02.02.2013 Views

P E. Process Flow and Control Diagrams - Fischer-Tropsch Archive

P E. Process Flow and Control Diagrams - Fischer-Tropsch Archive

P E. Process Flow and Control Diagrams - Fischer-Tropsch Archive

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

°<br />

E. <strong>Process</strong> <strong>Flow</strong> <strong>and</strong> <strong>Control</strong> <strong>Diagrams</strong> (ZncludlngMaterlal<br />

Balance)<br />

Unit 32 are as follc~s:<br />

<strong>Process</strong> <strong>Flow</strong> <strong>and</strong> <strong>Control</strong> <strong>Diagrams</strong> for Gas Fractioaation<br />

Drawlu~,NOo Title<br />

D-32-MP-1NP<br />

~-32-MP-2NP<br />

D-32-MP-3NP<br />

D-32-MP-4NP<br />

D-32-MP-SNP<br />

PFCD Gas Fractiouat$on - Depentaulzatlon<br />

PFCD Gas Fractlouatlon - Depentanlzatlon<br />

PFCD Gas Fractionatlon - Gasollne Splitting<br />

PFCD Gas Practlonation - Depropanlzatlon<br />

Material Balance - Gas Fractlonatlon<br />

II-I .2 ° 13-12


A<br />

C<br />

D<br />

, I 2 I = I 4,+<br />

ii iiiii m +<br />

3Z-01-2001 32-01-13~tl 32-01-1 I01 32-01-1301 32-01-130~ ~2-01-1303<br />

GAS FIf ACTIORATIOH AnsOABF.fl OEETImHIZER ABSORnER DEETHAH~ZEA AOSOflg~IAHr'Lt ",rl AOSORB~ 9EETHA--HrZER ABSCfl'~n~ZEA<br />

ItEFIIIG,~flATXOI4 IpACIfAIiE Slg( P,I[OOILEli ' -- A ~ " CHILLER R£OOtLER ~<br />

3, I UUUTtJ/Im 5,S mOlWlll~ 3~a umTU/m 3. I UeO1U/HA O3,~'-~HII<br />

32-01-2001<br />

]<br />

--I P"A-32<br />

/ kMIIO~LVREFRIG£AkTIdH<br />

/ 3~A'32<br />

__JAMMOMLAIAEFR|OEItATIOM<br />

. ~ 4"~U;,-32<br />

SEPARATOR DRUM<br />

I n-31'llP..I I


'+<br />

,~ ~ ~I ,, ~ ~ ~, ~,: ~.;~ ~1,~ ~.~ ~ ~'~'l, ,~.<br />

3Z-0t-I203 32-af-t204<br />

~z--~i ~ ~osoeeu O(~r~NZZEn =XTF~Onm<br />

IfAT[R D~IAil OItUHS ~ CORTACT DRUM ' "<br />

I<br />

0l'13Q~ DO HOT POCKET<br />

-oi-j_i<br />

ll( 2-_____.~2<br />

IOH~FF<br />

¢~ I~B "32<br />

32-01-1501<br />

]Z-Ol-15O2<br />

FIGURE 4-2<br />

I<br />

,,,(.,C.ga[<br />

HJC. ,.H.F.<br />

I<br />

t<br />

I <<br />

SET S<br />

_:._~ I T4 PS|O<br />

32~f-f203<br />

FZGUilE 2-4<br />

-1--<br />

KOTE 2<br />

NOTE~<br />

I. Tile F~UIPkEHT SttOWN OH tHIS DRAW][HO IS FOR<br />

ONE 1RAIH. THE PLANT WILL CONTAIN OHLY<br />

• E NOTE 3<br />

OIR TKAIH,<br />

2, lOyAL LIGIIT IITgROCARBOI~ AVDL4G( MOLECUI,~R<br />

IIUOIIT • 44.0<br />

3, UEIllAKOL IS AOD~ AS REQUIRED TO %HHIOJT<br />

HYDRATE FORMATXON, METHAHOL 15 HOTFl~QUIREU<br />

FOR H~P, IkL 0P(flATIQR<br />

!"-AA-]Z ~,, ......<br />

FUEL 6AS/HF.AO~A ~<br />

4. THE nGUR~ ltUMQ(l~ REFER TO TIlE TYPYJ~L<br />

EQUIPU(NT COItFIGURAl%OH$ SHaH OH DRAWING<br />

O-OI~-~.<br />

L.P. FLARE ~ I[--1<br />

' HE<br />

- 1'-~'32 / ~ -- H.N.F.<br />

- -I F FROM DEPEHTANIZTz, R<br />

3Z'-O I- 1204 ~ ~ RETLUX DRUM<br />

It~,R.]2.! FIGURE 2-2<br />

150 PSIG 5TEAR ~ li~<br />

¢ONDEI(SATE ~ WASTE WATER<br />

DEETIL~HIZI~R BOTTOMS/ DEPEHTANIZ[R<br />

LEAN OIL/ LEAR OIL P5~<br />

(OLII~EHT ~ 0;4 IH~ 0~II%~<br />

3~"01-1S01<br />

~-01-'~<br />

32-01-1101<br />

]Z-Ol-12Ol<br />

32-01-1202<br />

32-01-1203<br />

3Z-01-1204<br />

]2 "Ol'l'qOI<br />

32.,,01*1]02<br />

9"01-1501<br />

)2-01-150Z<br />

32-01-Z801<br />

3n ,.r. - U,S. DEP~TI'ENT OF ENERGY<br />

~, COAL- TO- METHPNOL- TO" GASOLINE PLPJqT I~<br />

~s ~]o~no~ - "at 3;= ~='="'~-32-MP- I NP<br />

D


'-XA-ll<br />

I 0,,:: "" t il' ), lull. GAS ItEADII<br />

, I, l I 3 I<br />

ll-01-1102 ~ 31-01-1]05<br />

,~[IITANIIEII pEPEIIllllllll I All I ClLEn O~lt 3l'01 ' '"~<br />

l~ PSiO<br />

11,4 lllOlLl# illl~<br />

llll, I--<br />

L.P; FlAil( ,.m-r-1 )_2_"91-I14D- ~ i<br />

20',-AA-)9-1,<br />

i ' -<br />

..... _ ..--, ~:-m,, 4~<br />

. I_a<br />

39-01-110l<br />

..... . I'-'B-31 ~.IL F, I1,1 F,<br />

~1i-32-11~1 lip u lATER# IIIOCI~I DRill I '~ 14"-AA-32-I<br />

i "<br />

- _ lll'-IA-31"-I<br />

o i o.~,.,,.., .__ ,,,..~.~. i ~ ~ , .....................<br />

c_Lm, 4~ -"<br />

~_l~32-.liP-I t " 4"-AA-3i-1<br />

' LEAN OllJAOIER ~ :~::~ 32-01 --<br />

32""01-1503 32"01-15~1<br />

,s2.01.150 l<br />

FICUII( 4-Z. FIGtII~ 4-Z<br />

32-01-150._....__~3 3201-1505 32-01-1507 ..<br />

32"0U-1504 31-01-150@ 32"0101501 ~.;<br />

,LEAN OIL PLIMP All) SPARE ,D~ENTAI~z~t OO'ITOM5 DEPEliTANIZI[R REFLUX, "'""<br />

T5 H,P. PLO~ AllO 5PARE ptAil AlE) 5PAItE ;~,,,"<br />

40 ILl'. 50 ILP,<br />

t!i. I<br />

Ill pl,/,,k,i I i~lll_@l<br />

~1 I I I~ nlrno~l I IpL4d i'll I "<br />

I!,;, , /11 I I . __ I'l it' o'-",°'''"'"<br />

AI.r,.,,.i I liud r.'cl [ "<br />

' "' "'"-"-<br />

1 I i I ~ I -<br />

- o<br />

p<br />

i<br />

~


J" -<br />

4~ ~ , t ,,, o I 7<br />

., , ~ ~-o,-,~,,<br />

SET •<br />

:'. ..... -"i L<br />

I<br />

I<br />

I<br />

I<br />

31-01-1501 3Z-01=IS0~i<br />

]~-01-15011 3~.-01=15i0<br />

FIGUR~ 4-2 F[OI~E 4-2<br />

ii.m<br />

maT~,n '<br />

--' ' ~ i l l i l l l ~ I I l i l l l l l r i l l i l i l ~<br />

I I<br />

I I<br />

I TO PARkLUEL<br />

r'~B.-32 I I~IDIOlO..£R<br />

I 32'.,01= I ~ID~O<br />

i~.<br />

•<br />

I 12"R-~.-i<br />

I 150 PSl6~rdLil ~-~I~<br />

3%"01-13~k<br />

3Z"01-130~8<br />

I<br />

1<br />

FICHE 3..4 I<br />

. ~ 4'=~'32-I<br />

COr~EX~TE ~ ~-~<br />

32~f-I$~<br />

3Z'Ol-I~l 0<br />

•- f~ ~s~ ~IT :[',.m,. I<br />

• ! rm atreT ~PeOVA~. i "~-,,,.- ; ecx ll~,~ail<br />

• I FOR S~ I~I'FNT k[vz~.q l l "" " --- I ec h~/~?|<br />

": ..... : ~,:',-- I~..~..w.. , r~ I,~,L~ U W. ~ C ~<br />

~o<br />

m<br />

~'-~-1" ~-£;.-~.;.~,<br />

~-~-3~-1<br />

~TESl<br />

Z, VJU~q 4~ ¢llOL[I<br />

V&/~il ~ IMOL[I<br />

YAPOfl iIOLECULC.q ~T • iS, 4<br />

[0U~IRI~' $H0m ~ TIRS oRum~<br />

32'-01-1102 32-01-1503<br />

32.'01-1205 3~1-1504<br />

]2.'01-1304 3Z'Ol°iSa5<br />

32-01-1~5 ]Z-OI-ISOG<br />

32-01-13QG 3Z~l-I~/<br />

3Z*01-1315 32-01-1S08<br />

]Z"Ol-lSlO<br />

• U.S.0EPP.~THENT 0~: ~ ,<br />

I .~=r, w~i;i~mcE i co.<br />

I ~ ~"<br />

L. co~-'ro- ,~'r,,,~. - so- ~.so,.~ ~ _ ,~<br />

A<br />

7..<br />

D<br />

i


A<br />

,,p<br />

C<br />

D<br />

" G"'AA-bt<br />

, I " I = i 40,<br />

8'-~U~-32-1<br />

L D-"-Z-.MP-2 ~ O~HTANXZF~R BOTTOI~<br />

DEPEHTANIZER EXCHANGER<br />

4P-AA-32-Z<br />

~9-6'~-MP-I UP ~ ARCCA,~TZC XYOROCARBONS/STGPJkG( ~..~.<br />

J °<br />

I<br />

'q2-01-1307 32-01-1103 3Z-01-13011 3Z-01-1320<br />

SPL'IT]'I~ BOTTOi4S G~SOI.INE .SPLITIER 01SOLI~ sPLrri'£R GA~-------~'~-"IT~<br />

-- AIR COOLER ' AIR G'IOL~ FEF-o/OVERH~eo<br />

10.5 1~61U/XR 62.2 li4JTU/XR<br />

S"AA-32-!<br />

'~2-Ot-I30T<br />

F~GURr 4- I<br />

I ' ' I • I<br />

-- {I<br />

liOTE 4"-" '~ IG~<br />

(HDTE 2)<br />

4"A~-32-Z<br />

SET •<br />

2O PSXG I~ r I0'<br />

32-01-1320A<br />

.. FIGURE 3-~<br />

L !<br />

"-~--~--1 I<br />

._ t_~_..~<br />

FLC:I<br />

32-01-1103<br />

FZGURE I-I<br />

32-01-1513 32,'-01-151 '~<br />

32-01-1514 32-'01-i516<br />

F'/GLI~[ 4-2 I~GURE 4-2<br />

.je<br />

24"-k~-32-I<br />

6"-'kk-32-X<br />

32"01-1308A<br />

Z<br />

?<br />

(m,, m~. .......<br />

m<br />

.....<br />

IO'-AA-37<br />

32-01-1513 3~-01-1SI5 ._.. :<br />

3Z-01-1514 32--01-1516<br />

GASOLINE SPL2'rTER GA'~,ot.mr SPLX'TI"ER GASO~"-" .... :<br />

IO X.P. 200 H.P. !.,~ u P<br />

3<br />

~, c ~,I.,J,~ ~ ,v~. ~ :~-,Y~//~" .....<br />

- B I v~ p.i.~ F,£<br />

A ,v,w, ~I FJC<br />

No,~.~vtlev 34a)r,r.c mo~ ~J~<br />

~'-'~ ".-.. ;~


• '-"~<br />

~...L"<br />

%)'01-1517<br />

~,,-,..~,,,~'~,~. '/.~F~!~!~;~;`~`~'~.r~'~'/'~}`~`~C~`.~i~;~¢~:,~:~!~!{~`~;~z~" i!~'~Z, ','~'.' ~,, .,.. ,,<br />

El~O ' REFLUX I)flUil AIR COOL~<br />

. . ~ t£~'~n<br />

DO HOT<br />

q<br />

32"-01-151T<br />

32-01-1310<br />

I<br />

I<br />

- -': ~:;~, ;'P, OOUCT/<br />

I00 H,p.<br />

I)<br />

T _<br />

"1<br />

I<br />

I<br />

I<br />

32"01-1206<br />

~GUR( 2-'4<br />

32'01-1311<br />

"FZGURE 3-t<br />

32-01-130~Jk t<br />

32"01-13058 I<br />

W.<br />

SET •<br />

,~20 PSIG<br />

4"P G' I~<br />

L.P. FLARF.~---<br />

I . I r--R-32-I<br />

I I;00 PSIG STEAM" I r-I<br />

4'*1~-32-1<br />

®<br />

! -- 5 - ~ "<br />

11"'~-32<br />

fUEL 0,5 ,~<br />

8"-AA-32-I<br />

LIGI~ GASOLINU STY[<br />

P-Bk-3~-I<br />

#,ROiikTIO XYOROCAi~OILY STOAkGE<br />

4~DA'32-1<br />

AROMATIC X Y O ~ i~l'<br />

NOTEs1<br />

h THE [~J~'M(NT SHOIlM ON TILLS DRklINO 15 roA<br />

~I~ILRAIN, Ill PLANT Wg.L CONTAIN ONLY OH(<br />

7<br />

, ,.,,,,<br />

~, DLI~NG HOT LJ~T REGEIIERAYIOI~ A 14 DAY Pf..RIOR,<br />

u~.lJl[ PLIIEN BOTTOMS |5 SENT TO S'IORAG(<br />

ov ~Tcmw; com~ wv(5 A~o ,~c.vATIwo<br />

!~',~ ~mre .on~ me ,z to<br />

r ~.IIT[~ BOTTORS To 5TODAGE, A<br />

3, O~|WG NOT UNIT OPEI~TIOH, 'rill{ DASOLI.N(<br />

SPLITTER BOTTOMS 5TOAAG( PUWP IS OPEI~TEO<br />

OR A |ill DAY P(R[OO TO PROVIDE ."HE ADGEO<br />

EEO AEOU~9£O TO 'THE HGT UNIT TO ME(T 1HE<br />

XTO PLANT STREMI DAY FACTOR 0~" 9~, THE XOT<br />

IJHl'f MrdtAllOl~ 15 BASED OH A 5TREAM DAY<br />

FACION Of 8~¢. GASOLDiE SPLITTER BOTTOUS<br />

PUMP *1 IS ALSO OPF.~TEO OU~HO HGT UNIT<br />

OPEJUT[QN.<br />

4, VAPOR 3(¢ (MOt.()<br />

VAPOR WOL(~L~ IElb'Hl, 54.6<br />

5, THE FLOUR( IOJUB~S REFER TO THE TTPICAL<br />

EOUIPiI(IIT COIfI~T!ONS SHOWN ON DP,,klIN3<br />

0-01.'~-2,<br />

~NT SHORN 01 T~S D~YIHG~<br />

3~-0 I-I I(~ 3Z-OI-ISI3<br />

32-01-120G 3Z-01-1514<br />

32,4}1-130T ~1-1SI5<br />

32-G1-1308 32-0l-t51S<br />

3Z-DI-1309 ~-4)I-ISIT<br />

3Z-01-1310 ~'01-1518<br />

3Z-01-1311<br />

)~J~. IE.A 3Z~1-1320<br />

U.S, DEPP.RTHENT OF ENERGY<br />

V.q.G~ & CO,<br />

Be,me B.P.B. ......<br />

- TO - METHANOL " TO - GASOLINE PLANT II<br />

lm


A<br />

c<br />

' ~ I"AA-'~!<br />

[ ,-~z-~-z ,e)s'-~-3z IIEPEXTANIZF.A PROOUCT/<br />

DEPEIITAHIZ~ REFLUX DI1UU<br />

If'L:'<br />

i AWINQ<br />

O,G¢.Zi lllJYsl<br />

DISCII IPTION<br />

1 I°1<br />

, 4U,<br />

32-01-1313 32"01"1311 32-01-1 IOI<br />

D_~HR(R ~,LKI'LAIIOH FEED _ ALKYLA'-"TIOH FEED . ~ DEPIIOPA~-'(R ~ ~ 32-01-1]14<br />

rf'~ / ~.1"~1~ B(CIIAHG[I1, ALl ctxx, r~ IkTEll COOLER ._R~EFLIJX CONOE~EII<br />

I;,O ili6TLVI~ 5,5 llglW~ hE 14JOTWIHI<br />

32-01-1312<br />

F[OURE 3-I<br />

k"T I 2~0 PSIO<br />

6"0 I0' LP FL4RJ~ -II-'-I<br />

3Z-I)l-I IOq .4<br />

ncunE I-..__....~<br />

!,r I,<br />

I 2 I<br />

I<br />

1<br />

8"'~-32<br />

"-~i ~ I ~-AA-32-!<br />

_ I 0"'~-32-|<br />

T<br />

I<br />

-[~<br />

gE~'DllrrlOH<br />

3<br />

8'.-~-32-!<br />

12".-AA-32-!<br />

32"-01-1'~19<br />

32"01-1520<br />

FIGURE 4-2<br />

4"-'AA-32<br />

]2-01-1519<br />

32-01-15:'0<br />

DEPROPAH~ RDI.UXIPR~I~T<br />

PUI~' Xl~ SP~E<br />

SO X.P.<br />

63 I0'<br />

ld<br />

III C '/~, LIL ~ ~11 13:W-.I<br />

p,,<br />

G, I<br />

gq~- I<br />

I!lnl~.~d i 1..d~Jcl I ~<br />

I=1 ihu,~.l I In*~ F~I I F,--'-<br />

I I"~1 °'~ I " i ¢~1~cl .soJl~,=N.l<br />

I 4 ~


•<br />

;~L_---<br />

§ I<br />

'<br />

6<br />

....<br />

I 7<br />

3pOl.13L~ 32-OI-IZOT 32-01-1316<br />

33,Z illOTWlm<br />

:_[<br />

~. i I<br />

' ,<br />

H.C,<br />

._~----&<br />

T ]Z4)I-I;;OT<br />

,,v,. ~, ".~,~, 3Z'-OI-I3IG<br />

FIGURE 3-S<br />

g<br />

L~ ~euu' ~ is ~entVHn<br />

&<br />

CllS<br />

'IZ-Ol- IZI,_.___..~S T<br />

z-_._~q FIGURE<br />

I<br />

]<br />

I<br />

F'-I<br />

I<br />

,I,<br />

I50 PSIG STEAM I I<br />

II~M~3Z I'"1<br />

FUEL OAS i{F.~ER : L I<br />

DBPROPANIZ~ O01X(~,/ HF ALi~LATIOH Uil~! "-~LHHIP'I<br />

COXOEN~'IrE I I<br />

4'--~-SZ .r-~--. ----<br />

I, ~ JOUEIEIiT glOlll 01( THIS DP, Ar.,A{I IS FOR<br />

OK[ TRkII, THE PLANT ~t,t, CONTAIN O~LY ONE<br />

IP, XIH,<br />

L DURZHO IRT UNXT REG[HOU,11t~, k 14 DAY P~IOO,<br />

r~a,tHE ~M.IT~ ~OTTO~S IS 5E~ To STO~,A~<br />

I~ 511TCHIIW I~TROt. VALVF~ AKO ACT~VATII40<br />

IXi GXSOLtI~ 5,f.I.tTTO~ IPOITOUS PUUP e~, TO<br />

FINP SPL~TI~ ~OT~OUS TO STOP-AG f<br />

3, DUe, laG ~ UMI' ~l:l~T10~, THI[ GA~t,Tl[<br />

SPLITTI~ I~TTOUS S1~eA~£ PU~ IS OP[RATI~<br />

FOIl k lilt bY PERI~O TO PAOV]O£ TH[ H)OEO<br />

FEED REQtJtR~ TO THE HOT UHtT I0 MEET THE<br />

IIT6 pLANT sTREAM DAY FAt;TOll OF tl~. THE HOT<br />

UNIT OPERATION tS 6A,~t.O OH A STRIr:AM OAY<br />

FAC;OR ~F 05%. GASOLTX£ 9PLtTTEfl 90TTOI~<br />

PI~P 01 ~S XLSO ~P~U, TEO OUt~ flGT UHIT<br />

MBkTION.<br />

4, VAPOA ~4Z lllOLEI<br />

YAP~ HOL[CUL~R Ir~GflT., gq.6<br />

5. life Ft~JR( IItIMOEI~ R~FER TO IH£ ?YPTCAL<br />

[OUU~MEHT COHF]OUR~TIOH$ SHOtIN Off D~NG<br />

D.01-.Id~-2.<br />

@~[IT ~ OH ~ OlUr~,<br />

3Z-Ol-II(~<br />

3Z-01-1201'<br />

, .,, ,<br />

~-01-1~13<br />

112,-01-1314<br />

32-01-1115<br />

3Z-OI-131E<br />

,. ~-01-1311<br />

0~,,,,~.~ E,:°oI:IN<br />

U.S.DEP~THENT OF F.I~GY<br />

~ ~ V,R, 6RACE & CO, Ke~oc~<br />

I - 50,0~8 B,P,D,<br />

l--~~._.___--i ;~" i;;;;N J"";,~,,,.-,~,¢,~,,,"~ E~'L.J ........ F ~,,, I_<br />

. . ~ . . ! ~ ~ 1 ,. u . ,. ,,.,,,,~,. ,~=~ =,,. ~ , ~ " " / ~-- D-.-.P-~ NP !~,. ""<br />

I 5 7<br />

-- i<br />

I<br />

A<br />

D<br />

E<br />

m


,%<br />

I<br />

i<br />

A<br />

,,)<br />

¢<br />

!IN_ 1<br />

. . . . . . . . . . . . . . . . . . . . 441,<br />

,! ORAWIH(S<br />

CO~PONEBT<br />

M.N.<br />

DEEIHAHIZEg UEETHANIZER OEETHARTZER<br />

LIQUID VAPOR LEAN OIL<br />

FEED FEED CEED<br />

IIYUROGE8 2.016 6. t0 88.?t<br />

HETHAfl( 16.042 204.33 479.25<br />

,CAROOH.HOHOXID[ 2B.OIO 5.01 52,45<br />

CARBON DIOXIDE 44.010 190.00 174.33<br />

HIIROGEN 28.016 0.53 4.59<br />

ETHEHE i20.052 4.55 3,15<br />

ETHANE 3~068 57.07 20.70<br />

PROPENE 42.076 24.45 3.93<br />

PDOPANE 44.094 505,44 79.77<br />

lSO BUTANE 59.120 009.85 55.14<br />

I-8UTENE 55. 104 113.97 ! 5.82<br />

R-BUTANE 5~ 120 2T9. 51 12. 10<br />

ISO PEXTARE 72. 146 1,013.04 10.99 5.57<br />

I-PENTEN( 72,146 189.27 3.GO 1.12<br />

N-PEXTAXE T2.146 115.74 1.65 0.55<br />

CYCLO FEXTANE TO. 130 20.64 0.21 0:06<br />

2 METHYL PENTAHE 86.172 BET. iS! 5.79 155.79<br />

CI+HEAV]ER , 2? 995.47 5.54 554.69<br />

WATER 16.015 0.43 5.20<br />

"~OTAL - NO~HR (DRY1 7,543.71 996.84 7:1.79<br />

..... TOTAL - LU/HR 519,499.85: 27,980.55 76,100.75<br />

MOLECULAR WEIGHT 91.981 28.07 105,43<br />

OEI./$TflEAM DAY 81.236. _.'T----'--' 5,615,<br />

..... USC[D ~ 9. 076,62<br />

PRESSURE - P510 166.30 158.]0 120.30<br />

TENP - 0£ I0~ 100, 205.<br />

H - MBTU/N8 79.61~ 81 6,855.10 13,580.00<br />

DEPROPAHIZER<br />

FE(O<br />

@<br />

OEPROPANIZER<br />

VAPOR<br />

OVZRH~D<br />

@<br />

DEPROPAR[ZER<br />

BOTTOMS<br />

CO~POHEUT<br />

HYOflOGER<br />

H.W.<br />

2. OIG O. 000<br />

METHANE 10. 042 O. DO0<br />

CARUOH MOHOXIDE 28. 010 0.000<br />

~RBON DIOXIDE 44.010 0.02 0.034 0.02<br />

. Hih~OQl:d 20. 016 : O.O.O,O<br />

ETHEflE 20. 052 0..01 O, OI 4 0. OI<br />

ETHANE 30. OE8 5, I B 34. 334 5. 18<br />

PROPEHE 42.078 24.51 109.269 0.01 24.50<br />

PROPAHr 44. 094 I 560. OH 3978.127<br />

I. 92 . 5TU..IG<br />

lEO BUTANE 58.120 943.85 69.939 933.70 10. IS<br />

I'OUTEHE 58,104 119. 75 2.797 119.29 9.46<br />

H'BUTAflE 50,120 291.56 1.600 291.43 0.23<br />

. I-PEMEN£<br />

H-PENTANE<br />

. CYCLQ PEHTAHE<br />

2 HEIHVL PENIAN(<br />

C *HEAVIER<br />

.... SEATER<br />

72.146<br />

72.146<br />

72. 146<br />

"tO. 13i~<br />

86.172<br />

19,016<br />

1016. 51<br />

192.54<br />

107. 86<br />

I1.03<br />

59.99<br />

4.14<br />

9, DOll<br />

9,001<br />

IOIr-- 53<br />

192.54<br />

107. 88<br />

11.03<br />

5°,99<br />

4.14<br />

TOTAL - MOL/HR<br />

TOTAL - L~HR<br />

MOLECULA R WEIGHT<br />

B~I./$TRr..AH DAY<br />

u~C, FO<br />

205,240.46<br />

61.43<br />

24.014.<br />

44. 13<br />

mlli~Z3~13] mE]]~l~<br />

55,.33<br />

44. 13<br />

20,332.<br />

PRESSUR~ - PSIG 207.30 205,30 210.90 200.30!<br />

TEl~- °F 160. 115.51 23?. 112,<br />

H - LtOTI!/HR I 37.080.90 39,891.35 4,480.751<br />

[<br />

NO, ~--'iIQN NO. I DATE mY ~ SiC( MIGU ~,IILNT<br />

I 2 I 3<br />

I<br />

DEETllAHI2Efl DEETXXUI;<br />

VAPOR REFLU)<br />

OVERHEAD DRUH<br />

OVEEHO<br />

sa.2e~ .I<br />

731,164 cn~<br />

39,474 31<br />

429.040 3(~<br />

5,498<br />

5,093<br />

90.072 7|<br />

E, 419<br />

117,995 "~ :<br />

4,430<br />

O. iT5<br />

o. 13a __0.O31<br />

O. 812<br />

O. 13S<br />

0.059<br />

0.003<br />

7.027<br />

3.74<br />

h526.304 -- 1.34( J<br />

42o057. 34,77(<br />

27. 55 2~<br />

13.901.0 12,258.94J .<br />

155,40 I$1<br />

65. 23 ~' J<br />

i<br />

- I<br />

9,471<br />

9,o21<br />

SOT.'JI I<br />

299Z.31 I<br />

s<br />

,, TO.O I<br />

256. ]<br />

r,254.Ol<br />

~l,h,-~l~: ~rL~... htv a .._<br />

I


F. Plo,t Plan/General Arransement Draw£n~e<br />

Plot Plan <strong>and</strong> General Arrangement Drawings for Gas<br />

Fractlonation Unit 32 are us follows:<br />

Drawing No. Title<br />

D-32-PD-INP Plot Plan - Unit 32 <strong>and</strong> Unit 38 Gas Fractionation<br />

<strong>and</strong> HGT<br />

D-32-PD-2NP Elevation - Unit 32 <strong>and</strong> Unit 38 Gas Fractiouation<br />

<strong>and</strong> HGT<br />

II-1.2.13-13<br />

P


A<br />

11,<br />

x<br />

I-<br />

|<br />

a<br />

1i<br />

|<br />

1<br />

t~<br />

• w<br />

,w<br />

...~,<br />

:'~ D<br />

z&<br />

VZ<br />

, I , I ~ I 4t<br />

.... MATCHLINE ~ C~L ROAD E 7320<br />

. . . . FORCONT, DWO. O'25"PD'I<br />

L,<br />

~,,. ~ ~ ~I ~ ~! ~ ,..=, ,,.-", ~-,~.<br />

I<br />

I I<br />

, i<br />

• ~ .... I<br />

z[<br />

• ., i r,t ~i<br />

! I Ii<br />

I<br />

AIR COOLI~R$ A60~ PlPI~AY<br />

.!<br />

1 i I _"<br />

.J,,,~lsl I ~I t-,sol ~ cu~ i' --<br />

/~1 b I .-Ha4 ~1 I.}11 FJcl Iron LIC~;.<br />

____j-l.",l:,-,,-,~ ~,,I I~lrJcl |,ss~'o~.~<br />

4@


i<br />

0<br />

' FOR CONT. 0WGo -"<br />

P(:8<br />

,IZ-Ol-4GOI<br />

l'.',,<br />

F£,R OESf~N REP(~T n*n RR<br />

~OR CI=IEM APPROVAL ~,-,~<br />

]OR t l ~ APPROVAL ~=cw.,= ~'1<br />

I_SSUI~0 (~ll~qT R~VI(1K S~r COMF~ =evn~o~*=u ~JC THE I~.R4 H, PR~NS CB~pR~<br />

