20.01.2013 Views

Metal-metal bond

Metal-metal bond

Metal-metal bond

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Metal</strong>‐<strong>metal</strong> <strong>bond</strong>


<strong>Metal</strong>‐<strong>metal</strong> <strong>bond</strong>


L<br />

L<br />

L<br />

L<br />

M L<br />

M<br />

M L<br />

L<br />

L<br />

σ∗ σ<br />

<strong>Metal</strong>‐<strong>metal</strong> <strong>bond</strong> (M 2L 8)<br />

π∗ M-M anti<strong>bond</strong>ing<br />

orbitals<br />

δ∗<br />

z d yz dxyy d xy d yz z<br />

d z 2 d z 2<br />

d xz<br />

the dx2- y2, s and px,y<br />

orbitals are not shown<br />

since they are used<br />

for M-ligand M ligand <strong>bond</strong>ing<br />

δ<br />

d xz<br />

π M-M <strong>bond</strong>ing<br />

orbitals<br />

σ<br />

orbitals d yz<br />

d z 2 σ<br />

d xz<br />

d xy δ<br />

the dx2- y2orbitals<br />

(not shown) are used for M-L <strong>bond</strong>ing<br />

π


<strong>Metal</strong>‐<strong>metal</strong> <strong>bond</strong> (M 2L 8)<br />

Electron Count Resulting M-M Bond<br />

d1 -d1 Single <strong>bond</strong><br />

d2 -d2 Double <strong>bond</strong><br />

d3 -d3 Triple <strong>bond</strong><br />

d4 -d4 Quadruple <strong>bond</strong> optimum<br />

d5 -d5 Triple <strong>bond</strong><br />

d6 -d6 Double <strong>bond</strong><br />

d7 -d7 Single <strong>bond</strong><br />

d8 - d8 No <strong>bond</strong> (symmetry interaction)<br />

H 3C CH 3<br />

H 3C<br />

Re<br />

CH 3<br />

H H3CC CH CH3 H 3C<br />

RRe<br />

CH 3<br />

2-<br />

PR3 Cl Re Cl<br />

R3P Re<br />

R 3P Cl<br />

Cl PR 3<br />

Me<br />

L<br />

L<br />

L<br />

L<br />

M<br />

M<br />

L<br />

L<br />

L<br />

L<br />

σ∗<br />

π∗ M-M anti<strong>bond</strong>ing<br />

orbitals<br />

δ∗<br />

dz2 dyz dxy dxy dyz dz2 dxz dxz the dx2- y2, s and px,y<br />

orbitals are not shown<br />

since they are used<br />

for M-ligand <strong>bond</strong>ing<br />

Re-Re = 22.18 18 Å CCr-Cr C =1.85 1 85 Å<br />

Eclipsed conformations<br />

O<br />

δ<br />

π M-M <strong>bond</strong>ing<br />

orbitals<br />

σ<br />

O<br />

Cr Cr<br />

Me<br />

4


‐2<br />

L<br />

L<br />

L<br />

L<br />

M<br />

M<br />

L<br />

L<br />

L<br />

L<br />

σ∗<br />

π∗ M-M anti<strong>bond</strong>ing<br />

orbitals<br />

δ∗<br />

δ<br />

dz2 dyz dxy dxy dyz dz2 dxz dxz the dx2- y2, s and px,y<br />

orbitals are not shown<br />

since they are used<br />

for M-ligand <strong>bond</strong>ing<br />

π M-M <strong>bond</strong>ing<br />

orbitals<br />

σ


p z<br />

L L<br />

M M<br />

L L<br />

<strong>Metal</strong>‐<strong>metal</strong> <strong>bond</strong> d 8 case<br />

