11.01.2013 Views

WASEEM AHMAD BUTT - Higher Education Commission

WASEEM AHMAD BUTT - Higher Education Commission

WASEEM AHMAD BUTT - Higher Education Commission

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

OPTIMIZATION OF CULTURAL<br />

CONDITIONS ON THE BIOSYNTHESIS OF<br />

XI'I,ANASE BY LOCALLY ISOLATED<br />

ASPERGILLAS NIGER<br />

<strong>WASEEM</strong> <strong>AHMAD</strong> <strong>BUTT</strong><br />

DEPARTMENT OF BOTANY<br />

UNIVERSITY OF THE PUNJAB<br />

LAIIOR.E, PAKISTAN


OPTIMIZATION OF CULTTJRAL CONDITIONS ON<br />

THE BIOSYNTIIESIS OF XYLANASE BY LOCALLY<br />

ISOLATED ,4SPENGZ LAS NIGER<br />

A THESIS SUIMITTED TO<br />

TIIE UNTVERSITT OF 1fiE PUNJAB<br />

rN FULFILMENI OF TTIE REQUTRf,MENTS<br />

FOR'IIIE DECREE OF<br />

TXTToR OI P{II'€OTIIY IN E{'TANY<br />

BY<br />

WASEE]II AI{]IIAD BUTI<br />

Df,PARTMENT OT BOTAI{Y<br />

UNI!'ERSITY OF TIIE PI]NJAB<br />

LAIIOR.E, PAXISTAN<br />

2006


Tlis is 10 ce.hry thar thc rcscarch wo* descnb€d in this thcsis entided<br />

.OPTIMIZATION OF CULTURAL CONDITIONS ON THE BIOSYNTHESIS<br />

OF XYLANASE BY LOCALLY ISOLATED ,{.tPERCltZU,t ,V1GE{ by M!.<br />

wasm Ahmad Buft is rhe ongi.al *ork .nd h6 b@n cmi€d out undd our<br />

sup.wisio.. We have gone thrcugh all rhe dab/rcsultvmaterials rcponed in the<br />

manusfiipt and ce.tify thei. co..€c1D€ss/aurhcnriciry. we also.e.tify ihai lhe tbesis<br />

has b€€n prepded under our sup.Nision accordins io the prescribed 1b.nat and<br />

wc cndoBe ils elalualion fo. the aw6rd of ?h.D. degte through the oflicial<br />

procedrres of the UniveBily,<br />

CERTIFICATE<br />

Prof. Dr. J.ved tqbal...............,..........,,,,,,.r.<br />

School of Biological Sciences,<br />

Univc6ity of the Punjab,<br />

Pref. Dr. Ik.lm-ul-H!q, SI<br />

Institute of IndusEial Biote.hnology,<br />

covemnent colleee UnivoEity,<br />

^ ,14 4.1-l


DEDICATION


DEDICATED TIO MYDEAN PANEI{TS<br />

,


ACKNOWLEDGEMENTg


ACKNOWLEDCEIEIIT3<br />

I m thankful ro Almishty cod for rhe durlss btesinss dd idinite<br />

ocrcf, rnich @lblcd ne ro @mplele rhh diss.nation.<br />

I endd Dy dccFr md sinffi$ AEritud. to my aoduic sup.ris6<br />

Prci Dr. Javed lqbtl, DiKto. scbool of Biotoeical Sci6c.s, Univ6iry of rlE<br />

Punjab, Latlo.e &d Dr. Ik@-ul-Haq. Di@tor, Itrtirute of rnd8r.isl<br />

Biot€chnoloey, C.C, UniveBiiy, Lrto.. for th€n enrhBidtic gddece and<br />

inexl8ulible iGpinrion wbich €nrblcd me ro anlin Oe obj6lives wirhour ey<br />

dific'ntis. I gMlly .pp@id. tbcn @Btlnt m witr lsilive suggdiios &d<br />

.ndcisD. whw ed wha I neded duins r[e otirc Fiod of my 6erch wd(<br />

I m gdetul ro Prol D.. Res Mdood Khd, Chrimm, Dopa.tm.nr of<br />

Bot6ny, Univdsily of rhe Pujob, La,horc md prot Di Amin,ul_Hao Khe.<br />

Chdm4 Depanmenr of Boiany ed Envirommrrt Sci.nces, C.C. Univdsity,<br />

LaloE who p.mi cd me to uden*e tnis iDporidt Bc.rch work.<br />

I eould a,ls tilc b pay ny sp.cial grdlilud€ ro Dr. M-A. e.d6 (Rrd.)<br />

CSq PcslR Labs, Lahore for his sinc.r. suida@ ad $iriQt sugg*1ions during<br />

thc rcse@h work. Th. m(hy hculq mmbe6 of Depannenr of Botoy, C.C.<br />

Untr euiD . tilorc &. scloDwledeed tor rh€ir Bflsos .dvis.<br />

I m deQly indebled lo Dr. Sit€rder Ali, Dr. M. Hm.d Asn at Mr.<br />

Mohsir Jaled ed Mr. Huid Muthrn ftr sitrc@ c@p.ndm md hetp. AI rhe<br />

M.Sc. M.Pbil sd Ph.D. es@h schot.6 in Insritute of Indurial Biot€.ltnoto$/,<br />

CC Univ6ity Lshorc e lleo app@iabd for th€ flcoungcm€ni<br />

I u abl. io peht this di$.rodon only due ro 1he utiring .ffons,<br />

p.lienc. @d ohd* pby6 ofny d.{t p.rdq betov.d *if., wing sistd nd<br />

innocol Wdit Tb.ir lov., pori@e ed sctrercE h.b6 e a foBer roEh of<br />

(,*(<br />

WASEET A}IIAD BUTI


CONTENTS


Ch.pter L<br />

Chrpter 2,<br />

Ch.pter3.<br />

Chrpter4.<br />

ChrpterS.<br />

Ch.pter 6,<br />

GOtftllfTS<br />

rNTRODUCTION....,........,..............,...,......,.,.,., 4-10<br />

LITERATURE ROVIEW............,.,.................... ll-54<br />

MAITRTAIJ AND METHODS........................... 55-72<br />

RESIILTS...................-.---..--..,.......,....,.... 73-152<br />

DtscussroN.......,..................,....,................ l5]l6a<br />

coNclusroN............................................... 169-l7l<br />

REFDRDNCf,S........,.,.......-.......................,... l?2-200<br />

LlsT oF RESEARCH PUBLICATIONS ,......................,,,,.........,,,,,. 20!


Table3:<br />

LIST OF TABLES<br />

Cornp6ition of potalo dextrose d8armedium,,,,..................,, 55<br />

Composnion ofphcphate buffer ......................................... 57<br />

Composirio. of xytan a9.rmcdium....................--.....-----.... 58<br />

Compositio. of vogel's m.dium.............-................---..-.-. 60<br />

Compositionofsalinewaier..............................-..............6l<br />

Compo6ition ofacel.te bofIcr............................-.-----.---.-.69<br />

scrcning of diff@t $ni.s oI Asperaillus niSer .. -. - -... -.. - -. -... 74<br />

Slb-grcuping of differcni sinins of,.{spelsil/6 ,,get according to<br />

xylanascproduclivily.....................................................E0<br />

Scrc.ning of mutant sirains d€veloped through UV inadiation of<br />

Asperyillw niser C(BT-35 for xylde bi6yDthesis in shate flask<br />

Sub giouping of mutant sinins of ,4spe/gi 6 ,,4?r GCBT_35<br />

developed throtrgh Uv imdiation fo. xylanase biosynthesis in shak€<br />

flsk...................................... ............................ .93<br />

Scrcening of nut nt slnins develop€d tlrough chemi€l trE tncnl<br />

(N- m.thyl N-nitrc N-nitrcsogldidine) of,.{tp?rgtl/6 ,ig?r BRCU!<br />

45 for xylandse biosynlhesis in shake fldsk ..... 94<br />

Sub grcupine of mul.rt str.its, developed ihrcugh cbemic.l<br />

trcamc (N-methyl N-inrc N nit osoeu.nidine) of .tspersi us<br />

nrgel BRClvrjfdxylanas€biosynthesis itr6h.kc fl4k-.----..... 99<br />

Sc.ccning of mutaot shains developcd thiough diffcrcnl tinc<br />

iniervals of N-nelhyl N-nito N-nit osoguanidine healneni of<br />

88


T.ble I l:<br />

T.ble l2l<br />

Table llr<br />

Table l4l<br />

Table l5l<br />

Table l?:<br />

Asperyillus niger CCBTwrc.m for xylanas biosyn0Esis in shat.<br />

flask ...........--..---...................................__.._...__........ t00<br />

Sub grouping of nutant stBiN developed through difforcnr lime<br />

intewak of chemi.al tlatneni (N-methyl N-nirro N-<br />

nnrosoSuanidi.e) of AspztgiUus rieet CCBTMNNGT@ for xylanase<br />

biosynthcsn in shate nask -.............................------------... t02<br />

Comparisor of kineiic p|ralneteB for xylanasc production by rhe<br />

paicntal strain of,4qergilhr nrael GCB-35 and Dutanl GCBTMNNo-<br />

30inshakeflak.--..............................................--..... 106<br />

Effst of differcnt agricultuml by-products on the poducrion of<br />

xyl.na* by Asperyillu ,ige. GCBTmNG-1o in shake ossks<br />

Etfect of different inorganic nitrogd sourc.s on the p.oduction of<br />

xllaneby Asperyi us niget CCBTnNG-30 in shake flasls ....- I 14<br />

Effe.t of diflemt phosphate sources on the producdon of xylanase<br />

b! Asperyi us niset ACBT MNNC-3o in shake flasks ................ I l6<br />

Eflst of differenl conccntratio.s of magncsium sulph.r€ on thc<br />

produclion ofxylane by,.{rpe'a!16 ,tsl GCBTm.-30 in shake<br />

flasks ...................................................................... 120<br />

Effect of diflerenr concenintions of calcium chlo.id€ on the<br />

prodlction of xylan € by ,4s?arsiltus n,ad GCBTNG 30 in shake<br />

fl6ks .............................................-.......................- l2l<br />

Effecl ol differcnl conccntratids of c.lcium chlonde or the<br />

prodlciion of xylanase by ,4rpe4:iflrMisel GCBTMNNC-30 in shtke<br />

flasks......................................................-.--......-...t22<br />

I l2


Figure ll:<br />

LIST OF FICURES<br />

Sran.lard cnne o{xylos€................................................. 72<br />

Scffiing of culturc nedi! for xylanae lroducnon by ,{rpe€illb<br />

z,serGCBT-35 b shlkc n6k.................--........................ 6l<br />

Time cou6e srudy foi xyldd. producnon by AspeeillB nig.t<br />

GCBT-35insh.kellasks..... .....................-.-E4<br />

Erect of dirdent ini al pH on produciion of xyla.6€ by<br />

Asperyi us nigerCCB'r-3' in shake flasks ........................... 85<br />

Time cou6e study for thc xylanas€ producrion by,4speryll/rt riaef<br />

GCBTWT-30 inshake flasks..................-..................... 105<br />

Effect of differnl inilial pH of the culture nedium on the produciioi<br />

of xylan4e by Atperyilld rigel GCBTnN6I0 io shatc flasks<br />

Eflecr of diffffir nitrog.n soudes on the prcduction ofxylansc by<br />

Aspergi 6 niget CCBTi*rc-3o in shakeflsks.................... l0E<br />

Effecl of differeni concentrations of meat oxt act on the p.odrction<br />

of xylanas€ by Asperyillus niger GCBTMNNG'30 ii shakc flasks<br />

Companson of diffcrcni lericult ral by-products on the produclion<br />

of xyldde by ,{ry?rArl6 .t?e/ GCBTmNG-1o in shake fl6ks<br />

I Il<br />

Cohp6risn of dift c.t inorganic n'trogq so!l6 on rhe<br />

prcdetion ofxylanas€ by,.{rpera,//!i 'lsef GCBTNG-30 in shake<br />

fldks...................................................................... ll5<br />

conpari3on of diff.lcnt phosphate so!rces on the production of<br />

\yl^n seby Asperyillus niget GCBTMNNa-30 in shake flasks..... I l7<br />

t07<br />

r09


Fi8ure l2: Prcduclion of xylMe for five .epe*ed barch.s (in shate flask) by<br />

Figurc l.l:<br />

Figurc l6:<br />

Figure l8:<br />

Figure 20:<br />

Fig!rc 2l:<br />

Figve22.<br />

imnobilird strain or,{rp".Atl6 ,isa MNNG'7 nycelia in sodium<br />

alginateand pollaretbane foam ...---............................... . 124<br />

Time couBe of xylanase produclio. by immobilizd nyceli. of,'{<br />

,i8erMNNG-7 insodilmalgi..re....-................-.............. 125<br />

Reusc of mixed nould mr!.lia for xylane producti@ by<br />

immobilized,.{.nigerMNNG-7..........--...........................127<br />

Screcning of subshre for the prcduclion of xyldnase by ,{Velgillrc<br />

,,s€lCCBTMNG'30 i. solidslab fementaiion..................... ll2<br />

Effect of differcor deptlB of wh@t bmn on the production of<br />

xylan se by Aspergilt6 nigal GCBIMNNG-30 in solid siatc<br />

''''''''''''''.,..''''''''''''''','''',''l]]<br />

Effect of diff@1 dilumts on 1be production of xylanasc by<br />

,{rpe.gi[,r ntae. GCBTMNrc-3o in solid stat fer@lation.....- I34<br />

Time couse study for th. p.odDction of xylana* by ,4sP4ailtut<br />

n,aerCCBTNc-30 insolid state fem€ntation...................... 135<br />

Eflet of diffftnl incub.tion tmpeBturcs on the prcduclion of<br />

xylanse by ,qasl/6 ,ig?r GCBTMN^c,rd in slid slale<br />

femerL1io...............,,,,................. ..... -- ...136<br />

Effec1 of different carbon sourccs on the produclion ot xylansse by<br />

Asp.rgi rs niAe. GCBTMN1-3o in elid s|ac fementation. 137<br />

Eff@t of difr?rcnt concentration of $aah on thc prcduction of<br />

\yl^nase by Asperyi us ,isef GCBTMNTC_3o in solid state<br />

femeniatioh......,,,...,,....,.,,,,..............,,.... .. 138<br />

Eftecr of diflemt nitrogcr sources on the prcduction ofxylanas€ bv<br />

Aiperyillus nic.r GCRT{N1 ! itr $lid sutc fementation --. . . 119


Figure 2l: Effect of diff€rmt conc€ntmlion of amnonium sulphate on th€<br />

FiCxK 251<br />

Figue 26<br />

Fi8ue28:<br />

Fisxrc l0l<br />

produclion of xylM. by,{sp€agr76 ,tAel @BTMNrc-3o in slid-<br />

sbtefementation........................,,,.,...........,,,,,,,,......... I40<br />

Efiet of tne of iroculun on $€ biosynrhdis of xylana* by<br />

Aspergillus nigq GCBTMNir0instired femonto...,,.......... l.l4<br />

ElTecl of differcnt conccntratiotr of vegetative inoculum on the<br />

biG'nthesis of xylod. by Asperyillus z,gel CCBTeNc-i in<br />

sriredfemenrd.--..,,....-...........-...........---...................145<br />

Effeci of agilatio. intensity d ihe biosynlhesis of xylbde by<br />

,4spe.sr'llrr rrgerGCBTMNN6.I insiircd f.mentor............... 146<br />

Effect ofacdtio. Fte on thc biosydthesis ofxylanse by rspag,?6<br />

,ta€lGCBTMNNc-rinstin€d femenlor.............................. 147<br />

Rale of xylane biGynthcsis by ,.{i/e/g/tur ,taef GCBTNG ! in<br />

stirrcd fmcntor.-.-..-.--.,.............--.............--..,............. 148<br />

Eflect of different inilial pH of fementation medium on thc<br />

biG'dnesis of xyleasc by ,lverAriilt ,Ig€l GCBTmc! if,<br />

stirrcd fmcnto..........,,..............................................149<br />

Effect ol differenl tmperatuFs on the biosynthesis of xyldntse by<br />

/veryrrs uia./ GCBTMNNC-I in stifted f€menlor............... 150<br />

Prcdlction of xylare fo! five rcp.ltcd fod batchcs (in stirrcd<br />

femenlor) by idnobilized,.{s,ry/atll!s ,tg?r GCBTMNNa l0 - 152


ABBREVIATIONS


LIST OF ABBR.EVIATIONS<br />

% Pe|@t g.<br />

NH4)?SO. A,moniuE sulphde<br />

'S' Significant<br />

Prob.bility<br />

+SD Stand.ld deviation<br />

A.<br />

"isd<br />

Cr<br />

Asperyill8 hiee,<br />

calcium<br />

Ca(OH, Calciuniydrciidc<br />

DNS Dinilro salicylic acld<br />

g cnrn<br />

GCB Govemne College, Bot ny D.Patnot<br />

h Hour<br />

H- Hydrogcn ids<br />

HrSO4 Sulphunc acid<br />

J. J@mal<br />

J/mrS Jolle ps squd mct ! P€r seoond<br />

K Kalium (Pobssium)<br />

&HPOI<br />

lb/inchr Poundt per square inch (psi)<br />

mg/ml Millitraln Frmillilnte<br />

min. Minut<br />

dl MillilitG<br />

Di polssiu hydrcgcn Phqphate<br />

Mdoxd O.T- Di&.tyl qter ofsodium $lPho succinic acid<br />

N NitrcScn


{ Dcsn c.nlig.&<br />

FCSIR t!&iirr Cquoil br Sci.atific |rd l4n'di.l<br />

Rtl6|rd<br />

PDA P.ae dd,o.c |g|r<br />

pH Pown oflf .dc.ftaid<br />

P.rt !.( nillion<br />

nc!,tl||tior F rnidr.<br />

try t ltwiolct<br />

wa{G A rtrin dev.lo!€d through thc dtcn[i.<br />

b.turof tIv !d MNNG<br />

Vohn !.tr vohmc psr niDut


ABgTRACT


ABSTRACT<br />

T]'e preseir study k concem€d wnh isolarion, selection and opiinizalion of<br />

clhral condnions for rhe prcdudiof, of enzrme xylanas by Asperyillrc niger<br />

One hundEd and four stmins of,r. ,isef were isolared from differcnt sit smplcs<br />

and iesled for th€ production ofenzymo Ofall lhc strains rcstcd.,4 r,gel CCBT-<br />

15 eave naxiftw production of xylanase. This srrain was selecied for<br />

oprimi2.rion ofcuhurdl condilions in shake flask. Among rhc fou.ditfere culrurc<br />

mcd,. e\dluatcd. lhc ma:imum enzymc prcduction (225 U/rnl) was oblained wilh<br />

M-4. Cuhural conditions such as rate of enzyme synthcsh (48 h) and pH (4.5)<br />

Aft€r optimizalion of the crltuhl condiiions, ihe parcnral st6in CCBT-15<br />

as subjeded to UV inadiation ior tlo minDt€s. Ninety-lbuf nutanls wcre<br />

isolared by obseai.g the zones ofxylan hydrolysis duc ro xyldnase adivny ii rhe<br />

prripl.tes Ofall lhc muran6 resEd tor cnTymc prcduclion. mutrnt BRC(r{<br />

gdvc maxinum producrion (319 U/ml) of xylanasc. The selected Uv murarcd<br />

stoin sas ftIth{ improv€d after kedtmcnl with MNNC (50J00 gglml) for 10.40<br />

min Sevcnry-four chemically murarcd shirs of ,4 ,iscr wcre picked up and<br />

claluated for xylanosc production in 250 ml shake flask. The hulanr ,r. ,,s.f<br />

smn, CCBTMNNa.$ being a be q producer ofxylanase (493 U/nl) was rlcclcd


2<br />

In shake nast, cultural condnions a.d nuhitional rcquircmcms such 6 mte<br />

of cv)me synthosis (4E h), iniiial pH (4.5) and levcl ofmear ext.act (l 0 %, w/!)<br />

!s ! nittosen supplcmenr $!re oprimizcd. I. anolho $udy, ditfcdt asric!l$61<br />

by{oduch Ncrc lesred for lhe producrion ofcnzyno by solid-slote f€menlation.<br />

Of all rhc substalcs examincd, whear bran noisrcncd silh dislilled waler gavc<br />

optinldl produciion of xyl.i.s (1850 U/g). Thc prcduclivily of €nzymc was<br />

tunho improled (2480 U/8) by thc .ddition of narch (2.0 %) and ammo.iun<br />

snlphltle (0.2 %) io rhe femenrarion dcdium. The productior of €nzlme ii solid'<br />

srare fcmenralion wds found to bemaxinumT2 h aft$ inenlation.<br />

Xylaiase fcmentation was caflicd oul by fivc{epeared b.tch cullurc afier<br />

ifrnbbilizarion of,.1. ,!iel cooidia in sodium alSinate or polltrcrhane f@m. The<br />

production oi xyl.nase was increas€d in lhe s€cond balch by ,', ,,9"/ slrain<br />

immobilized in lhe polyurethane f@m. The .onidia of ,'1. ,!gel mutant<br />

C( BTMNNG! were inmobilizcd.nd cullilated for xylanase pro


l<br />

Scal6 up studiG wlE coEied out itr a 7-5 L srimd fcnftntor. ThecultuEl<br />

conditiohs such as incubalion i.mpenruG (30oc), inilialpH (4.0) and sire of24 h<br />

old vegelafie in@ulum (4.0 o/", v/v) wcre optinized. Tbe opdtul production of<br />

xylanase (?81.4 U/ml) wd achiev€d 48 b alts lhe in@ulation vhcn agilalio.<br />

inicnsity $s kept ar 200 rym and ai. supply at 2 wm (dissolved oxygcn 0.? %).<br />

The prcduclion of xyla.e w!5 ale @Fi€d oui by fed'batch syslem in the slircd<br />

femenror. Ar the cnd of femtutation, 80 90 % of thc f€me.ted broth was<br />

rcplaccd by f6h slerilird n€dium. The batchd wcE repealed four rc fiv€ imcs.<br />

The prcdudion ofxylanase was decreas.d sha.ply afler the 4Li batch.


INTRODUCTION


ITTRODUGTIOl{<br />

xylffi (EC 3.2.1.E) is an extracellular enzvde, which hvdrclvzes the 0<br />

1.4 D'<br />

xylosidic linkages of hiSlty polyme.ized hemicellulosc (Siha 20011 Juge d 4l '<br />

2004). This cDzyne h extcnsively ued in mmv indtistries including biobleaching<br />

of paper dd pulp, inprcving animal f.!d, production of €rhmol and nelhde' 10<br />

decres€ he viscosity of mash md to Prevmt fouling prcblems in distillinB<br />

equipmenl (Nuez er al.. 200 t; Sudha er a/ , 2003 i Moen ", dl, 2001I Chst er a/<br />

2oo4). 11 is aho welt known that xylanascs hav€ t posidve ered on doush qu'lirv<br />

(Iialho and Cmona, 2004). These uses have placed grea1d stress on rncreasmg<br />

xylande ptoduclion and scarch for morc efficidl Procesrcs fq its biosvnth6is<br />

Tlc xylaase biosynlhesis depends on thc st.ain. rype,<br />

age and size of<br />

inNlum, comPcition of medim, nelhods of cultivalioq nubie requiremenl'<br />

pH. incubation tenp€ralue md fennentatiotr period (Monti 'r 41. l99l)<br />

Micrcbial prcducdon of xyldase was prefened to pldl ad aimal sodces<br />

bccaue ot c6iq availability, sEucrual siabilitv and sst to getretic ndipulation<br />

(Bilg.amiand Pandey, 1992) Filamentous fudgi have been sidelv used thm veast<br />

od bactsia ro produce hydrollric enzvmcs (Baldi ?t 41 2OO3) /tspetsi 6 nieet<br />

is fou.d to be the mosl poleDl fungus for xvl@se production (Chen e' al, 1999i<br />

Wu er al, 2000i Recod er al,2001)


Some improvements have been nade in ozvme vields<br />

5<br />

either bv modirying<br />

culturc @diions c by improvinS lhe slrain by uling the diff.rcnl Phvsical ad<br />

chcmi@l mrllgonic tr€atrdts. Both UV ddialion 4d chemicals like N-me$vl<br />

N-nitro N-nilroso cuaidine (MNNG) have bd us€d to imProve A 'iget st^in<br />

vieiL-vis rflanase Ptrdudion (Gokhal€ ?, d/.. l99l; Milagres €r ol, 1994: Steiner<br />

et ol , l9gai Chadh^.t al., lggg.K.logens et ol 2OAr' Extensive screenrng 6<br />

reqrired fd isolation offte best mulanl witb incM.d Prcductivilv ofxvlaase<br />

Pro.luction of xylanase is Sreatlv affect€d bv &e femeDution lechnique<br />

Diffetenl tehniques have bcen used for fte ryluate bi6Fthesis' qhich includes<br />

three majo. caicgo.ies, i.e.. suface culture, subm€rg€d and solid sate ttmentot'on<br />

(Cai et al, l99Er cawmde and Kmat. 2000; Kansoh ud Gamtnal' 2001i P'rk e'<br />

4t, 2002a)- Solid{late iermetlalion holds uenendous potential fo' lhe production<br />

of x/ffi. h cd b€ of sP@ial inrercst in those Process {hw crude ferm'nled<br />

product mat bc used djrecily as enzvme soDrce (cai er al 1997;Dos"zl 2003)<br />

Tbe submerg€d femenlsion coNidercd morc benelicial having morc nltrienl<br />

availabiliry than dy other iype Tle tine requir€d for subnsged i'ne at'on<br />

*as les and rhcr wd sofiicient supplv of ory8en a3 comparcd 10 the $lid-slale<br />

f€rme anon (Gones ?r al, l9g4t v.ltz et al.l999i Gouda 2000) SDbmerged<br />

Ldndtation for xyldase production bv shake flsk hd been reported bv m@v<br />

{o.kes (Chen ?t al., 1999; Gaende dd Kmat. 2000; Mo'ica t/ ol,20o2i Sevis<br />

and Aksoz. 2003 i Coelho and Cmona, 2003) Therefo€, for initial scre€ning and


subneqed lementdtion ,s prcIened ov$ solid{Lat€<br />

Thc optimiation of feme.tation mediDm pl.ys a very impon.nl rolc in<br />

en7yn]. produclion, lt is c.ftied out aiming.t a low cosl medium fo! xylanase<br />

biosynrhcsi (Siendcnbcrg et al., t991: Monica et al-,2002). The oreanirms need<br />

eseitial elene.ls such as carbon, nitogen, phosphoos .nd sulphur lor grcwlh<br />

and subsequent xylanase p.oduction. The concenrtution ofrh€se elefrents hds also<br />

a profound eret on fie yield ofxylanse (Mishn et o/.,2004).<br />

Agricuhrral bl?roducts sucb as wheat bdn. whedr stnw, .ic€ husk, com<br />

cobs. om sm\! or rcc stmw havc been used fo! biosynlhcsis of xyhnNe<br />

(sn{cnbcre pr u/. lr)98i Christo} !r dl. 1999; Abdel Satcr and El-Said. 2001;<br />

st'h! l00l) Cho er d/ (2002) srudied rhe prcducrion of D-xylose by .nzlmaric<br />

hydroly$s of agricultural wastes. Xylahas€ biosyndesis was found maximum<br />

shcn sheal bran s,as ls€d 6 snbstrate conparcd ro puB xylan polymq, slgar<br />

canc bagase and rice st@w (Fenietu et ol., 1999: Patk et al..2002bi H^q.t ul.,<br />

2002).<br />

( a.bon sou.cc affeds nor only thc mode ol\ylane producrion, bur als<br />

$. !clocity wnh which c.don soude is detaboli2ed in rhe funsdl cell. Baki el<br />

4/. (2003) snrdied ihc erecr of nulrieir soures on xylandse femenration. The<br />

lddnion ofedily ncbbolized susa6 such as glucosc and xylos ro wher bmn<br />

enhunced lhe xylanase producio!, AmonS the sevtrul carbon sonrces tcsrcd.


1<br />

highcr xylanase production was v€dfied in xylan. xylose. suear c.ne bagassc.<br />

Rhedt bdn.nd comcobs cullurcs (Coelho ard Camona,2001). Cho {1997)<br />

obseNed thar th€ starch is rhc bcsr additional ca$oi rource fof xylanase<br />

Dillerenr organic and inorgaiic nitrogen sources and thcir conccnlElions<br />

havc a malo npaci on ihe biosyirhcsis of xylanase (Kulkami er a/.. 1999).<br />

T$een'8o (0.5 %. vr!) i.&ersed the yield of cn/yDc !p to 20 % {K!mi e/ dt.<br />

l99lr Balalsishnan e/ a/., 20001 Sun d {t, 2000). Thc (NHr),SOa was preved ro<br />

b€ lhe besr nnrcgen sourcc for mxidun xylan4c produclion (Mo.lcnccourt and<br />

Elclcieh, | 979; Bi e/ a/ . 1999: Kansoh and G.mncl. 2001 ). ,,t. ,tge. produced<br />

higher le\els of exracellular bera 8lucoside and xylanasc adiynies in<br />

submersed femenrdion when ammoniun sulphale. lmmonium di hydrcsen<br />

onhophosphate and com'stccp liquor wcE used as nilrceen sourcG (Gokhale "t<br />

d/ . 199 I ). Thc usc of y.a$ cxrract as a supplemcit ro rhc nitosen source rcsulted<br />

in considenbl€ inp.ovement in thcprcdudioi ofrylanasc (Couda2000).<br />

Time couse study is o.€ ol lhc critical faclo6, which d€t€fri.s the<br />

efficacy of rhc proccs along with prcdud fomatioh Th€ p.tl€m of accumulatcd<br />

reducing sugar at'ler specific incubution tirc is char&lerislic to each species<br />

(Mairai ./ a/.,2000) Cawande and Kamat (2000) demonstnled lhc maxinun<br />

xyla.ase dcrivilr 48 h oter incubarion. Somc work{s. howcver, achieved optimal<br />

xylanasc produclion 96 h after incuborioh. (Kohli ./ al.200li Oclavio and


E<br />

cordov!.2003). Kalsoh and Cammd (2001) rcPon€d thc mdimum vicld of<br />

xylnase afrcr 2 days ofincub.tion on a mtrry shakq (180 Dm) at 3trC.<br />

Th. lempc.d@ ed &e iditill pH offte incdium llso pl.v u inPodanl rol.<br />

in ihc bisynttesis of xyldts.. Telnperltw bctwcdt 25_30qC was usuallv<br />

empfoyed for cuhuring of /1. ni4q Xyld,s. produclid was fouod to b€<br />

mximum at 30t by ,l- rige. (Palm! €/ 4/, 1996; Cano ?r dt, 1997i Ylun ed<br />

Ru$/u. 1999). The oplimum pH of lh. oft. m.jd xylanase SrouPs i5 in lhc<br />

range of 4.0-5.5 (Maria ?, al, 199). the crudc xyhn&tet hrve PH 6.0'7.0 with s<br />

emp..atue optimwn 30qc (Dhiuon and Khanna 2000) Colina .r dl (2003)<br />

exmined muimun xylmls. lctivitie at pH 4.E in fie sh.l. llask lnd fcmcntor.<br />

Optimal produdion of thc xyleolytic enzymes was foud in cullurc @nl.sininS<br />

oll-spclt xyle st 30oC and initi.l pH 7.0 (Pdhmsn., al, 2003)<br />

Stitrcd fertnentols of diffmt wo*ing clpacitid hav. rlso be. us€d for<br />

$alc ry productio of the xyl.n.s. (llias and Hoq, 1998i TehaPm ., al' 2003)<br />

EDlanced production of xylana!€ in bioreacto. w8s achievcd bv oflimizltion ot<br />

differcnl pamnelen e.8., typ. &d age of inculum, 9H, incuba0or LmP€Brure'<br />

*hrion .nd agitdion nt6 (Ped! l98q Sied€nberg e/ 41, 1998i Colid dr al.<br />

2003). TIe agilation sd acation iil€s w@ sdditiootl fsclo6 that influ.nce ceU<br />

grc{tb and xylme poduclion. Aetltim and agit riolr in submcrg.d cuhur.<br />

@ndnions nol only prdidc lhe oec€ssrty oxygcn for 8t@lh of$e or8$ism but<br />

also oromolc thc €mci€nr excrcdon of the enzym. into lhc fmdtation mcdium


9<br />

(Techalln ?l4r,2003). Reddy et ar (2002) have r€poded lbe eff.ct ofaedlion on<br />

th. production of xylee uDde. submerged @ndiliols Jhc mtximl ozvme<br />

aclivily was achiwed a10.75 wm. Merchant er al (1988), howev.r, achieved the<br />

oaxi@l xylande aclivity at 1.0'wm and 100 Am !€ldion .nd .gitatiotr rales.<br />

rcspectively. Ilias and Hoq (1998) rcponed lljal cultu€ time in bio.elcto. ws<br />

rcduced siSnificdtly 6 mmpar€d b sh.k. na3k st'l(ti€s.<br />

Tle typc md size of lbe inoculum ued in the fementltior ptucess dso<br />

aflst the enzyme biGynthesis. Sicdenb€rg ?/ 4l (1998) rcpon d that the<br />

vegetative inocuhm 8!vc hid€r xylrnase biosynlhcsh a @mPa€d to rhe sporc<br />

in@ulm. Xylaias€ *as pu.ified appmxinat€ly 25 fold by smmonim sulPhale<br />

preipitltim, get filtratiod lhrouSh S€phtdex C_50 and im qchange<br />

chromaiography on DEAE-c€lldose wi$ a yield of approximately 23 % (Ghd€ib<br />

ed Nos, 1992). chiverc e, ar (2001) ds (sied out lhe Panial pudfi@lim of<br />

xylaiase using (NEISO{ pre.ipilation dd sel filsation chrcnato8raphv<br />

OBJDCTIVES<br />

Bcing d agricultml country, Pakishn has vd1 r€somes of agricultual bv-<br />

prcducls for rhei. qploiiation as subshle in thc synthesis of xyled€ bv<br />

f@e.talior. The developme.r ofilis technolosy would b€ hiShly beneficial Tlt.<br />

pttMr work is @rcmed *ith:


l0<br />

i) Oprimiulion ofculluBl condidons for rhe productioi ofrylanase by<br />

l@ally i$lal.d stoins of..{. ,!i.r by boih subherS.d and solid stale<br />

femcntation tcchniques.<br />

ii) Scale op productron ofxylanase in slin€d lirmentor'<br />

iii) Optimization of mcthods for the isolllion and panial purification or<br />

\rtsnase fom fi€ femenred brcLh.