P~SADG~. C.r~.ll~,~I A<br />

I<br />

I<br />

,/<br />

!<br />

.,,,.<br />

e,,-,<br />

,..J<br />

.,.,J<br />

I---<br />

32"fl1"1101<br />

3Z-OI-IIOZ<br />

3Z-Ol.llO)<br />

32"01.1104<br />

32-01-1Z01<br />

)i-OI-IIOZ<br />

33"01-120$<br />

3Z-Ol-lZO(<br />

)2.01.110$<br />

)2"01-1Z04<br />

SZ'Ol-120?<br />

32"O1"1301<br />

)Z'OI'ISOZ<br />

32"01"130)<br />

SZ'Ol-1~O4<br />

3Z-OI-I)OS~,O, r.,,O<br />

)Z'OI-IS~A,,O<br />

32"Ol'i~OT<br />

3Z-01-130|<br />

32"O1-1309k,8<br />

32"01-1)10<br />

32"01"1311<br />

3Z'0l'1312<br />

3Z'01-131)<br />

3Z-01-1314/~0<br />

32"01-1315<br />

3Z-OI-ISIKA, O<br />

r3Z-Ol-131T<br />

3|'O1-131~ko8<br />

)2-Ol-tZZ0-A,O<br />

]2"D1-1321<br />

)2"0t-1501, 1502<br />

3|'01-150~1504<br />

)Z-Ol-15OS. ISOG<br />

)2"01-1S07. ISOS<br />

32"D1-1509, ISIO<br />

32-01-1513.1SI4<br />

32-O1-1SI5, ISIS<br />

~2"01"1517olS10<br />

32-01-151~,1520<br />

32"01-2101<br />

UNIT 3B iS PROPRIETARY.<br />

I _ 7<br />

AOS~OER DE(IHANII01<br />

DI~ERTANIZ(fl<br />

O~OLIH[ SPLITIER<br />

DEbOrAH IZER<br />

WATKR I~tAV DRUm I<br />

WATER 5RAW DNR413<br />

AOSOHBE~ O((TIIARI2ER REFLUX DRUM<br />

rATER K.~ ORUM<br />

D[PERTANIZER REFLUX DRUM<br />

OA~OLII~ SPLITTER REFLUX DRUM<br />

PEPROPANIZ£R H(FLU~ DRUM<br />

i i ii<br />

tbSQROERDE(THANIZERAIR COOLER<br />

46e-~lOER D[(THANIZ(A CHILLER<br />

Nt~'~OR8ER O((nUU41ZER HEROILEk<br />

O(PERTANIZLR AIR COOLER<br />

D[P(NTAMllEROYHO, CONG~ISER<br />

D(PERTAHIZ£R REROILER<br />

SPLITTER OOTTOI~ AIR COOLER<br />

GASOLINE SPLITTZR AIR COOLER<br />

GASOLINE SPLITTER REOOILE~<br />

LIGlff O~OLINEPROCOCT AIR COOLER<br />

tIGHT GASOLINE PRCOUCT COOLER<br />

DEPROPANI|(R FEED/'OQTTOM~ EXCHANGER<br />

ALKYLATION FErn AIR COOLER<br />

DEPR~PAMIZERR(FLL~COHDEI~$£H<br />

D[PROPAHIZ(R RrnOILER<br />

PROP~E PRODUCT COOLER<br />

ALKYLATIOI FErn lATER COOLER<br />

OEPENTAHIZER FEED/BOTTOU~ (XI~ANGER<br />

GASOLIHC SPLITTER FC[DIOVHD.E'~CHANGER<br />

ABSORBER 0EETHANIZ~ SlOE R[ROILER<br />

COLO LEM~OIL Pt,,MP ~0 SPARE<br />

LEAH OIL ~ ~ SPAR(<br />

D£P(NTARIZER 80TTOI~ PUMP M(D SP~E<br />

DEP(KIANIZ(R REFLUX PtJl~ A.'~D SPAR~<br />

DEP(HTNIiZER OVHO.PLZ4= A~ SPARE<br />

GASOLINE SPLITTER BOTT~PUMP NO, 2 At, O SPARE<br />

GASOLINE 5~LITTER OOTTOM~PUMP riO. I k~SPAR£<br />

CASOLI~( e..Pt,.:TTER PROOUC|/flEFLUX PUMP Atl0 SPAR(<br />

DEPROPAEIZERREFLUXPUMPAHD SPARE<br />

GAS rRACTIONA, TION REFRIG(RATION PACEACE<br />

~*, 18 ~ M &O • IO<br />

L tl I<br />

SC, M.b I" .llr-cr<br />

'<br />

e~'TT<br />

U.S. DEPARTHENT OF ENERGY<br />

V.R. GRACE & CO.<br />

50.069 B.P.O.<br />

~.~o~<br />

COAL,,- TO - HETHP, NOL - TO - GASOLINE PLANT<br />

PLOT PLAN<br />

~NIT 32 AND UNIT 38 tl<br />

FRACTIONATION AND HGT | D-32-PD-lI~P ,<br />

• I T<br />

A<br />

D<br />

2.<br />

I<br />

.o<br />

ii<br />

i<br />

i:<br />

[<br />

I<br />

fl<br />

i<br />

A


,0,<br />

¢<br />

D<br />

• ,, ...... ~'~'`~m"~'~'~'~m~'~'~'`~m'~+r`~m;~'`~':~r'~P'~++L++~U~,~?(~+!~+'+~; ', ~'~P`~t~`P'~'1'~/~+:'~'~'+~+~'~'~+'~+?~+P`~:~'d'+~%''~t;t~+P~+~'~;i~:~;~:~P:~ :,,+?,,, ,,,,,,, ,.,, ,..;;.+~+,;,,,,,,,,, ....<br />

Do~,~-PI>-I<br />

', . . . . I = I , ~ I 4+<br />

I)<br />

5<br />

..... I<br />

-- j<br />

• "tw..m___:~.'+o__+ _ [<br />

iZ<br />

I<br />

I<br />

I I<br />

}!<br />

SiP. PRCU =I.II~N~<br />

- -<br />

I I<br />

!i~ ,,?.t!]r.!!!, .,dl[- ~ i ...... ::..L~<br />

Watt<br />

•//,4.<br />

I ,<br />

'


u<br />

,,',:~ ~=~ .... ".",, ..... ~, .. .-.-<br />

~,~',~'~;<br />

[,--<br />

,v ,<br />

r IIA,~- |<br />

II-"" I~-R~ t i<br />

F,o¢ ¢~,~sM'I" ~ t , llP,,,,,~,,,o f-,'~l I<br />

I~,'~i[ cLilMTl~nlt~lNlluv*~°"'*'l I l THE RASH i. PAA:~ONS COMPANY<br />

~¢.noN /IJn.,cu~.T Iwt',~r IJ~-/i-/~.'ll PASADENA.~iUFORNIA<br />

/ i u _ i<br />

40 , 6<br />

I am<br />

/////%%%%%<br />

ii lid<br />

lr'- :Wl'<br />

U.S. DEPARTMENT OF ENERGY<br />

SAsKErr W.R. GRACE & CO.<br />

50,000 B.P.D.<br />

I<br />

7<br />

KENTUC, K¥<br />

UxJIT b~,4,MDIJ IT~ ~ I A<br />

pj.,-.no~'no,~ A~o He'T / I)-~-PI)-?.uP 1. ,~.~<br />

6 I<br />

__<br />

A<br />

D<br />

_?..<br />

A<br />

m.<br />

p<br />

l l


Fracttouation Un£t 32.<br />

G. Single-Line Diagram<br />

II I I i .... III|<br />

See Volume l~, 1.2.12(G) for the Single-Liue Diagram for Gas<br />

II-1,2.13-14


a ,<br />

C 1.2.14 IIF ALKYI~TION - UNIT 33<br />

/<br />

\<br />

A. Basis of Design<br />

A hydrofluoric acid (HF) alkylatlonunlt has been selected<br />

for the conversion of a mixture of butylenes, amylenes, <strong>and</strong> isobu~ne to<br />

produce alkylate as a blending component of finished gasollne. The IIF<br />

Alkylatlon Unit is a conventlonal-type facility v~thout octane upgrading. The<br />

HF Alkyla~Ion Unit selected Is based on a proprietary alkylatlon process<br />

llcenaed by Phillips Petroleum Company.<br />

The feed stream is derived from the conversion of methanol<br />

to gasoline in a Mobil ~ffG unit ~-~th subsequent fractionation to separate the<br />

butylene <strong>and</strong> amylene components in depentanizer <strong>and</strong> depropanizer to~ers. The<br />

feed Is depentanized to keep the C6+ fraction at a low level so that the<br />

hexane fraction is less than 0,2Z by volume of alkylatlon feed, This is<br />

necessary to reduce tar <strong>and</strong> decrease ac!~ consumption during the alkylat£on<br />

process. The feed is also depropanlzed to keep total propanes at a low level<br />

for alkylatlon <strong>and</strong> to reduce aeSd losses that occur when propane is vented.<br />

The feed contains a h~h-~mylene content~th about 60~ dry<br />

volume amylenes to the total olefins present in the feed. Phillips has<br />

exper±ence processing feeds with a hlgh-amylene content, up to about 31Z by<br />

vol,~e amylenes to the total oleflns present in the feed.<br />

The HF Alkylation unit product streams consist of alkylate<br />

as a gasoline-blending component, n-butane to adjust Easoline vapor pressure,<br />

<strong>and</strong> £eobutane to adjust gasoline vapor pressure ~r£th the excess to sales. The<br />

synthetic al~ylate product is about 7.5% by volume of the total ~asoline<br />

pool, with CS+ naphtha about 88Z by volume <strong>and</strong> the remainder butanes. Since<br />

n-butane ls in short supply <strong>and</strong> there is excess ieobutane in the feed, some<br />

isobutane Is added to gasoline when needed for vapor pressure adjustment of<br />

finished gasollne.<br />

II-I. 2.14-1


Provision for an n-butane side-cut from the deisobutauizer<br />

~s included in the HF Alkylation unit deeisn. The alkylate product should be<br />

£1exible in n-butane content to allow for a Reid vapor pressure (RVP) of<br />

total alkylate of about 5 to 6 psi for storage. When blending alkylate with<br />

naphtha for storage, a higher RVP is allowed; for instance, about 8 to 9 psl.<br />

Since the feed contains excess isobutane, the overhead<br />

product from the deisobutanizer is expozted for sales. The isobutane product<br />

is a high-purity stream with less than 0.SZ by volu~e n-butane content.<br />

Alkylat£on unit feed <strong>and</strong> product stream compositions are presented in the<br />

following tables,<br />

Propene<br />

Propane<br />

Component<br />

Isobutane<br />

l-Butene<br />

n-Butane<br />

Isopentane<br />

1-Pentene<br />

n-..Pentane<br />

Cyclopentane<br />

2-Hethylpentane<br />

C6+ Heavier<br />

Total, lb mol/hr<br />

Total, !b/hr<br />

Pressure, psia<br />

Temperature, °F<br />

lIFAlk~lnt~on Unlt Feedstock<br />

i<br />

|m mn •<br />

II-1,2.14-2<br />

lb mol/hr molZ<br />

0.01<br />

1.92 0.07<br />

933.70 34.11<br />

119.29 4.36<br />

291.43 10.64<br />

1,016.53 37.14<br />

192.54 7.03<br />

107,88 3.94<br />

11.03 0.40<br />

59.99 2. I9<br />

4.54 o.,4<br />

2,738.45 100.00<br />

178,900<br />

45<br />

100<br />

, II


C<br />

C<br />

Product Streams<br />

m<br />

Ieobutane Product<br />

Component (lb mol/hr) (molZ) (lb mol/hr) (molZ)<br />

. • .,L ,, , . . . . . . . . , •<br />

Propene . . . .<br />

Propane 1.92 0.35 - -<br />

Isobutane 552.13 99.22 12.20 4.42<br />

l-Butene . . . .<br />

n-BuCane 2.41 .43 244.24 88.47<br />

Isopentane - - 19.56 7 • I I<br />

l-Pentene . . . .<br />

n-Pent:ane . . . .<br />

Cyclopentane . . . .<br />

2-F~e thylpent ane . . . .<br />

C6+ Heavier . . . .<br />

AIL71ate . . . .<br />

~ L Z i ~ i<br />

Total, lb mol/hr 556.46 100.00 276.00 100.00<br />

Total, l"j/hr 32,315 16,310<br />

Pressure, [~,s ta 85 60<br />

Temperature, °F 110 110<br />

, .m i . i i , i i | . ,<br />

IT-I • 2 • 14-3<br />

l ,, , • , , ,, i i<br />

n-Butane Product Alkylate rroduet<br />

(Ibmol/hr) (molZ)<br />

i<br />

ii i<br />

N m<br />

44.87 2.80<br />

1,067.42 56.55<br />

m m<br />

107.95 6.73<br />

11.03 0.69<br />

59.97 3.74<br />

0.54 0.04<br />

312.00 19.45<br />

1,603.78 100.00<br />

130,196<br />

5-6<br />

110<br />

N


B. <strong>Process</strong> Selection RatLonale<br />

, . , ,<br />

~he Phillips EF Alkylation <strong>Process</strong> is a commercially proven<br />

technology. Phillips has about 80 plants operatlnS successfully throughout<br />

the world. Its capital <strong>and</strong> eperatlnE costs are lower than for the other<br />

processes examined. Phillips experience with hlgh-amylene feeds fits well<br />

with the present design, which contains about 60Z by vol,~e mnylenes to total<br />

oleflns in the feed. The process provides rellabilltywith a good turndown<br />

ratio.<br />

I. Operability. The HF Alkylatlon Unit can be operated at<br />

about 50~ of design capacity, It can be brought to full-load operation within<br />

a few hours.<br />

2. Reliabillty. The plant is designed with all pumps<br />

spared <strong>and</strong> with block valves <strong>and</strong> bypass valves installed around control <strong>and</strong><br />

relief valves. The design will permit maintenance on such items without<br />

shutting do~n,<br />

3. 0nstream Tlme. The operating factor for HF alkylatlon<br />

will be better than that of a fluid catalytic crackSng unit <strong>and</strong> is estimated<br />

at about 95Z stream factor.<br />

4. ~alntenance Costs. The maintenance cost estimate for<br />

| u<br />

the HF Alkylatlon unit Is 3o5Z of unit capital cost.<br />

5. EquLpment Lead Time, With the exception of the HF<br />

regenerator, the Phillips alkylation plant is designed entirely ~f carbon<br />

steel, The acid regenerator can be of either Monel-clad or solLd Monel<br />

construction. Monel construction is a major factor in determining the<br />

equipment lead time,<br />

6. Comm.erclal. Exper.i..ence. Table TI-1.2.14-1 summarizes<br />

plants using Phillips HF Alkylation <strong>Process</strong> in operation <strong>and</strong> under<br />

co~tractiou,<br />

II-1 • 2. I-',-4


q<br />

i m i~4"W~ZllJ~J~8~ANi<br />

Table IZ-1.2.14-1 - Racen£ Phillips HF AlkylaCion L~eensees<br />

Company<br />

Gulf 0il Corporation<br />

Harathon 011 Company<br />

Getty Oil Company<br />

Texas City Refining<br />

Ltndsey Oil L~mt*.ed<br />

BP Trading Limited<br />

BP ~ading L~nited<br />

Marathon Oil Company<br />

Texaco-Gul£<br />

Amoco-Murphy LtmiP-ed<br />

Mobil Oil Corporation<br />

Mobil Oil Corporation<br />

Gulf Oil Corporation<br />

BP Trading Limited<br />

CFR<br />

Mobil Oil Corporatiou<br />

Petrobras<br />

Trintoc<br />

~PC<br />

Albatross Oil <strong>Process</strong>ing<br />

Saber Refining<br />

Tenneco 0tl<br />

, . , | 1 1 .<br />

Startup Design Capacity<br />

Refinery Location Year (bpsd) (mtpd)<br />

Philadelphia, PA<br />

Texas City, TX<br />

81 Dorado, KS<br />

Texas City, TX<br />

Killingholme, Engl<strong>and</strong><br />

Rotterdam, Holl<strong>and</strong><br />

Grangemouth, UK<br />

Garyville, L%<br />

Pembroke, Wales<br />

Milford Haven, Wales<br />

Croydon, Engl<strong>and</strong><br />

Durban, South Africa<br />

Clnclnnaci, OH<br />

Kwlnana, Australia<br />

LaMede, France<br />

Saudi Arabia<br />

Cubatao, Brazil<br />

Point Fortin, Trinidad<br />

garri, Nigeria<br />

Antwerp, Belgium<br />

Corpus Christi, TX<br />

Chalmette, IA<br />

II-1.2.14-5<br />

1973 15,000 1,667<br />

1974 11,000 1,222<br />

1976 10,000 1,111<br />

1979 6,000 667<br />

1981 4,200 457<br />

1982 5,000 556<br />

1981 4,200 467<br />

1980 21,000 2,333<br />

1982 18,000 2,067<br />

1981 3,000 333<br />

1982 14,500 1,611<br />

1981 2,500 278<br />

1Q~O 2,000 222<br />

1981 3,000 333<br />

1981 3,000 333<br />

1984 14,500 1,611<br />

1984 3,000 333<br />

1984 5,500 611<br />

1983 3,000 333<br />

1984 4,800 538<br />

1983 7,700 859<br />

1984 16,000 1,778<br />

.ll


C. <strong>Process</strong> Descript~on<br />

Refer to <strong>Process</strong> <strong>Flow</strong> <strong>and</strong> <strong>Control</strong> <strong>Diagrams</strong> D-33-HP-INP,<br />

-2NP, -3NP~ <strong>and</strong> -~NP for eq~;.:~e~t arrangement <strong>and</strong> material balance.<br />

Depropanlzed hydrocarbon liquid from the Gas Yractionatlon<br />

Section flows to Feed Surge Tank 33-01-120S~ which has an 8-hr holdup to<br />

ensure continuous hydrocarbon £1ow to the HF Alkylatlon Unit. The hydrocarbon<br />

£eed eomposltlon is shown £n the above table aea mlxture cons£stlng o£<br />

butylene <strong>and</strong> amylene olefIns.<br />

The total hydrocarbon oleflnlc feed, along with recycle<br />

isobutane, is charged to the reac=or sectlon of the HF Alkylatlon unit. The<br />

combined feed is dlsperaed th;ough ~pray nozzles <strong>and</strong> mlxed wltb hydrofluoric<br />

acld before entering the reactor riser. The reactor operates by dlf£erentlal<br />

gravlty ~Iow <strong>and</strong> has no novlng parts such as Impellers or mixers; also, acid<br />

circulation pumps are not required. Total conversion o£ reactants to<br />

hlgh-quallty alkylate occuro almost instantly.<br />

From the reaction zone, the hydrocarbon components <strong>and</strong> acid<br />

catalyst flow upward to the settling zone. Here, acid catalyst breaks out as<br />

a bottom phase <strong>and</strong> flows by gravity on a return cycle through the shell side<br />

of parallel Acid Coolers 33-01-1301 <strong>and</strong> -1302 to the reaction zone, where the<br />

reaction cycle is repeated. Heat of reaction is removed by heat exchange with<br />

a large volume o£ coolant £1ow£9~ through the tubes. Cooling water used is<br />

available for further cooling elsewhere In the unite The hydrocarbon phase<br />

£rom ~he settling zone, containing minute quautities o£ propane, recycle<br />

isobutane, normal butane, pentanes, cyclopeut~ne, <strong>and</strong> alkylate, is charged to<br />

Maln FracClonaCor 33-01-1101 £or recovery o£ oroduct streams.<br />

The main fractlonator overhead is charged to ~F-leobutaue<br />

Stripper 33-01-1103 for H~ acid removal overhea~. The bottoms isobutane<br />

p~oduct is catalytically defluorluat:~d, K0H treated, <strong>and</strong> yielded as isobutane<br />

product. Recycle Isobutane, essentlal for £avorable control of reaction<br />

mechanisms, Is produced as a vapor overhead stream from she main £ractlonator<br />

II-I. 2.14-6


<strong>and</strong> also from the HF lsobutane stripper bottoms, The condensed <strong>and</strong> cooled<br />

recycle £sobutaue is returned to the reaction zone.<br />

The alkylate bottom product from the maln fractlonator<br />

containing about 2Z n-butane is acceptable for motor fuel blending. An<br />

n-butane product of about 85~ purlty <strong>and</strong> sultable for motor fuel blending Is<br />

taken as a vapor slde-draw near the bottom of the main Eractlona~oro This<br />

sldestream Is condensed <strong>and</strong> sent to storage for vapor pressure blendimg In<br />

gasoline.<br />

A small slipstream of acid Is wlthdrawn from Acld Settler<br />

33-01-1202 <strong>and</strong> fed to Acld Rerun Tower 33-01-1102 te remove dlssolved water<br />

<strong>and</strong> polymerlzed hydrocarbons. ~_ overhead product from the rerun column is<br />

clean hydrofluoric acid, which is condensed <strong>and</strong> returned to the system. The<br />

bottom product from the rerun tower Is a mixture of acld-soluble o11s <strong>and</strong> an<br />

HF water azeotrope. This stream is sent to Main Fractlonator Heater<br />

33-01-1401 to be dlsposed of by burning.<br />

Auxiliary systems included w£thtn the battery limits include<br />

(1) Acid Relief Neutralizer 33-01-1201 to remove HF from relief gas leaving<br />

the battery limits, (2) Recycle Acid Rerun Tower 33-01-1102 to remove<br />

acid-soluble o11s that occur in the reactor acid, (3) Acid Storage Tank<br />

33-01-1203 for anhydrous HF acld dur£ng periods when the unit is shut down<br />

for turnaround, (4) HF Acld Neutralizer 33-01-4102 for surface dralnage <strong>and</strong><br />

sewer drainage in the acid area, <strong>and</strong> (5) a change room <strong>and</strong> storage room for<br />

cleaning <strong>and</strong> storlng necessary protectlve clothJ.ng requlred on occaslon by<br />

operatlng <strong>and</strong> maintenance personnel.<br />

<strong>Process</strong> hydrocarbon vapors from the relief gas header<br />

containing HF acid are contacted in Acid Relief Neutralizer 33-01-1201 with<br />

dilute aqueous sodium hydroxide prior to entering the flare system. Calcium<br />

chloride is used to precipitate calcium fluoride from spent caustic in<br />

Calcium Fluoride Precipitator 33-01-4101. Insoluble calcium fluoride settles<br />

out to form an inert sludge, which has been successfully used as a sanitary<br />

l<strong>and</strong>fill ~r£thout known environmental problems.<br />

Y.I-I • 2.14-7


i ~ i m ~Itleo~,,~ tl~ tlWr e41~ ¸~ ~ , 4~ ~t~ ~ ~ e1,et~e~*l~fr~q 4 ~ le ~ ~le~ l l i ~ I<br />

Fro~ produc~ screams that require KOH treaters~ the spent<br />

KOH is processed through a spent caustic neutralizer using Na2CO 3.<br />

Drainage from the spent caustic neutralizer flows to the plan~ was~e~mter<br />

treament system,<br />

Product streams such as L~G, are defluorlnated over an<br />

activated alum2na bed. After the bed is "spent," it is considered ~nert <strong>and</strong><br />

can be disposed of ~n a sanStary ~<strong>and</strong>£111.<br />

D. Risk Assessmen~<br />

The hydrofluoric acid (HP) alkylat~on unit designed by<br />

Phillips Petroleum Company converts a m~xture of butylenes, smylenes, <strong>and</strong><br />

isobutane to produce alkylate as a blending component of f~n~shed gasoline.<br />

The Phillips HF Alkyiation <strong>Process</strong> is a ccunnercially proven<br />

technology. Phillips has abou~ 80 plants operatiug throughout the world.<br />

Phillips experience wi~h high-amylene feeds t~cs wel~ wi~h the present<br />

des~su, which contains about 60Z by volume amylenes co ~o~al ole£ins in the<br />

feed. The process provides reli~bil£ty with a high-onstream factor. The plant<br />

is designed with all pumps spared <strong>and</strong> with block valves <strong>and</strong> bypass valves<br />

installed around control <strong>and</strong> relief valves. The design permits maintenance on<br />

such items without shutting down. Corrosion <strong>and</strong> equipment ~ouliug are not<br />

expected to be problems. The technical risk is considered ~ntmal.<br />

ZI-I • 2.14-8


L" ~"<br />

E.<br />

are as follows:<br />

Drawing No.<br />

D-33-MP-INP<br />

D-33-MP-2NP<br />

D-33-MP-3NP<br />

D-33-MP-4NP<br />

IO I~lt~lh m~Qrtl~ pN ~ Nml<br />

Pro,tess <strong>Flow</strong> <strong>and</strong> ,<strong>Control</strong> Dia~ra~_s (Including ~aterlal<br />

Balance)<br />

<strong>Process</strong> <strong>Flow</strong> aud <strong>Control</strong> <strong>Diagrams</strong> for HF KLkylation Unit 33<br />

Title<br />

PFCD HFAlkylatlon - Acid System<br />

PFCD HF Alkylation - Fractlonation<br />

Material Balance -~IF Alkylatlon<br />

PFCD ~Y Alkylatlon - Waste Disposal<br />

I'r-I. 2.16-9<br />

i !<br />

E*m


,,,, , ; . ,, • , m .~,,~ ,, • •, , i~ , ,,,i ,<br />

,,~t.~o~ 33-o1-I3o~ ~ 33-o1-,2o3 3,|.0~.t3o] 33..o1-13o5<br />

ACID COOt, EA ACln COOLEII ISO~UTAH[ IT[CYCLE ACID SETTLER ACID STORAGI[ ACID VAPO4~IZER ACV,~'S~[RTJF-'[~I"~f- £1!<br />

