>on</strong> by Precipitati<strong>on</strong> Method<br />

The separati<strong>on</strong> method used to divide asphalt into operati<strong>on</strong>ally defined fracti<strong>on</strong>s was developed<br />

by Corbett <strong>and</strong> later adopted as a st<strong>and</strong>ard procedure by ASTM (ASTM D-4124) [11]. The<br />

scheme <strong>and</strong> <strong>the</strong> names given to <strong>the</strong> separated fracti<strong>on</strong>s obtained from this procedure are<br />

described in Figure 1. This method involves precipitating an asphaltene fracti<strong>on</strong> by mixing<br />

whole asphalt in n-heptane solvent. The heptane soluble (maltenes) are <strong>the</strong>n separated by<br />

adsorpti<strong>on</strong> <strong>on</strong> alumina <strong>and</strong> subsequent desorpti<strong>on</strong> with solvents <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing polarity (toluene,<br />

methanol/toluene, <strong>and</strong> trichloroethylene).<br />

3


MALTENES<br />

Adsorpti<strong>on</strong> / Desorpti<strong>on</strong><br />

Chromatography<br />

<strong>on</strong> Alumina<br />

n-Heptane<br />

Toulene<br />

ASPHALT<br />

n-Heptane<br />

Methanol-Toluene<br />

Trichloroethylene<br />

Precipitati<strong>on</strong><br />

ASPHALTENES<br />

SATURATES<br />

NAPHTHENE<br />

AROMATICS<br />

POLAR<br />

AROMATICS<br />

Figure 1: Adsorpti<strong>on</strong>\desorpti<strong>on</strong> chromatography (ASTM D-4124)<br />

Infrared Spectroscopy<br />

Infrared spectra were recorded <strong>on</strong> a Perkin Elmer Model 1610 infrared spectrophotometer loaded<br />

with Infrared Data Manager (IRDM) s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware. Soluti<strong>on</strong>s for obtaining <strong>the</strong> IR spectra <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

4


asphaltenes were prepared by dissolving 30-50 mg <str<strong>on</strong>g>of</str<strong>on</strong>g> sample in 1.00 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> CCl4 solvent<br />

(spectroscopic grade). All IR spectra were obtained using a 0.1-mm path length sample NaCl<br />

cell. Spectra were recorded using <strong>the</strong> following settings; number <str<strong>on</strong>g>of</str<strong>on</strong>g> scans 4; gain 1; apodizati<strong>on</strong><br />

weak; <strong>and</strong> resoluti<strong>on</strong> 4. Salt plates <strong>and</strong> windows <str<strong>on</strong>g>of</str<strong>on</strong>g> sealed cells were <str<strong>on</strong>g>of</str<strong>on</strong>g> sodium chloride.<br />

Nuclear Magnetic Res<strong>on</strong>ance Spectroscopy<br />

Soluti<strong>on</strong>s for <strong>the</strong> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> 13C NMR spectra were prepared by dissolving 1 g <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

asphaltenes in 2 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> deuteriated-chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm c<strong>on</strong>taining 10 mg ferric acet<strong>on</strong>yl acet<strong>on</strong>ate,<br />

Fe(acac)3, as <strong>the</strong> relaxati<strong>on</strong> agent. Soluti<strong>on</strong>s for <strong>the</strong> measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> 1H NMR spectra were<br />

prepared, in a similar way, as described for 13C spectra with <strong>the</strong> excepti<strong>on</strong> that no relaxati<strong>on</strong><br />

reagent was used. 1H NMR spectra were recorded <strong>on</strong> a Varian XL-200 Pulse Fourier Transform<br />

(PFT) spectrometer operating at 200 MHz using 5 mm sample tubes. 1H NMR spectra were<br />

obtained <strong>and</strong> <strong>the</strong> experimental c<strong>on</strong>diti<strong>on</strong>s were: spectrum width, 2800 Hz; data points, 15680;<br />

pulse width, 3.5 ms (45°); pulse delay, zero; <strong>and</strong> number <str<strong>on</strong>g>of</str<strong>on</strong>g> transients, 64.<br />

RESULTS AND DISCUSSION<br />

The percent fracti<strong>on</strong>s obtained for fresh asphalt from Kuwait (KW) refinery al<strong>on</strong>g with <strong>the</strong>ir<br />

aged samples are given Table 1. Weight percent <str<strong>on</strong>g>of</str<strong>on</strong>g> asphaltene were found to increase from<br />