LITERATURE<br />

REVIE:w


LITERATURE REVIEW<br />

(omtat 4' a1 (1e74) poinred out tha! xllan is a consritucnl ofmany plair cclls.<br />

'lhe backbone of xyl.n is composed of D-xylose unit ihar is subsrituted by L,<br />

ffdbhosc.nd 4-mcthyl D ghmmic acid. Corbachcvc and Rodionova (1977)<br />

becamc succ*ful to isolale xylandc frcm tungi. Xylanae is insoh6tc in water<br />

bur solublc in alkaline solution. Johi ./ !/. (1979) srudied hehicctlulose as major<br />

group ol lrgnoccllulosc, which hrgely consists of\ylan. Microbrat xytln6cs hrd<br />

bccn pu fied frcm r.!p?,srrr s niger ^rd Strcpton)ds r'topras€r. Cornd ( I98 r )<br />

selcclcd -,1 ,iser. nains I I 0 42 (CBs) .s a pro


t2<br />

with somc othe6 showcd rylanol)tic acrivny- Tan e, a/. (1985) sepanted hG<br />

different xylanase frcm Irichodenlo honia,t't. These thre cnz)mes were<br />

lcPoned ro be lhe najor compo.cnl ofxylanolytic systcn of T. hdEiaMn.<br />

Motu er d/. (1986) and Nco er 4/. (1986) studied enzymdtic dcsndarion or<br />

liSnocellurosic marenah. Lier@elltrlosc is rh€ nosr abundant o.ga.ic.ompound<br />

pruduced oD our planc! which pn'narily consists of rhree dajor potymes<br />

hcmicellulosc, ccllulose. and tisn'n. Ahong rhese hcmice utose is the second<br />

lars€n componcnt. cokhale cr a/. (1986) found rhal ,1. ,,a€f NCIM l2o7<br />

prcduced significantly high levels of &glucosid6o, secreted by hemicettutollic<br />

cnzrncs(ryl.nas€and&xyl6ide) inrheculrurcmcdium.<br />

Hieh yiclds of P-xytosidas wcre obbined shen n was groM on cnher<br />

xylai (3.0%) or wheal blan(4.0 %). Cetlulose was a poorinduce.ofr-xylosidase.<br />

Thc ptl rid rempemturc optima forp-xytosid.se selc 4.5 and ()5t, Especilcty.<br />

Dubeau ?r al (t986) prcduccd xyta.ase ot Cha.tonitu, .ethLt r.!,, and srdie.l<br />

ns hydrobtic poienrial. Maximum xylanase F.An rion by Chaerootin"<br />

.c//,/,l,tnn,r w6s obtaihed in culruE rupemaranl afld loh ofgrowrh ar 3?"C in<br />

basal ncdrum cont.ining lol, xylan ar pH frainrained between 6.5 and 7.5<br />

Xylanase producrion vas fotrnd ro be gloi1h a$@iarcd<br />

Crajek (1987) had prodnced D-xylanase by rhemophilic fungi usins<br />

dir€renr melhods of culrues. They cxamincd se\cn srnins of tunsi fo, rheir<br />

ubiliry ro produc. D-xylanase i'l tiquid snd sotid state femenialion. Colfirlee/al


l3<br />

(1988) isolated mulanls of,.4. ,€er NCIM 1207 by subjecting the conidia 10 ultra<br />

viol€t imdiadon @d some weE tsed for the produclion of x7la|N, CMC&<br />

and Fgluc6id6e. In Seneml, adorophic muldts s@recd lo* le'eh of all<br />

eMymes into cultue bfoth. Schiner and vonmem (1989) developed a method for<br />

thc quantificatior of xyl66€ ud CMC$e fro'n soil. Th€ det€nination of<br />

activity qas caEied out lia subsrale and reaction was peifomed al pH 5.5 md<br />

io'C rempenturc. Bhsd 4/ al. (1990) prodDced puified dd charlccded<br />

xyrmase ftom , qerg 6 ochtuce^ employing in both liquid and solid state<br />

Chen ?/r/. (1990) sc.eened a high yictd xylanase p.oducingstatn A. ni4er<br />

c-2 liom the soil dd tEared wilh combinarion ofutravioter ddialions Gry) dd<br />

.tlyl mcthme sulphonare (EMS). The submsSed fcmdiarion conditions wde<br />

studied. Tle inilial pH wd 6.0, remperature 28.C dd cDllilation tim€ N6 96 h.<br />

The optimal pH md empmrnre fo. xyloase reactjon werc 4.8 md 50-55"c,<br />

rsp@riv.ly. Xylame ws stable in lhe pH mrge t.2-l1.4 but had weat rhemal<br />

slabiliry when eMyme in@bacd al 55oc fd I h at which 40 % ofenzyme &iivity<br />

mnained. Cokhale ?r al (1991) sludicd that,4. ,Aa NCIM 1207, pfoduced high<br />

levols of exlracellular p,glucosidase and xylanase acriviris in submersed<br />

femotalion. Among the nirogen souces mmonium srtfar., almonim,<br />

dihydrogen onhophosphsre .!d @mit@! liquor were b61 fo.1he prodrction of<br />

cellDlylic dzymes by,,{. ,!ger


Uchida ?r a/. {1992) srudied prcducrion of xylose fron xylan wilh<br />

inlfacellulr enzyme system of ,4 "tgcr 5-16. The stain produced a xylanolltic<br />

en/ymc system! including B-xylosidase, o-slucuronidasc and c<br />

anrbinolnnnosidase, i. p.ttei-shaped mycetia when rhc fung$ srcw in a mcdiun<br />

including rylan of its panial hydrclysis prducrs d a carbon souice. Bilgnmia.d<br />

Pddcy ( ll)')2) dcscribed ihat microbial production of rylandse was prefeftd to<br />

phnr and drnnal sourccs becauseofeasie.avlilabiliry, strucrur.l sr.bitity and easc<br />

ot 8€ne.c naniprlations von a a/. (1992) sudicd rhe xylanase prodncing<br />

thcmophilic fungns, which poducs xytanase but docs nor sccrere.ny cettutases.<br />

Thc edz)'nB src slir.blc as blcachirg ai


l5<br />

rado corr€sponding ro 3i2 respeclilcly with<br />

fredium yi€lded highest e.zyne level aner<br />

30'C wnh inn'al pH of medium adjusr€d 1.0<br />

inoculum size of l0% (v/v). Straw<br />

five days of aerobic fementalion ar<br />

Haq e7 dl. (1993) studied the sy nesis of xylare ed ellule b|nold<br />

cullurc,.{. ,,ger. It €xhibiled m.ximun @llulylic eMyme prodnciion using wheat<br />

brm as subslrote, Diffe.eni .ulrual conditions such es rdre of szyme synrhesis,<br />

extEction by diflercnt solulions, efeclr of diluenG and nirrogen sources wee<br />

studied and oprimi4d fo. best prcducrion of x)lda.e and c.ttula*. Baitey ?, at<br />

(1993) investigared on the produclioD ofxylanse from rrijhod.rna rceyi.The<br />

orgmism was cultivaled on cettulose-xylan media a1 different inilial pH.<br />

Prcduciion ofxyldas€ ws favoued by a high pH_ Minimum conaot betwEn 6.0<br />

.nd 7.0 $a obseryed by bolh eltulo* ed xyte based medi.. The produclion or<br />

xyldase at pH 7 was shown 10 be delendanr on the natur€ of xyld in the<br />

cultivation mediuq howevq it wd independ€nr of rhe other organio conlonents.<br />

Mdimun produclion ofxytmse rvas achiwcd ar pH ?.0.<br />

Bailey and Vilkei (1991) prodn ed xyt.|@e ftn lsperyi B hnigts<br />

ed Asyeryilb,ryz4€ on nedm conbining rylm a fte cdbon source.,4.<br />

lunisatu! ptod\..d xylanrse on unsubstiluted insoluble xtld but groMh and<br />

enzymc p.oduction o. soluble oligoecchdide fron the srcdinS of hard wood<br />

*'qe poor due lo prcscn€ of inhibitoB. ,r. rrlsaru prcduced good Kyto6e ai<br />

lhe !H below 3.0. Ai higher pH valus $e produciion of proteolytic eDzynes


t6<br />

.aused degadation of already p.oduc.d xyl as. aclivity. A. olyzae s^!e lcss<br />

xtll!]e activitr lhan,.{ lmiAara on $e birch xylo mediuN. After a.laPlalion<br />

'1sa<br />

capable of emciot enzymc producdon on lhe stesmed snbstrale. Nakamua<br />

?t al (1993) prcduced exlrelluld xyleffi ftom alkalophilic 3aeil6 sp. slraitr<br />

4lM-I, isolaled from soil for cnde xylede prep@lion. Optiduln pH was.bour<br />

9.0 dd xylMes we.e induc€d by rrabn but not with rylos, mbinose o.<br />

glucose. ll wd noted that xyl.r6e productilily ws influenced by cultm H" and<br />

prcduction at pH 10.5 wd higher 1han at pH 8.0.<br />

Patel dd Ray (1994) produccd dd chmctcri8d xylme fim<br />

St€pldz)r€r sp. grown on an alkali treted com stalk. This xylanase was srable<br />

ror 24 h ar pH mnge of 5.0 to 7.0, had bed opriml belwc.n 50-60.C ad had a<br />

half life of 5 h a1 60"C. T1E xyldas€ activity s6 inhibired by rhe addiiion of<br />

xylce imo th€ femdted broth. Milagres "r ai. (199,r) Foduced xylM€ ftom<br />

PenicilliM jMthihe iM fiom plant maErid foud in temitc colony. Tte<br />

cnzyme revealed high xtlanolytic activiry, which was inducibl€ by xylan.<br />

su8rrt8n€ bagdsc or xylose. Oplimal remp€arllre ed pH for xlluase activiry<br />

(98 U/ml) werc 40'C and 5.5, iespectilely.<br />

sumakki e/ 4l (1994) nudied eMyme aided, totally chlo.ine-free bl&ching<br />

of dirermt indusfrial enrvood k6n pubs usins purified tichodm re.sei<br />

xylande ald menase. Both wde found n increse bleach abiliry of die pulps<br />

dep€nding on @king Delbod ued in pulp p.oduction, The eff6r of !yta!:e


l1<br />

rrcahenr oD bnghlnes \'as hishest in the convctrlional loaft pulps and in pulps<br />

prcduced by extcnded cooking m€thods. High lmounc of lignin wirh hiSher<br />

nveraee molecnlar mass also could b€ cimclcd frcm ihe pulps afier xylan.sc<br />

trcatmenr. lhe e.zynes serc especially ereclivc in implovinc the bleach abiliry<br />

of oxygen-delignifi .d pulp6.<br />

Shubtkor .r al (1994) pnduced xyldn.sc by lhc yasr Ctrplo.o..ts<br />

wdzolictt on n din with different carbon sources Thc enzyne qas ld.tcd<br />

cxhcellularly ard was dn induciblc dzymc by &nethyl xylcidc, rylosr and<br />

xylan can be replaccd by extrach frcfr planr i.w naren6ls. It sas also found rhat<br />

rheF ras r coftlnlion bct*en €nz)mc ploduction and grc$1h ofthc ye6t on the<br />

medium qirh xylan as ihc solc carbon source. Hoq er al (1994) prcdu.ed<br />

ccllulasc-tree xylanase by Thetuo,n!.es lanugi"os$ and studied the ef€cl of<br />

aeirarior &ddon and m.diufr ompon€nts on iis producdo.. In shakc flast<br />

culture al 50oC xylan or xylan,coiraiiing substance induced maxinum and<br />

companblc lereh of xylanase while glucose. xylsc and sucrN app€arcd to<br />

rcprcss \thnase synthesis. A1 pH 6.5 both grcwlh and xylanse producdon was<br />

maxihun. Aspects of usine the crudc beta xyhnase prepahrion fo! applicarions<br />

in rhe pulp and p.p€. indusry aere dis.u$cn.<br />

Pinrsa c/ a/. (1994) produced extracellular xylanase iron ,rqdlsil/ls<br />

,'i?,1a,s rndstudicd the induclion ofthe synrhBis ofxyl.ie byusirganumber<br />

or con,pounds, including xylan of diffcrent o.igin. Dorosaccharide.


l8<br />

xylosnccharide and xylose dcrivalives. Cenain xylan like whcat arabinoxylan, oal<br />

spch xyl.n. bnchwood xylan and 4-o'nerhyl D'Blucurcnoxylan werc found lo b€<br />

the nut poserful induccB while aylosccharides such as xylosc, xylot iosc and<br />

xylorclb* also scryed as induce6. C6ra-F.rcni ?r a/. (1994) investigared the<br />

ptududion of xylanoliic cnzldes by an,4. ,,A?/ cCMl 850 isolale in barch<br />

culturcs. wnh 4.0 % xyla. as the carbon source, about 65 U/mlof&xylanase was<br />

oblained which rep.esent lhe hiehesr rcported activity for wild l}?e srniis of,.1.<br />

Comes./ "/. (1994) prodDced highly themosrable xylanlse by a wild strain<br />

ofrhcfrophilic fun8us lr.,?,aascrs aurartiac$ and nedi,um cohposilior for lhe<br />

ptoduction of cxhcellulaf xylanasc was optimized in sh.ke-fldh culture.<br />

Oprinri/ed conposition 3.24 % conprised whear sran Gream prcteared, pariicte<br />

szc lpprox'mately 0.25 nn), 1.32 % phama nedi. and 0.49 % KHrPOa. other<br />

conponnds snch as inorSanic nitro8.n, Mgsor, cacl:, r6cc elenctrrs, and<br />

vnafrins showed no marlrcd positive cffecl oi ihc cnz)me yicld while Tvecn-8o<br />

exhibned dish cnhancinr ellecr and rhc oprinized cuttu.e gavc 5t47.4 nka|]hlof<br />

xylanase. Ihe fungus prcdlced maxinum enzyhcs when the pH was nol<br />

conrrollcd and Gpesed nycelium inoculum was used. Thc oprimum pH for<br />

xyluuse sas 5 and tenperature wasabout 80oC.<br />

Ilieva c? 41. (r99t srldied the bioslnrhcsis of xytanase by ,4.?e/8il6<br />

4trar',,i K I durine submerged and solid-state cultivarion hy irvcsrigaring some


l9<br />

pa€mcle6 of cnzyne s the femdtation mcdinm treG optimircd for naximun<br />

xylandsc producrion. wh€.t st.aw and mixtu'e of ball mill€d fraize stems and<br />

shear bran (2:l) prodlccd tbe highesl ahoDntofxylanasc ai oplimun tenpclarure<br />

oflo'C and oprimuh pH wG 3.5 a0. Sinsh et /r (1995) prcduced xvlanasc bv<br />

Fuvdtnn a\rtpotuh. which srcted hiSh leveh ol xylanolvtic trzvmes on<br />

conncrcial xylon as {dl as on sereral 5gncultur.l residucs, ofwhich sheat bmn<br />

supponcd maximum enzyme yiclds. n was also obse^.d rhar addnion ol02%<br />

olile oil, an incxpensivc source of f.tty acids, resuhed in u fuflher 25% incrc'se 'n<br />

Yang c, dl (1995) pdduced xylanase bv an alloliphilic Ad.r/1!r sP'<br />

isollrcd from hdr.l$ood knn PulP and it lvas cdpablc ofgrc*ins in dilutcd tsfi<br />

black liquor at pH I I 5 The evyne producdon wts Preccded in dlkaline mcdrun<br />

rr pH 9. Varimtrm cnz)me acrivity r!!s obbinc't bt cultilalion in a defined<br />

alkalinc medium with 2% birchwood rylan and l7o com (ep liquor at pH 9 0<br />

Higho enzync p.odlction was aho obtained on whcdl bran Thc optlmum<br />

lempcmturc a( pH 7 sas 55"C and in the abscice of subsnae. al pH 9 0, fie<br />

enztm€ las stableat 50oc for dl l€asl30 hinules<br />

Jlin 4 a/. (1995) produced xylanar bv a th€nnophilic funeus on a8rc<br />

iidusriial esidues in solid-slarc fmcnniion Untrcarcd whcal smw and sugar<br />

co. b.ga$e supponed enzFc production whilc ricc nraw and rice husk did not'<br />

Alkali and.cid chlolide treatnent oi rice stras and rice husk cauFd


20<br />

delis.ification and enha.ced en2yne producrion. The productioi qas higher in<br />

solid-state femcntation than in subme.ged fcmenbrion<br />

Palma er al (1996) studied the infl!.nce of da on and asitation o.<br />

xylanase activity. 0.25 % H,SO4 tlcat d sugar cano baea$e was fillerd and<br />

adjustcd ar pH 5.5 wnh NaOH and supplemenred wiih 0.1 % yeasr erhacl.<br />

Penr,//n,, was clhurcd in rsuhiog mcdium for 96 h ai l0'C bolh in shlke flaks<br />

ar agnaion nrcs frcm 240 rp.m. and acBlion 0.2,0.4 and 0.6 wm.In shake tlask<br />

mediun xylanase activily {as 98.5 v/ml at 60..p.n. and thc maximum 8rcwlh<br />

occured at 120 r.p,m, The hichesr produclivity (351 U/L) was obtained by using<br />

the lower oxlgen supply KLA b.ing 1.24 h-l- lsmail (1996) st'rdied the<br />

producrion of mlkienzyhes such as pcctines. polygalacturcnase, cellulM and<br />

xyla.M, usinS six fungal isolates gown on dange pftt a sole carbon source.,{.<br />

"igef A'20 was the most polenl and poduced highly active multienzyde qstems<br />

aier5 days in shsk€n cultlre.<br />

Dua c ., a/. (1997) invesiigltcd more rhan 500 srni.s of sPBrqil wirh<br />

xylanoliic actiliti6 ielaled from seveEl sources of eil and wood<br />

deconposirioi mate.ial. Out oflhe srlains, 23 micrmrganisms w€r€ able to s.ow<br />

in bnch wood xylan. The obseNed bchaliof ofxylanase activity at pH 10.0 and<br />

5.0 indiclted lhat thK ben prcduce6 of alkllino xylde yicldcd enzyme le'eh<br />

in rhe ran8. of2.61o 4.0 U/ml bul oftcr folr micmren.isms achieed enzFe<br />

levch lion 1.0 to 1.25 U/ml. Two fricroorganisns p.oduced xylanse which wet


2l<br />

almosr acrive dt pH 5-0 od otre microorS0ism w6 at'l. to prcduc. enzJm€ actrve<br />

al pH I0.0 having diffdot chemical struclures.<br />

Mukhopadhyay et "1 (t997) hota@d a potenl xvlmolvlic fungal st.ain of<br />

,ltperyitts ltavipes producing both endoxylm.se dd be6-xvlosid6e in<br />

consid.nble atnomls ftom soil of West Bengal, India Anong the five differenl<br />

b4tic media resr€d fo. rylmolltic enzyme produdion ,4ryets ill6 l@ipes stawed<br />

maximum enzyme production in Mand€l and Wabeis (MW) medium The isolaEs<br />

produccd maimum xylmarc Poduction<br />

at pH 6.0 dd 2.0% xvlan as caibon<br />

sourc€. Sludies by changing in enzyme m€dim sho{ed no seParaie growh and<br />

e@ynepioducing Phe.<br />

Gdptu et 4/. (199?) selecled Peni.ittiun unesceB l0'l0c for dct.iled<br />

srudy because of its abilily lo prcduce an interesring ozymalic conplex in<br />

quelily. The xylmase conplex wa cellulase-ft@ and had o optimal actililv a1<br />

pH 4.6-5.0 and 55-60'C on bi.ch wood xylan. The b€st production wa on sovbean<br />

meal ed wheat straw. Exprcsion of lhe xyl46e sd rcPr€ssed bv glucose.<br />

xylos. and lactose. The oprimialion of cult@ medim ed mold imprcved the<br />

ploducrioi 3-4 tim6. cai .r 4l (1997) isolated,4 "tg?r A3 snd studi€d its solid<br />

slale fmerlation conditions. lDilial PH 46, lemPemtue 2E'C' lml spor€<br />

suspension inoculnn, @lio ol wheat bre to b.gdse I I 5 ed fedentation for 3<br />

days *€re optimal. The xytanase actilily was 5147 IU/g Compansot of xvlansse<br />

prodoccd on both liquid @d solid cultu€s rc!€led rht oPtimun t€mP.rature wd


22<br />

55'CioprinalpH wis 4.6 ad 4.2, respccdvely. Halfacrivity los in I h w6s nord<br />

al 54 and 5lo(, €specilcly.<br />

Sianro ?/ ,1 (1997) noted rhat Aspereilla ta'nurii ptodrced exlracellula!<br />

xtlrnase and intaccllul P-xylosid.e indldivny in glucose. The prc-src$n<br />

mrcclia NcE iicubat€d $ilh iyla. .nd nerhyl p-D-xylosid.. clucose and<br />

cyclohexanidc were found to inhibii xyh.asc producrion by herhyt beta D-<br />

xylosidc Subraruniyan ?r dt (1997) isolared and scrccned xytanase prcducing<br />

nrcroorsanrsms frcm soil samples and hemiccllolose mare.iah in 3 s6gcs by<br />

using whe.l bran exrrad agar hedium, xylan dslr nedium and liquid medium<br />

Nlrlr xylan. Arch.na and Satlanarysna (r997) studied rhe producrion of<br />

.\rlrcellubr rhrmo 'rabk cclluto,e.frcc \ytanase by ta./ tu\ h.t,taLUrrhn \oa<br />

by solid-surc fefrenlation .nd fou.d wheal bran lo bc the besr substrate. Thc<br />

p.odu€tion of xylanase reached a pesk in 72 h. A<br />

prcduced in wheat brsn moisieDed with tap woter at<br />

ascnt rar'o oi l:2.5 (w/v). Thc oprinum renperature<br />

50"(-<br />

hish levcl of €nzyme q,6<br />

3 subslr.tc lo a most€ning<br />

for xylanasc production was<br />

Siedcnbc.g cr dl (1,),)?) invcsrigacd rhe p.oduclion of xytande by<br />

AYugillu! (trdhloti by xylan and xytose. No xylansc was formed l,ilh xytosc<br />

Thc hishest enz)rn€ acriviry vas obtained wnh filancnrous frycctia and smatl<br />

(0.1-0.2 mnr. dia.) pellels at rhe lowesr phosphare conccntnion. Fushinobu a dl<br />

(1998) detccted the srrucrurc of xytanase "C.' tiom AJperyiuu, kawachii. -the


23<br />

olemll srrucruE was sinild to I I othtr fatnilies ofxytanas€s- Aspergill6 37 and<br />

m acid-bse @talysl, Clu I ?0, ale loc.ted at a hydrogen bonding distance (28'A),<br />

as in o&er xylescs with low pH oplim. Analysis of wild tyPe ed nuet<br />

showed th.1 ,,{ryefai[6 J7 ws inpondt fo. ils eM)me aclivity al los pH.<br />

Samain er al (199?) siudied rhar ta.i//6 Sp. strain xE and its mutanr<br />

ddivativ€ strair D3 produc.d rhmoslable xylurse whicl was suitabl€ for<br />

enzyme bleching of kFfl pulp. Xylaae synthesis w33 shosn to be induced by<br />

the soluble p.oducts of xylan hydrolyses (xylooligos&chdides) ed equally<br />

@tabolic.lly ftprcss€d when thse oligM@haridg accumulat€d in th. n€dium.<br />

Xyldase productior ce6ed when $e aclivity re&hed approximately 380 U/nl<br />

due to e mino acid slbdag..<br />

Kit moro et al (1998) cloned ald characleriz€d a xylflse 8oe xyr Fl<br />

from a shoF koji mold ,4rpe rgillu otyzoe KBN 616. Tl,e xytr F/ gene was found<br />

lo be comprised of l4E4 bp wiltr l0 inr.m- The deduccd minoacid sequen@<br />

encoded t prc1€in consisling of 327 ai no acids (l5, 402 Da) which wd simild 1o<br />

rhe tun8al fanify F xyfdas.s such as ,,lrpersil/6 nidulM xln ., Aspergillu<br />

kawrchii ,n A A^d Petui itn chrysoten@ xtl p. The intd@lqon orgariarion<br />

of:7, F.l was very similar to thal of finsal family F xyldde gmes. Plasmid<br />

P)(PR64, which contain 64 copi6 ofrz f'/ p.omoEr rcgion (Pxyn Fl) in lhe<br />

sM€ direclion. sA coBtructed ^nd lntlod&edin Asperylll$ oryae,


24<br />

I-oper t "1. (1998) endied thar lhe rylanoltlic syslem of an alkali-tohranl<br />

ta./1t6 sp. consi.iing ofscvchl xyhnascs raneing from 22lo 120 KDa and pll<br />

value tiom 7.01o 9.0. Crude xyla.ase rebined 72 o/. ofinitial activity afier 5 h at<br />

pll 9.0 and 45"C. Xylan& prcducrion was folnd maximnm when n was induced<br />

by xylose and rylan ar 42'C and pH 7.8. Crude xylanase rele&d xylotriG. and<br />

xylorerrcse as m.in products of xyl0i hydrolysis, xllose w6 noldetected. Ph.m e,<br />

o1 (1998) oplimiad the conccntrsiions ofoal spclt xylan. casein hydrclPale and<br />

NHrCI In the culture nediun ofproduction ofxylanase fron Ba.illlr sp. I-l0lE<br />

by mcans of response surf.ce he$ods. The oplimun composnion of nulrienr<br />

medium $d found to he I I 6 8/l ol rylan, 1 .94 g/l of casein hydrclyaic dnd 0.8<br />

arlolNHrCl<br />

sineh (t998) found that ThemMtces /a,rst',56 SSBP ptc'duced rh€<br />

highe$ xylanase acrivily ol59,600 n kat ml-I, when cullivated on a medium<br />

containi.g co.se comcobs and yeast exkact as a nilrogen source. The xylanas€<br />

{N very srable ar pH ralues of 5 5 - 9.0 wilh superior themosnble prcPedies.<br />

Halflives rere 341 and45 min at ?0 lnd 90'C, r€spectively. Macabe ar /l (1998)<br />

slb.lecled thc,lqelgtld ,rd,/a,r xyhnase gcies xln A and rln B to regulalron<br />

b, anbiem pH. In the pesence ot D-xylose. xln A Nas expresed 6t acidic<br />

Cai .t u1. (1998) invcsrigarcd the prodrcrion of xyldas fr6m,r. ,isq A3<br />

tsinC liqu'd fem€nt lion wilh hcmicellulos. and solid srate Imenrarion on


25<br />

agricultural by products. wang (1998) sudied that muh,plc-cnzrme systefrs<br />

containing xylanas€, cellulase, pectinr$, a-glucanasc ahd prorease were produced<br />

by hypq xrlanolylic strain ,.{ ,rgel NFU'AO2 in solid state tcrmentation. Sreiner<br />

.. d/. (rr98) srudied rhal Penkilliu\ putpurogchu,h mutated wilh Uv lisht to<br />

inrclse xylanasc prcduclioni thc bcsi muianl Uv-64 was t.eaied sith N-tr€thyl<br />

N-.itro N'niircso guanidinc (MNNG) and a second sche.ation, of mulanls {'-as<br />

obraincd. The mnr.nts aho sho*ed a 2.2-fold iictedse in &xylosid6e as<br />

compared tr ilh lhe wild t}?e.<br />

Gonaneli ?r a/. (1c98) oh.incd genetically stable mutants of Pe,i.illiun<br />

.a"cs(trs 2ot7 $ith modified cultunl tnd morpholoeic.l prcP€nies by Uv_<br />

inducrion h.d incrcused c+dciry for biosynlhesis of eit€cellular xylande<br />

SiedcnbeB e1 a/ ( 1998) i.vestgatcd the prcdudion of xylana* by,r,is€i<br />

inducrion oi enzymc prcduclion by xylan and xylosc at ditferenl timcs. No<br />

iylanasc sas fomed wnh xylose bul highesl activny obrained wirh oar slucce<br />

consumplio.. The highest enzymc activilics were oblained wirh filamstotrs<br />

dycelia and small (o.l - 0.2 mn in diamet€r) pcllels and wnh lowest phosphate<br />

concent.rrioi lhomas er a/. (1998) rcpo.t€d thal xylanases can comnonly be<br />

asayed by rhe dinitrosalicylic acid (DNS) or the dseiomolybdate (ARS) nethod.<br />

Howcver, specific.ctivjtics were manytines highe! with DNS than with ARS<br />

Archo,D c/ d/. (lqqq) prcscnicd s rcview reslrdhs ldrious aspccrs ol<br />

xyldnolyric cnzynes prcduced by themophilic nolds. Seleral lhcmophilic molds


26<br />

produced xylanolllic enzymes. Xyldidscs fiom thenophilic fungi did not appea.<br />

ro be dille@it from their meephilic councQan in lhek pH stability, mol€ctrlar<br />

weighr, amino acid compcition and s.qucncc, iwtecEic point. XylaM of<br />

themophiles arc genc@lly induciblc 6nd havc almost simila. Egulatory<br />

ncchannns 6 in ncsophiles. Rashid (1999) isolatcd Ad.illzsPz'i&s PIl9 frcD<br />

pinus lelres. ll showed optimum xylanasc p.oduction when grown in yeasl<br />

tryplonc broth at 37"C. pH ?.2 and was sh0ken al200 An<br />

aftct 48 h ofincubarioi<br />

Xylanase produclion by Ad.illrr pa,r!/iJ PJl9 was not sroslh-associared<br />

maximum enzlbe production was found after 36 h ofincubaiion.<br />

and th€<br />

Zl\\ et at (1999) i$laled /tversil/lr ,sr/3 rrDm ll,r4 stnins of flngi<br />

prcduccd high xylarac actn,ity (2176 Uml) wilh ir 6 days ofcullivation on lhc<br />

nedilm (4.0 % *h@t spell, 0.5 % glucose, 0.4 % N.NOj and 0.1 % NaCl) at<br />

30'C. The enzrm€ showed o imrm tcmpe.atu.e of 55"C and rerained 35% of<br />

acriviry after incubation ar 45"C for lh. Thc enzyde.ho showcd a pH optimum of<br />

5.5 and sas nable ar the ranse ofpH 5 0 to 8.0. The enzyme was considcred ro be<br />

.n cndoslycosidase because hydrolysis ptoducrs of birch wood xylan were<br />

xylodose .nd xyloletrose. Ce$e$c and Mamo (1999) .eponed thal xylanse-<br />

p.oduci.s allaliphilic Micru.occls sp. isolated from an alkaline soda lake Xylo*<br />

atrd \ylan induc€d enzyme prcdlclion bd no acrivny *a detecred whcn n was<br />

gro\rn using other carbohydnrc sourc6. The enzyme was very stable in the pH


71<br />

rrnge ol 6.i - 10.0 ar 40"C. xyl.nase icriviry Nas inhibircd by Cu sups (2-) and<br />

veluz c/ al. (1999) screcned dilfcrcni strains of nrtolrA sp. on thctr<br />

capabilily to produce xylan.se undcr solid nale lnd liquid cullurcs. The hrghest<br />

xyl.nlse ncrivily of 516 U/nl for liquid culiure was exhibit€d by st.ain lr?:,Pxs<br />

p"la frum lhe Philippines. For solid-$al. cultu.€, the highesl aclivity ol 7802<br />

unns,nl $us lchieved h,! Rhirot)us sP. MKUI2 oiiginaled lrom Thaaland<br />

Rinspicil (19.)t)) prepaed xylandsc cont.i.ing ciTymc cofrplcx by culturins<br />

Trichad.rhtu in nodium having trcdlcd com-processing wasts. The liquid<br />

componenl olth€ com possessing*astc wd r€noved and lhe rcmaini.g solidsas<br />

auloclalcd $hich rcmoved inhibnory activiry ad resulkd in incB6ed ivlanase<br />

prodrction as well 6 increase in lhc 6tio of xylande lclivily lo olher cn7-vmc<br />

I.tu !/ 4l (1999) stud,cd rhar xylanas€ could be produccd sclcctivclv bv<br />

Tti.hodo"tu rcesei stnin lnder definit condirions. Th€ dcgrcc of s€ledive<br />

ptuducrion s.s dlaled 10 rt?e ofca$on sourcc, @rbon iou<br />

rhe rario ol curbon to nnrogen (C/N) Lo*enng ca.bDn source corcetrlnrron and<br />

rncreasiiS llrc CAI mtio, by takirg xylrn nixcd with verv liltle anounl of<br />

celluloF ds c..bon source, could Propotlionally<br />

nise il. Hish conccnration or<br />

xylaiase (15.5 Uhl) and low conc.itralion oicellulasc (0 2 U/ml) with high aho<br />

b.Ncctr borh cnzymes (177.5) could be obhinot in fed'barch fcme.hion bv


2E<br />

conlrclling carbon source under 5.0 g/l and CN 6tio o!e. I1.2. EudBgn ./ a/<br />

(1999) cadcd our the separalion of xylanase ffom the crudc cullure filk.les of<br />

Asperqilt6 sp,5 ^nd Asperqi us sp.44 using alfinity precipitations.<br />

Varquez., al (1999) @ni€d o in\esrigarions ro oprifrize fie cuhorc<br />

condiriors for the produclion ofxyhnasc andB-xylosidas€ by,4tperyillts lldrus. t<br />

filanenrous fungus, isolat€d fton soil. M.ximun xylanase (190 U/ml) and p-<br />

xylosidase (35 U/ml) prcducdon w6 obtained whcn thc strnin $a grsn on<br />

minenl medium supplemenled "irh 3.0 % ({l!) @mcob powder a the ca6on<br />

sourcc. Yaun and Rungra (1999) nudicd the xyl.nase femcnlation prccess and<br />

fie ethd of lcmpcraure o. €n7ymc production by ,.{ ,ig"r An. 1-15. A<br />

rempedruF oscillatory op€€rion wiih a 33'C for the cany 24 and of27r for lhe<br />

larer conld shortcn $e cultilation timc by about 16 h in comparison silh thar of<br />

28"C for all the tifre withour adveNe eff€ct on xylanase aclivity. Labeille er 01<br />

