06.01.2013 Views

Air Conditioning Compressors - Delphi

Air Conditioning Compressors - Delphi

Air Conditioning Compressors - Delphi

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Air</strong> <strong>Conditioning</strong> <strong>Compressors</strong>


I n t r o d u c t i o n<br />

Th e p a s s e n g e r c o m p a r t m e n t o f a modern<br />

a u t o m o b i l e o ffe r s a ve r y d i ffe r e n t environ-<br />

m e n t t o t h a t o f a ve h i c l e f r o m f i ft y years<br />

a g o . As we l l a s t h e e r g o n o m i c a l l y designed<br />

s e a t i n g a n d i n s t ru m e n t l ayo u t , t h e all round<br />

v i s i b i l i t y a n d t h e e ff i c i e n t u s e o f space,<br />

t o d ay ’s p a s s e n g e r h a s c o n t r o l ove r air tem-<br />

Vi ew o f i n s t ru m e n t p a n e l a n d H VAC c o n t r ols<br />

Th e ve r y h e a r t o f t h e a i r c o n d i tioning sys -<br />

t e m i s t h e c o m p r e s s o r. I ts key t a sks are to<br />

g e n e r a t e t h e r e q u i r e d flow o f r efrigerant<br />

a r o u n d t h e s ys t e m a n d a t t h e same time<br />

t o c o m p r e s s i t s u ff i c i e n tly t o raise its<br />

t e m p e r a ture a b ove t h e a m bient in order<br />

t h a t h e a t c a n b e r e j e c t e d f r o m t h e system.<br />

Th e s e d e m a n d s m u s t b e m e t e fficiently over<br />

ve r y w i d e r a n g e s o f c o mpressor s peed and<br />

a m b i e n t c o n d i t i o n s . A t the same time ver y<br />

d e m a n d i n g n o i s e g e n e r a t ion c o n s t raints and<br />

ex p e c t a t i o n s o f d u r a b i l i t y have to be met.<br />

A i r C o n d i t i o n i n g<br />

C y c l e<br />

I t i s s e l f ev i d e n t t h a t h e a t t e n d s to flow<br />

f r o m high temperatu r e to low. If we wish to<br />

p r ov i d e c o o l i n g a t a l o c a t i o n i n a h i g h tempe-<br />

r a tu r e e nv i r o n m e n t t h e n we a r e e ffectively<br />

a s k i n g h e a t t o f l ow f r o m l ow t e mperature<br />

t o h i g h . To a ch i eve t h i s i t i s n e c essar y to<br />

o p e r a t e a t h e r m o d y n a m i c c yc l e i n which a<br />

perature, qualit y and movement in all corners<br />

of the vehicle. The modern heating , ventila-<br />

ting and air conditioning system (HVAC) can<br />

ensure that thermal comfort and all round<br />

visibilit y are delivered in environments that<br />

range from the heat of Phoenix Arizona to<br />

the coldest Scandinavian winter.<br />

E x p a n d e d v i ew o f a m o d e r n<br />

H VAC c o m p r e s s o r<br />

refrigerant at a low temperature is used to<br />

extract heat from the location to be cooled.<br />

The refrigerant is subsequently compressed<br />

until it becomes hot enough to be able to<br />

reject heat to the ambient. After cooling to<br />

near ambient temperature by the a mbient<br />

air, it is expanded back to low pressure, a<br />

process which generates further refrigerant<br />

temperature reduction that becomes low<br />

enough to be used for cooling at the re-<br />

quired location. The cycle is complete. The


e q u i r e d c o o l i n g i s t h u s a ch i eve d b ut at the<br />

ex p e n s e o f t h e wo r k n e cessar y t o drive the<br />

c o m p r e s s o r.<br />

heat rejected to ambient<br />

expansion device<br />

T h e A u t o m o t i v e<br />

A i r C o n d i t i o n i n g<br />

A p p l i c a t i o n<br />

Th e a u t o m o t i ve a p p l i c ation places ver y<br />

s p e c i a l d e m a n d s o n t h e air c o n ditioning sys-<br />

t e m . A t y p i c a l ve h i c l e s ys t em has a similar<br />

c o o l i n g c a p a c i t y t o t h a t r e q uired for the air<br />

c o n d i t i o n i n g o f a s m a l l h o use d e spite the<br />

va s t d i ffe r e n c e i n vo l u m e s t o b e c ooled. The<br />

r e a s o n s fo r t h i s a r e t wo fold. Firstly cooling<br />

d u t y p e r u n i t vo l u m e i s m u ch higher for the<br />

ve h i c l e b e c a u s e h e a t t ransfe r c o efficients<br />

b e t we e n h o t a m b i e n t a ir a n d t h e outside<br />

s u r fa c e s a r e m u ch h i g h e r d u e t o movement<br />

o f t h e ve h i c l e t h r o u g h t h e a i r. Secondly<br />

t h e p r o p ortion o f t h e e nclosure consisting<br />

o f g l a s s i s ve r y h i g h fo r t h e vehicle – a<br />

fa c t o r t h a t m a ke s t h e e ffe c t o f direct solar<br />

