06.01.2013 Views

Power Electronics Packaging Solutions for Device Junction ...

Power Electronics Packaging Solutions for Device Junction ...

Power Electronics Packaging Solutions for Device Junction ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Page 1<br />

EPRC – 12<br />

Project Proposal<br />

<strong>Power</strong> <strong>Electronics</strong> <strong>Packaging</strong><br />

<strong>Solutions</strong> <strong>for</strong> <strong>Device</strong> <strong>Junction</strong><br />

Temperature over 220 o C<br />

15 th August 2012<br />

IME Proprietary


Page 2<br />

Motivation<br />

• Increased requirements of high power semiconductor device module <strong>for</strong> future<br />

automotive, aerospace and green & renewable energy industry<br />

• Emerging wide band gap power devices : SiC and GaN can be operated >220 o C<br />

Renewable energy<br />

Aerospace<br />

Electronic Vehicle<br />

Hybrid Vehicle<br />

Source: Nissan<br />

Electronic Railway<br />

Source: Toyota<br />

2<br />

Source: Infineon<br />

IME Proprietary<br />

Source: Yole


Page 3<br />

Technology Trends<br />

• Technology trends <strong>for</strong> high power module and discrete :<br />

� High temperature endurable materials >220 o C (silver sintering, encapsulations)<br />

� High reliable and low stress interconnections (foil interconnects, ultrasonic bonding)<br />

� Thermal cooling solution (Dual-side cooling / micro-channel cooling )<br />

Source: Yole<br />

3<br />

IME Proprietary


Page 4<br />

4<br />

Challenges to be Addressed<br />

<strong>Power</strong> Module<br />

Encapsulation Materials Plastic case<br />

• Thermal endurance >220C<br />

• Void free processing<br />

Encapsulations<br />

• Lower stress (CTE, Modulus)<br />

• High power insulation<br />

Diode<br />

IGBT<br />

• Moisture barrier<br />

• Delamination free<br />

DBC substrate<br />

<strong>Power</strong> <strong>Device</strong> Attach<br />

• Thermal endurance >220C<br />

• Void free processing<br />

• Lower stress (CTE, Modulus)<br />

• Electrical conductive<br />

• Die backside metallization<br />

<strong>Power</strong> Source Interconnection<br />

• <strong>Power</strong> cycling endurance<br />

• Temp cycle endurance<br />

• Process optimization<br />

• inter-metallic diffusion<br />

• Thermal & Electrical properties<br />

Substrate (DBC)<br />

• Temp cycling endurance<br />

• Adhesion with Encapsulation<br />

• Adhesion between Cu/Ceramic<br />

• Surface finish<br />

• Thermal & Electrical properties<br />

Base plate<br />

<strong>Power</strong> Discrete<br />

Wire<br />

IGBT<br />

Heat spreader<br />

Base plate (system board)<br />

Reliability testing methodologies<br />

• Reliability test spec<br />

• Reliability testing method<br />

• Failure Analysis / reliability model<br />

Wire<br />

Passive<br />

Lead frame<br />

IME Proprietary<br />

Passive component attach<br />

• Thermal endurance >220C<br />

• Void free processing<br />

• Temp cycle endurance<br />

• Electrical conductive<br />

• Metallization > 220C<br />

Thermal interface materials<br />

• Thermal endurance > 220C<br />

• Temp cycle endurance<br />

• Delamination & fracture<br />

• Thermal conductivity<br />

Modeling and predictions<br />

• Thermal characterization<br />

• Mechanical characterization<br />

• Electro-thermal-mechanical coupling<br />

• Reliability model (power cycling)


Page 5<br />

Objective<br />

Project Proposal<br />

IME Proprietary<br />

Development and characterization of power semiconductor packages <strong>for</strong> high junction<br />

temperature endurable (>220 o C) solutions <strong>for</strong> next generation devices, including the following:<br />

Material solutions <strong>for</strong> TV1 and TV2<br />

� High temperature endurable die attach (Ag sintering, TLP bonding, Cu-Cu bonding)<br />

� DBC surface finish option (Ni/Au finish, ENIG )<br />

� High temperature endurable encapsulation materials (High T g EMC)<br />

� Cu based interconnection through EMWLP RDL process<br />

Thermal management solutions <strong>for</strong> TV1 and TV2<br />

� Dual side cooling structure package development and packaging process optimization<br />

� High temperature endurable, high conductive TIM materials ( Ag sintering )<br />

Package characterization and Reliability <strong>for</strong> TV1 and TV2<br />

� Mechanical &Thermal modeling and characterization<br />

� <strong>Power</strong> cycling modeling : electro-thermal- mechanical coupled analysis<br />