(1r99) claid€d muliicnzyme product qith glucoamylase, p.oteolfic and xylanase<br />

d.tiviti6 lion whcat bmn by solid+btc fcmeDiation wnh,-{. ,ti?r<br />

ou d. a/. ( I 999) screened a fr uttnt stain of PseudontaMs louresce$ 0-9(<br />

by repe.tcdly tredting it sith U.V. and HNOZ. The xyldasc aclivity of0-96 was<br />

as high as 125.45 lu/nl and was almost cellulose free. Maxinum €.4nc<br />

podnctioD could bc obuined hy using agBnan esidue as thc culture medium.<br />

Chadh! ./ d/ (19t9) coDpa.€d sttuins ol Therhohlr.es lanq'itr$ fion dilTerenl<br />

cultuies collections fo! xyl ase produdion. T. ldtrginosut BSI, . soil isohte


29<br />

prcduced thc largest amounl ofxylanasc silh lwo foms, xylanase I .nd II *iih<br />

mol€cular m6s of 25.0 and 54.0 KDa. The U.VTMNNG nulas€n6is of ir:<br />

krlgr,,rrr BSt aleurospo.es /p.otopl.sls rcsuftcd in xylanasc'htper P.odlcing<br />

mut.nh. Icmira c/ al. (lt)99) evlluated thrce ag.icultudl wasics for xvlanolytic<br />

enrynes producliotr by /rP"/gil!r rar@rii in $lid i6le fmentatio. Oplimal<br />

innial noislnre contmls for xylanolylic respeclirely to wheal bnn coocob aid<br />

sugar caic bdgassc cultures. Frcsenius er dl (1999) pudfred xvlandc_de$ading<br />

cnryme 1o apPsrent honogeieity frcm solid{lalc culturcs of Asfrgillu!<br />

/x,,tgatdl<br />

h was mosl active on birch wood xylan.<br />

Claudio e, al (1999) ptified xyla.ase II to apParent homoseneitv rrcn<br />

solid'siat culturcs of,4rAT silldrdiSdr,r' Thc punfied enzvme was most acr've<br />

dr 55'C oid pH 5.5 lt ws specific to xvlm Johnson er d/ (1999) Purified<br />

cxrocellular xylanase o homogcneity frcn thc culturc filtEte ofa lhcmophilic<br />

fnnl\s.l h.tDtorices loMgin rls_SSBP and its bish'mical cha€cteistiG vcrc<br />

studi€d. A yield of ?0-80 % was achicved thtough specifi€d procedures The<br />

spccific dclivny .alculaled using the dinitrcsalicvlic acid (DNS) method *as 1500<br />

Il/ng. Mlria er a/. (1t99) nscd sugarcane brgdse as substBle for xvlanasc<br />

prodrcrion by mea.s of a strain 6f Tnchodetuo hatitrMn Rilai isolated ftom<br />

dccnyine .lspi.lavenna sp. (peroba) vood The srowlh<br />

p'o{ile or sinin was<br />

followed over 20 days on 14 % (w/v) bagase dnd hiShcsl xvldnase aclilitv (288<br />

LJrml) lppe.red on lhe sevcnth d,Y


l0<br />

sileira et a/. (1999) isolaled xtlmN aclivitv ltom crude exl.acrs ol<br />

Trichoderna hozianum $mins C md 4 erown at 28t in a solid medium<br />

containing rheat bmn as the carbon source- Chnslov dr 41 (1999) isolated ed<br />

screened seven tungi slmins fof their ability to p.odnce cellulase-frs xvlanases<br />

that could b€ used i. Prct e|lnoni of sulphlte Pulp pdo. lo blechinS. The<br />

potcndal xylan produccs wer€ subject.d to shak. flask fementalioB us'd tbr<br />

different carbon sources, wheat brm, comcobs. o.l spelts xvld and bleach Plant<br />

emuctrt. chen ?r dl. (t999) scFned 150 frmgal stEitr' 8 slsins Produc€d Bainlv<br />

xylane &tivily over 100 U/ml. TrB srain No 49 s6 high€st xvlane producer.<br />

shich lenlalively was id€ntified ts,4 rig'l. Ito (2000) m'de u rcview with 26<br />

ref*.6. on enzymB c-amytdq glucoanvl6.. tsgluc6idlte 6tsas' dd<br />

xtlanase produced by shohu koji mold such as ,1q./ai,6 tavachii attd A<br />

@ahofi otc. Biochemical chamctqistics of xvlande of AsPeryill^ tawa'hi<br />

meh@Gd of &id r€sist4l ed mehuism of qprcsion of \aluase sw<br />

oksanen rt dl. (2000) sludi€d that lensile st ength and libc! flexibilitv of<br />

thc pulp verc.ecovsed by r€Iining belwq the cvcles howevr. this aulted itr<br />

dete orated draiDage propenies. The !.cycl€d pulPs werc 1rea1€d with purified<br />

Trichoderna reesei cellDlds ud hcmiellulses and lhe cheges in fibq<br />

prop€ni6 duc ro enzymalic<br />

hemicellDlases wirh the enitoglucanase treatments increased tho positive effec$ of


ll<br />

the €n


12<br />

srowrh on wheal bran ardbinoxyl.n. Ca; et al. \2000J studied lbal higher<br />

cnlircnnent.l tcmpemtue is benencial for the grcwth of Tncholodarac.oe Ll<br />

ond its protcin synthcsk. The optimum tempenturc lor the fomation ofxylanase<br />

Nas ll"C under this tenpcrulure ihe spccillc aclivily ofxylanase was 92 I U.mg-l<br />

proreins, ancr cnllivared for 67 h. it was 126 I U.g.- I dry medium.<br />

Ca$ande and Kanat (2000) studied strain ol,4rrry,1/!! terreus nnd A.<br />

,t8er $at produced xyllnase with undetectablc amounls ot cellulosc. Xylanflsc<br />

was produccd from various lignocellulosic substrates by solid sblc feme.triion.<br />

Thc besl nedium for,.r. rczs6 wd wheat ban produc€d 68.9 luhl ofiylanase<br />

and,4 r€er.74.5IU/mlofter,1h ofincubalion. A mde culturc filtr.ie oflhc two<br />

,|rrEry,rzr slrains s€s uscd for lhe hydrclysis ofvldous lignoccllulosic mat ials.<br />

shich renolcd the hemic.llulosc fnction frcn all lignoccllulosic materials t.sted.<br />

couda (2000) i.lcnigated thc prcduciion of xylanasc by ,.ryer8ift6<br />

tuflalii in both solid statc nnd subne.gcd culluies. The use ofcomcobs ii solid-<br />

state culturcs gale lhe highest activitics (124.83 UB dry n.rtels) fo. xylsnrsc.<br />

Th€ addilion of fcmentation medilm ro the comcobs in solid-slale culture<br />

incresed rhc uclivity by abour 2-folds ofrylanase. The medium with yeasl cxtlacl<br />

,s nnrcseD source showcd marimum actiriry in soliddute whilc rhe best iirogfl<br />

source in submcrged wds mixtlie of sodium nitrate and casein hydrclyzale,<br />

Oplimum icmpemturc was l5"C in elid{tatc and 30'C in submcrg€d


l3<br />

Abdcl-Sate. and El-Said (2001) studied rylan-dccompositrg fungi and<br />

xylanolytic acriviry ii agnclltural and indostdal wastes. ,.{rpelsll/rs &v!r, ,{.<br />

niger. Peni. ill iun, .hrysoEenuD', P @rtlophilun, P. fuii.ulosunl.<br />

P- otalicuD and<br />

Iri.hoder,tut hdzlanun Nerc lhe most prevalent species on ihese subsirates Beg<br />

?/{t (2001) e$ewcd rhe nicobial xylanase .nd r heir indu srial appl icadons. The<br />

cnzync syslem uscd by microbs for the netabolisfr of x)'lan is the nosr<br />

ihpofianl lool for investigdting thc use of rhe second mosl abnndant<br />

polysacchdide (xylan) in.6tu.e. Rscni srudics on microbial xylanolytic sysicns<br />

have gencrally focused on ihdudion of en2ync prdduction und* diflcreir<br />

conititions. punficarion. characrdizrion, moleular cloning and expBsion abd<br />

usc ofenzyhc predominanily for pulp bleacbing.<br />

Aidre., al (:001) srudi€d extlac€llutar xytan dcgruding enzynes, namety<br />

p'illrnrsc, p-{yrosidNe and o-aabinotumnosidase frod r/,t odenta haaiornn<br />

sttaln 4. when grown in liquid nedium culruics containinc oar spelr xylri as<br />

indncer Kansoh and Cammal (2001) isolard direEnt s:tr.ans of Strapton)..s<br />

from Estprian soil for rhcir abihy ro producc cxtracctlutar xytansses. Ofatl<br />

isolates J /irdans was selected s potdt prodlcer of xylanase. A noticcable<br />

iicrcN in enzymc acriviry w6 ob$d.d in fic presence of(NHa)rSOr. Chcn "?<br />

r/ (2001) srudied the effoci of stitrins raie, pH conrrol and feed limc oi<br />

(\flr)?SOJ on xyfanase prcdvtion by Ba.illus pu,nilus A-30. Wnen (NHr),SOr


34<br />

wrs fed ar 0 conslant rare in earliei age and regnlated l5te. by detmining the<br />

conrent of(NHt,SOj. xylaas€ activity could €ach 616lU/m.<br />

Nuc/ e/ a/- (2001) a$e$ed sp.cifi. a.abinoxyln fncrions soentcd b)'<br />

xylonolysis in wh.at bread dough\ lo6f volume dd crumb tcxlure of bread<br />

pruduccd silh xylanase heatmenr w€re smngly comlated wift fte foamins<br />

prcpenies of lhese fraciions in whcai bread dough\. Addition of xylansse<br />

modified sheat flour anbi.oxylans and result.d in a I@f wnh nor thd. t0 %<br />

srcrrcr rolume- Kohli e/ a/. (2001) studied rhe producrion of.ellulosc fne<br />

crthcerruldr xylanase by Thennadinonyet rrdtopl,i/rr ar 50"C and pH E.5.<br />

Maximum xylanas. prcduction Ms achiev€d in femenrarion nedirm using birch<br />

wood xylln as substrate afler 96 h of grcwth ai 50"C_ Maximnn xyla@activily<br />

or42 U/Dlwds foundbbc at65"C and pH 8.t9.0<br />

Lenos et zl (2001) srudied ftc use of pu.ifi€d xytd s a subsrmre for<br />

br@onlesroD i.to xylanascs incrds€d thc cd of €uyme producrion.<br />

Consequenrly, rherc have been aftemph to develop a biopr@ess lo produce such<br />

cMymes lsing dircBnr ligi@ellulGic 6adues. Considqing rhe indlsrri.l<br />

inportancc of xyl.nases, thc use of nillcd sugarcanc bagsse, wirhour ary pre<br />

t.e{tmenl, as a ca.bon source was adopt.d. Endoxylanase a.d B-xytosid6e<br />

aciiviiies wcre higher wh6 sodium nirale w6 used as rhc nirrogetr $ur@, qhen<br />

corpared snh peptone, Dr€at and antronium sutpbale at the optimized C: N Ftio<br />

of l0:1. I h! use of yeasr exrracr 6 a supplemcnr ro rhe nnrcse. sources rcsuhed


l5<br />

in considcable improvemenl i. rhe production of xylanases, showing rhe<br />

ofthis organic nitrogen source on,,l. ar.fu,i neiabolisfr.<br />

'nlponancc<br />

Konig "121. (2002) wo cd oDl a simple. rcbust and highly reproducible<br />

mcrhod lor thc detemination of xylanasc, Fglucanase and cellulasc in<br />

conmcrcial feed cnzymc prepahrions. rhe ncrhod wls b.sed on measuremenl of<br />

rcducinS hoierics rcleled by rhe cnzymes frch arab'noxytrn, bcta-glucan, or<br />

cdrborymethylccllnlose (CMC) 6nd independcnr ofenryme slaDdards. Elia.. dnd<br />

'Idmboullr (2002) worked on xylaiase recovc.y tto"|. peri.iltiun janthinlthjh<br />

snh a rcyereed nicellar sysrcn consisring ot a cntionic surfacranl usine a<br />

conrinuous proccss. A siaisrical apprcach applied lo thc Esulls showcd lhe<br />

hlshesr xtlanasc recolcly (41.5 %) w.s anaircd ai anionic slrength of t0 os/cm<br />

lnd a rohrnrefic flow at0.5 nVhrn.<br />

\4onica drdl. (2002) prodtced and characrenzed rhc ce ulase ftee xyhnN€<br />

rrcm Tl.rnon)ces lanusinosB IOc:4t45 in shaken cultu.c usin8 comcobs as<br />

substrarc 1500 U/ml). An oprimiziion oflhc mediuD in submerged femcnkrio.<br />

was c.fllcd oul aining at a los cost cohposition for cnzyne production.<br />

Slltistic0 cxpcrihent dcsign poinring our comcobs areds cnz)me produdion.<br />

Judiih and Junior (2002) so*cd on rh€ influencc of some susaB on xytanasc<br />

prcduct;on b\ ,lsperyillus atua,,o/i in solid siarc fencnkrion ,nd rcponed rhar ,.t<br />

(r\tn.ri ha\e high exraccllular edoxylanase (t00 U/ml) and ,-xylosidase<br />

lctivities (r 5 U/nl) *hen $own on nitted sugar cane bdg$e as rh€ pnicipal


36<br />

carbon sourcc wirhour rearmcnl. Julio e/ d!. (2002) srudied thc bioconveBion of<br />

soybean industrial residue by Baci B etbtilis BL62 sttuin isolalcd frcm *atc. and<br />

soilcollecrod in lhe Amazon region. Thc isolate BL53 show€d the highestsp€ciilc<br />

acririry for rylanase, 5.19 lu/mg prolcin wirhin 72 h ofcuhivatioi and specifrc<br />

cellulase .clivily, I 08 luhg prolein withi. 24 h of grcwlh. Thc prcduction of<br />

prcte.ses rhrt refe .sociated wilh thc Io$ of collulasc and xylanase actilitics<br />

$6 also obsencd Thcsc rcsults indicated thal thc *lecled micr@rganisns and<br />

the cuhivarion prcce$ huve great biotcchnological potetrtrat.<br />

Pa* a/ ur (2002a) oprinized rhc inidal Doisrur€ conGn! cuhivario. rinc,<br />

rnoculum s/c and concenlration ofbasal nediun for rh€ prcduction ofxylanasc<br />

by an .l r4r"r mulanl using slalislical crperimenhl dcsigns. Thc cultivation timc<br />

ind concdntration of basal m€dium were thc nost inport nt facton affecring<br />

xylanasc lctlvity. An inoculum size of txlOi spoes/g. iritial moisrure conteni of<br />

65 %, culli\alion rime ol5 days and l0 limcs concentarion ofbasal nedium<br />

containirrg 50 times conccnraion of com slecp liquor were oplinun tbr xyl.n.sc<br />

prcducrion in SSF. Under the optimiz€d endnions, thc acrivny {nd prcductvny<br />

or xylandsc obtained aftcr 5 days of fementation wcrc 5,071 IU/g ofrice nraw<br />

and 14.790 lLi I L h . respcctively. Tle xyla.ase .divny predicted by a pol'rcmial<br />

nodel w.s 5.4E4 IU/g of rice stdw.<br />

Dudlc "/ al (2003) studied rhc crrncellular pbductions olB-xylanas.. p-<br />

rylosidasc. ,-glucosidasc. &mannanase. cl-a.abinosidase, eglucEonidase, c


31<br />

sulNtosidlsc and FPase fiom Aa.i//,' r!,rtld CBMAl0008 wirh rhee differ€nl<br />

\ylan $urc.s as substrale. lhc cnzymatic prcfiles on birchsood, Erzlrpr6<br />

grur./rr ard oa1 wc.e studied at alkaline and acidic pH conditions. 4/ril/f<br />

/r,ild (BMAI 0008 crown on lhe rhree carbon sources prcdrced nainly d'<br />

xylinase. Prcf'minary as)5 canied ott on E en\.lis krafi pulp f.om an<br />

indus$al pnpff mill showed a rcduclion of 0 3 % of chlonne us€ in ihe pulp<br />

htned Nnl! th€ enzymes, resuhing in incrcascd biShtncs, conparcd b<br />

coilcntioDal bleachiie. Tne cnzlmes vere norc cflicicnr if applied before lhe<br />

'nltralbldching<br />

seqlcnc€, in a non-pre-oxye€nared pulp.<br />

Ri'r d d/. (2001) inv€srigared rhe condirions of the biosylrhcsis of<br />

pccrinolyts. cellulol),1cs ard henicolluldcs by rhe filamenrous fungus ,.1 nis€l<br />

IBT-90 by ! mathenadca! mcthod offactorialplanning.nd sradicnt opiimization.<br />

Thc prcccss of oFimizarions led ro a rhrcefold increde in rhe adivity of<br />

pcctinolyric cnz)imcs and doubles rhe aclivily of ccttuloltaic<br />

xyhnac. Octario and Cordola (2001) isolared a diploid nnin (D4)<br />

bei*en t\!o /. ,ig.r xylan.sc oleQroducing<br />

tems ofcnzyne prcduction and carabolirc repression by 2-dcoxy-<br />

D-glucor (2DC). This srdin increased rylanasc prodnion (60? nka/ml). which<br />

\rere neallt 100 % higher $ai titcts lchievcd by $c s,ild rt?e srain (305<br />

nkrl/nl)lid 28 %higherth.n $ebestmutant uscd ro inducepanscxual cycte.


]E<br />

Seyis aad Aksoz (2001) studied diffe.enr Inarod"raa slrains and<br />

Trichodentt hazianunt 1073 Dl was folnd to bc lhe mosr potent xylanM<br />

producer.'fhci sone cultuFl paramcreB, nanely, incubation iine, substralc<br />

concentation. inilial culrure pH and remp.Eturc wcrc optimized in order ro<br />

inc.ear xllanase production froh T. haEianuht 1013 Dl. The opdnufr<br />

ircubation rime w6 found lo be 13 days. It wd con.luded that 1.0 % xylan<br />

co.ctrtratioi is sunable for hieb xylanase prcd&rion rate. Rahmatr e, a/. (2001)<br />

studied thdl renewdble natural resouEes such N xylan arc abundanl in many<br />

agricuflu.dl wasles. Penicilliun sp. AHT-I is a strcng prcducq of xylanolydc<br />

cnz)m€s. Optimun ploducrion of the cizynes was found in cultue conniniig<br />

oat spelr xylan ar 30'c and initialpH ?.0antr6ilays. Dos erar (2003) studiedrhc<br />

xyla.ase product'on by soliddare leincnhtion usinS rhe totrsaE arnntia.u'.<br />

Maximun prcduction (500 U e ) brSasse) was lchicved on the sixlh day of<br />

cuhiv.tion on slid susarcane bagls medium supplcmencd with I 5 % (v/*) ricc<br />

b6n extrdcl. The fungal biom6s, d.temined flon iri glucosrmin€ contcnt,<br />

reachcd 28 nggCl) on thc Erh dayofcultivatio..<br />

cdffdcho and Aguilar (2003) worked on cx1n cellular xylande produccd<br />

by a Mcxican ,.1p?€'['6 strain. ,{yer8il/rs sp. FP-470 was ablc ro g.ow and<br />

prcduce extra cellular x/anas on birch wood xylan. @l spclt xylan, whcal<br />

straw. and cofrcob. wilh highcr produclion obsened on comcob, The stnin also


l9<br />

prcduced cnzymes wirh cellulasc, adylase and pectinase activilics on ftis<br />

subsrtule. Opritulm t€mpe.arulc sd pH wee 60"C and 5,5, resp€cdvely.<br />

Biki sral. (2003) rcponed that lllamentous fungi h!!cbeen widelyuscdro<br />

producc hirclrtic enzymcs for i.dusfial applicarions, includiiS xylanascs.<br />

shos lcvcls in fungi are gcicrally fruch highcr rhan those in yoasi .nd bacreria.<br />

Influencc ofcatuoD sources. niircgen $urc6 and moisorc conlenl w6 evalualed<br />

on xylandse production by Pe"killiun.z,.i..,r I(!l0c in solid-sute<br />

femenotion Among agricultuml sasrcs t6red (shear bbn, unlrcarcd whcal<br />

stnr. rrcuted wheal straw, bccr pulp. and soja m$l), unlrcaled wheat straw Save<br />

th€ biehcn producrion oi xylanase. Tle addnion of 0.4 I of xylan o. €asily<br />

melabo|/lble sngar, such as glucose and xylose. at a concenimtion of 2.0 % to<br />

wheal s(&rs enhanced lhe xylanase p.oduclion. Ycdsr extdct was rhc bestnitogcn<br />

souEc anong lhe nitrcgcn sources itrvcstigated: pcptonc, amnonium nndle.<br />

sod'u nrtEre,0nnonium chloride, and amnonium sulphdre.<br />

Coelho and Camona 12003) isolated Arpersi 16 sisa,/els stFin as an<br />

cxcellenr producc. of rylanasc ds@ialed with los levcls of cellulasc. oprinrol<br />

xylanasc produdion $as obtained in liquid Vogel medium conraining xylan as<br />

carton source, pH 6.5 ro 7.0, at 25"C al 120 rrn dunDe E4 h. Amotrg lhe sevchl<br />

carbon sources restcd! highc! xylanmc producrion xas verificd rn xytan, xytose,<br />

sugnF.dnc bagassc. lvhear bran and com.ob cuhures Narayln and Belaluddin<br />

(2004) isolatcd an aerobic, alkaliphilicj xylanolytic ,a.r//rs strains fron lo.al


40<br />

Soda Ldke on xylan agar mcdiun and screened by xylanolysis hethod. Alkaline<br />

Xylandse produced by four dirsen $6iN of Btr.,/,rr rp. weE chaacGnzed<br />

aier l0 nrin in rhc presencc of 0.7 % o6t spell xylan. The adivilies of thc four<br />

\rd,is {e,( 102.2ll, l8s.nd 20/ U mlc, Fspec|ncly.<br />

Krosh c, a/. (2004) investisat€d enzlmatic hydrclysh of lign@cllulosic<br />

mareirl by collulol,,tic and xylanolylic €.zldcs. Aboul t2 filan€.lous tungi<br />

from genus /zxt./1u,, werc invesiigatcd and compared with rh^t of frichode,na<br />

feerci. Eiftq Solka-Floc ccllulose or oat spelt xylar vd used as ca.bo. sourc€ ii<br />

shakc fiask culiilation. All the fungi invsti8ared showcd co induction of<br />

cellulol',tic a.d xylboltaic enz'ftes during srcwth on cellulose as wcll as on<br />

xylan. Tne highesl filler paper activily wd measurcd aftd cultivation of<br />

Peaicillittu bftsilianu on ccllulose. Narayan and Belaluddin (2004) isolared rhe<br />

four &{1/,j sibins frcn soil and wattr at RaFhahr region. The strains {ere<br />

isolucd on xylan agar nedium and screcned by xylanolysis method. A?.!//rs<br />

smins Nerecapable ofgrcwingin xylan medium ar pH 7-0 and produced 55lU of<br />

xylanlse when cultivarcd in neutnl fr€diufr dt pH 7.0. Maxin.l .nzyme<br />

pmduclion $a obtained by crltivation on whesl bran alpH 7.0.<br />

Kang e/ ol. (2004) inveslieared ihe prcduction of cellulases and<br />

hemicellulascs frcm ,.r. ,,acf KKz, by elid{larc femenEtion using differe.r<br />

mhos of dce slrdw and whcal bnn Whch,.{. ,rgef KK2 was growi on rice sm{<br />

alo.c is a solid suppoa in SSF, the m{ximnm FPdse activity was 19 5 lU 9r 4<br />

'n


4l<br />

days. Aho. CMCase (129 IU e ), bcta-slucosidasc 1100 lli gr). xylan6se (50?0<br />

tL C rl..d beb-xylosi


42<br />

inhibnoB ofrhe enzyme. DTT and Na'aclivated xylanase K ll by 24 and 13 %,<br />

respcdirely. Enzyme K II used as addnive to 0our idprovcd dough PrcPenies.<br />

inccascd rhe volume ot shealjye and whole mcal bread, and jnc.eased tbe<br />

porosiry ofcrumb and thc moisrure ofrhe frnal prcduct. consequdtly cxtendins<br />

Jeya ?ral (2005) oprimized thc mediacompoienrs for xylanasc produclion<br />

bt Asperyiltus w6icotot MKUS i. solid{rare iemenlation (SSF). Optimiation<br />

was cdried out usins De Moe's iiacrioial factorialdesign wilh seven componenrs.<br />

Maxinrm produ.tion of xylarac 1249.9 U/g wis obiaincd in SSF wnh an<br />

oprrniled nrednrn conraining (g rl: NdNOr 20, KrHPOr z0, MeSOa 10, fesor<br />

0.001. KCI I, p.ptone l0 aid yc6t qinct 10. Four componen$ namely NaNO(r).<br />

MgSO(r), pepronc and K,HPOrsignilicanrly inc.eased rhe xylanse production by<br />

,4. v.Attz./o. MK(J3. The optimized mcdia incrcascd xylane produclion by 3.+<br />

fotd. Alpeteillrs ,erci.olor MKUI p@dnc€d naxinum xyl..asc afl€. lwo st€ps<br />

of mcdia optimiation underalftaline condnion.<br />

Kotrkiekolo e/ a/. (2005) usd Clortdnn .e/lzlovolarr, an anaerobic<br />

b.clcrilm- to dcgrade naiivc substares efficienily by prcducing ad exlacellular<br />

en7ytre .omplcx called rhe cellulosom€. All c€llulosomal enzyme subunns<br />

coniain d@kcrin domains that can bind b hydrophobic domains temed cohesiis,<br />

which arc repeuted ninc times in CbpA, the noncnzymatic scafioldiig proleii ol<br />

Cnn,nonas te ulowrans cellulcomcs, In this slurly. the synergistic i.teractions


4l<br />

ofccllulases (endoelncane E, EnsE; endoslu€nasc L, Engl,) and hemicellulas<br />

(ardbinofunnosidase A, AfAr xylanase A. xynA) $ere dctemi.ed on the<br />

dcaradarion ofcom fiber, a natuol subs16re contrining maitrly xylan. ambinan.<br />

and cellulose. The degiadation by X)hA and AfA of ceuulosc/arabinoxylff was<br />

grcntcr ihan rhlt ofcom fiber and rBuhed in 2.6-fold and 1.4-fold incrscs in<br />

syn*gy. respcdively. Sync.gistic €ffeds were obscNed in inclefrenh in bolh<br />

simultaneous and squenli.l reactions wilh ArfA srd XtnA. Thes€ syrergistic<br />

enzyhcs appea. to rcprcsenl porenri.l raie,limiri.g enzymes foi efficient<br />

hemiccllulos dcgradation. When niii-cellulo$mcs $ere constructed f.om the<br />

ccuulosomal eizymes (XlnA and EngL) a.d ninicbpA wirh cohesins I .nd 2<br />

{mrDr-CbpAl&2) and minicbpA wiih cohesins 5 and 6 (nini-CbpA5&6), hisher<br />

acrn ity $as obscned dan thal for the coftsponding enz)des alonc. Based or rhe<br />

dcgladation of direrenr rypcs of cclhloses and hcnicelluloscs, rhe intcraction<br />

between cellulosomal enzymes (xlnA and EngL) and minicbpA disptay€d a<br />

drlcreity thal suggesls llul dockenn{ohesin inteddion lrom (. cellulovorans<br />

may be nore selcclirelhan Endon.<br />

Knshna (2005) rcvicwed bnef hisrory ol solid{hre fcmenration (SsF),<br />

mator aspects or SSF rvere Biewe4 vhich iicluded lacroB areting SSF.<br />

bionra$. fenrenloE, modcli.g. Dduslrial microbial cnzymcs, organic dcids,<br />

secondary melaboliles and biorcnediation Physico-chenical and envibnncntat<br />

lirclors such rs inoculum t)?e, mohurc and wurer activily, pH, tenpcratu.e,


44<br />

subsrr.le, pariicle sizc, aeniion and agiBrion, nurrirional factori and oxygcn a.d<br />

calboi dioxidc arectiig SSF were reviered. The advanlages of SSF ovor<br />

Submcrged Femenlation (SmF) werc indicated, and $e diffeFnt lr?es of<br />

femcitos used in SSF desc.ibed. Thc eco.omi. ieasibiliti€s of adopring ssF<br />

lechnolog) in ihc comder.ial prcdncdon ofindusirial enzyncs such 6 amyl6cs,<br />

ccllulNes, xylanase, prcreases, ph)lases and lipasca were highlighr€d.<br />

Yang e/ d/. (2005) amplified ftc Sene mxynB(64) by thc dethod of PCR<br />

wnh lhc renrplate of thc genomic DNA or Thentutasd,u4?ma MSB8, and<br />

cfoncd inb l|rc cxp.ession vetors of Es.heri.l'ia toli and I'ichia pastoris.<br />

€spediv€ly. xylanase B(40kD) w6 succe$illly exp.escd by thc two<br />

helcrclogons prorein expr*ion synchs {ith hiShlevel pioduclion. The<br />

.ecombinair prctein of xlitB expressed in Pi(hia pastoris showed €xlrcme<br />

thcmoslability and pH stabiliry, which ws optimally active at 90'C and quite<br />

erblc over lhc pH nnge oi pH 5.0-10.8 ai 70 "C, After incubation of lhc .nzyme<br />

al l00oc aor 30 min, X)nB reraincd 70 oZ hisher residual aciiviiy. The<br />

iecombinanr X)nB expressed ;n Pichia pqiloris is of grear use in a va.i€ry of<br />

rnduslrial and.Aricultuml dpplicaiions.<br />

Tandka sr a/. (2005) purified an exlncellullr cndo'1,4'beh-xylanasc fron<br />

rhe curtuE supehatant of the snycare Awobqsnliun' pullula"s AICC 20524<br />

groNn on xylan. The purified cnzymo was honogeneous as judged by sodilm<br />

dodccyl sulphalc-polyacrylamide gel cletrophorcsis and isoeleclnc focusing,


45<br />

which showcd an apparcnl M G) ofSt lDa and a pl of8.9, rcspeiilely. Xylrnase<br />

acrirn) Nls oprioalar pH 60and?0'C. Thc senonic DNA andcDNAs encodins<br />

this protein were cloncd and sequenc€d. The xylanase genc (x)mll) €ncodcd d 26<br />

amiro acid siSnrl pcptidc and a ll5 adi.o acid marurc prc1ein. DNA rcgions<br />

cncoding rh e signal scquence and thc matu.c prolein wcrc inlerupled by inlrcns of<br />

56 and 7l bp..especti!€ly. The xiill s''noncoding ngion had two conscnsus<br />

binding sites for the transc.iption factoi PacC ncdialing pH .egulstion.<br />

Quantitatir€ eal'rimc polynemse chlin rcacrion .nalysis revealcd thal lhc<br />

lunrdprion lelcls at pH 6.0 and 8.0 were 6-fold and 22-fold higher rhatr lhat at<br />

pH 2.?. respeclivcly A cloned xynll CDNA ws expresscd and sedeled in lhe<br />

ytrsr Pichia pastoris. Scqnence alignmcit and phylogcnclic analysis suggcsied<br />

rhat thc xlnll belones to glycosyl hydrclasc family I0 aid thar it is evolutionarily<br />

dislont from lwo cluslere tomcd by oihc! family-l0xyl.ndscs.<br />

Rnller e, ./. (2005) pu.ified lhc XrdA io homogeneity fiom ,a.,?6<br />

sr,,tri nmi. 168 culture supcmarants by erhanol prccipilalion and cation-<br />

cxchanec chromaloglaphy Thc DNA fnemcnr encoding lhe XynA togcthc! with<br />

thc ttsxA promoter rcgion was anplificd by PCR from 8d.r116 r/r/i/a 168<br />

gcnomic D\,^, andcloned inlo rhe plasmid pT7Il to givc rhe plasnid pTTBSXA.<br />

Ancr thnsfomarion of Efheri.hid coli DH5alpha wilh pTTBsxA, l9-ibld<br />

in*clse ii rhc lcvcls of $e secretcd XynA sd deledcd ,n the suPematanr as<br />

comparcd ro ihe ,. r,rrtla culturc. Coftct pcr translation modificaion of the


46<br />

rccombinont pbtein was confimed by N tcninal anino ,cid sequencing lnd<br />

mass spcchonetry andlyses. The pH aid l€bp€rature dependence of ihe natile<br />

and rccombinot prcreins wft idenrical, indicaring thar rhe pTTB5XA @y be<br />

uscful lbr rhe consritutive expre$ion ofhelerologous prclcin in E coli,<br />

\4inirc, c, a/. r200t ampl,fied BhVlRl2 \)trllA gene. cncoding an<br />

cxt€cellul.r endoxylane of potential inleresl in bicbleaching appli.atio6. frcm<br />

Ba.illts hdladurarc MtRlz genonic DNA. Thc protein cncoded is an endo'I,4-<br />

b.ra-xyl.nrsc bolonging ro f.mily ll of glycGyl hydrclas. lts nuclcoridc<br />

seqrence was analysed and rhe nature peplido w6 subcloned inio pET22b'<br />

cipEssion vector. The enzyme was ovecexprcssed in a high dcnsily Es.rernrk<br />

.o/i culrurc as a soluble and aclivc prciein, and punficd in a sitrgle step by<br />

rndobrhscd nelal ion afliniry chrcmatogaphy wilh a specific acriviiy of 30?3<br />

lll/mg.<br />

Siha e/ a/. (2006) evaluated pccdnase. amylase. xylanase, and cellulase<br />

product;o. by Ltophi u,' songr'lophotu in labohrory culurcs and fornd rhat<br />

poltslccharidass arc prcduced during fungal growrh on pccrin, srarch, celhlose,<br />

xylan, or glucose but nol ccllulas€. whos€ p.oducrion is iahibited d!.ins fungal<br />

8tu\ft on xylan. Pectin sas the cadon source ihat h.sr srimrlared fie poduciion<br />

ofcnzyms, which showed that p{tinase had rhe highesl productioi activityofatl<br />

or the c..bon sources lesled. indicaring rhar rhe pEsence of rtrd. and the<br />

produclion ofpoctinase are kcy featurcs for symbiori. nul.nion on plant malcrial.


