20.07.2013 Views

Laplaceova transformace. - Katedra matematiky FEL ČVUT

Laplaceova transformace. - Katedra matematiky FEL ČVUT

Laplaceova transformace. - Katedra matematiky FEL ČVUT

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

8p<br />

(p2 +4) 2 + p 2(p−2)<br />

p−2 + p−4 − 2.<br />

Použijeme linearitu, vztahy tf(t) −F ′ (p), f ′ (t) pF (p) − f(0+), e 2t f(t) F (p − 2)<br />

a vzorce sin 2t 2<br />

p 2 +4<br />

, cosh 2t p<br />

p 2 −4<br />

19. f(t) = e−3t cos (2t + π<br />

2 ) + sin 3(t − π)<br />

Je cos (2t + π<br />

2<br />

) = cos 2t cos π<br />

2<br />

− sin 2t sin π<br />

2<br />

, 1 1<br />

p .<br />

= − sin 2t<br />

a sin 3(t − π) = sin 3t cos 3π + cos 3t sin 3π = − sin 3t.<br />

Je f(t) = −e −3t sin 2t − sin 3t tedy F (p) =<br />

−2<br />

(p+3) 2 3 − +4 p2 +9 .<br />

Použijeme linearitu, vztah e −3t f(t) F (p + 3) a vzorce<br />

sin ωt ω<br />

p 2 +ω 2 , ω = 3, ω = 2.<br />

20. f(t) = 5.2 −t − 4t3 t<br />

Je f(t) = 5e −t ln 2 − 4te t ln 3 , tudíž F (p) = 5<br />

p+ln 2 −<br />

4<br />

(p−ln 3) 2 .<br />

Použijeme linearitu, vztah eatf(t) F (p−a), a = − ln 2, a = ln 3 a vzorce 1 1 1<br />

p , t p2 .<br />

21. f(t) = t<br />

Je F (p) = 1<br />

p<br />

2<br />

p 2 +<br />

0 (2 + 4eu sinh 3u)du − (3 t − tsinh 5t) ′<br />

2<br />

p +<br />

4.3<br />

(p−1) 2 −9<br />

<br />

− p<br />

<br />

1<br />

p−ln 3 +<br />

12<br />

p(p2 p 10p2<br />

− −2p−8) p−ln 3 − (p2−25) 2 − 1.<br />

Použijeme linearitu, vztahy t<br />

0<br />

f ′ (t) pF (p) − f(0+), tf(t) −F ′ (p) a vzorce 1 1<br />

p<br />

22. f(t) = 6 sin t sinh 3t − 4t 3 − 2 cos t cosh t<br />

Je f(t) = 3 sin t(e 3t − e −3t ) − 4t 3 − cos t(e t + e −t ), tedy<br />

F (p) =<br />

3<br />

p 2 −6p+10 +<br />

3<br />

(p−3) 2 +1 +<br />

<br />

5<br />

p2 <br />

′<br />

− lim<br />

−25 t→0+ (3t − tsinh 5t) =<br />

f(u)du 1<br />

p F (p), eat f(t) F (p − a), a = 1, a = ln 3,<br />

3<br />

(p+3) 2 3! − 4 +1 p4 − p−1<br />

(p−1) 2 p+1<br />

− +1 (p+1) 2 +1 =<br />

3<br />

p2 24 − +6p+10 p4 − p−1<br />

p2 p+1<br />

− −2p+2 p2 +2p+2 .<br />

, sinh ωt ω<br />

p 2 −ω 2 , ω = 3, ω = 5.<br />

Použijeme linearitu, vztah e at f(t) F (p − a), a = 3, a = −3, a − 1, a = −1 a vzorce<br />

t 3 3!<br />

p 4 , sin t 1<br />

p 2 +1<br />

, cos t p<br />

p 2 +1 .<br />

23. f(t) = (e t sinh t + t 3 e 2t − 6) ′ + 3 t<br />

<br />

Je F (p) = p<br />

1<br />

(p−1) 2 −1<br />

p<br />

p2 6p<br />

+ −2p (p−2) 4 − 6 + 6 + 72<br />

0 (u4 − u cos 2u) du<br />

3! + (p−2) 4 − 6<br />

<br />

p<br />

p6 + 3<br />

p<br />

p 2 +4−2p 2<br />

p 2 +4<br />

− lim<br />

t→0+ (et sinh t + t 3 e 2t − 6) + 3<br />

p<br />

1 6p<br />

= p−2 + (p−2) 4 + 72<br />

p6 + 3(4−p2 )<br />

p(p2 +4) .<br />

<br />

4!<br />

p5 <br />

p<br />

+ p2 <br />

′<br />

+4<br />

Použijeme linearitu, vztahy f ′ (t) (pF (p)−f(0+)), t<br />

1<br />

0 f(u)du pF (p), tf(t) −F ′ (p),<br />

e at f(t) F (p − a), a = 1, a = 2 a vzorce t 3 6<br />

p 4 , t 4 4!<br />

p 5 , sinh t 1<br />

p 2 −1<br />

24. f(t) = 3 − 4 t<br />

0 sinh (t − u) cos udu<br />

<br />

1 p<br />

F (p) = 3<br />

p − 4<br />

p2−1 p2 +1<br />

= 3<br />

p −<br />

4p<br />

(p2−1)(p2 +1)<br />

Použijeme linearitu, větu o obrazu konvoluce (f ∗ g)(t) F (p)G(p) a vzorce<br />

1 1<br />

p<br />

, sinh t 1<br />

p 2 −1<br />

, cos t p<br />

p 2 +1 .<br />

=<br />

, cos 2t p<br />

p 2 +4 .

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!