� Reliability and failure analysis<br />

Conventional <strong>Power</strong> Module<br />

Diode<br />

Plastic case<br />

Encapsulations<br />

DBC substrate<br />

Wire<br />

Base plate<br />

IGBT<br />

IGBT<br />

Base plate (system board)<br />

Wire<br />

Passive<br />

Conventional <strong>Power</strong> discrete *<br />

Lead frame<br />

TV1* : Novel Dual side cooling <strong>Power</strong> Module<br />

Top RDL layer<br />

Diode<br />

Heat spreader<br />

Heat spreader<br />

Heat spreader IGBT<br />

* Conventional test vehicle with new material option can be considered<br />

as project test vehicle on the basis of members assembly support<br />

* To be finalized with members input<br />

IGBT<br />

TV2* : Novel Dual side cooling <strong>Power</strong> Discrete<br />

Heat spreader<br />

Heat spreader


Page 6<br />

Design Optimization and Reliability Prediction <strong>for</strong><br />

<strong>Power</strong> Module/Discrete with Dual Side Cooling<br />

� Structural modeling and interconnection<br />

life prediction <strong>for</strong> novel dual side cooling<br />

power module<br />

� <strong>Power</strong> source/gate/drain RDL design<br />

optimization <strong>for</strong> stress minimization<br />

� Interconnection fatigue life prediction (plastic<br />

constitutive model <strong>for</strong> Cu RDL)<br />

� <strong>Packaging</strong> material properties effect on the<br />

investigation<br />

� Electro-thermo-mechanical coupled power<br />

cycling impact modeling<br />

� Thermal modeling and characterization<br />

� Thermal resistance modeling <strong>for</strong> selected<br />

material set and design<br />

� Experimental Thermal resistance<br />

Rth jc characterization<br />

� Liquid based active cooling investigation<br />

IME Proprietary<br />

Ref. Hua Lua et al. “Lifetime Prediction <strong>for</strong> <strong>Power</strong> <strong>Electronics</strong><br />

Module Substrate Mount-down Solder Interconnect”<br />

Proceedings of HDP’07<br />

Ref. Institute of Microelectronics<br />

Dual side cooling effect T jmax decreased compared with<br />

single side cooling


� High Temperature <strong>Power</strong> <strong>Device</strong><br />

interconnection development<br />

� High temperature endurable die attach (drain)<br />

� Micro/Nano Ag sintering (pressure less)<br />

� TLP bonding : Cu-Sn(415 o C), Ag-Sn(480 o C)<br />

� Direct Cu-Cu ultrasonic bonding<br />

� <strong>Device</strong> backside metallization<br />

� Substrate surface finish option (Ni/Au finish, ENIG)<br />

� <strong>Power</strong> source and gate interconnect through<br />

Electrolytic Cu Patterning<br />

� High Temperature Endurable Compounds<br />

Development<br />

� High glass transition temperature (T g >200 o C)<br />

� High thermal conductive compounds (~3W/m-K )<br />

� Compatible with Wafer level fan-out process<br />

� Investigation on thermal degradation (< 3%wt) with<br />

continuous exposure to 220 o C<br />

� Low stress, low thermal mismatch<br />

Page 7<br />

High Temperature Endurable Materials <strong>for</strong> <strong>Power</strong><br />

Module with Tjmax> 220oC Ref. Institute of Microelectronics<br />

Micro Ag particles sintered by pressure less process<br />

IME Proprietary<br />

TLP bonding (Cu-Sn) used in Infineon XT modules in 2010<br />

Chin-Lung Chiang et.al “Thermal stability and degradation<br />

kinetics of novel organic/inorganic epoxy hybrid…”<br />

Thermochimica Acta 453 (2007)<br />

thermal degradation<br />

kinetics <strong>for</strong> epoxy


Page 8<br />

High Temperature Endurable Materials <strong>for</strong> <strong>Power</strong><br />