47<br />

During sro*th on starch ard c.llulor., pol,sacchandasc prcduction levcl was<br />

inl.mcdiare, .llhouSh dunnS 8b*tl or xylan and glucose, enzyme productid<br />

w6 lery low. They pbpos€d a possible prcfflc of polysaccharide degradalion<br />

iiside $e.6t, wher. thc firgr$ is cultur.d on th. folid $bst at ,<br />

Oshim "t a/. (2006) investiglcd on th. slnth6is of ayldec fron<br />

Asperyi rt sojae. Th. st@turcs of XPs werc anallzd by HPLC to dclcmine<br />

sugar compotition and dolecula. m33, by mclhylation analysis Bing GC-MS to<br />

dctcmine liikssE, and by (l)H, dnd (I3)C,NMR s?ectomeni€s ro obtaitr thc<br />

anomeric configwalion ofglycosidic linkago. By chcmical analysis, it was found<br />

lh.r rhe smctuB of XPs e Xylpbcrat-4Psip, Xytpbcrat-sPsip, Xytpbeo t- I psif


APPLICATION OF XYI.ANA]SES


48<br />

APPLICATIONS OF XYLANASES<br />

lnt€r$t in xylan.scs frcm diflerent soudcs hs incrded markedly in th€ pasl<br />

decade, in pan b€causc of rhe application of th6e enzynes in rhe pllp and papc.<br />

indusr,r-. biobl€achine, wine industry, imprcvin-q a.imal fccd, production of<br />

elhcnol and ncihdne, The edliest U.S patent for a melhod of xyldnase prcduclion<br />

w6 issued in 1992 for an enzyme mixturc used d tn a.imal f.cd addilive for<br />

dairy cattlc (Ptasensatr and Oi, 1992). Xylaiase has sincc provcn u*tu| in @.y<br />

Bioblerchingpap€rpulp<br />

Paper producc.s need b Elain ellulosc while remo'i.g thc lignin frcm pap..<br />

p!lp. thc classic way lo perfom rhis opcBlion c ro add chlodnc-ba*d blechcs<br />

lo thc pulp. Xylanase blcaks the hcmic.llulose chains that arc lcaponsible for the<br />

close adherence oflignin to rhe cellulose nctwork. There is thus a reduced need lbr<br />

blcach to rcnove lhe l@n€d lignin. whcn lhe bl@ch used i5 chlonrc-bsed, rhe<br />

use ofxylaiNc leads ro a redudion in organcchloine pollutails such as dioxin<br />

liom the papq malinS prcces. In addition. chlorine'fr€c bleaching Guch as<br />

psoxide or ozonc bleaching) can achicle brighler rcsulls with the addition of<br />

xylane (Jackson e, al. 1998). Bccauw xylande dcs not ham cellulos, the<br />

strength ol rhc pap.r product is not advcBely affecred.


49<br />

Jackson er a/. (1998) studied thai pulps wirh chemical propeni€s similar ro<br />

a dissolving pulp .an b. prcduced fiom once-d.ied. comnerci.lly lvailablc<br />

bleachcd hard*@d knli fib€. and frcm high qualiry rccov€rcd paper rich i.<br />

hmdwood fiber. Xyhndse improves thc rertinc of flax fibe6. Rexing is the<br />

dsomposnion of thc outer steD flax pl. n6estary before thc fibcu a€<br />

p@c$ed into linen. Jing er al (199E) snrdied rhe molccularand biotchtrological<br />

aspoct ofxylanase. They fouid thal xylsn.se cat.lyz€d tlrc hydrolysisofxylan, rhe<br />

frajor constitueni of hemicollnlose. C.llulo$-liec xylanose pla)s an inpod6.1<br />

rcle in the papc. and pulp induty. The propedies ofxylanas Fom extramophilic<br />

ors0nisnN have bcen evaluated in teims ofbiolechnoloeical lpplicarions.<br />

Ronald {2001) nudied thc xylan.sc obhined frcm a gcnetically modifred<br />

Asryr(illus otfzae cont^inin9 the xylaDasc gene fioh Therhonrces Iatueirosis.<br />

Thc u$ of xylan.se bcnefrls the consumcr through thc greare. availdbility ol<br />

qualily-bak.d soods. Addirion ofxylanNe c.n reduc€ rhc vi$osity oflh. juice,<br />

imprcving its filt@bility. st'mutates grcwth btes by imprcving digesiibility.<br />

wllich lko improves ihc quality of ih. aDimal lilcr. xylanas€ imprcvcs lhe<br />

clc.ning abiliry of detergents that ac cspccially ereclive in cleanins frun and<br />

rcscbble, soils and gra$ slains. This .mcndment also benefits the i.d!s$y by<br />

provjding a new xylanase fo! use in lhe production of bread. nour and whoh-<br />

$heal nonr and fa€ihsting fie prodnction ofqualily bated 8oods.


50<br />

Sudha erol. (2001) reponed thar rheemue.t fon pulp bleaching prcceses<br />

conraining.hlorinated lie.i. and d€goded polwhenolic intem.diatcs rcmains as<br />

a najor sorrec ofwater pollutior from th€ pulp and p.per indusLies. Altemarive<br />

€lemcnlul chlori.e fiee bleaching methods based on the nsasc ofchlonnc djoxide,<br />

ozoic dnd hydrosen pcrcxidc ae pornrinl subsritutcs Bio-blcaching mcftods.<br />

which in\olle pre'tletrnenr ofpulp vnh nicrcbial enzymes such as xyhissi<br />

halt cnc,gcd as viable opio.s. lnv6tigations ieponed rin ar exploring rhe<br />

suitability ofcohnercial bacterialxyldiosc en4me prepa.dtions fo! bio-blcaching<br />

of baga$c pulps. Saha (2003) studied rhdr coiv€rion of h€micelluloscs to fuds<br />

lnd chcnli.sls arc prcblmatic. Extnclins fforc femenrable sugar frcm barley for<br />

making bc$. ar wcll a prccesing of thc spe.t barley for aninal fecd. ln both<br />

cases, xylaMse has ability lo brcal( hemicellulNs down into suga6. Addcd<br />

xylffosc rcdu.cd rhe viscosity of brewins liquid. inprovi.sils fiherabiliry.<br />

Rodnd./ a/. (2001) used thc,{ ,rAcr to produce thc fcruloyl csterase<br />

(FA0A) bl lonologous overcxpresioi for pulp bleachi.g applicrlior. Chrnsiig<br />

the nlrud rDd concctrLalion ofihe cnbon so!rce.atue (nahose toghcoscifiom<br />

2.5 ro 60 s l r. improved FAEA acdviry 24.5-told and. yield of I g l r of rhc<br />

corespondine prcrein in the culrure n.diln was achieved. Th€ .ecombinant<br />

FAEA was rested for wheal smw pulp bleechiie. Besr €sulis we.e obrained usins<br />

a lilscquctrlul p.ocess with . sequcnce including xylanase. FAEA and laclase,<br />

and yicldcd !€ry efficient delignificarion-clos€ to 75 % and a kappa numb€r of


5l<br />

3.') This is the fi6r rQon on the potenlial application of.donbinant FAEA in<br />

thc pulplnd paper seclor.<br />

lmproviDg f€ed<br />

Adding x)lanase stinulatg srcs1h 6ics by imprcvins digesliba|ny, which aho<br />

imprcv$ the qualiry of the a.imll litl.r. for example, chickcn f@d bascd on<br />

whcar, ryc. and many oth6. grains is incomplelely dieested *ithout added<br />

enzymes. lhese Ctains tend lo be too viscous in the chicken's intninc for<br />

conplclc digestion. Xylause thins olt the gut contents and allows inofcused<br />

nulieDl absorplion and incrcased diffusion ofpanoealic e.zymes inthcdigcsia.lt<br />

ako chanSes hemicellulN lo su8a.s so rh.r nurienb fomerly rdppcd wiihin rhc<br />

cellsalls arc rcleased. The chicke.s 8ct sufllcienttrergy frcm le$ feed (Oksanen<br />

?r tr/., 20{D). The bam is clea!€r bccau$ the fecd is nore Ihoroughly digested so<br />

th€ chick.n wdte is dde. and le$ sticky. ln addirio., chicken egSs a.e clcaner<br />

bccause $e excrement in rhe l.ying are6 is drier. In a sense, the addition of<br />

xylanasc toanimalfeedpre digcsts ihat feed.<br />

[1c6 e/ d/ (2003) slaied ihat cndorylanasc rclatile aciivirylowld wat€r-<br />

uncxracbbl€ anbinoxylan and Narcr+xtrgctable adbinoxylan substrarcs was<br />

inpona fo. ils tunctionahy jn biorcchnolosical prc{*s such as brcad mkinS<br />

rnd glutcn shrch separ.tion. Xyl.nrs€ us€d in separation of wheal o. olher ccreal<br />

gluien from starch. xylanase improvcs ihe exrnclion ot oil fron oil nch plsnr


52<br />

daterial such s con oil from embryos. A scrccning mclhod for npidly<br />

detemiiing said subrtrarc sclcctiviiy wd d.v.lopcd.<br />

M0klng brerd nufiier with freshener<br />

Addcd xyldnrse modifics wheat flour mbinoiylans and catr resuh ii t lolf{ith<br />

moc than I0 % 8rcalcr volumc. Crumb softtrcss aftcr sio68e L ale imPrcved<br />

(asez rDd Rodrislez. 2001 ).<br />

Aidirg in sep$.tior ofwhert or olher cer€.|gluten from strrch<br />

The cnzymc aho hclps itr thc scpaElion of whcai or lhe dulen fM som. oiher<br />

cercals frcn shrch paniclcs (Chdstov er ol. I 999).<br />

l rerslng julc€ yicld fmm frulls or vege|lbles<br />

Xylanase rids in ihe maccElion (chcwinSup) ptr6. In addilioi. Edded rylanase<br />

can cdu.e the visccny of lhc juicc, impmvinS is nhenbi|ily (Sicdenb.rg er a/..<br />

t998).<br />

Ertr:cting ftore fern€ntrble sug.l<br />

Thc cnzymc h€lps extncting morc femmlabl€ sugar from bfilcy for making beer,<br />

as sell as pr@cssing lhc spent barlcy for animal fe€d.ln bolh ces. xylande bas<br />

thc abihty ro breal hcmicellulos. down into suga6. The added xylan.se can<br />

rcduccth€ liscosity of brcwing liquid (Sudha c,./..2003).


lmprovlng slhge (or enhrnced fernent.tlve composting)<br />

5l<br />

TM|mcnt of fonge with xylane (.long wilh ccllulase) €sults in bcner qualily<br />

silage and improv€s the subs.qucnr otc of pl.nt @ll wall diS6tion by ruminlnts.<br />

Thcrc is r consideEble amount ofsus.rsequestcEd in thc xylan ofpla bionast.<br />

ln addnion ro convcning hcmiccllulo* to nurririve sug.r th.i rhc cow or othd<br />

ruminanl can diges! xylan.s. also prcducer compounds thal may bc a nutridve<br />

source for thc ruminal rnicroflom { Pmscllsan and Oi, l9q2).<br />

Improv€d degr.drbiliay olpl.nt w.sle mctcrhl<br />

Xylanase aho itnprovc thc dcgladabiliry of plani wastc |notcrial (for instance,<br />

agriculruEl wrsteq fierlby €ducing orgrnic wdt€ disp6al (Nunez a dr, 2001 ).<br />

Inprove th€ cl€. ng rbiliay of deteqents<br />

n !|$ improvcs lh. clening abilily of d.l€rgents thar aG csp.cillly efTccdve in<br />

olcaninS fruit and vegetablc soilsa gnss slains (Nco a, a/., 1986).<br />

Fuel-.lcohol productiot<br />

Xylanasc dccrc0ses fte viscosity of the mash lnd prcvc.rs foulinS Prcblcms in<br />

distillinS cquipmcnt ( Ronald 2001).<br />

lmprove the €xtr.cliotr ofoil<br />

Thc cnzymc imprcvcs the cxtmdiotr ofoil frcm oil-rich plant maidialsuch.s<br />

com-oil frcm corn cmbryc (Chcn .t dl.. 1999).


Improv€ r€ttitrg ofllir llbers<br />

54<br />

Reding is the d€compdition of thc outcr slem of the fld plant neessary bcforc<br />

the fibes aE prcce$ed into linen. Choi snd won ( t998) sludied tbat the rccrclins<br />

of pulp gdtrates a lot of fln6 6rd caus.s lhc homificaliot of fibd- xyla.a*<br />

k€tment showed some refining.ffcci ai a small d$age, wbile the fines ed fibrils<br />

w{e reduced at higher d6ag. as shown in lhe codps.ative teatnenl with<br />

cellulase'hemicelhlase. Br€akin8 l€n8th ard i.ar index of recycled fibd treated<br />

wirh xylana$ was highd.


MATERIALS<br />

AND<br />

METHODS


IelatioD ofo.grnism<br />

55<br />

IATERIAIS AIID IETHODE<br />

O.e hundred and four cultures ot Asperyillrs njget \|erc isolalcd from ditferenr<br />

soil sanples of Labore by serial diludon method afier Clark e/ a1. (1958). The soil<br />

samples were collecied in sterile polythcne bags. On€ gnn of soil smplc was<br />

dissolved in 100 ml ofsbrilized distilled wate.. The soil suspension was turth€r<br />

diluled up to 10110' tim€s. One millilitrc of lhis dilute suspension was then<br />

transfefted to individnal peripl.tes containin! potato dexrose aear modiun<br />

hble l. Compcrt,on ofpor.ro dcrtbsc Ngai mediun, pH 5 6<br />

:19.0<br />

l000nl<br />

Pot.to dexlrose agai medium was prcpared by dissolving 390 g of poiaio<br />

dextrosc agar in approximately 700-800 mlofdistillcd wale..nd tben made up lhe<br />

volume lo IOOO ml. The medium was hcat d for about l0 nin to obiarn<br />

honogenNDs mixture. The pH ofth. mediufr was mainlained al5 6 bv 0 lN HCI<br />

or0 lN NaOH.


56<br />

Approxinalely t0.0 ml of tbis porab dextrN a8.r medium wd pouEd<br />

iito individual lesl ubcs. The tubes w.re colton plugged and tubclaved ai 15.0<br />

lbtinr prc$urc (l2l'C) fo. 15 min. Thc contcnts of tubcs wcre tnnsfded lo the<br />

$cilized petri plales (180"C for 2 h) and allowed lo solidify.l room temperature<br />

for abo l h- After sil suspensid addition, rhe Plales werc robt€d clck*is. and<br />

counrer clockwiser so that tho suspensior would sprad unifofrly- The periPlaics<br />

were placed in an incubalo. (Model: MIR-153, Sanyo. Japan) .t 30"C (4.6 days)<br />

for culturc developmcnl.<br />

The..{. r€cl wcro ideniifiod acco.ding io Onioi et d/. (1986) The yolng<br />

coloiics of,.{. ,i8ef werc picked up dnd imnsfered lo poiaio dext ose agai danis<br />

and incubated al30t lor 4-6 days, for maximum spodlation. The cultures *crc<br />

srocd in a rehgerator ar 4'C for fudher stud'es.<br />

Culture improvement<br />

UV-irradiation<br />

The s.lected isolaic of ,.{. nigef was subject€d to UV ladiarion fot thc<br />

imprevcmcrt of thc slmin. The conidia frcm ,f6 days old slant culturc acrc<br />

haryesred in phosphlt buffe. (Table 2).


51<br />

Composition ofphosphate buffe! pH 7.2<br />

K:HPOl<br />

KH,POI<br />

3.5<br />

t.5<br />

1000 nl<br />

The bure. was peped by dissolving the insrcdicnb in apprcximal.ly 90o<br />

ml of dislilled water a raised the llnll volune up to l00O ml. The PH was<br />

The concenlEiion of @nidia ws stimaicd frcm a counl mrde on<br />

haemocyloneler slidc (Ncubautr Precicdor HBG, Germany) afier Shama ( I 989)<br />

dnd th. density was adjusted to lxl0'conidia/ml for Uv-imdiation. The<br />

sBpcnsion e prcparcd w6 exposed to Uv'imdianon for diffcmt rime intcmals<br />

(5-60 nin). The dosc givo to conidill suspcnsion was l2xld Jim:is<br />

Apprcximatly 0.5 ml of the iftadialed conidial suspension ras then po'rrcd on<br />

potab d.xrM xylgn agar plaie (Tabl. 3) a.d the pl.ts q@ incubai€d .r 30qC


58<br />

Compcitim ofxylan a8.r mcdiun, pH 5.5.<br />

KHr?O.<br />

KCI<br />

(NH4LS04<br />

CaCl,<br />

The i.erediflls werc dissolved in dpprcxiDately 900 ml<br />

by heating the solutior for 15-20 min and th. final volune wd<br />

bl. The pH was mainLined a15.5 by 0.1N HClor0.l N NaOH.<br />

*d used as coloDy reel.ictor. Thc medium wa3 autoclaved at<br />

(15.0lbs/in1) and poured (abour 10.0 ml) in srerilized pelriplales.<br />

5.0<br />

20.0<br />

1.0<br />

0.5<br />

0.5<br />

0,1<br />

0.5<br />

l00o ml<br />

The Triton X'100<br />

12l'C for 15 min


59<br />

Xylanasc prcdrciion wd checlcd in comp..iso. wirh co.rrcl (conidia<br />

{'tho!r cxposuE). Muranls were picked up frcm fte plates having l.rger der<br />

zones ol xylan hydrolysis.nd ar l€ast 90 % d€arh nre oforsanish (stcinc. er a/.<br />

l99E). Ninety-Four cultures of,{.,rgelwere isolated afier Uv-iradiation. St ains<br />

of ..{. ,ialf w..e examined for ryl.n.sc biosynlh€sis in 250 ml Erlenmeys flasks<br />

bysubmdgcd fementationtcchnique.<br />

Chemicrlmut!tiot<br />

Preprrrfi on ol veg€tative inoculum<br />

The best Uv iuadialed slnin was lsed in the plosenl investiaation. The slants<br />

were k€pt ar 4t in the rcf.igqator, A volume ol45.0 nl ot Vogcl 3 m.dium<br />

(Table 4) was dispensed in a 250 nl conical flsk. Chrcmic acid *.shed maftle<br />

chips ( 12-15 in numbcr and 2.5 mm, diander) weE tI nsferrcd lo ihc flast to<br />

break up rhc mycelial pellcls. The flask was st*ilized al 15.0 lbvin: prc$u.e<br />

(121"(') tbr 15 min. Then. 2.0 ml of sterilized 50.0 % (w/!) stock solution of<br />

gllcose was deptically added in the aut@laved vogel s medium as an additional<br />

carbon source (Roy and D6, 1977). Thc flask Ns inaulated enh 1.0 ml of<br />

conidial su$ensiotr u.d€r deptic conditio.s.<br />

nediun w.s pfparcd by dissohing all lhe ingrcdients<br />

ml of disliU€d water. Aft{ raising the volunc Lrp tol000<br />

the pH *d maintained al 5.5. The inoculum was allowed lo


60<br />

srow at 30eC on lobry inobalor sh0k r (2m tp!n) for 24 h. Tl. lnycclial @us<br />

w€re h6rBtcd, entrituged (C.nrdtugc r!ftig@t d, Modct D-37520, Ost ro&<br />

m HaE, G@ny) at 9,0m rpm (E,33lxt fd l5 nin.), w.lhcd twi@ with salire<br />

watd.rd rc.rus?cnd€d in salirc watcr (Tablo 5).<br />

Table 4. Corqocilid ofvogcl's n diDm, pH 5.5<br />

NH.|tor<br />

HzPO.<br />

(NH.ISO.<br />

MgSOa.THrO<br />

2.5<br />

2.0<br />

5.0<br />

4.0<br />

0.2<br />

2.0<br />

1.0<br />

l00O ml


T$le 5. Comp6irion ofsaline wat r, pH 7.2<br />

NaCl E.5<br />

Di6tilled warq<br />

5.0<br />

1000<br />

The mycelill susp€nsion wa lscd for inprovcmenl lhrough mtrtation usinS<br />

N-metbyl N'nilro N-niloso gxaridine (MNNC) as the chemical nulagmic agent.<br />

Abour 5.0 ml of vegclaiive nycclial suspension wd aseplically Ea.sfmed lo a<br />

ste.ih centrifuaetubc. MNNG wd adjusted 1o six diferenr concenlralions i.e..50,<br />

100, 150,200,250 aDd 300 pg/ml in phosphdte buffe! pH 7.2 (Table 2). Filc<br />

millilirrc of VNNC solurion of dch conccDtmtion w.s added b 5.0 ml of<br />

nycelial suspension. In rhe contal exp€nnent, nycelial solpension was trcalcd<br />

similally except thal the MNNG was rcplaced by ste.ile disiillcd waler. Ailer th€<br />

Equircd tine inGrval (b€lwe. 10-40 nin) th€s tubes werc c.nEifnsed al 6,000<br />

rpm for 20 min. Th€ hycelial €lls werc separaed rrcm MNNG by discardins rhe<br />

supomaranr. The cclls wee th€f, wasbed rwice with phosphate bur€r by<br />

c€ntrifngation to remove the taces ofchenical reagent.


AfieNards the volume<br />

srerilized distilled wlrer. Thd<br />

dilulion sas made by sknlized saline waler. Following l*o dilutions wcre ut€d,<br />

62<br />

in the tubes was nade up to 5.0 ml wilh lhe<br />

the tubes *ere shaken viSorously. Beforc pl.ring,<br />

l0? dilution *as mad€ by dissolvi.g o.l ml of murant mycelial<br />

sGpensior in | 0.0 ml of strilizcd saline solutiot.<br />

ii) lol dilution was nade by dissolving 0.1 nl of I0r diluiion samplc in<br />

10.0 ml of sterilized saline solulion.<br />

Approximarly 0.1 ml of ach dilutio. ws iransfcftd ro each pelripl.re<br />

contaiiing lylan agar nedium. After t2 h of incubalion ar 30"C, the nunb* of<br />

colonies in each platc was counted. Tl€ you.g colonies wcrc selsted o. thc b6is<br />

of bigger zon€ of ryl.n hydrcllsis. Thc mutmr stains ol ,'1. ,,s?r BRClvrr with<br />

Iargcru..s ve.e pickcd up dd transfeEed to the poiaio dext ose agarslanu. The<br />

cultu.es were incubaicd at 30"C for 4-6 ddy, for maximun sporulation. One<br />

hudrcd d nine mura cultuG wcte picked up after trcatmenr of dilledt<br />

conccnlrations of MNNG al differeni iime ini€dah and screened for xylanase<br />

biosynthess nsi.s shak. flsk rechnique.<br />

Fermentation<br />

Pr€paralion of conidirl inoculum<br />

Conidia f.om 46 days old slanrculture were used for inoculalion. Ten nillihrc of<br />

stnlized 0.005 % diacetyl ester of sodium s fo succitic acid (Monoxal OT-)


63<br />

solution $as added lo thc slant having prcfrlse coridial grcwlh on its surtace,<br />

Slcrilized inoculating n@dle {as used for breaking lhc clumps ofconidia and lhe<br />

ten tube rvus shak€n vigorously to obtain homogcnons mixture of conidial<br />

suspensioi- The conidial cou.t *6 madc o. a hrcmeyon€ter Tte counting<br />

chanber is d ruled gla$ slide wirh a cover thai holds a definirc fluid volume. Thc<br />

nunber of.odidia in 1.0 nl of suspcnsion was cal.ulalcd ane. counling in .<br />

sguare (0.1 mm deplh) un


Following media {%, w/v) wer walualcd for xylandsc prcduction usii8..{. ,&e/<br />

CCBT-I5i<br />

vl: (NHr),SOa0.2. CaClr.2HrO 0.1, NaCl 0.2, M8SO1.?H,O 0.03, wh@t bFn<br />

2.0 {Cawadde and Kadat. 2000).<br />

M2: NsNOr 0.1, NH4CI 0.15. KH,POa 0.1. MsSO4.?H2O 0.01, wheat b.d 2.0<br />

(Con6 er dl. 1994).<br />

M3r NaNO, 0.1, NHrCI 0.15, XxrPOa 0.1, MgSOa.TH:O 0.01, CaClr.2HrO 0.1,<br />

whedt bm 2.0 (Monica e, a/., 2002).<br />

M4: NaNO, 0.1, Tw€ei-80 0.2. NH.CI 0.1. KHTPOT 0.1. MgSOa.?HrO 0.01.<br />

caclr.2HrO 0.1. wh.al ban 2.0 (Si.dcnbere er a/.. 1998).<br />

b) Solid srlre<br />

Tcn erams of wheat bran was placed ii 250 ml conicol flask and moisiened by<br />

adding l0 ml of distillcd wald 6 a moistcning agerl. The fldks {crc conon<br />

pluggcd rd stnlized in an autml.vc at l2l'C for 15 min a.d 15.0 lbnin':<br />

pEsure. Aiier sionlizalio., the fl.slc were cooled to roon lempcnture dd<br />

inoculated walh 1.0 ml of conidial ruspcnsion and incubatcd at l0oc for ?2 h-<br />

Afier 72 h. 100 ml ofsodium citrate buffef (pH 4.51 was added to each fllsk. The<br />

fldks wcd rhen rotated at ro1ary shakd for I h ai 200 rpm for the extmction of<br />

dztm€. Thc fem{ted brcth was filercd lnd fittmte was used foi lhc csiinalion


65<br />

The diluents including 0.1 N Hcl.00l N Hcl, dislilled warcr, iap watcr and<br />

nineral salt solulion weie u.ed .s moisl.ning agents in solid-sub$ra€<br />

c) Stirred fermentor<br />

Prep.mtion of vegetttlvc inmulutrl<br />

Two hmdted milliliFe of femdlalioo mediM cotilining (%, Y/v); NaNOr 0 l'<br />

NIIICI 0-1, KHTPOa o.l, MgsOa.7HzO 0 03, Caclt 2H:O 0 1, mBt exrtct 0 5.<br />

Tween 80 0.2, wheal bnn 2.0 in 1.0 L cotton wool pluSAed Erlenmever flsk wd<br />

stqiliad at l5-0 lbvinz prcss@ (l2l'C) for 15 min One millilitre of cmidial<br />

suspension (1.2:106 coniditmt) of ,'4 rkel wa Dscd for in@ulalion Th€ flask<br />

*d incubded ar 30"C in rolary incubator shaker at 200 rpm for 24 h<br />

F€rmentation lechniqft<br />

TlE produdion of xylanrse w4 canicd o in a 7.5 L N'w BMwick 8lN<br />

femmtor (Model: BioFlo-l l0) wih a wo.king volum"f 5 0 L The f@nentatiotr<br />

medium od poured in rhe f.mentor ed slerilized in e a dlaveal l2l{ for I5<br />

min (Model: KT 40L. ALP Co.. Lid hPan) After cooling 1o 30'C' tlie vegelaiive<br />

inoculum {s lransfeftd to th€ nedilm al a lwel of4 0 % (v/v) Tbe incubation<br />

lopenrurc wa kepl ar looc $rcugloul ihe fem.rr.don p€'iod Tle agitation<br />

speed of 0,e stiner was adjusted at 200 rpm while th€ ae'ation was maitrhined a1


66<br />

1.0 v!n. ThepH ofthc femenbtion prccesws contrelled by using ncrilied 0.1<br />

N HCI dnd 0.1 N Naol.l. Th. stedliz.d silicone oil was used every 24 h as.n<br />

d) Re-uB€ of nould mycelium<br />

The mould myceliun was separated fiom femenied broth lndcr ascptic<br />

conditio.s using sterile ce.infirse tubes. The nycelium thus obtaincd lion<br />

previous batch wd kansfcrcd to fresh sic.ile nedium conlain€d i. shake flasks.<br />

Thc femenlalion ws run for 72 h.<br />

e) ln'nobtlizrtion of,.{. rr?e' conidla<br />

An w.s renoved by vacuun fton sodiun alginale solution (3.5-8.0 %, w/v) in<br />

distilled wlter. various quetitic (2.5-20.0 o/") of dricd ..{. ',s.f conidia were<br />

suspendcd and rhe Dixlurc exhded though 0.6 mm di0neler needles into 0 s M<br />

calciun chlonde in distilled w.1er with mixins. Tl€ mixing wd continued for 20<br />

min afid bead fomation 6nd the beads wcrc fifrlly $athcd wnh waler. Tle beads<br />

w€re slbscquently ireatcd with 2.5 % glut r.ld€hyde in distilled wsler for I h al<br />

4t and $ashcd The apparot aclivily yield wd l0 lo I I %- Bead strcngrh was<br />

deremincd *ith tu Irstron tesrer (Linko .r a/., 1979).


D Reperted fed+rtch cultur.<br />

67<br />

xylanase fmdtarion was cdicd oui is thc atircd f.rmmtq (7.5 L crprcity)<br />

with working volum. of 5.0 L, continuously by r.movin8 4.0 L of fmdted brcrh<br />

and it wd repl&ed by stdile gluco6€-salr-Cacoj solution (4.0 L). This prcc4s<br />

was r€peated for 3-4 times until thc substnte was consumed mw than 90 % (w/v)<br />

Atralysis<br />

Preplntior of DNS r€rg€nt<br />

Th. .bove ingrEdieds w.r. disolv€d in lpprcximdely 60GE00 nl of<br />

disdlled watd ed gdtly h.antd in a *.tcr blth st Eo"C until a cl@ elution wa<br />

oblain€d. The following ch.mic.ls w4 then addEd,<br />

10.69<br />

19.58<br />

R(helle salr (sod'un potlssium t!ru$!.) 306 g<br />

Phdol (melled at 60'C) 7.5 ml<br />

Sodium mei.bhulfar. 8,3 s<br />

Afier dissolving th.6. ch.micals, lhc fiDal volume ws md€ up to t4l6 ml<br />

wilh distilted wats. Th€ reageni wr5 th.n lil&rcd lhrcugh a ldge c(tre gbss


68<br />

filte. .nd stored ar tuob l€npe.ature in an amber colour glass botlle lo avoid<br />

photo oxidaiiotr, li remained stablc undd these @nditions for lbout 6 monlhs.<br />

Standrrd curve of rylos.<br />

Oie gra6 of xylose was dissolved i. dpproximately 60-70 ml of disdlled waler<br />

and the volume w6 rai*d up to 100 ml. This st@k solulion (10.0 mgiml) wa<br />

used to nakc .ighr rpprcpnaie diludons hon 0.25 2-0 o8/ml. Two milliliEE or<br />

ech dilurion ws rlketr in individull rcsr tub6 od 2.0 ml of DNs @8enr wa<br />

added i.to each tube. These tubes w€n placed in a boiling water bath for 5 min<br />

followins Miller (1959) dd Ghde (1969), ihen cooled at rcom temperature and<br />

diluted ro 20.0 d wnh distill€d *atc!. A blank ws run in puallel rcplacing 2.0 ml<br />

of ihe sample dilution wnn distlled *at.r. The % tamit!.n.c Ms m6urd at<br />

546 nn usiig doubl. boam Uv/Vls.sa..ing sFct opholotnetel (Model: C..il-<br />

CE 7200acdes, Aquadus, UK). A graph *as plott€d raki.g the trarsmittdce at<br />

the o.dinar€ and sugar concfttratio. ai ihe absissa (FiCurc I ).<br />

Xtla trrrc srcchr rifyiDg rctiviay<br />

Xylanasc aclivity in cultu€ filt ale war ass.,td alier Somogyi (1952) by lating<br />

1.0 ml xylan (1.0 %, Vv) .s substrat€, 0.5 nl of acerale buff.r, pH 4.5 (Table 6)<br />

and 0.5 ml of appropriare fl)me diluiion. Reaclion mixturc ws incubated ar<br />

50t for l0 min and thd 2-0 nl ofDNS @gdt {d added lo stop lhe @ction.<br />

The tube $as pldced in a boiliag war.r barh for 5 min. Alld coolins the conlents


69<br />

of rcsr tub. at mn tempeFturc, rhe miatue ws dituted ro 20.0 lntwilh disrill.d<br />

w.ld. A bl&* wa6 run in p.r.ll.l Fpbcilg 0.5 ml ofthc cruymc dilution wirh<br />

distilled p!lq. The ftnsmintucc we masud ar 546 m oD rh.<br />

Tabl.6. Composition ofac.tare buff€., DH 4.5<br />

.- Dislved 2.87 r (C)of 17.4N rcedc eid in 400 ml ofdistill€d<br />

wdc. and tti$ h. vdMc ro 500 0t.<br />

b. Sodi'rn acetaE (6.89) v0! dissotved io 2()0 mt ofdislifled warer ffd<br />

madc the finll voluDe uplo 500 mt.<br />

2.871nr (C)<br />

Mixen 64 ml of(a) ald 36 n of(b) fd0.1M &cbte burcr (pH 4.J).<br />

6-E<br />

1000 ml


Enzymc unit<br />

70<br />

''One unir or xylanae will libenie on. millignm of Educing suSd mes!rcd rs<br />

xylose ircm xylan pe. hou at pH 7.0 aid 30'C. EMyne activib/ was expBsed d<br />

!/g for solid state and U/ml under subhc.sed conditions" (Wong, 1988).<br />

KINf,TIC PARAMf,TERS<br />

For detemining the kineric p3lder.6 of batch fmentadon prcc.$, the<br />

ptuedur. ofPin (1975) w6 ado ed.<br />

The ptuducr yield c@fficidr (Yot ) w.s dereinined by usinS rhe etarionship, ya,<br />

= dP/ds.<br />

The volumeftic lales for srbstrate utilizrdon (e,) dd prcducr fomariotr (ee) vere<br />

det min€d ftom rhe naximum sloper in ploi5 of subsrnle utilized and xytanase<br />

prcduced e.cb vs. the rime of fcmration.<br />

Spsilic rrte consa.ars<br />

Tte sp€cific Brc cdsr.nG for producr fomrion (qJ lnd subsrde uriliztion (G)<br />

werc detemi.ed by thc equations i.e., q! = /xYrr and qs = #!y"i rcsp€.iively.


STATISIICAL ANALYEIS<br />

7l<br />

Trrtrn at afi.cb l!& coopor.d by Se f.o@or.d lc.n siificlnt dillrcn 4<br />

nldhod ad orelrry ANOVA (Sp$,9, v.Ed6a) atur Snod.oor .nd Cocbrm<br />

(19E0). Sisnificanc. ditrdloc. e6f lh ftptio.id! brs bocn F!s!or.d d<br />

Dmcu'. rluftipl! rnsr, b th. fcin ofFlb.ttity (9>) v.tur.


fEure l: Stonded curvc ofrylo,c<br />

:40<br />

a<br />

E.o<br />

n<br />

G75 1 12t<br />

Xylo€. (nVmD


RESULTg


13<br />

RESI'LTI<br />

A) Icolr.i,Dn rrd sc...nirg oflt. orgl[bn<br />

HudEd dd four sraim of,rrp.s,?( ,&et w@ isolat d 8on difercnr hrbibrs<br />

md cvalualcd for xylams€ Foducrion (Table ,. Thc isold€s w€rE sub-souped<br />

accoditrg to lhe mg€ ofcozyme p.odlction (Tablc 7r). Iftc i€sulls show tbsr 39<br />

olt's prcduced enzjmc in the @9. of0-50 U/mI,37 cultures betweetr 50-t00<br />

U/nl, l8 cultms eeF b.tween 100.150 U/nl, 7 cultu.cs and 3 cukurcs werc in<br />

lh. rege of I 50-200 U/ml and 200,250 U/rnl, respecrively.<br />

or all $e holates investigated, mdimum .nzym€ produclion (225 U/nt)<br />

vas obtained by,4. ura€l CCBT-35. So. thh cutture was selecrcd for oprimizing<br />

the femotltiotr conditioru in 250 nl shake nasks.