' ~ " " IUOCO0(,I~<br />

ALK~LATE FEEl)/<br />

FEEO SL~G[ TARK<br />

COOt.ING WATER SUPPI.YICUOLIIIG TOW~<br />

'1 "-~:" ("'J ' 1 I<br />

33-01-1202<br />

l-<br />

RF..A( TO~ RF.ACTO~ CWR ~'~<br />

OI~ICNIPI"ION<br />

I.~ RECYCLE ISOOUTANE ~ 0 6<br />

L-.J'-"- ~ 2o',..w-33<br />

cws<br />

[ I I I<br />

I ,.I L,, I I I I<br />

I t"°'l "''1'1 "vl~'l'~¢l"~"l°'~"'l<br />

SETTLER EFFLUUIT tic<br />

~ B~"A°33 HF VAPOR<br />

.~01 130-~<br />

33-01-150G<br />

~3-oH5o!<br />

33-01-IS~"5<br />

3'~-01-15o.i<br />

A rm RERUli<br />

m<br />

33-.01-1~06<br />

3,]-.01-1509<br />

i "~'o RELIEF HEADER<br />

14'-A-33<br />

H1TRO~ER ~<br />

3]-01-1102<br />

--el<br />

33-01-1508<br />

33-01-1509<br />

~DI FRACTIONAT~ FEED .,.<br />

PLI~ AHO SPARE<br />

iI c Is~v.I I linAwl r~ I I F~ an i.~:<br />

il n Ist~ni I leAwl r~l I F.gO_U~L~<br />

=1 AIv:v~ I I i i ;FO~S='L.',<br />

4,<br />

,'IK<br />

,,, . ~


:"4~ ~ a<br />

~u[,t He<br />

• ~ ~ L ~ . ,<br />

I I<br />

I'<br />

3S.-Ol-I to|<br />

ACZO~O~<br />

~<br />

STIIIP~JI4G |5OOUrAH£ ' ~ _<br />

e ~<br />

!~.,... ,,~,CLE<br />

33.-o1-1306<br />

llXt~lM<br />

33-01-1305/~e<br />

li~t#' Fqs~f~OaXTm<br />

~ , .~-i3(ClUU~£R<br />

~---~-~ NOT~<br />

1, 'fXE £00L1110 IfilEIt FACILCT~ FOR 1X£ H,F.<br />

ALKYL~T|OR UHIT 11; A Sf~,[~11[O S¥STEId,<br />

33-01-1]0a<br />

"R-]3-I<br />

2. "~X£ |SOOUTANE FLOg( LIH[ T~S|NTO TIIEISO-<br />

OtlTAV£ STIAtAC[ FACIL~Y AT "qlE PUll ~ °]SCitAItG£<br />

L1HE. (XOItMALL¥ NO FUR DURtKO UHiT OPB-<br />

' LSOOUTAH[ FLUSWSTOSAGE ~0-$7-ilP-4 liP U kT|0e).<br />

tHOE 2)<br />

ALKYLATE/llA~ FRACT|OHAT~ ~ 0-33,-MP'2 liP, J<br />

Hrll~,l rP.xcTloax~oa o~cm~o ~,cuuut.xT'nn, ~ o.-~].-i,-~ m, I<br />

|S06UTANE STI~PP[R<br />

I--<br />

I<br />

n~'mtrt<br />

RECYCLE<br />

¢ ~,~li~iu¢/<br />

]Sr41UTAi;'/<br />

~ O-33-11P'2 XP l<br />

RECYCLE ]SO~UTANE COilOEKSE~<br />

CoADrNSATL<br />

DAwN " '<br />

'~ .-. :.-.-..--~r n .... I I<br />

.... ,~=, Jw1'~L I c'"'' I I<br />

' ":]. ........ APPAOYAL I "'~uz'~'"D i n~K i11~J82<br />

, .... :..[[..IT II~'V~LL'I llaJ'i'li'u°~uiml FJC 11112/82<br />

lOlClOi~tol¢ ~iJ ~ .<br />

33-01-1307<br />

' 14"A'33- I<br />

Z'-A-33<br />

RECYCLE<br />

I$ORUTANE<br />

33-01-1308<br />

p t<br />

33-'01-130~A<br />

33-01._._- r~ ,m<br />

I i<br />

I PHILI.IPS PETROLEUM COMPHNY<br />

e ~ a,u~om<br />

EFFUENT Hr./<br />

WklN FILICTIOXATOR<br />

"el<br />

ACID IAI~ItI~US/$TORAG[}<br />

,,-----4 0-33-L~-2 NP~<br />

AC~O SO~L( czts,<br />

CA. S. O. )lmlN I~CT]OXATOR<br />

AI.KT~TU ~ D-$3-tlP-2 ~P I<br />

FRACT1ORATOR<br />

i~A-33<br />

ALKILAT( COOL~<br />

D335Pl KID. 0~,<br />

I<br />

EOUIPI~NT S.~Ot3 OH TXIS DRAWING<br />

33-01-II0Z 33"01-1307<br />

33-'01-1202 33-01-130B<br />

33-01-1203 33-01-130~<br />

3]'01-1301 :33"01-130~<br />

• 13-01-130Z 33"-01 - ISOG<br />

33-01-1303 33-01-150'/<br />

33"01-1304 33-01-1508<br />

33-4]1-1305 33-01-150~<br />

33-01-130(~<br />

I U.S, DEPI~RTHENT OF ENERGY<br />

e~sKETT V.R, GAACE & CO.<br />

' 5O, i~O B, PJ).<br />

bd~]~ e COAL - TO - METI-I~OL - TO "~oN[ - GASOLINE PLANT "G'~'~ ....<br />

1~ ~e~.,~z~,.N" I~nsnm cow~ | Acre ,STSTeU "~-33-MP- i' NP<br />

I o I<br />

7


,IP,<br />

c<br />

D<br />

I = I a I 4~ ="<br />

~ 33-Ol-131t 33-01-1313 33-01-II03 33-{<br />

MAtH F~CYIOHATOfl<br />

~<br />

MAtH FRACTIOtlATOI!<br />

' Sine emZL~ '<br />

~ 0 1 1<br />

MAt<br />

~Vm,~D CONOE,S~<br />

MAtH F~ACYIOMATIO(I RECYCLE ISOOtlTAHE |SOB TA~'~ 5"1RZPP~ |,~09,iJTAHE STRIPPER<br />

Oi/EIIIIEAD ACCUM~LATOI1 CONDFJSER FEED OOTTOI~ EXCHANGER " '<br />

'<br />

ISOOO"~j ',,<br />

X'-'----~<br />

-- .<br />

'(O-3]-if-I flPj ALKYLATE/AC]O VAPmTZER<br />

(D-33-HP-I HP I RECYCt.E L~O~UTAX.~<br />

150OUTANE RECYCLE SI;~LER<br />

~~--"]'BECYCLC Z:~QQUTAN,T."<br />

]SO~UTAIE R[CYCLECONDEHSF.,.R<br />

I D'33-i~-I NP~) "SETTLER EFR.UEHT HC/MA|X FRACY.<br />

FEEO °OTTOI~a EXC1L~G[R<br />

33-01=1401 3]=O1=I 101 33-01-!310 33-DI-12._._..._~<br />

MAt# FRACTIONATm MAI H F~CT,~OHATOfl, H'BUTAHE BUTANE KO~I<br />

33-01-I101<br />

-<br />

= ~---"-' " ,.;'-c~--~.~,l~ I"'~=:>-; ,-01 "~ -<br />

r-24"A-33<br />

33-01-1311A J T<br />

3"-'A-33 w.-<br />

"~24"-A-33 ~ 8"R-33- -J 33-01-131g 5'-~-3.3 3'-A-33<br />

33--01-1510<br />

~'0"33"1~1 ~-J ALKYLAT~[/IIA.tH FRACTIOIXT0~ FEED OOTTOId EXCIP, HGER<br />

I 0-3]-I~-I HP~ 6"-A-33<br />

ALI~TLATE/AC[O VAJ'~i~I~, MAIlt FRkCT|OILAI'O~<br />

FEED BOTTOMS EXCHANGER<br />

DRAWINa tt(O, !Ji<br />

33-01-1510 ]]-DI-I~;!<br />

33-01°ISII 33-DI-1513<br />

MAIN FRACTZCKATC~ M~IX FRACT]ONATOR<br />

REOOXLE~PUUP k SPANE REFLUX PUI~ k SPARE<br />

iltlllll'li<br />

1 I = I 3<br />

33-GI-1313<br />

I,I oL.~,<br />

I~1 c l~=e.<br />

I~;I e I~v=<br />

I~1 ~ I""<br />

,..I I .o.q.o.T.<br />

~ , ~ 12"-A-]3<br />

33"°~'I'°----~31<br />

33-01=13ZD<br />

ISORUTANE<br />

33-01.____~-<br />

I ]ex.I ~;1 I FOe CLX(~:<br />

I Ir~a] rJc] I Foe LXm,"<br />

I I I I I FOXSO~<br />

,t


. ;.:,c?t~ " - . . . . . . . . . . . . . . . . . "'"'~',~.~.~".~v.~"c"~Z.t~,~r~.~,.,~,~,.....-~ ......<br />

6<br />

' +33-01-1320 3},'01-131? J3-01-I206 3Z~01-1207<br />

t~'~'-~'tPPER. ALK'~LAIE~ ,~,, ISOOUTAH£ IS08UTAHE<br />

-- ~80.__~ pEFLU0flIHAI~ DEFLUOIIIHAI~<br />

3-Ol-IIOl ~c<br />

' p~FLt~pJmlm F(~. Dt[FLU~ImlO~, OfI:LUOHIHATOR"<br />

.~TTeOS (XC~H~m. .FE~ .(XTEn .ZSOOUTX.( CO0~.<br />

I(P'I'~'I ~ x3-Ot-I316<br />

I -l,~I,_i_O0<br />

I<br />

• - ;_.%~<br />

i+j<br />

k<br />

33-01-1315<br />

33"01-1206<br />

E'-A-'33<br />

Z3-OI-120T<br />

r<br />

/<br />

3'-A-33-I I 0-57-1P.5 14P~<br />

MOTOR FtJ~l.<br />

HORUAI, ~JlAH,T,/5TORL.GE<br />

~| \-/ i.~nUl~flU-I<br />

- Sl&~6E<br />

....,o<br />

"PHILLIPS PETROLEUM COMPANY<br />

• _ lWm.esv~ o v I<br />

FOR CliENT APpp,~tA~.<br />

I,,e, ,,,,+ i I<br />

,o._~,~,,~v.~ + ....... , I;"~:~<br />

~s=.,~,~ it-,., .... I I ~ p,'~. ~- zR~z^<br />

.'t~- I 5<br />

io,3w2m',<br />

WOI~<br />

h 'tl~ COOLING IMTER FAOILIIP/ FOil I~ r. ALK¥-<br />

LAlrlON UNIT IS A SEGREOATED SY~EM,<br />

SEE DWJ~tIXI4O HI'MP-15 14P<br />

~UIPWF.,HT SH011H nH TI~S DRAW'~6<br />

~LI-0l-I t01 33-01-1315<br />

33-01-1103 33-01-1316<br />

~,~-01-1204 33-01-1311<br />

't:~Ol-120G 3"t-D I - I :"llO<br />

33-01-12OT<br />

33-01-1208<br />

33-01-120~ 33-D1-131~<br />

33-01-13i0 33-01-|320<br />

3~-01-1311A 33-'01-1401<br />

33-01-1:3119 3'~-DI-15t0<br />

33-01-15ll<br />

33-01-I512<br />

33-01-1513<br />

ocA U.S. DEPARTMENT OF ENERGY<br />

I eAs~rr<br />

-i<br />

L .... co~-<br />

V,R, IgL4t:E & CO, '<br />

5o.e~n e.P.O,<br />

+o-,Em,~OL- [o.-GASm.E<br />

~mc~-<br />

PL~.T .<br />

i t- ,, I I<br />

A<br />

i<br />

E<br />

!<br />

.i<br />

i.<br />

I<br />

,I<br />

't<br />

il.__<br />

.+ I<br />

:! __,<br />

i<br />

.i<br />

,J<br />

i<br />

;1<br />

,i<br />

1 •<br />

I<br />

P<br />

i<br />

,<br />

i<br />

?,


_ I I I a I 4~ "!~<br />

A<br />

c<br />

COEIPOH~T<br />

PROtrudE<br />

WL.WT,<br />

42. 08 O. o1<br />

'i~ROPANE 44.09 I. 92<br />

iSnOUT~L 5e. 12 933.70<br />

I-.BUTEHE 56. IO 119.29<br />

N'-BUTAHE 58.12<br />

[SOPEHTAHE 72.15 I~01E.53<br />

I-PERTEHE TO. 13 192. 54<br />

N-PEtl:rAHE 72. 15 107. 88<br />

C~CLOPENTANE TO. 13 11.03<br />

2"IJETHI'LPENTANE O6. IT 59.g9<br />

,,C G 4- HEAVIER 4.14<br />

ALXYLATE 110.00<br />

! l~ I o,~ ~ PllCu CLIrNT 11<br />

ILYDROCARDOI4 |SOgUTANE H-BUTAHE ALKYLATE ASO<br />

FEED PROOUCT PROOUCT PROOUC?<br />

1.92<br />

552. 13 12.20<br />

291.43 ?..41 244.24 '44.87<br />

19.55 1,067.42<br />

101'.95<br />

11.03<br />

59, 97<br />

312.00<br />

'.TOTAL L6 MO:./HR 2. 738. 45 556.461 276.00 I~ E03.*/8<br />

TO|AL LES/'I,~ 178, 898. G 3.315`0 i 16.,309.6 130.19G.O ?6.6<br />

BPSO 20,332 3,915.0 1,909 13.B40 --<br />

LBS/Bbl<br />

211.26 198. 10 205.05 225,8<br />

IN<br />

65.3 58. I 59. I 81.2 --<br />

Dl~l~tW~r 14 )N<br />

I°I clu,v.l I (i~ r Jcl I roec~_[<br />

|~I e l~tnl I IRAwl irJcl I em L~<br />

s A 1115/


I i<br />

,,:, ,!: . . . . ~ , ,,:<br />

's~;(fl4a " I o I 1<br />

,;',,,,~,,, . . . . . . . . . . , . . . . . . . . .<br />

SO<br />

J<br />

J<br />

D<br />

J<br />

J<br />

J<br />

J<br />

7(,.~<br />

IF On e~s~t~ p~mX l ....<br />

i Fort ~ ,~rI~OVAL I1,-,-,,,,<br />

I FOR LICEN~I APPROVAL I"-"<br />

.4@ I<br />

REK<br />

F'JC<br />

t/tz/~zl<br />

[IIN9~<br />

PHILLIPS PETROLEUM COMPANY<br />

S<br />

THE I~UIH N. PIm~O/S CO4Pmty<br />

, PAS,~DEHA,, CN.IRI~IIA<br />

I<br />

I)3MP3WP. OGA<br />

NOTEw<br />

I, THE ~ WA~F~/L~Y f~ ~Fo ALKY-<br />

~H U~ ~A SEOn~1~ SYST r~<br />

2, TIl~ ]~UTAfl[FLUSII L~ r ~S INTO ZS~<br />

BIJTAN[ SIOI~4OEFA(~IJ[T¥ OH P~ DISCHARGE<br />

~,~ , (N~LLY #0 FLOW DURING U~T ~-<br />

]OH).<br />

US. DEPARTMENT OF ENERGY<br />

W.R.GRAOE & CO. xem.c~<br />

5B,BBca B.P.D.<br />

CON. - TO - METHANOL - TO - GASOLINE PLANT<br />

" I<br />

A<br />

J<br />

B<br />

D<br />

p


, . ~ - - _<br />

A<br />

¢,<br />

c<br />

D<br />

..... .. ,l'.-JS-~T<br />

I O'S~"~-~ ~,~" C ~ , , ~<br />

', I .... • ,I + I 4~, ,,+,<br />

I~l~--" IATL~<br />

~D-S2'-'MP"9~ I SLUOGEtHYDROCLGH[ U~ERFLOI TANK<br />

_ + . + ......... i+<br />

t<br />

1 t<br />

mXll(O TEE%~t , , USTIC<br />

---] ~1 TO FI.~RE XEAOER ~t,<br />

I~i ~'~'- XF ACID E[LEFI XF ALKYLATiON UNIT<br />

DI~SCfllP'rlON<br />

33-0!-120|<br />

_+<br />

E<br />

I<br />

I<br />

il<br />

33-01-1514<br />

33"01-1518<br />

v<br />

51EAM<br />

33-0|-1514<br />

33-01-1515<br />

CJIUSTIC CI~CULATZON<br />

P~P AND SPARE<br />

NO. DATE 'TI.~ Sl~ PIICU¢ CLIENT nferl!PT :IN<br />

.~UTmU.nm I,el '.<br />

FLAKED CAUSTIC FROM<br />

~OH TREATERS<br />

[ ~ AIR<br />

"--~" I ~)lE<br />

(SOLIDI<br />

~OTI FOR ~(~1'<br />

o<br />

f FOR ~Ir<br />

R ~tlTl~ P~V ~Jc<br />

I A ~||11: PAW F~ I FOR cL1r<br />

NO, .OAT[ lit ~D ~ I~OJ =i.i[m" I O "<br />

i ,<br />

F<br />

m


, , : , ; , " ~ ' - ....... ~ .... " m ~ ~ -~- " ..... ~ . ' ~ -: .... I]"',:,<br />

:~!i4~ 5 I • I 7<br />

..i.,~ ,. ii iii .II.H / i<br />

E<br />

33.'01-4102<br />

~t.~,,Ull FLUOA~E .H, Fo ACIO N~TI~Lt2B NOTES=<br />

rpRI~.C, IPITATOB I. REMOVABLE Gi]AT'~ n FOB gozCOz N]OmOl~<br />

1'<br />

=OTE KOTE<br />

,.4m,<br />

J<br />

FOB__OLq___~ nt~:0Ar<br />

I F()A ~_~BT.., ~ppflOVtqL<br />

F~e_t.~.aT, Oe ~ereOVAL<br />

! ~oB..cu__~ em Renew<br />

4-~ "~" ""<br />

=..-~<br />

33"U1-'1102<br />

33-01-4101<br />

$ flOzCO=<br />

SURFACE DRAZHAGE/UNZT 3] ~ I~<br />

LEVEL<br />

''" J<br />

II ...... I J<br />

i'"'='"1 I 11£ ~ H. I ~ C ~<br />

II 'u'voeu=m' I n , PASXODS, r..A~,t~IA<br />

I s I<br />

v<br />

REFZEERYIASTE [ D'S3"I~SI(P'~<br />

IIATER REJECT/D~PO~L<br />

D331aP4HP. DOA<br />

EQUI,°MERTSHOId40~iTI~S DRA'NZN~<br />

33"01-1201<br />

33"01-1514<br />

33"01-15i5<br />

33-01-4101<br />

33-01-4102<br />

US. OEPARTHENT OF ENERGY<br />

BAS~TT V.R.GRACE & CO,<br />

5~.gBB B.P.O.<br />

COAL - TO - HETHANOL - TO - GASOLINE PLANT =<br />

,F AI.KYLXn=~ - mm z= I=-,.---.,,,= ' IAI<br />

.menZSeO~L | D-33-MP-4 HP I'c-.~<br />

• I J<br />

A<br />

~0


~ i I ~ t U f l l m ~ , ,, ,<br />

Unit 33 are a~ follows:<br />

F. Plot Plan/General Arrangement Drawings<br />

Plot Plan <strong>and</strong> Ceneral Arrangement Drawings for HF Alkylation<br />

Drawlng No. Title<br />

D-33-PD-1NP<br />

D-33-PD-2NP<br />

Plot Plan - Unit 33 ~A1kylatlon<br />

E1evatlon - Unit 33~ Alkylatlon<br />

II-1.2.14-10<br />

m m<br />

p


N<br />

Y<br />

\ A<br />

._ ._'.<br />

¢<br />

,, ...... I = I ,- ~' I 4 i<br />

zQ<br />

f<br />

I "i ;if i'ii" -"<br />

_~. T. T, T,"r ";D ~'<br />

liP.,"! NI<br />

=;-- ±'_~_,; -~ "l , ,<br />

olo,:,! ~i<br />

. i l l _ _~lTO!.'r<br />

i ,,.! i.. ! ! iii<br />

I II ! ! i iii : i l LIMITS<br />

II--L.--L ; i in<br />

i I1~ ! i !ii i i<br />

i Ilml! ! i !!! ~ii<br />

i II i,,I II ~ i **~ i!l H<br />

-@ ll--G ll! II<br />

.,I I. i i lll ..1_ I il<br />

ill.ill t![illil _,,<br />

"'i I~ I I ~;i!l ~ I t "1 "'-....I ,.L--'- I<br />

/ it<br />

:,,,1 "q ,,nl,,"l I,,~ f_ ,,,..<br />

oo o u al o'~" i i ~,,,i"<br />

I.=..=.1 I==,=,=1 II ]'---..I I<br />

..MATCH L,!NE & C/L ROAO E. "1090'-0'<br />

"'- _, ,~,,. , , ~i~... i~, , I,-'"~ ,-.. I I I I<br />

!i1~ ~tl~ di ~ ..... .---.:.,l<br />

~]; ,,~:li.f..~l.5,12_~.. ~ it~ t.~ .,%l...lli .jSj p<br />

oil~ - - 3~1"0l'1513 "-- " 3]-01-1511-<br />

OPF.RATOnS<br />

CI.liLIIGE<br />

llOOi<br />

II I I i / r , I1', . . . . . f ..,..<br />

,, .' .' ,, . i ~ if'. i t ! ]~:~. I<br />

........ I~ I . . | . . l . I I ~ . I !I . , , . t . . . . ~,~7<br />

~a:V.L:L~ I I I I I . . . . . .<br />

'-i-"--e-'i-"l'--l--i-- I ; I z ! | --;-- ,-I.--~ BATTERY<br />

~1 "~'1 ,,,J ,,,J , ,,,c ~ . . . . ~ LIWITS<br />

T~ T I ~ ~ ~ TI--I --I -'t --' .~ ~; ~I<br />

MATCH LINE III C/L ROAD £.6830'-0'<br />

f<br />

lira liil iimlll


i|l 11<br />

. . . . ,--+-.,.,-~',~.m+,++~+m'~+'.,-+'.,+,+;,,+~+,+~.+~+~+m,m~:,~,,:.,,-,~..+.,+ .,+ .<br />

+ . , r ~ . ~ + ~ ' ~ ~ , ," +~+'~',¢.+.~i ~I,~+~N,:..+/7_+,pI~7.~;~-+, ' , ,;+~+'~,t.'+. ............. ,'.v.,,+',',,..,, r,, ,.,. ,': ;+,, ,~,,: ~,+. +.:,.++;~+.,,,+..., :,+ ...........<br />

,+ + I ,, o I 7<br />

33-01-4102<br />

".! ........ ~- RB:~tIT ii;;" I.v/rJol II<br />

II'~'ll~n ¢~ J~wL Ilc.te,,~ I<br />

P. r,. D.<br />

33-oi-,16oi<br />

,m~.lo~ /', "~mcu~" I ~/~* I r-.,-J~l P&~DB~. CN.IFDI~I&<br />

4-~ [ ' "<br />

J<br />

, ii<br />

I<br />

i,o<br />

o<<br />

.,J<br />

l.IJ<br />

m<br />

.,-I<br />

-t,-<br />

U<br />

I--<br />

:+<br />

I<br />

EQUIPMENT LIST<br />

33-01-1101 MAIN FRACTIOHATOR COLLIli<br />

33-01-1102 ACID IERUN COLU#I<br />

33"01"110~ I,~)DUTAHE STRIPPER COLU~<br />

wsms<br />

:3-01-1201 ACID RELIEF HEUTRALIZER<br />

33-01-1Z02 ACID SETTLER<br />

33"01-IZ03 ACID S'IORAGE<br />

3,1-01-1204 MAIN FRACTIOFIATOR OVERHEAD ACCLIM.<br />

33-D1-1206 ISOSUTAHE DFJ:LUORIMATO~<br />

~3-Ol-120T ISO~UT/~I[ DEFLUORIHATOR<br />

33-DI-1208 ISOOUT~E KOIt TREATER<br />

33-Ol-IZOl DUTAHE XOfl TREkTER<br />

HEAT EkCHANGI~RS,AH'p COII~)I~I$[RS<br />

33-01-1301 ACIO COOLER<br />

33"01"1:302 ACID COOLER<br />

33-01-1303 ACIP VAPORIZER<br />

33-01-1304 StRIPPiNg ISO~UTAHE HEALER<br />

33"01-1305 ACID SUPERHEATER<br />

:3]-01-1:304; I$OeUTANE RECYCLE SUGCOOLER<br />

33-01-1~07 ISOBUT/~IE RECYCLE COt~EH$[R<br />

33-01-1308 MAIN FRACT, I~. RECYCLE EXCHAHG[R<br />

3].Ol-I]Oq.l~O MAIN FRACT FD. BI"MS. EXCHANGER<br />

]]-Ol-I]lO N-RUI'AHE CO~ERSER<br />

33-D1-1311~,8 MAIN FRACY. OVERHEAD COHD.<br />

33-01-1~12 RECYCLE iSOOUT~E COND.<br />

33-01-1313 ISODUTANE STRIP. FD. OTMS, EXCH.<br />

3]-01-1314 DEFLUORIMATOR.FD. BIM~. EXCI¢<br />

33-01-1115<br />

:)3-Ol-131G<br />

DEFLUORIf;ATOR FD. It~TER<br />

OEFLUmlHATOA I5OBUTAHE CLR.<br />

33-01-t317<br />

33-0t-I]18<br />

ALKTLAT[ COOLER<br />

MAIN FRACT. SIDE ArnOILER<br />

33-OI.ISI~J MAIN IPRAC]. SlOE REBOILER<br />

~-OI-1:20 IS08UrAHE STAIPPE.R REBOILER<br />

UEAtm<br />

]]-~1-1401 MAIH FRACL REaOIIER HEALER<br />

e,w__s<br />

33-01-1506 ACID 12[RLI+I PLIP<br />

3]-OI-ISOT ACID RERU~ PI.M~SPARE)<br />

31-DI-1508 MAIN FRACL FEEO PUMP<br />

33-D1-1505 ~JklR IPRACT, FErn pLIUPISPAREJ<br />

~3-Ol'lSlO MAIN FRACT. R[OOILF.R PUMP<br />

33-O1-1511 MAIN FR~CT. RE~OILER PUUP(SPIR()<br />

33-D1-1512 MAIN ERACT. REFLUX PUMP<br />

33-01-1513 ICqH FRACT. REFLUX PUMPI ~ARE)<br />

33-01-1514 CAUSTIC CIRC. PLMP<br />

33-01-1515 CAUSTIC CIRC. PUUPI SPARE)<br />

31.01.41¢1 CALCIIM FLUORIDE PRECIPITkTOI~<br />

3)-01-4102 RP ACID NEUTRALIZER<br />

0 I0 ~Q 410 r.O I10<br />

L.~+-. ~ I l<br />

t,~[, P . ZIP-(/'<br />

U.S. IEPARTHENT OF ENERGY<br />

m rr VJR.GPJCE & CO.<br />

58,e~8 B.P.O.<br />

co~.- To- ,Em~OL - TO - G~SOLmE PL~T<br />

PLOT eLA, r,;'.~, o. I ,,'~,T" r',%-; I-"<br />

II f ..... j II1<br />

Io


_ ', i " I +' I ,,+,<br />

A<br />

,k<br />

¢<br />

- - w<br />

'~'-P,,I I i !<br />

,,+,-,,+z, I I I ~--~-~<br />

° ~I '/\<br />

"L! ,<br />

ell " I .... I--I I |']" " : I I I P--I"-,I-"F--PIT--~<br />

.~]~,A~,,..+,.~,+,,,~,,J.J;I]<br />

I m'm'l'+'°l I m°l'l'~ I<br />

BY IOKO ~Cl~C~p,c,- I ~_~- ~ ~<br />

I<br />

IL.<br />

~l,-Ol,ttOlb<br />

aHI~I-I~48<br />

-_+--<br />

I 4~<br />

P


. . . . . . IIi<br />

,..~.#,¢ ,,* .... ~.,+ ,+ ,~<br />

_++<br />

, . I ' I ,<br />

/l\<br />

M<br />

'~).ot.t4ol<br />

nj i<br />

E<br />

r . DE OF ERGY +<br />

F ~ W.R. GRACE & CO. K~UC~<br />

- . ooAL-T H^.O" ~<br />

L.-~---"~"~"'~II -~ .... i-~ ; ; i .... F.~mw~ 11 ,~*" "I • + I + ] ^<br />

!~ecua'=l'~r~--~":"~ll ..... I I i IEMLPIIM. PAn.OnSCOUnav | UUtT 5~ l=,,==="--'~¢,.r,r..o=, o ].~...~/<br />

• 2 ==:"~m IL ...... I I ] pASAOENAC~I,I, IFORNIA-'--"" / &L~"fb~"('lOkl | v'~'a "v ,.,~r I<br />

40 , -- ,~. -- --<br />

reel<br />

D


Ci G. Si~gle-Line Diagrnm<br />

f ....<br />

Alkylation Unit 33.<br />

See Volume II, 1.2.12(G) for the S£ngle-Line Diagram for HF<br />

II-1.2.14-11<br />

._


1.2.15 ACID GAS REMOVAL - DNIT 34<br />

A selective Rectlsol process has been selected to remove sulfur<br />

compounds (H2S/COS) <strong>and</strong> carbon dloxlde (CO 2) from a coal derived eynChesls<br />

gas. The process uses methanol for physical absorption of the acid gases. The<br />

licensor of the proprietary process selected for this project is the Lotepro<br />

Corporation. The shifted <strong>and</strong> unshlfted feed gas streams are washed<br />

separately. In tbe regeneration of the methanol, sulfur-bearlng gases are<br />

isolated <strong>and</strong> transferred to the sulfur recovery unit for the production of<br />

elemental sulfur.<br />

The Acid Gas Removal unit product stream consists of purified<br />

synthesis gas that is compressed <strong>and</strong> used for methanol synthesis,<br />

A. ~asls of Design<br />

In the selection of an acid gas removal process, the<br />

following design parameters had to be fulfilled for a c<strong>and</strong>idate process to be<br />

considered:<br />

(1) A treated product gas purity of less than 0.1 ppmv<br />

total sulfur <strong>and</strong> 3 to 6 volume percent CO 2 achieved by<br />

absorption of CO 2, H2S, <strong>and</strong> COS from the feed gas.<br />

(2) The CO 2 tall gas stream must contain less than I0 ppmv<br />

of total sulfur so that it can be vented to the<br />

atmosphere without thermal incineration.<br />

(3) An H2S-rlch acid gas stream containing a mlnlmum of 25Z<br />

H2S <strong>and</strong> suitable for a Clans unit feed must be produced,<br />

(4) The technology must be commercially proven.<br />

The followlng feed <strong>and</strong> product stream data summar~,zz the<br />

normal operating conditions for th~ four-module Acid Gas Remov~l unit.<br />

TI-I.2.15-I


Component<br />

H2<br />

CO<br />

Ar<br />

CH4<br />

CO 2<br />

H2S<br />

COS<br />

02<br />

Total Dry', lb mol/hr<br />

Feed SCreams<br />

Shi£ted Feedgas Uushifted Feedgas Str~ppir~ Gas<br />

(lb mol/hr) (Ib mol/hr) (lbmol/hr)<br />

73,546.7 23,511,6 -<br />

513.8 309.2 8,655.6<br />

12,820.3 28,463.3 -<br />

172.4 103.8 -<br />

214.4 129.0 -<br />

53,771.4 11,567.3 -<br />

1,~6.8 827.0 -<br />

12~! 51.0 -<br />

i w<br />

142~497.9 64,962.2 8,655.6<br />

H20 171.4 75.3<br />

Total WeC, lb mol/hr 142,669.3 65,037.5<br />

Total, lb/hr 2,951,690 1,401,320 242,500<br />

Pressure, psla 790 790 33<br />

T,~uper:~cure, °F 100 100 68<br />

~[T--1.2.15--2<br />

I I I I ' It


( ~,.<br />

Component<br />

H2<br />

N2<br />

CO<br />

Ar<br />

CH4<br />

C02<br />

H2 S<br />

cos<br />

O2<br />

Total Dry, lb mol/hr<br />

H20<br />

Total Uet, lb ~ol/1~<br />

To~al, lb/P~<br />

Pressuce, pB~a<br />

T~mperatuze, oF<br />

Feed Strea~s (Contd)<br />

Air to<br />

Torvex<br />

(lb ~ol/hr)<br />

3,077.9<br />

39,5<br />

m<br />

828.7<br />

3,946.1<br />

4~.4<br />

3,995.5<br />

87,810<br />

II-1.2.15-3<br />

63<br />

82<br />

~ash Uater<br />

to TatZ Gas<br />

~ash Column<br />

(lb mol/hr)<br />

30,595.0<br />

30,595.0<br />

551,200<br />

16<br />

100<br />

m<br />

m


,,'<br />

P<br />

Component<br />

H2<br />

"2<br />

CO<br />

Ar<br />

CR4<br />

CO2<br />

~2S<br />

COS<br />

O2<br />

Total Dry, lb mol/h¢<br />

H20<br />

CH30H<br />

Total Wet, lb mol/h¢<br />

Total, lb/;~¢<br />

Pressuce, psia<br />

Temperature, °F<br />

Shifted<br />

Syngas<br />

(lb mol/hr)<br />

i i lira<br />

73,392.8<br />

508.2<br />

12,819.8<br />

166.4<br />

196.6<br />

733.3<br />

Trace<br />

Trace<br />

87,817ol<br />

Product Streams<br />

m<br />

4.3<br />

87,821.4<br />

563,490<br />

760<br />

82<br />

Unohifted<br />

Syngas<br />

(lb mol/hr)<br />

i i<br />

23,359.5<br />

304.8<br />

27,880.3<br />

m<br />

101.2<br />

122.7<br />

3,4~0.2<br />

Trace<br />

55,248.7<br />

3.0<br />

55,251.7<br />

995,830<br />

IZ-1.2.15-4<br />

766<br />

82<br />

i ii i i i<br />

ii i , i<br />

Total<br />

5yuaas<br />

(lb mol/hr)<br />

96,752.3<br />

813.0<br />

40,700.1<br />

267.6<br />

319.2<br />

4,213~4<br />

Trace<br />

Trace<br />

143,065.6<br />

m<br />

7,3<br />

143,072.9<br />

1,559,320<br />

760<br />

S2<br />

Acid Gas<br />

to Claus<br />

(ib mol/hr)<br />

0.6<br />

119.7<br />

0.3<br />

Trace<br />

Trace<br />

3,331.7<br />

2,273.7<br />

62.8<br />

5,788.8<br />

m<br />

6.0<br />

5,794.8<br />

231,450<br />

25<br />

92<br />

m<br />

!<br />

m


, .,. , ~.,,, ,...,,,,,.,,..,,..,..,,.,,, ,.<br />

product Strqamo (Contd)<br />

J, i .i .,= ii . . • • . . =<br />

Total Waste- Water from<br />

Tail Gas water Wash Column<br />

Component (lb mol/hr) (lb mol/hr) (lb mol/hr)<br />

H 2 5.0 - -<br />

N 2 11.624.0 - -<br />

co 35.5 - -<br />

Ar ~.7.7 - -<br />

C~4 5.6 - -<br />

C0 2 58,354.2 - 19.9<br />

H2S O. 1 - -<br />

COS 0.3 - -<br />

02 ..... 360.2 - -<br />

T~tal Dry, lb mol/hr 70,432~6 - 19,9<br />

H20<br />

CH30H<br />

Total Wet, lb mol/hr<br />

Total, lb/hr<br />

3,511.4 327.7 27,480.9<br />

1~6 0.2 14.0<br />

73,945.6 327.9 27,514.8<br />

2,971,680 5,910 496,420<br />

Pressure, psia 16 46 17<br />

Temperature, °F 145 279 65<br />

II-1.2.15-5


C,,.<br />

f<br />

,,<br />

"<br />

B. Prouess Selection Rationa!e<br />

The selective Rectisol process as offered by Lotepro<br />

Corporatlon is a commercially proven technology. Its capital <strong>and</strong> operating<br />

costs are lower than costs for other processes examined, For th~ Gasoline<br />

Plant, the proces~ has been configured into four identical trains. The<br />

water/methanol separation is configured into two t~.ains. This arrangement<br />

provides flexibility <strong>and</strong> a high turndown ratio. The licensor guarantees the<br />

process performance <strong>and</strong> utility consumptions.<br />

1. Pressure. The higher partial pressure of CO 2 <strong>and</strong><br />

H2S in th~ feed gas results in increased absorption races <strong>and</strong> solvent<br />

temperature rises i~ the absorption columns, reducing the solubility of acld<br />

gas components in the solvent <strong>and</strong> requiring a higher solvent circulation. A<br />

cold solvent presaturated wlth C0 2 minimizes the solvent circulation rate,<br />