RTFO to PAV aging tests. The maltene fracti<strong>on</strong> from <strong>the</strong> fresh <strong>and</strong> aged samples <str<strong>on</strong>g>of</str<strong>on</strong>g> asphalt from<br />

Kuwait (KW) refinery was also separated to <strong>the</strong>ir generic fracti<strong>on</strong>s namely saturates naph<strong>the</strong>ne<br />

aromatics <strong>and</strong> polar aromatics. The results are shown in Tables 1. There was a distinct change<br />

in <strong>the</strong> compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> KW asphalt <strong>on</strong> aging as shown by a decrease in naph<strong>the</strong>ne aromatics <strong>and</strong><br />

an increase in polar aromatics. A slight increase in saturates was also noticed. Similar changes<br />

in Arabian asphalt compositi<strong>on</strong> following RTFO <strong>and</strong> PAV aging were observed by Siddiqui et<br />

al. [12] It was c<strong>on</strong>cluded that <strong>the</strong> naph<strong>the</strong>ne aromatics c<strong>on</strong>verted in part to polar aromatics <strong>and</strong><br />

which later turned to asphaltenes <strong>on</strong> RTFO <strong>and</strong> PAV aging tests. Gaestel Index (Ic) was used to<br />

reflect <strong>the</strong> relati<strong>on</strong>ship between <strong>the</strong> RTFO <strong>and</strong> PAV aging <strong>and</strong> colloidal structure <str<strong>on</strong>g>of</str<strong>on</strong>g> asphalt.<br />

Gaestel has defined a colloidal instability index (Ic) as a ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> amount<br />

5


asphaltenes <strong>and</strong> saturates to <strong>the</strong> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> amounts in polar aromatics <strong>and</strong> naph<strong>the</strong>ne aromatics.<br />

The Ic values significantly increased in asphalt after PAV tests. This indicates that colloidal<br />

changes occur due to <strong>the</strong> sequential transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> naph<strong>the</strong>ne to polar aromatic to asphaltenes.<br />

Sample<br />

KW - F<br />

KW - R1<br />

KW - R4<br />

KW - P1<br />

KW - P4<br />

Table 1: Percent Compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Kuwait (KW) <strong>Asphalt</strong>’s Fracti<strong>on</strong>s<br />

<strong>Asphalt</strong>enes<br />

17.97<br />

19.93<br />

24.59<br />

24.98<br />

29.29<br />

Saturates<br />

6.75<br />

7.36<br />

7.87<br />

7.94<br />

8.07<br />

Infrared Spectroscopy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Asphalt</strong>enes<br />

Naph<strong>the</strong>ne<br />

Aromatics<br />

44.36<br />

38.01<br />

32.28<br />

30.85<br />

23.57<br />

Polar<br />

Aromatics<br />

30.75<br />

33.58<br />

35.21<br />

36.25<br />

37.71<br />

Total<br />

(%)<br />

99.83<br />

98.88<br />

99.95<br />

100.02<br />

98.64<br />

Gaestel<br />

Index<br />

IR spectroscopy was used to study <strong>the</strong> distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al group types present in <strong>the</strong><br />

asphaltene fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> KW asphalt. IR proved to be a very useful technique in analyzing<br />

structural changes in asphaltene fracti<strong>on</strong>s following RTFO <strong>and</strong> PAV tests <str<strong>on</strong>g>of</str<strong>on</strong>g> KW asphalt. The<br />

most prominent IR vibrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> particular interest were those for C-H, C=O, <strong>and</strong> S=O modes <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

vibrati<strong>on</strong>s <strong>and</strong> <strong>the</strong> area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> peaks were determined using <strong>the</strong> baseline method. The IR spectra<br />

displayed a distinct <strong>and</strong> very important C=O stretch absorpti<strong>on</strong> at 1698 <strong>and</strong> 1704 cm-1 due to<br />

carb<strong>on</strong>yl <strong>and</strong>/or carboxyl groups. The area <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> carb<strong>on</strong>yl absorpti<strong>on</strong> was calculated between<br />