74<br />

T.blc ?: Sc@ing of diftt€trt 3trio! of ,4. r'jsel'<br />

GCBT-1<br />

ccBT-2<br />

c,cBT-3<br />

c,cBT-4<br />

c,cBT-5<br />

GCBT-6<br />

c,cBT-7<br />

GCBT.8<br />

GCBT.9<br />

GCBTJO<br />

cfBT-l I<br />

GCBT-I2<br />

GCBT-I3<br />

ccBT-t4<br />

c,cBT-t5<br />

ccBT-16<br />

GCBT-17<br />

xylana3e scchari&ing<br />

aclivity (U/ml)<br />

15011<br />

l0+2<br />

50+3<br />

30jl<br />

100+2<br />

50+3<br />

32+2<br />

30d2<br />

3l+l<br />

3@2<br />

30+2


crcBT-18<br />

GCBT.I9<br />

GCBT.2O<br />

crcBT-21<br />

GCBT.22<br />

GCBT.23<br />

ccBT-24<br />

GCBT.25<br />

crcBT-26<br />

C'CBT.27<br />

GCBT.28<br />

(rcBT-29<br />

GCBT-30<br />

GCBT-3I<br />

c,cBT-32<br />

GCBT.33<br />

GCBT.34<br />

GCBT.35<br />

c,cBT-36<br />

75<br />

30+2<br />

35+2<br />

t7+1.5<br />

120+1.5<br />

90+2<br />

6&rl.l<br />

3@1.2<br />

ll5+l<br />

I l5+1<br />

lm+2<br />

lo0+2<br />

t95+3<br />

2t5+4<br />

2t0rl<br />

225+l


ccBT-17<br />

C€BT.3E<br />

GCBT-39<br />

GCBT-4t)<br />

ccBT-41<br />

c€BT-42<br />

GCBT-43<br />

ccBT-44<br />

ccBT-45<br />

GCBT-46<br />

GCBT-47<br />

GCBT.48<br />

ccBT-49<br />

GCBT-50<br />

GCtsT-51<br />

@vT-52<br />

GCBT.53<br />

GCBT.54<br />

ccBT-55<br />

5t!2.1<br />

170+l<br />

&+2<br />

160+2<br />

50r2<br />

35+l<br />

6{}}l<br />

65+l<br />

125+l<br />

45+5<br />

t l5+4<br />

n+t<br />

11212<br />

145+l<br />

lEo+2<br />

lqlr3


ccBT-56<br />

GCtsT-57<br />

GCBT-58<br />

GCBT.59<br />

crcBT-60<br />

c€BT-61<br />

GCBT.62<br />

GCBT-63<br />

GCBT{4<br />

CiCBT-65<br />

GCtsT-66<br />

GCBT.6?<br />

CCBT-6E<br />

GCBT-69<br />

GCBT-?O<br />

ccBT-71<br />

ccBT.72<br />

c,cBT-73<br />

GcBf-71<br />

17<br />

3545<br />

qlr4<br />

10!2<br />

55+5<br />

@+2<br />

155+1.5<br />

It5+2.5<br />

155+2<br />

60+t<br />

35+l<br />

t20*2<br />

r0rl<br />

50+1.5<br />

55+t.5<br />

95+l<br />

3Al


GCBT-?5<br />

GCBT-76<br />

C€BT.TI<br />

ccBT,78<br />

ccBT-79<br />

GCBT.8O<br />

GCBT-8I<br />

GCBT.82<br />

GCBT-83<br />

GCBT-84<br />

GCBT,85<br />

C,CBr-86<br />

GCBT.87<br />

ccBT-88<br />

GCBT.89<br />

GCBT,9O<br />

GCBT,gI<br />

ccBT-92<br />

ccBT-93<br />

7E<br />

55+3<br />

98r2<br />

I l04l<br />

135 +2<br />

60rt.5<br />

5012<br />

tuz<br />

48+2<br />

75!2<br />

lm+2<br />

l l0+2<br />

t05+l<br />

85+4<br />

65+3


'Thc<br />

GCBT.94<br />

GCBT.95<br />

GCElT-96<br />

ocBT-97<br />

c,cBT-98<br />

GCBT.99<br />

cctsT-100<br />

GCBT-l0l<br />

GCBT-102<br />

GCBT-103<br />

GCBT-I04<br />

19<br />

l2l+l<br />

l(xl!l<br />

lo54l<br />

68+l<br />

4?l1<br />

67+2<br />

10t+l<br />

10911<br />

+ iDdic.ld srand.dt dcvi.tid dort llc |IE p&dLl i.plic|rc.. nlc v.l6 diffa<br />

Fmat tion pqiod 4E h<br />

ltulralpH 5,0<br />

hobrion rdpdat@ 30.C


80<br />

Tsbl.h Sub€rq+iry ofdiftrlrn rbrins of,{. dlget t .odirS lo xyltna&<br />

Fqnrdivirr:<br />

39<br />

37<br />

IE<br />

7<br />

3<br />

' GCBT-35 8rvc tmidd ry'@lc Fldstid i.c-, 225 u/dr.<br />

Rdg. of xylurse prdrtivity<br />

(u/ml)<br />

0- 50<br />

50 - 100<br />

100 - 150<br />

150-200<br />

200 - 250


8l<br />

B) Optimizations in shake flasks<br />

ScreeniDg of culure medi.<br />

The culiure media (M-1, M'2, M-3 and M-4) {ere examined for tbc prcduclion of<br />

xylande by ,,1. ,€er GCBT-35 in shake ndk Gig!.e 2). Andg tll lhe nedit<br />

lested, medium M-4 gave bener prodrction of xyla@e (225.0 U/ml). Tte<br />

ploduction of xylanase was @imum in medium M-4 and vdied significanrly<br />

(p


82<br />

d.cEascd. The producdon of qzymc, howq6. w6 oFimun tt pH 4.5 ard<br />

v.n.d significandy (p


Figue 2:<br />

E<br />

:t<br />

s<br />

200<br />

i50<br />

100<br />

E3<br />

scr€ning of @ltuE m€dia for xylan se production bv ,4<br />

GCBT-35 in shake ilask'<br />

IniiialpH<br />

M-Z M-3<br />

48h<br />

5.0<br />

3opc<br />

Y


Figur€ 3:<br />

?2@<br />

><br />

€ 150<br />

.E 100<br />

E4<br />

Tim @'N study for ryl.t'r!. Fod&1i{ by,l. ,'l€. GCBT-15 in<br />

2a<br />

Initi.l pH 5.0<br />

Tin|€ (h)<br />

30pc<br />

Yff b6 idiet! st€rdsd d.vi.lion ,mi8 tlE ltc pd![el ftpliclrd.


e 20o<br />

€ 150<br />

E r0o<br />

85<br />

Eficcl of dificmt inilid pH @ prcductid of xyl&!s. by ,t. r!g.t<br />

CCBT-35 ir shate fl"*!.<br />

t5 6 6,5<br />

30pc<br />

Y{Drbd indicn st adld daidih.do8 the thE p.nlt.t r!pli.!a-.


E6<br />

C) Strain improvement by mutation<br />

i) UY radl.lions<br />

The pdenral st@in of,1. nisef GCBT-35 wds subj€cted to UV inadiation for 5"60<br />

min. Ninely four r 16 sof ,,t. nse' wft pick d o. th. bsis ofbiSgq clcd<br />

zones of xylan hydrclysis ftom the pehiplales having at l.!st 90 % dcath dte. The<br />

mutanrs wcrc evaluated for thc pNducrio. of xylans€ in 250 ml shak flask<br />

(T.ble 8). Of all the nuldt shins examined, ,.{. tk"r BRCuv!5, islal€d aftd 45<br />

min ofUv imdiation gave maximum enzyme Foduction<br />

(3)9 U/ml) and il vd<br />

scleded for rhe chemical mutagen ltdndt fo. fu her imPrcvfl€nr. The mulrnls<br />

were also sub SrouPed<br />

ii) Chemicd nutrtiotr<br />

(Table 8a) according to the r.nge of th.i. enzvme<br />

The conidi! of UV nutared st ain ,'{ ,,g"/ BRCuvrr wcre subjecled to lhe<br />

chemical mubtion and tr@l€d *ith diff@t d@s of N-mcthvl N-nito N'nilroso<br />

Buanidine ( 50'300 Atmt)- S.vcnly-four chmicallv develoP.d hutant sFai$ of '4<br />

rig?f were pick€d up and les1cd for xyldae Produclion<br />

in 250 ml shahe flsk<br />

(Tabl6 9). Ofall $. mltants invcstigat d, lhe nulant isolar.d aftq 200 Pglml dose<br />

of MNNC t.eatnenl, gave naximum enzyme Produciion<br />

(467 0 U/ml). This strain<br />

*6 slercd for tunhcr r@mots of Ml'lNG at diffeMl timc ittcnds &d<br />

a$icn€d thc code as .4. ,/ael GCBTMNN6 zo. ,'{. riser GCBTMTNG Ts wd th'n


81<br />

bcat.d with 200 &e/ml of MNNC .t diff.rcnt ti!i!€ intwdls (lG1|() min). ftc<br />

mui.nts wee picked up on the basis of clelr xyld hy&olrsis atr$ fion ih€<br />

Fnipllte having ,0 % dcsrh !!c. Fuihd sccding for xyh.!. fcnnmtltion<br />

w6 .sied oDt i! 250 d snq|.c fllsk (T.bl. l0). Ir Tabl. loa tu tho$n d|. sub<br />

grcuping of ch€mic.Iy d.v.Lp.d mt rt3 rccoldiDg to dE tu8e of r/ee<br />

activity. The b€st nulart stnin of,,l. d3€. for xyl.mle bicy !6is (493.0 U/nD<br />

was obbined .fte. 200 rrglml do!. of MNNC fd 30 hin. This 3tain w$ $siSncd<br />

thc cod. GCBT me! md selectcd fo. tunher investigations.


88<br />

T$le 8: Scre.ning ofmubnt slrainr developcd through W inadiation ofl.<br />

rris€r GCBr-35 for xylrDu. bidyrthcsb in 3h.1rc fl$k..<br />

Si<br />

No<br />

Dudi@ fGW XybD& r.livity (UfDl)<br />

23 ta.611<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

8<br />

9<br />

l0<br />

tl<br />

t2<br />

t3<br />

t4<br />

t5<br />

l6<br />

t1<br />

IE<br />

l9<br />

55.9r2<br />

rro.or3<br />

6.2t3<br />

97,W3<br />

32.lrl<br />

59.5i2<br />

l(,6.3'j1<br />

l to0+2<br />

13.9t2<br />

7t.&2<br />

58.9i1<br />

52.3r1<br />

69jX2<br />

36.7t2<br />

52j*2<br />

56.1t2<br />

vt.t+3<br />

68.1+l


20<br />

2l<br />

22<br />

24<br />

25<br />

26<br />

27<br />

2E<br />

29<br />

30<br />

3t<br />

l3<br />

3/t<br />

35<br />

36<br />

3E<br />

39<br />

4<br />

t2<br />

tl<br />

t0<br />

t5<br />

E9<br />

t0E.l13<br />

l24.Or3<br />

n3!3<br />

4A.G:t<br />

t41.6!2<br />

19?.8!2<br />

E.613<br />

27.6t3<br />

61.7r3<br />

t572L1<br />

38.113<br />

109.311<br />

20t.3+3<br />

92.6t1<br />

98.811<br />

99.OH<br />

t7.3it<br />

96.4r<br />

33.013<br />

225.0+J<br />

ual+i


4l<br />

12<br />

45<br />

6<br />

47<br />

48<br />

49<br />

50<br />

51<br />

52<br />

53<br />

54<br />

55<br />

56<br />

58<br />

59<br />

60<br />

20<br />

25<br />

90<br />

76.2!X<br />

I ll.9!4<br />

t27.312<br />

2t7.O+2<br />

147.9t2<br />

at9!2<br />

t63j{<br />

t29.1+2<br />

t78.5!2<br />

15.G2<br />

l86.li2<br />

t32.2r2<br />

100.012<br />

269.7t2<br />

214.3t2<br />

279_6t3<br />

109.313<br />

u1.5!3<br />

106.1€<br />

2t.9t)<br />

1t2.1ll


62<br />

63<br />

64<br />

65<br />

66<br />

67<br />

68<br />

69<br />

70<br />

7l<br />

72<br />

73<br />

77<br />

78<br />

79<br />

80<br />

8l<br />

E2<br />

l0 30<br />

4{)<br />

9l<br />

78.611<br />

255.7t1<br />

2l5.6tl<br />

t69.Eil<br />

231.9t1<br />

261.5t1<br />

!02.311<br />

93.4r1<br />

t97.Otz<br />

t69.3t2<br />

2:21.7t21<br />

275.62<br />

252.7r'l<br />

l9l.oll<br />

l8?.lll<br />

210.614<br />

1o.ft3<br />

58.313<br />

75.&3<br />

t76.2t3<br />

t86.li2


83<br />

E4<br />

E5<br />

86<br />

E7<br />

EE<br />

89<br />

m<br />

9l<br />

92<br />

93<br />

94<br />

95 Nil<br />

45<br />

50<br />

55<br />

92<br />

3t6.4r2<br />

239.O!2<br />

u2.64<br />

I l6.013<br />

l8l.9I2<br />

tn.@l<br />

126j!2<br />

3l9.Ot3<br />

209.3!2<br />

106.4i2<br />

153.3i2<br />

170.4!2<br />

. Th€ do* givar to th. cdidilt luposio rs l,2t I d J/nzls. Md.nr! *@ picl.d d<br />

lhe bsk ofcLd zon6 of xylao hydnltlh having 90 % d..th F1c.<br />

I Indic&s dF sllrdard devi.tio lIorS 0E to!! porrllcl rcDti..L{<br />

F€|r@trli@ p.riod ,18 h<br />

fnilid pH 4,5<br />

lmub.lid tnFnrG lo'C


T|bh &:<br />

93<br />

$b rryi.s of udd driE of .1. ',i!r GCBTJs d.t.lq.d<br />

rtoc.lrD lJv nnr$dm tu ryld.. tiatd.dr in 3[.rc lrdl<br />

Rrr. of rybe d!,iv (I,d)<br />

23<br />

A<br />

12<br />

,15<br />

7rtto<br />

l5l-225<br />

2263t0<br />

3ll-319<br />

. llB n|llet itrh of,L rSr E ..it d iL .od. ofB&Cw4 rd h.iDg t td<br />

F!d&.( of ryt@ *r eLc.d b( eid untdo trouib MNIIC .. . eu8-ia


S. No<br />

2<br />

3<br />

4<br />

5<br />

7<br />

9<br />

t0<br />

ll<br />

t2<br />

t3<br />

l4<br />

Sc@ing of nul!trt strrins dcv.loped dt@d chtnicd reltlnent<br />

(N- m.thyl N-niFo N{itsosuanidine) of l. tri€t BRCuv.45 for<br />

xylMe biGjdtheeis in shlke nskr<br />

(Fd,nl)<br />

Xyla.arc aclivily {U/ml)<br />

28 50 85.3i2<br />

76.7!2<br />

93.6t2<br />

77.712<br />

74.5!2<br />

50.612<br />

43.4!3<br />

26.2t3<br />

82.3t3<br />

109.0!3<br />

209.5x3<br />

43.513<br />

15.3i3<br />

26.2t33


t5<br />

l6<br />

t7<br />

l8<br />

t9<br />

20<br />

21<br />

22<br />

23<br />

24<br />

25<br />

26<br />

u<br />

2a<br />

29<br />

30<br />

3l<br />

95<br />

19 100<br />

n.v2<br />

45.@2<br />

98.7t2<br />

t26.9!2<br />

I t0.312<br />

45.2+l<br />

92.Oll<br />

96.Oll<br />

69.lrt<br />

t23.3+l<br />

t I l.qll<br />

t29.7t2<br />

3l6.3rl<br />

426.8'<br />

2l6.tt2<br />

239.82<br />

E6.312


14<br />

35<br />

!6<br />

]E<br />

39<br />

:t0<br />

4l<br />

42<br />

43<br />

44<br />

45<br />

46<br />

96<br />

4? l4 150<br />

a7.ot2<br />

196.9t2<br />

234.7{.<br />

253.6!2<br />

392.Or3<br />

267.2t4<br />

58.713<br />

o,G3<br />

395.2p.<br />

120.3+l<br />

58,7fl<br />

375.9t1<br />

l55.6rt<br />

275.ttl<br />

2t9.3+1<br />

152,3!l<br />

27t.1t3


49<br />

50<br />

5l<br />

52<br />

53<br />

54<br />

55<br />

5E<br />

59<br />

60<br />

6t<br />

62<br />

64<br />

65<br />

91<br />

E N<br />

315.2+3<br />

427.Ot3<br />

3299t3<br />

3n.7x3<br />

I l9.Ei3<br />

26r.&3<br />

53.5r3<br />

317.6+2<br />

367jr2<br />

120,0x2<br />

253.6t2<br />

225.2x2<br />

26,3t2<br />

139.0t2<br />

35t.lll<br />

217.8+l<br />

209,7tl


66<br />

68<br />

69<br />

10<br />

7l<br />

72<br />

NiI<br />

9E<br />

250<br />

300<br />

167.0t2<br />

392.5t2<br />

216.613<br />

t92.8r2<br />

r7]3',<br />

367.0!2<br />

32l.t13<br />

$.24<br />

59.6!2<br />

. &Erbatiotr rqnpqlnr 30pC, ptt 45, fanai.rid pqiod 48 L tinc of MNNG<br />

I hdicats th. srdd$rl deviation anqU rhe thtc peatt.l Eplic.res.


99<br />

Sub grouping of murdt stnint, dev.lop€d ihroud ch€mi@l<br />

ttqltMt (N-m.thy' N-nito N-.itro6ogumidit.) of ,{. rigef<br />

BRcuv{ for aylanae bi$}rlbesi6 in shrk flask'<br />

28<br />

t4<br />

t6<br />

8<br />

R.ngc of xylan&re activiry (U/n'l)<br />

l5-105<br />

t0G195<br />

l9G2a5<br />

2EG375<br />

375467<br />

. Th. nut nc wft pickcd d rh. b6is ofbiggd cla ryt!tr hldety.is 6B 8w rhc<br />

pelriplals having 90 % d4tn 6tc ed bqhg th. h}?a produar ofxyl@ wd $sign d<br />

nF code ,.1 da./ GCBTltEe


100<br />

Table l0: ScMins of nurarr staids devcloped throush diffcr.nr line<br />

int Fals of N-merhyl N-.it o N-nitt6oeu|nidine trea1rn.nl of,.{,<br />

,,ie. GCBTMNN6.u fc xylmre bio6ynth6is in shake flsk'<br />

S. No Duration ofMNNC Xylde. &tiviry(U/ml)<br />

I<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

9<br />

l0<br />

ll<br />

t2<br />

ll<br />

l4<br />

15<br />

t7<br />

18<br />

tl t0<br />

l5<br />

t26.tt2<br />

200.2r2<br />

t25.r!2<br />

95.0r2<br />

60.7!2<br />

703r2<br />

| 16.911<br />

73.E+3<br />

72.tt3<br />

319.511<br />

2t7.2!3<br />

250.0r3<br />

326.5!2<br />

2l9.8rt<br />

367.5+l<br />

392.3!l


l9<br />

20<br />

2l<br />

22<br />

23<br />

24<br />

25<br />

26<br />

21<br />

2E<br />

29<br />

30<br />

ll<br />

J2<br />

33<br />

34<br />

35<br />

36<br />

4<br />

6<br />

I<br />

Nit<br />

2A<br />

25<br />

l0<br />

35<br />

40<br />

l0l<br />

109.9j2<br />

t26.0!2<br />

94.4r2<br />

93.3+3<br />

157.6+3<br />

ta7.8t2<br />

63.li2<br />

4?3.713<br />

357.6t3<br />

269.5t2<br />

323.313<br />

147.4t3<br />

372.0t2<br />

369.9+3<br />

493.W<br />

324.8t2<br />

2r3.1t2<br />

3t6.3+l<br />

. Incubltion tcmF.lrc 30 !C, pH 4.5, fdrdtdiotr pdiod 4a b dm. of MNNG<br />

it Indicat6 ihe stddard deviatid dnong th€ tbr€. pa.attct r.ptical6,


t02<br />

T!bl. loa $b goopirg of nur4r !t!iD! &eekDcd dFwh ditrcr. litic<br />

inlervah of cftmicl lrllltn.nt (N-methyl N-nito Nnitososu.nidinc)<br />

of /. ,nser GCBTMNGa for xylea$<br />

bicyndrcaiE in shlk flrd..<br />

r6<br />

6<br />

P...ng€ of xyl.lle actiMty (U/tuj)<br />

@160<br />

t6t-2@<br />

26|.3@<br />

361-460<br />

461493<br />

' Th. h€s nut d srrh of ,.t. ris' GCFTINIG{ br ry's|e bi6Frt6is s.!<br />

ai8'cd lhe @


103<br />

D) Subm€rged fermentrtion in shake llasks<br />

R te ofxyhn.se synthesis<br />

In Fisure 5 is shosn the hte ofxylanlse synthesis by slecied hould in shake<br />

fldk. The culture w6 incubarcd at 30'C for 72 h. T1E prcduction of enzyme was<br />

mcrc.sed wnh rhe i.cEse i. rhe incubsnon period aid @ched muimum (494<br />

U/Dl) 48 h aftd inoculation. Funher increde in the incubation pqiod resnlied in<br />

rhe d€cresed productivity of xyl&sc.<br />

Th€ linetic paramoEic valu€s such s Yr", Qr .nd Q, atso rcvealed rhe<br />

significancc of xylanae prcducriotr by rhe mua.nr sFah th& rhe pftnrd sbain of<br />

A. niger ('table ll) Thus, incubaiion pe.iod of 4E h ws seleted for the<br />

producion of xylanase by ,r. nige' cCBTMNNc.ro.<br />

EflectofiDiti.t pH<br />

Erer of dilTemr innill pH (4.0 - 8.0) on thc preduciion of xyt!.6e wrs srudied<br />

(Fig. 6). Maximln production ofxylatrAe (491.8 U/ml) was achieved when the<br />

pH of femenlation mediuh was .djusted ar 4.5. As the pH of lhe m€diub was<br />

Dcrcased or decrcacd ihe prodlcrion of xytse show€d a dcline. The<br />

prcduciion of eElmc sr pH 4.5 vdicd siSnificantly (p


Efiect of dilTerent nitrogen sources<br />

104<br />

EfT.cl of lhe addition of diflq6t nitotcn sources such d u@, ,€asl €xtrac!<br />

pol'?.pto.. or m@t exFact was studicd on lh€ prcductim of xylmde by ,{. rirger<br />

GCBTMNC I (Fisue 7). The prcduction of eMyn. wd found to be muinutn<br />

ed hidly sisEi6@r (p


Figw 5:<br />

a 40o<br />

i3@<br />

105<br />

Rlt€ of xyl.nase production by ,a. ,8€r GCBTNT3o in shake<br />

ldat l tH<br />

30 /|o<br />

rnE (h)<br />

4.5<br />

30.c<br />

Y.ftr blts indic.t 3t rdlrd d.viation arnong th. $e p.!.ll.l Eplirsl€s


l(b<br />

Tablc ll: Coqdiron of tifttic !Im.t r! fo (y'a.. pmthclion by thc<br />

p[lotal .tdr of,l. dr€r CCB'35 dd ftue GCBTM$&.30 ir<br />

rh.Lo tr .t<br />

P.rdl fi:i!G@35<br />

GGr.{rc 30<br />

5.51 1_39<br />

o?8 t.0t<br />

0.14 0.la<br />

0.85 1.4<br />

q 1,08 0.19<br />

q 0.!5 lJ9<br />

. Kin ric rr.na.$: Yrd - U arrd. prodlc.d/g 6ut ed.4 Yr6 = U .nz)@<br />

F.&..d/t {t-n @@.4 Yrr - | c.lk/8 ,6-e dilit 4 q = U dF.<br />

F!d!.d/ai!!/h, q = s.!lccw!r#44! q-r€|l to.drlit /L


Figtrc 6:<br />

= zl{r<br />

?<br />

E aoo<br />

x<br />

g<br />

s. 200<br />

t07<br />

Etrsl of difrercnt ioirisl pH of tbe culbr. nediurn otr th. pmduction<br />

of xyra@ by /. ,rjr€r CCBTyIF30 il sh.k fl&b+<br />

5.5 6 6.5<br />

Inilld pfi<br />

,18 h<br />

300c<br />

Yfr! bs indicde fl.|rd.rd d.viadd mong dE rhFe plra .t Epticftr


E<br />

:><br />

400<br />

300<br />

200<br />

t08<br />

Efr@t of difr.ilol rib!96 so|l'w @ drc plodetiod of rybnse by<br />

,,1. ria GCBTmc30 h shl6 as!k.<br />

r.idrl ptl<br />

Yeaslo(bd Pttyp.pbno<br />

Ni!€gdt .ourc€s (1 .O<br />

/ah<br />

4.5<br />

3opc<br />

|v/v)<br />

'6,<br />

Yfr b6 indicd. !rad.!d


Figur E:<br />

E<br />

a<br />

i<br />

t<br />

/rco<br />

m0<br />

2N<br />

t09<br />

Efrcd of difrdat colcdtditd of ft.t .xt d oo {Ic prod.ricn<br />

of xyko& by .{. rrjg"' GCtsTM3o h ltrtc flxls.<br />

'f.5 2 2.5<br />

M..t .nlad oonc, (%, wfu)<br />

48h<br />

4.5<br />

30.c<br />

Yff bd iDdic$c *od.d d.vi&d .do8 rbe rhi!. podrd rqlic.r6.


ll0<br />

Selection of rgriculturll by-producl rs srbstrate<br />

Different agricultual by-prcducis such as wheat bdn, rico bnn o. rice stmw<br />

(gnnded) as carbm source sere siudied for the produclion of\yt@6e by A. rig.r<br />

CCBT Mi\c.r Oable 12, Figure 9). Thc @ncentralion of c&h by ploducl vuied<br />

frcm LG4.0 % (dv) The mdinlm cMyme productron (481-4 U/nl) *.s<br />

obtained wher wh€t bra al a level of 2.0 % (w/v) was used ed edyme<br />

prcductioi signilic.ntly varied (p3.05) ih.n frcm lhe olhe. subst ates. Rice bon<br />

and rice slrdw g.ve conpanlively less xyldnase activily. Rice srr.w (grinded) was<br />

found io be the ledl effective ca$on source, TterefoE. wh@t bnn w6 opiimized<br />

Elfect of difierent nitmgetr sources<br />

Th€ effed of difiml inorg.nic nnrog.n so!rces in compaisn with thc conrol<br />

wus rcsred on the production of iylanase (Table l3). The inorg6ic nitrcgen<br />

soulces such as NaNOr, NH4CI or NHdOr were added to tbe femcnt6tion<br />

rnediun .l 0.05 ' 0.20 % (w/v). Among lll the nit osd sour@s tcstcd. xyhnasc<br />

prcduciion ws hishly significart wha NaNOr ws used 4 .trc8d souEe<br />

(502.4 U/ml) ar a lqol ofo.l0 % (/v). Tlc Nrlcl at.level of0.l0 % (*/v) wss<br />

almon equally good (500.5 U/dl). Th. cffect of nitrosen $urces fo. incrcasing<br />

rhe fnnsal cell activiiy ro prcduce xylanas. .sn be summanzed in the following<br />

orde4 NdNo, > NtLCl> NHiNor(Figure l0).


lll<br />

Efi.ct ofdlfistra ohod.!. rorn .<br />

Dfforcnt phoQhrre sol|lq .!.h !| KlltPrO4 KrI{PO. or N&HPO. wsre<br />

corFied eidr lb. @td f6 dxim'n rt.!|!. ..tivity (Ilblc l4). Tt<br />

oonc.ntation of.lch .our!. nngcd ftfrl 0.05 - 0.15 % (wto). Th. connol gave<br />

372 U/d ry'orrc &livity. tlowva 0.1 % (#v) KH+oi amo.r.d 'uibm<br />

enzym. &tivity (513.2 U/n ). Oth!. ptorphd! rorEca 8sv€ l.€s.Dzync aorivity.<br />

N.rHFO.w ldrd iobc th.ldroffrciE d.[ Lv.lr (Fig I l).


l12<br />

Table 12: Emect of difreml agricuftusl by-ptldwa q fie ptoductio of<br />

xyldEs. by ,{. &igal CCBTNa30 iD tht*€ flak!<br />

Differ€nt aSrtculfir6l by-Fodtcls &<br />

h.ir mc (94 wv)<br />

F@olrlio! Fdod<br />

48 h<br />

Initial tH<br />

4.5<br />

Incubsdonr.npdahft 30'c<br />

* Indicarc allldatd d.vi4ion lmong l[. rhE DdElel €9li6L3<br />

XylanLre &tivity (U/ml)<br />

t.0 314.0!6<br />

2! 4El.4rrl<br />

1.0 198.5r4<br />

4.0<br />

345.0r5<br />

1.0 29E.0r2<br />

z.o<br />

1.0<br />

4.0<br />

Rice suae (siDd.d)<br />

.t02.5r5<br />

290.6r5<br />

22t.8r7<br />

1.0 2t2.ztE<br />

2.0<br />

252.5t4<br />

1.0 220.6+5<br />

4.O<br />

190.2r5


Figur.9: Conpdison of dirwnt .Eiculturul by-prcd('. on the production<br />

of ryls.ase by ,1. rks CCBTN-3o in shal. flalts'<br />

Em<br />

3<br />

3<br />

&nrta tflodd P.0 rr rt<br />

4Eh<br />

4.5<br />

!0pc<br />

Y4m' b6 'ndic& shd.d d.viar@ uog rh. thrc. p.rd l€l Epli.c


l14<br />

Trble Il: Erel of diiT.Mt inorSeic nnroSen sdrc6 d rle pro&crion of<br />

xylaru€ by ,1. trri./ GCBTWNG-30 in sftatc flask.<br />

Ioorgdic nnrogcr source & their conc<br />

(%'*t")<br />

0.05<br />

0.t0<br />

0.l5<br />

ozo<br />

NI{CI<br />

0.05<br />

0_t0<br />

0.15<br />

0.20<br />

NH.N03<br />

0.05<br />

0.10<br />

0.15<br />

0.20<br />

. F.mdtrrion pdiod 48 n<br />

Initial pH 4.5<br />

Incubalionthp€raru. 3O.C<br />

t Indicar. si.nd&d dqidi@ dont rhe rllE panltet rytisl6<br />

Xylanas€ activity (U/ml)<br />

242.5t]<br />

4E2.Oj4<br />

5O2:4!4<br />

418:5L<br />

440.016<br />

496.{}jt2<br />

599:l+r1<br />

oeo.y.!,<br />

4.23.8t12<br />

3tr?l!!<br />

31gji1<br />

320.6t7<br />

296.5!9


PiSm l0l<br />

Ead<br />

I3.{<br />

hiri.l pH<br />

ll5<br />

Conpai@ of diffdndtl<br />

produotiotr ofxylan & by,1. ,iigel CCBTliM-3o<br />

60Cn r*r* linb*d dldt! almiB dn<br />

Olric 't!or &i- P.l ta, rlu<br />

43h<br />

4.5<br />

30pc<br />

Y.mr bs rndic.rc 3redad d.vi.rio smons $. dm. prdl.l Eplicar.!


l16<br />

Tallo !4: Effcct of ditr@t phorph.tc 5o@3 o dte prcdu.tid of xylanase<br />

by,1. r&€/ GcBTNa3o in d',&e fl6Ls'<br />

Difrfied phosphlt. s'rc & oFir<br />

crnc. (vo, w/v)<br />

Kflfor<br />

0.05<br />

0.t0<br />

0.15<br />

K:HPO1<br />

. F€llmtdion paiod ,A h<br />

Ioirirl PH<br />

4.5<br />

Ilcub.lionLDFlr@ 30'C<br />

1 lndicai. ridd.rd devidtion dong rh. thN Flallel Eplic*es<br />

XylaIale !.rivitt (U/d )<br />

312.0$<br />

487.018<br />

513.2r8<br />

507.srE<br />

0.05 396.44<br />

0.10 400.5r2<br />

0.15 390.6!2<br />

N.rHPOa<br />

0.05 112.2!2<br />

0.t0 156.5r5<br />

0.15 80.5i4


I<br />

Eo<br />

bilial pH<br />

l7<br />

CooFrim of dift{at phcph& sdlt!€. @ dt Fo.nlciid<br />

xyle.!. by ,1. ri8"' ccBfrbro-3o ir st kc n$|o.<br />

gd.&rdffai tt dritrdq.r O.drffigtr<br />

d'!d- dry. *l.Aa<br />

Ptu.L.dB0lX,l,\,<br />

{ah<br />

,t.5<br />

30.c<br />

Y.oM bd iinnr!.brh d.yilid @lg rt lbE Fr.lLl npticc


ll8<br />

Effect of differedt colcentrrtiom of mlgn$ium sulphte<br />

The etTecl ot differenr conccnthtio.s of M8SO4.?HrO (0.01-0.05 %, w/v) was<br />

studied ii culture medium for xylanasc production by,.{. "ls€l CCBCX-2o (Table<br />

l5). Maximun p.oduction of xylanase (529.5 U/ml) wds schiev€d when<br />

femenlaliotr medium was supplemcntcd wirh 0.03 % MssOa.THro. Further<br />

ircrese or decrase in the corcetrration ofMSSOi.THrO r$ulted in th€ dec@s€d<br />

prcduclioi of xylanase. Xylane production .i 0.03 % of MgSO..7H,O<br />

concenration w6 fou.d lo bc highly sigiifidnl (P9.05) and thus used 6 I<br />

magnsium source for furthd studies.<br />

EfIe.l of dillered calciudr sources<br />

h Table 16 is shown rhc d.i. rcg.rding the cfidt of dilTemr concorrafon of<br />

CaClz.2HrO on rylana!€ prodlldion by ,.1. ,Eei Th. conce.tFlion w v$ied<br />

fron 0.05 0.25 % (w/v). Tt€ prcduction of cnzyne wa! folnd to be |wioum<br />

(532.6 U/ml) ar 0-10 dZ (Vv) dd vari.d signili.antly (P4.05) from olhq<br />

conco.irado.s of ihe caclr.2Hro. Funher i.cree in $e condtfarion of<br />

C.CI,.2HrO rcsulted i. the d€ci€as€d prcductio. of xylanase As 0 10 oZ (w/v)<br />

