11.01.2013 Views

CA3094 - EBG - Darmstadt

CA3094 - EBG - Darmstadt

CA3094 - EBG - Darmstadt

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

April 1994<br />

Features<br />

SEMICONDUCTOR <strong>CA3094</strong><br />

• <strong>CA3094</strong>T, E, M for Operation Up to 24V<br />

• <strong>CA3094</strong>AT, E, M for Operation Up to 36V<br />

• <strong>CA3094</strong>BT, M for Operation Up to 44V<br />

• Designed for Single or Dual Power Supply<br />

• Programmable: Strobing, Gating, Squelching, AGC<br />

Capabilities<br />

• Can Deliver 3W (Average) or 10W (Peak) to External<br />

Load (in Switching Mode)<br />

• High Power, Single Ended Class A Amplifier will Deliver<br />

Power Output of 0.6W (1.6W Device Dissipation)<br />

• Total Harmonic Distortion (THD) at 0.6W in Class A<br />

Operation 1.4% (Typ.)<br />

Applications<br />

• Error Signal Detector: Temperature Control with<br />

Thermistor Sensor; Speed Control for Shunt Wound<br />

DC Motor<br />

• Over Current, Over Voltage, Over Temperature Protectors<br />

• Dual Tracking Power Supply with CA3085<br />

• Wide Frequency Range Oscillator<br />

• Analog Timer<br />

• Level Detector<br />

• Alarm Systems<br />

• Voltage Follower<br />

• Ramp Voltage Generator<br />

• High Power Comparator<br />

• Ground Fault Interrupter (GFI) Circuits<br />

Ordering Information<br />

PART NUMBER<br />

TEMPERATURE<br />

RANGE PACKAGE<br />

<strong>CA3094</strong>T, AT, BT -55 o C to +125 o C 8 Lead Metal Can<br />

<strong>CA3094</strong>E, AE, BE -55 o C to +125 o C 8 Lead Plastic DIP<br />

<strong>CA3094</strong>M, AM, BA -55 o C to +125 o C 8 Lead Plastic SOIC (N)<br />

Pinouts<br />

EXT. FREQUENCY<br />

COMPENSATION<br />

OR INHIBIT INPUT<br />

DIFFERENTIAL<br />

VOLTAGE INPUTS<br />

GND (V- IN DUAL<br />

SUPPLY OPERATION)<br />

<strong>CA3094</strong> (PDIP, SOIC)<br />

TOP VIEW<br />

NOTE: Pin 4 is connected to case<br />

1<br />

2<br />

3<br />

4<br />

8<br />

7<br />

6<br />

5<br />

SINK OUTPUT<br />

(COLLECTOR)<br />

V+<br />

DRIVE OUTPUT<br />

(EMITTER)<br />

I ABC CURRENT<br />

PROGRAMMABLE<br />

INPUT<br />

(STROBE OR AGC)<br />

CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper I.C. Handling Procedures.<br />

Copyright © Harris Corporation 1994<br />

10-11<br />

Programmable Power Switch/Amplifier for<br />

Control and General Purpose Applications<br />

Description<br />

The <strong>CA3094</strong> is a differential input power control switch/<br />

amplifier with auxiliary circuit features for ease of programmability.<br />

For example, an error or unbalance signal can be<br />

amplified by the <strong>CA3094</strong> to provide an on-off signal or<br />

proportional control output signal up to 100mA. This signal is<br />

sufficient to directly drive high current thyristors, relays, DC<br />

loads, or power transistors. The <strong>CA3094</strong> has the generic<br />

characteristics of the CA3080 operational amplifier directly<br />

coupled to an integral Darlington power transistor capable of<br />

sinking or driving currents up to 100mA.<br />

The gain of the differential input stage is proportional to the<br />

amplifier bias current (I ABC ), permitting programmable<br />

variation of the integrated circuit sensitivity with either digital<br />

and/or analog programming signals. For example, at an I ABC<br />

of 100μA, a 1mV change at the input will change the output<br />

from 0 to 100μA (typical).<br />

The <strong>CA3094</strong> is intended for operation up to 24V and is<br />

especially useful for timing circuits, in automotive equipment,<br />

and in other applications where operation up to 24V is a<br />

primary design requirement (see Figures 28, 29 and 30 in<br />

Typical Applications text). The <strong>CA3094</strong>A and <strong>CA3094</strong>B are<br />

like the <strong>CA3094</strong> but are intended for operation up to 36V and<br />

44V, respectively (single or dual supply).<br />

These types are available in 8 lead TO-99 Metal Cans (“T”<br />

suffix). Type <strong>CA3094</strong> is also available in an 8 lead dual-inline<br />

plastic DIP package (“E” suffix) and Small Outline Package<br />

(“M” suffix).<br />

EXT. FREQUENCY<br />

COMPENSATION OR<br />

INHIBIT INPUT<br />

DIFFERENTIAL<br />

VOLTAGE INPUTS<br />

2<br />

<strong>CA3094</strong> (CAN)<br />

TOP VIEW<br />

1<br />

3<br />

SINK OUTPUT<br />

(COLLECTOR)<br />

8<br />

4<br />

GND (V- IN DUAL<br />

SUPPLY OPERATION)<br />

TAB<br />

7<br />

5<br />

6<br />

V+<br />

DRIVE OUTPUT<br />

(EMITTER)<br />

IABC CURRENT<br />

PROGRAMMABLE INPUT<br />

(STROBE OR AGC)<br />

File Number 598.3


Specifications <strong>CA3094</strong>, <strong>CA3094</strong>A, <strong>CA3094</strong>B<br />

Absolute Maximum Ratings Thermal Information<br />

Dual Supply Voltage<br />

<strong>CA3094</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±12V<br />

<strong>CA3094</strong>A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±18V<br />

<strong>CA3094</strong>B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±22V<br />

Single Supply Voltage<br />

<strong>CA3094</strong>. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24V<br />

<strong>CA3094</strong>A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36V<br />

<strong>CA3094</strong>B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44V<br />

Differential Input Voltage (Term. 2 and 3) Note 1 . . . . . . . . . . . . . 5V<br />

DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V+ to V-<br />

Input Current (Term. 2 and 3). . . . . . . . . . . . . . . . . . . . . . . . . . . . . ±1mA<br />

Amplifier Bias Current (Term. 5) . . . . . . . . . . . . . . . . . . . . . . . . . 2mA<br />

Average Output Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100mA<br />

Peak Output Current. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300mA<br />

