06.04.2014 Views

savremeni razvoj konstrukcije i proizvodnje vij^anih kompresora ...

savremeni razvoj konstrukcije i proizvodnje vij^anih kompresora ...

savremeni razvoj konstrukcije i proizvodnje vij^anih kompresora ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Ma{instvo 2(3), 63 - 78, (1999)<br />

N.Sto{i},..: SAVREMENI RAZVOJ KONSTRUKCIJE...<br />

SAVREMENI RAZVOJ KONSTRUKCIJE I PROIZVODNJE<br />

VIJ^ANIH KOMPRESORA<br />

Prof. dr Nikola Sto{i} i mr Ahmed Kova~evi}, Centre for Positive Displacement<br />

Compressor Technology, City University, London EC1V OHB, U.K.<br />

REZIME<br />

PREGLEDNI RAD<br />

Vij~ani kompresori dominiraju u oblasti kompresije zraka, procesnih plinova i u rashladnoj tehnici.<br />

Razvoj matematskih modela i unapre|enja u oblasti ra~unarske simulacije kombinovani sa rezulatima<br />

eksperimentalnih istra`ivanja ~ine sna`an sistem za analizu procesa i optimizaciju <strong>konstrukcije</strong> vij~anog<br />

<strong>kompresora</strong>. Kao rezultat, u nekoliko zadnjih godina profil zuba rotora vij~anog <strong>kompresora</strong> zna~ajno<br />

je evoluirao i na taj na~in su pobolj{ane performanse ma{ine. Iako efikasnost rada vij~anog <strong>kompresora</strong><br />

najvi{e zavisi od profila zuba rotora kao i distribucije zazora izme|u rotora i izme|u rotora i<br />

ku}i{ta <strong>kompresora</strong>, ostale komponente, kao {to su otvori na ku}i{tu, le`ajevi, zaptivke i sistem za<br />

podmazivanje, moraju biti tako projektovani da se u potpunosti iskoristi potencijal ostvaren <strong>razvoj</strong>em<br />

profila rotora.<br />

Klju~ne rije~i: vij~ani kompresori, konstrukcija, proizvodnja<br />

RECENT DEVELOPMENTS IN SCREW COMPRESSORS<br />

Nikola Sto{i}, Ph.D. and Ahmed Kova~evi}, Ms.C., Centre for Positive<br />

Displacement Compressor Technology, City University, London EC1V OHB, U.K.<br />

SUMMARY<br />

SUBJECT REVIEW<br />

Screw compressor dominate today compression of air, process gas and refrigerants. The recent<br />

advances in mathematical modelling and computer simulation combined with experimental test data<br />

form a powerful tool for process analysis and design optimisation. As a result, the screw rotors lobe<br />

profiles have evolved over the past few years enhancing machine performance. Although an efficient<br />

operation of screw compressors is mainly dependent on a rotor profile and clearance distribution,<br />

other components, like housing, ports, bearings, seals and lubrication system sholud be designed to<br />

take advantage of their potential if the full performance gains are to be achieved.<br />

Key words: screw compressors, construction, manufacturing<br />

1 UVOD<br />

Vij~ani kompresori su rotacione volumetrijske ma{ine<br />

jednostavne <strong>konstrukcije</strong> koje mogu raditi na vrlo<br />

visokim brojevima obrtaja u {irokom dijapazonu radnih<br />

pritisaka i protoka ostvaruju}i visok stepen iskori{tenja.<br />

Oni su kompaktni i pouzdani tako da su danas na<br />

trzi{tu zastupljeni u vi{e od 80% slu~ajeva dok se u<br />

pogonu ve} nalazi oko 50% vij~anih <strong>kompresora</strong> u<br />

odnosu na ukupan broj industrijskih <strong>kompresora</strong>.<br />

Osnovni razlog za ovako zna~ajan uspjeh vij~anih<br />

<strong>kompresora</strong> na tr`i{tu valja tra`iti u savremenom <strong>razvoj</strong>u<br />

