14.01.2013 Views

Integrated Gasification Combined Cycle GE IGCC ... - apec egcfe

Integrated Gasification Combined Cycle GE IGCC ... - apec egcfe

Integrated Gasification Combined Cycle GE IGCC ... - apec egcfe

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Integrated</strong> <strong>Gasification</strong> <strong>Combined</strong> <strong>Cycle</strong><br />

<strong>GE</strong> <strong>IGCC</strong> Technology -<br />

World’s Leading Operating Clean Coal Solution<br />

APEC Clean Fossil Energy Seminar<br />

James Tobin, Marketing Director<br />

- <strong>GE</strong> Power Systems Asia<br />

Seoul, Korea - Dec.9~12, 2003<br />

Sun-Kyu Bae, Sales Leader<br />

- <strong>GE</strong> Power Systems Korea


Presentation Outline<br />

Discussion Topics<br />

• <strong>IGCC</strong> Process<br />

• <strong>IGCC</strong> Players<br />

• Experience<br />

• Competitive Comparison<br />

• Economics<br />

• Fuel Flexibility<br />

• Environmental<br />

• Availability<br />

• Summary


What is <strong>Gasification</strong>?<br />

<strong>Gasification</strong> is…<br />

• Not combustion<br />

• A thermo-chemical process<br />

• High temperature (+2,200 o F),<br />

elevated pressure<br />

• Operates in a reducing (oxygenstarved)<br />

mode with steam<br />

• Complete conversion of<br />

feedstock, no toxics<br />

• Produces clean synthesis gas &<br />

useful byproducts<br />

Converts Solid Fuel to H 2 and CO


<strong>IGCC</strong> Subsystems<br />

Fuels<br />

� Bituminous Coal<br />

� Sub Bituminous Coal<br />

� Lignite<br />

� Orimulsion<br />

� Residual Oils<br />

� Refinery Bottoms<br />

� Petroleum Cole<br />

� Biomass<br />

� Wastes<br />

Slag<br />

<strong>Gasification</strong><br />

Gasifier HX<br />

Oxidant<br />

Supply<br />

System<br />

5 Technologies<br />

Oxidant Supply<br />

<strong>Gasification</strong><br />

Clean Up<br />

<strong>Combined</strong> <strong>Cycle</strong><br />

Integration<br />

<strong>Combined</strong><br />

<strong>Cycle</strong><br />

- Air or Oxygen<br />

-CO + H2<br />

-Sulfur<br />

- Syngas<br />

-Synergy<br />

Cleanup<br />

Syngas<br />

<strong>IGCC</strong> is a Collaborative Effort<br />

Clean<br />

Fuel<br />

Products<br />

Sulfur<br />

Slag<br />

Hydrogen<br />

Ammonia<br />

Methanol<br />

Chemicals<br />

Electricity<br />

GT 25689B


Key Technology Players<br />

Gasifiers & Clean-Up:<br />

- Texaco<br />

- Shell<br />

- Global / E-Gas<br />

- Lurgi<br />

- Noel<br />

Power Block (GT/ST):<br />

- General Electric<br />

- Siemens-Westinghouse<br />

-MHI<br />

-Alstom<br />

O&M:<br />

- Eastman (<strong>Gasification</strong> Island)<br />

Air Separation Units:<br />

- Air Products International<br />

- BOC Group<br />

-Praxair<br />

- Air Liquide<br />

EPC Contractors:<br />

- Bechtel<br />

- Krupp-Uhde<br />

- Fluor Daniel<br />

- Foster Wheeler<br />

- Snamprogetti


KEY <strong>GE</strong> Technological Milestones<br />

• Cool Water Demo Plant 1984<br />

First Large Scale <strong>IGCC</strong>. Demonstrated<br />

<strong>IGCC</strong> Technical Feasibility.<br />

• Polk Tampa Electric 1996<br />

Successful Nitrogen Injection for NOx Control. Demonstrated <strong>IGCC</strong><br />