10-12<br />

Thermal Resistance θ JA θ JC<br />

Plastic DIP Package . . . . . . . . . . . . . . . . 150 o C/W -<br />

Plastic SOIC Package . . . . . . . . . . . . . . . 170 o C/W -<br />

Metal Can . . . . . . . . . . . . . . . . . . . . . . . . 156 o C/W 68 o C/W<br />

Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . +175 o C<br />

Junction Temperature (Plastic Package). . . . . . . . . . . . . . . . +150 o C<br />

Lead Temperature (Soldering 10s) . . . . . . . . . . . . . . . . . . . . +300 o C<br />

(SOIC - Lead Tips Only)<br />

Operating Temperature Range . . . . . . . . . . . . . . . . -55 o C to +125 o C<br />

Storage Temperature Range. . . . . . . . . . . . . . . . . . -65 o C to +150 o C<br />

CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation<br />

of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.<br />

Electrical Specifications T A = +25 o C for Equipment Design. Single Supply V+ = 30V, Dual Supply V+ = 15V, V- = -15V, I ABC = 100μA<br />

Unless Otherwise Specified<br />

INPUT PARAMETERS<br />

PARAMETERS SYMBOL TEST CONDITIONS MIN TYP MAX UNITS<br />

Input Offset Voltage V IO T A = +25 o C - 0.4 5.0 mV<br />

Input Offset Voltage Change |ΔV IO | Change in V IO between I ABC = 100μA<br />

and I ABC = 5μA<br />

T A = 0 o C to +70 o C - - 7.0 mV<br />

- 1 8.0 mV<br />

Input Offset Current I IO T A = +25 o C - 0.02 0.2 μA<br />

T A = 0 o C to +70 o C - - 0.3 μA<br />

Input Bias Current I I T A = +25 o C - 0.2 0.50 μA<br />

T A = 0 o C to +70 o C - - 0.70 μA<br />

Device Dissipation P D I OUT = 0mA 8 10 12 mW<br />

Common Mode Rejection Ratio CMRR 70 110 - dB<br />

Common Mode Input Voltage Range V ICR V+ = 30V (High) 27 28.8 - V<br />

V- = 0V (Low) 1.0 0.5 - V<br />

V+ = 15V 12 13.8 - V<br />

V- = -15V -14 -14.5 - V<br />

Unity Gain Bandwidth f T I C = 7.5mA, V CE = 15V, I ABC = 500μA - 30 - MHz<br />

Open Loop Bandwidth at -3dB Point BW OL I C = 7.5mA, V CE = 15V, I ABC = 500μA - 4 - kHz<br />

Total Harmonic Distortion<br />

(Class A Operation)<br />

Amplifier Bias Voltage<br />

(Terminal 5 to Terminal 4)<br />

Input Offset Voltage Temperature<br />

Coefficient<br />

THD P D = 220mW - 0.4 - %<br />

P D = 600mW - 1.4 - %<br />

V ABC - 0.68 - V<br />

ΔV IO /ΔT - 4 - μV/ o C<br />

Power Supply Rejection ΔV IO /ΔV - 15 150 μV/V<br />

1/F Noise Voltage EN f = 10Hz, IABC = 50μA - 18 - nV⁄ Hz<br />

1/F Noise Current IN f = 10Hz, IABC = 50μA - 1.8 - pA⁄ Hz<br />

Differential Input Resistance RI IABC = 20μA 0.50 1.0 - MΩ<br />

Differential Input Capacitance C I f = 1MHz, V+ = 30V - 2.6 - pF<br />

OUTPUT PARAMETERS (Differential Input Voltage = 1V)


Peak Output Voltage<br />

(Terminal 6)<br />

Peak Output Voltage<br />

(Terminal 6)<br />

Peak Output Voltage<br />

(Terminal 8)<br />

Peak Output Voltage<br />

(Terminal 8)<br />

Collector-to-Emitter Saturation Voltage<br />

(Terminal 8)<br />

Output Leakage Current<br />

(Terminal 6 to Terminal 4)<br />

Specifications <strong>CA3094</strong>, <strong>CA3094</strong>A, <strong>CA3094</strong>B<br />

Electrical Specifications T A = +25 o C for Equipment Design. Single Supply V+ = 30V, Dual Supply V+ = 15V, V- = -15V, I ABC = 100μA<br />

Unless Otherwise Specified (Continued)<br />

Composite Small Signal Current Transfer<br />

Ratio (Beta) (Q12 and Q13)<br />

With Q13 “ON” V+OM V+ = 30V, R L = 2kΩ to GND 26 27 - V<br />

With Q13 “OFF” V-OM - 0.01 0.05 V<br />

Positive V+OM V+ = 15V, V- = -15V, R L = 2kΩ to -15V 11 12 - V<br />

Negative V-OM - -14.99 -14.95 V<br />

With Q13 “OFF” V+OM V+ = 30V, R L = 2kΩ to 30V 29.95 29.99 - V<br />

With Q13 “ON” V-OM - 0.040 - V<br />

Positive V+OM V+ = 15V, V- = -15V,<br />

14.95 14.99 - V<br />

Negative V-OM<br />

RL = 2kΩ to 15V<br />

- -14.96 - V<br />

V CE(SAT)<br />

V+ = 30V, I C = 50mA, Terminal 6<br />

Grounded<br />

10-13<br />

- 0.17 0.80 V<br />

V+ = 30V - 2 10 μA<br />

h FE V+ = 30V, V CE = 5V, I C = 50mA 16,000 100,000 -<br />

Output Capacitance Terminal 6 CO f = 1MHz, All remaining Terminals Tied - 5.5 - pF<br />

Terminal 8<br />

to Terminal 4<br />

- 17 - pF<br />

TRANSFER PARAMETERS<br />

Voltage Gain A V+ = 30V, I ABC = 100μA, ΔV OUT = 20V,<br />

R L = 2kΩ<br />

Forward Transconductance to<br />

Terminal 1<br />

Slew Rate (Open<br />

Loop)<br />

PARAMETERS SYMBOL TEST CONDITIONS MIN TYP MAX UNITS<br />

20,000 100,000 - V/V<br />

86 100 - dB<br />

g M 1650 2200 2750 μmhos<br />

Positive Slope SR I ABC = 500μA, R L = 2kΩ - 500 - V/μs<br />

Negative Slope - 50 - V/μs<br />

Unity Gain (Non-Inverting Compensated) I ABC = 500μA, R L = 2kΩ - 0.70 - V/μs<br />

NOTE:<br />

1. Exceeding this voltage rating will not damage the device unless the peak input signal current (1mA) is also exceeded.<br />