proizvodne tehnike koja je omogu}ila da se linearne<br />

tolerancije pri proizvodnji rotora preciznim profilnim<br />

glodanjem ili bru{enjem svedu na vrijednost ni`u<br />

1 INTRODUCTION<br />

Screw compressors are rotary positive displacement<br />

machines of simple design with the moving<br />

parts comprising only two rotors rotating in four<br />

to six bearings. They are capable of efficient<br />

operation at high speeds over a wide range of<br />

operating pressures and flow rates. They are<br />

therefore both reliable and compact and consequently<br />

they comprise 80% of all positive displacement<br />

compressors now sold and 50% of<br />

those currently in operation. Their remarkable success<br />

is mainly due to improvements in high accuracy<br />

profile milling and grinding which now make<br />

it possible to reduce linear tolerances to below<br />

- 63 -


Ma{instvo 2(3), 63 - 78, (1999)<br />

N.Sto{i},...: SAVREMENI RAZVOJ KONSTRUKCIJE...<br />

od 10 µm. Na taj na~in se ostvaruje ekonomi~na<br />

proizvodnja rotora sa me|usobnim zazorima u granicama<br />

od 35-50 µm. Unutra{nje curenje se time svodi<br />

na mali dio vrijednosti ostvarenih u prija{njim konstrukcijama<br />

vij~anih <strong>kompresora</strong>. Kao rezultat se dobiva<br />

manji vij~ani kompresor sa ve}im stepenom iskori{tenja<br />

u pore|enju sa ostalim tipovima <strong>kompresora</strong>.<br />

Vij~ane ma{ine se danas upotrebljavaju kao kompresori<br />

ili kao ekspanderi i imaju najraznovrsnije namjene.<br />

Oni rade sa razli~itim vrstama radnih fluida koji mogu<br />

biti gasovi, pare ili vi{efazne mje{avine sa promjenom<br />

faze unutar ma{ine. Mogu raditi bez unutra{njeg podmazivanja,<br />

ili kao uljno podmazivani, ili sa drugim fluidom<br />

koji se ubrizgava u radni prostor za vrijeme<br />

procesa kompresije ili ekspanzije ili prije ili poslije njih.<br />

Da bi se postigle optimalne karakteristike <strong>kompresora</strong>,<br />

razli~ite aplikacije vij~anog <strong>kompresora</strong> zahtijevaju<br />

razli~itu konstrukciju i druk~iji na~in rada. Zbog toga<br />

nije mogu}e upotrebljavati univerzalne rotore ili izabrati<br />

univerzalne radne parametre koji }e dati optimalnu<br />

efikasnost ~ak unutar vrlo uskog dijapazona rada<br />

ma{ine. Detaljna termodinamska analiza i poznavanje<br />

uticaja razli~itih konstruktivnih parametara na karakteristike<br />

vij~ane ma{ine su, zbog raznolikosti primjene i<br />

geometrijske kompleksnosti ma{ine, sigurno mnogo<br />

zna~ajniji i slo`eniji nego u slu~aju drugih sli~nih<br />

ma{ina. Odavde slijedi da je za optimalne performanse<br />

ma{ine za odre|enu primjenu neophodno dobro<br />

postaviti optimizacione kriterije. Ovakav pristup je, isto<br />

tako, od velikog zna~aja za eventualna unapre|enja<br />

postoje}ih konstrukcija vij~anih ma{ina i za pro{irenje<br />

domena njihove primjene.<br />

10 µm. This permits rotors to be manufactured<br />

with interlobe clearances of 30-50 µm at an economic<br />

cost. Internal leakages are thus far less<br />

than in earlier machines of this type and as a<br />

result, twin screw compressors are more efficient<br />

than other types.<br />

Screw machines are used today for different applications<br />

both as compressors and expanders. They<br />

operate on a variety of working fluids which may<br />

be gases, dry vapours or multi-phase mixtures<br />