r a d i a t i o n h e a t i n g ve r y h i g h. O n t op of this<br />

a p a r t i c u l a r l y d e m a n d i n g r e q u i r ement is to<br />

c o o l t h e cabin ve r y r a p i d l y a ft e r t he vehicle<br />

h a s b e e n s o a ke d i n a n a m bient t e mperature<br />

o f 4 0 ° C or h i g h e r. A t t h e s t a r t o f the cool<br />

d ow n t e mperatu r e s i n t he c a bin c an be as<br />

h i g h a s 6 0 o r 7 0 ° C .<br />

condenser<br />

evaporator<br />

S ch e m a t i c o f a i r c o n d i t i o n i n g c yc l e<br />

compressor<br />

heat absorbed from cabin<br />

A n o t h e r s i g n i f i c a n t way i n w h ich a utomotive<br />

a i r c o n d i t i o n i n g d i ffe r s from t h e domestic<br />

o r c o m m e r c i a l ve r s i o n is t h e q u estion of<br />

c o m p r e s s o r d r i ve . I n t he ve h icle the com-<br />

p r e s s o r i s b e l t d r i ve n by t h e e n g i ne so that<br />

i n d e p e n d e n t c o n t r o l over t h e c ompressor<br />

s p e e d i s n o t p o s s i b l e . This o bv i ously has<br />

s i g n i f i c a n t i m p l i c a t i o n s fo r sys t e m control<br />

a n d m e a n s t h a t t h e r e c an b e calls for high<br />

s ys t e m perfo r m a n c e a t t imes when the<br />

c o m p r e s s o r s p e e d i s ve r y l ow. A n import ant<br />

implication of this is that the compressor<br />

drive shaft must pass out of the compres-<br />

sor casing with the result ant potential for<br />

refrigerant leakage. Hermetic compressors<br />

are not possible and ver y effective shaft<br />

seals must be used. A second implication<br />

of the external drive is that the compressor<br />

must be engine mounted so that lengths of<br />

flexible hose must be introduced to accom-<br />

modate relative movement bet ween engine<br />

and chassis mounted components.<br />

As with other air conditioning applications<br />

system efficiency is ver y import ant and the<br />

automotive application is no exception. While<br />

the characteristics of all the major compo-<br />

nents in the system contribute to overall ef-<br />

ficiency any compressor inefficiencies must<br />

be kept to a minimum. A further feature of<br />

the compressor that requires serious con-<br />

sideration is its intrinsic noise generation<br />

- modern vehicle noise requirements mean<br />

that the compressor must be ver y quiet and<br />

vibration free.<br />

And finally, three further requirements of<br />

the compressor, specific to the automotive<br />

application, but which apply equally to ever y<br />

vehicle component – are stringent con-<br />

straints on size, weight and cost.<br />

Th e ch a l l e n g e o f c o m p r e s s o r p a ck a g i n g<br />

As a result of all these constraints deriving<br />

from the use of an engine driven compres-<br />

sor, it is often suggested that an electrically<br />

driven system would provide a much better<br />

solution. The reason that it is not feasible<br />

on current vehicles is insufficient electrical<br />

power is available and its application must<br />

await the widespread implement ation of high<br />

powered and efficient integrated st arter/<br />

generators. The applications in which an<br />

electrical compressor would make real sense<br />

however are in hybrid and fuel cell vehicles<br />

where sufficient electrical power is readily<br />

available.


Th e h i g h e ff i c i e n c y o f m o d e r n e n g ines can<br />

l e a d t o t h e s i tu a t i o n i n which i n s u ff icient re-<br />

j e c t e d h e a t i s ava i l a b l e fo r comfo r t heating .<br />

Th i s fa c t h a s p r o m p t e d t h e s u g g estion that<br />

t h e a i r c onditioning s ys tem b e o p erated in<br />

r eve r s e a s a h e a t p u m p t o s u p p l e ment the<br />

e n g i n e h e a t a n d t h e v i a b i lit y o f the concept<br />

h a s b e e n d e m o n s t r a t e d o n a n u m b er of plat-<br />

fo r m s . Th e i m p l i c a t i o n s fo r t h e c o mpressor<br />

a r e t h a t t h e r e q u i r e d o perating life can be<br />

n e a r l y d o u b l e d a n d t h e c ompressor ambient<br />

s a fe o p e r a t i n g t e m p e r a tu r e r a n g e must be<br />

ex t e n d e d d ow nwa r d s t o minus 20°C.<br />

D e l p h i ve h i c l e w i t h H e a t Pu m p s u p p l e m e n t a r y h e a t i n g<br />