Schematic Diagram<br />

DIFFERENTIAL<br />

VOLTAGE 2<br />

INPUT<br />

DIFFERENTIAL<br />

VOLTAGE<br />

INPUT<br />

AMPLIFIER<br />

BIAS INPUT<br />

I ABC<br />

Q4<br />

3<br />

Q1<br />

D2<br />

Q2<br />

Q5<br />

D3<br />

5 Q3<br />

D1<br />

EXTERNAL FREQUENCY<br />

COMPENSATION OR INHIBIT INPUT<br />

Q7<br />

Q6<br />

D4<br />

Q11<br />

Q9<br />

D5<br />

Q8<br />

Q10<br />

1<br />

R2 47kΩ<br />

D6<br />

4<br />

7<br />

V-<br />

R 1<br />

2kΩ<br />

Q12<br />

V+<br />

8<br />

“SINK”<br />

OUTPUT<br />

Q13<br />

6<br />

“SOURCE”<br />

(DRIVE)<br />

OUTPUT<br />

OUTPUT<br />

MODE<br />

OUTPUT<br />

TERM<br />

INV<br />

INPUTS<br />

NON-<br />

INV<br />

“Source” 6 2 3<br />

“Sink” 8 3 2


Typical Performance Curves<br />

INPUT OFFSET VOLTAGE (mV)<br />

5<br />

4<br />

3<br />

2<br />

V+ = +15V, V- = -15V<br />

1<br />

0<br />

-1<br />

-2<br />

-3<br />

-4<br />

-5<br />

-6<br />

-7<br />

+125<br />

-8<br />

0.1 1 10 100 1000<br />

o +90<br />

C<br />

o +70<br />

C<br />

o C<br />

-55 o +25<br />

C<br />

o +70<br />

C<br />

o +90<br />

C<br />

o +125<br />

C<br />

oC -55 o +25<br />

C<br />

o C<br />

AMPLIFIER BIAS CURRENT (μA)<br />

FIGURE 1. INPUT OFFSET VOLTAGE vs AMPLIFIER BIAS<br />

CURRENT (I ABC , TERMINAL 5)<br />

INPUT BIAS CURRENT (nA)<br />

0.1<br />

0.1 0.88μA 1 10 100 1000<br />

AMPLIFIER BIAS CURRENT (μA)<br />

FIGURE 3. INPUT BIAS CURRENT vs AMPLIFIER BIAS CUR-<br />

RENT (I ABC , TERMINAL 5)<br />

AMPLIFIER SUPPLY CURRENT (μA)<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

3<br />

1.0<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

1.0<br />

V+ = +15V, V- = -15V<br />

V+ = +15V, V- = -15V<br />

+125 o C<br />

+25 o C<br />

-55 o C<br />

FIGURE 5. AMPLIFIER SUPPLY CURRENT vs AMPLIFIER<br />

BIAS CURRENT (I ABC , TERMINAL 5)<br />

<strong>CA3094</strong>, <strong>CA3094</strong>A, <strong>CA3094</strong>B<br />

+125 o C<br />

+25 o C<br />

-55 o C<br />

T A = +125 o C<br />

+25 o C<br />

-55 o C<br />

0.1<br />

0.1 1.0 10 100 1000<br />

AMPLIFIER BIAS CURRENT (μA)<br />

10-14<br />

INPUT OFFSET CURRENT (nA)<br />

10 3<br />

10 2<br />

10 1<br />

1<br />

0.1<br />

V+ = +15V, V- = -15V<br />

+125o +25<br />

C<br />

o -55<br />

C<br />

o C<br />

0.01<br />

0.1 1.0 10 100 1000<br />

AMPLIFIER BIAS CURRENT (μA)<br />

FIGURE 2. INPUT OFFSET CURRENT vs AMPLIFIER BIAS<br />

CURRENT (I ABC , TERMINAL 5)<br />

DEVICE DISSIPATION (μW)<br />

10 5<br />

10 4<br />

10 3<br />

10 2<br />

10 1<br />

T A = +25 o C<br />

V+ = +15V, V- = -15V<br />

V+ = +6V, V- = -6V<br />

V+ = +3V, V- = -3V<br />

1<br />

0.1 1.0 10 100 1000<br />

AMPLIFIER BIAS CURRENT (μA)<br />

FIGURE 4. DEVICE DISSIPATION vs AMPLIFIER BIAS CUR-<br />

RENT (I ABC , TERMINAL 5)<br />

COMMON MODE INPUT VOLTAGE (V)<br />

15.0<br />

14.5<br />

14.0<br />

13.5<br />

13.0<br />

0<br />

-13.0<br />

-13.5<br />

-14.0<br />

-14.5<br />

V+ = +15V, V- = -15V<br />

T A = +25 o C<br />

V+ CMR<br />

V- CMR<br />

-15.0<br />

0.1 1.0 10 100 1000<br />

AMPLIFIER BIAS CURRENT (μA)<br />

FIGURE 6. COMMON MODE INPUT VOLTAGE vs AMPLIFIER<br />

BIAS CURRENT (I ABC , TERMINAL 5)


Typical Performance Curves (Continued)<br />

1/F NOISE VOLTAGE (nV/√Hz)<br />

COLLECTOR-TO-EMITTER<br />

SATURATION VOLTAGE (mV)<br />

OPEN LOOP VOLTAGE GAIN (dB)<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10 1<br />

10<br />

V+ = +15V, V- = -15V<br />

RS = 0Ω, TA = +25oC FOR TEST CIRCUIT, SEE FIGURE 20<br />

50μA<br />

500μA<br />

I ABC = 5μA<br />

10<br />

FREQUENCY (Hz)<br />

2<br />

<strong>CA3094</strong>, <strong>CA3094</strong>A, <strong>CA3094</strong>B<br />