with phase changes taking place within the<br />

machine. They may operate with oil flooding, with<br />

other fluids injected during the compression or<br />

expansion process, or without any form of internal<br />

lubrication. Their geometry may vary depending<br />

on the number of lobes in each rotor, the<br />

basic rotor profile and the relative proportions of<br />

each rotor lobe segment. It follows that there is<br />

no universal configuration which would be the<br />

best for all applications. Hence, detailed thermodynamic<br />

analysis of the compression process<br />

and evaluation of the influence of the various<br />

design parameters on performance is more important<br />

to obtain the best results from these<br />

machines than from other types which could be<br />

used for the same application. It follows that a<br />

set of well defined criteria governed by an optimisation<br />

procedure is a prerequisite for achieving<br />

the best design for each application. Such guidelines<br />

are also essential for the further improvement<br />

of existing screw machine designs and<br />

broadening their range of uses.<br />

Industrijski kompresori komprimiraju zrak, rashladne<br />

fluide ili procesne plinove. Za svaku od ovih namjena<br />

konstrukcija ma{ine se mora razlikovati kako<br />

bi se postigli o~ekivani rezultati. U rashladnim<br />

ma{inama i kod kompresije procesnih plinova, gdje<br />

je vrijeme rada <strong>kompresora</strong> zna~ajno du`e od vremena<br />

stajanja, obi~no se kao osnovni preduslov<br />

postavlja visok stepen iskori{tenja <strong>kompresora</strong>. Za<br />

zra~ne kompresore, posebno u mobilnim agregatima,<br />

efikasnost mo`e biti ni`a i obi~no je manje zna`ajna<br />

od veli~ine <strong>kompresora</strong> i njegove cijene.<br />

Oblast kompresije zraka je, kako u slu`aju suhoradnih<br />

tako i u slu~aju uljno podmazivanih <strong>kompresora</strong>, gotovo<br />

isklju~ivo pokrivena vij~anim kompresorima. Situacija<br />

je vrlo sli~na i u procesnoj industriji, dok se u rashladnoj<br />

tehnici klipni i lamelni kompresori sve vi{e<br />

zamjenjuju vij~anim kompresorima, tako da se u narednim<br />

godinama mo`e o~ekivati dramati~no pove}anje<br />

zahtjeva za vij~anim rashladnim kompresorima.<br />

Veli~ina vij~anih <strong>kompresora</strong> koji se danas koriste u<br />

komercijalne svrhe je izmedju 75 i 620 mm u<br />

Typically, refrigeration and process gas compressors,<br />

which operate for long periods, must be<br />

designed to have a high efficiency. In the case of<br />

air compressors, especially for mobile applications,<br />

efficiency may be less important than size and<br />

cost.<br />

For both dry and oil free air compression, screw<br />

compressors are used almost exclusively. This is<br />

also gradually becoming the case for process gas<br />

compression. In the field of refrigeration, the use<br />

of reciprocating and vane compressors is<br />

decreasing and a dramatic increase in favour of<br />

screw machines is expected in the next few<br />

years.<br />

Screw compressors in normal commercial usage<br />

today have main rotors whose outer diameters vary<br />

between 75 mm and 620 mm. These deliver<br />

between 0.6 m3/min and 600 m 3 /min of compressed<br />

gas. The normal pressure ratios attained in a single<br />

- 64 -


Ma{instvo 2(3), 63 - 78, (1999)<br />