Commercial Feasibility. .<br />

• Exxon Singapore 2000<br />

Widest Variety of Gas Turbine<br />

Fuels Demonstrating Multi-Fuel<br />

Flexibility<br />

58 Years of <strong>GE</strong> Commitment


<strong>IGCC</strong> Penetration<br />

Customer C.O. Date MW Application Gasifier<br />

SCE Cool Water - USA<br />

LGTI - USA<br />

Demkolec - Netherlands<br />

PSI/Global - USA<br />

Tampa Electric - USA<br />

Texaco El Dorado - USA<br />

SUV - Czech.<br />

Schwarze Pumpe - Germany<br />

Shell Pernis - Netherlands<br />

Puertollano - Spain<br />

Sierra Pacific - USA<br />

ISAB - Italy<br />

API - Italy<br />

MOTIVA - Delaware<br />

Sarlux/Enron - Italy<br />

EXXON - Singapore<br />

FIFE - Scotland<br />

EDF/ Total - Gonfreville<br />

JGC/MHI<br />

Nihon Sekiyu - Japan<br />

<strong>GE</strong> GTs<br />

1984<br />

1987<br />

1994<br />

1995<br />

1996<br />

1996<br />

1996<br />

1996<br />

1997<br />

1998<br />

1998<br />

1999<br />

2000<br />

2000<br />

2000<br />

2000<br />

2001<br />

2003<br />

2003<br />

2004<br />

120<br />

160<br />

250<br />

260<br />

260<br />

40<br />

350<br />

40<br />

120<br />

320<br />

100<br />

500<br />

250<br />

240<br />

550<br />

180<br />

120<br />

400<br />

341<br />

350<br />

4,951<br />

Power/Coal<br />

Cogen/Coal<br />

Power/Coal<br />

Repower/Coal<br />

Power/Coal<br />

Cogen/Pet Coke<br />

Cogen/Coal<br />

Power/Sludge<br />

Power/ H 2/Cogen/Oil<br />

Power/ Oil<br />

Power/Oil<br />

20 Global <strong>IGCC</strong> Plants<br />

Texaco - O 2<br />

Destec - O 2<br />

Shell - O 2<br />

Destec - O 2<br />

Texaco - O 2<br />

Texaco - O 2<br />

ZUV - O2 Power/Methanol/Lignite Noell - O2 Cogen/H2/Oil Shell - O2 Power/Coal/Pet Coke Prenflow - O2 Power/Coal<br />

KRW - Air<br />

Power/H2/Oil Texaco - O2 Power/H2/Oil Texaco - O2 Repower/Pet Coke Texaco - O2 Cogen/H2/Oil Texaco - O2 Cogen/H2/Oil Texaco - O2 BGL - O 2<br />

Texaco - O 2<br />

IHI – O2<br />

Texaco - O 2


<strong>GE</strong> Gas Turbine Syngas Experience<br />

September 2002<br />

Customer<br />

Cool Water<br />

PSI<br />

Tampa<br />

Texaco El Dorado<br />

Sierra Pacific<br />

SUV Vresova<br />

Schwarze Pumpe<br />

Shell Pernis<br />

ISE / ILVA<br />

Fife Energy<br />

Motiva Delaware<br />

Sarlux<br />

Piombino<br />

Exxon Singapore<br />

<strong>GE</strong> Syngas Hours of Operation<br />

Type MW<br />

Syngas<br />

Start<br />

Date Hours of Operation<br />

107E<br />

7FA<br />

107FA<br />

6B<br />

106FA<br />

209E<br />

6B<br />

2x6B<br />

3x109E<br />

6FA<br />

2x6FA<br />

3x109E<br />

109E<br />

2x6FA<br />

120<br />

262<br />

250<br />

40<br />

100<br />

350<br />

40<br />

80<br />

540<br />

80<br />

240<br />

550<br />

150<br />

180<br />

5/84<br />

11/95<br />

9/96<br />

9/96<br />

-<br />

12/96<br />

9/96<br />

11/97<br />

11/96<br />

-<br />

8/00<br />

10/00<br />

10/00<br />

3/01<br />

Syngas N.G. Dist.<br />

27,000<br />

24,500<br />

33,500<br />

30,660<br />

0<br />

90,040<br />

37,600<br />

58,250<br />

141,000<br />

0<br />

450<br />

33,100<br />

12,400<br />

9,700<br />

Totals 499,100<br />

-<br />

1,800<br />

-<br />

56,372<br />

48,438<br />

1,715<br />

-<br />

22,687<br />

4,732<br />

26,220<br />

-<br />

-<br />

2,930<br />

12,776<br />

1,000<br />

4,100<br />

7,101<br />

-<br />

-<br />

-<br />

3,800<br />

-<br />

-<br />

-<br />

5,290<br />

10,500<br />

-<br />

921<br />

<strong>IGCC</strong> Product Technology – Proven<br />

Through Operating Experience


<strong>IGCC</strong> Economics<br />

US $/KW<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

<strong>IGCC</strong> Cost Learning Curve<br />

Coolwater<br />

Demo Config<br />

Coolwater<br />

Commercial<br />

Polk<br />

Demo Config<br />

Polk<br />

Commercial<br />

1980 1985 1990 1995 2000 2005<br />

YEAR OF OPERATION<br />

<strong>IGCC</strong> on Steep Learning Curve


<strong>IGCC</strong> Economics<br />

Economic Comparison of <strong>IGCC</strong> versus <strong>Combined</strong> <strong>Cycle</strong><br />

based on 20 year COE for large power plants<br />

<strong>IGCC</strong> Fuel Price [$/MMBTU]<br />

2.2<br />

2<br />

1.8<br />

1.6<br />

1.4<br />

1.2<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

Orimulsion<br />

Coal<br />

Residues<br />

Pet Coke<br />

<strong>Combined</strong> <strong>Cycle</strong><br />

Preferred<br />

0<br />

1.5 2 2.5 3 3.5 4 4.5 5 5.5<br />

<strong>Combined</strong> <strong>Cycle</strong> Fuel Price [$/MMBTU]<br />

<strong>IGCC</strong><br />

Preferred<br />

COE<br />

Parity<br />

COE<br />

Parity<br />

<strong>IGCC</strong> Competitive at $3.00 Fuel Spread


<strong>IGCC</strong> – Cost of Electricity<br />

C/kWh (20 Yr. Levelized)<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

F<br />

Gas<br />

F<br />

LNG<br />

<strong>Combined</strong><br />

<strong>Cycle</strong><br />

Lower<br />

Quality<br />

Fuel<br />

Option<br />

F F Ref.<br />

Coal Bottoms<br />

<strong>IGCC</strong><br />

Basis:<br />

1.5 $/Mbtu Coal<br />

1.0 $/Mbtu Bottoms<br />

2.5 $/Mbtu Gas<br />

4.0 $/Mbtu LNG<br />

Coal Ref.<br />

Bottoms<br />

Steam<br />

Fuel<br />

O&M<br />

Capital


NG vs. Solid Fuels<br />

Higher As-Fired<br />

Weight % As-Received<br />

Heating Heating<br />

Value Value Cost Carbon Ash Sulfur H2 CO2 Fuel<br />

BTU/lb BTU/scf $/MMBtu % % % % lb/MMBtu<br />

Natural Gas 21,514 911 $4.35 80.0% 0.0% 0.0% 20.0% 131<br />

Coal (Illinois #6) 11,666 277 $1.25 63.8% 9.7% 2.5% 4.5% 211<br />

PetCoke 14,026 268 $0.60 81.1% 0.6% 5.7% 4.3% 223<br />

A Current 500MW Coal Plant annually produces<br />

4,151,000 tons CO 2<br />

139,000 tons Ash<br />

306,000 tons Sludge<br />

5,901 tons SO 2<br />

2,950 tons NOx<br />

Why Coal Plants are Called the “Big Dirties”