1752-1653 cm -1 , this covering <strong>the</strong> regi<strong>on</strong> c<strong>on</strong>taining <strong>the</strong> absorpti<strong>on</strong> peaks for carboxylic acids,<br />

ket<strong>on</strong>es <strong>and</strong> anhydrides. Ket<strong>on</strong>es <strong>and</strong> anhydrides form <strong>on</strong> oxidative aging <strong>and</strong> carboxylic acids<br />

occurs naturally in asphalt but increase <strong>on</strong> oxidative aging. Toge<strong>the</strong>r, <strong>the</strong>se three functi<strong>on</strong>al<br />

groups are <strong>the</strong> most significant chemical functi<strong>on</strong>alities which are an integral part <str<strong>on</strong>g>of</str<strong>on</strong>g> large<br />

asphalt molecules <strong>and</strong> which can be related to oxidative aging [13]. The main reas<strong>on</strong> behind<br />

c<strong>on</strong>sidering <strong>the</strong> total carb<strong>on</strong>yl area ra<strong>the</strong>r than each characteristic area is that <strong>the</strong> IR spectra in <strong>the</strong><br />

0.33<br />

0.38<br />

0.48<br />

0.49<br />

0.61<br />

6


carb<strong>on</strong>yl regi<strong>on</strong> become complicated in aged asphalt because <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> intense ket<strong>on</strong>e b<strong>and</strong><br />

appearance. An intense peak at 1032 cm -1 was assigned to <strong>the</strong> stretching vibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfoxide<br />

(S=O), <strong>the</strong> functi<strong>on</strong>al group most easily formed in asphalt <strong>on</strong> <strong>the</strong> oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfide moieties.<br />

The area <str<strong>on</strong>g>of</str<strong>on</strong>g> this b<strong>and</strong> was determined from 1065-1007 cm -1 .<br />

Some parameters calculated from peak areas <str<strong>on</strong>g>of</str<strong>on</strong>g> selected IR b<strong>and</strong>s allowed for a very useful<br />

comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh <strong>and</strong> aged samples. The ratios in an equati<strong>on</strong> to determine<br />

weight percent <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen in C=O types <strong>and</strong> sulfur in S=O types has been used [9]. An IR<br />

spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> asphaltene is shown in Figure-2. Parameters <strong>and</strong> weight percentages <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur <strong>and</strong><br />

oxygen <str<strong>on</strong>g>of</str<strong>on</strong>g> RY asphaltenes obtained by IR spectroscopy are shown in Table 2. In <strong>the</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> KW<br />

asphaltenes, all parameters related to carb<strong>on</strong>yl group increased <strong>on</strong> aging. The carb<strong>on</strong>yl area <strong>and</strong><br />

absorpti<strong>on</strong> peak was not observed in KW fresh asphaltenes but increased <strong>on</strong> aging. The weight<br />

percent <str<strong>on</strong>g>of</str<strong>on</strong>g> oxygen calculated as C=O types increased linearly with aging time. These trends<br />

emphasize that <strong>the</strong>re is significant formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> functi<strong>on</strong>al groups <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>yl type <strong>on</strong> short term<br />

<strong>and</strong> l<strong>on</strong>g term aging <str<strong>on</strong>g>of</str<strong>on</strong>g> KW asphalt.<br />

Table 2: Parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> KW <strong>Asphalt</strong>enes Obtained by Infrared<br />

Parameters Ratios by area KW-F KW-R1 KW-R4 KW-P1 KW-P4<br />

C=O/CH3 1698/2954 0.00 0.00 0.00 0.00 1.13<br />

C=O/CH2 1698/2926 0.00 0.00 0.00 0.00 0.28<br />

C=O/C=C 1698/1605 0.00 0.00 0.00 0.00 0.44<br />

S=O/CH3 1032/1376 1.40 1.07 1.41 1.91 2.05<br />

S=O/C=C 1032/1605 0.32 0.21 0.26 0.34 0.39<br />

S=O/CH3 1032/2954 0.73 0.40 0.60 0.79 1.00<br />

S=O/CH2 1032/2926 0.18 0.11 0.15 0.21 0.25<br />

Sulfur (Wt%) SO type 0.69 0.14 0.43 0.57 1.00<br />

Oxygen (Wt%) CO/COOH type 0.00 0.08 0.17 0.19 0.20<br />

7


It is needed to clarify at this point that <strong>the</strong> weight percent <str<strong>on</strong>g>of</str<strong>on</strong>g> total sulfur in asphaltenes decreases<br />