There are a number of Eectlsol plants that operate at higher pressures than<br />

this plant will require. No problems are antlclpated related to system<br />

pre s sure •<br />

2. Gas Impurltles. Impurities enter the gas purification<br />

,~t in the feed gas stream <strong>and</strong> are produced in the unit by side reactions<br />

with ciz~ulating solvent.<br />

A sldestream of spent methanol ~s continuously distilled<br />

in a methanol ~ractlouat,~r thst will remove all dirts <strong>and</strong> dissolved<br />

i~purities via a bottom waste stream.<br />

3. ,Malntenence <strong>and</strong> Operation Characteristics. In the<br />

Rectieol process, hydraulic turbines are not required to recover energy; it<br />

makes use of fewer rotary machines <strong>and</strong> vessels compared to competitive<br />

processes. Therefore, its maintenance cost will be lower than the maintenance<br />

cost required for other processes. Also, the Rectisol process should be<br />

somewhat easier to start up, operate, <strong>and</strong> shut down.<br />

II-1.2.1.5-6<br />

I p


4. Variations in H2S Concentration. The sulfur content<br />

of the coal may vary from 2.3 to 5.1 weight percent. The concentration o£<br />

sulfur compounds (H2S ÷ COS) present in the feed to the gas purification<br />

system may vary from 1.3 to 3.3 volume percent. In order to avoid large<br />

variations in B2S concentration of the ~eed going to sulfur recovery unit<br />

(~'htch may vary from 25 to 40 volume percent if not controlled), the gas<br />

purification system must be flexible enough to separate the correct amount of<br />

CO 2 <strong>and</strong> produce a constant composition £eed for the sulfur recovery unit.<br />

The Rectisol process achieves this objective by<br />

adjusting the amount of CO 2 in the vertt stream In a stripper/reabsorber<br />

column as discussed In the Rectlsol process descrlption.<br />

5. Equipment Availability. Equipment availabillty Is<br />

defined as the ratio of days each piece of equipment Is available to operate,<br />

whether operating or not, to days in a f£xed period of tlme (usually the<br />

period between two planned major overhauls).<br />

The Rectisol acid gas removal process uses conventional<br />

equipment, simple In design. The availability of equipment in the systems is<br />

better than 97%.<br />

6. Proven Technology. At least nine plants employing the<br />

Rectlsol process have been successfully constructed <strong>and</strong> are being operated in<br />

the United States. Table II-1o2.15-1 shows the list of the plants, plant<br />

capacities, <strong>and</strong> other process variables. Many other plants that utilize the<br />

Recttsol process are operated outside the Ur~ted States.<br />

C. <strong>Process</strong> Description<br />

Refer to <strong>Process</strong> <strong>Flow</strong> <strong>and</strong> <strong>Control</strong> <strong>Diagrams</strong> D-34-MP-1NP,<br />

-2NP, -3NP, -4~P, -Sh~, <strong>and</strong> -61~P for the acid gas removal material balance.<br />

The equipment arrsng ,~ent ie shown on Drawings D-34-PD-1NP <strong>and</strong> -2NP.<br />

II-1.2.15-7<br />

I


\<br />

Customer<br />

Texaco I~C. a<br />

Wilmlngron, California<br />

Texaco Inc.<br />

Montebello, California<br />

Table XI-1.2.15-I - List of Rectisol Units<br />

~ustalled in the United States<br />

Feed Gas<br />

Order (14HSCFD)<br />

1965<br />

1966<br />

Borden Chemical Co. 1966<br />

Geismar, Louisiana<br />

Roan& Haas Co. 1966<br />

Philadelphia, Pennsylvania<br />

Brooklyn Union Gas Co. 1968<br />

Brooklyn, New York<br />

Long Isl<strong>and</strong> Lighting Co. a 1969<br />

Holbrook, New York<br />

American Air Liquids 1969<br />

for Monsanto<br />

Texas City, Texas<br />

Celanese Chemical Corp.<br />

Clear Lake, Texas<br />

Syngas (Dupont U. S • X. )<br />

Deer Park, Texas<br />

aTurnkey ProJ eet<br />

i .i i • | • i<br />

1975<br />

1976<br />

80.0<br />

(H 2 rich gas<br />

from P.O.)<br />

0.90<br />

(a 2 rich gas<br />

from P.O.)<br />

17.0<br />

13.0<br />

12.0<br />

53.0<br />

(H 2 rich gas<br />

from steam<br />

reformer)<br />

(H 2 rich gas<br />

from P.O.)<br />

(H 2 rich gas<br />

from P.O.)<br />

11-1.2.15-8<br />

PreaBure<br />

(psig)<br />

460<br />

1,100-2,500<br />

300<br />

340<br />

340<br />

600<br />

340<br />

425<br />

840<br />

ni~f! ...... --rll<br />

Components<br />

Removed (vol Z)<br />

i i i i i •<br />

CO 2, H2S<br />

C02, H2 S<br />

C02<br />

C02<br />

CO2<br />

C02 , H2S<br />

C02,<br />

10.2%--20 ppmv<br />

C02, H2S<br />

CO2, tt2S<br />

(2 stages)<br />

.<br />

i


_ . . . . . . . . . . . . . . _ . . . _ .<br />

1. H_2S/CO 2 Removal. The shifted <strong>and</strong> unshifted feed<br />

gases that are supplied to the Acid Gas Removal unit in separate streams are<br />

injected with methanol tc prevent the formation of ice <strong>and</strong> hydrates as the<br />

gas is cooled down in Heat Exchangers 34-01-1301 <strong>and</strong> 34-01-1308 against<br />

purified product gas <strong>and</strong> cold tall gas. After s~paratlon of the condensed<br />

methanol-water mixture ~n Knockout Drums 34-01-1201 <strong>and</strong> 3/t-01-1205, the<br />

shifted gas enters Shifted Gas Methanol Wash Column 34-01-1101. The unshlfted<br />

feed gas enters Unshlfted Gas Methanol Wash Column 34-01-1104. Both streams<br />

wlll be washed with methanol,<br />

In the upper part of Shifted Gas Methanol Wash Column<br />

34-01-1101, C02 is removed to the required level with cold lean methanol<br />

from the warm regeneration section. In the bottom section of Column<br />

34-01-1101, H2S + COS is absorbed down to O.1 ppm. In order to minimize the<br />

temperature rise in the lower section caused Ly the heat of solution, a<br />

spllt-sUream of CO2-1oaded methanol from the CO 2 wash section of the<br />

absorber is used for sulfur removal. The heat of solution for the<br />

CO 2 absorption is removed by temperature rise of the downstream flowing<br />

methanol <strong>and</strong> by cooling the methanol In Exchanger 34-01-1302 against<br />

vaporizing refrigerant.<br />

As the solubility of CO 2 in methanol is less than the<br />

solubility of H2S , the methanol flow of the CO 2 removal section o£ Wash<br />

Column 34-01-1101 must be greater than to th~ H2S removal section. The<br />

methanol surplus from the CO 2 removal section of the tower is taken from<br />

the middle of the column.<br />

The uushtfted feed gas in Unshifted Gas Methanol Wash<br />

Column 34-01-1104 is washed with cold lean methanol. The purified gas leaving<br />

the top of the column is warmed in Unshifted Feed Gas Cooler 34-01-1308 <strong>and</strong><br />

then combined with the purified shifted gas. The heat of solution is removed<br />

by warming the solvent <strong>and</strong> vaporizing external refrigerant in Methanol<br />

Chiller 34-01-1309.<br />

1I-1.2.15-9


.::.', : ,,, '..',, ;,', I lJl ...[<br />

The H2S-loaded methanol from the mhe H2S-loaded methanol from the m<br />

34-01-1101 is routed to Recycle Gas Flash D~m 34-01-1203~ Recycle Gas Flash Drum 34-01-1203,<br />

at an intermediate pressure to recover dlssolved 1{2 anressure to recover dissolved 1{2 an<br />

from ~rum 34-01-1203 Is recycled by Recycle Gas Compressor s recycled by Recycle Gas Compressor<br />

feed gas.<br />

The same procedure is used £or the he ~ame procedure is used £or the<br />

from Column 34-01-1101~ which is exp<strong>and</strong>ed Into Drum 3~1, which is exp<strong>and</strong>ed Into Drum 3t<br />

£1aehed gases recompreseed by Compressor 34-01-1801. seed by Compressor 34-01-1801.<br />

The H2S-loaded methanol from thehe H2S-loaded methanol from the<br />

34-01-1104 Is flashed in Recycle Gas Flash Drum 34-oed ~.n Recycle Gas Flash Drum 34-C<br />

dlssolved I{ 2 <strong>and</strong> CO to be recycled vla Compressor 34-0P be recycled via Compressor 34-01<br />

from Drum ~4-01-1206 is flashed in the sump of CO StrlppinlS flashed In the sump of CO Strlppln<br />

to remove the bulk of dissolved CO. dissolved CO.<br />

2. CO-Rich Tail Gas. To limit the CO ~-Rich Tail Gas. To limit the CO ¢<br />

gas, a CO-rich gas is generated by exp<strong>and</strong>ing separately t~enerated by exp<strong>and</strong>lng separately tk<br />

from Flash Drums 34-01-1202, 34-01-1203, <strong>and</strong> 34-0~-01-1202, 34-01-1203, <strong>and</strong> 34-01<br />

34-01-1106. The C0-rich tall gas leaves the top o£ CO Lch tall gas leaves the top o£ CO<br />

34-01-1106. After warming in Exchanger 34-01-1301, it Isrmlng in Exchanger 34-01-1301, It is<br />

catalytic Incineration before venting to the atmosphere, before venting to the atmosphere.<br />

3. H2S ' Enrichment. The methanol from tzS Enrichment. The methanol from t<br />

34-01-1106 vtll be fed into HRS Concentration Colum~d into H2S Concentration Colum:<br />

increase the B2S concentration :l.n the tall gas feed to~entratlon in the tall gas feed to<br />

removal process, CO 2 is stripped from the vent ~tream in 3 stripped from the vent ~tream in<br />

of the column, <strong>and</strong> H2S Is rewashed In the upper ~ H2S is rewashed In the upper<br />

sulfur-free methanol from Drum 34-01-1202 not used for re~om Drum 34-01-1202 not used for re<br />

36-01-1106.<br />

The tail gas from Column 34-01-1102~e tail gas from Column 34-01-1102<br />

sulfur-free, The gas is warmed in Exchanger 34-01-1301, an1 warmed in Exchanger 34-01-1301, an<br />

the methanol content ls reduced in Water Wash Column 34=01-) reduced in Water Wash Column 34-0!-:<br />

• ~ | rl ,,i<br />

II-1,2.15-10 II-1.2.15-I0


t<br />

i<br />

I<br />

tl<br />

At an intermediate tray of Column 34-01-1102, cold<br />

methanol is withdrawn <strong>and</strong> used as refrlgerant in Exchanger 34-01-1307, To<br />

provide the necessary head, Pumps 34-01-1503 <strong>and</strong> -1504 are used,<br />

4. Warm Regeneration. The methanol from the sump of<br />

Column 34-O1-1102, now enriched in H2S , is pumped by Cold Stripper Bottoms<br />

Pump 34-01-1507 through Heat Exchangers 34-01-1310 <strong>and</strong> 34-01-1311 to Methanol<br />

Regenerator Column 34-01-1103. The complete desorption of H2S <strong>and</strong> CO 2<br />

from the loaded methanol will take place here by means of methanol vapors,<br />

generated In Regenerator Reboiler 34-01-1313o<br />

The vapors from the top of Column 34-01-II03 will be<br />

cooled in Water Cooler 34-01-1312 <strong>and</strong> then in Exchangers 34-O1-1314 <strong>and</strong><br />

34-01-1315 against the cold H2S fraction <strong>and</strong> refrigerant, The condensate is<br />

separated in Separator 34-01-1208 <strong>and</strong> routed back via Cold Stripper Bottoms<br />

~:'~ 34-01-1507 to the regeneration column, The E2S fraction leaving Drum<br />

34-01-1208 will be warmed in Exchanger 34-01-1314 <strong>and</strong> will leave the tmlt as<br />

feedstock for a Claus sulfur recovery plant.<br />

The regenerated methanol leaving the sump of Column<br />

34-01-1103 is cooled In Regenerator Bottoms Exchanger 34-01-1311 to ambient<br />

temp. :ature <strong>and</strong> buffered in Methanol Collection Vessel 34-01-1207 before<br />

being pumped to the methanol wash columns for shifted <strong>and</strong> unshlfted gas. Zts<br />

temperature is lowered in Exchangers 34-O1-1310 <strong>and</strong> 34-01-1307 against cold<br />

loaded methanol. A small portion of the resenerated methanol is injected into<br />

the two feed gas streams,<br />

5, Methanol-Water Se~aratlon. The condensate from Drums<br />

34-01-1201 <strong>and</strong> 34-01-1205 that contains a mixture of methanol <strong>and</strong> water is<br />

heated in Reflux Cooler 34-01-1317 <strong>and</strong> fed to Methanol Fractlonator<br />

34-01-1105, where methanol <strong>and</strong> water are separated by distillation. The<br />

column is heated by means of medium-pressure steam in Methanol FracCionator<br />

Reboiler 34-01-1316. The methanol vapor from the top of Column 34-01-1105<br />

ll-l,,2,15-11<br />

m


I i I I I I III'I~mUEmlEMI~<br />

/<br />

will be routed to the hot regeneration, while the water is withdrawn as<br />

waste. The reflux supplied to Coluem 34-01-1105 is regenerated methanol from<br />

Column 34-01-1103, pumped by Pump 34-01-1509 <strong>and</strong> cooled in Exchanger<br />

34-01-1317.<br />

6, General. In order to reduce the methanol losses, a<br />

methanol slop system is provided. Zt consists of a buried main methanol<br />

header wlth branch connections to all pieces of equipment where leakages of<br />

methanol can occur.<br />

The methanol header wlll collect such leakages Into<br />

Methanol Slop Drum 34-01-1210, also buried. Vertical Pump 34-01-1511 Is<br />

installed in order to recycle the solvent to the regeneration section of the<br />

unit.<br />

Storage Tank 34-01-1211 is used to store methanol° A<br />

fllllnE pump Is provided. The tank is used to collect methanol streams during<br />

plant shutd.wns. In such eases, when the methanol is not pure, It is made up<br />

through the regeneratlou section.<br />

D. Risk Assessment<br />

J<br />

Shifted <strong>and</strong> unshifted raw feed gases are treated in the<br />

Rectlsol unit for the removal of C02, H2S , COS, higher hydrocarbons, gum<br />

formers, <strong>and</strong> other impurities that are produced in the coal gasifler.<br />

Crude gas, saturated wlth water vapor, will he indirectly<br />

cooled by cold purified gas <strong>and</strong> external refrigeration. Icing will be<br />

prevented by the injection of methanol. The gas then enters the first<br />

absorber, where sulfur compounds <strong>and</strong> CO 2 will be removed to the required<br />

le~rel by washing the raw feed gas with cold methanol, The overhead from the<br />

absorber column is routed to the methanol synthesis unit, <strong>and</strong> the rich<br />

methanol from the absorber bottoms, after flushing <strong>and</strong> heating, is<br />

regenerated completely in the H2S regenerator.<br />

II-1.2.15-12<br />

P


m II 1 I[[ , ~ . . . . I II ~<br />

Although methanol is classified as toxic <strong>and</strong> flammable,<br />

these potential hazards are controlled to acceptable levels of safety by<br />

application of st<strong>and</strong>ard method~ for pl~nt design a~d operational h<strong>and</strong>ling.<br />

This plant wil! be the largest installation of its kind in the world. Thus,<br />

it is important to examine some of its ~tak factors <strong>and</strong> evaluate the process<br />

reliability.<br />

I. Capacity. The large capacity of the plant will not<br />

cause any processing problem. In order to avoid mechanical <strong>and</strong> installation<br />

problems, the system is designed in four parallel trains,<br />

2. Integration With Other..,<strong>Process</strong>in~ Units. The Rectisol<br />

process has not been ol~..rated in conJuction with the Texaco Coal Gasification<br />

<strong>Process</strong>. However, it has been used in conjunction with a different coal<br />

gasification process producing gas of similar composition in a plant in South<br />

Africa. The operation of the African installation has been satisfactory, <strong>and</strong><br />

there is no reason to believe that the performance would be different in the<br />

W.R. Grace & Co. project.<br />

3. Equipment. The Rectisol process uses equipment of<br />

simple <strong>and</strong> conventional design. In certain parts of this system, spiral wound<br />

exchangers are used. Lotepro Corporation has used spiral wound exchangers of<br />

comparable size <strong>and</strong> duties in its other installations without mechanical or<br />

operational difficulties.<br />

4. Pressure. There are several Rectlsol acid gas removal<br />

Installations that operate at higher pressures than the 790-psla pressure<br />

required for this project. Pertinent information accumulated from the<br />

experience with hlgh-pressure Ina~a!latlons Is incorporated into the final<br />

design of this project.<br />

The risk of designing a Rectisol acid gas removal<br />

process~lth a feed rate ~f 2 billion scfd at 790 psia has been reduced to a<br />

low level by attention to the detailed engineering design <strong>and</strong> accumulated<br />

know-how from other installations. The llcens~r guarantees a plant<br />

availability of better than 97X for the Reotisol section of the project.<br />

IX-1.2.15-13<br />

,, ,,t ,


t,<br />

~4 B. ,<strong>Process</strong><br />

Balance)<br />

Unit 34 are as follows:<br />

<strong>Flow</strong> <strong>and</strong> <strong>Control</strong> Dia~ram. (Including Hatorial<br />

Proco88 <strong>Flow</strong> <strong>and</strong> <strong>Control</strong> <strong>Diagrams</strong> for Acid Coo Removal<br />

Drawin~ No. Title<br />

m<br />

D-34-NP-INP<br />

D-34-HP-2NP<br />

D-34-MP-3NP<br />

D-34-HP-~NP<br />

D-34-1fl ~'-SNP<br />

D-34-MP-61~P<br />

PFCD Acid Gas Removal - Methanol Wash<br />

PFCD Acid Gas Removal - Gas Separation<br />

PFCD Acid Gas Removal - Hethano. 1, Cooling<br />

PFCD Acid Gas Removal - Methanol Wash<br />

PFCD Methanol Storage - Methanol Storage<br />

Material Balance - Acid Ca8 Re.oval<br />

II-1.2 • 15-1~<br />

,


~ _ ]<br />

, .. .* ILl L [ I I ,, m I _ _ _ IJ I II II IIIII [1[ r I _ _. '<br />

I,<br />

li<br />

r~<br />

I<br />

I<br />

l<br />

1<br />

A<br />

i D<br />

~[&,,Zl,-~e-) ~' I i~Ixxam, nl~x/mY£A/<br />

TRICIU.IXG IrILTI~<br />

i D'-Z3-HP-2 N?~, SHXFT(D F[F.O ~S/CO S~'l'<br />

i {-<br />

I il,,<br />

I~ OIIII'CtUDlr~m4 i<br />

1<br />

34-01-1101 /~ 1:<br />

.. i l<br />

/_/:',~_ I J I II<br />

. . . . . . . ~ '-'l,X ~. a.<br />

34,.'0t-1513<br />

' I!! I ] [ I<br />

_._,._,..]~1 "'<br />

I<br />

i<br />

~ ] I el ~ "l L<br />

" I I ' " I ' L"T"-<br />

I .~ .,....[t;I I I I I../T<br />

i<br />

,:,.c....,;~, . . I . I ,o, . 1 °"~ I "' ~1~1 "~''1 ~'<br />

I<br />

m<br />

~ 34-01-1101<br />

= ,,.,J I~.,., ,,,.,I *%'-<br />

I ll~J, I l~lIF~l" I ~<<br />

Lil~.,~ I l~Ifzl I m<br />

i I<br />

i<br />

:. °


.1<br />

Iw,<br />

~r3t DESICN ~P'~f IA,~<br />

II III i ii ii i I III i IIIIII i i I<br />

34-01-1302<br />

i<br />

+<br />

ii<br />

I I--I<br />

m<br />

m<br />

IJNSHIFTEO syl-oA5#14-ol'"l]O8 ~34"uP'4 m~l<br />

TAIl. 0'X~a4-OI-i401 L ~34i"411l¢<br />

TAll, ¢ASI,14-01-1 IOZ ~ ~<br />

i<br />

iit5 utIH£1


ira,., ~ i , i , iii<br />

C<br />

D<br />

{ ' ~ ' ~ TAIL G~S/]4-OI-I]OI A,O<br />

] o-34-'1m~'1 HY'~- ll3S I~THA~t./:~4"OI'IlOI<br />

~" ~S4-ur-I:Xe'l L[iN I~TltAIIoL/34-Oi;I iOI<br />

I U-~4-HP-I_ou'~ COl LOA0~ HE'TItANOL/<br />

34"01-1101<br />

,~;:, ' ,'~ ~;, :~'~ , ............,,,<br />

I I<br />

1 2 3 I<br />

O-34.,.IaP-I ItPl R[CY~E 0AS/ 34-Ol,-i'q01 A,B<br />

IJ,_.,I _. II<br />

i . . .... ,.1_.1<br />

..... if<br />

L._]<br />

(<br />

I S4*Oi-iSOI<br />

34-01-1320<br />

34"01-1i101<br />

R£CYI~.[ r~$ C~ESSOR<br />

ii i i i<br />

34"Ol~I |O:I 34"01"__~r~<br />

~CL_~..~.!<br />

i 34-01-120_.__~_3~<br />

I, !~o!J<br />

2 '<br />

I II i<br />

?<br />

34"0t'120Z<br />

ru'~v! qf'T )N<br />

)<br />

, , 4,11,<br />

34-01-11~<br />

11 o- l~..~,d I /I~A,I r:~ t "~ I row ~<br />

~1 e I~,~*J I IRAwFrJci I ~m<br />

~1 ~l~n,nl I In~lrJei IFO~:~.<br />

" ~ i ir~wlr~i .~ r~'<br />

I "~ F°*"P '~ I°'~[~l"°~l~'~q . ,-.A'<br />

45


+" "' II I<br />

J II II I i I II B ll~<br />

t ~t-Ol-IlO~<br />

I l'tlll nI'IJ~CM REPORT<br />

I trm area" ~+iL<br />

J. iti'vtso na I .rr.m-- ~.~Sm, sz.<br />

I fm tt~ +wIpt~vat<br />

~tm P,J I~M'IP ~ I+pCt;1<br />

~ i I~4131011~I'ION in<br />

4@<br />

m_____+ ~<br />

,.m-.m +,-m-mT<br />

r +, .Ct~,ot/( o-+4-w-+ ~1<br />

~--.-~..~ / ~ 34-01ol310 A,B If, C<br />

-+-y-+_ +.,o<br />

i t - +4-Ol-lSm l"t~'+J~4.Oi.l~ 7 LI~I+ UiTli~li~t# l,P'll'il"~ ~r><br />

il~lOl.# 34-0t-I)10 A.+ i C I ,1>-34.,UP-3 ~P~<br />

- ~ I-/~ " "<br />

341-01-150T 34-01-1503<br />

34-01-150B 34-01-150,1<br />

COLO StRb°P(R FTASH S(PI~Tt~<br />

BOTTOVS PUlP II SPAIIE ~i~(O pUMP II SPARE<br />

r l,,cqr19L~o ~m.<br />

IA,.H I<br />

~ NOV NI<br />

I~.,.,,--+-, TIE ~ 14. ~<br />

I 5 I<br />

' i ~11<br />

'11t i<br />

H:S-M~"TWiKOLI34-OI-IZO4~ ~ 0"34"u1~4 ~l<br />

R(CY~( Ol~ )4-Ol-lZOl ~+ 0-34-'II'-4 NPJ<br />

e I 7<br />

i i i ii , ......<br />

HOTt.~<br />

I, TIt~ (OIJII~NI SitOIM OH Tills IHb~XO<br />

(OUtPIt(MT SHOrn4 Oil TI~S DI~+IItMGI<br />

34-01-1102<br />

34-.01-I lOG<br />

34-01-1202<br />

3¢-01-12O3<br />

34-01-1307<br />

34-01-1~0<br />

34~1-t503<br />

34..01-150'1<br />

34--01-1SOT<br />

34-,01-1501<br />

34-01-ii01<br />

I)£~:~I~d~THEHT OF EHERGY'<br />

W.R.GRACI~ & CO. ' ~<br />

COAl. - TO - I~TI~ - TO - C.~SOI..IPIE<br />

~"~"~ /, "'~'"+'+-~ ""-, I"~L_<br />

o I<br />

m<br />

A<br />

++<br />

II<br />

i I, .......