CaCl:.2HrO gave daxinum pioduction of enryme therefore. it wss used as a<br />

calcium source fo. turther studics.


l19<br />

EfT€.t ofdilfered corccdtr.dolt ofTwe.r m<br />

Thc efleo of diffcmt coFnll.rioc of TwecFE0 (0. 10-0.40 yo, v/v) wa sndied<br />

in culturc medium fo! xyldEse prcductid by,1. rtge' CCBCX-2o (Tabl. l?).<br />

ttaximum production of xylanase {542.2 U/nl) wd lchievad when fmdratio.<br />

rcdiuh was suppl@cnted wirh 0.20 % (v/v) of Twm-80. Funhcr i.@sc or<br />

dccMs in thc co!@tr.tiq of ln|@-Eo rGulcd in rhe dc.tused ptldetion of<br />

xylo6c. Xylanase p.oduction !t rhk @ncdt adon ws fomd !o be higl y<br />

significant (p 9.05) ard fius optimiad foi maximal xylln.s€ prcduction.


tm<br />

T|bb 15: Btr ct of di&..oi cdc.@ior of d.g!..i!n tllrtd. or S€<br />

proddin of ry1re by,a. ''!t' C,CBTmto-3o i! d& lbb'<br />

WSo+ Iro (9.' wlv) Xte... rd!,ity (U/nl)<br />

Cdol 3lE.0ia<br />

0.01<br />

0.(I2<br />

. Fdadioo Fi'd ,18 i<br />

IliddDlt 45<br />

I!4lbrlion t np.(rte 30pC<br />

rldin i-d!d drdrio @t ti. b. !-rld ryli.rd<br />

(U,5r3<br />

gLar3<br />

0.03 5T).5tt2<br />

0.04 502.41E<br />

0.05 8.@


l2r<br />

T.Hc 16: Eftct of difrrd c.trc.ot tli6. of c&iuo cbL.ib o rt<br />

prdrcri(n ofxylrc byl. rlr GCBTn o"30 h .brc n .br<br />

Clclr.2Hro (96, w/v) Xylne .6dvity (Irtrl)<br />

Contol 36..(ts6<br />

0,05 4ft5*7<br />

ol0 532.&7<br />

0.!5 510219<br />

OA 495,5du<br />

0r5 4nst2<br />

Fd.ddid!.iod aEi<br />

bid|l pU 4.5<br />

bcthdi! bprdG 30.C<br />

1lldierdrdd6,id@fuogtt.d|!.Fdtdl!?tic.B


Trbh l7:<br />

t/2<br />

Eect of diftGrt cdo.ddioE of TS!.GEO od ft. Fo&.rim of<br />

ryluta by ,r. ,|&!r GCBTwo-3o i! .h& ntdc.<br />

T"!co.8o (%, v/v) Xy'llli. activity (U/'[l)<br />

Coltol 390.O!3<br />

ol0 326.5t4<br />

0-20 5422!5<br />

03) 52j,.M<br />

0,10 504.6d5<br />

F bdioGiod ath<br />

Lili.l pX {,5<br />

Indibdi6i.q.e! !0.c<br />

rLdicc cshrl d.vi&r mg 6. b. t-[.r r?|i.s


l2l<br />

IMMOBILIZATION OI' ,{. A{6AT FOR XYLANASE PRODUCTION<br />

Reoerted batch culture<br />

The xylanae fem€ntation ws @ricd out by fivercpeat€d b.rch dlturcs using<br />

immobilized conidia of,{. ,,sel in th. sodim alginde dd pol}rrcthdc form,<br />

rcspectively (Figur€ l2). wher,.1. ,,aer ws immobilized in th€ sodium alginat€,<br />

the prcduclivily of xylrnae g.dually decE.sed (f.om 514 U/ml to 306 U/ml<br />

only) from 3'balch on*lrd to thc 5" b.tch. Howevd, ih. prcduction of xyl&6e<br />

by,r. ,taer immobilizcd in lhe polyuralsc foam w6 incEas€d (al0 U/nl) in 2d<br />

baich, thereaftd in 3",4'" rnd 5'" batoh cllture, the production of xylease was<br />

sisnilicantlr d€.s.d (31G234 U/ml). Sodium alsiraie which s.ve better Esuhs<br />

thatr rhar ofpolyuErh.ne f@m wa sl.cted for tine course profile.<br />

R.ie ofxylanrsc production by Inmoblllzed,{. uig?r<br />

ln Fisurc ll is shown the Et€ of xylsase p'ldlchon by imnobilizd slEin of,.{.<br />

,,?e/ with sodium alginsle. The fennenbtion medium was incubated at l0"C for<br />

l2-96 b. The production ofxyleas. was in..esed wiih ih. in@ase in i&ubdion<br />

p..iod and found mximum 48 h after in@ulatid. ,{3 lh. incubadon p€riod wls<br />

tufther increred, thc substratc consumptiotr also incr.rse4 howevf the<br />

prcdnction ofxylan.s€ show€d a d.clinc.


figG l2:<br />

'<br />

t24<br />

Prcducrid of xylde fq five rcp@ted batches<br />

immobitizod stlain of,.4. ,i€:a CCBTMNNa.3o<br />

rlgbaie md polyftlbo. fom.<br />

. bn.F*. dr4b.fm<br />

Y b6 indide the lbnd,rd .rcr fiom dd vslu..<br />

TmFdrrc ltrC, pH 4.5, fmdr'doo D..iod 48 h


125<br />

Figu! 13: Re of {ylt[|!. Fttllcdm ty imobilizcd rya.lb 6 A nigq<br />

CCBTMIM9 in sodium dsiD't '<br />

5|I'<br />

:'1oo<br />

i 930<br />

!<br />

a2!o<br />

10<br />

o122a${tot2l,glill<br />

TdDdem lGrC. pg a.5<br />

Im€ O)


t26<br />

RX.USE OI'MYCELTUM FOR XYLANASE PRODUCTION<br />

The prcduciion ofrylnus€ by trp€lt d u* ofmycclium w{s sMi.d (Fig!rc l4).<br />

Tho mould mycelia of e&h f.tlMiarion wft s.pdar.d ilom ferlmtcd brcth by<br />

ccnEitu$tion. Th€ my@lium thB obtain€d &om pBios bllch vE lusfeftd<br />

to Aesh sGrile m.dim mrlined in rhake flak. Each f.mmlario wa run for<br />

72 h- By r€-6ing lhe nyc.lia, fisl b.1ch of xyl!6e wrs bener in tmt of<br />

xylsrs€ produdion eha comp.rcd to thc iwo subscq@l bttch6. Howdd, th.<br />

hidst xylande activity (424 U/ml) obLeined from fi6t batch wd low.r than lhe<br />

origitul b.t h culhrc. ThB, i. fte pl*rl study, dle F@ of mould my..liun<br />

did not give flcouragiDg r$ulls.


Figuc 14:<br />

5(h<br />

,r50<br />

.to<br />

350<br />

:. rxl<br />

!20<br />

1(r0<br />

50<br />

0<br />

t27<br />

Reuse of mix.d mould my@lia for xylanar€ production bv<br />

imnobiliztd ,1. ,ir.. GCBTMNGT.'<br />

i5 i75 a<br />

+H|.rt +rrd!.|n +rdb<br />

I ybNildic.t tb. $an Lrd .M toE n .! ttlN<br />

T@Dcanfr 3dC, pH 4.5, f.rn aid Frtod 43 h


E) Solid-state fermentrtion<br />

Selectior of substrlte<br />

l2E<br />

Different aericullural by-producrs such s rice skaw, wheat brm, rice hDsk, wheat<br />

st@w, sunflo$er meal, bagasse. soybm meal or lewspaper (10 8/250 dl flask)<br />

ws evalualed for lhe production ofazyme xylalrN (FiSure l5). Tle mdimum<br />

produclion of xylanrle (1850 U/g) was obbin€d in wheat brd nediun while th.<br />

ofier snbslrlt6 gave rclatively less producdon ofxyldase- Thus, ph@t bran w6<br />

selected !s subslrate for the prcduclior of xyldAe,.{. ,€ef GCBTMNNa-10.<br />

Depth ofsubstr.te<br />

D€prh of subsrmrc dd irs pociry have gred influence on rhe produclior of<br />

cnzymes ir aercbic iemenlalions. rt€ efecr of ditlerent depths ofwhql brb on<br />

xylMe productioD by ,4. ,/aer cCBTmc-10 ea srldied (Figw 16). fte<br />

rhicknes ot the substEte tuged fiom 0.2-l-0 cm (5-25 8) in 250 ml E.lenmeyer<br />

flask. T1'€ maimum enzyme producrion (1852 U/g) was obrain€d when depth of<br />

the subslrale e6 0.4 cm (10 g of subsrdte per flsk). The p.oducrion ol enzymc<br />

w6 found to be m.ximum ar 0.4 cm depth ofwheat btu. Il vdi€d sisnificanrly<br />

(p


t29<br />

U?s) ..d hiehly signilicet (p


130<br />

sienific.ntly de'!ed. Hae, 30.C rcmpenturc was sclected fo. rhe produclion<br />

of rylanae in solid-stat! fmcntatio..<br />

Etfect of carbon source3<br />

ln F,gurc 20 are sho*n rhe ereds of the addilion of ditTerenr ca6on sources (1.0<br />

%. w/v) on lhe xylanase synthesis by ,4 r*e/ GCBTMNNC_$. Of all the carbo.<br />

souoes tesied, the prcdu.tion of @)inc wd found ro be oprimum in rhe p.es€nce<br />

of staEh and vaied signifi€.dy (p


l3l<br />

ot .b.d r. 02 % 16'.1 of (Ml.)bSO.. Futa iiq* io t .,Ftdr.' of<br />

(NH.)'SO. 8w. idisrifcd rld.dd of4rd5, rto|t, 6. rddirio of 02 %<br />

(NH.bSO. to lrk t'E D.di|!! i,* slccbd ft. Mnm F!&.ric of<br />

xylna!. by l, rtSrr CCBTMe{c-ro.


FiguE l5r<br />

g<br />

Z $.o<br />

it<br />

.l<br />

t<br />

t3z<br />

Scrc. trg of eltdtatc for d!. productior of xyl.n.l. by ,l. t'3"r<br />

CCBTma-3o i! solid st!t! f.rm6tition'<br />

Ilili.l p1,<br />

t .,,i.-,,j**,1,--,<br />

72h<br />

4.5<br />

3{pc<br />

Y{nor bd indic.l€ sl&dsd &vildon .nds lb. tbe Frdl€l replical$<br />

*<br />

I<br />

t<br />

I I


Fi8lre 16:<br />

g<br />

=<br />

133<br />

Efrc.t of difftrc d.ptllg of sl|G{i b'|n or |nc p'lducrion<br />

xylar*c by,{. r,83r GCBTmo-3o in solid si.rc fermdarid'<br />

bitid pll<br />

D€lan ofwn€at bran (qrl)<br />

12h<br />

4.5<br />

30'c<br />

Y-@baB indictt sr.r.t&d d.vi.ri@ amng rh. th6 p.r.lLl Eptic.tcr


-g<br />

2500<br />

1500<br />

10@<br />

134<br />

Eff@t of difrcMt diluent6 on the producliotr of xyla!6e by,.{. rrg.r<br />

CCBTmc-3o in solid stste fmenbtion.<br />

0.1N HCI 0.01N HCI Dislill€d Tap$ar Miner€tsal<br />

sol0Uon<br />

Initid p}|<br />

12tl<br />

4.5<br />

Dlluents<br />

300c<br />

Y-€mr bs indic.t. $and{d ddi.rid Imtr8 0E drd p.hltet cpticaiF.


Fignr! lE:<br />

q<br />

a<br />

$t*<br />

i<br />

500<br />

135<br />

Rr!. ofrvht$ Fodrdio tt ,{. ,48!t GCBT'{€-3O h lolid tt ie<br />

Iritid DH<br />

a0 48 56 64 72 80 88 S8 104 112 120<br />

tht O)<br />

45<br />

b.utdio!8nlqrnlr! 30.c<br />

Y


g<br />

-a<br />

t36<br />

Effcd of difrcrcnt iMb0tid temp€stuG on th. prduction<br />

xyhneby,1.,rlge'GcBTilrc3oiDelidsr . fenl|enirlio!.<br />

Fmalrlio Fiod ?2 h<br />

biri.l pg 4.5<br />

Y-@ bs iodic.r. srddlit daialion .|Mg ilE thF p.nllet EDlicrre.<br />

30<br />

of


Figlr! 20:<br />

:<br />

I E<br />

!<br />

t<br />

1500<br />

1000<br />

l3?<br />

gtrc.a of ditr€rlot citon loutcec oD ttc Fod|.tio|l of xybtte by<br />

.,{. rriger GCBTaNo.30 in solid Btlic fcrn€ntliid'<br />

Ittit'ral ps<br />

Fu.L.. dr6. aldl<br />

Ctrbd4@(1.0%,w,!)<br />

72h<br />

1.5<br />

3ec<br />

Yftr bs indic.r. sito


FiEurc 2l:<br />

g<br />

!.<br />

:E<br />

s<br />

25oO<br />

z)00<br />

t0(r0<br />

138<br />

Eff.ct of difrcm! conc.nFrtion of scar.h on tltc pldlcdott of<br />

rylam$ by,,l. d8a CCBT[lltG-3o in slid sttlc fematdion*<br />

Inili.l pH<br />

134<br />

Conc€ntdton of araEh (%)<br />

72h<br />

4,5<br />

. 3(Pc<br />

Y-@r bar! indicat€ str.ddd dwiario. mong thc thrc. pdal€t r.ptic.rd,


FieuF22:<br />

6 2000<br />

?<br />

E 15OO<br />

!!_ tooo<br />

500<br />

t39<br />

Efr..t of differcnt nitog€n 3ol|rc on th€ produotio! of xyrare by<br />

,r. r,i.r GCBTmaro in solid rtioc f.rmcnblioia<br />

Initi.l ptl<br />

It*t4P30a ullfl@<br />

tltlgr| !our€. (0.2 %, wrv)<br />

72n<br />

1.5<br />

30ec<br />

Y


1,()<br />

Figurc 23: Effect of diffcmt €oncentraiion of<br />

Plodlctiotr of xyLlr& by ,t. ,i8€r<br />

fm.ntation*<br />

g<br />

;<br />

:E<br />

3000<br />

2m0<br />

1500<br />

1000<br />

bitid prf<br />

0.1 0.2 0.3 0.4<br />

Con6€ntEtion ot amlnonium sutphat€ (%)<br />

12h<br />

4.5<br />

30!c<br />

allutroniun .ubhat€ on th.<br />

OCBTxrr3o in ooli(kttt<br />

Yftr bG ndic.lc .rodad dlvi.tior .tmg rh. dlE Fdrd Epticc.<br />

0.5


F) F€rmentor Studi€s<br />

Typeoflnocrlum<br />

l4l<br />

In subncreed fementations. the ilTo of in@utum used Sready influ.nces rhe hle<br />

of femenlalion. Itr Figure 24 is shown rho cffeci of two inocula on lhe<br />

b'osrolhesis of xylanae by ,., nrs€' cCBTMmc.l in stined femtrior. Conidial<br />

suspensron and ves€tative c.lls (developed in shake flaskt w{e employed<br />

sepdately for inoculation. wlen conidial inoculum was nsed. the prodnclion of<br />

cnzlme was 510.3 U/ml. The prcducrion of xylane sd grearer (694.0 U/dl)<br />

wh€n 24 h old pre groM vegersrive ccls ofrhe moutd wcE used as an in@ulun.<br />

The tungal celh werc very acrive during logalirbmic gro*th phse_<br />

Size ofinocultrn<br />

Th€ €rect of differcnt sia of veg€tative inoculum on the prcductioD of xytanas.<br />

by,.4 ,iser CCBTMMNC.Tj is shown in Figu,e 25. The maxibun amouit of<br />

xyldde (694 U/nl) was produc.d in the medium coni.inins 3.0 % veg.rarive<br />

iroculum. Th€ prcduction ofxyta.de w6 (339 and 509 U/nt) whcn rhe size of<br />

v.Setative ineulun mged l_0 and 2.0 %, @speciivety. tr ircftG.d with<br />

in.rcding rhe size of vegerarive in@ltun ro Lo %. but increasc in size of<br />

vegetairve<br />

'nculum beyond 3_0 % der.ced rhe xyta@e bioslnth.sis. IlErcfoE.<br />

1.0 % size ol in@ubn w4 oprimiz,cd for xyloase bicynthGis in rhe srired


f, ffect of rgitrtlon lnf ensity<br />

t42<br />

The cffed of diffeEnl agilstion otes (150-250 rym) on rhe xyldsc biosynrhesis<br />

by,4. 'rs.. GCBTMTNGIV6 canied out i. the srjred fenenror (Figure 26). Th€<br />

tuximum rll.n6e acrivity (694.31 U/nl) was &hieved when rhe lsiraton 6ic of<br />

lhe fementor ws kepi .r 200 rpn. Funher incrase in agrration dec@r€d<br />

xyhnde biosynrhesis. Hence, .siraton dte of 200 rpn ws uscd for tudher<br />

Effe{t ofreration rrte<br />

Tlt biosynrhGis ofxyldase is an aercbic f.nenralio. p@ess_ ThN, th. suppty<br />

ofoxysen ior dissotv.d oxys€r) to 6e mould.ulturc is of grcar importdc€. In<br />

Figure2T isshoM the efltrr of supplyiog an to thc f.menio. ar diflftnr aedrion<br />

hres (1.0-.1.0 wm) on xytanase bioly.lhdis by l. /!s./ @BTMnc& Tbe<br />

cn7)r,c adrvny w6 maximun (781.9 U/mt) when aehtion E1e w4 kcpr at 2.0<br />

wfr (0.7 % dissolved oxyS€n). A d@rcase or funhd incrcae in rhc adarion Ele<br />

dec@ased rhc enzyoe actviry.<br />

Rai€ of xylanase biosynthesis<br />

Time course femenrarion of xyl[sse synthesis by ,{. ,igel CCBTMINC.i in<br />

stined femenlor wos invesiigated (Fi$rc 28). The fermdbtion ps caried ou1<br />

for96 h ate. inoculation. The amounr of xylanse prcduc€d,24 h afier inocutation<br />

sas 321.6 U/nl dd ir increaed with in.r@e in ihe incubation pqiod. The


l4l<br />

maximum xylahse activity (78t.4 U/ml) was achieved,60 h afler rie inoculalion.<br />

Furlh$ increas. in incubaiion time, did not enhance xylanase biclarb€sis. Th€<br />

oprimum timc p€riod for cnzym. fmation wss hence 60 h after rhe i.@utation.<br />

EtT€ci of dln€reDt pH<br />

In Figu.e29 h shown rhe effeci of diffftnt inidalpH (3.0-5.0) on thc bioslrrhsis<br />

ofxylana* by,{. ri8?r GCBTMMNa ain tbe stiftd fementor. Maxinum xylanse<br />

actvny (El0 U/ml) was achi*ed wh€n inilialpH of rho fcmeniation mediu,n ws<br />

at 1.0. Wten the pH was indesed, rh. p.oduction of xytanas. ws defiea$d.<br />

TleEforc, iniri.t pH 3.0 *s selccred for tunhq exp€.inen$.<br />

Elf€ct of dillerenr redperarures<br />

The prcducrion of xylanas. by -.{. ,&a GCBTMMNG.h was caned oui in ihe srift€d<br />

fcmenror al diflercnr renpenrrc (Figure 3o). wh€n rh. tempeFtur. of<br />

fmem.tior hedium was kepr d 2j'C. rh. prcduct,on of xylee ws 652.6<br />

U/ml. Maximum xytare p.oducrion (8ll U/ml) was obrained when ihe<br />

tempehtuE of the nediun B majnrained ar lot. Whd thc remp€rorue of rlE<br />

femenr.rio. mediuD ws tcpr ahole 30"C, prcductior of xyl.rdc w.s sMrly<br />

dec@ed. Herce, tcmpeBtue of 3o.C ws sclered for funher experimenrs.


Filur. 24:<br />

EO0<br />

700<br />

, 600<br />

5 5oo<br />

Flm<br />

d<br />

I<br />

E roo<br />

g<br />

200<br />

100<br />

t14<br />

Efr..t of t)Dc of itr@ulu o rb€ bi@FftG3ir of xyl.I|t. by,{.<br />

&its GCBTnca i! iirrcd fan rtor.<br />

Ilili.l pH<br />

lmoium (4.0 %)<br />

rt8 b<br />

5'0<br />

30ec<br />

vcg.adiE


Figure 25:<br />

E<br />

.!<br />

800<br />

700<br />

600<br />

500<br />

300<br />

200<br />

100<br />

145<br />

Effet of diff*nt conc.nlElion<br />

bicynth.sis of ryl.nec by ,1.<br />

lnnial pH<br />

Level of v.g€talte inodjum (%)<br />

of vesclative ino.ulun on thc<br />

rtsel CCBTMNNG.a i. stirrcd<br />

48h<br />

lfc


t6<br />

Fige26: Efrlct of.sitdiE id.odly o S. biayd..it of:ylre by,{.<br />

rigr OCBTN&!. b rth.d M<br />

f,<br />

16 ro 10 2$<br />

raFr r-rr ftnt<br />

. Fc'@id.EFid 4El<br />

Ilnidplr 5.0<br />

hcubrtidldpccts 30.C


Figure2T:<br />

800<br />

600<br />

500<br />

100<br />

2gJ<br />

0<br />

t47<br />

Effcct of aeradm nte o. the bioslnilBh<br />

GCBTmcjo in $iNd fcnnqioa<br />

InitialpH 5.0<br />

t0.c<br />

of xyl$se by ,{. r/S.r


Figure 2E:<br />

;<br />

:E<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

2W<br />

100<br />

0<br />

l4E<br />

Rale of xyhNe biosrr$dis by ,{. ,i8"r ccBT||rcro itr lticd<br />

.86072U96<br />

Rat€ of ryhn€3. biosynln€sb (h)<br />

48h<br />

5.0<br />

30.c<br />

r(lE<br />

1m


149<br />

FiguE 29: ElTecl of differeni initial pH<br />

biGynlhsis of xyldasc by<br />

E<br />

3<br />

a<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

2@<br />

100<br />

0<br />

of fementltion medium on the<br />

,.{ ,,ser CCBTmcr in stined<br />

3<br />

ldt6lpH<br />

Initi.l pH 5.0<br />

3opc


Figure l0:<br />

150<br />

Eflect of diflerent 1enpe.atures<br />

,{- ,t8". GCBTimGI in srinEd<br />

on th€ biosyntbesis of xylanasc by<br />

48h<br />

5.0


t5l<br />

Pmduction ofrylrl.le by fed b.t h rylt m lo rtlrr€d f€rD.rtor<br />

The ,(ylalasc f.rentltion w.! c'rricd out by four-rcpe{€d f.d brlch s}st m<br />

uins immobilir.d,,l. rls€r nycclium in stirrcd fcincntor (Figun 3l). Aboor 90<br />

% of thc fcrln nied b$tl we rcpl.ccd !nd.r.!r?ric @ditiG, by ft.sh mcdium.<br />

TI|€ fc@ntdtioB w@ oa.dcd out for 48 h. Thc prcduction of ,(ylan$. was<br />

found optimum in tlt€ 2d botch. Ihcr! wt' . grldull rcduction ir d|. xyl.n.s.<br />

Droduclion !ff€r lhc 2'd boEh. Howcvcr. lh. atiE f.d bttch qhG Balcd<br />

insaSnific! r.3uh in td$ of xyl!|||lc prlductio.


Fisuc J l:<br />

€00<br />

000<br />

7@<br />

-600<br />

g 500<br />

3 {tio<br />

i 300<br />

200<br />

100<br />

152<br />

P.odwiion of xylm!5! for four r€p€al.d f.d batche (in slir€d<br />

f.rm€ntor) by inunobiliz.d.,l.,is€' GCBTmncr.'<br />

lio, oltd !.4h..<br />

TdpdrG 3CC. pH 4,5, f.mnlalion Friod 48 h


DISCUSSION


t5l<br />

DrSGUaa|or|<br />

A succe$ful fementation p.@.ss and bctter enzrre prcduction depend both on a<br />

pole.t strain dd opt'misation of f€mcntarion parameles. XylMe is an<br />

important enzlmo produced by the f€rnentalion wilh specific moulds, nostly<br />

Asperyillus niEer (Pinaga ct I994i Arinahu ei a1.,2003). !o. this purpose, 104<br />

^1.,<br />

stnins of !. cdpable of hydrolysing xylan 10 xylose, wer isolated frcn<br />

",ael,<br />

dilTqst soil s.nples. These strainr w*. scrcened for the produclion of xylanase<br />

in shake flask. Amone all ihe strainr tcslcd,,{. riSer GCBT-]5 gav. mdimum<br />

prqtuction (225 U/nl) of xylanse, thcrcfore n wss slecred for tunhq<br />

optiniation bysubnc.ged fcmcnt.iion,<br />

The selecdon of suitabl. fcmenBlioD medium due to economic r@n is of<br />

great imponance for the production of metqbolit.s sp€cifically e.zlm6. In the<br />

pBenr srudy, rhe fem€nraion m.diufr {M-4} conrdininS &, wh): NaNor 0.1,<br />

lween'8o 0.2, NH4CI 0 l, KH,PO! 0.1, M8SOa.7H:O 0.03, CaClr.2HrO 0.1 and<br />

whear bnn 2.0, in dislilled waln (pH ?.0) wds s€lected for lhe maimal.nzlmatic<br />

aciiviry(225 U/nl). h mighrb€ duc lhat M-4 was d balanced m€diumwhich was a<br />

pre{equisne nor orly for fungal growlh but dko for the subsequent cnzyme<br />

production The prcper C/N ratio of the optirnidd medirm wd of a supeno.<br />

quality conparcd to all other mcdia os!d. This fidding is in accoftlancc with the<br />

$trk repoded by orher workcts (Anb.kar er al.. 1965i Ferieh er a/., 1999i Joya


154<br />

The nle of enzyn. slnlhesii in shake 0aks by the mould cultw wG aho<br />

cdied out- The prcduction of enzyme *as inclqed *ith ihe inq6. in<br />

f€menladon pe.iod and r@ched maximlm (247 U/ml), 48 h aftq in$ulalion-<br />

Funl€r inc.eae in the incubaiion p€riod rcsut|ed in the decffised production of<br />

xylame. It mighl be due to the depletion ofthe nulrienls that inhibited ine 8.o*th<br />

of tungi ad h€nce dec.eased xylanase produclioD. Thus, 48 h of incubdtion Period<br />

was selecled for lhe production of xylan 5e. Archua er a/ ( 1999) ale optimized a<br />

f.menridon period of 48 h for the optimal yield of xvlaMe (1285 U/dl)<br />

alrhotrgl the cultures used w€r€ $ermoPhilic Thercforc, the prcsenl work is dore<br />

signific@t conpmd to pevious workcB ln lhe prsnl sludv, xvlde<br />

prodNtim \6 mqimutn (250 U/ml) when innial PH oflhe mediun wd adj6ted<br />

to 4.5. Fuflhq incl€e or decrca!€ in pH qusd r€duction in eMvne prcdudion.<br />

tr nighl be due to thal orgrnism rcquiG acidic PH fo! fte 8lo*'th ed subsequdt<br />

xylMe prcduclion (Gomes ?t ol., 1994i Krogh et dl ,2OA4l<br />

The productiot ofenzyme can bc e uced by dcveloping nuranl strains of<br />

,.{ dg4 s seli as optimization oflhe cultuml conditions (Sleinet er al, 1998)<br />

Fo. the inprovement ofthe fltgus, the conidia olwild_culturc,4 riael CCBT-35<br />

wec subjecled to Uv inadiations for t60 min. Mdimun death rale of aboul 90<br />

o/r sa &hieved after 45 mit ofUV exPosure, A total otlinety-lbu mulanB were<br />

islaled afte. UV iradiadons and .xamined for enzyme fo.nation Among all rhe<br />

mutants tested, ,r. zlser BRCuv4. isolat d after 45 min of Uv imdiatic (dc€<br />

l.2rlo'? tmls), gave mdimun production of xyloe (ll9 U/nn) Fudhs


155<br />

increas. iD th€ Uv l.estmot, rcsult€d it th€ complct d€afi of l ,Eer' me<br />

imprcv.ocnt in $e .nzyn€ fomslion by th. tungus may b€ duc lo thc mut0tion<br />

in th. gcnome of thc tungos. AnodS lh. surviving proSny, $c gcne rsponsible<br />

for the production of xylanele may ovd .xpr€55, r.sulling in lhe incc!!€d enzvme<br />

prcducaioo (chcn €/ dl, 1990: Brki ?, al., 2003)-<br />

To obtah ! hypo Ploducd of xyless€, lh. uV traled nulrtt sinin {ts<br />

tunher Elatd by MNNG (50-300 lrg/ml). Hundr.d tnd nine multnts w@<br />

isolaled by obswing fie cle3r zooc ofhydiolysis of xylon in thc petriPlates- Th*<br />

mut rts werc ften evrlutcd fd .nzlne ptoduction. AmmS all rhe mul4rs<br />

rcsrcd, mutlnt ccBT MN!c.!d isol.tcd afrer 30 min of MNNG (200 !g/ml)<br />

tt dtne w.s foud to bc a pol.nt culturc fo. xyl t5e Production<br />

(493 U/nl).<br />

Oveall, the muaant CCBT MN6.! Ev€.lcd lboul 2.2 fold hiSn€r xylana* aclivitv<br />

6mped to the wild{ulhrc GCBT-3s d sbqt 1.6 fol.l ovq to BRCftr' The<br />

volum.tdc xylanase productivity of th. mulr (q =1.1 U/Umin) *rs highlv<br />

siglifi@t (p


156<br />

innial pH of4.5 after 48 h ofi.cubation. Similar kinds offindings havo also b@n<br />

reponed by Rashid (1999). The tritrogen sourc€s such 6 uEa, yeast extmct.<br />

polweplone or medl extracl has Br.i<br />

innuence on the enzyne production. Amo.g<br />

all th€ nitrog.n sources tested in th. pres€nr study, rhe m€at oxtract at lhe level of<br />

l 0 % was lound to be the best source of nitogcn for the produclion of xylanase<br />

(496.8 U/nD. As the level of meat cxtracr vas fnrther increased in the<br />

femenialion medilh, the p.oduciion of€nzyne was Sreatly inhibiied. The present<br />

sork is subslanliated with the findings ofCokhale er dt (1991) tud Gouda (2000).<br />

Agricultu.al by-Foducts, being thc cheape( and abundanrly available<br />

substrats have widely bccn uscd 6 subsiEtes for microbial fementation of both<br />

primary ed secon


157<br />

wheat bran resuhed in th€ d.*.ascd xylande producrion. It mighl be due lo rhe<br />

lhickening of rhe fement.tion mcdia. which made hindmnce in the prcper<br />

aeilarion and acnlion that.esulted d€c€lsc ii air supply (Palma eral, 1996). Th€<br />

sumcient supply of air is very $senrial for beiler groath of mycelia as well as<br />

s€oetion of enzlme i. the feDenr.d brcth. Thc other worke$ like sawahchom<br />

(1999).nd S.hd (2003) rlso sclccicd wheat bnr as the basal nediun for rhe<br />

p.oductio. of xyldse. The.eforc. prcsent study is in an asrcenenl $ith the work<br />

.eponed by previous worle$.<br />

Th€ prcductivily of xyl.n.sc b greally influenced by bolh the soure and<br />

conccnr.aiion of nitlgcn (Kulkami er al. 1999). The .rd of di{Temt inorganic<br />

nihogen sourcB in conpadsn with thc control was tcst€d on rhe p6duction of<br />

xylanse. The inorganic nilrogen eurccs such a NaNOr, NHICI or NH.NOT weE<br />

added to the feDcnralion m.diun ar 0.05 - 0.20 % (v!). Among all th€ nirrosen<br />

souEes re$ed, xylanasc producliotr wes hiShly siSnificant (P4.05) whd N.Nor<br />

was used as nnrcgd source (502.4 U/ml) al a level of0.l0 % (wlvJ. ClEn et al.<br />

(1999) found maxinun xylanas. producrioi (157.2 U/l) wirh urca od NaNq d<br />

nilrogen source. The cffccl of nilrcg.n sources for increasing the tunsal cell<br />

aclivily to prcduce xyla.se has also bcen suPPoned by previous wo.k€rs<br />

(Cokhal€ '/ dl, l99l; Kdnsoh ?r al, 200lbr Silva e/ al, 2006). As the level of<br />

NaNOr w.s fu.the! inc.eascd in the fcrmentation medium, ihe production of<br />

edlme was grcaily inhibired.It mightbe du€ to the facr lhat higher concentaiion<br />

of fEe nitogen causes ioxiciiy and ii has.dve6e cffects on the producrion of cell


158<br />

mass a! well on lh. produdivity of xylanasc (Sun €/ al. 2000). Goknab er al<br />

(1991) stldi.d th.i ,{. rte' NCIM 1207 produced high l.v.k of xylane<br />

acriliries in th. subm.r8.d fcmoiation. Among lhe nihoSen sources<br />

inv.stigaled. amDonium solfate,.ft nonium-dihydrcgcn orthoDhosphal. &d com'<br />

sreep liquor werc foud to bc bcfid for lhc producion of xyldollric cnzymes by<br />

In rhe ptwnt study, ph6ph6r. soulc€s such as KH!PO., KTHPO. or<br />

NlrHPOa *erc .ampdd wilh il€ mntrol for Mximum xyl.nase aclivity. The<br />

@ncdtration 6ngcd from 0.05 - 0.15 % ( v). The cotlrcl Aw. 372 Vtml<br />

xylanase lctiviry. Howev.r, 0.1 % (v/v) KHTPO. suppon€d lnainnun cMyne<br />

activity (513.2 U/ml). Orher phoGphnc sourcs gav. siSnilicantly l6s cu}lnc<br />

.cdvny (g


159<br />

incrcr!€ or decreas€ in lhe coNetrtration of MgSO4.THrO rcsulled i. !h. d€creased<br />

prcducdon of xyl@e. H€nce, xylanase produclion w4 found to be higl'ly<br />

significant (p:0.05) at 0.03 % ofMgSOa.THzO concentmlion md thus oplimied<br />

for maxinul xylaiase prcduction. Tlr studies also showed the effsl ofdife.€nr<br />

concenLation of CaClz.2HrO on xylanse producriot by ,4. hi82r. T\e<br />

@rcotradon wa vdied lim 0.05 - 0.25 % (Vv) fld compaled with |he co rol.<br />

Th€ producnon of enzyme was found 10 bc ndiml (532.6 Uhl) when<br />

concertalio. ofCaclr.2Hrowas 0.10 % ( v) dd veied signincantly (PS0.05)<br />

thd oll)er colcetrrrations. Further increas€ in the concenl€lion of CaCh.2H1o<br />

.sulled in rhe decreased prcducrio. of xylanase. As 0.10 % (wv) cach.2Hro<br />

Bave Daxinum production of enzyme. Simile kinds of fitrdin8s have also been<br />

rcponed by Pinasa.r al (1994) a d Bi.1 at. (t999 ).<br />

fhe con@ntorion of trac€ elemefis (Ca*, Mg* dd Na') in 1he medium<br />

plays ar impo.tsnt rcle in thc 8ro*4h of A. niger ^nd subsequenlly xylansse<br />

production (Cai e, 41. 1997). The productivity of xylMe by ,.4. ,€sr can be<br />

funher imprcved by the addition of dircrent crlciom, nagnesim od ph6phale<br />

sourc€s |o the femdraiion medium. TIle p.oduction ofqzyme was fomd ro b€<br />

mlximal (512.6 U/nl) who concentEtion ofCaCIr2HrOwd 0.10 % (*/v) and<br />

va.ied significan y {p:0-05)than oth ei .onc€ntrations ofthe CaCl,.2HrO. Funher<br />

increse in the concentration of clclr.2Hro .sulied in tbe d@redsd prcduction<br />

of xylonase. lr midt be du€ to lhe fact $tt CaClz.2HrO at hi€lEr concedration<br />

hs loxic i.hibirory eff@ts on the 8ro$,t of tulgus .s w€ll 6 xylmae synthcsis.