R e f r i g e r a n t I s s u e s<br />

Th e a u t o m o t i ve a i r c o n ditioning industr y<br />

r e s p o n d e d p r o - a c t i ve l y t o t h e d emands of<br />

t h e 19 8 7 M o n t r e a l Pr o tocol a n d by 1994,<br />

2 ye a r s e a r l y, t h e ch a n g e ove r f r o m R12 to<br />

R 13 4 a wa s c o m p l e t e fo r a ll ve h icle produc-<br />

t i o n l i n e s i n t h e d eve l oped wo rld. It soon<br />

b e c a m e a p p a r e n t t h a t t h is m ay n ot be the<br />

e n d o f t h e s t o r y a n d w i th i ncreasing pene-<br />

t r a t i o n o f a i r c o n d i t i o n i n g i n t h e European<br />

m a r ke t t ogether w i t h t he d e mands of the<br />

Kyo t o Pr o t o c o l p r e s s u r e has b u ilt to make<br />

ch a n g e s t o s t i l l f u r t h e r r e d uce the potential<br />

c o n t r i b u t i o n o f a i r c o nditioning systems<br />

t o g l o b a l wa r m i n g . A n ew D i r ective has<br />

r e c e n t l y c o m p l e t e d i t s p r o g r ess t h r ough the<br />

E u r o p e a n l e g i s l a t i ve p r o cess. I t r e q uires the<br />

e l i m i n a t i o n o f R 13 4 a f r om a ll n ew models<br />

f r o m 2 011 a n d f r o m a l l n ew ve h icles by 2017.<br />

Th e c u rrently c o n s i d e r ed alternatives are<br />

R 15 2 a w i th a g l o b a l wa rming p o t e ntial less<br />

t h a n 10 % o f t h a t o f R 13 4 a, o r t h e so-called<br />

‘ n a tu r a l ’ r e f r i g e r a n t R 744 ( carbon dioxide).<br />

R 15 2 a h a s t h e r m o d y n amic characteristics<br />

ve r y s i m i l a r t o t h o s e o f R 13 4a a nd will be<br />

d i r e c t l y u s a b l e w i t h current c ompressor<br />

t e ch n o l o g y. I t s p o t e n t i a l d r aw back is a<br />

d e g r e e o f f l a m m a b i l i t y that h as made the<br />

i n d u s t r y reluct a n t t o c onsider i t. More re-<br />

c e n t l y o t h e r l a r g e ch e m i c al c o m panies have<br />

a n n o u n c e d t h e p o t e n t i a l ava ilabilit y of new<br />

a l t e r n a t i ve s . L i tt l e i s k n ow n a b o u t them at<br />

t h i s s t a g e b u t i t i s a s s u m e d t hat they too<br />

wo u l d f u n c t i o n w i t h c u rrent c ompressor<br />

t e ch n o l o g y. Th e r e m u s t b e a q u estion as to<br />

w h e t h e r t h e n e c e s s a r y d eve l o pment and<br />

testing and then implement ation of the<br />

necessar y manufacturing capacit y can be<br />

completed in time to meet the requirements<br />

of the European legislation. If R744 becomes<br />

the chosen route the implications for com-<br />

pressor technology are ver y far-reaching . <strong>Air</strong><br />

conditioning systems with R744 need com-<br />

pressors with displacement of only a fifth<br />

of that required for R134a but operating at<br />

much higher pressures. Discharge pressures<br />

of 120 bar are normal compared with a t ypi-<br />

cal 18 bar for an R134a system. As can be<br />

imagined, these factors have big implications<br />

for the compressor layout and structural<br />

strength requirements and also represent a<br />

particularly severe shaft seal challenge.<br />

Pressure - MPa<br />

100<br />

10<br />

1<br />

100<br />

-40°C<br />

0°C<br />

200<br />

40°C<br />

80°C 120°C 160°C 200°C<br />

0°C<br />

40°C<br />

300 400<br />

Enthalpy - kJ/kg<br />

500<br />

I d e a l i ze d p r e s s u r e e n t h a l py d i a g r a m o f C O 2 c yc l e<br />

C o m p r e s s o r<br />

Te c h n o l o g i e s<br />

<strong>Air</strong> conditioning began to become available<br />

for vehicles in the early 1950s. From the<br />

beginning a number of different compressor<br />

technologies have been used. The earliest<br />

systems used piston compressors in various<br />

configurations. The Frigidaire F5, a five pis-<br />

ton wobble plate configuration, used in the<br />

earliest GM vehicles with air conditioning<br />

was first produced in 1956 – it weighed in at<br />

18kg! The R4 compressor with a scotch yoke<br />

mechanism was first produced by Harrison<br />

(now <strong>Delphi</strong>) in 1974 and remained in pro-<br />

duction until 1995. It was 190mm in overall<br />

diameter and weighed 9kg .<br />

A n e a r l y<br />

c o m p r e s s o r,<br />

t h e D e l p h i R 4<br />

80°C<br />

120°C<br />

600<br />

160°C<br />

200°C<br />

700


Th e p r e fe rred c o n f i g u r ation fo r a piston<br />

c o m p r e s s o r s o o n m ove d t o a d o u ble acting<br />

s wa s h - p l a t e d e s i g n o f w h ich t h e Harrison<br />

( D e l p h i ) H D 6 i s t y p i c a l . Th e fixe d swash-<br />

p l a t e i s h e l d b e t we e n t h e o p p osing ends<br />

o f t h e d o u b l e p i s t o n by a pair o f s hoes and<br />

t wo s t e e l balls.<br />

S e c t i o n t h r o u g h a n e a r l y f i xe d s wa s h-plate<br />

c o m p r e s s o r, t h e D e l p h i H D 6<br />

A s e c o n d p o s i t i ve d i s p l a c ement c onfigura-<br />

t i o n u s e d i s t h e s l i d i n g va n e . I t o ffers ad-<br />

va n t a g e s o f c o m p a c t n e ss a n d l ow cost but<br />

c a rries t h e p e n a l t y o f ve r y p o o r e fficiency at<br />

h i g h p r e s s u r e r a t i o s .<br />

Th e o t h e r m a i n c o n f i g u r a tion i s t he scroll<br />

c o m p r e s s o r i n w h i ch o n e s c r oll w i th an in-<br />

vo l u t e s u r fa c e o r b i t s i n side a fixe d second<br />

s c r o l l o f t h e s a m e s h a pe. I t can be seen<br />

f r o m t h e f i g u r e t h a t t h e c o n t a c t points of<br />

t h e scrolls enclose a cav it y of reducing size<br />

( s h a d e d green) that move s from the outside<br />

t o t h e c e n t r e a s t h e o n e scroll o r b i ts inside<br />

t h e o t h e r. Th e r e s u l t i s a n i n d u c tion of gas<br />

a t t h e p e r i p h e r y o f t h e scroll a n d deliver y<br />

o f c o m p r e s s e d g a s a t t h e c e n t r e. These<br />

c o m p r e s s o r s a r e ve r y e ff icient a nd quiet<br />

b u t r e p r esent a s i g n i f icant ch allenge for<br />

m a n u fa c tu r e a n d h e n c e fo r c o s t. They have<br />

t h e d i s a d va n t a g e t h a t a l t h o u g h a variable<br />

ve r s i o n o f t h i s c o m p r e s sor i s p o ssible, the<br />

s u p e r i o r e ff i c i e n c y a d va n t a g e is lost.<br />

I l l u s t r a t i o n o f Scroll compression process<br />

Early compressors were all fixed displace-<br />

ment and system control was achieved by<br />

switching the compressor on and off by<br />

means of an electro-mechanical clutch<br />

cont ained within the compressor pulley.<br />

As consideration began to be given to the<br />

application of air conditioning to smaller<br />

vehicles with smaller engines it was found<br />

that the significant and sudden increase in<br />

engine load that resulted from compressor<br />

switching caused problems for the small<br />

engine with result ant issues of drivabilit y.<br />

A compressor with variable displacement<br />

offered the solution to this problem. In 1985<br />

Harrison (<strong>Delphi</strong>) were the first to go into<br />

series production with a variable compres-<br />

sor, the V5, a wobble plate design with five<br />

pistons.<br />

Th e m e ch a n i s m o f a va r i a b l e wo b b l e p l a t e c o m p r e s s o r<br />