<strong>IGCC</strong> Environmental Benefits<br />

SOA Combustion Plant<br />

Boiler SCR<br />

Baghouse<br />

95% SO 2<br />

Wet Wet<br />

Scrubber<br />

Results<br />

NOx: 0.10 lb/MMBtu<br />

SO 2 : 0.25 lb/MMBtu<br />

PM: 0.03 lb/MMBtu<br />

<strong>Integrated</strong> <strong>Gasification</strong> <strong>Combined</strong> <strong>Cycle</strong> on High Sulfur Coal Results<br />

NOx: 0.07 lb/MMBtu<br />

Syngas COS<br />

Gasifier Syngas COS MDEA<br />

Gas Gas SO2 : 0.10 lb/MMBtu<br />

Gasifier Scrubber Hydrolysis Hydrolysis Scrubber<br />

Turbine PM: 0.01 lb/MMBtu<br />

Scrubber<br />

Turbine<br />

NOxEmissions NOxEmissions - lb/MW<br />

6.0<br />

5.0<br />

4.0<br />

3.0<br />

2.0<br />

1.0<br />

5.5<br />

0.0 National<br />

Coal Average<br />

1.68<br />

0.29-0.72<br />

NSPS SOA Pulverized<br />

Coal SCR<br />

0.23-0.42<br />

<strong>IGCC</strong><br />

SO2 Emissions (lb/MMBtu)<br />

1.4<br />

1.2<br />

1.0<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0.0<br />

1.22<br />

National<br />

Average<br />

1998<br />

0.51<br />

Average<br />

WFGD PC<br />

1998<br />

0.1<br />

New PC<br />

PRB Coal<br />

WFGD/ SCR<br />

0.07<br />

<strong>IGCC</strong><br />

Circa 1996<br />

(Wabash)


Criteria Pollutants<br />

Lowest NO x Emissions<br />

Rating<br />

MW<br />

Heat Rate<br />

KJ/kW-hr<br />

SO2<br />

Kg/GJ<br />

Ref: Power Magazine August 2002, Survey of 148 coal fired steam plants rated 300 MW and above<br />