FIGURE 7. 1/F NOISE VOLTAGE vs FREQUENCY FIGURE 8. 1/F NOISE CURRENT vs FREQUENCY<br />

10000<br />

1000<br />

100<br />

FORCED BETA = 10<br />

T A = +25 o C<br />

FIGURE 9. COLLECTOR EMITTER SATURATION VOLTAGE vs<br />

COLLECTOR CURRENT OF OUTPUT TRANSISTOR<br />

(Q13)<br />

110<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

10 3<br />

10<br />

1 10 100 1000<br />

COLLECTOR CURRENT (mA)<br />

5μA<br />

50μA<br />

PHASE ANGLE<br />

(I ABC = 500μA)<br />

I ABC = 500μA<br />

V+ = +15V, V- = -15V, R L = 2kΩ<br />

(TERMINAL 6 TO V-), T A = +25 o C<br />

FOR TEST CIRCUIT, SEE FIGURE 21<br />

-10<br />

10<br />

FREQUENCY (Hz)<br />

2<br />

10 3<br />

10 1<br />

1 10 4<br />

10 5<br />

10 6<br />

10 7<br />

0<br />

-50<br />

-100<br />

-150<br />

-200<br />

PHASE ANGLE (DEGREES)<br />

10-15<br />

V+ = +15V, V- = -15V<br />

RS = 1MΩ, TA = +25o 100<br />

C<br />

FOR TEST CIRCUIT, SEE FIGURE 20<br />

FIGURE 10. COMPOSITE DC BETA vs COLLECTOR CURRENT<br />

OF DARLINGTON CONNECTED OUTPUT TRAN-<br />

SISTORS (Q12, Q13)<br />

FIGURE 11. OPEN LOOP VOLTAGE GAIN vs FREQUENCY FIGURE 12. FORWARD TRANSCONDUCTANCE vs AMPLIFIER<br />

BIAS CURRENT<br />

1/F NOISE VOLTAGE (pA/√Hz)<br />

COMPOSITE DC BETA (Q12, Q13)<br />

FORWARD TRANSCONDUCTANCE (μmho)<br />

10<br />

1.0<br />

5μA<br />

I ABC = 500μA<br />

50μA<br />

10<br />

FREQUENCY (Hz)<br />

1 102 103 0.1<br />

1000<br />

100<br />

10 4<br />

10<br />

V+ = 20V, V CE = 10V<br />

T A = +25 o C<br />

1<br />

1 10 100 1000<br />

COLLECTOR CURRENT (mA)<br />

105 V+ = +15V, V- = -15V<br />

10 3<br />

10 2<br />

10 1<br />

+125 o +25<br />

C<br />

o -55<br />

C<br />

o C<br />

1<br />

0.1 1.0 10 100 1000<br />

AMPLIFIER BIAS CURRENT (μA)


Typical Performance Curves (Continued)<br />

SLEW RATE (V/μs)<br />

100<br />

10<br />

1.0<br />

V+ = +15V, V- = -15V, T A = +25 o C<br />

FOR TEST CIRCUIT, SEE FIGURE 22<br />

0.1<br />

1 10 100 1000<br />

AMPLIFIER BIAS CURRENT (μA)<br />

<strong>CA3094</strong>, <strong>CA3094</strong>A, <strong>CA3094</strong>B<br />

FIGURE 13. SLEW RATE vs AMPLIFIER BIAS CURRENT FIGURE 14. SLEW RATE vs CLOSED LOOP VOLTAGE GAIN<br />

PHASE COMPENSATION CAPACITANCE (pF)<br />

1000<br />

100<br />

80<br />

60<br />

40<br />

10<br />

8<br />

6<br />

FIGURE 15. PHASE COMPENSATION CAPACITANCE AND RESISTANCE vs CLOSED LOOP VOLTAGE GAIN<br />

Operating Considerations<br />

The “Sink” Output (Terminal 8) and the “Drive” Output<br />

(Terminal 6) of the <strong>CA3094</strong> are not inherently current (or<br />

power) limited. Therefore, if a load is connected between<br />

Terminal 6 and Terminal 4 (V- or Ground), it is important to<br />

connect a current limiting resistor between Terminal 8 and<br />

Terminal 7 (V+) to protect transistor Q13 under shorted load<br />

conditions. Similarly, if a load is connected between Terminal<br />

8 and Terminal 7 (V+), the current limiting resistor should be<br />

connected between Terminal 6 and Terminal 4 or ground. In<br />

circuit applications where the emitter of the output transistor<br />

is not connected to the most negative potential in the<br />

system, it is recommended that a 100Ω current limiting<br />

resistor be inserted between Terminal 7 and the V+ supply.<br />

20<br />

4<br />

2<br />

R C<br />

10-16<br />

SLEW RATE (V/μs)<br />

100<br />

1<br />

0 10 20 30 40 50 60 70<br />

CLOSED LOOP VOLTAGE GAIN (dB)<br />

10<br />

1.0<br />

V+ = +15V, V- = -15V, I ABC = 500mA, T A = +25 o C<br />

100mV OUTPUT SIGNAL WITH<br />

10% OVERSHOOT<br />

FOR PHASE COMPENSATION<br />

TEST CIRCUIT, SEE FIGURE 24<br />

V+ = +15V, V- = -15V, I ABC = 500μA, T A = +25 o C<br />

FOR TEST CIRCUIT, SEE FIGURE 23<br />

0.1<br />

0 20 40 60 80 100<br />

CLOSED LOOP VOLTAGE GAIN (dB)<br />

C C<br />

Test Circuits<br />

1000<br />

800<br />

600<br />

400<br />

200<br />

PHASE COMPENSATION RESISTANCE (Ω)<br />

1/F Noise Measurement Circuit<br />

When using the <strong>CA3094</strong>, A, or B audio amplifier circuits, it is<br />

frequently necessary to consider the noise performance of<br />

the device. Noise measurements are made in the circuit<br />

shown in Figure 20. This circuit is a 30dB, non-inverting<br />

amplifier with emitter follower output and phase compensation<br />

from Terminal 2 to ground. Source resistors (R S ) are set<br />

to 0Ω or 1MΩ for E noise and I noise measurements,<br />

respectively. These measurements are made at frequencies<br />

of 10Hz, 100Hz and 1kHz with a 1Hz measurement bandwidth.<br />

Typical values for 1/f noise at 10Hz and 50μA I ABC are<br />

E = 18nV ⁄ Hz and I =<br />

1.8pA ⁄ Hz .<br />

N<br />

N


Test Circuits<br />

100Ω<br />

15V<br />

100Ω<br />

15V<br />

2<br />

3<br />

2<br />

1MΩ<br />

NOTES:<br />

1. PDISSIPATION = (V+)(I)<br />

V CMR<br />

3<br />

4<br />

8<br />

1<br />

1kΩ<br />

100pF<br />

<strong>CA3094</strong>, <strong>CA3094</strong>A, <strong>CA3094</strong>B<br />