Although scroll, vane and piston compres-<br />

sors are all still in use in automotive applica-<br />

tions, the piston compressor is dominant.<br />

Where the combination of efficiency and<br />

controllabilit y is the key requirement, piston<br />

compressors offer the best solution.<br />

P i s t o n C o m p r e s s o r s<br />

The compressor has the t ask of inducing gas<br />

at a low suction pressure and delivering it at<br />

a higher discharge pressure. It achieves this<br />

by using reed valves that operate automa-<br />

tically to control the fluid flow into and out of<br />

the cylinders. St arting with the piston at top<br />

dead centre the pressure in the small clear-<br />

ance volume will be close to the discharge<br />

pressure as the piston has just delivered its<br />

charge. As the piston recedes and the pres-<br />

sure in the clearance volume falls, the delive-<br />

r y reed valve closes automatically, driven by<br />

the discharge pressure. Since the clearance


vo l u m e i s s m a l l , t h e p r e s s u r e d r o ps quickly<br />

u n t i l i t i s b e l ow t h e s u c tion p r e ssure. At<br />

t h i s s t a g e t h e i n t a ke valve o p e n s and the<br />

f u r t h e r m ove m e n t o f t h e p iston induces<br />

f r e s h ch a r g e .<br />

Cylinder Pressure - bar<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

suction pressure P s<br />

discharge pressure P d<br />

5 10<br />

15 20<br />

Cylinder volume - cm 3<br />

I n d i c a t o r d i a g r a m fo r s wa s h - p l a t e c ompressor<br />

A ft e r b o ttom d e a d c e n t re t h e p iston com-<br />

p r e s s e s t h e g a s i n d u c e d i n t o t h e cylinder<br />

u n t i l i t r e a ch e s t h e d i s charge p r essure. At<br />

t h i s s t a g e t h e d e l i ve r y valve i s o p e ned auto-<br />

m a t i c a l l y by t h e p r e s s u r e d i ffe r e ntial and<br />

t h e c o m p r e s s e d ch a r g e is delive r ed.<br />

Th e r e a r e s eve r a l key fe a tu r e s o f this ove -<br />

r a l l p r o c e s s i m p o r t a n t for p e r fo rmance and<br />

e ff i c i e n c y. Th e c l e a r a n c e volume must be as<br />

s m a l l a s p o s s i b l e w i t h o u t risking interfe -<br />

r e n c e b e t we e n t h e p i s t on a n d t h e cylinder<br />

h e a d a s a r e s u l t o f d i ffe r e n tial t h e r mal expan-<br />

s i o n o r s t r e s s e ffe c t s . Th e c o nsequences<br />

o f f i n i t e c l e a r a n c e vo l u m e a r e p rincipally<br />

i n d i c a t e d by t h e c o m p r essor volumetric<br />

e ff i c i e n c y w h i ch i s t h e ratio o f t he volume<br />

o f d e l i ve red g a s m e a s u red a t t h e suction<br />

p r e s s u r e relative t o vo l ume displaced by the<br />

p i s t o n . Th e d y n a m i c r e s p o nse characteris-<br />

t i c s o f t h e r e e d va l ve s are a lso i mport ant.<br />

Vo l u m e t r i c e ff i c i e n c y i s a lso impacted by the<br />

q u a n t i t y o f g a s t h a t l e a k s p ast t he pistons<br />

t o t h e c r a n k c a s e , w h i ch is d e t e rmined by<br />

p i s t o n s e a l i n g a n d c l e a r a nces.<br />

E ff i c i e n c y D e f i n i t i o n<br />

volumetric η v<br />

isentropic η s<br />

mechanical η m<br />

Ta b l e o f c o m p r e s s o r e ff i c i e n c i e s<br />

delivered volume<br />

displaced volume<br />

ideal minimum work needed<br />

work done to compress gas<br />

work done on compressed gas<br />

work input to compressor shaft<br />

The second measure of compressor perfor-<br />

mance qualit y is the isentropic efficiency.<br />

It is given by the ratio of the theoretical<br />

minimum work required to compress the gas<br />

from suction to discharge pressure relative<br />

to the work actually done. The theoretical<br />

minimum is based on an idealized ‘isentro-<br />

pic’ process in which no turbulence genera-<br />

tion or viscosit y effects occur. The third<br />

measure of compressor performance qualit y<br />

is the mechanical efficiency. This is the ratio<br />

of the work actually done on the gas relative<br />

to the measured power input to the com-<br />

pressor shaft. The difference bet ween these<br />

t wo figures is due to friction.<br />

V a r i a b l e P i s t o n<br />

C o m p r e s s o r s<br />

As st ated above, Harrison (now <strong>Delphi</strong>) was<br />

the first to go into series production with a<br />

variable compressor. The wobble plate that<br />

drives the pistons with this design is free<br />

to tilt so that the piston stroke, and hence<br />

displacement can be changed. The wobble<br />

plate mechanism allows ver y short and<br />

compact pistons to be used. The ball-ended<br />

connecting rods are swaged into the pistons<br />

and wobble plate which results in strong ,<br />

low friction and ver y simple joints. The fact<br />

that the connecting rods are tilted slightly<br />

during compression as a result of the wobble<br />

plate movement means that the forces act-<br />

ing do not all lie along the piston axes. The<br />

result is that higher vibrational harmonics<br />

can be generated which makes management<br />

of compressor noise more of a challenge<br />

than with later generations of swash-plate<br />

compressor. Nonetheless the value of this<br />

configuration is illustrated by the fact that it<br />

is still produced at a rate of several million<br />

units per year worldwide for inst allation in<br />

new vehicles as original equipment, offering<br />

a good compromise bet ween cost and the<br />

functionalit y of a variable displacement com-<br />

pressor.<br />

The next generation of variable compres-<br />

sors used a swash-plate mechanism, largely<br />

because of its advant ages of low vibration<br />

and noise. The mechanism by which the<br />

compressor displacement is controlled can<br />

be described in principle relatively simply,<br />

but in fact the actual displacement of the<br />

compressor in any given situation results<br />

from a quite complex interaction of forces.