NOx<br />

Kg/GJ<br />

Labadie 2,244 10,990 0.25 0.05<br />

Hawthorne 544 11,024 0.17 0.06<br />

Rush Island 1,168 11,048 0.27 0.06<br />

Lowest SO x Emissions<br />

Navajo 2,255 10,530 0.02 0.17<br />

Clover 882 10,265 0.02 0.14<br />

Intermountain 1,680 9,972 0.03 0.20<br />

<strong>IGCC</strong><br />

Wabash River (1985) 262 9,400 0.05 0.04<br />

Current <strong>IGCC</strong> 800 8,862 0.01 0.03<br />

<strong>IGCC</strong> Best in Overall Performance


Bench Marking Pollutants<br />

Criteria<br />

NO x<br />

(kg/GJ)<br />

SO x<br />

(kg/GJ)<br />

CO<br />

(kg/GJ)<br />

VOC<br />

(kg/GJ)<br />

CO 2<br />

(kg/GJ)<br />

PM<br />

(kg/GJ)<br />

Mercury<br />

(% Removal)<br />

Coal, Ultra-<br />

Supercritical PC Coal - <strong>IGCC</strong><br />

Natural Gas<br />

- CC ( DLN)<br />

0.05 0.03 0.02<br />

0.03 0.015


Environmental - Wastes<br />

Lb/MW-hr (Dry Basis)<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

CaCO 3 + SO 2 + ½O 2 => CaSO 4 +CO 2<br />

Sludge<br />

Sludge<br />

Leachable Leachable<br />

Pulverized Coal Circulating Fluid Bed <strong>IGCC</strong><br />

Slag/ Ash Sludge Sulfur CO2<br />

Merchant Sulfur<br />

Vitrified<br />

Aggregate<br />

Significantly Lower <strong>IGCC</strong> Wastes


Comparative Environmental Assessment<br />

Air Emissions <strong>IGCC</strong> vs. CFBC<br />

Pet Coke<br />

Data<br />

(From: BVP)<br />

Annual Disposal Costs<br />

Source Volume Reduction<br />

Environmental and Operational Benefits


Removal of HAPS in <strong>IGCC</strong> (Hazardous Air Pollutants)<br />

HAPS (Metals)<br />

Cr, Hg, Ni, Ba, Se, Sb, Be, Cd, Co, As, Mn, Pb<br />

Hg – 2/3 airborne<br />

– 1/3 flyash<br />

- Low Volatility -- Vitrified Slag<br />

- Medium Volatility -- Condense & Capture in Scrubber<br />

- High Volatility -- Remove by Activated Carbon Filter


HAPS Comparison Hazardous Air Pollutants (Metals)<br />

Annual Emissions for 1000MW Plant -- (US DOE)<br />

tons/year/1000MW<br />

tons/year/1000MW<br />

3.00<br />

2.00<br />

1.00<br />

0.00<br />

0.20<br />

0.10<br />

0.00<br />

Cr Hg Ni<br />

Sb Be Cd Co<br />

tons/year/1000MW<br />

tons/year/1000MW<br />

3.00<br />

2.00<br />

1.00<br />

0.00<br />

1.00<br />

0.50<br />

0.00<br />

Ba Se<br />

As Mn Pb<br />

Precipitator 1 Precipitator/ Scrubber 1 Reverse-air filter 1 Reverse filter/ dry absorber 1 Pulsejet filter/ SCONOx tm1 <strong>IGCC</strong> 2<br />