160<br />

rn a simirar study Fenim et al. (1999) obbin€d the maximum xylanGc<br />

production wilh 0,03 % coDccntration ofCaCl,.2HrO.<br />

Polyoxyethyle.€ sorbitan. nonooleate (Twccn-8o) itr .ppropriaE<br />

conccrrntion has a strong i.flu€nce on $e elficiency of fcmmlalion mediun to<br />

produce xylanase (Kennedy and Krouse, 1999). The elTect of diflere.l<br />

@ncentratio.s of Twcd-8o (0-1G0.40 70) w6 studied in culture mcdium fd<br />

xylanase production by ,,1. ,isel. Maxinum prcduction of xylanase (5a2.2 U/ml)<br />

wd achi.lod when feftenhdon m.diun vd suppl€nented tith 0.3 % oi<br />

Twed-80. 11 might be due to the fet lh.t Tw@n 80. b.ing a conpl.x source of<br />

nntienlr, hM a strong inductiv€ effect on en4m. synthesizing caPabilily of<br />

prodlcer organism (Tan€ja d zl., 2002). Tween 80 al 0 25 % level exhibited 2 0<br />

fold onhrncementin enzlm. prcduction (Balakrishnan 4/ o/.,2000). Any 'ncrcas<br />

or decrease in lhe Tw€€n-80 conceniratiotr beyond oPiimal geatly reduced the<br />

eEyme produclion duc lo ovcrgrcwth of mic@.emisd. Kmi .t al (1991) and<br />

Tahir er d/. (2002) repofted the same kind of invesliSations.<br />

Thc immobiliation of micrcbial cells or tungal sporcs foi imprcved<br />

primary ot sm.&ry metaboliies biosynth6is is of s.eat scieniific intercsr<br />

(Arimatsu d a/., 2003). Xylanase fementation *as canied out for fouFrep€.ted<br />

baah cultures aner immobiliatim of conidia of ,4 ,,8?r sl6in in he sodium<br />

alginate and polFrcthanc foam. The p.oduciiviry of xylan4e was gfrdully<br />

dsreased in each bath (excQl l"r) shc. the,r. ,tel was innobilizcd in the<br />

sodium altinate. The plductio of Sluconic acid was irc@ed itr Oe second


l6l<br />

batch as the,r. ,!g?' srrain was inmobilized in the polFrcrh.nc fdn, whilc in<br />

lhe 3'i and 4'i b.t h cuftures lte pioduction of xylanasc was sisnificantly<br />

dccrcded (Bao 2003; Mani.e e, a/., 2005)- The sodium alginatc howevs. Srvc<br />

bellor r€sulls thus oplimized fo. the immobiliztion of,.{. ,lael and substantiated<br />

wirh rhe wort rcponed by Mehnebslu (2000) dd An@tsu €r dl (2003). Sev..al<br />

fold higher sluconate activity w6 obiained wilh the immobili,zed ,4 niset.6dia<br />

Thc Bre of xylane prcduciion by imnobilized conidia ol A niger eas also<br />

unden ken. Tbc prcduction of xyl4ase following substrate consumpnon wa<br />

increased sith thc inmase in in@baiion p€riod and found mdimal 48 h aft€r th.<br />

inoculalion. As lbe incubatio! period wd funhcr inc@6cd, ihe subsraie<br />

consunplion was ino€sed. while the p.oduction of xvlanase was signific.ntly<br />

(p4.05) d€crced. Ho*e!er, the oplinun Potucion {6 obuined 48 h a&er<br />

inoculdtion. Similar,1,"€ of lork hs also bem rcported bv Hcinrich 6d Rehm<br />

(t9E2).<br />

The re-usc of nixed fungal mycelium has been rePofted bv a number of<br />

workes (Niazi e, al. 1969: .,@m! and Jadwisa, 1990: Sulme er zl. 1998i<br />

Pedrosa e, al, 2000; Mohica ?r al., 2002) Bv rc-using tho nvcclia ofprevious<br />

b.bh cultnrc, th€ prcducrion ofxyldasc w.s found bettd in rhe fi6r barch of the<br />

microbial cxpdiment. Wien the fnngal Dycelium was re-used turther fo' rwo<br />

suc.€sile barches, a decrcas.d mle of glucose bi@o.vdion dnd producdon of<br />

x'lanase sas found. lt night be due to thc fact that ihe .bihv of the organism tbr<br />

the po{tudion oi xyldnsse ws decreas.d afte. i|s rcp€ared usc The mehboli'


162<br />

behaviour of the prcduccr orgdism was allered slch thal it otered into lle<br />

decline or death phae of its grcwth. This fi.ding was in Sood aet€ment with the<br />

work rcponcd by Moycr et dl (1940) od Anbckar ?r ar (1965) who also<br />

discooraged the rc'usc of mould mycclia for successive batch culturcs dunng<br />

calcium Bluconate produciion by subn.rycd fementation,<br />

Pokistan being agicultuml country hd nany chsply available aSricultuol<br />

by producc. These agricultural by'ploducts cb be used for iheir exPloilalion as<br />

substratc for tuyme fomaton by solid{tate fementation (Haq er 4/. 2002)<br />

Tlus in th. pl* study, dirffit aSricultural by Producr such a .ice srr.w, nce<br />

husk, wheal straw. soybean meal, wh€at bran, bagasse, sunflowe. n€al and<br />

nryspap.r wc.e evalu.ted for xylde synthesis. The Prcdlction<br />

of enzvme wd<br />

foMd to be mdimal (1850 U/g) in a medium mlaining wh@l bdn. It mi8ht be<br />

due to thc supply of e$ential .utrienls by wheal bran (proteins 132 %.<br />

.arbohydrares 69.0 %. fats 1.9 %, fibre 2-6 "/o, ash l 8 %, Ca 0.05 %'<br />

Me 0. I I %, K 0.45 %, S o.l2 %) for the grcwth ofnicroorganitns d well<br />

.s for th€ production ofxylanaso. The prcduclion ofenzyme w.s geatlv inhibited<br />

6 rhe ncwspap€r was lsd in fmentadon medium lr might be doe to tbe low<br />

corceirdiion of available carbohydra&s prcsenr in lhc ncwspaPer' {hich weE<br />

esenrial for rhe produciion ofxylbase. In a simildr siudv, DeschmPs 5nd Huel<br />

(1984) studied the production ofxyl.na* by,{ ttget bv elid srare fmdution<br />

They gew fie organisms in column incubatoB deratcd ar looc wheE a<br />

conbination of wheai brao and dce husk was used as substrate. However' the


163<br />

naiimum xylanolfic actvny (658 U/8) w.s aboul 262 fold lowq thatr the<br />

Dopth ofthe m€diun in solid subrt.ate feme.tation hd grcai influence on<br />

th€ prcduction of enzFcs by lercbic micrcbs (Y6hida e, al , t968i Kaiaet at.,<br />

2004). Erect of differelt depth of th€ whedr bED wd thercfore studied for the<br />

produclion of xylanase by noutd. ll was obsfled rhdl lhe P.oduction of enz)me<br />

wd mdimnh (1852 U/8) wha the d.Pth of lhe medium ws 04 m. As lhe<br />

deplh of th€ mediun wd funher incre6e4 thc produclion of xvlanas' wd<br />

decieasod sr6


164<br />

poduclion ofxylanasc w6 found optimal (1860 U/8) when distilled walq wd<br />

used fo. moistming ihe wheai bran. TiDe couBe ofenzyme prcduction plays a<br />

critical roh i. @yne synthcsis. The prcduction of enzyme wd incrcls€d with<br />

increase in the femcntation pdiod and r€&h€d m6ximum (1875 U/e), ?2 h after<br />

in{ulario.. Furlhd incrde in the incubation P.dod<br />

rcslltcd in the decreased<br />

prcduction of xylane. It nighl be due 10 the &cunulation of oths bv_ products<br />

or exhaustion of nutrienls in the fmentaiion n€diom Archtna and Satyanaryana<br />

(199?) srudied thc producrion of exl@ellutar themo slable cellulosFf@<br />

xylanasc by Bd.i/tus lichenhotuis A99 by solid{iat€ fementaiion Tlc<br />

prcduction ofxylanas. Hchcd a peak in 72 h<br />

The incubalion rempersture was studied for the prcduction ofxllsnde The<br />

p.oduction of xyla.lse sd found b be ndimutn (1885 U/g) a1 30"C Fudher<br />

incEase in the incubdion temPeratud rcduced th. prcdlclion ol xylare' Al<br />

40'C, $e produdion of xylanase was gr.atlv inhibiled lt might be due 10 rhe facl<br />

rhar al hiSh tempdatue, the mdsturc contdl i. the solid-slale f€molaton<br />

conditions reduced due to evaPo..tion Wilh the reduction in moisturc conto! thc<br />

grcw$ of the organiso was reduce4 h4@ aficctiog enzvn. fomation (You<br />

and Rnnglu. 1999). The produclivity and ercwth of the o'ganism was found<br />

opiimum al l0'C. Thus, th; rcnlP€sturc wd select€d for the prcduction of<br />

rylande by solid-state femenhrion mediun Msnv workcrs hav€ also Eported<br />

sinilar kinds of iitdings (Deschamps 5id Huet, l9E4; Cai ar al, l998i Ring?f il<br />

1999i Judilh md Jlnior,2OO2i Romnowska er,/ 2005)


165<br />

The cffst of diifercnt carbon and nitrcs€n sources was investiSated on lh.<br />

production of xylanaso by fungus. Ofall ihe carbon and niircsen sources lesrcd,<br />

s|arch ar rhc level of 2.0 % (2150 U/g) as ca$on source and (Nr!)rSO1 at lho levcl<br />

ofo.2 % (2480 U/g) as nitog€n source gave haximum production of xvlandse.<br />

Fu.rhd incrce in thc level of carbon and nitrogen sou@s (C/N dtio) reduced<br />

ihc produclion of enzyme. Ii miSht be dll€ to incrcase in the mycelial grc*.ln at a<br />

higher lelcl of carbon sourccs {itb significdt derede i. the Prcductid of<br />

xylanasc at reponed by Cho (199?). Similarlv, a hiSher .oncentFtio of itrcgen<br />

ha! inhibiloly elTect on tho producliviiy of xylanase Therofore' stdch at ihe levcl<br />

of 2.0 % dnd (NH.)rSOr at ihe level of 0-2 % *erc sel@red for the Prcduction of<br />

Tlc sales up studi€s for eDyme production s€re cam€d olt itr a glss<br />

femenlor of7.5 L capaciiy wilh a working volumc of5 L bv'f is"r OCBTMNIC<br />

nr Oliinization of inoculum fot tn. p.oduclion ofxvlanascs wd caricd onr and<br />

rhc mximum xylanasc Production (6940 U/ml) ws ob*ryed wilh l0 % (*/v)<br />

vegetative inocnlum when thc siz€ of inoculum was 8reaLt<br />

or smlhr ihan 3 0 %<br />

(w/v), it rcsulbd in the reducrion of avlalse prcduction lt Disht bc due b rhe<br />

fad that at a lowe. concenlralio., dount ofmvceliun fomed was not sufficieni<br />

to collen Dore subslrate in to xyldse At a highcr conccDtation of vegebrivc<br />

inoculun, $e vi$osily of fem.ntttion medium inc'eded which causcd dimaion<br />

ploblems (o. reduc€d oxvgen supplv) and hence, decreased xvlana6e prodnclrotr<br />

(Sicdenberg "t al., l99s)- Techapun et 4/ (2002) us'd 5 0 % vegelarive in@llm


166<br />

for betler xylanase prcductid, bul i. pBe study 4 0 % vegeraivc inoculum w6<br />

Thc elfccr of differeni agitalio. €le was also caried out Th€ mexinal<br />

xylan.se produclion (694.31 u/nl) wa! dchieved whd ag'talnn .ate wd<br />

mainraiied dl 200 rpm. The agitation rate les tha. 200 am rcsuhed in the<br />

sE tific.rion of my@liun which inhibned the tungnl melabolism and hence<br />

dsF6€d thc hre of xyl@ production (Reddy er 41 2002) Ttc agitadon<br />

intensity abovc 2oo rpn mighl cau6e intcmPiion in the f€nenltion Pb6c and<br />

rhus resuliing in a lower xylanase p.oduclion (llias and Eoq, 1998i Rashid 1999;<br />

Silva c/ d/.. 2006). However, Liu er al (1999) achieved mdimun xvlanse<br />

producdvny.r a shaking sped of moE ihan 3zr0 +n which obviolslv dcmanded<br />

moE .nc.ey and rhus affected rhc cosl of the resea.ch work<br />

ln the presdt study, the a.!5tion rate of 20 vvm was optiniz.d fd<br />

maximal xylanise producliotr (781.9 Ulml) by A riSet GCAT'35 in sliftd<br />

fementor sith an agilalion intensity of200 An. Il night be due to th8t Prcpor<br />

aeniion and agitatio. a.€ n@sry to cnsure 'n apprcPriate oxygcn suPPly and lo<br />

maintain lcnrilarion md prevar conhmimdon by prcviding a Posilive p€$urc<br />

i.sidc rhc slired fementor (Pal6. .r 4/., 1996). Chen e, a/ ( 1 990) and R€ddv e/<br />

al. (2002) have also rcponed sinilar kinds of iindings und€i submerged<br />

fedeniaiion condilions.


167<br />

The mte of rytanNe prcducion wd aho studi€d and the naxinal<br />

prcduction ofaylande (?E1.4 U/nl) ws achicvcd,60 h tner i.@lttim- Funler<br />

incrce in the incubation p€riod did not enh.nce xvla.N Prcdnction<br />

lt mighr LE<br />

due to lhe d€crcased dnou.t ofavailable nut ienc i. the femenlaiid mdinn' lhc<br />

as€ offungi, the presmce of itrhibitols produc€d by fungi ilselfor tbe dopletion of<br />

suga! contenls. simila. ty?e offindings has been rcponed bv Ilias and Hoq (19981<br />

Tecbapun cr al. (2003) obilined optimal xylaiase acrivitv.fter 144 h of<br />

inoculatioi. so our *olk is economically more tisnificdt bec.use reduction in<br />

incubalion penod took place which Fduced th€ con of xvlanse prcducdon<br />

Similar, kinds of fildi.8s have alto b€.. rcPoned bv Cam.cbo and Aguilar<br />

(2003).<br />

T1r tempedture of femenlalioo medium is onc of tbe cnii@l facloB lhat<br />

have profound effed on the prcduclior of xylanase (Merchant ?t al, 1988; sevis<br />

and Aksoz, 2003). In the present sludy. the effocr of diff.mt i.cub.rio'<br />

temperatures was i.vestigaicd for xylanase Produclion bv,{ ,i8er GCBT-35 'n<br />

siired fedenlor. Maxinun cnzymc s)hihesis was found to be al30'C i e, 652 6<br />

U/ml. When lhe temperature was furlher increased or demded liom 30'C. th€<br />

enzlme production wd g.eally !edu4d. lt mi8h1 be due to rhe f&t thal bigher<br />

tenp€mture advesely .lTers ihe 8rcwih of tunsus and ddatunng of enzlme<br />

(Youn lnd RungF 1999i Rahhan ?t d/, 2001) A number of previou workeF<br />

have optinazed a rcnpdatu.e of lo'C for optimal xvlanase vield iD fmcnrou of


168<br />

diffemt working cq,lcitis (Amb€kff e, aa, 1965; Jain d al.,1995., ZIN .t al.,<br />

1999; Gdda 2000j Oshim er at, 2006).<br />

The fed hlch oulture hs bccohe very importart for the co.tinuous<br />

production of vdi@s @yhcs ieluditrg xylde. In tht om@rion, the<br />

fmrarion was canicd oul fd four EDcared brtchcs, lt ws mt d rtEr 0E<br />

productiviry of xyl.ms€ pas sigrificaltly d€crcd€d aftd 2d rcFated batch. It<br />

mighl be due io ile tu t that the potency of the nycclium fo. th€ production of<br />

xylare wd sig.ifica ly d€cMs.d wirh the .epetilion of the bdrch (Liu ?, al,<br />

1999). Howevd, lhh sNdy n@ds tu $cr invesiigation for its exploitation ar r<br />

conhercial scale. Kasoh sd Garnmal (2001) €xploitcd fed-balch culturc for<br />

imprcved xyld& prodctivity but th@ wortes $ggetcd th.t A. niAu tnay not<br />

bc a suitable o.Sanisrn. JteloD)€er ,vtda,r' w6s, nowcv.r opdEizd for such


CONCLUSION


CONCLUSION<br />

In the present sludy. 104 stEits oI Asperyillw niser,.ap ble ofhydrolysing xylan<br />

to xylosc, were isolated frcm different soil samples. These stra'ns wcr. scFened<br />

for lhe prcdu.tion of xylgnae i. shrk€ flaks. Anone all the sftins tcsied, ,,1.<br />

r,?€r CCBT-15 gave n.ainub p.oduction (225 U/nl) of xylanac. In thc P'!trt<br />

wort the femenolion nediun M-a containing (%, Vv) N.NOr.o.li T*en-80,<br />

0.2; NHjCl, 0.1; KH,?O$ 0.1; MgSO4.7H?O. 0.03i Caclr.2 H,O ad wheal bmn.<br />

2.0. in distillcd water (pH 7.0) wa! selecled for maxinum enzymaiic activity<br />

(Figu.e 2). The xyluse p.oduction wes maximum (250 U/nl) whe. initialpH of<br />

the fenenralion medium was kept ai 4.5.<br />

For the imprcvement of th€ tungus, th. co.idia of,.{. ,iaer GCBT-15 werc<br />

subj€cr€d ro Uv imdiations fo. 5-60 nin. Mdimum doath r.t€ was achi€ved 45<br />

min after UV exposur, Ninety-fouf mulants were isolaled afte! UV iradialions<br />

and examined for mzyme fomation. Amone all mutants l€sted. the ,.{. rrsel<br />

B&C!vrr. isolaled after 45 nin of UV iradiatios, Save mdinum prcduction of<br />

xylanasc. To oblain the b?er prcducd of rybnase, the Lrv Ee.tcd fluunr $rain<br />

was filnher rrealed by MNNC (50-300 pglml). Hudrcd dd nide mutlntt vtre<br />

isolatcd by obsedng the clear zorc of hyd.ol'sis of xyla. i. thepet.iplates. Ttese<br />

mulanis wcrc thcn evaluared for enzlme p.oduclion. Among dll the mut.nts


170<br />

resrql. mutant GCBTM,rab isolated aftft 30 min of MNNG (200 4/mD<br />

tredtnent was lbuDd lo be m6t potnt for xylanase p.odudion.<br />

The prcduciion of xylanse was increased in the secoid batch by ,4. 4ig4l<br />

st6in indobili2ed h the polFrclhsnc flm. The conidi. of A. niger nrttnl<br />

GCBTM"Na r were immobilied and cultivated fd xylanasc production for 24 and<br />

48 h. The production ofxylanase was si8nificantly increased as,4. ,,9"/ was pre-<br />

Seminaled fo.24 h and Eached maximun 48 h after inoculstio.. Effecr ofre{sc<br />

of myceliun of,4. ,,8"a obtained by ascpric cmtitugaion of femdted brorh<br />

fron the previous ba&h, for lhe production ofxylanase was studied. The rale ol<br />

substraie utilization was enhmced in rhe fist batch of ihis experimeni. When<br />

mycelia sqe ftrther €-used itr .ext t*o batches, a decr€.sed Ete of subsrde<br />

bioconveBion and producdon of xylaMs w6 noticed.<br />

Diilercnl agriclltu.alby-product such d rice straw, rice husk, wheat sraw.<br />

soybcan meal, wh6i bhn, bag6sc, sunflower m@l dd ncwspap€r w@ ev.lu.tcd<br />

for iylanae sy hesis. Tle prcducdon of cnzFe wa lound lo bc maxinal(1E50<br />

U/s) in wheat bran mediud. Tle supplyofadequate amount of waie., during solid<br />

subsbal€ fe@entation is very essentid since excesive anount of water affects<br />

potusityi hencei acrcbic conditions dudng fmdlrlion. The prcductivity of<br />

xylanase by rhe fungus can be tunh€. imprcved by rhe .ddition of difforcnt cdbon<br />

and nilrogen sources in to the fementation medium. Ofallrhe carbon and niirogen<br />

sources resred, starch at th€ levcl of 2.0 o/r (2350 U/g) as carbon sou@ and


t7l<br />

(NHrrsor .t rhc ldel of0.2 % (2480 U/g) s nitoseD s(rc g.v€ muimum<br />

pmdu.tion of xylane.<br />

Th. scale up studi€s otr mzyh. production was cadcd dt in a glas<br />

femenlor of 7.5 L cap&iry wi$ a working volume of 5 L by .4. ,i8"r CCBTMNNC.<br />

ro. Optimiation of in@ulm fd thc productid of xylos€s was camcd out md<br />

dE nuximum xylll'e psdktion (694.0 U/n ) wa ob6cFcd silh 3.0 o/o (e/v)<br />

vog.tativ. inoculum. The '@tid 6G of 2.0 tm w6 optimizGd fo Mimat<br />

xylanas€ (783.9 U/ml) Foduction by,l. ,18"r GCBT-35 in sti@d fcnncntor wirh<br />

an agiialion inrcDsity of 200 rym. Th. production ofxylaase wai also cdicd out<br />

by fed-baKh system in fie strncd f.nrentor, which ra d.cu!.d shltply ator<br />

th.ld conrinuoc balch.


REFERENCES


t72<br />

REFENE GES<br />

Abd.l-Sarer, M.A. and A.H.M. El"Said. 2001. Xylan decomposing fungi and<br />

xylanoltlic aciility in agricultunl and induskial w6stes. .a,r ,toddle/z<br />

Biodesod., 47 (t ): t s-21.<br />

Anbekar, C.R., S.B. Thadani and V.M. Doctor. 1965. Prodldion of varions<br />

met.bolires by Peni.illiun chrysogenun in subme.ged culture. ,4ppt<br />

Mioobiol., 13: 7 l 3-7 1 9.<br />

And.e. O.G.C., Q.P.S. Fabide and X.f.F. Edivaldo. 2001. produciio. ofxylan-<br />

degrading enzymes by a Trichodewa hdrziahth s:train. Btazilidk. J.<br />

Mi.t.biol -, 3212): | 4r -r43.<br />

Archana, P. dd Satyanaryda, x.F. 1997. The xylandegrading onzymc system.<br />

Bn,itian J. M.d. Biol. Res.27tt093tt09.<br />

Archaia, T., Choi, Y.S. od J.M. Won. t999. Effccrs of rytrc rrearmcnr on<br />

Kycled pulp properties. Palpb Chongi Gisul.,3O(3): 7 -r4.<br />

Arinalsu, K. Furumoro. M. Yoshimoto, K. Fnkuraga and K. Nakao. 2003. A<br />

kinel'c study on crystalliarion of c.lcium glucoMte in exrml loop airtift<br />

column and sdftd rank for an immobilized glucGe oxidase €aclion with<br />

ctlstAttiArio . Eiochen. Eieh J.. t5\3). t11 184.


113<br />

Baez. M.A. and R. Rodrisuez. 2001. Tte erect of micrcbial xylande on<br />

osnofically modilied whear do\gh syst rs. Appl. Mictobiol. Aiokchnot .<br />

6; 65-69.<br />

Bailey. S. and P. vilkari. 1993. Shidies on ayl8 deg.ading enzymes.<br />

L Purificatio. ed charuteriziion of ddoFl,4 xylans€ frcm,rrp€rs,r6<br />

nig.r sft. t4. Biochem Biophls- ,{cb., U. 19-91<br />

Bailey, S.,Chose,T.K. ddl.A. Kosrick. 1993. A nodel fo. conrinuous mzymatic<br />

saccha.ification of cellulo* viih simulianeous rmoval of glucose s,rup.<br />

Biat.chkol. Biaensia., 1216): 921-946.<br />

Bakri, Y., P. .,acqus ed P. Tton.n. 2003- xylde pbduct;,or 6y Petui iun<br />

./,er.ers lllft in Solid-Stlt€ Fenentatioa. Appl. Aiochen. Eio@hrcL.<br />

r0E(l-3): 737-48.<br />

Bahknshnan, R., R. Shaoting. C. Qingzi and S. Xun.2000. Onhogonal<br />

expe menl in the tene\r^rion of Penicilliun sp, produccs exkacelluld<br />

xyl an Bes. He b e i Dd u e., 19 (3) : 27 6 -27 9.<br />

Bao, T. 2003. &tch crystalliation of xylat),g by ilmobilied glucosc oidse<br />

in column airfift dd scalc stin d taak rcactG. Mictobiol.,73 l2), rr2't-<br />

l ll(.<br />

Bataillon, G. 2000. XylMe production and its applicatio! in d.gr!.btio. of<br />

hcmkellulG, marenak. P!/p Pap J.7 b5-n'7


174<br />

Beg. Q.K., M. Kapoor. L. Mahaja. and C.S. Homdal. 2001. Microbill xylanses<br />

and their indusiial applicalioN: a review.,.lppl Mittubiol. Biotech,ol.<br />

56(3):326-138.<br />

R.. R. Shaoting, G. Qinezi ..d S.<br />

ttmcnlalion of Pedcil/irr rp,<br />

Ddue., l9\3)t 276-279.<br />

Bilgnni, K.S. and A.K- Pd


t75<br />

O.G. Agl'ilar. 2003. P.oductior, plrifi.atio. and<br />

ota low molecular-m6s xylanase fiom,4sp€lsill6 sp. .nd<br />

bating. Appl. Biochen. Biotechnol., rM(l): 159-112.<br />

Cano, C.. P. K. Aline, R. Regim and A. Joao. 1997. Xylan.se prc&ction by<br />

Asp.tsillus resicolot. J Basic. Microbiol., 37(6)t 387-393.<br />

Charlha,8.S., K. Jswindd, K. Rubi er, H.S. Saini and S. Singh. 1999. Xylanase<br />

by memohr.a la"uginosw wild dd nuont stains. Zol/ I<br />

Biotec h nol -, rS(2): 195-t9a.<br />

Chen, H., G. Peiji and W. Zunong. 1990. Sc.ening of high yield xylssc<br />

prcduciig stmin and studies on ils subme.Sed fefrentation cmditions. ,.4da.<br />

Mi.rcbiol. Sin.. JO(5). 35r-357.<br />

ch€n, H.. Z. Jing, L. caisitr, y. Zizh. A a d z. Shuzheng. 1999. ScE.ning of<br />

acidic xylanase prcducing nrain and studies on its €nzym€ produciion<br />

.6dition. Weishe^Ctuu Xuebao.. 39(4): 350-354.<br />

Chen, S.C, Y. Zhds dd P.J. cao. 2001. Studies i. submerged fqne.tarion of<br />

arkarin. p-1,4 slyco.des by Bdci us prtuilus A-30. Shens trusons<br />

xuebao., t6(4): 48s-489.<br />

Chive@, H., Z. Jing, L. caiein. Y. Zizleng and z. Shuzh{8. 2001. ScEnins of<br />

&idic xylanase prcducing srnin ard studics on its cnzFe produotio.<br />

\ondnion. w?nhpnsw Xueba,. 39(4r' 150-154


t76<br />

Cho, C.H, M. Hatsu and K. Takamizawa. 2002. The prodlclion of D-xylose by<br />

€Dzlmatic hydrclysis of agdculhral westes. Water Sci. Te.hnal.. 45(12):<br />

97-tO2.<br />

cho, N 1997. Production ofxylaiase by Ad.!//rr sp. DSN C0t. Hd^suk Sikpun<br />

rarq YarE Haftha-Chi., t9(3)t 34+349.<br />

Ch@t, M.A., Kochcr, D.L.Wai.is, D. Pette6son and C. Ros.2004. A comparison<br />

of thr€e xylaMsd on rh. nutriiiv. value of two *h@t's for brciler<br />

chickm. rr J N!rr, 92(l):53-61.<br />

Choi, F. and N. WoD. I998. Rcc)rling ofpulp genentes ard homification offiber.<br />

Biaken,1.,23, 6G(9-<br />

Chistov, 1.P., G. Szrkacs, H. Bll*.ishian- 1999. koduction, padial<br />

chadcteriation and us€ of fungal cellulasc-f€e-xylanates in pulp<br />

blshtnA- Pt@es Bi@hen.,3,1(5): 5 I l -5 17.<br />

Cla*, D.S., Bord.er P., Celdrich, 8.F., Kabler, P.W. & Huff, C.B- (1958)<br />

Applied Micrcbiology. Inlematioral Book Cornpany, Ne* York, pp- 27,<br />

53.<br />

claudio. H.C.S., P. Ju.gen, v.d€.S. Marc.lo and F.F.E. ximfles- 1999.<br />

Purification and chasclerizalion of a low molecular weiShl xylanase frcm<br />

sollo+rare culrures of.4rp?fal us fun4atu' 'to!ai6 Riv '"tL toblo!., 30<br />

ll.1-119.


177<br />

C@lho, C.D. and E.C. Camona. 2003. Xylanolrtic conplea tftn lspergi us<br />

gigzr,elr: pbduction and ch aecr.ization. J. Bas ic Microbiol., 43(4)t 269-<br />

271.<br />

Colin., A., B. Sulbaran De'Fcftr, C. Ai.llo dd A. !ffi. 2003. Xylanase<br />

Pr.dn rid by Tnchodema reesei Rtn C-30 on dce $av. Appl- Biochen-<br />

aiotechaol -, l0a(t 3): 7 | 5-724.<br />

Contat, J.. loseled\ J.P.<br />

Res., 38: 217-224.<br />

Conmd, D. l98l. Enzymatic hydrclysis of xyld I A. high xylare and &<br />

345-350.<br />

Bsso and C.f. Bdmood. 1974. Chaateriz3tion of<br />

neutral and acidic tolrdaccharides oblained f.on<br />

of a 4'O'methyl D-grucurcno D-\ylan. Caftohrtlr-<br />

producing strain of,{rp€fglrus ,icq. Biotechnol. Lett.. 3(1):<br />

Cosia-FcnicE, M., A. Dias, C. Mdimo, M.J. Morgado, G. Sena-Martins andJ.C.<br />

Du6nc. 1994. xylanolfic enzlm. prcduction by an Asp.lgilrs tigel<br />

isolat . lppl. Biochen- Riotechnol., a4{3). 231242.<br />

Dane, M.C., A.M- de Caho, R-M. CdLo, C.M- Andhde and N.Jr. PdiB.<br />

2004. Appficalim of xyfmarc f@ Thenonyes lanugi^osB IOC-4145<br />

for enzymtic hydrolysis ofcomcob atrd sugarca.e basase. Appl Biochen<br />

B io techtol., ll3: \003-lll2.


178<br />

Dcschafrps. F. and M.C. Huet- 1984. Xylaw and I'ghcosidde production by<br />

Aspe/siUis phoenicn ;n solidataie fenentation. ,iole.lho|. Lei.. 6: 55-<br />

De$hatelct, L.. L.U.L. Tanand and J. Al-Sa


119<br />

lFft pulp for pulp bleaching inqov.mdt. Biorctource Technol.. Eall).9-<br />

15.<br />

Dubeau, R., Gyorey, v. andV.B. Carlo 1986. Xylanas. acliviry of Phanet@haete<br />

ch4\orponm. J. Environ Micrcbiol.7a (t lr: 366-371.<br />

Eliana, M.C.R. and E.B. Tamboursi. 2002. Xylanase r.covery using continuous<br />

€xrmction with rcves€d mic€lleeA sratistical Apprc.ch. J. Ctent a/<br />

Engin. JP.. 35\2)t 205-201 _<br />

Emanuilova, E.1., P.L. Dimilrcy, R.D. Mandaa., M.S. Kdbourova dd S.A.<br />

Ensibatuv. 2000. E"rtra@ltub. Aa.t/6 sbains in batch and continuous<br />

clltte. Z. Natu{a/sch., ss(l )t 66-69.<br />

Euddsn, F., H- Finaly and P- Batisb. 1999. Sepomiion of xylande frcm lhe cnde<br />

clliurc filtrales of ,{ryelglllr sp. 5 tnd,4pe€illu sp. :14 usi.g affinity<br />

pre.ipit ti6s Mi*robiol., A. 567-569.<br />

Fadel, M. and M.S. Folda. !993. Pbsiological studies on xylde Prcduct'on ,]J<br />

Peni.i itn futui.llosan<br />

l,tq4):30,f312.<br />

on sonc agncultu.al wast€s. tnrld ble. Microbiol ,<br />

Fenicla. C, B.G. Ci.thia and P.M. 1999. P.oduction of xyldolytic en2ynes by<br />

Apsergilld tatutii in solid*tate fmentation. Microbiol. 1. ., r?](2):<br />

335-1t9.