Va r i a b l e s wa sh-plate compressor show i n g m e ch a n i s m<br />

Th e s wa s h - p l a t e h a s a l i n k a g e m echanism<br />

t h a t a l l ow s i t t o r o t a t e t h u s ch a n g i ng its an-<br />

g l e a n d w i t h i t , t h e p i s t o n d i s p l a c e ment. The<br />

l i n k a g e i s d e s i g n e d s o t h a t t h e clearance<br />

vo l u m e r e m a i n s a s c o n s t a n t a n d small as<br />

p o s s i b l e ove r t h e f u l l s wa s h - p l a te angle<br />

r a n g e f r o m f u l l s t r o ke t o m i n i m u m stroke.<br />

Th i s s wa s h - p l a t e s f r e e d o m t o r o t a te means<br />

t h a t u n d e r a ny g i ve n o p e r a t i n g c onditions<br />

i t w i l l t a ke u p a p o s i t i o n t h a t i s determi-<br />

n e d by t h e b a l a n c e o f a l l t h e fo r c es acting<br />

o n i t t h a t t e n d t o c a u s e i t t o r o t a te about<br />

i t s c e n t r e o f r o t a t i o n . Th e f i r s t e l ement of<br />

c o m p l ex i t y i s t h a t t h e c e n t r e o f r o t ation is<br />

n o t f i xe d a s i t s h i ft s l o c a t i o n s l i g htly with<br />

t h e s wa s h - p l a t e a n g l e . I t l i e s fa i r l y near to<br />

t h e s wa s h - p l a t e c o n n e c t i o n w i t h t h e link but<br />

i t s ex a c t l o c u s i s a f u n c t i o n o f t h e linkage<br />

m e ch a n i s m l o c a t i o n , d i m e n s i o n s a nd of the<br />

s wa s h - p l a t e a n g l e . Th e m o s t o bv i o us force<br />

t h a t c o m e s i n t o p l ay i s t h e g a s pressure<br />

a c t i n g o n t h e p i s t o n c r ow n . E s t i mation of<br />

i t s ave r a ge e ffe c t , h oweve r i s c o mplex as<br />

t h e c y l i n d e r p r e s s u r e va r i e s g r e a t l y around<br />

t h e c yc l e . A t t h e s a m e t i m e i t s l i n e of action<br />

i s c o n t i n ually ch a n g i n g a n d h e n c e so is the<br />

e ffe c t i ve t o r q u e i t exe r t s a b o u t t he centre<br />

o f r o t a t i o n . Th i s t o r q u e w i l l o bv i o usly tend<br />

t o u p s t r o ke t h e c o m p r e s s o r.<br />

A l e s s o bv i o u s s o u r c e o f t o r q u e g eneration<br />

o n t h e s wa s h - p l a t e i s t h e i n e r t i a o f the pis-<br />

t o n s w h i ch a r e r e p e a t e d l y a c c e l e r ated and<br />

d e c e l e r a t e d a s t h e c o m p r e s s o r i s operated.<br />

I t m i g h t b e t h o u g h t t h a t t h e e ffe ct of the<br />

fo r c e s fo r a c c e l e r a t i o n a n d d e c eleration<br />

c a n c e l e a ch o t h e r o u t b u t i n fa c t t he piston<br />

Ta b l e o f s wa s h - p l a t e t o r q u e g e n e r a t i n g m e ch a n i s m s<br />