I 0-~i-~i7 ~r)<br />

0-3+-t~l w %. _ I<br />

' ~ ~TIUII~ 34-01 - I~-01~<br />

, . . . . . . I ~ .... I + I , 4+<br />

34,,01-1)10 A<br />


~<br />

14-,OI - I~J<br />

H)<br />

34"~1-1~I<br />

, -" °'"'~-~" I::---<br />

4e I 0<br />

i i ii ii, i i i ~11 ii<br />

,c~ ~ ~ ~<br />

'r~cTzo,~o~ ovo~t~si.-o,-t'i'os ' ~''~'~'1<br />

~' ' ~mo,.',~s4.ot-t t~.t e-~4--'~ ~')<br />

I~TIiXI~ IAIfJV]I-~i-ll~ [ O-~-'t"'S E'~<br />

~ ~e~.~ C ~ ~<br />

ll{TH,~(X~'13-Ol-I~ma I O-.~.Ur'U m';~<br />

i<br />

h TIIEE~I~HT SlI01~ {~ Tiffs I~alIHO<br />

ISFOtl I~ll~ IRAIN, 111fd~ MIll |OUA<br />

1RAIli$ |#Tills UNIT,<br />

4,,~1 -I tO]<br />

4"01-1~1<br />

4"01-1~i<br />

4-OI-13IOA~ I, C<br />

34-01-1311<br />

~4-O1-1]1|<br />

~'gl*131l<br />

34"~1-131t<br />

~4-01-1~1<br />

~-01-1~l<br />

3401-1510<br />

.... ,n ,~.L~ I ~Jel~ BJ~.D.<br />

- TO - I~THAIO. - TO - TLL~L.~E PLANT<br />

I XCZO r,~ ~,~OV~ - UlCZT 34 ...~,~ .....<br />

D-34-~tP-3-HP<br />

I • - I "<br />

i i i<br />

I(IN11JDCr<br />

,T,<br />

r"<br />

A<br />

I tit


A<br />

D<br />

E<br />

I.~-~¢-w-i ~>-TAIL ~It34-01-li0T<br />

IIETNANOI. UI~T<br />

¢'~-'~'-m-~ ~. I ~c~t r~:.,.oo-o~z<br />

/<br />

34,,,01=1301<br />

[ O-Z4.-i~-I I~> LEAN UrTHAIV'I.J)'4~I - 120 X<br />

~D-34-1~'~ I(P I IAT[1~34-01-1511<br />

[ D-}q~F-¢ liP> t,,~l I~II~J~'O~J3q-OI-13GT<br />

I O-l; :.- : I~'~ CO R;L31 TAIL GAS/34-OI-I~OI<br />

I!1<br />

I l D'''''' ~,a ~,~.<br />

~..u ,.~. ---. I<br />

II<br />

qi.<br />

L...,Jl<br />

I)l~rJl~ 11~11104i<br />

34-01=1205 I<br />

"'A<br />

J I |.,J-~ '<br />

.. z ,, p-~l~l,,~,l~,,,<br />

34-O1-120G<br />

i<br />

I<br />

I<br />

ram,<br />

• ~ ~.J,'.s:g~.._z_._.~l~. ~ . ~ i ,,'.<br />

.. M<br />

t m N f


Ii i<br />

i ~ I iii,<br />

i i i<br />

I r~ r~vr~r ,u,,~,,t II'-". I ,I<br />

r ''~1 -~ ii~t.lll~. Liolilo ..~<br />

E'~---REFRIG. ~S r._l -<br />

-' I '<br />

,, _ I<br />

i m . I<br />

I<br />

I<br />

j LOTII~O mm,z~<br />

I LaiU law'nnsan ~amz:zl=~e ~ euraoz<br />

I I."oll [I['r~ II~OYAL I1-'.-,,-- I i I<br />

I r.~ ~Lrr. ~ r~r~ II"'-'l II ~ ~ II, PmlS{~ COiHIer '<br />

,, ,...+.,.,,o+, It'"'" i i • ,, rf,+,,om,,.,,~l+m,,~ •<br />

Di41~4r, DC~<br />

i ill ,,<br />

NOT~<br />

,. ~l,~%,y,, ~ ~,,,,,,l ~,,~ ....<br />

l~;~ ,,,'~1~. '~ ~.~ .......<br />

j,'<br />

[0t~t~lT SH0n 0N THIS OP, x.m.m~<br />

'34,,.01-1104<br />

34-.01-1205<br />

34,..01-1~06<br />

34-Q1-1~4<br />

:]4-01-1309<br />

14-.01-Z501<br />

34-Ol-g'lOI<br />

t.L5. 0EP.,~THEI, IT ''"0F F.HE~Y<br />

--O~Z~Tr WJI~,Ga~d:Z & liD,, KO.OC~<br />

~- TO- ~-~o:': G.~._PL~_<br />

~~,


A<br />

,1,<br />

c<br />

D<br />

I!L _,<br />

AW ,<br />

~'~- ~[,IJI I II/lll<br />

1<br />

i<br />

o<br />

I Ii ii : I ~d~<br />

F '-]1 -~ CO~EII~I E<br />

IDIEtCm WIIOU<br />

II I<br />

2 i i, I<br />

31-01-1 t05<br />

i<br />

'¢4-01-131~<br />

,,....,)<br />

3 I ....<br />

,'~' =' ~"," ';I.' ;,',,'1 I<br />

4~<br />

FRACT]ONATOII OVERHEAD/34-OI-1103<br />

"I/~TI~I~. WATER/,54:01-1~II'I<br />

METHANOL tlATER/34-,OI- I ~11"1<br />

L:i_ _J -.Jo.l J .... ,.~ = • .<br />

~L<br />

-I-<br />

-L<br />

m . .<br />

m


i UNIT 34 J ~_<br />

TRAIN 3<br />

IRAII~ 2<br />

I,'H ["r 34<br />

I1U,?N I<br />

O-34-tdP-3 I~P<br />

D-34,-MP-Z lip<br />

0-34.'4iP-3 t(P<br />

TAXL GAS/<br />

34-01-1107<br />

|<br />

-JJ~-,~,,--,,,, i .... i ~ I/'.'.'.'.'.'.'.'.'.~<br />

I -~'~ ~ ,,~,,~ ~,m~,,d .... I I l<br />

" I e<br />

$4,.01-1401<br />

I ,,,.. ~,~ II ..... J ! i 1HE Wt,PH N. Prl~8 ~Np~ly<br />

44b S<br />

r<br />

i<br />

NOTF.Sa<br />

I. T~M~'I~,I/OLIqlU~'IO(IAT~AI~MEBOKfd3ARE<br />

COloM I011~OFFO~ 11L4~S, THE STATE<br />

LI ~ TO ALL FOI~TI~ZNL<br />

~OLr'~UEHTSHOrd~THISDR&IlleC:<br />

34-01-1105<br />

34"01-131&<br />

34-O1-1401<br />

D3414~lIP. I)GA<br />

I " LLS, I)F..P/~TMENT QF ENERGY<br />

~s~rr WJRr, ORACE & CO,<br />

B.P.D. P ANT<br />

co,w.- TO- - TO- OnSOU L<br />

I;<br />

A~ cas ~ovA,. - u~ 34 t-'--" .."~--' ...... ' ,,,., i.,~<br />

zE'n~um. STOnA~ ! ...... U-=q-Mr'-: ~r" i,..~.~<br />

A<br />

D<br />

t~


A<br />

¢<br />

C<br />

*:r- -~2~- - -,,?.3 I I;t~ll<br />

1 I m I " I 47<br />

i+l I<br />

1 +<br />

STHEAU tltJMBER , ~<br />

STREAM RAMS SH[FT(D<br />

FEEOGAS<br />

¢OI~POHEH7 ~L. WT. LO-WOL/HR MOL<br />

Hz 2.016 i8~587.0 51.61<br />

Hz 29.016 • 126. 5 0.3G<br />

CO 28.010 3205.1 9.00<br />

Ar 39.948 43. 1 0.12<br />

CH I 16.042 53.6 0.15<br />

CO l 44.010 13~443.! 3T. 23<br />

HiS 34.08Z 351.7 1.02<br />

COS 60.076 3°0 0. OI<br />

0~ 32.000<br />

SUBTOTAL 35~E25.1 IOO.OO<br />

H~O<br />

m~e,<br />

18,016<br />

~2.o4<br />

,,. 53.2<br />

TOTAL 39,678.3<br />

Pr PS[A ?90.0<br />

T t °F ' I00<br />

STREAU HUMBER<br />

STRBd4 RAME ACID GAS<br />

TO CLAUS<br />

COLmO;4ERT MOL. NT. LB,.MOL/HR MOL<br />

He 2.016 0.2 O.OI<br />

flz 28.015 29. 9 2. 07<br />

CO 28. 010 O, I O. Ot<br />

Xr 3~'. 949 TRkCE O. 9 PPMV<br />

CH" I 16. 042 TRACE I. 3 PPit,/<br />

¢0| 44. 010 832. 9 57. 5'~<br />

HzS 34. 062 560. 4 39. 28<br />

COS 60.076 15.7 1.08<br />

p.oe 92. ooo<br />

SUBTOTAL 1,44T.2 IOO. 00<br />

HzO 18.016<br />

CHsOH 32. 04 I. 5<br />

tOTAL I. 448.7<br />

.P+, PS~ 24. T<br />

T. °F 92<br />

r + tlii<br />

I<br />

]~1 _1 i I<br />

.__i+l.. i<br />

$11[PTEO UHSHtFI EO UNSH]FTrn<br />

SYNGAS FEEDGAS SYH-GAS<br />

LO-~L/HR MOL ~ LEO-MOL/ER MOL 7. LB-MOL/HR MOL 2 LB-<br />

18, 348.2 83.57 5p818,0 36,15 S, 835. 4 42.28 2~<br />

127. I 0.58 77.3 0.46 77,5 0.55<br />

3205.0 14.60 T~ 116.0 43;61 li, 970. I 50,46 I(<br />

41.6 0. 19 2G.0 O. IG 25.3 q~. 19<br />

49,2 O. 22 32.3 0,20 30.7 0.22<br />

I<br />

185.3 0.64 2.891.5 17.61 070.1 8,30<br />

TRACE (0. I PPI, IV 20G. 8 1.27<br />

TRACE 12. 8 O. 08 TRACE<br />

21,554,4 I OO,_~ 16,241.1<br />

24. 3<br />

I00. O0 13,813.1 100.00 3. c<br />

I.I 0.8<br />

.21,595.S 16,265. 4 131813.g )4<br />

7(0. O 790. 0 765. 8<br />

82 |00 82<br />

WASTC WATER AIR TO TORVEX WATER TO TAP_<br />

GAS WASH COLUMN<br />

LB-MOI./HR I I,(OL ~. LB-MOt/HR I MOL 7. LB'-MOL/HR MOL Y.<br />

TE9. 5 78.00<br />

9.+ Coo<br />

207. 2 21.00<br />

986.6 ! IOPL O0<br />

15. 9 99. 97 12. 4 7649. 9 I OO. O0<br />


i '<br />

L~<br />

.W.,,m,--<br />

"[.55<br />

~.4~<br />

~.i5<br />

~22<br />

~oo<br />

r<br />

TOTAL<br />

SYN-OA~<br />

~L/HR<br />

t4.!e8. I<br />

203. 3<br />

lOb!T5.0<br />

EG. 9<br />

79. O<br />

[Tr, xc~<br />

TRACE<br />

hB<br />

35,010.3<br />

1'50. 0<br />

62<br />

LOAOED WATER<br />

~A FRO~ WASIf ~LUI~I<br />

z LS..~O.,,~<br />

*T.S~<br />

0,57 2~ 153.8<br />

28. 45<br />

0.,i9<br />

0.,22<br />

2.94<br />

too ool ~o :s3oe<br />

SIRIPPZNO<br />

GAS<br />

2, 163, B<br />

23. 9<br />

62<br />

u~.z<br />

TOTAL TAIL GAS<br />

100,00<br />

I00. O0<br />

~ LE-~IOL/;4R HOL ~ LB-HOI../I',R HOL Z<br />

62 0.01<br />

2. 506.0 16.45<br />

.... 8,9 0.05<br />

1 65 0.01'<br />

I,t 0,01<br />

S.O 14.$88.5 82.86<br />


F. Plot Plan/General Arransement DrawlnEs<br />

Removal Unit 34 are as follows:<br />

Plot Plan <strong>and</strong> General Arrangement Drawings for Acid Gas<br />

Dra~rlng No. Title<br />

D-34-PD-INP<br />

D-34-PD-2NP<br />

Plot Plan - Unit 34 Acid Gas Removal<br />

Elevatlon - Unit 34 Acid Gas Removal<br />

II-1.2.1.5-15<br />

~ lJmnmmm~--


4<br />

¢<br />

D<br />

zO<br />

i!1<br />

DNAWiNG Hg.<br />

I<br />

ENG~GE.Z) I t~?|)<br />

S<br />

DE~RIPTION<br />

1<br />

>.<br />

i_o<br />

I!L,<br />

WING NO<br />

I<br />

I , I ~ I<br />

OE~iCRIPTION '"'<br />

MATCH LINE ~" C/L ,~OAD . 7685~0"<br />

~] ~jOU] ~ ~<br />

..... I I I1.<br />

I1<br />

o i i ,'<br />

I " 11 Ii ....<br />

" I<br />

MATCH LINE 6 ~' C/L #OAO E.7..RgO" O"<br />

OEGCR II~[tON<br />

3<br />

Q<br />

D ~<br />

, i ill. _<br />

Iro~<br />

.J~ ~ s r..r.. ~ ._ ~ ~."~'_..-~-<br />

I ~ ~ ~ ~ . -


LI<br />

,,,, • ,<br />

• ,,,,..~I,," ~,'C,i ,,'/,,,",'~',", ' ,~'.~ ' ,,.., ~', ,' , ' ,,', ,, .,~ ', ' ,, , . . . . , .' ",,. , , ,.' ,,,'"J, ,!',' ' ~ ,,,,<br />

' I, .' "' "<br />

BATTERY" LIMIT<br />

I I,I<br />

~ - = , . . I~.I I"~"<br />

ACt • &<br />

/ \<br />

/ "\<br />

[dATrERy /.,/All F<br />

,Ulm<br />

I<br />

__J<br />

t<br />

\<br />

}<br />

IN<br />

NOTE5 :"<br />

h THIS; PLOT PLAN 15 Ot= MOOU~'.,~ P/OF<br />

4 MODC/t,~'S E¥~PT gOR/,t/l. ¢O.OAP~X',V,4T~"3<br />

2. d.;ATEL#.ITE MA/N2",~LOG.~6 "ril~ IS IM<br />

MODC/&E f I O~l&)"<br />

• 5. SATELLITE M.4tNR ~LOG,5~'49~ t~=lM MOO, D<br />

• "J OIV&y [OR ~.OC~TIOIV SE6" OVEI~¢.<br />

I~0? ~AIV p<br />

S', ~IFT E<br />

F I U.S. DEPARTMENT OF ENERGY KENTUCKY<br />

I--BASKETT W.R. GRACE & CO.<br />

50.000 B.RD.<br />

t COAI~- TO - METHANOL, ,,TO - GASOLINE PLANT<br />

" pLo~ ~N ~1" ~;-I~,8;" I'\~I •<br />

u.u/r-34 ~ ,~'o~ po-/,vp IP--~lJ~<br />

ClO 6, 45 REMOV.,dL I c..,'~ ;=" I . I<br />

,=====B<br />

IBl~lI=llll<br />

i i


u<br />

i<br />

i<br />

A<br />

41<br />

¢<br />

D<br />

I<br />

q<br />

!!<br />

I l I 3 I 4+<br />

HI IJlnl I llll I II ill I I H I<br />

H,,,/,',,,,, 1 I I ""<br />

J<br />

i,<br />

II<br />

!1<br />

I, M. ~ ~ ,I lii'i '<br />

J ! ! i ~ I*|1<br />

DMTC t oJ ¢UEN Dr,.f~,~i,;~ o ¢1 .:l ",~ .<br />

2 I 3 I 4<br />

, ,,i


, , + , . , ,<br />

~ r ,, ~ ' '+,'" " , ' P ' Pt ;'"<br />

,,,, ~,,,,,,,""~ +, ,,, , ,P. , ,, ,,,, ,,,,~,,,,,+ , , , ,,. , ," ,,,,, , ;.,.,.',',,,,, ,,:',,~ ,,,, ; . . . . . ,,.,,,<br />

, , , , ,<br />

_,++ + , I +' I<br />

t<br />

i<br />

i! I ilh<br />

,=<br />

' "'__lJI / ~mm,<br />

, " %,<br />

.=TW,<br />

+<br />

,"/.//i ////A%\\%<br />

/////<br />

MI<br />

II II II ITI<br />

F__ U.S. DEPARTMENT OF ENERGY<br />

L ~ _ ~ ~ ~ -I so,ooo B.RD. .<br />

-=.'-+~-~, +.,Pmo+~. I~ ...... +-,~+ I ~ ~ ' , ~o;o I 7 Z + ~ ^ :<br />

" "-+'mlmlr'/~'+C"'rt~"E,%~'-~l<br />

-,-.+.


~ I m m ~ m ~ @ N ~ l J w w ~ ~ e l ~ t i ~ e ~ i~ .... l ~ v~ ~ ~ i i ,~i 4 . . . . @ ~ , l ~ I ~ w ~ l i l t ~ , t ~ • ~Q~q~i~j~41~ I w ~ i ~ , * ~ t ,i i t ~ I ...... i<br />

f<br />

i<br />

x..<br />

...'<br />

\<br />

follows:<br />

O. si.gle-Line Diagram<br />

The Single-Line Diagram for Acid Gas Removal Unit 3~ is as<br />

Drawing No. Title<br />

D-51-EE-7NP One-Line Diagram- Unite 34 <strong>and</strong> 39<br />

II-1.2.15-16<br />

d !<br />

I


w<br />

A<br />

@<br />

C<br />

D<br />

J'POI/O~'41;O~<br />

5 ~r, tA<br />

J4,4 I(V"<br />

ZotU¢<br />

TiP. FOR f41 P/..AC~<br />

I ~ ~'L J4* O J /l~i-4r~O I<br />

,i4,l~V<br />

~U~ 8l-O~o~r<br />

I<br />

4160~ ~ ~ 4160V<br />

,14.51¢V<br />

SI'OIOJT<br />

I<br />

39-01-4602 ~1<br />

iooo ~vs ,:f, _<br />

480V<br />

DKSCRI~IrlON<br />

ii<br />

1 I<br />

e e ~" P.<br />

12.£X<br />

3~'0l-4~01<br />

34-01/04-460~<br />

34.SKY<br />

8115 51-02031"<br />

124"1.<br />

J~-OJ-~60~<br />

I000 KVA<br />

~.J ,$4.4 KV-<br />

r'~ 480 V<br />

~ 480V MCC<br />

SYMBOL I, IST<br />

4t<br />

[~ JKDliPJ VOLTAC£ Srl, ffrE..et, C~,~.ET~ ,<br />

INCLUOIHn FU$E$,$$rf.~OI.ID STAt~ TRIPI, PL<br />

RIO AHO DIFF, PI~OT, ~ JIOTOI~ D~.R ~00~ "<br />

$1 s TIJ~ D~'LAY PI'.AS£ OV¢'R C(1~7£11T R£LA'<br />

50 ' IAST,411W~OU$ PH4S£ OVER ~ T ~d<br />

SIN # Tlltr. ~4Y oVER C[IRR~T G~O~ F~<br />

PR~TECTIOtl<br />

PROTECT IOH<br />

o(~ mFF~.~rI~L c~e~.m" eCLAt<br />

OUTOOOR ~oem cieCmT e~x~ ~JTH<br />

DI$COI,~I~CTIH~ $11TCHE$<br />

o ~ 3 eosmcw swrc~, c~r~R OFF<br />

1<br />

$u1~£ ~P~ESTUR<br />

I~CTIFI~R<br />

CO~DelCTOR r.RO~U,!G NOT COt, ffECT£D<br />

- - ~ COHDUCTDR ,~RV~CTLrD<br />

R.~ERSE PO~R PROTECTJO~I R~LAY<br />

(~ LOSS OF ,'fIELD P~OT£CTIOtl ~l,.4r<br />

~R4TOR ROTOR OVZ'I~AI"II~<br />

~ OY£R "040 (r}F..F~L) FOR G~I, STArOR<br />

srNC#RO $OOPE<br />

GD;BCtTOR<br />

(~ I~.4R~ FACTOR<br />

i l I I I I I I I F'I r,-*-~.~'Ir.iJ,rAl.',..,.tl "" l,,'~rtr~m:i<br />

ill II Ill I<br />

~ o . I_i.~ I o^T~ i o. i=~l~cl~l~z.t I m,~). I I-~o-~ I ,,, [-~l~¢1~1=,~- I ..:"


llt ,,<br />

~T ~ F~JL T<br />

R IITH<br />

r<br />

A~<br />

:r<br />

s TA ro~<br />

gOUIID FAULT<br />

SYMBOLS<br />

+<br />

®<br />

[]<br />

®<br />

s I<br />

BIS, ~ ~tt~lCroR<br />

£u~crRIC41. OR JJECHIWI£4L IHTEIfLOCIt<br />

CDAW~TOR ~ttAllOUT TYPE<br />

~IIT¢'H<br />

FUSE<br />

POft£R CIR;PJJT ~f.AkT.R<br />

DR41rOUT Trl~¢<br />

AIR CIRCUIT BJ~.AKER<br />

t~MWOUT TYI~<br />

P1~$£ CeURRENT T~4NSFORI~R<br />

(C1") JNDIC4TIHG ~ RATIO I OUANTITY<br />

~O~'NTIAL TRAN~F. IP. T#<br />

3# 1090/1150 WA<br />

34.5 ~V-4Ir~V<br />

a~Z 41" 55"C<br />

3 I - 3 IrltlDIt~ P~tlER TRAN~F.<br />

C~OUHD CG~t£CrlON<br />

I~IER TR~ISF, OA/F4 ~W,<br />

P~TfI~9 SHOIrll<br />

.lit LqOTORe NUMBER IHDICATE$ HDR$~OI~R<br />

LOll' VOL f'AC,~<br />

~BIN,4TiOH MOTOR STARTER<br />

204 IHDIC4TE~ PRIP R4rIIIG<br />

OR CONTIHOUS CUI~RtHT P~Tltil;<br />

J~CRANJP,~tL J~Y INTERt~CK $ ~<br />

I~.WROL ~tlTCH<br />

i~ ABIETER SlfIT¢~<br />

V~ VOI.r~rER $~IrCH<br />

~T~$<br />

x auaCrTER<br />

DOt 9EdJHD<br />

PF FOIER FACTOR<br />

K~LD~ATT HOUR<br />

V VOLTI,'fTER<br />

PAllEt, gOURD<br />

LP • LI~tTII~ P.4I~I.<br />

-! r~*~ ~e.m~" ~ ~r~ I'~"~"ml I l THE RALPH M. PARSONS COMPAIIY<br />

i<br />

4+ I s I<br />

.ABBREV I A T IONS<br />

V VOLT<br />

W WATT<br />

KV KILOVOLT<br />

IWA KILOVOLT~:£1~<br />

ATI KILOflAI~<br />

lira k'E~ VO L T~>EB£<br />

PF POIER FACTOR<br />

AS MII~TER $~LECTOR $1rlrCtl<br />

its VOLTIIETER SELECTOR $1rlTCN<br />

H.O. HORk~U.Y OP~I<br />

II, C. NOR#ALLY CLOSE<br />

~CC ~eOTOR CONTROL Ct~ITOR<br />

.in. 0tll<br />

KILOWATT<br />

LTC LOAD TAP CHJJ~IHG<br />

Z X IIPEDI~C£ PERC~T<br />

SP SP&~<br />

LRA LOC~F.O R~TOR ,UP~'~<br />

FLA FULL LOAD AJ~'RES<br />

OMC. DtACR~I<br />

STR STARTER<br />

F~R F£t"OER<br />

PP FU~<br />

lip IIO~...~O~ER<br />

I OC. LOCA T IOH<br />

$~. $CI.PEM.4TIC<br />

OTr. O~;NTITY<br />

TfP. TI'PICAL<br />

U (NIT<br />

SILT. $1~EET<br />

~. ORaI #tG<br />

ClRC. CIRC(IL4TI~<br />

BLIP. ~.~ER<br />

ijJp.D JIPPROVED<br />

TR 1RAI#<br />

COM. O,I~REScJOR<br />

WTR. IMTER<br />

It;D. II~UCTIOtt<br />

THRU nmovcH<br />

ALXY AI.KYLATIOW<br />

nl~ Te~;FOfet~<br />

I U.S. DEPARTMENT oF ENERGY<br />

BASKETT W,R. GRACE & CO. KENTUCKY<br />

~, 50.000 B.RD.<br />

COAL "TO - METHANOL- TO - GASOLINE PLANT<br />

ACtD GAS REMOVAL U-34 ~ ''"<br />

leRocm~ ~ATER r~n~. u-~9| D-5 I-EE- 7NP I/-e:~<br />

6<br />

B<br />

I<br />

;1<br />

k<br />

t<br />

..1<br />

3',<br />

'i<br />

¢<br />

,:s<br />

j.<br />

I<br />

:4<br />

:i<br />

J<br />

]<br />

,]<br />

J<br />

J<br />

4<br />

,j


1.2.16 SULFUR RECOVERY (CLAUS) - UNIT 36<br />

The Sulfur Recovery Unit (SRU) is designed to convert the sulfur<br />

compounds in the acid gas £rom the Acid Gas Removal (Reetisol) Unit to<br />

elemental sul£ur, which will be recovered as a salable product. The tail gas<br />

from the SRU is £urther treated for the removal o£ the remaining sulgur<br />

compounds iu the Sul£ur Removal Unit be£ore being vented to the atmosphere.<br />

Two parallel, 50% SPJ3 trains are provided.<br />

A. Basis ,of Design<br />

The quantity of acid gas from the Acid Gas Removal - Unit 34<br />

requires that two parallel 50% SRU trains be installed. This arrangement<br />

requires less field £abrieation <strong>and</strong> provides greater operational flexibility.<br />

The £ollowing Reed <strong>and</strong> product stream data summarize the normal operating<br />

condition information £or the two 50% plants.<br />

Feed Streams<br />

Total Acid Gas<br />

Component (lb mol/hr) (mol%)<br />

H2 0.59 0.01<br />

CH 4 - _<br />

CO 0.34 60 ppmv<br />

C02 3,331.73 57.55<br />

N2 119.67 2.07<br />

A - -<br />

H2 S 2,273.71 39.28<br />

COS 62.80 1.08<br />

Total Dry, lb mol/hr 5,788.84 100.00<br />

Total, lb/hr 234,490<br />

Pressure, psia 25<br />

Temperature, °F 92<br />

II-I. 2.16-1


C Product Streams<br />

Component<br />

Tail Gas (end of run)<br />

(Ib mol/hr) (mo1%)<br />

H 2 67.14 0.88<br />

C~ 4 - _<br />

CO 130.90 1.71<br />

CO 2 3,199.96 41.75<br />

N 2 4,142.12 54.05<br />

0 2 - .<br />

H2S 79, 32 I. 03<br />

COS 2.28 0.03<br />

SO 2 39.74 O. 52<br />

$6 O. 34 440 ppm<br />

$8 2.10 0.03<br />

m<br />

Total Dry 7,663.90 100.00<br />

H20 2,514.08<br />

Total Wet 10,177.98<br />

Total lb/hr 311,960<br />

Pressure, psia 18<br />

Temperature, °F 280<br />

|,,<br />

II-l. 2.16-2<br />

Sulfur Product (end of run)<br />

(lb mol/hr) ~molZ)<br />

m<br />

i<br />

m<br />

m<br />

m<br />

70,430<br />

274.54<br />

274.54<br />

1<br />

274.54<br />

65<br />

290<br />

I00.00<br />

I00. O0


B, <strong>Process</strong> Seleetlon Ratlonale<br />

The Claus sulfur recovery process is universally used<br />

throughout the world for bulk recovery of sulfur from acld gases containing<br />

hydrogen sulfide (H2S) .<br />

An alternative method of recovering sulfur from such gases<br />

is to manufacture sulfuric acid. However, h<strong>and</strong>ling, storing, <strong>and</strong> shlppiug the<br />

quantities of sulfuric acid generated by this plant would be much more<br />

difficult than marketing the smaller quantity of sulfur,<br />

Hydrogen sulfide could be converted directly in a Stretford<br />

unit but with considerably higher Investment <strong>and</strong> operating cost. The largest<br />

Stretfcrd unit in the United States has a design capacity of 52 ltpd compared<br />

with up to 1,200 ltpd in the acld gas from the Acid Gas Removal Unit,<br />

C. <strong>Process</strong> Descriptio~<br />

The purpose of the sulfur recovery unit is to convert the<br />

bulk. of the sulfur compounds In the aeld gas from the Acid Gas Eemoval Unit<br />

to elemental sulfur. This conversiou is accomplished by oxidizing ~uurnlug)<br />

one-thlrd of the H2S In the acid gas to SO 2 with alr, The SO 2 will then<br />

combine with the remaining two-thlrds of the H2S to form elemental sulfur<br />

<strong>and</strong> water vapor in accordance with the following reactions:<br />

H2S + 3/2 02<br />

2H2S + SO 2<br />

H2S + 1/2 02<br />

so2 + s2o<br />

3S + 2H20<br />

S + H20 (Overall reaction)<br />

These reactions create temperatures high enough to sustain<br />

the reaction thermally, <strong>and</strong> they will continue to equilibrium. The thermal<br />

reactions are followed by three catalytic reaction stages to complete the<br />

reaction to practical limits.<br />

II-l.2.16-3


(<br />

%.<br />

The acid gas enters the plant through Acid Gas Knockout Drum<br />

36-01-1201 to trap entraP.ned llquld. The feed stream is metered after passlng<br />

through the knockout d1:um. Airflow from Combustion Air Blower 36-01-1801 is<br />

controlled to malnta.ln a 2:1 H2S to SO 2 ratio in Reaction Furnace<br />

36-01-1401. The scld gas feed to the reaction furnace is preheated with<br />

600-pale steam <strong>and</strong> is burned with the combustion air.<br />

The hot gases from the reaction furnace are cooled first by<br />

generating 250-pslg steam in Reaction Cooler 36-01-1301 <strong>and</strong> then further<br />

cooled by generating 50-pslg steam in No. 1Sttlfur Condenser 36-01-1302. Most<br />

of the sulfur formed in the reaction furnace is condensed in the No. I<br />

condenser from which it flows through a sulfur seal into a sulfur pit. The<br />

cooled gases pass through a wire mesh coalescer for removal of entrained<br />

sulfur <strong>and</strong> flow to No. 1Reheater 36-01-1307. In the reheater, the process<br />

gas is heated to reaction temperature with 600-pale steam. The process gas<br />

then enters the first converter, where the reaction to form sulfur from H2S<br />

<strong>and</strong> SO 2 will continue. The reaction is exothermlc <strong>and</strong> heat Is generated in<br />

proportion to the amount of sulfur produced. The hot process gas Is cooled in<br />

the No. 2 condenser by generating 50-pale steam. The condensed sulfur passes<br />

through a sulfur seal <strong>and</strong> into the sulfur pit. The cooled process gas passes<br />

through a coalescer for the removal of entrained sulfur.<br />

The second <strong>and</strong> third stages are slmJ.lar to the flrst stage<br />

(each comprising a reheater, converter, <strong>and</strong> condenser/coalescer). The final<br />

condenser produces 15-pslg steam to cool the process gas as low as is<br />

practical. The other condensers produce 50-pslg steam.<br />

The tall gas from the flnal condenser is sent to Sulfur<br />

Removal Unit 37 to remove the remalnlng sulfur components. The sulfur<br />

recovered is collected in a rundown pit. From there it is pumped periodically<br />

to sulfur ~torage tanks. The sulfur in the sulfur pit contains H2S <strong>and</strong><br />

polysulfldes so the pit vapor space must be swept wlth a." to prevent the<br />

evolved H2S from buildln E up to a potentially explosive concentration.<br />

II-1.2.16-4


The sulfur pit vent gas then is treated in the Sulfur<br />

Removal Unit for removal of the H2S.<br />

I. Flexibility <strong>and</strong> Turndown. Turndown of each plant to<br />

one-third of design capacity is possible with st<strong>and</strong>ard instrumentation.<br />