30V NOTES:<br />

1. Input Offset Voltage: V<br />

IO<br />

=<br />

E<br />

OUT<br />

--------------<br />

100<br />

.<br />

7<br />

5<br />

300kΩ<br />

9.9kΩ<br />

2. For Power Supply Rejection Test: (1) vary V+ by -2V; then (2)<br />

vary V- by +2V.<br />

3. Equations:<br />

<strong>CA3094</strong><br />

6<br />

(1) V+ Rejection =<br />

E OUT – E OUT<br />

0 1<br />

-------------------------------------------<br />

200<br />

10kΩ<br />

E OUT<br />

30V<br />

† Maximum Reading of Step 1 or Step 2<br />

FIGURE 16. INPUT OFFSET VOLTAGE AND POWER SUPPLY REJECTION TEST CIRCUIT<br />

7<br />

<strong>CA3094</strong><br />

4<br />

5<br />

1<br />

30V<br />

R ABC<br />

8<br />

220Ω<br />

0.001μF<br />

6<br />

150kΩ<br />

1MΩ<br />

E OUT<br />

2.<br />

E<br />

OUT<br />

I<br />

OS<br />

106VOLTS = ---------------------------<br />

------------------<br />

AMPS<br />

FIGURE 17. INPUT OFFSET CURRENT TEST CIRCUIT FIGURE 18. INPUT BIAS CURRENT TEST CIRCUIT<br />

100Ω<br />

100Ω<br />

0.8V TO 27.2V<br />

15V<br />

2<br />

3<br />

9.9kΩ<br />

200Ω<br />

30V<br />

-<br />

+<br />

<strong>CA3094</strong><br />

1<br />

4.7kΩ<br />

7<br />

1kΩ<br />

100pF<br />

8<br />

4<br />

6<br />

10kΩ<br />

10kΩ<br />

E OUT<br />

FIGURE 19. COMMON MODE RANGE AND REJECTION RATIO TEST CIRCUIT<br />

10-17<br />

E OUT – E OUT<br />

0 2<br />

(2) V- Rejection = -------------------------------------------<br />

200<br />

1<br />

4. Power Supply Rejection: ( dB)<br />

= 20log-------------------------------------.<br />

V<br />

REJECTION†<br />

15V<br />

NOTE: I I<br />

=<br />

I<br />

2 --<br />

2<br />

3<br />

-<br />

7<br />

<strong>CA3094</strong>A<br />

NOTES:<br />

1. CMRR = 100 × 26V<br />

-------------------------------------------<br />

E – E<br />

2OUT 1OUT<br />

.<br />

+<br />

4<br />

5<br />

30V<br />

300kΩ<br />

2. Input Voltage Range for CMRR = 1V to 27V.<br />

3. CMRR (dB) = 20log 100 × 26V<br />

------------------------------------------- .<br />

E – E<br />

2OUT 1OUT


Test Circuits (Continued)<br />

2V<br />

0V<br />

120Ω<br />

I ABC<br />

(μA)<br />

3.6kΩ<br />

R S †<br />

R S *<br />

2<br />

3<br />

C COMP<br />

(pF)<br />

5 0<br />

50 50<br />

500 500<br />

I ABC<br />

-<br />

+<br />

5<br />

<strong>CA3094</strong>A<br />

1<br />

C C<br />

7<br />

4<br />

+15V<br />

8<br />

6<br />

-15V<br />

500Ω<br />

3kΩ<br />

<strong>CA3094</strong>, <strong>CA3094</strong>A, <strong>CA3094</strong>B<br />

OUTPUT<br />

(RMS)<br />

NOTES:<br />

1. RS † = 1MΩ<br />

(1/F Noise Current Test)<br />

2. RS = 0Ω<br />

(1/F Noise Voltage Test)<br />

FIGURE 20. 1/F NOISE TEST CIRCUIT FIGURE 21. OPEN LOOP GAIN vs FREQUENCY TEST CIRCUIT<br />

+15V<br />

-15V<br />

2<br />

13kΩ<br />

3<br />

15kΩ<br />

I ABC<br />

-<br />

<strong>CA3094</strong>A<br />

+<br />

5<br />

7<br />

4<br />

8<br />

6<br />

2kΩ<br />

E OUT<br />

FIGURE 22. OPEN LOOP SLEW RATE vs I ABC TEST CIRCUIT FIGURE 23. SLEW RATE vs NON-INVERTING UNITY GAIN TEST<br />

CIRCUIT<br />

10-18<br />

±10V<br />

91Ω<br />

-15V 10kΩ +15V RS<br />

10kΩ<br />

100Ω 10Ω<br />

10kΩ<br />

2<br />

10Ω<br />

3<br />

R S<br />

(Ω)<br />

I ABC<br />

-<br />

+<br />

5<br />

<strong>CA3094</strong>A<br />

4<br />

I ABC<br />

(μA)<br />

56K 500<br />

560K 50<br />

56M 5<br />

56kΩ<br />

2<br />

3<br />

220Ω<br />

0.001μF<br />

+15V<br />

-<br />

+<br />

5<br />

<strong>CA3094</strong>A<br />

1<br />

7<br />

4<br />

7<br />

-15V<br />

8<br />

+15V<br />

8<br />

6<br />

-15V<br />

R L = 2kΩ<br />

6<br />

2kΩ<br />

10kΩ<br />

OUTPUT<br />

E OUT


Test Circuits (Continued)<br />

51Ω<br />

R 2<br />

R 1<br />

Typical Applications<br />

For additional application information, refer to<br />

Application Note AN6048, “Some Applications of a<br />

Programmable Power/Switch Amplifier IC” and AN6077<br />

“An IC Operational Transconductance Amplifier (OTA)<br />

with Power Capability”.<br />

Design Considerations<br />

2<br />

3<br />

CLOSED<br />

LOOP GAIN<br />

(dB)<br />

56kΩ<br />

R C<br />

-<br />

+<br />

5<br />

<strong>CA3094</strong>A<br />

1<br />

C C<br />

R 1<br />

(kΩ)<br />

The selection of the optimum amplifier bias current (I ABC )<br />

depends on:<br />

1. The Desired Sensitivity - The higher the IABC , the higher<br />

the sensitivity, i.e., a greater drive current capability at the<br />

output for a specific voltage change at the input.<br />

2. Required Input Resistance - The lower the IABC , the higher<br />

the input resistance.<br />

7<br />

4<br />

+15V<br />

8<br />

6<br />

-15V<br />

2kΩ<br />

R 2<br />

(kΩ)<br />

<strong>CA3094</strong>, <strong>CA3094</strong>A, <strong>CA3094</strong>B<br />