<strong>on</strong> aging while <strong>the</strong> weight percent <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur as sulfoxide type <strong>on</strong>ly increases <strong>on</strong> oxidati<strong>on</strong>. The<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfoxides, as previously noted, is a good indicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> asphalt aging. Two big<br />

peaks in <strong>the</strong> regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1273-1070 cm -1 were also observed in KW asphaltenes. These peaks<br />

indicate <strong>the</strong> presence <str<strong>on</strong>g>of</str<strong>on</strong>g> different sulfur c<strong>on</strong>taining compounds such as sulf<strong>on</strong>es, <strong>and</strong> sulfates<br />

produced due to <strong>the</strong> oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sulfur c<strong>on</strong>taining molecules in asphaltenes [6]. The existence <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

sulfur c<strong>on</strong>taining compounds provides a channel for oxygen attack. During aging, sulfur atoms<br />

are readily oxidized to sulfoxide groups. Sulfoxides are formed in preference to ket<strong>on</strong>es, <strong>and</strong> are<br />

usually precursors to ket<strong>on</strong>e <strong>and</strong> hence acid formati<strong>on</strong>. The extent to which <strong>the</strong>se groups are<br />

formed <strong>on</strong> aging influences <strong>the</strong> rheological properties <str<strong>on</strong>g>of</str<strong>on</strong>g> asphalt [14].<br />

3850<br />

3600<br />

3350<br />

Nuclear Magnetic Res<strong>on</strong>ance Spectroscopy <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Asphalt</strong>enes<br />

31 00<br />

2850<br />

Wa v e numbe r , c m- 1<br />

2600<br />

Figure 2: An infrared spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g> asphaltene<br />

2350<br />

The percent distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> <strong>and</strong> hydrogen <str<strong>on</strong>g>of</str<strong>on</strong>g> KW asphaltenes obtained from 13C <strong>and</strong> 1H<br />

NMR spectra are given in Table 3 <strong>and</strong> Table 4 respectively. The result indicates that <strong>the</strong><br />

distributi<strong>on</strong> trend <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong>s shows that <strong>the</strong>re were no c<strong>on</strong>sistent aromatizati<strong>on</strong> <strong>and</strong><br />

21 00<br />

1 850<br />

1 600<br />

1 350<br />

1 1 00<br />

850<br />

0<br />

0.1<br />

0.2<br />

0.3<br />

0.4<br />

0.5<br />

0.6<br />

0.7<br />

0.8<br />

0.9<br />

8


dehydrogenati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> asphaltenes but isomerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> saturated carb<strong>on</strong>s (Csat) may be resp<strong>on</strong>sible<br />

for this type <str<strong>on</strong>g>of</str<strong>on</strong>g> distributi<strong>on</strong>. There was dealkylati<strong>on</strong> <strong>on</strong> aromatic rings following first short term<br />

aging but alkylati<strong>on</strong> took place <strong>on</strong> fur<strong>the</strong>r l<strong>on</strong>g term aging process. The changes in total saturated<br />

carb<strong>on</strong> (Csat) c<strong>on</strong>tents were found to inc<strong>on</strong>sistent indicating <strong>the</strong> isomerizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> saturated<br />

carb<strong>on</strong>s in asphaltenes. In short term aging, substituti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogen atoms was preferred while<br />

<strong>on</strong> l<strong>on</strong>g term aging dehydrogenati<strong>on</strong> took place. The aromatic hydrogen (Har) c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

asphaltenes increased <strong>on</strong> first short term aging <strong>on</strong>ly o<strong>the</strong>rwise decreased <strong>on</strong> fur<strong>the</strong>r aging. The<br />

relative decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> aromatic hydrogen following aging indicates that <strong>the</strong> aromatic structures<br />

were getting c<strong>on</strong>densed <strong>and</strong> substituted. Thus, <strong>the</strong> increasing ratios <str<strong>on</strong>g>of</str<strong>on</strong>g> aromatic prot<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

asphaltenes suggest <strong>the</strong> higher degree <str<strong>on</strong>g>of</str<strong>on</strong>g> aromatic c<strong>on</strong>densati<strong>on</strong>s.<br />