is accelerated upwards over the half of the<br />

swash-plate furthest from its centre of rot a-<br />

tion and correspondingly decelerated over<br />

the half nearest to the centre of rot ation.<br />

The former therefore exerts greater torque<br />

and the net result is a tendency to upstroke<br />

which is proportional to the square of the<br />

piston speed and thus becomes significant<br />

at higher compressor speeds.<br />

A second torque generating force that is a<br />

similar function of compressor speed comes<br />

from centrifugal affects acting on both the<br />

link mechanism and the swash-plate itself. If<br />

one considers the t wo halves of the swash-<br />

plate nearest and most remote from the cen-<br />

tre of rot ation it is clear that the centrifugal<br />

forces of the more remote half generate the<br />

greater torque and the net result will be a<br />

tendency to destroke the compressor.<br />

Further forces generating rot ation torque<br />

can come from the fitting of upstroke and/or<br />

downstroke springs. These can be inst alled<br />

on the shaft to assist the upstroke /down-<br />

stroke process under some compressor opera-<br />

ting conditions and if fitted will obviously<br />

contribute to the overall balance of torques.<br />

Here the effect will be a simple function of<br />

the swash-plate angle.<br />

M e ch a n i s m E ffe c t Comment<br />

The final contributor to the balance of tor-<br />

ques is that generated on the underside<br />

of the pistons by the crank case pressure.<br />

Although the crank case pressure remains<br />

const ant around the cycle its line of action<br />

around the plate must be integrated to ob-<br />

t ain an average net torque. It is the abilit y to<br />

control this pressure that allows the balance<br />

to be shifted and thus the swash-plate angle<br />

to be controlled. Crank case pressure is con-<br />

trolled with bleeds from both suction and<br />

high side. The small suction bleed is usually<br />

permanent and the high side bleed is con-<br />

trolled by means of a valve. If the high side<br />

bleed is closed the suction bleed pumps the<br />

crankcase down to suction pressure with the<br />

result that the compressor operates at full<br />

Cy l i n d e r p r e s s u r e U p s t r oke Integrated around swash-plate<br />

P i s t o n i n e r t i a U p s t r oke Significant at high speed<br />

C e n t r i f u gal fo r c e s D e s t r oke Significant at high speed<br />

S p r i n g s U p s t r oke/destroke Where fitted<br />

C r a n k c a s e p r e s s u r e D e s t r oke Adjusted for control


s t r o ke . I f t h e d i s ch a r g e p r e s s u r e gets too<br />

h i g h , t h e h i g h p r e s s u r e b l e e d c a n b e opened<br />

a n d t h e c r a n k c a s e p r e s s u r e i n c r eases. At<br />

s o m e s t a g e i t w i l l b e h i g h e n o u g h for the<br />

b a l a n c e o f t o r q u e s t o d e s t r o ke t h e compres-<br />

s o r. Th e c o n t r o l h a s b e e n a ch i eve d .<br />

Swash-Plate Angle - radians<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