R 3<br />

R 3<br />

(kΩ)<br />

0 10 ∞ 10<br />

20 10 1 10<br />

40 1 0.1 10<br />

OUTPUT<br />

FIGURE 24. PHASE COMPENSATION TEST CIRCUIT FIGURE 25. PRESETTABLE ANALOG TIMER<br />

10-19<br />

120VAC<br />

V+ = 30V<br />

R 5<br />

R6 (NOTE 2)<br />

R 7<br />

COMMON<br />

S 1<br />

D 1<br />

C 1<br />

NOTES:<br />

1. C1 = 0.5μF<br />

D1 = 1N914<br />

R1 = 0.51MΩ = 3 min.<br />

R2 = 5.1MΩ = 30 min.<br />

R3 = 22MΩ = 2 hrs.<br />

R4 = 44MΩ = 4 hrs.<br />

R5 = 1.5kΩ<br />

R6 = 50kΩ<br />

R7 = 5.1kΩ<br />

R8 = 1.5kΩ<br />

3<br />

2<br />

+<br />

7<br />

<strong>CA3094</strong>A<br />

-<br />

4<br />

If the desired sensitivity and required input resistance are<br />

not known and are to be experimentally determined, or the<br />

anticipated equipment design is sufficiently flexible to<br />

tolerate a wide range of these parameters, it is<br />

recommended that the equipment designer begin his<br />

calculations with an I ABC of 100μA, since the <strong>CA3094</strong> is<br />

characterized at this value of amplifier bias current.<br />

The <strong>CA3094</strong> is extremely versatile and can be used in a<br />

wide variety of applications.<br />

8<br />

5<br />

6<br />

S 2<br />

R 8<br />

R LOAD<br />

R 1<br />

R 2<br />

R 3<br />

R 4<br />

E OUT<br />

MT 2<br />

MT 1<br />

29V 3V<br />

0<br />

27V<br />

0<br />

Time = 1 hr.<br />

S2 Set to R4 2. Potentiometer required for initial time set to permit device interconnecting.<br />

Time variation with temperature < 0.3%/ o C.<br />

3<br />

6<br />

S 1


Typical Applications<br />

E IN<br />

Z 1<br />

-<br />

+<br />

<strong>CA3094</strong><br />

Z 2<br />

<strong>CA3094</strong>, <strong>CA3094</strong>A, <strong>CA3094</strong>B<br />

E OUT<br />

(NOTE 1)<br />

NOTE: 1. In single-ended output operation, the <strong>CA3094</strong> may require a pull up or pull down resistor<br />

FIGURE 26. APPLICATION OF THE <strong>CA3094</strong>: (a) AS AN INVERTING OP AMP AND (b) IN A NON-INVERTING MODE, AS A FOLLOWER<br />

FIGURE 27. RC TIMER<br />

FIGURE 28. RC TIMER TRIGGERED BY EXTERNAL NEGATIVE PULSE<br />

10-20<br />

E IN<br />

Where E OUT = E IN<br />

+<br />

<strong>CA3094</strong><br />

-<br />

E<br />

OUT ⎛ Z<br />

2 ⎞<br />

Where -------------- = f ⎜----- ⎟ depends on the characteristics of Z1 and Z2<br />

E Z<br />

IN ⎝ 1 ⎠<br />

FIGURE 26A. FIGURE 26B.<br />

VOLTAGE A<br />

2/3V+<br />

0<br />

+18<br />

0<br />

VOLTAGE AT<br />

TERMINAL 8<br />

INPUT A<br />

V+<br />

12VDC<br />

V+ = 18V<br />

0.01μF<br />

S 1<br />

C<br />

A<br />

100<br />

kΩ<br />

B<br />

100<br />

kΩ<br />

1N914<br />

100<br />

kΩ<br />

R<br />

I I<br />

1N914<br />

12V<br />

R 1<br />

100kΩ<br />

2<br />

3<br />

R 2<br />

220kΩ<br />

R ABC<br />

220kΩ<br />

+<br />

-<br />

5<br />

<strong>CA3094</strong><br />

TIME DELAY (SEC.) = RC (APPROX.)<br />

270<br />

kΩ<br />

C<br />

100<br />

kΩ<br />

R 1<br />

1MΩ<br />

D<br />

R2 2.2MΩ<br />

3<br />

2<br />

R 3<br />

1MΩ<br />

+<br />

-<br />

7<br />

4<br />

8<br />

7<br />

<strong>CA3094</strong><br />

4<br />

6<br />

5<br />

8<br />

220kΩ<br />

2kΩ<br />

PULL UP<br />

E OUT<br />

6<br />

E OUT<br />

(NOTE 1)<br />

Problem: To calculate the maximum value of R required to<br />

switch a 100mA output current comparator<br />

Given:<br />

II = 500nA at IABC = 100μA (from Figure 3)<br />

II = 5μA can be determined by drawing a line on Figure 3 through<br />

IABC = 100μA and IB = 500nA parallel to the typical TA = +25o I = 5μA, R 3.6MΩ<br />

ABC ABC<br />

C<br />

curve.<br />

Then: II = 33nA at IABC = 5μA<br />

18V<br />

= ≈ ---------<br />

5μA<br />

C 1<br />

0.5μF<br />

E<br />

18V – 12V<br />

R = ------------------------ = 180MΩ at T = +25°C<br />

MAX 33nA<br />

A<br />

R = 180MΩ × 2⁄ 3† = 120MΩ at T =<br />

MAX<br />

A<br />

– 55°C<br />

† Ratio of I I at T A = +25 o C to I I at T A = -55 o C for any given<br />

value of I ABC<br />

E OUT<br />

R LOAD<br />

2kΩ<br />

A<br />

B<br />

C<br />

D<br />

E<br />

V+<br />

0<br />

0<br />

0<br />

0<br />

V+<br />

0<br />

3 /4 V+<br />

On a negative going transient at input (A), a negative<br />

pulse at C will turn “on” the <strong>CA3094</strong>, and the output (E)<br />

will go from a low to a high level.<br />

At the end of the time constant determined by C1, R1,<br />

R2, R3, the <strong>CA3094</strong> will return to the “off” state and<br />

the output will be pulled low by R LOAD . This condition<br />

will be independent of the interval when input (A)<br />

returns to a high level.