Features provided to give turndown flexibility are:<br />

measurable extent°<br />

(a) Metering <strong>and</strong> control valve rangeabillty; dual<br />

transmitters or other facilities are provided for<br />

turndown to 20% of design capacity.<br />

(b) The air blower is vented to the atmosphere to<br />

prevent surging. Automatic antlsurge control is<br />

provided.<br />

Turndown normally will not affect sulfur recovery to any<br />

2. Startu~. The SRU is started up by burning fuel gas<br />

with excess air on a cold startup with either fresh catalyst or catalyst that<br />

has previously been stripped of sulfur. This procedure allows the plant <strong>and</strong><br />

catalyst beds to dry out <strong>and</strong> attain normal operating temperatures before<br />

introduction of acid gas feed to avoid corrosive conditions. ~en an acid gas<br />

flame is establlshed~ the fuel gas is shut off°<br />

S~artup on a warm plant or catalyst that has not been<br />

stripped of sulfur 18 accomplished by burning fuel gas substolchlometrlcally<br />

as described under "Shutdown."<br />

3. Shutdown. Fuel gas will be burned substoichio-<br />

metrically with steam to strip sulfur from the sulfur-laden catalyst beds <strong>and</strong><br />

to sweep out acid gas reaction products.<br />

II-1.2.16-5


- ~ - , ~ . , - , ~ , . , ~ ,,,, ,,., °= ,,.,..,,,I..,,,,..,,_, .....<br />

Ii<br />

t ~<br />

D. 1~/sk AsSessment<br />

~ ~ 4 e*4~glU pJOIg ~ ~tQt rf~ f~n~ ~ ~*q~ ~ ~ i ~ ~t ~ ~ ,~6.4~ ~ ,~, i et ~f ~I ~4 * Jgp~i~ O m~w,i ,~ je ° . . . .<br />

Unscheduled emergency shutdown of the sulfur recovery unit<br />

can occur because of loss of the air blower, loss of flame in the reaction<br />

furnace, loss of boiler feedwater, or high-liquid level in the acid gas<br />

knockout drum. Unscheduled shutdown also can occur because of excessive<br />

condenser or converter fouling or e blocked sulfur drain line that builds up<br />

pressure drop over a period of time.<br />

In ~his design, two nominal trains are provided as well as<br />

spare air blowers. Each train h<strong>and</strong>les 73% of the gas flow for the normal<br />

operating condition case. High-liquid level in the knockout drum can be<br />

prevented by proper operation of upstream areas. Many of these Claus units<br />

have been operated successfully for years without unscheduled shutdown.<br />

The modified Claus process is proven technology, with<br />

hundreds of units £n commercial operation. This process meets the Best<br />

Available <strong>Control</strong> Technology (BACT) St<strong>and</strong>ards. The prime criterion for<br />

selecting a sulfur recovery system £s to meet the environmental restriction<br />

imposed by BACT. W.tth the BSRP ~ulfur removal unit, it also meets the Lowest<br />

Achievable Emission Rate (LAER) St<strong>and</strong>ards necessary for nonattaimnent areas.<br />

The construction material is primarily carbon steel. From<br />

many years of engineering, procurement, <strong>and</strong> construction of these units,<br />

select vendors <strong>and</strong> fabricators are to be used that have proved their<br />

equipment for reliability~rlth a minimum of maintenance. The availability of<br />

equipment for this unit requires a nL~u~numo£ lead time.<br />

Sulfur recovery units are considered highly reliable<br />

operating units with a minimum of maintenance required.<br />

II-1.2.16-6


E° ,process <strong>Flow</strong> <strong>and</strong> <strong>Control</strong> <strong>Diagrams</strong> (Including Material<br />

Balance)<br />

(Claus) Unit 36 are as follows:<br />

<strong>Process</strong> <strong>Flow</strong> <strong>and</strong> <strong>Control</strong> <strong>Diagrams</strong> for Sulfur Recovery<br />

Drawing No. Title<br />

D-36-MP-1NP<br />

D-36-HP-2NP<br />

D-36-MP-3NP<br />

PFCD Sulfur Recovery (Claus) - Reactor<br />

PFCD Sulfur Recovery (Claus) - Recovery<br />

PFCD Sulfur Recovery (Claus) - Recovery<br />

II-1,2.16-7


A<br />

4<br />

C<br />

• . 24"AA-3G<br />

[ "~l ~'- Z'-kt-3G<br />

wsx[ ~TEn<br />

ACre OA5 FErn II40RmL)<br />

lEACH 1RA~H)<br />

COGENT MOL, WT, LB-UOL,'H+<br />

H| 2,016 0.3<br />

n| 2I.OIG ' 59. P$<br />

CO 28,010 O. ,S<br />

C0/t , ,lq.0io t~SS, C';<br />

HIS '34.082 1135.65<br />

COS 60. O'lG 3 I. 40<br />

TOTAL<br />

e, ~.<br />

ZO~, 40<br />

24.+<br />

T+ "F ~2<br />

I ~ I ~ I<br />

START-STOP<br />

CONTROL<br />

SET •<br />

15 PSIO I<br />

3G-0H20I 3G-OI-13GG<br />

ACZO GAS K.O, OIIUR ACtD~A~IT..R R~CTIOM FURKAC[<br />

(I I)<br />

]6-OI-IS01<br />

3K'Ol'lSOZ<br />

FXGURE 4-Z<br />

24"-AA-36<br />

J 3G-01-120._.,.__II<br />

~ 1. 24"-A-3G-|<br />

36-01-1801<br />

36-01-1802<br />

3~-0t-150.__.__/ ~-01-1|01<br />

36-01-1502<br />

COMBUSTION AiR<br />

A~ ~a~_ BLBIER A~) SPARE<br />

__ NOTE 2 24'~U..3G.]<br />

I- 6oo eszo $T(X. -: I-"I<br />

24~.AA-35-I<br />

36-01-1401<br />

-t!<br />

g<br />

PU£L GAS<br />

2"S-36-][<br />

wl<br />

A"<br />

i ¢OMPOHleNT MOL. liT. LIS-.laOt../Kfl<br />

HI 2.01G 71.31<br />

CH, 1(,.012 IS.SO<br />

N z 28.016 13.45<br />

1:01 44.010 "9. ,¢1<br />

CO 21.010 q.?T<br />

AR 3~. $45 4. 23<br />

CH1011 32-04 0.4'1<br />

ET ILII~ 30. O? I. 53<br />

ETHYLENE 2|.0S O* 13<br />

PROPt'LIENIr 42.01 0.23<br />

I:'I~MI[ 44. 011 5. 4 I<br />

|SO'3UT&ME 58. I Z O. IT<br />

H-BUTA~( $8.12 O.O'J<br />

N-'BUT£~E 54.09 0.~<br />

[SOP(ITAN( 72.15 "I<br />

N-P;NTAN I:" 72, IS .,~O*OT<br />

I'-PENTE](E 5O. 12<br />

0.12<br />

0.03<br />

TOTAL<br />

e. ps,,A<br />

'129.15<br />

m<br />

T, °F 90<br />

++ : , __+_LL_L~ !<br />

I<br />

,.+x-.+ ~ . ~ ' .<br />

.


,,,, ,. +,' ,,,.., , ;. ',' +. +,, .'., ' , , ,+ , ,<br />

~,-01-1301<br />

35-01-I ~02<br />

' ~<br />

R~I, CTI011~F R ,<br />

SET e<br />

. ZB5 PSIG<br />

~..:~ I m' ~ ,r" I<br />

/<br />

l<br />

3G-01-1202<br />

i " ~ ip ~ . ~ :3"..S=31;-!<br />

+IT '<br />

~F'-DI-I~i)I<br />

e:t_ ~<br />

?<br />

E]<br />

ll.31<br />

13.q5<br />

.. 9.61<br />

: s..__.~2.<br />

" 4.23i<br />

0.13<br />

O, IT<br />

; o,_,...~oe<br />

.°.<br />

O. I~<br />

5 , I + O<br />

3G'-'JUL-~I-!<br />

5ULRJB/ kO, i CON~f.~g .....<br />

4a"S'3G'I<br />

BF'IK/ UNIT StJOHEADER<br />

3~'S'36"I<br />

GOO PSI ICOla)ENSATFJ OONOENSE~S<br />

~+',<br />

I<br />

I, IgE I'QUIPgENT SN0WN ON THIS ORAW'IMG ARE<br />

FOIl OHE OF 1"10 1RAIIt.",<br />

|, ~[11[ FOLLOWIN0 [OU]PMENT ARE NOT SlIOtlN WITH<br />

FURIIACB<br />

-.-p- ,o, ,tmn.mv .u~. ,o.',<br />

~1 - I- 403 AUX~[ALfly BURNER No.3<br />

]4~ -1404 AUX'[LIJ~Iy OURN~R NO,3<br />

3, IX[ IPIOURE I(t,fgOERS REFER TO TYPtCAL<br />

(I}UIPMEHI'$ COHFXGUHATIOflS SllOiH (~Z4<br />

ORA~NG D"OI-MP-2 liP,<br />

[OUST SHOIII ~ TH',S D~IIIHGs<br />

3G*Ol-t201<br />

~5-01-1202<br />

3G-01-1301<br />

3G-OI-130G<br />

~$-01-1401<br />

~11-01-1501<br />

~G--OI-15OZ<br />

3&-'01-1801<br />

31-01-1803:<br />

' ~-- O3~MPUfP, CGA<br />

-- U.S, DEP~eIRTI'4EHT OF ENERGY<br />

- ~ ~ ~ ~ ~ . ~ I i | net l,,. CmL - +o- ram,No, - T,o.- oAs~mE ~ANT_ ,~<br />

,:::++: +++-: r +°+++++ +--izi<br />

, ~ n ,^~.~. m,,~..,. I ,m.msEcm, | O-~G-M~-I .r<br />

'+ I + - . ' I<br />

A


A<br />

4<br />

C<br />

D<br />

I D-36"~-I I~' 3G'-AA-3G-!<br />

" SLILFUIPREAOTZOH FUP, KAC(<br />


_4~<br />

h ~<br />

:..-....<br />

q<br />

-P--~-'<br />

., ,,~,.,..,.~ ,,','~:~' ,'.~!B'~ ~, ~,'~,~.'~,~.r ,"~'~*.~ ~*.,,'~).' I.% .;~.*,~i '".''~'~"" '::~ ' ~i~,":(';"~,l~'.~"~!:'.',; ~, '~,,<br />

3G-OI-130B<br />

3"-U-3G-]<br />

I0"-R-36-'I<br />

3G'-'AA-36-%<br />

G'-S'ZG-!<br />

3'-AJ-36-T<br />

I"-R-36-%<br />

3'-'.___.S-3S-Z<br />

( )<br />

I -~ I 7<br />

600 PSIG S1T.AII<br />

3G",-AA-3G-!<br />

SULFUR OA~ NO, 3 COHDENSER I u"~t'r'= ~'<br />

SULFUR/ ~iULFUR p I T ~<br />

BLOIO01~ H ~ O E R ~<br />

600 P~G COHDEA~.dt, TE/REH~'I"r..ll D.-3,S-.1~3 NP<br />

O)61P21(P. OGA<br />

IIOTE~<br />

I, THE (QUIPiI(ttT $HOIM OH THIS DIU, IIIHO Aflr<br />

FOR ONE OF 1110 TRAINS.<br />

~, |lie F|GUnE RIAtSI~S REFER TO TYPICAL<br />

~!J~l~ ¢ONFZGURAT%0/i$ SIIOW~t OH<br />

Dl~lll[i~e D-OI-MP-Z I~,<br />

w.~.~ ~ co.<br />

EQU~N(NT SHOYH ON TH]$ ORAWIHGz<br />

36-01-1203<br />

3li-01-1204<br />

3G-01-1302<br />

3G-Ol-1303<br />

~G-OI-130T<br />

3S-Ol-13011<br />

...... ~ C(3~1... - TO - HETHANOL - TO- GASOL]NE PLANT<br />

~,~.,~,~o~. l ~,,®~:i-,-,2<br />

#. PNISGNS<br />

I I,<br />

IcE~nJcKY<br />

D<br />

#<br />

~ , ~i~_


~" A<br />

¢<br />

D<br />

'<br />

I I ,<br />

+ I m I a I<br />

- 600 i"510 ST[AM<br />

~D'3£'IIP-2 NP n 3"U'3G-|<br />

n 600 PSI0 5"T[AM<br />

[~., . . . . .~m.-n-+6-t<br />

IO'.-R-3G-I<br />

v n ~o~ms~<br />

LD'36-MP-2 lip ~. 36"~A-36-I<br />

--'SUL?*IJH qAS~ ¢OIIVERTE~<br />

~.~0-36-UP-2 HI+ ~6"S-36-!<br />

' B.F.~./ sr~u Imuu<br />

..... ~ SULFUR<br />

L~.-,:, ~' 2 " ~ I~R'3G'!<br />

m,., OLO~a<br />

i I ~ -L~s "IPtlON<br />

~£-(I- I'q04 l[<br />

"60Q PSIG L"OI4DEHSATEf 5"TEAu DROU<br />

D"iL_ I D~"'~ " | L "^'o"c'~<br />

~:l llznei 1 I<br />

set •<br />

50 PSiG<br />

+<br />

Z6-01-1304 36-01-1369 38-01-1205<br />

Xo, 3 COHOEH~[R ..Ho, 3 REHEATER. Ho,~l~n<br />

q<br />

,P<br />

A<br />

2<br />

DATZl BY<br />

36"-AA-36-I ~ ~<br />

-D--~--<br />

i n<br />

36-01-1309<br />

36"-~-36-I<br />

36"01-1205<br />

(<br />

"q6-OI- 1305<br />

!<br />

,+,<br />

i<br />

I"<br />

!,<br />

" ,T"<br />

~L cj~L,~,q ~.'1,~ ~1 ~ _..-<br />

I 44'<br />

,.o


~ ; m , 1 d,<br />

+,,~r+ . +,,,,,+.,+,~ .'I,,++,, '+,',+ • ~'+, .,++t ;+',+' L"+.!,,++ P',I ','), i . , '*+ '. M.+, ,,.* ~+, 'o'. , , ',' ~ ........ ' ""* ..... I , ,,+,':, " ;" '* +<br />

_ IL , ....... I<br />

3G-O1-4101<br />

:::'~ 36"'01"1305 SULFUR PIT"<br />

-- MO. 4 P.,OHOElt~f~ •<br />

.. I ~<br />

I<br />

®<br />

10'-R"~"I<br />

15 I'SIO ST£AI, I IR.JWE~ --- []<br />

A:II. GAS~ RI:nUC1NG GAS G~IM<br />

! B,F.~ ItF.J~B ---<br />

311-.01-111ttl<br />

31"01-1 I10'1<br />

ir+ -<br />

t<br />

I I<br />

I I 36"O1o4101<br />

~---,-,+_j<br />

~o-01-1803 ~'OI-t503<br />

l',-llo3r~l ~ i1--1<br />

BLOIgOIM HEADER -<br />

2"-AA-36-!<br />

4*,.-AJ-3G-I I P..~T-IP-IP IP)<br />

I SULFI~ .......<br />

I..~_ "F i ~++ I<br />

Lk~. +m~ ~ ~t I<br />

0 I 7<br />

HOTESl<br />

li. THE F|CUJlP ~U~,~I~R s ItEFLPR TO lttPlCkL<br />

(QUIPMEflT L+uI(F~UR4TIO/4S SH01111 BI DRAIIIMO<br />

O'OI-MP-I' IP.<br />

[OUtPIi~T SHOIIH ON TIOS ImX~H~<br />

36"01-1205 3G-01-1504<br />

36-O1-1304 )~'-01-lO03<br />

3G-01-1305 36'.'01-1804<br />

34;',-01-130g ]0-01-4101<br />

31;-'01-1S0)<br />

~.01~ AI~ SPARE+<br />

l)31;~m', I~<br />

I U3. ~PARTHENT OF ENERGY<br />

E<br />

~<br />

•<br />

~<br />

-<br />

"<br />

• .Pm~-. REsmnt -~"'---<br />

~"'1:~.~.. I<br />

~<br />

I~'~J '+'<br />

mm~'tt V.II.ORACE & CO. mm¢~<br />

5e.g~ B.P.i).<br />

I COAL- TO- HETI-I.,~NOL - ~O- GA.S~D~IE F)I-I~IT ....<br />

I roll PJ t~ts'T ,my i,v~<br />

I FOR CLIENT ~ ~-vz w +u.~o~oi t.u I'~P-,~ I l<br />

4~ ~. I I I~ ++,'.~,,~'~...cm, lm~Im m.m,u, +~+,,.- / ~., - . . . . . . I<br />

I s e I<br />

---'--'--" I<br />

A<br />

"2<br />

D


f .,,<br />

\.<br />

F. .Plot PlanlGeneral ~rrangement Drawings<br />

Plot Plan <strong>and</strong> General Arrangement Drawings for Sulfur<br />

Recovery (Claus) Unit 36 are as follows:<br />

Draw£n~ No. Title<br />

D-36-PD-INP<br />

D-36-PD-2NP<br />

Plot Plan - Unit 36 <strong>and</strong> Unit 37 SRU <strong>and</strong> BSRP<br />

Elevation - Unit 36 <strong>and</strong> Unit 37 SRU <strong>and</strong> BSRP<br />

TI--1,2.16--8<br />

~;,~ ~: ~:~ .


I<br />

,I .~ ....... ,' , ' "' ' ~.' ,;" ' %" ,,":1': .......<br />

I 1 ' I .................... 2 ' .......................... "i '~ *''*~''''' .............. 3 I<br />

--I ' 4~<br />

A<br />

ii.<br />

,<br />

j!-<br />

L<br />

~j<br />

I<br />

|~,<br />

iJ<br />

I F - - - - - - - -<br />

--I<br />

@<br />

N<br />

I<br />

I<br />

I<br />

I I<br />

_ i<br />

I I I<br />

.:-..~- "~ . . . . . . . . . . . . • .... "'1" - "'"-, "1""<br />

. .<br />

• -'=1-<br />

.<br />

. .<br />

.<br />

. . .<br />

- .......<br />

. . . ...<br />

"'T"<br />

_~<br />

"'--.-."<br />

. . . .<br />

"'f" i<br />

L~IIT PiP[WAY<br />

I I l I I<br />

I ! l I I t I<br />

I<br />

w<br />

I<br />

J_~ 1_<br />

l...l.l Ij..l I I l I, l


" "' I '<br />

mm~P<br />

I<br />

I I<br />

I<br />

Jl I<br />

I I I -~3<br />

C/L ROAD if AREA LlUlT H. I0, 305'-0'<br />

-'EE~<br />

--EE~<br />

I<br />

T<br />

d~<br />

t I<br />

+<br />

!<br />

5<br />

L<br />

+<br />

I<br />

I I<br />

I I<br />

I I<br />

I I<br />

.................... ...~.0 ,~ o,___,~_~ --~ ....... ..........................................................<br />

. . . . . . . J k _ _ _ k - ~ l ~ ~ I _ _ ~ . . . . . . - . . . . . . I p - - I<br />

I<br />

I<br />

I ,<br />

~ ° ~ ° ~<br />

) I I . . . . . . . . . . . J - ~ IlL, _ _ -- , l . . . . . . . . l -- I<br />

n,<br />

~ k p ~ O V k L | m~ a,c~T ~ N~l<br />

rl~R el iElc]r _~t~ ~F~fI~lV |a~vnl~euuo~J ~j<br />

" ~lt~m'lr ION | ~a.,.w e ¢~.zmmr J<br />

!<br />

C/L ROAD & AREA LIMIT N, 99?5'-0"<br />

I<br />

_J<br />

.i,l.,,~ - THE ~ H, PP,/ZSQ~ CCL~/~t' J ..... UNITsRu3GPLOT PLANANDAND BsRpUNIT 37 ~---'=;:'zo' Z "m D :36 1~43--" -PD . - I NP' '-~le2" r,.<br />

pP.S/~F-HA* CAL1FORN I A<br />

s I<br />

0 I0 20 40 GO 80<br />

ZCkLEJ I ° • ZO'.O"<br />

I U.S. 0EPARTMENT OF ENERGY<br />

BASKETT ~l~.J~ GRACE & C~ =ENTLk."ICY<br />

59,BOB B.P.O.<br />

COAL - TO - HETH~OL - TO - GASOLINE PLANT<br />

e I 7<br />

A<br />

u<br />

D<br />

E<br />

m<br />

~,~!.!,.~;~:~;!i!i'~<br />

:~:!~~i ~I~: G.!<br />

i: ~ ~.~'~


A<br />

D<br />

, ~.~`~.~"~*vv~"v~w~i:r~rn~.~:~.~?~i~.~:~:~.:~:~ ~ .. ,~.~ ,., ,.~. , ,,,-'.L, -.,,,,.,,' .... ,z.~,, ",,,,',. ,~,~'.'-:.-~,~,~f','~',,..,...'~., I":"' ,' ,r'," ", ,.' .,., ',,~.I~: ~'"t,," " ,,<br />

E<br />

, ........ - I ~' I ~ I ,4~,


13<br />

%, , ,<br />

§<br />

n , I 7<br />

, m m m<br />

' im '~<br />

'lP" .IJFlr<br />

t U.S. DEPARTMENT OF ENERGY<br />

W~SK~r W.R. GRACE & CO. KENTUCKY<br />

'~1".: t-,- I I ~rp, coAL- TO- M~.ANOL- TO :pASOL,NE P~.T<br />

J I<br />

/,~ ~.,,~r ~ ,~,~ I--'----I i THE RALPH M. PAK|ONS COMPAIIY UNiT .I;~ ~ uNtf 57 p*.,~.~-,,..--<br />

;J ~,n,o. sRu ~,'~ ~sP.P / D-36-1:O-?.He<br />

l~a =LNm.V I ~m~'.(.~ ],t-,to r,..~ I PASAOI[NA. C, kLIFORNIA<br />

m •<br />

I<br />

A<br />

D<br />

JZ/.


0<br />

is as £ollo~s:<br />

G. .Single-Line Diagram<br />

The Single-Line Diagram for Sulfur Recovery (Cleug) Unit 36<br />

Drawin~ No, T~tle<br />

D-51-EE-8NP One-Line Diagram - Unite 36 ~d 37<br />

I1-1.2.16-9


A<br />

C<br />

D<br />

~T<br />

i.<br />

1<br />

I.,j<br />

I 2 I 3<br />

BU~ 37"OIOIR 4160V<br />

JP'OPqS02<br />

6000/~500 ~VA<br />

J4.4 BV- •<br />

4.16 KV ¢<br />

Z.,SX<br />

34,5XV 3#.~V<br />

~S 51-OlOar ~$ s~-ozoar<br />

I I<br />

J6"OI'4$OZ ~ J6"Ot-4[OJ<br />

t~O0,'2000 KW *~= v., v~ t500/2000 XV4<br />

z.e~ U, /<br />

" , ~ ~ G . ~s~--.-~ , Z-eX<br />

[..*WL.G.O. : _":~.~,,n~ | INOl,:,*,z B',' : ~c ,RoJ CUtNT<br />

I 2 I<br />

2<br />

,~ILFUR~ReMOy~,<br />

BU5~ 36-0201R<br />

3<br />

iioo,<br />

1"01"4~01<br />

'3<br />

~l-O~OBr<br />

~ J#,q RP"<br />

4.16 /t~'<br />

Z,,IX<br />

~. ~..<br />

vl~t m<br />

,xr It.-.'. k~l:~' 1 .......<br />

i "'P


4' s I e " "" :<br />

( IPOI'4IOI<br />

I<br />

.pIx<br />

• _ B~ 37"020lR 4160V _ .<br />

~ ~ j<br />

• ~ ja<br />

~oo<br />

I. I~OVtO r. ,~t. KWH. #ErtRS aT a?.t.<br />

I.OC4rlOt~$ #41I&ED •<br />

F U.S. DEPARTMENT OF ENERGY<br />

KENTUCKY<br />

I ~ ~ ~BASK~ W.R. GRACE & GO. -<br />

I ~ - ' - ' ~ ' - ~ ~ ~ 50.000 B.RD.<br />

I ~,,r,, ..... --- -," COAL.TO-METHANOL'TO'GASOLINE PLANT<br />

.... ;. /<br />

° ......... ~ ......... ,.~.ALP.. , o , .... ! O~ ~l~ O AC~ r ;;o~&J ~6oo [~ a21<br />

~ . ,rvr .... HP,,It,,~,,,, .... life RALPH M. PARI;0~S COMPANy I ;UU~JR RECOVERY UNIT U-3G p,,r., . . . . r. ,.,,,r~ I,/~<br />

• °~-,i~,,. -~.. ...... ,,.,o~.,,c,~,o~., " IREK7-~suU~mOvAL PL~U-~7 / U-~l-,','-ol'~r I ~<br />

t<br />

A<br />

m m


, ~J g~elnl~01Nq g JPe~t ql~Wqml e~ ~P W I ~ 4, I ~ ~n~ p ~ ; ~lJ~<br />

1.2.17 SULFUR REMOVAL (BSRP) - UNIT 37<br />

. . . . D qmt,,Nll PW ~'l ~r '~l tn n.4 ~t i , 4~ le g Bt~ ~, Dq t tt Mg,e , ,r q~ ~, e ~ w p w iIjl ~ t jp~ ~f ll,l<br />

The Beavon Sulfur Removal <strong>Process</strong> (BSRP) has been selected to<br />

remove sulfur compounds (H2S P S02, COS, CS2, an~ sulfur) from the tail<br />

gas o~ the Claus sulfur recovery plant - Unit 36. The Bcavon Sulfur Eemoval<br />

<strong>Process</strong> is a proprietary process licensed by The Ralph H. Parsons Company <strong>and</strong><br />

the Union 011 Company of California.<br />

The size of the two Claus sulfur recovery units requires that<br />

two pars/lsl trains of BSRP be provided. The major gas stream to be treated<br />

is the Cail gas stream from each Claus sulfur recovery unit, but a smaller<br />

stream of sweep gas from each sulfur storage pit also is treated.<br />

The treated gas is discharged to the atmosphere from the top of<br />

the absorber. The gas will contain less than 10 ppmv o£ H2S <strong>and</strong> less than<br />

100 ppmv of total sulfur compounds measured as SO 2 o<br />

A. Basis of Design<br />

The large amount of tail gas from each Claus unit requires a<br />

separate hydrogenation train for each stream. With this arrangement, the<br />

operator has the advantage of being able to tell from the H2S <strong>and</strong> ~2<br />

enalyzers in the tail gas unit how each Claus unit is operating <strong>and</strong> maintain<br />

better control of the operation. Two trains allow the desuperheater/contact<br />

condenser <strong>and</strong> the absorber column diameter to be within Parsons previous<br />

experience. Two trains of Stretford regeneration provide turndown flexibility<br />

with considerable power savings under turndown conditions.<br />

The total design capacity of both tail gas trains is<br />

71.81 Itpd of sulfur from 135 million scfd of tall gas. The hydrogenation <strong>and</strong><br />

gas sc~ubblu E sections operate at less than 3 psl 8 pressure.<br />

II-1.2.17-I


The materlals of construction are carbon steel <strong>and</strong><br />

sulfur-reslstant concrete, with stainless steel beln E used in areas of high<br />

turbulent Stretford solution flow <strong>and</strong> elevated temperature sulfur melting,<br />

expertise o<br />

The size of the equipment is within the range of Parsons<br />

Some undesirable side reactions take place Ln the Stretford<br />

solution. These reactions result in the formation of sodium thiosulfate<br />

(Na2S203) <strong>and</strong> sodium sulfate (Na2SO4) instead of sulfur. These<br />

salts ere quite soluble <strong>and</strong> can be allowed to build up to about 25Z total<br />

dissolved salts. If allowed to build up beyond that, co L'rosLon rates<br />

increase, regeneration rates decrease, <strong>and</strong> crystallization of<br />

Na2SO4"IOH20 (Clauber's salt) may occur in colder sections of the<br />

unit. The formation of these salts requires that the sodium associated with<br />

them be replaced. This Is done by the contlnuouu addlt~on of a small stream<br />

of caustlc.<br />

The decanter overhead stream contains a small amount of<br />

solution to remove salts from the system as fast as they are belng formed.<br />

The 2~7 anthraqulnone dlsulfonlc acid (ADA) <strong>and</strong> vanadium lost in dlscardlng<br />

this stream must be replaced perLodlcslly to maintain the recommended<br />

concentrations in the solution, i'h.~s is done by dissolving the powdered<br />

cbemlcals in Strctford solutlon in a~ agitated chemical mlx sump ~ud pumping<br />

the solution to the balance basin.<br />

II-I o2.17-2


(<br />

<<br />

q 001m0gWt ~e t * I~I ~mm O Nin nP H ~ IP 4 *f rl II<br />

Component<br />

R2<br />

Cll 4<br />

CO<br />

C02<br />

N2<br />

02<br />

ll2S<br />

COS<br />

SO2<br />

S6<br />

S8<br />

Total dry, ib mol/hr<br />

H2o<br />

Total wet, Ib mol/hr<br />

Total, Ib/ht"<br />

Pressure, psta<br />

Temperature, °F<br />

Feed Stream<br />

Tall Gas From Claus<br />

(lb mol/hr) (molZ)<br />

67.14 0.88<br />

130.90 1.71<br />

3,199.96 41.75<br />

4,1~2.12 54.05<br />

79 • 32 I • 03<br />

2.28 0.03<br />

39.74 0.52<br />

O. 34 440 ppmv<br />

2.10 0.03<br />

7,663.90 100. O0<br />

2,514.08<br />

I0,177.98<br />

311,960<br />

18<br />

280<br />

"rZ-1.2.17-3<br />

J<br />

Sweep Gas From Claus<br />

Sul£ur Storage Pit<br />

(Ib mol/hr) (tool%)<br />

i<br />

194.30 78.79<br />

51.66 20.95<br />

0.64 0.26<br />

m<br />

m<br />

246 • 60 100 • O0<br />

7.62<br />

254.22<br />

7,250<br />

16<br />

280<br />

m


Componen~<br />

H2<br />

CO<br />

CO 2<br />

O2<br />

B2 S<br />

COS<br />

Total dry, lb mol/hr<br />

H20<br />

Total wet, lb ~ol/hr<br />

Total, lb/hr<br />

Pressure psta<br />

Temperature, °F<br />

Component<br />

Sulfur (S I)<br />

Total dry<br />

B20<br />

Total ~et<br />

Total, lb/hr<br />

Pressure, psla<br />

Temperature, °F<br />

Treated Streams<br />

,if i<br />

Treated Gas to Atmosphere<br />

(lb mol/hr) (moil)<br />

103,04 1 • 16<br />

8.60 0.10<br />

3,506.06 39.47<br />

5,212.10 .58.68<br />

51.66 0.58<br />

0.09 10 ppmv<br />

0.42 50 p~mv<br />

8,881.97 100.00<br />

1,010.74<br />

9,892.71<br />

320,660<br />

15<br />

117<br />

I I I<br />

¢<br />

Holten Sulfur Product<br />

(lb mot/hr) (molZ)<br />

.... 139,80<br />

139.80<br />

139.80<br />

4,480<br />

18<br />

280<br />

"rI-I. 2 • 17-4<br />

100.00<br />

100.00


.°<br />

C<br />

Component<br />

, ~ g ~ * ~ Q t ~ O I'*tq'~m~p~g~t4'~,,#l'#~/e~q A ~ t ~ a ~ N l ~ t , ~ ~ f ~ , , ~ l ~ , ~ o t .......<br />