0 2 4 6 8 10 12 14 16<br />

Crank Case Pressure - bar<br />

C o m p r e s s o r control cur ve s<br />

Th e h i g h p r e s s u r e c o n t rol va lve c an be an<br />

a u t o m a t i c , s p r i n g o p e r a t e d va lve o r an elec-<br />

t r i c a l l y s w i t ch e d a n d e l e c t r o nically control-<br />

l e d va l ve . Th e fo r m e r c o nfiguration is known<br />

a s p n e u m a t i c c o n t r o l , t h e latt e r is called<br />

ex t e r n a l c o n t r o l .<br />

Th e d o m i n a n t e l e m e n t o f sys t e m control<br />

i s t h e t h e r m a l ex p a n s i o n valve t h at acts to<br />

m a i n t a i n a give n degree of superheat of the<br />

r e f r i g e r a n t l e av i n g t h e eva p o r a t or. If the<br />

eva p o r a t o r p r e s s u r e b e comes t o o low and<br />

t h e r i s k of eva p o r a t o r f reezing o ccurs, the<br />

p n e u m a t i c c o n t r o l va l ve c o m es i n to opera-<br />

t i o n t o r educe t h e c o mpressor s troke and<br />

m a i n t a i n t h e r e q u i r e d eva p o rator pressure.<br />

Th e a u t o m a t i c c o n t r o l m echanism comes<br />

f r o m t h e b e l l ow s w h i ch i s u n d e r permanent<br />

va c u u m on i t s i n s i d e a nd ex p o s ed to the<br />

s u c t i o n p r e s s u r e o n t he o u t side. If this<br />

p r e s s u r e d i ffe r e n t i a l fa l ls t o o l ow due to<br />

l ow s u c t i o n p r e s s u r e t h e b ellow s expand<br />

t o d r i ve t h e n e e d l e t o open t h e c onnecting<br />

p a s s a g e b e t we e n d i s ch a r g e p r e ssure and<br />

c r a n k c a s e . Th e r e s u l t i n g i n c r ease in crank<br />

c a s e p r e s s u r e l e a d s t o a r e d uction in stroke<br />

w i t h t h e c o n s e q u e n t i a l r e d uction in refri-<br />

g e r a n t m a s s f l ow r a t e a n d i ncrease in suc-<br />

t i o n p r e s s u r e . As t h e eva p o r a t o r pressure<br />

i n c r e a s e s t h e p r e s s u r e diffe r e n tial drives<br />

t h e n e e d l e t o c l o s e t h e c o n n ecting passage<br />

b e t we e n d i s ch a r g e p r e s s u r e a n d c rank case.<br />

Th e c r a n k c a s e p r e s s u r e falls a s a result of<br />

t h e s u c t i o n b l e e d a n d t h e c ompressor stroke<br />

i n c r e a s e s .<br />

9<br />

12 15<br />

Compressor speed: 1000 min -1<br />

Suction pressure: 3 bar<br />

Cur ves marked with head<br />

pressure in bar.<br />

S e c t i o n t h r o u g h<br />

p n e u m a t i c c o m p r e s s o r<br />

c o n t r o l va l ve<br />

The use of external control gives an extra<br />

degree of flexibility. Pneumatic control main-<br />

tains evaporator pressure so that air-off<br />

temperatures remain a few degrees above<br />

0°C and any need for higher temperatures<br />

than this are achieved by mixing with warm<br />

ambient or recirculated air. As a result more<br />

compressor work is done to cool the air<br />

down to the low temperature than is really<br />

necessar y. Ver y significant energy savings<br />

can be made by using the external control<br />

to manage the system capacit y so that only<br />

sufficient cooling is provided to meet the<br />

real need so that significant reheating of<br />

the comfort air is not needed.<br />

T his p ote ntial fo r e n e rg y s av i n g i s t h e m o s t<br />

i m p o r t a nt a s p e c t of ex te r n a l e l e c t ronic c o n -<br />

t ro l b u t i t a l s o of fe r s other a d v a nt a g e s such<br />

a s d e - s t roking a t s y s te m s hut d ow n s o t h a t<br />

t h e e n g i n e l o a d fe l t by t h e e n g i n e a t s y s te m<br />

s t a r t - u p c a n b e g r a d u a lly i n c re a s e d – k n ow n<br />

a s “s of t s t a r t”. A fur t h e r a d v a nt a g e i s t h e a b i l -<br />

i t y to exe rcise a d e g re e of c o ntro l over c a b i n<br />

humidit y a n d avoid exc e s s i ve d r y n e s s t h a t<br />

c a n o c c u r w i t h simple p n e u m a t i c c o ntro l .<br />

Fixed compressors have electromagnetically<br />

operated clutches to allow system control<br />

by switching the compressor drive on and<br />

off as required. Variable compressors have<br />

traditionally ret ained the clutch to be able<br />

to turn the system off when not required or<br />

should system conditions approach unsafe<br />

operating levels for any reason. A more recent<br />

innovation is the introduction of clutchless<br />

compressors. It is made possible by the<br />

implement ation of external compressor con-<br />

trol. Here the compressor can be destroked<br />

to such an extent that it no longer pumps<br />

and can be permanently driven without<br />

dissipation of significant energy. Typical<br />

destroked energy consumption is only 150W<br />

at 30 0 0rev/min. Ver y small stroke can be<br />

relatively easily achieved and the challenge<br />

is to activate upstroke again when required.<br />

The advant ages are principally packaging<br />

and weight although cost savings are also<br />

possible.<br />

S e c t i o n t h r o u g h e l e c t r o n i c a l l y<br />

c o n t r o l l e d c o m p r e s s o r va l ve


A C o m p r e s s o r R a n g e<br />

One frequently hears a need expressed with<br />

phrases such as: ”I want the most efficient<br />

and lightest component possible.” In reality<br />

however, it is not possible to optimise against<br />

two independent parameters at the same time<br />

- the most efficient possible will not necessa-<br />

rily be the lightest and vice-versa (other than<br />

by coincidence). While optimisation against a<br />

single parameter is possible, the significance<br />

of the second can only then be expressed as<br />

a limit or a constraint. “I want the most effi-<br />

cient component possible weighing less than<br />

1kg.”<br />

It is generally recognised that the automo-<br />

tive industr y sources against the single opti-<br />

misation parameter – cost. While there are<br />

ver y many other constraints within which<br />

they have to operate – both applications and<br />

market based constraints – these can only be<br />

expressed as limiting values. The target will<br />

always be to acquire the product that meets<br />

the needs of the application at the lowest<br />

possible cost. Since the needs expressed as<br />

constraints var y greatly, depending upon appli-<br />

cation, a supplier needs to offer an extensive<br />

range of compressors offering a spectrum of<br />

balances between sophistication and cost in<br />

order to stand a chance of meeting the needs<br />

of a significant proportion of the market. This<br />

will extend from simple fixed compressors to<br />

meet the most straightfor ward applications to<br />

electronically controlled variable compressors<br />

where performance, accuracy and efficiency<br />

play a more important role.<br />

As means of illustration the <strong>Delphi</strong> com-<br />

pressor product range for R134a is indicated<br />

below. <strong>Compressors</strong> are shown with the<br />

I n c r e a s i n g<br />

d i s p l a c e m e n t<br />

S P 0 8<br />

F i x e d<br />

S P10<br />

S P13<br />

S P15<br />

S P17<br />

S P21<br />

SP - fixed displacement<br />

## - displacement in cc/10<br />

Wo b b l e Plate<br />

12 3 V 5 i<br />

13 2 V 5 i<br />

14 4 V 5i<br />

15 1 V 5i<br />

15 6V5i<br />

15 6V5e<br />

D e l p h i e n g i n e - d r i ve n R 13 4 a c o m p r e s s o r r a n g e<br />