180<br />

Fialho, M B. and E.C. Camona. 2004. Pnnficalion dnd chdracte.ization of<br />

xyl.nasefffi Asperyi 6 giganteus. Folio Mictobiol (Praha).,19lr): t3-<br />

8.<br />

Fr*.ius, S., Mmi, J., K. No.ipti, K. Mdchi, K. Tetsuo.nd T. Norihno.<br />

1999. Tmnscriptional activalor AoXItrR Dediat€ c€llulose-inducive<br />

exprcssion of the xylanollaic and ccllulol)ric genes in ,4qre'g,//"s ,ryza?.<br />

Eur. Bio.henical 5o.. 52Et): 279-282.<br />

Fushinobq N., Jone, T., M. Sjosrom and E. Chuth. 1998. Wood Cbemislry<br />

Fundamctrtals dd application. Aodemic P.€st, New Yort. U.S.A, pp. 223.<br />

Caspar, A, T. Coson, C. Roe! nd P. Thondrt. 1997. Study on th. p.oductior of<br />

xylanol,4ic conpl€x from<br />

I iatcc hnat., 67(t lt<br />

45 - s8.<br />

Peni.illiun cdnsescqs<br />

^ppl. Biehtu.<br />

Gardde. P.V. md M.Y. Kamal. 2000. Prcduction of kpergillut xyldt by<br />

lisnocellulosic waste femenration and its<br />

M i ohia l., a7 g )t 5 l t5 t9.<br />

appli.^tion 1999. J. Appl.<br />

Gesese, M-J. and Mamo, J. 1999- Prcduction ofrylanse by T,ichodma re6ei<br />

on cellulo6e and xylan based f,edi,^. Appl. Mictabiol. Biot chhol.,4O(2'3)l<br />

224-229.<br />

Charc'b, I.v. ed N.A. Nour. 1992. Snrdies on xyl6n desadi.g enz)fres.<br />

L Pud ficatio. and cha.actdiztion of endo p- I ,4 xylMe frcm ,rsPe{g,//,r<br />

m4lr sn 14.\|o\hen Biophr' .1.a.44 1q'ol


l8l<br />

ChN, T.K. (1969) Continuo$ nzymltic s&cha.ificadon ot cellulos wirh<br />

.ultwe fihmtes of Ttichodetud enide QM 6^. Biotechnol & Bioeryin., ll,<br />

239-26t.<br />

Golhale, D., S.G- Pllil and K.B- Batawdq 1991. Optimiation of €llulde<br />

prcdrctlon by Asperyi 6 niget NCIM t2A1. Appl. Biocheh. Biote.hnol.,<br />

30(l):99-110.<br />

cokhale. D Lv., D.N. Deobagkd and U.S. Dunt mbekar. 1986. Xylanase and &<br />

iylosidase prcduction by ,{sp"/gtlrs niger Ncllrt t2o7. Biotech"ol. 1.x.,<br />

8(2):137-138.<br />

8l?-E20.<br />

Mohagheshi. K. Crohnen and HiDmel, M.E. 1988. Ultra_<br />

cellnLss ftom ,4citlothem6 .e/r/tottt!s: ComParison of<br />

optima with previously .Aoned ccllulasos. Biot chnal., 7:<br />

Gomaneli, C.. N. Poosaran, M. wat tabc and K. Ssaki. 1998. OPlinisdtion of<br />

aeration a.d agitation rates lo inprove cellulase-free xylanase production<br />

by themotolem Streptontt.s sp Abl06 and .ep@ed fed-balch<br />

culrivatid using agricultunl Nast . J. Bioscience 1nIl Bioengireetug'gs<br />

(3)r298-301-<br />

Gomes, D.I.. J. Gomes and w- Steiner. 1994. Prcdlction of hishly themostable<br />

xylanase by a wild strain of th€flnophilic tungus fremdas.ts auraatiacus<br />

and paniar chmcreriation of th. enzym.. J. Biotech4ot . 31{.t): I t'22-


82<br />

Godachcrc. K. a.d O. Rodionova. 1977. Isolatio of xylm4e producing tun8i.<br />

MiuDbiol.,43t 166.<br />

Gouda, M.K. 2000. Purificalion and panill .hadctenz.tun of cellulds fre<br />

rylanse prcduccd ir $lid'siate and submerged fcmcniation by<br />

Aspersillus tahatii Adv. Faad Sci .22(1,2):11-37.<br />

Gowande, S., B- Pillay, v. Dilsk and B-A. P.io.. 2000. Prcduclion dd<br />

ptopeities ofhemicelluldes by ^ Thercntces lanugitosus strair. J. App.<br />

M i c t. b i o L. aa\q:g 1 5-982.<br />

Gnjek. w. 1987. Production of xylane by themophilic tunsi using differc.t<br />

dcthods of culture. ai,t .r,roL Leu.,915): 3s3-356.<br />

Haq,1., A. Khd,W.A. Bun, S. Ali.nd M.A- Qadee..2002. Effecrofnnrcgendd<br />

carbon sou..es on xylMe prcduciion by muthr shain of Asperyillus<br />

nig.t CCBMX-45. Onlihe J. Biological Scis.. 2(2): 143-144.<br />

Hag, 1., M H. Ash€l S. Malit dd M.A. Qads.<br />

1993. Producrion ofciric acid<br />

by Asperyillus ,iget by soli.l-st6i. fementation. A/r/dgi4., l,(l), l -l0.<br />

Heituich, M- dd H.J. Rchm. 1982- Fomation ofSluconic acid at lo{ pH values<br />

by frce and immobilired ,4sp eryillus riger dvina xylanol\(ic femdtanon.<br />

J. Appl Microb. Biote.hnol.. rS\2),88-92.<br />

Hoq, M.M.. C. Henp.l lnd w.D. D@kwcr. 1994. Cellulose ftee xylane by<br />

Thetnoryces lanugiaos$ RT9; Effeci of aeralion, aeitation and nedium<br />

.ompooenrs on producrion. .,f. Eiotechnol., 37(tJ. 49-58


183<br />

Ilias. N,l. and M.M. Hog. 1998. Eff.ct of.gitalion nte otr ln6 Srowth and<br />

prodncrion xyldde fr.e of cel|u a.by ThernoryEes lanuginosus MH4 in<br />

bioreactot. Wond j. t/li.robiol. Biotechnol., 11 (5): 765-161 .<br />

Iliela, S , A. Atanas., P. Adriana, M. DiliaDa.. P. Ruoiana and P. Nadojda. !995.<br />

xylane prcdudion by -.{rp?tgillus owanoti k-t. S!. Klihent Okhridski<br />

Biol. Fdk.. aa@): 63-68.<br />

Isnail, A.M.S. 1996. Utilization of onnge p€els for prcductio. of mulriszymo<br />

complexes by Bome fungal st6in. Egtpt P rcces Bio.hen. 3r(1): 645-6s0.<br />

Ito, K. 2000. Molecula. gcrcnc malysis of Shohu Koji 'nol(1t. Nippor Joro<br />

Kapkaish . 95(9J: 635-640.<br />

.,ackson, 1.s., A.J- Heiimnn dd W.T- royce. 1998 P.oductiot of di$olvins<br />

pulps from reovqed pape! using enzymes. raPPi -/ . 8l(3): I 7l I 78<br />

Jain, P., Z. Targonsk' and J. Piol@ki. t995. Efled ofpH on biosynth.sis of<br />

cellul4e, xylanase dnd l',t'c enzqesby Trichodema reesei M'7 in fed-<br />

bnch.!l$rc - Ac t d - M i. rcb i o l - P ol., 12 Q4\<br />

2a l-ag.<br />

Jeya M, S. Thiaga€jan, P. Gunasekarsn, (2005) Inprovement or xvlanse<br />

pGlnction in slid-srate fmctrr.rion by alktli iolcont ,{v./gil6<br />

ve 6 k a lo r MKU3. Le tt Appt Mic n bio l - 4l(2)1 1 1 5 -B<br />

Jins. C.. K. Wu, J. Zhaig dd R. RliPon 1998. Prcdrction propenics and<br />

applicarions of xylanase frcm AtPeraillE niSet Az. Ahh N v Aca.l S.i<br />

a64: 214-218.


lE4<br />

Jo.nm, M. and K. Jadwiga. 1990. Characierislics and comparison of methods used<br />

for Ihe prepamtid of innobilized tuIturcs. Zesz Nahk. I'olite.h. Lo.lz.<br />

Te.hnol. cen. spozyw., 5w(6),23-4O.<br />

Johtr. M., B. Schidl and Schmidt. 1979. Punfication and sone propenies oflive<br />

cndo d- f,4 D-xyloes prcduced by a stftin of ?{Very,//6 niSeL Conodian<br />

J 8io


85<br />

biorcdctor for solid{tate fern€nlation of wheal straw, ,iorerorl.e-<br />

Te.hrolog.. A6 Qt 207-2t3.<br />

Kds, S.W.. Y.S. Pa.k, J.S- Le, S.l. Hong.nd S.w. Kim. 2001- Prcduction of<br />

celllles€s and hemicellulases by AspersillB niget KK2 tnm<br />

lisnoceUul6ic biomss. riolerou r Te. hno|., 9l(2): 1 53-6.<br />

Kansoh, A.L. and A. Canmal. 2001. Xylanolytic activiti* of Streptonr.es sp.<br />

taxonomy production, rEnial prdficatio. and utilization of .8ricultu6l<br />

wastes. A.to. Mictobiol Innunol.. 48(t): 39-52.<br />

Kansoh, C.A. 6nd LJ. Nei. 2001. Produciion sd properties oflhe cellulas€-free<br />

xylan^se tuon A. niaer and A. Jlovus. J Mi.tubiol.,33:133-138.<br />

Kami, M.. R. L. D.opu*a. and V.B Rale. 1993- Beta tylamsc pmduction by<br />

Auteob6i.liun pullans gw on suga6 a aericnltuial residues. Wodd. I<br />

R iolec h nol.. 9(4)t 47 6-47 8.<br />

Kennedy, P. and L. Krcusc 1999. O-fmloylated and O-acetylated<br />

olisos.ccharides as side-cluins of g6s xtlans. Phttochent., 14t t0tr<br />

1018.<br />

Kitamoto,8., Fishman, A., z. Ber* andY. Shohan. 1998. Large{calc purification<br />

of \ylAnB. T -6. Appl. Microbial 8iotechnol.. 44: a8-93.<br />

Kohli, E., N. Dur.-Colemd, J.C. Frisvad dd P.w. Van Dijck.2001. On the<br />

s tety ot Aspe'Eill6 niset. Rev. Appl. Mictobiol. Biotechhol., 59(4). 426'<br />

435


186<br />

Konig, Q., Banawde, A.F., S. valles and D. Raftan. 2002. Xylanas. production<br />

by a sodd t€61stFin. Spdt,J. Appl. Mi.rcbiol Biotech.45(3): 338 341.<br />

Koukickolo R, H.Y. Cho, A. Kosugi, M. Inui, H. Yuk6wa. R. H. Doi, (2005).<br />

Desmdation of com n&t by Clostri.liun .ell,/avora,r ccllulases and<br />

hehicellulases dd cont ibulion of scaflolding prciein Cbp A. Appl En bk<br />

M i. mbiol. 7 l(7 ):350+l l.<br />

Krishna C (2005). Solid{late femmtatio. systems-an oveNiew. C/r {et<br />

Iiot chno I. 25(r -2)t -30.<br />

Krcgh, K.B.R., A. Mo.kebcrg, H. Joryensen, J.C. Frisvad and L. Olsn. 2004.<br />

Scrc.ning of sonus P?ri.rili0n for prcduceB ofcellulol)lic and xytanolr,lic<br />

q2yd6. Appl. Biochen. Biotechnol.. rl4lt): 389-402.<br />

Kulkani, P.J., B.J. cuyand and D.F. Luichen. 1999. Mlttiruyme product<br />

comprisinS of gluc@mylollric, proiolyric and xylanotyric aclivirid and<br />

process to producc ir by solid-state fementalion of whear bmn by<br />

Asperyill8 niser Ew J.4ppl- gio.hm.,11: t-t2.<br />

t2b.iUc, P.J., B.J. Guyad and D.F. Luichcn. 1999. Mullieu)me prcducr<br />

comprising of glucoahylol],lic, prcleol}lic and xytanoldc dcrivities a.d<br />

pMs io produc. it by solid,nare fein.ntariotr of whear bm by<br />

Asperyillts niget. Eur. J. AppL Bi@hen.. t4t l-12.


lE7<br />

Lemos,8., Nmyan. R. and M- Belaluddin. 20Ot. P.oducrio. and chMct.rization<br />

of dlkalin€ xylanases frcm 3a.l/6 sp. isol.ted fron an akaline soda lake.<br />

Pa^. J. Biol. Scis.,7(5): 771-'181.<br />

Llnko, J C., Kos€n, N.W.F. & Paul, P.C. (1979). An inoculum techniquc for the<br />

production of fungal p€llels. f,/ t. J. Appl. Mirobiol.. a,351-359.<br />

Liu, M.. Chen, L And Fiedurck, J. 1999. Influencc ofpuhe electric ficld on rhe<br />

sporos and oxySen consumption of,jryelgi//rr ,tael dd its citric acid<br />

prdrcti.n. Acta Biote.h"ol-. r9(2)., 179-186-<br />

Lopcz,X., Hudrin, C. and calllml K. 1998. Subsmics specificnid of xylan66<br />

frcm Asperyillus niset 6d its relalionship of xyloligosa..ha.id€s<br />

ptod|ctioi- Quahquo Go"se weisheaewu XiEi Zhongtin.,30(10): ra-20-<br />

M&abe, J.H., G. Homs and C. Kippil. I 99E. Reglladon of xln A and xln B genes<br />

ot AspergiIa nidula8 fot xyl^n6e produclion ai anbieni ptl. I<br />

B iotec h nol., 66t 5J-51.<br />

Mana, S.D., S. Gyorgy and V.B. Cdlo. 1999. Xyleasc acii\ity of Phaielochaete<br />

chrytusponuh. 4ppt Enircn. Mictubiol.,s8 (ll): 346G341t.<br />

Marquez, D., C. Giatti. S.G. Nelio, F. CGia, M. Ap.rcci


188<br />

Marta, C.T.D.. A.C.A. Pellegrino, E.P. Potu8al, A.N. Ponezi and T.T. Franco.<br />

20f{. Chamcrcrization of alkaline xylanases fton Ba.illus punilus.,<br />

Ero.ilian J- Micrcbiol., 3l(2\t 90-94.<br />

Maninez MA. Delsado OD, Baigo. MD, Sineriz F (2005). Seqrcnce analysis,<br />

cloiing and ov.F€xpresio. of an endoxylanase frcm fie alkaliphilic<br />

Ba. i I hB ha lod u rc n s. B iok.hnol k u. 27(q:545-50.<br />

Mdtrui. T. S. Maycr, S. Kokai and L Salanon.2000. lnveri..e p.oduction of<br />

connon stohgc moulds in food &d feed g@i$ as a po$ibilily for npid<br />

det*tim 6f Atperyilus fiavus Arclp ^nd 4speryi 6Irtuigdtus. In|. J.<br />

Foad Mictobiol., 6l(2J: r81-r9l.<br />

Mccanhy, R.L., E. Abotsi, E.L. jans€. !a RdsbuE and S. Howard. 1985.<br />

Lignocellulose biorehnoloSy: issues of bioconv.E,on<br />

prodrction. Africdn J. Biatechaol.,2ll2). 6A2-619.<br />

t25.<br />

U. 2000. Producdon of cellulrtic cnzymes using immobilized<br />

of Asperyi 6 niser Appl Riachem. antl Biorechnol., a1e), rr1-<br />

M..chanr, R., F. M.rchant and A. Ma€ariris. 1988. Prcducrion ofxylanrse by rhe<br />

rhemophilic tungus ft&lavr? tenesttis. Biotechrol Lett., lO ('l): 5t7-r6.<br />

Mila8rcs, L., C.F. Bickmlaf4 A. P.rcrson md J.A. Buswell. 1994- Evaluation<br />

caral'tic activity .nd slnergism between two xylanase is@nzyn€s


I89<br />

en4Tic hydrcl)sis of two separat€ xylans in d'ffercnt stat6 of solubility.<br />

Ena-tn Microbiol. Iechhol., 16: 696-702.<br />

Millcr, C.L. 1959. U* of diritrosalicylic acid reage fo. delemination of<br />

rtdtcing ilAe. J. Akal. Chen,3l(3)r426-428.<br />

Mishra, M.. P.K. Niahgfge and H. Khmni. 1984. Xylanases hon Neurcspora<br />

c.as. under &rcbic condilio^s.J. Appl. Microbial..67. 41-53.<br />

Mishra, w.. Altumna, M. and Naiayan, R.2004. Cha.acte.iation and<br />

idendfication of xylanase prcducirg bacte.ial shins isolated f@m soil and<br />

N6teL Pak J. Biol. Sch.,7(5): 7 | l -716.<br />

MG6, K , C.M. Courti.. K. Bnjs and J.A. Delcour. 2003. A $ming nethod fo.<br />

endGbera-I,,Lxylanase subsnatc sel@rivity. Anol. Biochen' 3l{l\. 13-11.<br />

Monica, C.T.D., C.A. Carclina and P.J. Nci. 2002- Prodlction and prcperriG of<br />

the cellufe-frce xylanas. fiom Thernont.es Lartgi^{us 16414s.<br />

Brozilia" J. Mi.robiol,, 33: i13-338.<br />

Monrenecoun, R.F. and A. Evelcigh. 1979. Producliot of xyle6e by tbe<br />

$€mophilic fu.gus Zr,?lavia t.ftestti! Biotechnol. Len.,lO(7): 5l3J 6<br />

Mo.ti, R., H.F. Terenzi 5nd J.A. Jors.. 1991. Pudficaiion<br />

extiacellular xylandc from ih. thermophitic fungus<br />

Themoidea. Cdna.lian J. Mictubiol., 37(9): 675-681-


t90<br />

Mom, L, J. Comlat, F. Pla and P. Noe. 19E6. Actior of xylanses od chdical<br />

pulp fibres. Pan l: lnvetisalion on ccll Mll hodificalioB. J. Wood Cheh.<br />

Technol.. 6: 147-165.<br />

Moyer, A..1., E.J. Umerger a.d J.J. Stubbs. 1940. Fementatim of con@nlBted<br />

soludons. 1d. ttr& C/'ea..32r 1379-13E3.<br />

Mnthopadhyay, M.M.H.. H.A. Schoh a.d A.C.J. vo.agd. 1997.<br />

GlucuronMnbinoxylans f.om naize kemel cell walls N more conplex<br />

than those aon sorghum k€mel cell \|alls, Catbohldr. Pol.. 43: 269-219.<br />

Nakamura. T.. D.C. Snith and T.M. Wood. 1991. xylese prcduclion of<br />

Asperyillus awahori developndt of medium and opdniaiion of ihe<br />

femoiation palm.t 6 for $c prcduction of exlE celluld iylal1e of I'<br />

xyf6ida* while maintaining low prete@ prcduction. J Siote.hnol- an.!<br />

ai@r&,38(8):838-890.<br />

Narayan, J. and K. Belaludditr. 2004. Mcchanisms of enzynic hy.lrol'sis oi<br />

henicelluloses (xylans) and proccdures for detedinalion of the enzync<br />

dctivity involved. 1r: Coughlan, M.P. (.d). Eturae systens Jbr<br />

Iigno.e ulose deEra.latiot. Elseviel,.{prl. tti., London, pp. l5l - 165.<br />

Nco, P-, J. Chev.lid, F. Mora and J. Comlat 19E6. Action of xylanae on<br />

chemicar pulp fibEs. Pad ll enzyngl.i. b.atinB- J w@d Chen. Te.hnol-, 6:<br />

16? 184


l9l<br />

Niazi, A.. M. Yasin and M.A. Qad..r. 1969. Nuhitional reqrirenents of<br />

Penicilliun .hrysosenun fot fie pioduction ofgluconaie. PUL I AD./iet.<br />

2(l). r l-17.<br />

Nlncz, 1.2.. R. Rodrignez and M. A. B@.2001. C6 dtentid mehanism in<br />

wheat brcad doughs. The mle of xylanlse and aEbidoxylain f6ctioN. J.<br />

Biochefl., 56:3l.33.<br />

Ocravio. L. and J. Cordova. 2003. Inprolemenl of xyldase prcductiotr by a<br />

p.msexual cros between ,4rperyillut ,iset st^jns. Bruili\| Atch. Biol.<br />

Tednol.. 16(2\. t 71)8t -<br />

Oksanen, T-, J. Pft, L- Pavilai.€n, J. Buchen and L. viikari. 2000. T@tnent ot<br />

@ycled lGft pulp6 vith r/r'.rad?md reer€i heni@Uuldes and cellulases.<br />

J. Biote.hnol -, 1A(t). 7948.<br />

Onion. A.H.S., All6opp. D. & Eggins. O.W (1986) Smith lnnoduclion io<br />

lnduslrial Mycology. ?ri Editioi, Edwlrd Amold Pubhhes, London, pp<br />

187-188.<br />

Oshim H, Kimud I,IzuDo.i K. 2006. Synth6is and structure tnalysis ofnovcl<br />

diecchlrides @ntaining D-psicosc prcdoced by edo-1,4b€L-D'xylaMsc<br />

trcmAspergi B sojae- J Biosci Bioens, tot(3J.2aD-243.<br />

Ou, K., w. Shuhan, H. K6ing, D. Shaojln dd S. Yupins. 1999. Scrding of<br />

high \)lanase producing srarn. Xonneist K?.uc fu Jishu . T4\' 29-!!


t92<br />

Palna, M.8., A.M.F- MilogEs., A.M.R. Pdt aid D. l. M. Mancilh!. 1916.<br />

lnflucncc of lcElion lnd agibtion on xyl&6c prcductioi . B.aril pM.$.<br />

J. Bi6hen., 3l(2)t l4l -145.<br />

Panda, T- 1989. Simulaion of shake flsk conditions in a biorc.ctor for thc<br />

biosy h.sis ofcclluhs€ .nd xylane by t mixcd .ultuE of I'icrtod?na<br />

re.tei Dl-6 ari Asperqillus ,cntii Pt2EW., Prccess-Biochen. 21 (3) lO+<br />

08.<br />

Pa*, M., S. Camm.l lnd A, Phphi. 2002r. Xylanol''ti. .clivitie ofstt Plomyces<br />

sp, pfr .l r{rific.iion ^nd ntilistion. Acta Mi.tubiol. Innurol. Hung.<br />

6a(l):39-52.<br />

P.rk, Y.S., S.w. Kstrg, J.S. t e, S.l. Hong and S.w. Kim. 2002b Xyles.<br />

plodudion in solid-state fenndtstion by ,{rystg,//6 rtSer mutad utin8<br />

$atisricaf cxpriNtrtal deigN. Appl- Mi.tubiol. Biotechnol.,Sat 761'766.<br />

Par.l, L. and C. R y. 1994. Biosynthcsis ofcutoxynethylccllulac lDd xyl6.sc<br />

by acidophilic tun8ls c.lls immobilizcd on biodisks. ,{6rtr' Annu Meet<br />

An.<br />

'bc.<br />

M ic tobiol., 83: 236.<br />

P€drcs!. A.. B. ItoD &d M.L. Scmno.<br />

2000. Solubilily\ of ca- gluconatc ii<br />

waro od in aq".ous solution of €thnol and m.thanol. J. Cren. fn&<br />

15(3),461-463.<br />

Pham, A., Macab., A. and T. Heina. 1998. Xylan snd ryl.n dcrivativca<br />

biopolyneE wnh valulblc prcp.nics. N.tunlly occ!fting xllan structuns,


I93<br />

isoration, procedure and pnpetti.s. Maqonol Rdprl Cohhun.,2l: 542-<br />

556.<br />

Pinasa, F., M.T. Fmandez-Espinor, S. vdlles and D. Roman. 1994. xylanasc<br />

prcducrion by Asperci $ nidulans- lnduction and carbon caEbolitc<br />

rcprcrc;on. Microbiol. Lett.,1r 5(2): 319-324.<br />

Pin. S.J. 1975. Principl$ of micrcb€s & cell crltivation. Black welh Scientific,<br />

Pl.sens.n, P. dnd S. Oi. 1992. Production ofcelluloll'tic eEymes frcm tungiand<br />

e in sacchdificttion of paln cakc dd palm fibrc. ,votld J Micrcbiol<br />

B ijte. h kol.. 8(5): 536-538.<br />

Raltmd, A.K., N. Sugirani, M. Hatsu dd K. Tak.niaw! 2001 A relc of<br />

xylaiase, alpha-L.anbitrotunnosidase dd xylo€idase in xylatr deg.sd.tion<br />

Cona.lian J. Mictobiol., 49(t): 58-64.<br />

Rashid, KC.B. 1999. Thc henicellllase of gn$ and cerc.h. Advances In<br />

carbohydrate chemistry and bio.hemisrrr.J Mntubiol Aiochetu- 36:2l5'<br />

264.<br />

R€cord, E., M, Asthor. C. Sigoilloi, S. Paes, P.J. Punt, M Delattre. M Haon, C.A<br />

van Den Hondel, J.C. Sigoillot, L. L@gc_Mce$en and M Aslh{ 2003<br />

OveAroducnon of the Asperyillus niget fetulovl $te.a!e tor Pulp<br />

brcehing^pplic rio . AppL Mictubiol. Biotechnol,62(4): 34Y355.


194<br />

Reddy, V.. P. Paddy, B. Pillay ad S. Singh 2002. Erect of a€ralion otr the<br />

prcduclion of hemicellulM by I /drt€iM SSBP in . 30 | bid@tor'<br />

Procets-Biochenistry-, t7 (ll)t 122l-1224.<br />

Rjngpfeil, P. 1999. Midobial xylanolylic eDzyne systemi propentes {o<br />

^pplications-<br />

Adt. AWI M*robbl..43t l4t'tq4<br />

Rita P-, S. .,adwigs ed B. Halin!. 2003. Biosynih6is ofEnzymcs bv ,tsP


l0{5):279-291.<br />

Samain, E., P. Dcboi@ a J.P. Tou&I. 199?. Higb-l.vel ptduction of a c€llulase<br />

free xylanaso in glucosc linit€d fed b.tch culturc ofa themophilic B4.i//rr<br />

srtai.../ aiotechnol'sae): 7 t -78.<br />

Sawarachorn, A.v. 1999. The Avergillus "icer D-xylulose kinas€ gen€ is co'<br />

expEsed with 8€ne<br />

cncoding sabine deSl.ding enzynes a.d is esential<br />

for srowih on D-xylosc dd L -^tsbtnose. Ert. J. Biochen..268: 5414'5423.<br />

Schind, F. and W. Vomcm. 1989. Xylane dd CMC& acrivily in soil by an<br />

rmprored merhod. 1,,.brv.]{ ,4rrrid . !5: 5l l-51:.<br />

Scyis, L and N. Aksoz. 2003. Detemi@tion of sme physiological facto6<br />

affectins xyld.ase p.oduction flom bichodemo hacidnutu 1013 D3<br />

Ne* M ic robiol., 2611 \:<br />

7 5-81.<br />

195<br />

Saha, B.c. 2003. Henicellulose bioconvcBion. J. In.l Mictabiol Biotechhal<br />

Sham4 P.D. 1989. Methods in Microbiology, Mi..obiologv and Planl Pathologv.<br />

Ed I '' R6to8r dd Compay Mecflt, lndia PP 33-35<br />

Shubakov, P. S. Malhe$e and T. E. Cloete. 1994. Lignocellulose biodeSradaiion:<br />

irndanentals and applicarios. A rcview. Envitur' S.i Biote.hnol., l. lO5'<br />

ll4.<br />

Siamo, S., J. Klein, v. B.l€s a J. Anous. (19971- Mixi.g tim€ in airlift @cto6<br />

dunng citic acid fefrentatio.. RioPro.es Ergi, .2r(3):245'244


96<br />

Siedenbcrs, D., S.R. Ged6ch, B. w€ig.l, K. Schugerl. M.L.F. GiuscPPin and J.<br />

Hunik. | 998. Prcduction of xylhase by Asp


Slar unilesiiy, pp. 32'43<br />

Somogyi, M. 1952. Notes in sugar dct.mination. l rt l Crn,195: 19-23<br />

197<br />

Sicdeco.. G.W. and W.G. Cochran. 19E0. Si.tistical Methods, T'" Edilion, towa<br />

Stciner, J., P. Camona C. Ponce. M. Bcni and J. Eyzatuire. 1998. Isolado. of<br />

mtttnts of Peniiilliun purpungenun win\ enhanced xylane tid bc!t'<br />

xylosidase production. lvodd J Microbiol. Biotechtol. r4(4)t 589-5m.<br />

Subramaniyan. S.. P. ?.ma dnd S.V. Ramakishm. 1997. Isolation a.d scrccDiDg<br />

for .lkaline thmosrable xylan^ses. J. Easic Mictobiol.,37(6)t 431-437<br />

Sudha, 8.. H. vee@mani and S. Sunathi. 2003. Ble&hins of baease pulP wilh<br />

anzym. qrc-t anna.nt Water.t l l'acr,o/ , 47{ l0): 163- | 68-<br />

Sulndn, E-M., O.B. Samikov. A.l. Sidorcv lnd A.T. Kisdov. l99E- Pmcs fo.<br />

the prepannon of'mmobilized xylaMse idr' 1,IlE:955<br />

Sun, .,.F. C.H. Poulsen, D. tng.edicnls and E. Ransvej 2000 Endogcnous<br />

xylanase inhibilor ftoh wheat {louri lts chdacteristics dd influence o.<br />

xylanases us.d in batery appli.^tions. Joarhal of ceteal scienc.s , 2E: 63'<br />

'70.<br />

Sumakki, A., A. Kantelinen and J. Buchcrt. 1994 Edyme aided bteching of<br />

indusirial sofiwood kmft pulps. Tappi J., 17: | | ) t t6<br />

Tahir, A.. Payan, M. and G. williamsoi. 2OO2 xlP'!, a xvlanase inhibiior Prctein<br />

from wheaf a novel proiein functio . Biochin BioPhls Acta . l2(2):203'l | .


l9E<br />

Tm, C., Bea M. A and R Rodriguez 1985 fte €rect ofmicrcbial xvlana$ on<br />

ostnoti@Uy no


199<br />

Uchida, H., l. Kusakbe, Y. K .bsl4 T Ono and K Momrmi 1992<br />

Prcduction of xylose fiom xvle with intracelluld ehzvme svstem of<br />

Aspq4ills niseL J Fettunt Biodgitl T(4r: 153-t5a<br />

veluz. C-H., H6gling, H ttaiwd ed G Hongahi 1999 Xvlanase producl'on<br />

and its appli@tion it degddation of hemicetlulose. natsia\s Int Cong<br />

BiotechML PulP PaP.Ihd 7.65'67.<br />

von, A., M. Jags, H. Esterbaus dd G Dil*lmuller' 1992 Biobl@ching wior<br />

xyldse f.om a themoPholilic fimgur in 'Biolechnolos} i! fie Pulp and<br />

Papd ltdu$ry",Iohn Wilev & Sons' pp 12|5-l22l<br />

wdg, K-K.Y. 1998. Production ofxvlmse ed its uir delmition J Miqobi^t<br />

rl(3):305-309.<br />

Won8, M-J. 19E8. Prcducdon of xvlmase bv }{rPelstls f"niSatus 8d<br />

,4wrgill6 oryae xylnb6.d medi^ World J Mitobiol and Biochen<br />

9:80'83.<br />

wu. s.. SoEns.n, JF c.H Pouls6, D. Itrerediols dd E RahNej 2000<br />

Etulog€nous xylane illhibiror fiom wheat flou: l|s chdacteristis and<br />

influence on xylmtles Eed in baterv afflications Jowtul of cerfut<br />

Yarg MH, Y. Li, G.H. Grd, ZQ..liang, (2005) Hign-|evel expssiot ol<br />

extreme-th€mostabl€ xylanase B ftod ThemotoSo haitim MSBS


200<br />

tuchqicl'i


LISTOF<br />

REI'EARCH PI'BL|GATIONS


201<br />

LIST OF PUBLICATIONS<br />

l . wasecm Ahm.d B!n, Iknm-ul H!q, Sik nder Ali, Qadecr M A. and Jdved<br />

2.<br />

l.<br />

5.<br />

Iqbal. 200r. Production ofxylanase by solid{la& fetuentari'onbv AsPeryi us<br />

niser. PaL. J AoL,33:58l'585.<br />

Haq, l.,AycshaKlEn, w. A. Buq S A1' and M A Qadd. 2002 Enhanced 5-<br />

produdion ofxylanase by muta strain of /{rp?€rl16 ,i8?r under solid stlte<br />

femenration conditions. /rd.I Piutl t tu, I(I):5_E<br />

lknm-u]-tlaq, Ayesha K}lan, Wase.m Abmad Butt Sikander Ali And M A'<br />

Qads.. 2002. Effect olcarhon dd nitrogm sources on xvlane produclion bv<br />

nuranr strain of ?{ysrs !s,iSet ACRMX4' Onlia. J. Biol S.it 2(2): 143'<br />

4. Wasecn Ahmad Butt, Iinm-ul Haq and Javed lqbal 2002 Biosvnthsis of<br />

xylanase by Uv-treated nuta strai. of Aspergillus hiSet CCBMX'45'<br />

Riot.dtbot . \(t): to-14.<br />

Amna Ehsan, Ikam-ul-Haq,<br />

Ali and M.A. Qade.r. 2003.<br />

submcrsed femenrarion from Aspet4ilhs hi4e. Ind J Plo'? S.ir" l(4): 372-<br />

175.<br />

Wase€m Anrnad Butt, Hamad Asl6f. Sikander<br />

Nutritional studies for xytanese biosvnthesis bv<br />

6. lkran-ul-Haq, Am Ehsan, Wase€b Ahnad Buti and Sikddcr Ali 200l<br />

Stndics on rhe biosytrth6is of dyme xvlanase bv subm'rged fcmentation<br />

tom A!pe/8il6 ni4.r GCBMX-45. Pat I Atol $r',5(12): 1309-1310'

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!