Solution Purge Stream<br />

(Ib/day) (~¢g)<br />

ADA 24 0.034<br />

(2,7 anthraquinone<br />

disul£onic acid)<br />

Vanadium 48 0°067<br />

NaHC03 292 0,407<br />

Na2S04 1,128 1.570<br />

Na2S203 2,510 3.497<br />

water 67,770 94.425<br />

Total 71,772 100.00<br />

B. <strong>Process</strong> Selection Rationale<br />

The Beavon Sulfur Removal <strong>Process</strong> was developed in 1970 <strong>and</strong><br />

1971 by The Ralph M. Parsons Company with the cooperation of the Union O£1<br />

Company of California. The first commercial units were started up!n 1973.<br />

Since that tint, more than 50 units have been built or are being built. Most<br />

o£ the operating units achieve an onstream factor of over 95Z <strong>and</strong> at least<br />

one was onetream continuously for more than 2 years between rurnarounds. The<br />

units have met <strong>and</strong> exceeded environmental requirements virtually all the time<br />

even duringupsets of upstream units. At the present time, it is considered<br />

not only Best Available <strong>Control</strong> Technology (BACT) but also Lowest Achievable<br />

Emission Rate (LAER). ~ is ef£ective £or both stronE <strong>and</strong> weak actd gas.<br />

The BSRP is capable of h<strong>and</strong>ling 2-1/2 times the normal<br />

operating condition rate of H2S for short periods (2 co 3 hours) if the<br />

composition of the solution is matntatned~rlthin recommended ranges.<br />

11-1.2.17-5<br />

! I I i I


I<br />

Turndown is usually limited by metering <strong>and</strong> control valve<br />

rangeabillty on the air <strong>and</strong> gas to the tail gas heater (reducing gas<br />

generator). This is about 20X of design. Since there are two trains, the<br />

overall turndown is about 10Z. The use of two trains is advantageous in<br />

reducing power requirements on turndown to loss than S0Z to 60Z. Having one<br />

hydrogenation section for each Claus unit allows operators to monitor the<br />

operation of each unit through the H2S <strong>and</strong> H 2 analysis of the reduced gas<br />

of the appropriate BSRP <strong>and</strong> thereby obtain much smoother <strong>and</strong> efficient<br />

operation of the Claus unit. Each tail gas unit is started up <strong>and</strong> shut down<br />

~n co~Junutlon with the sulfur recovery unit preceding it. Essentially no<br />

sulfur compounds will be released to the atmosphere at any time,<br />

plant downtime will be rare.<br />

is required.<br />

All pumps <strong>and</strong> blowers are spared <strong>and</strong> maintenance requiring<br />

No unusual lead time for equipment or material procu.cement<br />

C. <strong>Process</strong> Description<br />

Eefer to <strong>Process</strong> <strong>Flow</strong> <strong>and</strong> <strong>Control</strong> Diagrar, s D-3?-MP-INP,<br />

-2NP, -3NP, <strong>and</strong> -4NP for material balance.<br />

The Beavon Sulfur Removal <strong>Process</strong> consists of two basic<br />

sections. The first section catalytically converts essentially all of the<br />

sulfur compounds in the Claus unit tail gas to hydrogen sulfide. This is<br />

called the hydrogenation section. This is followed by the Stretford section<br />

where the H2S is absorbed in an alkaline solution <strong>and</strong> converted to<br />

elemental sulf~ir particles.<br />

I. Hydrogenation Section. The sulfur recovery unit tall<br />

gas is heated to reaction temperature by mlxlng it in Reducing Gas Generator<br />

37-01-1401 with the products of combustion of fuel gas (normally natural gas)<br />

11-1.2.17-6


.C<br />

!!r i<br />

<strong>and</strong> air. The fuel gas is proportioned to the air rate so that combustion<br />

takes place with only 80Z to 90Z of the air necessary for complete<br />

combustion. Th~ air rate ~s controlled by the temperature ¢,f the mixed gas<br />

going to the reactor. Steam is added to the flame t~ promote clean burning<br />

<strong>and</strong> to prevent carbon formation. The steam flew i8 proportioned to the fuel<br />

gas flow. Some hydrogen <strong>and</strong> carbon monoxtde a~e formed to supplement that<br />

already in the tail gas. This provides an excess of reducing gas to ensure<br />

conversion of the sulfur compounds in the tail gas to hydrogen sulfide over<br />

the cobalt molybdate hydrogenation catalyst.<br />

Mater vapor normally present hydrolyzes COS, CS2, <strong>and</strong><br />

CO to H2S <strong>and</strong> hydrogen in Reactor 37-01-1201 according to the following<br />

reactlonsz<br />

COS + H2O- " H2S + C02 (I)<br />

CS 2 + 2H20. L 2H2S + CO 2 (2)<br />

CO + H20 " H2 + C02 (3)<br />

according to the following reactions:<br />

Hydrogen will react with SO 2 <strong>and</strong> sulfur to form H2S<br />

S02 + 3H2 " H2S + 2H20 (4)<br />

S + H2 ~ H2S (5)<br />

All of the above reactions are exothermic, causing a<br />

temperature r~se through the catalyst bed.<br />

The gas from Reactor 37-01-1201 is cooled by exchange<br />

with boiling water in a water tube boiler, Re,etor Effluent Cooler<br />

37-01-1301. Steam is generated at 50 psig <strong>and</strong> the gas cooled from 725°F to<br />

about 330°F. The gas enters Contact Condenser/Desuperheater 37-01-!101, which<br />

is separated into two sections; the bottom section is called a desuperheater<br />

section. The gas is contacted with an alkal£ne solution descending through<br />

II-1.2.17-7


disc <strong>and</strong> donut baffle trays. The alkaline solution absorbs any SO 2 that may<br />

be $n the gas caused by upsets In the Claus unlt operation. The aenslble heat<br />

in the gas evaporates water from the alkaline solution end cools it<br />

adiabatically to its dew point of about 170°F. The alkaline solution Is<br />

circulated over the baffle trays by centrifugal pumps 37-01-1S01 <strong>and</strong> -1502.<br />

The pH of the solution is measured continuously <strong>and</strong> an alarm warns of a low<br />

pR. If the solution pH falls below 5 because of 50 2 in the tall gas, the<br />

deauperheater circulating solution <strong>and</strong> the condensate in the contact<br />

condenser section become very corrosive <strong>and</strong> can damage the equipment In a<br />

short time. The llquld level in the desuperheater is maincalned by the<br />

automatlc =ddltlon o£ condensate from the upper section of the column, the<br />

contact condenser section. Caustic is added whenever the pH gets low.<br />

Tb~. contact condenser section Is separated from the<br />

desuperheater section of the column by a chimney tray. Two bubble cap trays<br />

In the deauperheater section prevent entrainment of alkali from the<br />

desuperheater. The bubble cap trays receive the condensate makeup that<br />

~m!ntains the desuperheater level.<br />

Most of the water ~n the gas Is condensed in the contact<br />

condenser section by dlrecc contact with cooled condensate in a bed of 2-inch<br />

stainless steel pall rings. The condensate is cooled by circulating it<br />

through Solution Heater 37-01-1302 against a stream of Stratford solution <strong>and</strong><br />

then through Contact Condenser Cooler 37-01-1303 against cooling water. The<br />

gas is cooled to 9S°F. The condensed water is routed to battery limits. It<br />

~r~ll contain some absorbed H2S.<br />

2. Stretford Sectton. The Stretford process is based on<br />

the ability of vanadium when in the five-velent state to react with H2S<br />

that has been absorbed in an ~lkaline solution, forming elemental sulfur. In<br />

this reaction, the vanadium is reduced to the four-valent state. Ox~dation of<br />

the Stratford solution with air returns the vanadium Co the five-relent<br />

state. Vanadium co=pounds ate Incapable of reactlngdlrectly~rlth the oxygen<br />

IT-1.2.17-8


I I<br />

~ r ~ p ~ l N e t , 0 I~<br />

in the air. For this reason, ADA is used as an oxygen carrier to transfer<br />

oxygen ~rom. tha air to the tetravalent vanadium°<br />

The cooled reduced tail gas from Contact Condenser<br />

37-01-1101 contacts with Stretford solution in a venturi scrubber that<br />

discharge0 into Absorber Evaporator 37-01-1102. There are three 36-inch<br />

v,enturi scrubbers in parallel discharging into one absorber for each train.<br />

Each venturi has a 20-foot-long by 36-inch-diameter tail pipe; 4,434 gpm of<br />

Stretford solution is c~rculated Co each venturi for contact with one-third<br />

o£ the gas. The liquid <strong>and</strong> gas separate in the bottom of the absorber. The<br />

gas is further contacted with 3,326 gpm of lean Stratford solution in two<br />

packed beds of 3-inch stainless steel pall rings in the absorber. The gas,<br />

which contains less than 10 ppmv of H2S <strong>and</strong> less than 100 ppmv of total<br />

sulfur (mainly COS) measured as S02, is discharged from the top of the<br />

absorber to the atmosphere.<br />

The upper bed of pall rings in the absorber is used as<br />

an evaporative section to evaporate water from the Stretford solution to<br />

maintain the system water balance. The Stratford solution going to the cop<br />

bed is heated by exchange with the circulating condensate of Contact<br />

Condenser Desuperheater 37-01-1101 as mentioned previously or in<br />

steam-Jacketed sections of the eirc,,lating piping. Thts hotter solution heats<br />

the gas <strong>and</strong> saturates it with water° The water made in the reaction <strong>and</strong> used<br />

to replace the solution from the centrifuge cake is removed in this manner.<br />

The reduced Stratford solution flows from the absorber<br />

by ~av£ty to Reaction Basin 37-01-4101, which ensures enough time for the<br />

elemental sulfur to form as particulates; from there, it passes through a<br />

series of three oxidlzer basins. In the oxidizer basins, air from Oxidizer<br />

Air Blowers 37-01-1802/1803 is sparged through a proprietary turboaerator,<br />

which disperses fine air bubbles throughout each basin. The reox£dised<br />

solution flows to a pump basin called Balance Basin 37-01-4105, from where it<br />

is pumped to Venturi Scrubbers 37-01-2201 <strong>and</strong> Absorber 37-01-1102. The air in<br />

the oxidfzers not only reoxidizes the solution but also causes the sulfur<br />

II-1.2.17-9


"" }<br />

, ' I .~..,.~, o.,~,,,.,,o,,, I I.-J----t-..l__l..~_~_i ..... I ~ f ~ l ~ , u'-~'<br />

, i I ~ ,fl, tl , ~ rg i 0 J t ~ r . . . . t P t i q i ~ i<br />

particles Co float Co the surface. From Chert, they are aklm~ed Co a slurry<br />

basln as a 5Z Co 15Z by weight sulfur slurry,<br />

The sulfur slurry is concentrated to a 50% to 50% sulfur<br />

cake in a solid bowl scroll discharge let Centrifuge 37-01-2202. This cake is<br />

repulped with process water co about 25~ sulfur slurry in Agitated Repulp<br />

Tank 37-01-1901, The diluted slurry is centrifuged to a 50Z to 60Z sulfur<br />

cake, vhlch again is repulped in a 2nd Repulp Tank 37~01-1902, This tlme the<br />

water is a cooled stream from the Decanter Overhead Tank 37-01-1903. The<br />

resultant slurry (about 4OX sulfur) is pumped into Sulfur Melter/Decanter<br />

37-01-1304 equipped ~rlth a U-tube steam exchanger bundle. The vessel operates<br />

under about 55-pale pressure <strong>and</strong> is heated by 50-pslg steam. The slurry Is<br />

heated to above the melting point of sulfur <strong>and</strong> the molten sulfur <strong>and</strong> water<br />

separate. The sulfur is drawn off the bottom undez interface level control to<br />

Storage baeln 37-01-4108; from there, It is sent periodically to loading or<br />

is mixed ~£th sulfur from Claus Unit 35. The water phase is mixed with a<br />

cooled stzea~ of decanter overhead water Co prevent flashing <strong>and</strong> is routed<br />

through a backpressure control valve that will maintain the system pressure<br />

to a surge tank. Decanter Overhead Pump 37-01-1513 circulates the decanter<br />

overheads through DecanUer Overhead Cooler 37-01-1306 for cooling against<br />

coollng water <strong>and</strong> then to the second repulp tank to quench the decanter<br />

overhead stream or to the puree stream discharge.<br />

D. P~skAssessment<br />

At recommended concentrations of chenicals, the Stretford<br />

solutlon used to absorb H2S from the tall gas is capable of absorbing up to<br />

two-<strong>and</strong>-a-half times the design rate of H2S for 2 to 3 hours vlehout<br />

releaslngdangerous concentrations to the atmosphere. Here than 30 Beavon<br />

Sulfur Removal Units are la operatlou removing sulfur from the tall gas of<br />

Claus units to below I00 ppmo<br />

Loss of combustion air to the reducing gas generator does<br />

not require an immediate shutdown of the unit. The residual heat in the<br />

II-1.2,17-10<br />

V


(<br />

~Q<br />

C_<br />

o I s<br />

refractory au.d catalyst bed allows several hours for reltghting the unit.<br />

Oxidizer air failure does uot require an immediate shutdown o£ the unit. The<br />

lares inventory o£ solution allows 1 to 2 hours to correct the problem. Both<br />

the c~buation <strong>and</strong> oxidizer air blowers for each train are spared by a common<br />

spare blower.<br />

Loss of circulation in the desuperheater does not require an<br />

i~nediate shutdown. Some units oporate continuously without a desuperheater.<br />

Loss of circulation in the contact condenser circuit does not require an<br />

immediate shutdown. The lack of heat ~cmoval will gradually heat up the<br />

Stretford solutiou, but this can be tolerated for several hours while the<br />

problem is helu E corrected. The desuperhQater pump <strong>and</strong> the contact condenser<br />

pump for each train are spared by a counnon circulating pump.<br />

A large sulfur slurry basin is provided for each train so<br />

that any problems with the slurry h<strong>and</strong>ling, concentration, <strong>and</strong> melting<br />

equipment can be corrected without a shutdown of the tail gas unit. All<br />

slurry pumps are 100Z spared.<br />

Loss of Stretford solution to the venturis <strong>and</strong> absorber for<br />

each train requires an immediate shutdown of both the Claus sulfur removal<br />

unit <strong>and</strong> the tail gas unit. There are two circulating pumps <strong>and</strong> a 50~ spare<br />

for each train. There is one BSRP train for each Claus sulfur recovery train;<br />

each is designed to remove 36 ltpd of sulfur from the tail gas of that train.<br />

IT-1.2.17-11


E, <strong>Process</strong> F10w <strong>and</strong> <strong>Control</strong> <strong>Diagrams</strong><br />

(Including Material Balance)<br />

<strong>Process</strong> <strong>Flow</strong> <strong>and</strong> <strong>Control</strong> Diagrems for Sulfur Removal (BSRP)<br />

Unit 37 are as follows:<br />

Drawiug N¢o<br />

D-37-MP-11~P<br />

D-37'-~-2NP<br />

D-37-MP-31~P<br />

D-37-MP--41~P<br />

Title<br />

PFCD Sulfur Removal (BSRP) - Reactor<br />

PFCD Sulfur R~moval (BSRP) - Recovery<br />

PFCD Sulfur Removal (BSRP) - Regeneration<br />

PFCD Sulfur Removal (BSRP) - Common Equipment<br />

II-1.2.17-12


A<br />

C<br />

D<br />

FUEL GAS<br />

COtFOHENT, UOL. ~. LO-UOL/~R<br />

H~ 2. 016 206.37<br />

CH t 16,042, 47.76<br />

R| 2e.ole 30~R9<br />

CO I 44,010 ~'1. 81<br />

,CO 20.010 i li.¥o<br />

AR 31oe49 IZ,~<br />

CH~OH 3Z. 04 I. 3S<br />

D'II* KI: 30?OT 4,41<br />

ETHYLENE 20,05 ....... O,,,3 T<br />

PROptLEHE 42.00 0,6?<br />

PROPANE 44,09 IS, 66<br />

,,ISOOUT~HE S8,1Z 0,49.....~<br />

~nUrA~( 5a.12 O, ZG<br />

,-.UT~[ S4,0~ " 9'~JL._<br />

L~...~ENTAHE 72:15 }<br />

.-re,TR,[ ~z,~s o.~9<br />

Z'PEHTEHE Go, m2<br />

CG 0.34<br />

5"? O..On<br />

?O~AL 37..3~eo<br />

P, PSfA SO<br />

T. ~F 9D<br />

] 4"-R-37-Z<br />

L.P. STEAM<br />

{" 0-36-J~-3 N,a~ 3G'-AA-37-]<br />

TAIl. GA~CLAUS I<br />

iJ<br />

I ONAWINQ NO.<br />

37-01-1801.<br />

COMPOHEItT I W TAT[. UAS "<br />

. I~. LE/It B<br />

S0e I 69,0| .....<br />

Re I 28.01 2. Q'I I, 05...<br />

Se 1192,. 31 - "-<br />

- 1396.5 ':" ":' ':<br />

~o. , ~.o n.sg§;sp_<br />

HI I 2.011 33~5~ r<br />

CLI I 28.0 59, q5<br />

COS I 60. 0 . . . .<br />

~. ~',i.~; -<br />

~O'raL WET I s, OO~ ~<br />

I~f i 30. G? , ~,.~<br />

,,, ~CFlf ,. -~,,i.<br />

P'~($5. PE.]A I<br />

ACFS I .<br />

37-01-1601<br />

co~eusrxo______~N<br />

AIR BLOWER<br />

~ m<br />

D[$CRIPTION DRAWING<br />

1<br />

3<br />

37-01-1401<br />

~EOUCXHG GAS<br />

GEHERAT.._...~<br />

4'-A-3T-Z<br />

4"..R-3?-x ,<br />

I a I<br />

~__ , v ,,,,,,.,,,<br />

s'~.o~.~o, ~'t.o~-~oz :rt-oz.z~oz :','~-oH0oz<br />

$1'Ek, DIIUM REACTOR REACTOR EFFI.UEHT ER/<br />

COOL_._.£,'(<br />

29, OT I&fJTLVIm<br />

6ESUPERIIEA~<br />

[<br />

IL<br />

37-01-1401<br />

E<br />

]<br />

40'-kk-37-!<br />

o !<br />

3T-Or-1301<br />

I I-120_.._.____~1<br />

3T-.O<br />

]G'-AA-3?-]<br />

31-01-1501<br />

3T"Ol-*1502<br />

DE~JPERHEAI'ER<br />

PUUP Ik SPARE<br />

5PARE L~ CO.ON<br />

lITtH CONTACT<br />

CO~)ENSER PU~<br />

37-ol-tlo_....._._._..ji<br />

[ .-.~lm<br />

411,<br />

q,i ~*<br />

,JI vt<br />

(..,,,:,;<br />

___eL__<br />

37-o___,..aso__!t<br />

37-01-1S0.....~Z<br />

FIGURE 4-2<br />

.... d';"<br />

---I "<br />

!<br />

37-01-1503<br />

i 3 I 4'w'<br />

F t' -<br />

t ._,n<br />

ilz4"lir~.-,-


I<br />

4~ ,,<br />

37-01-1302<br />

COtATACT ¢ONOEIISER<br />

"---~.~OIF.R -<br />

50. I'~-~-T'~HR 9,13 IA~TLVHR<br />

f<br />

I ['-~-] .Is<br />

I--I 14"W"31 14 14"¥'37 ~<br />

L._j ~-- c.w. s, ~ c , ' C,W.R, ~ L..-I<br />

m I O",.AA-37 ~ J<br />

--{Z]- ..... --i<br />

r.__cLE_; '<br />

~-- CAUSTIC ¢ if'-1<br />

-'q"0!-1503<br />

3T-01-1303<br />

5<br />

37 OI 1302<br />

31-01-130?<br />

,S~0~<br />

"-----'~ SOUR COHOENSAT£<br />

HEATER<br />

~. ~ ~"-~T~v,e<br />

t _ 0<br />

~IVOXIOiZEII DI.OVF.RS<br />

24".-AA-3T<br />

Ri[CIRCULATIOH GAS/AII~RnER<br />

8'-AA-3f<br />

50LUTIOi~D~,LANC[ ~,5~1<br />

30'-AA-37 _<br />

OVERHEAD GAS/AB$ORUER<br />

8',-AJ-3T.!<br />

S~,UO~ABSO~SB<br />

EFFLUEHTIA~<br />

;:: ~::~I ~.".~.~.EL ! L" ....... i .,o i ....... i<br />

~ R ~ w r w I ~ ~ ~,~ ~ ~ u_ 0o,~.,,, ,,,.,,,....<br />

. ~ ~ ~ ~ ~z~ ~., ~snNs com~<br />

IZT~I~. DGA<br />

1 7<br />

H01£,~<br />

l, THE ~(HT SllO1iH 014 THIS OlIAHHG ARir<br />

FOR ~ OF TWO I~1K~<br />

1. THI: F"IOUIIE 14UIZBEfl~ REFER TO tYPICAL (OIP-<br />

ItEaT ~NF)GU~TIO~ 5HOIH OH OflA~HO<br />

O'OI'LIP-I liP.<br />

_u<br />

rOU%PIIENT SHOWN OFI IHIS OU~liOl<br />

3T-Ol-I lot 31-OI-;30T<br />

3POI-120I ]7-01-140:<br />

37-0t-1202 37-01-1501<br />

37-01-1301 37-01-1502<br />

37-01-1302 37-01-1503<br />

37-01-1303<br />

LLS, OEPARTHENT OF ENERGY<br />

Kla~IRKY<br />

V.R. GP, a~,CE &<br />

fi6.888 B.P.D.<br />

TO - GASOLINE PLANT<br />

"" 5182<br />

PROCESS FLOW AND COHI'ROL DtAGIUII<br />

s~.F~ e~VAL zss~)-u,rr 3x ] D-3T-MP- I HP<br />

"fAIL GAS REAC10R<br />

(,,<br />

t,-<br />

m


A<br />

4,<br />

C<br />

,i<br />

1 I 2, I 3 I<br />

] |4'-AA-3T<br />


t 30*-AI-3T<br />

' . . . . . , ,,~ '? ,,', i,,,, .,p ', i ,,++i~, ,+'+,, /,, ,+<br />

, ,o,,:,,~;'".'~'i,'~.;, '++,.+, ~'I'$ ~" ~,,;',,' " , . ,,,',, ~ ',, ,, ,',<br />

, 6 ! ' I<br />

,111 i i iJ i<br />

IT.OO-410+l ' ~ ,, ~ ll-Ol-41011<br />

, AoOxrim l.JtciXm~, i~L~c~ I~l!!t luu+m--l~kT'mst- "-<br />

I i~llf-ll )lO ,, i<br />

' ~ - - , , , i - -<br />

. .,..<br />


P<br />

C<br />

D<br />

E~'~ PROCESS IIkTER<br />

[ o-:n-ur,-2 H~ 4",,AA-ZT<br />

SLURRY/SLUflRY OASZH<br />


,°,,<br />

+,,I'<br />

31,-01-1304<br />

"--prcANIB<br />

~'..'+ III OT~IIR<br />

o<br />

I 112"-AHJ-37-1<br />

PO~<br />

I<br />

t ,,,,.,, o<br />

DECANTF.R OVERHBD/STQeA~<br />

OYERllEAD/STORXGE<br />

[ L.,ol~oHru? J D[CANTER UI~EAFLOI|<br />

,, "" I LeSJ I~<br />

SULFUR I ~3~I I<br />

• TOTAL I }-]51 I<br />

• SP. G~ I I "8 I<br />

L~F.MP. "P I 280 I<br />

LP~.S. esmt P~ I<br />

I'AJ-37-I I<br />

UNDERFLGWCI.AUS SIJLFLJR p~T<br />

3"kJ-37-I<br />

sut.eun/s~o~A~[ e~sm<br />

3"-A J-3?-I<br />

UN~ERFLO~b"TORAGE BASIl4 [ D-37~4 I~P><br />

137~3NP.O~<br />

I<br />

liOTEst<br />

t. T~ [(2LI],oWENI ' ~Ollt OK TlgS DP,<br />

FOR (~[ OF TWO TRAINS.<br />

(OUIpUF.~T R.IOWM OH THIS 9RAW]NG~<br />

31-01-1304 37-01-1902<br />

31-01-1509 ~T-01-2202<br />

37-01-1S10 37-01-2203<br />

3T-01-1511 37-01-2407<br />

37"0J*1512 37-01-2408<br />

37-01-1901<br />

US. DEP~'RTHENT OF ENERGY<br />

AWING ARE<br />

T--"------------ ~ kr, R.GRACE ~ CO. m, nuc~<br />

[--'-"--'-------'---- ~ 5e,ggB B.P.O.<br />

~mcN REe~T COAL " TO - METHANOL - TO - GASOLINE PLANT ..... i<br />

~ [<br />

•<br />

4~<br />

E W<br />

D[SCR,mO.<br />

'*'vo'mJN"l<br />

,u.v. e~.,, I<br />

FJC ]t~31~<br />

5<br />

~I~gLPHN.~r,j,..~Y<br />

r'Jr'-"-;-,;<br />

P~el~EN~( CP, LTIFOR~I~ l<br />

pROCESSFLOI,NDcOHTROLDZAGKtu<br />

SULFUR R[~OVAL IBSRP)-UNIT 3T<br />

$OI.UTION kU,~,~TIO" |<br />

"HOWE<br />

w-,-.<br />

"~-37-MP-3 NP<br />

g,<br />

/


C.<br />

A<br />

4<br />

c<br />

L 1<br />

D-3T-1~-3<br />

'~' " ~" :" " ::":' "": ' ' ',~ ~i ', ..... ". ........ ,.,,: ,~,,.,,,,,~,,,,.~,<br />

' , I , I :' I -<br />

~5.~..up,. 5 ~, I I/~,-ak-]?<br />

SOLUTIOX PUP, G£ STREAM/<br />

WASTE IIATEI~ (NOTE 3)<br />

~-L~ STR/PPEO COI~[IISATE<br />

CAUSTIC<br />

~['~ 50 PSIG ST[AM<br />

3T*01-4107<br />

3"1-01-4107 3T'01-1904 3T"01~t108<br />

C,F.UU~ m~[-UP .ST~[TFOeO SOLUIIO, .~L~[<br />

[]ASIN gTOflAGE TANK ~ --<br />

37-01-15i___.~5 3T-01-2409<br />

~ - ~ II'..AA-3T<br />

37-.08-1Sl8<br />

3t.-01-,51~<br />

3T"01-1518 9-Ol-lgO!<br />

FIGI.~IE 5-1<br />

31'-01-1515<br />

~I(I[-UP SUI~ PUIO<br />

-Z40___...~! 37-,OI<br />

CHUIICAL ~AIC£-~<br />

3T-O1-1SI8<br />

STK[TF~ ,~.U~<br />

3?-O1-151t<br />

]T-01-1SI'I'<br />

C~MON TO BOTH TRAINS BAS]N AGITATOR S~P, AGE PL~ - ~111-1c11~ TI?ANSF'I~<br />

TO ~ T~TNS euil~ k ~E<br />

37-01-4108<br />

I 2 I s I ":<br />

il<br />

R ,*,<br />

~: ::<br />

~ ._____.__...i_~


T<br />

Sl<br />

rl<br />

i<br />

:~T-OI-13~<br />

-- COOLER<br />

TA,_._~ 4. 51 llial"--'-'~l~<br />

3T"Ol -I~03<br />

¢"-k1~-3?-!<br />

SI..____.~3<br />

]T-OI -I<br />

3T-Ol-I I.__,.__~4 S<br />

F"IGORE 4-Z<br />

37"01-1513<br />

3T-01-1514<br />

OcC/,~O.O<br />

PL~ ~ & 5PA~E<br />

4"-A.~-31<br />

4"-11-37<br />

C.W.S. ~"<br />

4"~-3 t r-"i<br />

r..v.R.<br />

UI~'I" 3'/<br />

o]'p4,4~Po ~x<br />

HOTEL<br />

I, THr ~UZPI~NT SXOWH OH THIS DP~II~.~ IS<br />

COt[oH TO O01H TRXI,'L<br />

Z, TX~ F]~'UR[ HLIIIOI~RS RUF..A TO TIPICAL<br />

~A c°"P~r<br />

o,,<br />

L~x,~<br />

uovwTii~z~'i' x te/oA~r I<br />

I o.o34 z4 I<br />

so.. I o.~z' ,e I<br />

l~,SOo<br />

I"Q|slo~<br />

~"~<br />

"z'°~l I'"°1 ',"I<br />

zSm. tl i ),WI I Z Slo I<br />

,,.o, I ,,.4,~ ,T.,,O I<br />

[TOTAL i ~.00 TlfTt2 |<br />

'~I-.OI-J SOG 31'-01-I~3<br />

~iT','OI=l 5l] li1"01 - 1904<br />

3T,,'OI -I $14 31"01-Z40~<br />

31-01"151'; ]?'01-4i0;<br />

3?-01ol51G 31-01-41G$<br />

31-01-1511<br />

3]-01-15111<br />

U,S. OEP~THEXT OF EHEF-~Y<br />

~m~'~ W.I:I.I~tE & CO. ~ .<br />

~ / 5o.~ e.P.O, i<br />

| COAl. - TO - HETI'IAXOL - TO - GRSOL&IE PLANT ~ i<br />

4@ --- I I II ~-~, ~,~-" s~.r~ ~ __37 I~P 4 NP<br />

i s i o I i<br />

A<br />

4<br />

D


P<br />

\4<br />

F. Plot Plan/Ceneral At~ra~Bement Drav/nHa<br />

0.<br />

See Volume IZ, 1.2.16(F) for Plot Plan <strong>and</strong> General<br />

Arrangement l~av/nga for Sulfur Removal (BSRP) Unit 37.<br />

I1-1.2 o 17-13<br />

I


O. Sinslev-Line DiaKrsm<br />

Sulfur ~emoval (B~P) Unit 37.<br />

See 'Volume II, 1.2.16(C) for ths S£ngle-Line DiaSrsm for<br />

II-1.2.17-1&


.<br />

,m3t'L<br />

1.2.18 lmavY OASOLI,Z~,,,,,, ,ZIZ,ZIZ,ZIZ,ZIZ,Z~T'XNa ,-, uz,rX,T 38<br />

The gasoline produced in the methanol conversion reaction<br />

contains durene, a gasoline-range compound w£th n 175"F freeze point. Durene<br />