trend for both increasing sophistication and<br />

cost going from left to right and increasing<br />

displacement going from top to bottom.<br />

The SP range of fixed swash-plate compressors<br />

each with five double acting pistons represents<br />

the lowest cost solution for applications that<br />

can tolerate the implications of a cycling clutch.<br />

The double piston configuration means that<br />

in effect there are a total of ten compression<br />

cavities which yields very low levels of pres-<br />

sure fluctuation. This feature combined with the<br />

smoothness of the swash-plate drive results in<br />

an inherently quiet compressor.<br />

The V5 range of wobble plate variable compres-<br />

sors has already been described as the original<br />

<strong>Delphi</strong> variable compressor. It has seen con-<br />

siderable refinement over the years and whilst<br />

it cannot compete with the CVC swash-plate<br />

range for quietness and efficiency it represents<br />

a very cost-effective introduction to variable<br />

compressor technology. The dual PTFE piston<br />

rings contribute to low blow-by and good oil<br />

retention.<br />

The Compact Variable Compressor (CVC) range<br />

of compressors uses swash-plate technology<br />

to ensure that a/c system generated noise and<br />

vibration is kept to a minimum. Internally and<br />

externally controlled versions are available.<br />

The externally controlled range of CVC compres-<br />

sors are offered with and without clutch. In the<br />

clutchless compressor the ability to upstroke<br />

again after destroke to a minimum that is only 1<br />

or 2% of maximum stroke is ensured by the very<br />

tight tolerances of the piston and cylinder bore<br />

dimensions. They ensure very low blow-by which<br />

helps maintain low parasitic losses and ensure<br />

that upstroke can be achieved when required.<br />

Variable<br />

Swash-Plate<br />

I n c r e a sing sophistication and cost trend<br />

### - displacement in cc<br />

V - wobble plate<br />

179V7e<br />

# - number of cylinders<br />

i - internal control<br />

e - external control<br />

5CVC120i<br />

6CVC125i<br />

6CVC135i<br />

6CVC140i<br />

6CVC160i<br />

7CVC165i<br />

7CVC185i<br />

# - number of pistons<br />

5CVC120c<br />

CVC - variable swash-plate<br />

6CVC125c<br />

6CVC135c<br />

### - max displacement in cc<br />

6CVC140c<br />

6CVC160c<br />

7CVC165c<br />

7CVC185c<br />

5CVC120e<br />

6CVC125e<br />

6CVC135e<br />

6CVC140e<br />

i - internal control<br />

c - clutchless<br />

6CVC160e<br />

7CVC165e<br />

e - external control<br />

7CVC185e


I t c a n b e s e e n t h a t t h e C VC range is ver y<br />

c o m p r e h e n s i ve . N o t s how n h e r e is the<br />

f u r t h e r f l ex i b i l i t y o ffe r ed by a ver y wide<br />

r a n g e o f p o s s i b l e p i p ing c o n f igurations<br />

w h i ch t o g e t h e r c a rr y t h e implication that a<br />

l a r g e n u m b e r o f d i ffe r e nt c ompressor con-<br />

f i g u r a t i o n s m u s t p a s s d ow n t h e p roduction<br />

l i n e s . I t h a s b e e n c o n c l u d e d by s ome that<br />

t h i s c o m plex i t y i s l i ke l y t o have a negative<br />

e ffe c t o n p r o d u c t q u a l i t y w h e n i n fact the<br />

o p p o s i t e is t ru e . To m a n a g e t h e c omplexit y<br />

a s ys t e m k n ow n a s R F I D – radio f requency<br />

i d e n t i f i c a t i o n – i s u s e d i n w hich each individ-<br />

u a l c o m p ressor c a rries a ch i p w i t h it down<br />

t h e p r o d u c t i o n l i n e . D u ring t h e passage<br />

d ow n the line the ch i p reads and verifies all<br />

t h e i n fo r m a t i o n a b o u t t he i n dividual compo-<br />

n e n t s a s t h ey a r e a s s e m b l e d (manufacturing<br />

d a t e s , d i m e n s i o n s , e t c ) a n d c ommunicates<br />

i t b a ck t o a c e n t r a l c o m puter fo r filing . This<br />

d a t a o n e a ch i n d i v i d u a l c ompressor is then<br />

ava i l a b l e fo r l a t e r a c c e s s s h o uld there be<br />

p r o b l e m s f u r t h e r d ow n t h e l i n e o r problems<br />

f r o m t h e f i e l d . Th e ava i l a b ilit y o f a ll this com-<br />

p r e h e n s i ve a n d d e t a i l e d d a t a c o n t ributes to<br />

t h e e s t a b l i s h m e n t a n d maintenance of the<br />

ve r y h i g h l eve l s o f r e l i a b ilit y r e q u i red by the<br />

a p p l i c a t i o n .<br />

N e w Te c h n o l o g i e s<br />

I n r e c e n t ye a r s a s e r i ous i n t e r est in the<br />

u s e o f R 74 4 a s r e f r i g e rant i n a u tomotive<br />

a i r c o n d i tioning s ys t e m s has b een gene-<br />

r a t e d . E uropean l e g i s l a tion h as recently<br />

b e e n p a s s e d t h a t w i l l fo r c e t h e industr y<br />

t o m ove away f r o m R 13 4a a n d R744 has<br />

b e c o m e t h e l e a d i n g c o n t e n d e r. As a result<br />

D e l p h i i s d eve l o p i n g a r a n g e o f s wash-plate<br />

c o m p r e s s o r s t o m e e t t his n e e d. Current<br />

p r o t o t y p e s h ave f i ve p i s tons a n d maximum<br />

d i s p l a c e m e n t o f 3 0 c c a l though t h e number<br />

o f p i s t o n s i n t h e f i n a l p roduct r a nge is still<br />

u n d e r d eve l o p m e n t . Bo t h f ixe d a n d variable<br />

ve r s i o n s o f d i s p l a c e m e nts o f 15 , 21 and<br />

3 0 c c a r e p l a n n e d . I t i s e nvisaged that for<br />

l ow d i s p l a c e m e n t t h e n umber o f pistons<br />

w i l l b e b e t we e n 5 a n d 7, a t t h e high end it<br />

C o n c l u s i o n<br />

will be bet ween 7 and 9. The reason for this<br />

uncert aint y is that the appropriate balance<br />

bet ween cost and noise/durabilit y has not<br />

yet been est ablished.<br />

D e l p h i C O 2 c o m p r e s s o r<br />

It can be seen that as a result of the ver y<br />

different fluid properties, the displacements<br />

offered are ver y much lower than for R134a.<br />

The range features shaft sealing by face seal<br />

and internal oil separator. The need for the<br />

latter comes from the significant evaporator<br />

performance degradation that occurs with<br />

CO 2 if excess oil is allowed to circulate.<br />

The second new technology concerns com-<br />

pressors for future powertrains, whether<br />

hybrid or fuel cell – the electrically driven<br />

compressor. Under development is a family<br />

of scroll compressors driven by 315 volt<br />

brushless electric motors. Scroll displace-<br />

ments are 28 and 38cc for cooling capacities<br />

of 5.6 and 7.1 kW respectively. The motors<br />

are cooled using the low temperature re-<br />

frigerant vapour from the evaporator with<br />

a result ant motor efficiency of 94%. The<br />

inverter is cooled by conduction from the<br />

same refrigerant and it too has efficiency in<br />

the 94 to 98% range.<br />

1<br />

S e c t i o n t h r o u g h D e l p h i E l e c t r i c C o m p r e s s o r<br />

1 S c r o l l C o m p r e s s o r<br />

2 Pe r m a n e n t M a g n e t M o t o r<br />

3 I nve r t e r a n d I n t e g r a t e d E l e c t r o n i c s<br />

This paper has aimed to present the technical requirements of the compressor for use in<br />

automotive air conditioning applications and to show how the diverse requirements of the<br />

application mean that a supplier must have available a range of technologies and specifi-<br />

cations to be able to meet these needs. It goes on to show how the <strong>Delphi</strong> compressor<br />

product range is designed to give comprehensive coverage and finishes with consideration<br />

of compressors for developmental technologies that are likely to become significant in the<br />

relatively near future.<br />

2<br />

3


<strong>Delphi</strong> Thermal Systems European Headquarters<br />

Avenue de Luxembourg<br />

L - 4940 Bascharage<br />

Grand-Duché de Luxembourg<br />

Tél : +352 50 18 1<br />

Fax : +352 50 18 48 00<br />

w w w . d e l p h i . c o m<br />

©20 06 <strong>Delphi</strong> All rights reserved Today’s Ink s.à r.l 236243-1<br />

About <strong>Delphi</strong> Multi-national: <strong>Delphi</strong> conducts its business operations through various subsidiaries and has headquarter in Troy Michigan USA, Paris, Tok yo and São Paulo, Brazil.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!