Module with T jmax> 220 o C<br />

� Thermal Interface Material investigation<br />

� High conductive /temperature endurable<br />

� Metallic TIM (Ag sintering) with high power insulation<br />

layer (Al 2O 3)<br />

� Polymeric TIM with conductivity > 4W/m-K<br />

� Thickness control<br />

� Thermal per<strong>for</strong>mance consistency investigation after<br />

reliability test<br />

� High Temperature Endurable Dielectric<br />

passivation layer<br />

� High glass transition temperature (T g >200 o C)<br />

� BCB, Polyimide photo sensitive PR<br />

� Compatible with Wafer level fan-out process<br />

� Investigation on thermal degradation (< 3%wt) with<br />

continuous exposure to 220 o C<br />

� Low stress, low thermal mismatch<br />

Source : Danfoss<br />

Ag sintering <strong>for</strong> TIM<br />

TIM layer crack propagation<br />

Source : Danfoss<br />

IME Proprietary


Page 9<br />

Dual Side Cooling <strong>Power</strong> Module Process<br />

Optimization and Reliability Assessment<br />

� Dual side Cooling <strong>Power</strong> Module Assembly<br />

Process development<br />

� Cu clip (Ag plated) attachment / alignment<br />

� Evaluation of molding material Liquid, Granular<br />

� Process condition (Temperature, time, pressure)<br />

� Module shift analysis & control<br />

� Die/ module pick & place tolerance<br />

� Minimum clearance between die<br />

� Warpage control<br />

� Heat spreader attach and TIM process<br />

� Reliability Assessments <strong>for</strong> High <strong>Power</strong><br />

Application<br />

� Temperature cycling (Test condition : TBD* 1 )<br />

� High Temperature Storage ( 220 o C/ 1000 hrs )<br />

� HAST (non-biased)<br />

� <strong>Power</strong> Cycling test (optional* 2 )<br />

� Failure analysis<br />

*1 To be finalized with members input<br />

*2 Need member’s support on actual SiC wafer and testing<br />

IME Proprietary<br />

IME’s Novel Dual side Cooling <strong>Power</strong><br />

Module Assembly Process<br />

Tilo Poller et al. “Influence of thermal cross-couplings on<br />

power cycling lifetime of IGBT power modules” CIPS 2102<br />

<strong>Power</strong> cycling : IGBT with 300W,10Hz


Page 10<br />

IME Proprietary<br />

� Thermal and Structural optimization and life prediction <strong>for</strong> novel dual<br />

side cooling power module<br />

� Interconnection fatigue life prediction (plastic constitutive model <strong>for</strong> Cu RDL)<br />

� <strong>Packaging</strong> material properties effect on the test vehicle<br />

� Thermal modeling characterization <strong>for</strong> selected material set and test vehicles<br />

� Electro-thermo-mechanical coupled power cycling impact analysis<br />

� T jmax >220 o C : High Temperature Endurable <strong>Power</strong> <strong>Device</strong> <strong>Packaging</strong><br />

material <strong>Solutions</strong> (interconnect/encapsulation/TIM)<br />

� High temperature endurable die attach material characterization using Micro/Nano<br />

Ag sintering, TLP bonding, Direct Cu-Cu ultrasonic bonding<br />

� <strong>Power</strong> source and gate interconnect through Electrolytic Cu Patterning<br />

� Wafer level Fan-out compatible compounds characterization<br />

� TIM process optimization <strong>for</strong> dual side application<br />

� Dual side Cooling <strong>Power</strong> Module Assembly Process development<br />

� Copper clip (Ag plated) attachment / alignment<br />

� Mold Process condition optimization (Temperature, time, pressure)<br />

� Heat spreader attach and TIM process<br />

� Reliability Assessments & F/A <strong>for</strong> Novel High <strong>Power</strong> Module<br />

� Temperature cycling<br />

� High Temperature Storage / Low Temperature Storage<br />

� HAST (non-biased)<br />

� <strong>Power</strong> Cycling test (optional)<br />

� Failure analysis<br />

* To be finalized<br />

Possible Research Outcome*


Page 11<br />

Members Inputs<br />

Thermal Modeling &<br />

Simulation Analysis<br />

TV1,2 Dual cooling effect<br />

<strong>Power</strong> cycling modeling<br />

Electro-Thermo-mechanical<br />

Project Time line and<br />

schedule :<br />

Nov 2012 to June 2014<br />

Project Flow<br />

Finalize Project scope and test vehicles<br />

specifications<br />

Identify high thermal endurable<br />

materials and evaluation<br />

(Members to provide inputs)<br />

Mechanical Modeling &<br />

Simulation Analysis on stress and<br />

reliability<br />

Test methodologies<br />

(Thermal and Reliability )<br />

TV1 Thermal per<strong>for</strong>mance sample matrix<br />

TV2 Thermal per<strong>for</strong>mance sample matrix<br />

TV2 Reliability test sample matrix<br />

TV1 Reliability test sample matrix<br />

Thermal per<strong>for</strong>mance testing<br />

Dual side cooling effect analysis<br />

with active cooling<br />

Initial Material evaluation and quick<br />

reliability test<br />

<strong>Power</strong> module EWLP Assembly<br />

process optimization. <strong>Device</strong> chip*<br />

(fabrication/purchase)<br />

Reliability testing<br />

Failure analysis and report writing<br />

IME Proprietary<br />

Scope Planning<br />

Material investigation<br />

Process and assembly<br />

Modeling & characterization<br />

Final reliability<br />

EWLP process<br />

modeling –<br />

flow/Warpage<br />

Note: * Electric testing will be carried<br />

out based on device chip availability


Page 12<br />

IME Proprietary

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!