1 Basis: USDOE, A Comprehensive Assessment of Toxic Emissions from Coal-Fired Power Plants: Phase 1 Results. 1996<br />

2 TECO Polk test data<br />

<strong>IGCC</strong> Best HAPS Performance


Environmental Game Changer – Mercury (Hg)<br />

Feedstock<br />

Slag<br />

Water<br />

Scrubber<br />

Syngas<br />

Water<br />

Activated<br />

Carbon Filter<br />

Water to<br />

Scrubber<br />

Syngas to<br />

Gas Turbine<br />

Activated Carbon<br />

Bed Filter<br />

Sulfinated Activated Carbon<br />

Bed Filters<br />

Syngas and Recycle Water Streams<br />

• >90% Mercury Removal Efficiency<br />

• 12-18 Months Carbon Bed LifetimeOperation<br />

• Mercury is Filtered From Syngas Fuel Stream<br />

• No Tail-Pipe Gas Clean-Up Required<br />

• $3 - $5 per kW Installed<br />


Pollution Prevention Avoid Negative Collateral Effects<br />

Pollutant<br />

NOx<br />

SOx<br />

Part.<br />

Matter<br />

Mercury<br />

SCR<br />

Limestone Wet Flue<br />

Gas Desulfurization<br />

Baghouse or ESP<br />

a)<br />

Conventional<br />

Combustion<br />

Approach<br />

Activated Carbon<br />

Injection<br />

b)<br />

Additives to Wet<br />

Flue Gas Scrubber<br />

Associated Environmental<br />

Impact<br />

- Ammonia Slip<br />

- Acid plume<br />

- Ammonia-sulfur salt fume as PM<br />

-Spent catalyst disposal<br />

- Contaminated fly ash<br />

- More solid waste (5x fuel sulfur)<br />

- Liberation of CO 2 from limestone<br />

- Additional PM from mist carryover<br />

- Additional water treatment<br />

- Potential for ash contamination with<br />

ammonia from SCR and Hg from<br />

carbon injection<br />

-Poor carbon utilization increases<br />

waste disposal<br />

- Flyash unacceptable for commercial<br />

use or may be deemed hazardous<br />

- Contamination of scrubber sludge<br />

- Unacceptable for commercial use.<br />

<strong>IGCC</strong><br />

Approach<br />

Low NOx<br />

Combustion<br />

Syngas<br />

Scrubbing<br />

Vitrified Slag<br />

Fixed Carbon<br />

Bed in Fuel<br />

Stream<br />

Associated<br />

Environmental Impact<br />

- None -<br />

- None -<br />

Production of merchant<br />

sulfur or sulfuric acid.<br />

- None –<br />

Vitrified Matrix Passes<br />

TCLP<br />

- Minor -<br />

Disposal of activated<br />

Carbon with elemental Hg


Environmental Game Changer – CO 2<br />

Pre-Combustion Carbon Removal<br />

<strong>IGCC</strong><br />

Coal<br />

Water<br />

Air<br />

O<br />

2<br />

ASU<br />

Gasifier<br />

H2 + CO<br />

Fuel Gas<br />

CO 2 Cleanup<br />

N2<br />

CO 2<br />

H2<br />

Post-Combustion Carbon Removal<br />

PC/CFB Boiler<br />

Coal<br />

Air<br />

Boiler<br />

ST Gen<br />

Stack Gas<br />

CO 2 Cleanup<br />

Gen<br />

CO 2<br />

New <strong>IGCC</strong> Plant<br />

Carbon Capture<br />

⇒ Low Volume<br />

⇒ High Pressure<br />

⇒ High Concentration<br />

New PC Plant<br />

Capital Costs<br />

Operating<br />

Operating<br />

Costs<br />

Costs<br />

0 1 2 3 4 5 6 7<br />

Levelized Cost of Electricity*<br />

(c/kW-hr for Plants with CO2 capture)<br />

8 9<br />

Ref: Reducing Emissions from Fossil Power Plants, S.M. Klara,<br />

NETL, 3 rd Annual EPGA Power Generation Conference, 2002<br />

Carbon Capture<br />

⇒ High Volume<br />

⇒ Atmospheric Pressure<br />

⇒ Low Concentration<br />

<strong>IGCC</strong> Favored for Pre-Combustion De-Carbonization


Production of H 2 and Capture of CO 2<br />

Gasifier<br />

Syn<br />

Gas }<br />

H 2 , CO, H 2 O, CO 2 , CH 4<br />

CO 2 + H 2<br />

Off-Gas GT Fuel<br />

Gas Turbine<br />

Combustor<br />

H 2 GT Fuel<br />

( Significant energy<br />

consuming process )<br />

CO 2 Capture<br />

(Glycol, K 2 CO 3 ,<br />

amine or<br />

membrane, etc)<br />

H 2 Product


Refinery - Oil based <strong>IGCC</strong><br />

Petroleum Coke<br />

vis Breaker Tars<br />

Residuals<br />

Asphalts<br />

Gasifier<br />

O 2<br />

ASU<br />

Sulfur<br />

Removal<br />

Syngas<br />

Air<br />

Air<br />

RFG<br />

Shift<br />

Reactor<br />

Tailgas<br />

~<br />

Reformer/<br />

Absorber<br />

H 2 Manu-<br />

2 Manufacture<br />

HRSG<br />

H2 for Increased Refinery Yield<br />

H 2<br />

Hydro<br />

Cracker<br />

Steam<br />

Turbine<br />

Process<br />

Steam<br />

HCU<br />

~


Multi-Generation Process Concept<br />

Process Flexibility<br />

Compressor<br />

Coal/<br />

Pet Coke<br />

Gasifier<br />

Generator<br />

Power<br />

Process<br />

Steam<br />

PM<br />

Steam<br />

Turbine<br />

AGR<br />

H Syngas Natural Gas<br />

2 or Process<br />

Gas<br />

Shift<br />

Reactor<br />

HRSG<br />

CO 2 to<br />

Sequestration<br />

CO 2<br />

Adsorber<br />

Flexibility to Meet Changing Process Needs<br />

Process<br />

Hydrogen


Fuel Flexibility<br />

Modified Diffusion Combustor for Low Heating<br />

Value Fuels with Hydrogen Content<br />

Steam<br />

Blended<br />

Fuel<br />

Natural Gas<br />

Fuel Nozzles<br />

Endcover<br />

Combustion<br />

Casing<br />

Dynamic Pressure<br />

Locations<br />

Flowsleeve<br />

Combus tion Line r<br />

Emissions Sample<br />

Transition Piece<br />

(Differs For 9FA)<br />

T/C Rake Location<br />

Stage 1 Nozzle<br />

(Nozzle Box For Test)<br />

Shared for 6FA, 7FA and 9FA


Syngas Output Enhancement<br />

Gen<br />

Syngas<br />

16%<br />

Air - 100%<br />

Natural<br />

Gas 2%<br />

Gas Turbine<br />

NG Exhaust<br />

102%<br />

SG Exhaust<br />

116%<br />

7FA (MWe)<br />

Gas Turbine Output vs. Ambient Temperature<br />

Syngas<br />

7FA/9FA<br />

Current Torque/<strong>IGCC</strong> Limit<br />

Near Future Torque Limit<br />

Additional Output<br />

7FA/9FA - Natural Gas<br />

0 20 40 60 80 100<br />

Ambient Temp. (Deg. F)<br />

-20 -10 0 10 20 30 40<br />

Ambient Temp. (Deg. C)<br />

20% Additional Output Enhancement<br />

9FA (MWe)


Reliability/Availability/Maintenance<br />

• Need Automatic Fuel<br />

Switch/Nitrogen<br />

Purge<br />

• Clean Syngas<br />

• Reduced Firing<br />

Temp to Maintain<br />

Design Metal Temp/<br />

100% Life<br />

Life Fraction<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

<strong>IGCC</strong><br />

CONTROL<br />

SYSTEM<br />

0<br />

0 10 20<br />

Vol % H 2 O in Exhaust<br />

<strong>IGCC</strong> Achieves Same RAM as NG CC<br />

30<br />

40


Why <strong>IGCC</strong>?<br />

You should be interested in <strong>IGCC</strong> if these<br />

factors are important to you…<br />

• Deriving value from low or negative value<br />

materials<br />

• Flexibility to use multiple feedstock fuels<br />

• Achieving dramatic emissions reductions<br />

• Reduction or elimination of combustion<br />

solid wastes<br />

• High efficiency in carbon conversion &<br />

power generation<br />

• Multiple uses of gas (power, chemicals, fuels)