Table 3: Percent Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carb<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> KW <strong>Asphalt</strong>enes<br />

Obtained by 13C NMR Spectra<br />

TYPE CHEMICAL Percent Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Carb<strong>on</strong><br />

SHIFT(ppm) KW-F KW-R1 KW-R4 KW-P1 KW-P4<br />

Aliphatic 0-70 Csat 57.5 56.2 59.5 61 57.3<br />

14.1 Cα 3.8 3.6 3.5 3.7 2.5<br />

19.7 CH3-b 4.7 4.7 4.0 4.3 3.8<br />

22.9 Cβ 4.7 5.2 5.2 4.9 5.1<br />

29.7 Cn 12.7 22.9 16.8 18.3 23.6<br />

32. 2 Cγ 9.0 8.9 8.1 7.9 5.1<br />

9.4 9.4 8.1 7.3 9.6<br />

% Straight-chain alkane 30.2 40.6 33.6 34.8 36.3<br />

Average chain length 15.9 22.6 19.2 18.8 29.0<br />

Aromatic 110-160 Car 42.5 43.8 40.5 39 42.7<br />

137-160 Car-alk 14.2 9.9 14.5 14 19.1<br />

9


Table 4: Percent Distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrogen <str<strong>on</strong>g>of</str<strong>on</strong>g> KW <strong>Asphalt</strong>enes<br />

Obtained by 1H NMR Spectra<br />

PARAMETERS SAMPLES<br />

KW-F KW-R1 KW-R4 KW-P1 KW-P4<br />

Hsat. 78.9 76.5 81.8 80.0 79.6<br />

Hα 21.1 18.5 23.4 20.0 18.5<br />

Hn 7.0 7.4 9.1 8.0 7.4<br />

Hβ 35.2 35.8 36.4 36.0 37.0<br />

Total Hβ 42.2 43.2 45.5 44.0 44.4<br />

Hγ 15.5 14.8 13.0 16.0 16.7<br />

Har 21.1 23.5 18.2 20.0 20.4<br />

CONCLUSIONS<br />

During oxidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> asphalt, aromatizati<strong>on</strong>, dehydrogenati<strong>on</strong> <strong>and</strong> intramolecular hydrogen<br />

b<strong>on</strong>ding <str<strong>on</strong>g>of</str<strong>on</strong>g> polar functi<strong>on</strong>al groups increase which lead to formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more asphaltenes [12].<br />

Haley [15] proposed that with free radical reacti<strong>on</strong> taking place during <strong>the</strong> blowing, more free<br />

radicals will be formed at <strong>the</strong> higher temperature <strong>and</strong> more internal cross-linking will occur.<br />

Smith <strong>and</strong> Schweyer [16,17] measured <strong>the</strong> air blowing process heat <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> <strong>and</strong> postulated<br />

that dehydrogenati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> naph<strong>the</strong>nic rings was <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong> main asphalt blowing reacti<strong>on</strong>s. The<br />

reacti<strong>on</strong>s that occur during <strong>the</strong>rmal <strong>and</strong> catalytic cracking <str<strong>on</strong>g>of</str<strong>on</strong>g> petroleum residue are quite<br />

complex. The b<strong>on</strong>d scissi<strong>on</strong> occurs at certain definite locati<strong>on</strong>s in catalytic reacti<strong>on</strong>s but<br />

r<strong>and</strong>omly occurs in <strong>the</strong>rmal reacti<strong>on</strong> [18]. There are several possible reacti<strong>on</strong>s <strong>and</strong> mechanisms<br />

following <strong>the</strong> short-term <strong>and</strong> l<strong>on</strong>g-term aging <str<strong>on</strong>g>of</str<strong>on</strong>g> Kuwait asphalt. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>the</strong>se reacti<strong>on</strong>s might<br />

be c<strong>on</strong>densati<strong>on</strong> with ester formati<strong>on</strong>, polymerizati<strong>on</strong> or isomerizati<strong>on</strong>, dehydrogenati<strong>on</strong>,<br />

aromatizati<strong>on</strong>, <strong>and</strong> dealkylati<strong>on</strong> as shown in Figure-3.<br />

ACKNOWLEDGEMENT<br />

The facility support provided by <strong>the</strong> King Fahd University <str<strong>on</strong>g>of</str<strong>on</strong>g> Petroleum <strong>and</strong> Minerals, Dhahran,<br />