L L ‐2<br />

CNR<br />

L L<br />

σ∗<br />

σ<br />

σ∗<br />

p z<br />

d z 2 d z 2<br />

σ<br />

RNC Ir CNR<br />

RN<br />

C<br />

R R3P 3P Cl<br />

Ir<br />

NC<br />

C<br />

R<br />

NR CNR<br />

RNC Ir CNR<br />

RN<br />

C<br />

‐2<br />

‐2<br />

‐2<br />

‐2


<strong>Metal</strong>‐<strong>metal</strong> quintuple <strong>bond</strong>


Isolobal analogy<br />

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1981/hoffman‐lecture.pdf


Isolobal analogy<br />

‐Simplification


Isolobal analogy


Isolobal analogy


Isolobal analogy


Isolobal analogy


Isolobal analogy


Isolobal analogy


Isolobal analogy


Isolobal analogy


Isolobal analogy


Isolobal analogy


Isolobal analogy


Isolobal analogy


Elementary steps in organo<strong>metal</strong>lic chemistry<br />

Ligand dissociation / coordination<br />

Me Me3Al 3Al + NMe 3<br />

6e 8e<br />

Mo(CO) 6<br />

18e 16e<br />

Me Me3Al-NMe 3Al-NMe 3<br />

Mo(CO) 5 + CO


Β‐Elimination<br />

Elementary steps in organo<strong>metal</strong>lic chemistry<br />

‐Alkyl group with a β‐hydrogen<br />

‐Coordination vacant on the <strong>metal</strong><br />

or an easy to dissociate ligand in<br />

cis‐ position<br />

‐An empty orbital at the <strong>metal</strong><br />

‐Feasible approach of the β‐<br />

hd hydrogen to the<strong>metal</strong> h l<br />

‐A full orbital at the <strong>metal</strong>


OC<br />

Β‐Elimination<br />

OC<br />

Fe<br />

Ph 3P<br />

Elementary steps in organo<strong>metal</strong>lic chemistry<br />

O<br />

N<br />

Co<br />

N N<br />

H2O O O<br />

H<br />

H O<br />

N<br />

‐Alkyl group with a β‐hydrogen<br />

‐Coordination vacant on the <strong>metal</strong><br />

or an easy to dissociate ligand in<br />

cis‐ position<br />

‐An empty orbital at the <strong>metal</strong><br />

‐Feasible approach of the β‐<br />

PPh PPh3 hd hydrogen to the<strong>metal</strong> h l<br />

Pt<br />

O<br />

BF 4<br />

‐A full orbital at the <strong>metal</strong>


Β‐Elimination<br />

Elementary steps in organo<strong>metal</strong>lic chemistry<br />

Pb<br />

‐Alkyl group with a β‐hydrogen<br />

‐Coordination vacant on the <strong>metal</strong><br />

or an easy to dissociate ligand in<br />

cis‐ position<br />

‐An empty orbital at the <strong>metal</strong><br />

‐Feasible approach of the β‐<br />

hd hydrogen to the<strong>metal</strong> h l<br />

‐A full orbital at the <strong>metal</strong>


Β‐Elimination<br />

Elementary steps in organo<strong>metal</strong>lic chemistry<br />

PPh 3<br />

H3N Pd Me<br />

‐Alkyl group with a β‐hydrogen<br />

‐Coordination vacant on the <strong>metal</strong><br />

or an easy to dissociate ligand in<br />

cis‐ position<br />

‐An empty orbital at the <strong>metal</strong><br />

‐Feasible approach of the β‐<br />

hd hydrogen to the<strong>metal</strong> h l<br />

‐A full orbital at the <strong>metal</strong>


Β‐Elimination<br />

P<br />

P<br />

Elementary steps in organo<strong>metal</strong>lic chemistry<br />

Cl<br />

Ti<br />

Cl<br />

Agostic g<br />

interaction<br />

Cl<br />

H<br />

‐Alkyl group with a β‐hydrogen<br />

‐Coordination vacant on the <strong>metal</strong><br />

or an easy to dissociate ligand in<br />

cis‐ position<br />

‐An empty orbital at the <strong>metal</strong><br />

‐Feasible approach of the β‐<br />

hd hydrogen to the<strong>metal</strong> h l<br />

‐A full orbital at the <strong>metal</strong>


Β‐Elimination<br />

Cr<br />

Elementary steps in organo<strong>metal</strong>lic chemistry<br />

OC<br />

WMe 6<br />

H<br />

Ir<br />

Ph 3P<br />

Au<br />

N<br />

N<br />

Fe


Elementary steps in organo<strong>metal</strong>lic chemistry<br />

Migratory i iinsertion/Elimination i /lii i


Elementary steps in organo<strong>metal</strong>lic chemistry<br />

Reallya ll migration i i or an iinsertion? i ?


Elementary steps in organo<strong>metal</strong>lic chemistry<br />

‐Two oxidation steps separated by two units are necessary.<br />

‐For the oxidative addition a full and an empty orbitals on the <strong>metal</strong> are required. It is<br />

favored by strong donating ligands (R‐X compounds are good sustrates)<br />

‐Reductive elimination is favored by π‐acceptor, high oxidation states and bulky<br />

lligands d ( (R‐R, R‐H and d R‐CHO groups are easily l eliminated)<br />

l d)


Heck reaction


Olefin reduction


Hydroformylation

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!