Summary<br />

• <strong>IGCC</strong> has compelling environmental advantages<br />

– Cleanest solid fuel technology<br />

– Pollution Prevention Approach<br />

– Growth potential to meet future regulatory challenges<br />

• <strong>IGCC</strong> is a commercial technology<br />

– Broad global gasification experience<br />

• <strong>IGCC</strong> provides fuel diversity<br />

– Capability for opportunity, low value fuels<br />

• <strong>IGCC</strong> economics now at parity with conventional<br />

solid fuel technology for opportunity fuels


<strong>GE</strong> 7FA <strong>IGCC</strong> Evolution<br />

7FA Natural Gas<br />

150–172 MW ISO<br />

– Higher Firing Temperature<br />

– Increased Pressure Ratio<br />

7FA+e <strong>IGCC</strong><br />

197 MW ISO<br />

2001<br />

– <strong>IGCC</strong> Combustor<br />

– Modified Turbine Nozzle<br />

7FA <strong>IGCC</strong><br />

192 MW ISO<br />

– Higher Torque Rotor<br />

– Combustor Developments<br />

7FA Advanced <strong>IGCC</strong><br />

211 MW ISO<br />

1995<br />

2006<br />

Advancements Enhancing <strong>IGCC</strong> Economics


<strong>GE</strong> <strong>IGCC</strong>-Capable Products<br />

GAS TURBINES<br />

Model Syngas Power Rating<br />

<strong>GE</strong>10 10MW (50/60 Hz)<br />

6B 40MW (50/60 Hz)<br />

7EA 90MW (60 Hz)<br />

9E 150MW (50 Hz)<br />

6FA 90MW (50/60 Hz)<br />

7FA 197MW (60 Hz)<br />

9FA 286MW (50 Hz)<br />

<strong>IGCC</strong><br />

Model Net Plant Power Rating<br />

106B 60MW (50/60 Hz)<br />

107EA 130MW (60 Hz)<br />

109E 210MW (50 Hz)<br />

106FA 130MW (50/60 Hz)<br />

107FA 280MW (60 Hz)<br />

9FA 420MW (50 Hz)<br />

<strong>IGCC</strong> 7FA<br />

Products for Wide Application Range


Questions<br />

1. Technical Characteristics of <strong>GE</strong> Gas Turbines to Handle Syngas<br />

There are many key design enhancements for <strong>GE</strong> <strong>IGCC</strong> gas<br />

turbines that enhance performance on syngas including:<br />

• High rotor torque capability to take advantage of higher mass<br />

flow with low BTU gas (6FA/7FA/9FA)<br />

• Dual fuel <strong>IGCC</strong> MNQC combustors with head-end diluent<br />

injection capability<br />

• Larger stage 1 nozzles to increase throughput and reduce<br />

compressor backpressure<br />

• Compressor air extraction capability to reduce ASU capital<br />

cost and reduce power consumption<br />

• Simplified fuel control system allowing for co-firing over 90/10-<br />

30/70 syngas/NG firing range with bumpless transfers<br />

• Nitrogen purge module<br />

• Mark VI controls for head-room in GT to handle interfaces with<br />

gasification process control


Questions<br />

2. Comparison of a NG to a Syngas Combustor<br />

NG DLN (Dry Low NOx) Combustor<br />

• Lean premix combustion<br />

• Typical NOx 9ppm<br />

• Single fuel<br />

• Restricted from hydrogen containing fuel<br />

such as syngas due to flashback and<br />

flame-holding<br />

• Wobbe index variability +/- 5%<br />

<strong>IGCC</strong> Combustor<br />

• Diffusion combustion<br />

• Typical NOx 15 ppm<br />

• Large diameter for low LCV gas<br />

• Head-end diluent ports<br />

• Dual fuel<br />

• Hydrogen tolerant<br />

• Wobbe variability +/- 10%<br />

Steam<br />

Blended<br />

Fuel<br />

Natural Gas<br />

Fuel Nozzles<br />

Endcover<br />

Combustion<br />

Casing<br />

Dynamic Pressure<br />

Locations<br />

Flowsleeve Flowsleeve<br />

Combus tion Line Liner r<br />

Emissions Emissions Sample Sample<br />

Transition Transition Piece Piece<br />

(Differs (Differs For 9FA) 9FA)<br />

T/C T/C Rake Rake Location Location<br />

Stage Stage 1 Nozzle Nozzle<br />

(Nozzle (Nozzle Box Box For For Test) Test)


Questions<br />

3. Aspects to be Considered for a 7FA Natural Gas Only Turbine to<br />

Change Fuel for Syngas<br />

There are many modification options to be considered dependent on each<br />

individual project requirements and economics:<br />

• Regulatory acceptance (9 ppm to 15 ppm NOx)<br />

• Combustor replacement<br />

• Air extraction skid<br />

• Steam turbine matching<br />

• Available diluent (steam vs. N2)<br />

• Footprint of larger fuel and purge skids<br />

• Larger enclosure for fuel and purge skids<br />

• Larger fuel headers for LCV gas<br />

• Installation of larger S1N<br />

• Higher-torque capacity rotor<br />

• Controls upgrade


Questions<br />

4. GT Performance When Burning Syngas<br />

Comparing current NG 7FA+e to <strong>IGCC</strong> 7FA+e, the following characteristics<br />

would be obtained (simple cycle performance)<br />

Output<br />

NG 7241: 171.7 MW<br />

<strong>IGCC</strong> 7FA: 197.0 MW<br />

7FA (MWe)<br />

Gas Turbine Output vs. Ambient Temperature<br />

Syngas<br />

7FA/9FA<br />

Current Torque/<strong>IGCC</strong> Limit<br />

Heat Rate:<br />

Near Future Torque Limit<br />

7FA/9FA - Natural Gas<br />

0 20 40 60 80 100<br />

Ambient Temp. (Deg. F)<br />

NG7241: 9420 BTU/kW-hr<br />

<strong>IGCC</strong> 7FA: 8720 BTU/kW-hr*<br />

Additional Output<br />

-20 -10 0 10 20 30 40<br />

Ambient Temp. (Deg. C)<br />

9FA (MWe)<br />

* Includes 560K lb/hr<br />

steam injection


Questions<br />

5. Estimated Investment to Modify 7FA Burning NG to Syngas<br />

We have not executed a conversion of a NG 7FA to syngas so detailed<br />

costs are not available except through an engineered commercial<br />

proposal including a detailed analysis of the site, fuel and operational<br />

requirements.<br />

However, provided that the syngas meets our current standard<br />

specification requirements, an indicative cost would be in the range of<br />

$6MM-$7MM per unit with an approximate 6 week outage for<br />

completion of conversion.