Typical Applications (Continued)<br />

+<br />

-<br />

5VDC<br />

E OUT<br />

LINE<br />

27kΩ<br />

50kΩ<br />

27kΩ<br />

2.7MΩ<br />

330kΩ<br />

C<br />

2ms<br />

120s<br />

3<br />

2<br />

C 1<br />

0.01μF<br />

PAPER OR<br />

MYLAR<br />

-<br />

+<br />

7<br />

<strong>CA3094</strong><br />

4<br />

5<br />

R<br />

6<br />

8<br />

<strong>CA3094</strong>, <strong>CA3094</strong>A, <strong>CA3094</strong>B<br />

10kΩ MIN<br />

1MΩ MAX<br />

TYPE<br />

1N914<br />

NOTES:<br />

1. R = 1MΩ, C = 1μF<br />

2. Time Constant: t ≈ RC x 120<br />

3. Pulse Width: ω≈ K(C1 /C)<br />

510Ω<br />

E OUT<br />

FIGURE 29. FREE RUNNING PULSE GENERATOR FIGURE 30. CURRENT OR VOLTAGE CONTROLLED OSCILLATOR<br />

R P<br />

100kΩ<br />

C<br />

R<br />

100kΩ<br />

2<br />

3<br />

560pF<br />

300kΩ<br />

+<br />

-<br />

5<br />

<strong>CA3094</strong>A<br />

4<br />

7<br />

6<br />

30V<br />

8<br />

FIGURE 31. SINGLE SUPPLY ASTABLE MULTIVIBRATOR FIGURE 32. DUAL SUPPLY ASTABLE MULTIVIBRATOR<br />

Mylar is a trademark of E.I. Dupont de Nemours.<br />

510Ω<br />

LED<br />

10-21<br />

47kΩ<br />

47kΩ<br />

20kΩ<br />

1N914<br />

100kΩ<br />

C<br />

2<br />

3<br />

CURRENT INPUT<br />

VOLTAGE INPUT<br />

R 2<br />

51kΩ<br />

R1 4.3kΩ<br />

+<br />

-<br />

<strong>CA3094</strong><br />

5<br />

7<br />

OR R<br />

R<br />

100kΩ<br />

2<br />

3<br />

C 1000pF<br />

4<br />

300kΩ<br />

1<br />

NOTE: f = -------------------------------------------<br />

OUT ⎛ 2R<br />

1 ⎞<br />

2RC ln⎜---------<br />

+ 1⎟<br />

⎝ R<br />

2 ⎠<br />

If: R2 = 3.08R1 , f =<br />

OUT<br />

+<br />

-<br />

5<br />

8<br />

1kΩ<br />

6<br />

<strong>CA3094</strong>A<br />

4<br />

1<br />

-------<br />

RC<br />

7<br />

6<br />

-15V<br />

OUTPUT<br />

8<br />

15V<br />

1kΩ<br />

+15V<br />

OUTPUT<br />

fOUT ≈ 5kHz


Typical Applications (Continued)<br />

INPUT<br />

2.<br />

R 1<br />

100kΩ<br />

R†<br />

51kΩ<br />

NOTES:<br />

R R<br />

1 2<br />

1. R† = -------------------<br />

R + R<br />

1 2<br />

117V<br />

60Hz<br />

3<br />

2<br />

300kΩ<br />

R 2<br />

100kΩ<br />

± Threshold = [ ± Supply]<br />

-<br />

+<br />

5<br />

<strong>CA3094</strong>A<br />

4<br />

7<br />

6<br />

8<br />

R<br />

1<br />

-------------------<br />

R + R<br />

1 2<br />

<strong>CA3094</strong>, <strong>CA3094</strong>A, <strong>CA3094</strong>B<br />

-15V<br />

2kΩ<br />

+15V<br />

OUTPUT<br />

FIGURE 33. COMPARATORS (THRESHOLD DETECTORS) DUAL AND SINGLE SUPPLY TYPES<br />

FIGURE 34. TEMPERATURE CONTROLLER<br />

10-22<br />

INPUT<br />

NOTES:<br />

1.<br />

2.<br />

51kΩ<br />

R A<br />

200kΩ<br />

150kΩ<br />

3<br />

2<br />

R B<br />

200kΩ<br />

R 1<br />

100kΩ<br />

Upper Threshold = [ V+ ]<br />

Lower Threshold = [ V+ ]<br />

-<br />

+<br />

5<br />

<strong>CA3094</strong><br />

4<br />

7<br />

6<br />

8<br />

R<br />

B<br />

----------------------------------------<br />

⎛ R R<br />

1 A ⎞<br />

⎜------------------- ⎟ + RB<br />

⎝ R + R<br />

1 A⎠<br />

R R<br />

1 B<br />

-------------------<br />

R + R<br />

1 B<br />

----------------------------------------<br />

⎛ R R<br />

1 B ⎞<br />

⎜------------------- ⎟ + RA<br />

⎝ R + R<br />

1 B ⎠<br />

FIGURE 33A. DUAL SUPPLY FIGURE 33B. SINGLE SUPPLY<br />

TYPE<br />

D1201F<br />

10Ω<br />

26V<br />

60Hz<br />

+<br />

-<br />

50μF<br />

50V<br />

PTC TEMP.<br />

SENSOR<br />

75kΩ<br />

R<br />

75kΩ<br />

68kΩ<br />

10kΩ<br />

TEMP.<br />

SET<br />

75kΩ<br />

FOR NTC SENSOR, INTERCHANGE POSITION OF SENSOR AND R<br />

.<br />

1N914<br />

2<br />

3<br />

1.5MΩ 1N914<br />

330kΩ<br />

7<br />

5<br />

<strong>CA3094</strong><br />

4<br />

8<br />

1.5kΩ<br />

6<br />

NOTE: All Resistors are 1/2W.<br />

G<br />

2kΩ<br />

HEATER<br />

MT 2<br />

MT 1<br />

V+<br />

+15V<br />

OUTPUT<br />

1kΩ<br />

0.01μF


Typical Applications (Continued)<br />

V+ INPUT<br />

(NOTE 1)<br />

V- INPUT<br />

(NOTE 2)<br />

2<br />

3<br />

0.0056μF<br />

5.1kΩ<br />

RTRIP 200mV<br />

RANGE<br />

R<br />

47kΩ<br />

(NOTE 3)<br />

L C<br />

0.02μF<br />

C2 0.1μF<br />

(NOTE 4)<br />

47kΩ<br />

100Ω<br />

2<br />

3<br />

1mA<br />

CA3085A<br />

VOLTAGE REG.<br />

33kΩ<br />

+3V<br />

200<br />

Ω<br />

3.3<br />

kΩ<br />

4 6 7<br />

REF.<br />

1.6V<br />

200kΩ<br />

+<br />

-<br />

1<br />

5<br />

<strong>CA3094</strong>A<br />

4<br />

10kΩ<br />

±1%<br />

3<br />

100kΩ<br />

2<br />

0.01μF<br />

I ABC<br />

10μA<br />

3.3MΩ<br />

-<br />

+<br />

6<br />

1kW<br />

10kΩ<br />

1.5kΩ<br />

7<br />

8<br />

10kΩ<br />

±1%<br />

5<br />

1<br />

8<br />

<strong>CA3094</strong>B<br />

4<br />

<strong>CA3094</strong>, <strong>CA3094</strong>A, <strong>CA3094</strong>B<br />