(1, 2, 4, 5 tetramethylheuzen~) is reduced in a Heavy Gasoline Treating unit<br />

to meet finished gasoline quality requirements. CaBes produced during heavy<br />

gasoline treating are stripped out of the gasoline stream <strong>and</strong> Bent to the<br />

fuel gas system. The treated gasoline product is sent to product blending.<br />

Treated heavy Eaooline is blended with light gasoline from the Gas<br />

Fractionation unit to produce a finished gasoline ~rlth about 2 wtX durene.<br />

A. Basts, of Design<br />

The HGT unit feed from the Cos FracttonationUnitw£11 be a<br />

heavy gasoline fraction containing durene (1, 2, 4, 5 tetremethylbenzene),<br />

which is reduced to a finished gasoline containing about 2wtZ durene. The<br />

feed <strong>and</strong> product stream compositions are indicated ~n the followt~ tables.<br />

Component<br />

Feed Streams<br />

HGT Makeup<br />

Feed Hydrogen<br />

(lbmol/hr) (lb mol/hr)<br />

Hydrogen - 316.32<br />

C 6 + Heavier 545.80 -<br />

Total Dry, lb mol/hr 545.80 316.32<br />

H20 - _<br />

Total Wet, lh mol/ht 545.80 316.32<br />

Total, lb/l¢ 72,610.00 640.00<br />

Pressure, pets 590.0 650.0<br />

Temperature, °F 322 U0<br />

:I1:-1o 2.18-1


Fuel Gas<br />

Component<br />

C 5 + Heavier<br />

Total Dry, lb mol/hr<br />

H20<br />

Total Wet, lb mol/hr<br />

Total, lb/hr<br />

Pressure, psla<br />

Temperature, °F<br />

Product Streams<br />

, |, , ,<br />

Heavy Fuel<br />

Gasoline Gas<br />

(lb mol/hr) (lb mol/hr)<br />

, , u ,.,.,<br />

- 81.84<br />

589.97<br />

B. <strong>Process</strong> SelectionRatlonale<br />

iHi i<br />

589.97 81.84<br />

589.97 81.84<br />

71,110.00 2,140.00<br />

145 115<br />

I00 110<br />

The process selection of the Heavy Gasoline Treating (HGT)<br />

unit was made by Mobil Research <strong>and</strong> Development Corporation for the purpose<br />

of reducing durene to meet finished gasoline quality requirements. This unit<br />

is an integral part of MRDC's MTG process package°<br />

C. <strong>Process</strong> De.seription<br />

The arrangement of equipment <strong>and</strong> material balance for thls<br />

unit a~e presented on <strong>Process</strong> <strong>Flow</strong> <strong>and</strong> Coutrol <strong>Diagrams</strong> D-38-MP-INP <strong>and</strong> -2NP.<br />

1. Normal Operation. The HGT unit is similar to the mild<br />

catalytic hydro~reattug processes ased in petroleum refineries. The heavy<br />

gasoline feed from the Gas Fractionation unit is combined with a<br />

hydrogen-rich recycle stream, preheated iu the reactor effluent/feed<br />

exchanger, <strong>and</strong> enters the reactor. The reactor effluent stream is cooled with<br />

process streams <strong>and</strong> air before enteriug the separator. The treated heavy<br />

gasoline stream from the separator Is stabilized in the product stripper <strong>and</strong><br />

~I-1.2.18-2


t F ~ ~ ~ t I I g ~ T ~ v ~ i tlt;~iir~rFreltl!1~:l 1111 1 ~ t J ~ r J ~ f i ¸ i i<br />

/<br />

(<br />

pumped to storage. The bydcogcn rich vapor stream from the separator is<br />

recycled by the recycle compressor with a small purge flowing to the fuel gas<br />

system,<br />

2. .Catalyst Regeneration. Coke accumulates gradually on<br />

the catalyst durlngoperatlon, causing catalyst deactivation. The HGT unit<br />

must shut down for catalyst regeneration. Catalyst activity is restored by<br />

removing the coke. Regeneration consists of burning off the coke mtth a<br />

controlled oxygen burn. After catalyst regeneration is completed, the HGT<br />

unit iB returned to normal operation.<br />

described below:<br />

3. Catalyst. The catalyst required for the HGT unit is<br />

Type: Hobll<br />

Size: Inch 3/32<br />

Volume: ft 3 3,377<br />

Loading Density: No./ft 3 42<br />

4. Envtr.gnmental Data. When the HGT catalyst is<br />

regenerated, the regeneration gases are scrubbed by a tecirculattng caustic<br />

solution to remove any sulfur dioxide. There are no noxious emissions, but<br />

there is a small discharge of liquid effluent after scrubbing. No emissions<br />

other than minor process losses at pump valves <strong>and</strong> flanges occur durlng<br />

normal operation.<br />

D. .Risk, Ass,essment<br />

The HCT unit contains conventional petroleum-type equipment<br />

that has a high reliability from the st<strong>and</strong>point of onstresm time. The HCT<br />

unit is typical of petroleum hydrotteating units in opecation today, The<br />

plant is designed with all pumps spared <strong>and</strong> with block valves <strong>and</strong> bypass<br />

valves installed around ~ontrol <strong>and</strong> relief valves. The design permits<br />

maLntenance on such itemu without shutdown. The operational aspect of the<br />

unit is similar to petT:oleu~ refSnLng facilities in present-day operation.<br />

II-1.2.18-3


Corrosion should not be n problem end equipmeDt fouling is not expected to<br />

occur. The technical risk is considered minimal,<br />

II-I • 2.18-4


.<br />

E. <strong>Process</strong> Flo~ <strong>and</strong> <strong>Control</strong> <strong>Diagrams</strong><br />

(Including Mater~al Balance)<br />

Treating Unit 38 are as follows:<br />

Drawing No.<br />

D-38-I~-1 l~<br />

D-38-MP-21~<br />

<strong>Process</strong> <strong>Flow</strong> <strong>and</strong> <strong>Control</strong> <strong>Diagrams</strong> for Heavy Casoltne<br />

PFCD Heavy Gasoline Treat£ng<br />

T£tle<br />

Material Balance - Heavy Gasoline Treating<br />

II-1.2.18-S


A<br />

C<br />

E NTTROGIN IIC<br />

t" D'~'I "up-~' ~';~,w~o ~.,t,T<br />

~_4'.-B-38-I<br />

38-01-1401<br />

I ,,, ~, I ~ I 'V<br />

~'**A-3S<br />

2"-'A-31<br />

[-7:-- 15o PSZG 51'~g<br />

l~i:" SO Pb'lO S rEAg<br />

HC<br />

[3uC, ~<br />

I¢¢<br />

38"OI-2501<br />

38"01-1302A<br />

E OtIICRIPT~<br />

r*..~ -. - ,| | iZ~rlll ~ ~ .Io. J OATI[<br />

1 i --"<br />

IL<br />

38-01-1801<br />

_ 2"-B-38-Z<br />

XI 2"-B .38-X<br />

30"OI-IBOIT<br />

311"01-11~02T<br />

RI~rCLE<br />

Z<br />

E'-B-38<br />

NC<br />

WASTE WMEH<br />

i~B-3g-]<br />

G"B-)O-I<br />

~-ot-r~OtA<br />

IZ ~C ~ ~G~ 1 PREHEAT,.,r~<br />

4'-8-38<br />

('-8--38<br />

8.'6-38-1<br />

(<br />

3;,'~:-i201<br />

I No l~Tt I .v (o*~s~:t,1~Ic,.~T{ , .<br />

m


P<br />

....,<br />

4f " I "<br />

II I i I II<br />

311.~,.130]A 36,-01-1~1 311-01-1|0~' 31,-01- rqO'+A 3B-01-1~03 " ~1-1306<br />

"m'm.,+m vm' ~ntPPm +,~-o,-~om .e.,em ~...PPm<br />

~+~+,~mmmm ,,,~m, tJu,+'--'-~m - -<br />

-] ,<br />

,+,-,.__, L~oL_..<br />

~e<br />

IASTE nTER<br />

-'-~-: ~-n'~ n~ ~.,~,,.<br />

..o<br />

2"A-31<br />

FLU£ ~P0L~xxanI~T;0N I o-sz-we-+ k~<br />

Pt~E GAS ~ FUEL GAS ,'-I<br />

~1 ._..-o,.,., ( )<br />

35-01-1301A ~ I<br />

"15~1-1~01D 38"01-;<br />

-~, ----, 30-131-1504<br />

3H1-1202<br />

~ II'-d~'31"~..01.1306 P-R-3B-I<br />

C~IOEN~kTE- I~<br />

3l-'.'l-1103A IP-I-~0 _ r'-I<br />

4"-'A-3T-I<br />

35.-oI-I~Oe~ .L _ +<br />

30-01-1501 3111-~1 -1503<br />

3.11-01 -I 5~?. 38-'01-15~4<br />

I rm el~ ~AL i ~''" I I |<br />

PUUP STR]~ R£FI.UX<br />

me<br />

IBII ~ ~ 061elK, emt ~.~l'le'.)tl~<br />

mmm~ mimml<br />

_-,t --<br />

4 4~ ..+mu, mm. " n ...- I i IIn ,, r.'~o c~mmtA,<br />

Y-U-3~-I I~<br />

530 l~O ~TE~ ~<br />

4'-'A-~<br />

,r:,~w ~so+,.te~.zs+ce.J~ I a-~'r,.~ ,e~<br />

~U~M~T ~ ON THIS DRA~tNGa<br />

36-O1-1~1 3D-OI-I~<br />

30-O1-120~ 3i-O1-13OT<br />

~O-Ol-I~O} ~O-Ol-130OA<br />

30-O1-1204 3i-01-13008<br />

38'-01-1301A 31"01-1401<br />

38"01-13018 :IIPO~-ISOI<br />

3~-01-130~ 31-01-150~<br />

3P01-130"~ ~'01-1503<br />

38-01-130~ 3+*01-1504<br />

~6"01-130~ ~I-01-1~01T<br />

3~--01-1304 3|+-01-I~02T<br />

3S-OI-1305A =ll,-Ol-2S*~ I<br />

31-01-130~<br />

LLS. DEP/~THENT OF ENERGY<br />

WJt.GRADE & CO, mnuc~<br />

B.PJ1.<br />

CON. - TO - KETHN4(fl. - TO - C,~SOLINE PL.~TT<br />

~ ~ ~.mm D-3B2MP- I NP<br />

• I<br />

+:<br />

D


A<br />

. . . . ,,<br />

,,,,, ,<br />

ORAWiNG NO,<br />

III<br />

1<br />

! DRAW|I(~<br />

II<br />

.......... , ............... ,,.,,,,,~,,,,;.~ r;.~:, ,,','~'"''/:~,~"~!':~'::';"q.'.:~','~;"~,'~'!~'~".: ~:~;~'~;[~"~;!~?~`~/'~:~;~;~*~"~;~(t~ ....<br />

I :, I =, I<br />

~E~ w e ION<br />

i .<br />

~0. DATE<br />

STREA u<br />

ItGT<br />

F(EO<br />

MAK(-UP OFF PURGE PR00<br />

Hz GAS GAS<br />

13PS0<br />

5. i;os<br />

r~:cFo 2. sos 4so zss<br />

~/x~ 12.11;io<br />

6,~o z, olo ,]o i<br />

! APZ OR SG • EO°F<br />

o. 19<br />

Jill<br />

131.o4<br />

2.02 40.72 4. 12 I<br />

GPii<br />

189<br />

CFll<br />

35<br />

COIJPOXENT lUl<br />

HYDHnCEH<br />

2;02 o.o<br />

II~l.II qlkl [l~;l;<br />

ETHANE<br />

38.o7 i, 0,0 m,x,i ,i~i III ~.~,<br />

44. I0 0.0<br />

150BUTANE 5B. 12 O. 0 '<br />

O.O 9.54 0.22<br />

H-BUTANE 5B. 12 0.0<br />

0.0 5. I I O. I0<br />

LSOPEHTANE 72. 15 0.0<br />

O. O 2. 54 O. OT<br />

H-PENTENE 12. 15 0.0<br />

O.O (1. iT 0,01<br />

2-METHYLPEHTANE e6, IS 0,0<br />

O. O O. 09 O. 0 I<br />

CE~HEAV] ER 545. BO<br />

O. O O. 03 (1. O I<br />

TOTAL ilPH 54% 60 .... 316. 31 49.131 ~Z. 47<br />

I .. ,, iLD;J,.rlA,~[i~:.wL!r'.~¥.~.~jFOROE~"I~<br />

i C u=w P, Xl FJC FOR CL'.L~<br />

6 S/ll/~ FEEt RA1 FJC ! FOR LTerl<br />

~, A S,,~', F,, RA~ F.JC [ FOR CL'oi~.<br />

8Y 3*IKD K¢ PRC~J **LIEN ncc'rmUPT ~N I NO. ,DATE IlY C)~D PIIOJ ¢;LI[NI<br />

~ '


, ,~~,~.~.e~'~ ~. ~~~'~'~'~.~..'~~',,,~.T~.~-~,~~.~:'r~.:~,~:'~, , ~ ~ ;<br />

~i'i' ''~ ° I ° I '<br />

m<br />

PROOUP.T REGEHERATtVE<br />

RECYCLE<br />

GAS<br />

m<br />

5tel5<br />

.~ 22, 49 I<br />

" '11', I tO 12, 640<br />

O, D4<br />

120, 53 29. 55<br />

173<br />

1.264<br />

o. 0<br />

O. 36<br />

6. 03<br />

'" " 6.03<br />

6. 64<br />

15. 46<br />

I;,7l<br />

7.95<br />

Sq3. 70<br />

569, 9T 2, 465, 0<br />

"'.. :"~.:.: --_POHT<br />

.... PROVAL<br />

~.~_~, :- ~PpnOVA[,<br />

"...',°.- 5(~ RO/]~<br />

O£SCRIPTION<br />

,Ok ......<br />

J<br />

ll~ll ~ ~I OeNllel~'W C~'pa'ntla<br />

~4zsmm ooq~<br />

::~':::'~.- ..... ,, ~.,~"~a.~'~., ~"<br />

S<br />

)39M?2HP, DGr,<br />

..... r<br />

U,S, DEPARTHENT OF ENERGY<br />

W.R. GRACE & CO. Kemuc~<br />

58.888 B.P,I:)o<br />

COAL - TO - HETFIANOL " TO " GASOLINE PLANT<br />

It<br />

UNIT ~8 ~..~ ,.,,,,.~ ;r IZ<br />

~w c~sou,( Tn~n,; D-38-PP-2 NP<br />

A<br />

D<br />

N<br />

m~<br />

J


q, ,/<br />

F, Plot Plan/Cenerel Arrang.mnent Drawings<br />

See Volume II, 1.2.13(F) £or Plot Plan <strong>and</strong> General<br />

Arrangement Drawings £or Heavy Gasol£ne Treating Un:Lt 38.<br />

IZ-1,2,18-6<br />

m<br />

i


P<br />

C<br />

G. S~ngle-Llne Dia[~zam<br />

See Volume IX, 1.2.12(G)<br />

Heavy Gasoline Treating Unit 38,<br />

ZI-h2.18-7<br />

for the Single-Line Diagram for


1.2.19 PROCESS WATER TREATMENT - UNIT 39<br />

A. ,Basis of Desi~n<br />

The feed to the MTG plant contains water, <strong>and</strong> additional<br />

stolchlometrlc volumes of water are produced during the conversion of<br />

methanol to gasollne. In the eonverslon reaction, about 0.6 pound of water is<br />

produced per pound of methanol in the feed. The process ~ater is separated<br />

from the hydrocarbon products <strong>and</strong> obtained as liquid at about 178 pslg <strong>and</strong><br />

100"F. Consideration has been given to recycling this water to other plants<br />

~n the overall Gasollne Plant to reduce the need for makeup water <strong>and</strong><br />

wastewater treatment° The MTG water, at a pH of 3.5 to ~.0, contains traces<br />

of methanol, organic acids, hydrocarbons, <strong>and</strong> related oxygenates. The<br />

oxygenates are removed by an activated sludge trestlng unit,<br />

Since thls water treatment process is well suited to<br />

h<strong>and</strong>llng sanitary wastes, the wastewater generated from domestic use of<br />

potable water <strong>and</strong> process area surface runoff pretreated by the oily water<br />

treatment system ere sent to the Mobil water treatment system.<br />

B, <strong>Process</strong> Selection Ratlonale<br />

i<br />

The process selection of aerobic biotreatment of the MTG<br />

process water available through Mobil Research <strong>and</strong> Development Corporation<br />

was made by Parsons. This process has shown that the contaminants are<br />

biodegradable by conventional treatment using a tricklin E filter <strong>and</strong> an<br />

activated sludge basin. Results have demonstrated that the Chemical Oxygen<br />

Dem<strong>and</strong> (.COD) <strong>and</strong> Biochemical Oxygen Dem<strong>and</strong> (BOD) are reduced to acceptable<br />

enviror~eutal limits. However, in the overall wastewater all effluent from<br />

this system is recycled.<br />

C. <strong>Process</strong> Description<br />

The wastewater stream from the MTG plant results from the<br />

water present in the methanol feed as well as water formed in converting<br />

lI-1.2.19-1<br />

~


P<br />

[ ,,, ,,, i , ,,<br />

methanol to gasollne. The water produced In the conversion reaction is about<br />

0,6 pound per pound of methanol in feed,<br />

The wastewater contains minor quantities of dissolved<br />

organic chemical contaminants totaling less than 0.2Z by weight. These<br />

contemlnante are primarily oxygenated organic compounds, such as organic<br />

acids, alcohols, <strong>and</strong> ketoneg, in addition to the methanol resulting from<br />

breakthrough Just prior to conversion catalyst regeneration. These are<br />

essentially removed ~n a wastewater treating facility.<br />

Pllot plant studies on the aerobic blotreatment of )fig<br />

process wastewater have shown that the contaminants are blodegradable by<br />

conventional treatment using a trickling fllter <strong>and</strong> an activated sludge<br />

basin. Results have demonstrated that COD <strong>and</strong> BOD are reduced to acceptable<br />

environmental limits.<br />

T~eatment steps for /fig wastewater involve routing the<br />

wastewater stream to a degasser where the pressure Is lowered to atmospheric.<br />

The gases are routed to a flare system. The wastewater then is sent to a<br />

neutralization tank where pH is adjusted with sodium hydroxide solutlon.<br />

Nutrients for biological growth (ammonia <strong>and</strong> phosphoric acid) are added after<br />

the neutralization basin, Following neutralization, the wastewater is pumped<br />

to a trickling filter. The trlckllng filter effluent flows to an activated<br />

sludge extended aeration unit.<br />

The waste activated sludge from the treatment process Is<br />

conventional aerobic blologleal sludge, which Is dewatered In the inert<br />

solids treatment system <strong>and</strong> then stored in the nonhazardous l<strong>and</strong>flll. The<br />

organic content is hlgh since there is little or no inert materlal in the raw<br />

HTG process water.<br />

In addition to the process water discussed above, there are<br />

25 gpm of spent caustic containing 6I of sodium sulftte <strong>and</strong> sodium<br />

bicarbonate developed during HCT section catalyst regeneration, 25 gpm of<br />

domestic sanitary wastewater, <strong>and</strong> 740 gpm of pretreaCed surface water runoff<br />

termed olly water.<br />

II-1.2.19-2


In the Integrated complex producing gasoline £rom<br />

coal-derlved synthesis gas, about 40 volume percent of the blotreated water<br />

£rom the <strong>Process</strong> Water Treatment Unlt is seat to a deaerator to remove gases<br />

<strong>and</strong> then to the goal£1catlan unit as makeup water. The remainder o£ the water<br />

treated In thie system is routed to clean process water makeup.<br />

D. ,Risk Aa, sess=ent<br />

The <strong>Process</strong> Uater Treatment unit contains conve~tional<br />

biotreatment-type equipment that is in general use throughout the petroleum<br />

<strong>and</strong> -~emical Industrles. The technical risk Xs minimal.<br />

II-1.2.19-3<br />

Bin..-___


C<br />

/'<br />

". . ... ~ ,'.<br />

E. <strong>Process</strong> <strong>Flow</strong> <strong>and</strong> <strong>Control</strong> Di,aBrame (Including Nateria~<br />

Balance)<br />

Treatment Unit 39 are as £ollows:<br />

<strong>Process</strong> <strong>Flow</strong> <strong>and</strong> <strong>Control</strong> <strong>Diagrams</strong> for <strong>Process</strong> Water<br />

Drawing No. Title<br />

D-39-MP-II~P PFCD <strong>Process</strong> Water Treating<br />

D-39-NP-21~P Material Balance - <strong>Process</strong> Water Treating<br />

II-1.2.19-4<br />

E


P ....<br />

A<br />

C<br />

D<br />

II 'INII I II<br />

~AWI#G NO<br />

' I<br />

1 , ,I ,,, I .... = ..... I<br />

31-01-1|09 39-01-1207 ~ 391-01-1206 39,.01-~401 39-01-120! 3~01-4101<br />

P~OCE$S WATER<br />

FLASH DRUM<br />

CAI~"IIO FEED<br />

'lANK<br />

PIIO~PII0~|C ACID<br />

FEEO TAHK<br />

_ ~ O N<br />

TANK<br />

.HE~ATION<br />

TANK MLXE~<br />

NH] FEE'-"------~<br />

~<br />

TRICKLING FILTER<br />

PIT<br />

~1 : TO FLARE<br />

FROCES.~; lATER/<br />

I~G U~T<br />

J E'O-CE-2 -" :~1"35<br />

, "ra SXRZ~A,~ IAS'~E<br />

.,=.. B~-1-3g<br />

LD-S3-CE-2 .r.~ PROCESS AREA DRAINAGE/ ~ I<br />

OILY WM[R TR,EAT~NT<br />

SYSTEM<br />

~ 39"01-120T<br />

~'D'ST-Id~-I NP) 6'-AA-39<br />

NNI,"S|~UkGE<br />

39-oz-zszz 39-0,-13|4<br />

c ~ e o P e ~ m<br />

]9-Ot-151_..__..~33<br />

[D-5'I-ilP-E lip ~ I'IIOSPI~OP, IC<br />

ACIIZ/SI"ORACE L ~ ---~<br />

1 l!<br />

3~J-.O1-1514<br />

I 39-01-1205<br />

39-01-2401<br />

39-01-120E ATZURAL<br />

" ~ , 14~W-39<br />

39-01-1209 59"-01-1515<br />

39'-01-1515 39-'01-1S03 39-01-1305<br />

3901-1506<br />

XeZ~Ee A F ~<br />

F E:O pUm~ AND ,,FEED PUMP AND<br />

SPARE $PJiRE<br />

3~01-1503<br />

~19,.01-1504<br />

' , ~ .~ ...... ~, ~.,1<br />

M-01-4101<br />

39-01-4106<br />

SLUDGE PIT'<br />

39-O1-1505<br />

]9-01-13u_.__.~ss<br />

39-01-4 t0.__.._~ZZ<br />

R,.W.',t~<br />

39"01-1509<br />

33"01-1510<br />

3~l-DI-4106<br />

39-01-1509 39-0i-!511 39-01- 150"/<br />

]9-ol-islo ~ox-,s,.._._._~2 3~-o,-iso,<br />

.SLUDGE RECYCLE SCUM bUMP ,CI.AP, ZFIED WA~'ER<br />

,,P~lP AND SPARe PUEP MiD SPA'RE .OZSCIU~RGE PLII~<br />

AND SPARE<br />

, J I<br />

..... -------.-.J'~~FJCJ I F0R CL~(


ii ii jjlU I<br />

'i ~ 39,,.01-4103 39'-01-4101 3~'01-1604<br />

A ~ H ~ TRICKLING FILTER<br />

L___<br />

3g,',411- IllO4<br />

"~-01-4193<br />

39o91-~40~A<br />

3"J-ot-=4m+<br />

:q9-,ol-2,qo2(<br />

SL~0G'E/R£CYCLE<br />

39-01-1511<br />

39-'0i-1512<br />

--,I>


p .,.,<br />

4<br />

C<br />

I'+1 + I<br />

I I ~AwiNa ~ I<br />

• ' i~"~Lll |fill<br />

.... 1 .I 2 I + I 4+<br />

OI~RIPTIOK<br />

1<br />

IlL I<br />

,,,,,<br />

i<br />

OESCII lli'T I~ li,+,,<br />

COMPOHEHT<br />

PROCES~<br />

WATER<br />

lATE IGPM) IISO<br />

60D !MO/L~ IS


, , ,, ,,<br />

EXCE~<br />

SLUOG;<br />

~S<br />

I00<br />

is<br />

t l,~,°. ' |,,~D'<br />

I Fee ellr~ AmmvJt I I i<br />

v q<br />

txcrxsr~ ~OVAL I I I<br />

o==~m. I I pe,~a, r~l~l ~<br />

44~ I = I<br />

I<br />

b38Mw~. O~<br />

MATB~. BAI.A.~E ~IOIIN L~ FOE I~I~L<br />

I<br />

OEPARTt,~:NT OF ~.RGY<br />

U,,li.6mCE & CO.<br />

5t~,J~8 B.P.0.<br />

COAL - TO - Iv~TI~,NOL - TO - GASOLIHE PLANT<br />

FOe U~ 3S /~-39-MP-2<br />

6 I I<br />

A


P ....... , .,,,,,., ,,<br />

F, Plot Plan/Ceneral Arrangement Drawin~<br />

The Plot PI~ <strong>and</strong> General ArrenEemeut DrawinE for <strong>Process</strong><br />

Water Treatment Unit 39 is as follow~c<br />

Dra~n~, No. Title<br />

D-39-PD-INP Plot Plan - Unit 39 <strong>Process</strong> Water Treatmeut<br />

II-l.2o 19-5


m<br />

A<br />

C<br />

N<br />

Q<br />

l I ,,,,,,,,.a,,o.<br />

~IO-Gi-~i Iii/7111<br />

I<br />

m<br />

i<br />

la,,l<br />

ILl<br />

Z<br />

-r"<br />

I--"<br />

1<br />

s<br />

. . . . , ................ ., ~;r'~"~ ~, ,' . . . . . ,, , ,'. ' ' ~ ~'~. , ', '~' ,~,.~W ~ . ~ . •<br />

I , . I ,.:~ I ,.<br />

PIT<br />

r"L' I<br />

1,<br />

' I<br />

I ~ RECYCLE $1J~4P<br />

SCUM SUUP I<br />

D ES~q IPT~DN<br />

I<br />

I<br />

L<br />

],[._L I I I I I 'l'!' '<br />

It It I f, t<br />

MATCHLINE & C/L ROAD N 9630'-0'<br />

BA'rTESy L D411"5<br />

+ +<br />

~ERAT IO,q<br />

BASIN<br />

[... .]<br />

I~ATT~rR~ LlUlTS<br />

%% ~"<br />

,,.," P¢8 "'-.<br />

1~o' ~1 ~,~1<br />

v<br />

MATCHL I NE "_<br />

I,~- ~ ,'~[~-:--:.~-<br />

I~I~RI I~ll FJC Ir~ -]r~Y<br />

I~1~,~1 j,~l~'~ I I'~O.-<br />

I-I ~3.,.I-.I ~el /~;.Er, _.jl~--_<br />

NO* DATI~ 8Y SI[C ~ ¢Ll[[q*Lr I - - ~.<br />

II I',,, I ~1 I,,


-0'<br />

. I I i ,,n ..........<br />

-'.::~ & ~L ROAD N 9310'-0'<br />

,~" pl." B "~o<br />

I.~. ~ 3g-OI-4GOI ~,~ [<br />

FLASH~RUM<br />

NEU;RALI ZATIOX<br />

TANK<br />

I~1 I~1<br />

FEED T~<br />

FEIm TANK<br />

-E3.E~)-<br />

FEED TAN~<br />

\ /<br />

I<br />

m ~<br />

m<br />

/<br />

r,,,,,<br />

iaJ<br />

l i<br />

0 I0 ~ ~ $0 Io<br />

I<br />

[<br />

I--~TT<br />

~S' OEP~RTMENT OF E~i~(;'f<br />

W.R. I~qCE & (:0. ~.mucxv<br />

COAL - TO - METH~DL - ~,.- G~SOLZNE PL~T<br />

r" PLO, PLAN I ,'.ao'-m ~, I ,,az I .<br />

UN,T 39 Z=~<br />

P~CE!.:; '.qATER TRE./,TMENT I D-39-PD- I NP ....... ,:<br />

teD, . . .:,<br />

m<br />

D


m<br />

. m<br />

/<br />

¢<br />

G, Single'-Line Dtagrnm<br />

Bee Volume lI, 1.2.15(G) for the SingZe-Line Diagram for<br />

<strong>Process</strong> W~ter Treat~nent Unit 59.<br />

I<br />

II-l. 2.19-6

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!