Wabash River Repowering Project -<br />

PSI Energy<br />

• 192 MW 7FA<br />

• Repowering - 262 MW<br />

• Dow Gasifier 2 x 100%<br />

• 1995 Operation<br />

• Coal Fuel<br />

• 1400 $/kW-1995$<br />

Confirmed 2300F / 1260C Class GT With <strong>IGCC</strong> Enhanced Rating<br />

GT24214 .ppt


Power Plant Overview<br />

Tampa Electric – Polk <strong>IGCC</strong> Project<br />

• 260 MW <strong>IGCC</strong><br />

• 192 MW 7FA flat rating<br />

• Texaco gasifier<br />

• Nitrogen injection<br />

• HGCU demonstration<br />

• First GT power from<br />

syngas – 9/12/96<br />

Confirmed Nitrogen Injection for NOx Control and<br />

Enhanced Flat Rating to 90 F / 32 C


Piñon Pine Project - Sierra Pacific<br />

• 100 MW - 6FA <strong>IGCC</strong><br />

• Coal Fuel<br />

• KRW Gasifier<br />

• Fluid Bed/HGCU<br />

• Full Air Extraction<br />

• Unit Shipped Feb. 1996<br />

• Natural Gas Operation<br />

11,000 Hours<br />

• Syngas Operation 1998<br />

CC Operation Has Confirmed Air Extraction<br />

Capability Without Effect on Cooling Flows GT24053A .ppt


El Dorado <strong>IGCC</strong> Project<br />

• Texaco Refinery –<br />

El Dorado, Kansas<br />

• 1 x MS6001B<br />

• Texaco Quench Gasifier<br />

– Pet Coke/Waste Oil<br />

• Multi Fuel With N 2 Return<br />

and Air Extraction<br />

• First GT Power From<br />

Syngas - 9/12/96<br />

Based on Proven <strong>Gasification</strong> Process<br />

GT23284C


FIFE - Scotland<br />

• 82MW - 6FA<br />

• Sludge/Pet Coke/<br />

Natural Gas<br />

• BGL Gasifier<br />

• 1998<br />

Based on Westfield & Great Plains Experience<br />

GT23568 .ppt


Shell Pernis Coproduction Plant<br />

• 1650 t/d Vacuum Residue<br />

• 2 x 6B Gas Turbines<br />

• Shell/Lurgi Gasifier<br />

• 255 t/d Hydrogen<br />

• 115 MW Power<br />

• Steam to Refinery<br />

• Operation 1997<br />

GT24377D .ppt


Star-Delaware <strong>IGCC</strong><br />

• 180 MW 2 x 6FA<br />

• Re-powering<br />

• 1999 Operation<br />

• Petroleum Coke<br />

• Texaco Gasifier<br />

• Co-production of<br />

Argon and Nitrogen<br />

for Sale<br />

GT22911-1D .ppt


Sarlux <strong>IGCC</strong> Project - Sardinia, Italy<br />

• 550 MW - 3 x S109E<br />

• Power/Steam/Hydrogen<br />

• Texaco <strong>Gasification</strong><br />

• Refinery Residues<br />

• Turnkey - 1999<br />

• Project Financed<br />

• Sponsors - Saras/Enron<br />

GT24409B .ppt


Power Plant Overview<br />

Shell Pernis Co-production Plant<br />

• 1650 t/d vacuum residue<br />

• 2 x 6B gas turbines<br />

• Shell/Lurgi gasifier<br />

• 255 t/d hydrogen<br />

• 15 MW power<br />

• Steam to refinery<br />

• Operation 1997


Power Plant Overview<br />

Schwarze Pumpe - Germany<br />

• 40 MW 6B gas turbine<br />

– Syngas<br />

– Methanol purge gas<br />

– Natural gas/distillate<br />

• Power and methanol<br />

• Noell Gasifier combined<br />

with fixed bed gasifier<br />

• Lignite/oil slurry with<br />

waste plastic & waste oil<br />

• First GT power on syngas<br />

Sept. 1996<br />

Confirmed 6B Development for Syngas/Distillate<br />

Combustors in Coproduction Plant


GT - H 2 Combustion Characteristics<br />

Video Capture of Flame<br />

Structure - 85-90% H 2<br />

NOx @15% @15% O2, O2, ppmvd<br />

1000<br />

100<br />

10<br />

1<br />

(*) Texit 100-200 K Lower<br />

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0<br />

Steam/Fuel, kg/kg<br />

Primary-Nominal<br />

85-90% H 2 / Bal N 2<br />

46% H2 /13% H20/Bal N2 73-77% H 2 / Bal N 2<br />

56-60% H2 / Bal N2 56-60% H<br />

73-77% H 2 / Bal N<br />

2 / Bal N 2<br />

2<br />

Primary-Nominal<br />

46% 85-90% H H2 / Bal N 2 /13% H20/Bal 2 N 2


GT Experience on High H 2 Fuel<br />

Site Country<br />

G.T.<br />

Model No.<br />

Commision<br />

Year<br />

Gas<br />

Type (1)<br />

LHV<br />

(kJ/Nm3)<br />

Main Design<br />

Features<br />

Geismar US MS 6000B 1 1998 PG 11,138 Up to 80% H 2<br />

Daesan 2 Korea MS 6000B 1 1997 RG 16,500 Up to 95% H 2<br />

Cartagena Spain MS 6000B 1 1993 RG 25,100 66% H 2<br />

Schwarze Pumpe Germany MS 6000B 1 1996 WG 12,492 62% H 2<br />

Tenerife Spain MS 6000B 1 1994 RG 29,000 70% H 2<br />

San Roque Spain MS 6000B 2 1993 RG 24,000 70% H 2<br />

Antwerpen Belgium MS 6000B 1 1993 RG 20,700 78% H 2<br />