Saudi Arabia is gratefully acknowledged.<br />

10


+<br />

S<br />

S<br />

+<br />

O<br />

*<br />

Figure 3: Possible representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> types in a hypo<strong>the</strong>tical asphaltene<br />

structure after RTFO <strong>and</strong> PAV aging.<br />

S<br />

Aromatizati<strong>on</strong><br />

Dealkylati<strong>on</strong><br />

Fragmentati<strong>on</strong><br />

( )<br />

C<strong>on</strong>densati<strong>on</strong> / Isomerizati<strong>on</strong><br />

Rupture <str<strong>on</strong>g>of</str<strong>on</strong>g> Naph<strong>the</strong>ne Rings<br />

*<br />

+<br />

O<br />

S<br />

(<br />

)<br />

( )<br />

( )<br />

( *<br />

)<br />

11


REFERENCES<br />

1 Barth, E. J., <strong>Asphalt</strong>, Golden <strong>and</strong> Breach Science Publishers, Inc., New York, N.Y., 1962,<br />

p. 81-109.<br />

2 Siddiqui, M. N. <strong>and</strong> Ali, M. F.; Fuel, 1999, 78, No. 9, 1005.<br />

3 Hasan, M.; Siddiqui, M. N.; <strong>and</strong> Arab, M.; Oil <strong>and</strong> Gas Journal, 1988, 8, 38.<br />

4 Hasan, M.; Ali, M. F.; <strong>and</strong> Bukhari, A.; Fuel, 1983, 62, 518.<br />

5 Bellamy, L. J.; The Infrared Spectra <str<strong>on</strong>g>of</str<strong>on</strong>g> Complex Molecules, 1975, Champan <strong>and</strong> Hall Ltd.,<br />

L<strong>on</strong>d<strong>on</strong>.<br />

6 Colthup, N. B.; Daty, L. H.; <strong>and</strong> Wiberley, S. E.; Introducti<strong>on</strong> to Infrared <strong>and</strong> Raman<br />

Spectroscopy, 1975, Academic Press Inc, New York.<br />

7 Sarowha, S.L.S.; Srivastava, S.P.; <strong>and</strong> Singh, I.D.; Research Industry, 1982, 27, 263.<br />

8 Petersen, J. C.; Analytical <strong>Chemistry</strong>, 1975, 47, 112.<br />

9 Green, J. B.; Yu, S. K. T.; Pears<strong>on</strong>, C. D.; <strong>and</strong> Reynolds, J. W.; Energy & Fuels, 1993, 7,<br />

119.<br />

10 Moschopedis, S. E.; <strong>and</strong> Speight, J. G.; Fuel, 1976, 55, 334.<br />

11 Annual Book <str<strong>on</strong>g>of</str<strong>on</strong>g> ASTM St<strong>and</strong>ards; American Society for Testing <strong>and</strong> Materials, St<strong>and</strong>ard<br />

No. D-4124-86, 1999, Volume 04.03, Secti<strong>on</strong> 4 (Philadelphia:ASTM), 1999.<br />

12 Siddiqui, M. N. <strong>and</strong> Ali, M. F.; Fuel, 1999, 78, No. 9, 1005.<br />

13 Petersen, J. C. Transportati<strong>on</strong> Research Record, Nati<strong>on</strong>al Research Council, TRR 1096,<br />

1986.<br />

14 Chari, C. T., Ruth, B. E., Tia, M., <strong>and</strong> Page, G. C. Proc. Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Asphalt</strong> Paving<br />

Technologists, AAPT, 59, 177, 1990.<br />

15 Haley, G. A.; Analytical <strong>Chemistry</strong>, December, 1975, 47, 14, 2432.<br />

16 Smith, D. B.; <strong>and</strong> Schweyer, H. E.; Ind. Eng. Chem., Proc. Des. Dev., 1963, 2, 209.<br />

17 Smith, D. B.; <strong>and</strong> Schweyer, H. E.; Hydrocarb<strong>on</strong> Process., 1967, 46, 167.<br />

18 Speight, J. G.; The <strong>Chemistry</strong> <strong>and</strong> Technology <str<strong>on</strong>g>of</str<strong>on</strong>g> Petroleum, New York : Marcel Decker,<br />

Chemical Industries/3, 1980.<br />

12

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!