NOTE 3<br />

R<br />

5kΩ<br />

5.6Ω<br />

0.03μF<br />

+15V REG.<br />

OUTPUT<br />

COMMON<br />

RETURN<br />

-15V REG.<br />

OUTPUT<br />

FIGURE 35. DUAL VOLTAGE TRACKING REGULATOR<br />

7<br />

6<br />

36V<br />

I A<br />

20μA<br />

100Ω<br />

0.001mF<br />

8<br />

I LOAD<br />

CIRCUIT<br />

BREAKER<br />

CONTROL<br />

SOLENOID<br />

FIGURE 36. GROUND FAULT INTERRUPTER (GFI) AND WAVEFORMS PERTINENT TO GROUND FAULT DETECTOR<br />

10-23<br />

NOTES:<br />

1. V+ Input Range = 19V to 30V for 15V output.<br />

2. V- Input Range = -16V to -30V for -15V output.<br />

3. Max IOUT = ±100mA.<br />

4. Regulation:<br />

ΔV<br />

OUT<br />

Max Line = --------------------------------------------------------- × 100 = 0.075% ⁄ V<br />

[ V ( Initial)<br />

] ΔV<br />

OUT IN<br />

VOLTS 3<br />

ΔV<br />

OUT<br />

Max. Load = ------------------------------------ × 100 = 0.075% V<br />

V ( Initial)<br />

OUT<br />

OUT<br />

(IL from 1mA to 50mA)<br />

60mV<br />

TYPICAL<br />

CIRCUIT TRIPS ON POSITIVE<br />

PEAKS WILL SWITCH WITHIN<br />

1.5 CYCLES<br />

GROUND FAULT<br />

SIGNAL 60Hz<br />

t<br />

VOLTAGE BETWEEN<br />

TERMINALS 2 AND 4<br />

VOLTAGE BETWEEN<br />

TERMINALS 3 AND 4<br />

(ADJUSTABLE WITH<br />

RTRIP) NOTES:<br />

1. Differential current sensor provides 60mV signal ≈ 5mA of unbalance<br />

(Trip) current.<br />

2. All Resistors are 1/2 Watt, ±10%.<br />

3. RC selected for 3dB point at 200Hz.<br />

4. C2 = AC by-pass.<br />

5. Offset adj. included in RTRIP .<br />

6. Input impedance from 2 to 3 = 800kΩ.<br />

7. With no input signal Terminal 8 (output) at 36V.


Typical Applications (Continued)<br />

“BOOST”<br />

(CW) 15kΩ<br />

0.12μF<br />

1800Ω<br />

68Ω<br />

INPUT<br />

25μF<br />

+<br />

0.001μF<br />

C 1<br />

TREBLE<br />

0.001μF<br />

R 1<br />

0.2μF<br />

1kΩ<br />

“CUT”<br />

(CCW)<br />

VOLUME<br />

2<br />

3<br />

0.01μF<br />

5600Ω<br />

5μF<br />

+<br />

680<br />

kΩ<br />

<strong>CA3094</strong>, <strong>CA3094</strong>A, <strong>CA3094</strong>B<br />

TYPICAL PERFORMANCE DATA FOR 12W AUDIO AMPLIFIER CIRCUIT<br />

Power Output (8Ω load, Tone Control set at “Flat”)<br />

Music (at 5% THD, regulated supply) . . . . . . . . . . . . . . . . . . . 15W<br />

Continuous (at 0.2% IMD, 60Hz and 2kHz<br />

mixed in a 4:1 ratio, unregulated supply)<br />

See Figure 8 in AN6048 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12W<br />

Total Harmonic Distortion<br />

At 1W, unregulated supply . . . . . . . . . . . . . . . . . . . . . . . . . 0.05%<br />

At 12W, unregulated supply . . . . . . . . . . . . . . . . . . . . . . . . 0.57%<br />

+<br />

5<br />

7<br />

<strong>CA3094</strong>B<br />

“BOOST” 100kΩ “CUT”<br />

(CW)<br />

(CCW)<br />

BASS<br />

-<br />

4<br />

820Ω<br />

0.47<br />

μF<br />

0.02μF<br />

1<br />

10kΩ<br />

6<br />

6.8pF<br />

1Ω<br />

8<br />

8 LEAD<br />

TO-5<br />

220Ω<br />

1W<br />

220Ω<br />

1W<br />

30Ω†<br />

27Ω<br />

15μF<br />

+<br />

Q2 2N6292<br />

10-24<br />

Voltage Gain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40dB<br />

Hum and Noise (below continuous power output) . . . . . . . . . . 83dB<br />

Input Resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250kΩ<br />

Tone Control Range . . . . . . . . . . . . . . . . . . See Figure 9 in AN6048<br />

FIGURE 37. 12W AUDIO AMPLIFIER CIRCUIT FEATURING TRUE COMPLEMENTARY SYMMETRY OUTPUT STAGE WITH <strong>CA3094</strong><br />

IN DRIVER STAGE<br />

Q 1<br />

Q 3<br />

THERMAL<br />

COMPENSATION<br />

NETWORK†<br />

C 2<br />

0.47μF<br />

JUMPER<br />

+<br />

2N6292<br />

0.47Ω<br />

0.47Ω<br />

2N6107<br />

4700μF<br />

+<br />

D1 - D4 1N5391<br />

4700<br />

μF<br />

330Ω<br />

47Ω<br />

V+<br />

V-<br />

D 1<br />

D 2<br />

D 3<br />

D 4<br />

3μH<br />

22Ω<br />

R 2<br />

1.8MΩ<br />

R L<br />

8Ω<br />

120V<br />

60Hz<br />

STANCOR<br />

NO. P-8609<br />

OR EQUIVALENT<br />

(120VAC TO<br />

26.8VCT AT 1A)<br />

†OPTIONAL THERMAL<br />

COMPENSATION<br />

NETWORK<br />

8.2Ω<br />

1N5391

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!