Puertollano Spain MS 6000B 2 1994-1994 RG 16,700 Up to 60% H 2<br />

La Coruna Spain MS 6000B 1 1991 RG 25,000 Up to 52% H 2<br />

Rotterdam Holland MS 6000B 1 1990 RG 28,000 59% H 2<br />

>400,000 Hours on High H 2 Gases


GT - LHV NOx Control<br />

NO x , PPMVD<br />

1000<br />

100<br />

10<br />

0<br />

H 2 O<br />

Full Load MNQC NOx<br />

Performance at 15% O 2<br />

vs Heating Value<br />

N 2<br />

CO 2<br />

• Simulated Coal Gas<br />

• 2550 F/1400 C<br />

Combustor Exit<br />

Temperature<br />

100 150 200 250 300<br />

LHV, Btu/SCF<br />

Excellent Emissions & Stability for F-Class


<strong>IGCC</strong> – Fuel Experience:<br />

Syngas<br />

H 2<br />

CO<br />

CH 4<br />

CO 2<br />

N 2 + AR<br />

H 2 O<br />

LHV, - Btu/ft 3<br />

-kJ/m 3<br />

T fuel F/C<br />

H 2 /CO Ratio<br />

Diluent<br />

PSI<br />

24.8<br />

39.5<br />

1.5<br />

9.3<br />

2.3<br />

22.7<br />

209<br />

8224<br />

Equivalent LHV<br />

- Btu/ft3 150<br />

-kJ/m 3<br />

570/300<br />

.63<br />

Steam<br />

5910<br />

Tampa El Dorado<br />

Pernis<br />

37.2<br />

46.6<br />

0.1<br />

13.3<br />

2.5<br />

0.3<br />

253<br />

9962<br />

700/371<br />

.80<br />

N 2<br />

118<br />

4649<br />

* Always co-fired with 50% natural gas<br />

35.4<br />

45.0<br />

0.0<br />

17.1<br />

2.1<br />

0.4<br />

242<br />

9528<br />

250/121<br />

.79<br />

N 2 /Steam<br />

113*<br />

4452<br />

34.4<br />

35.1<br />

0.3<br />

30.0<br />

0.2<br />

--<br />

210<br />

8274<br />

200/98<br />

.98<br />

Steam<br />

198<br />

7801<br />

Sierra<br />

Pacific<br />

14.5<br />

23.6<br />

1.3<br />

5.6<br />

49.3<br />

5.7<br />

128<br />

5024<br />

ILVA<br />

8.6<br />

26.2<br />

8.2<br />

14.0<br />

42.5<br />

--<br />

183<br />

7191<br />

Schwarze<br />

Pumpe<br />

61.9<br />

26.2<br />

6.9<br />

2.8<br />

1.8<br />

--<br />

317<br />

12,492<br />

1000/538 400/ 204 100/ 38<br />

.61<br />

Steam<br />

110<br />

4334<br />

.33<br />

--<br />

--<br />

--<br />

2.36<br />

Steam<br />

Sarlux<br />

22.7<br />

30.6<br />

0.2<br />

5.6<br />

1.1<br />

39.8<br />

163<br />

6403<br />

392/200<br />

.74<br />

Moisture<br />

Exxon Motiva<br />

Fife Singapore Delaware<br />

34.4<br />

55.4<br />

5.1<br />

1.6<br />

3.1<br />

--<br />

319<br />

12,568<br />

44.5<br />

35.4<br />

0.5<br />

17.9<br />

1.4<br />

0.1<br />

241<br />

9,477<br />

100/38 350/ 177<br />

.62<br />

H 2 O<br />

1.26<br />

Steam<br />

32.0<br />

49.5<br />

0.1<br />

15.8<br />

2.15<br />

0.44<br />

248<br />

9,768<br />

570/299<br />

Heating Values 1/8 of Natural Gas<br />

200<br />

7880<br />

--<br />

--<br />

*<br />

--<br />

116<br />

4600<br />

.65<br />

H 2 O/N 2<br />

150<br />

5910<br />

PIEMSA<br />

42.3<br />

47.77<br />

0.08<br />

8.01<br />

2.05<br />

0.15<br />

270.4<br />

10,655<br />

338/170<br />

.89<br />

N 2<br />

129<br />

5083<br />

GT26111A .ppt


GT Integration with Air Separation Unit (ASU)<br />

LP<br />

Oxygen<br />

Air<br />

Separation<br />

Unit<br />

From Supplemental Air From GT Air Extraction<br />

0% -------------- Case A -------------- 100%<br />

50% -------------- Case B -------------- 50%<br />

100%-------------- Case C -------------- 0%<br />

Extraction Air<br />

LP Steam / BFW<br />

Nitrogen Nitrogen<br />

Moisturization<br />

and Heating<br />

Nitrogen<br />

Clean Syngas<br />

Gas Turbine -<br />

Steam Turbine<br />

- Generator<br />

HP<br />

Oxygen Exhaust Steam<br />

Optimize Air Side Integration<br />

Power


<strong>GE</strong> - GT Combustion Test Capability<br />

<strong>GE</strong> Investment in <strong>IGCC</strong><br />

– State-of-the-art combustion<br />

development facility at<br />

Greenville, S.C.<br />

– Standard machines for optimal<br />

integration of turbine and<br />

gasification plant<br />

– Full scale, pressure and<br />

temperature validation of<br />

combustion performance<br />

– At <strong>GE</strong>’s Global Research<br />

Laboratory - Advanced concepts<br />

for low emissions combustion for<br />

LCV fuels<br />

Full-Scale Performance Validation

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!