N.Sto{i},..: SAVREMENI RAZVOJ KONSTRUKCIJE...<br />

pre~niku vode}eg rotora. Dobava tih <strong>kompresora</strong> je<br />

izmedju 0,6 i 600 m 3 /min gasa na uslovima usisa.<br />

Odnos pritisaka je oko 3.5 za suhoradne kompresore<br />

dok se za uljnopodmazivane kre}e do 15.<br />

Uobi~ajena razlika pritisaka je do 15 bara ali se u<br />

nekim slu~ajevima de{ava da ona prelazi 40 bara.<br />

Volumetrijsko iskori{tenje uljno podmazivanih vij~anih<br />

<strong>kompresora</strong> obi~no je preko 90%, tako da je danas<br />

specifi~na snaga vij~anih <strong>kompresora</strong> svedena na<br />

vrijednosti koje su se prije samo nekoliko godina<br />

smatrale nemogu}ima.<br />

stage are 3.5:1 for dry compressors and up to 15:1<br />

for oil flooded machines. Normal stage pressure<br />

differences are up to 15 bars, but maximum values<br />

sometimes exceed 40 bars. Typically, for oil flooded<br />

air compression applications, the volumetric efficiency<br />

of these machines now exceeds 90 % while<br />

specific power inputs, which are both size and performance<br />

dependent, have been reduced to values<br />

which were regarded as unattainable only a few<br />

years ago.<br />

2 SKRIVENI DETALJI<br />

2 SCREW COMPRESSOR PRACTICE<br />

[vedska kompanija SRM je pionir u <strong>razvoj</strong>u i primjeni<br />

vij~anih <strong>kompresora</strong>. I drugi proizvo|a}i, kao<br />

{to su Compair u Velikoj Britaniji, Atlas-Copco u<br />

Belgiji, Ingersol-Rand i Denver Gardner u Americi,<br />

GHH u Njema~koj, nalaze se neposredno do njih.<br />

York, Trane, Carrier i Bitzer su vode}e kompanije<br />

koje vij~ane kompresore koriste u rashladnoj tehnici<br />

i klimatizaciji. Japanski proizvo|a}i vij~anih <strong>kompresora</strong>,<br />

kao {to su Hitachi, Mycom i Kobe-Steel su<br />

tako|er vrlo dobro poznati. U zadnje vrijeme se na<br />

Srednjem i Dalekom Istoku pojavljuje veliki broj kompanija<br />

koje se se bave vij~anim kompresorima.<br />

Otvaranjem novih tr`i{ta, u Kini i Indiji, a i u drugim<br />

zemljama u <strong>razvoj</strong>u dolazi do otvaranja fabrika<br />

vij~anih <strong>kompresora</strong>. Iako se ne bavi proizvodnjom<br />

vij~anih <strong>kompresora</strong>, Britanska kompanija Holroyd je<br />

najve}i proizvo|a} rotora za vij~ane kompresore i<br />

vode}i konstruktor i proizvo|a} alata i ma{ina za<br />

proizvodnju rotora vij~anih <strong>kompresora</strong>.<br />

Iako popularnost vij~anog <strong>kompresora</strong> raste iz dana<br />

u dan, otvorena literatura je u toj oblasti jo{ uvijek<br />

ograni~ena. Tri klasi~ne knjige o vij~anim kompresorima<br />

su publikovane na ruskom jeziku u ranim<br />

{ezdesetim godinama. [40] 1960, daje potpuni pregled<br />

na~ina generisanja kru`nog, elipti~nog i cikloidnog<br />

profila i u detalje izvodi ruski asimetri~ni<br />

profil kasnije nazvan SKBK. Na~in generisanja profila<br />

opisan u toj knjizi bazira se na takozvanom metodu<br />

obvojnice. [2] 1961. ponavlja teoriju generacije<br />

profila time daju}i svoj doprinos oblasti profilisanja<br />

alata za proizvodnju rotora. [15] je knjiga sa generalnom<br />

kompresorskom tematikom, ali je dio o<br />

vij~anim kompresorima vrlo interesantan i informativan.<br />

Priru~nik [1] na ruskom jeziku iz 1977 godine<br />

daje potpuno reproducibilan prikaz asimetri~nog<br />

SRM profila 5 godina nakon {to je ovaj patentiran<br />

skupa sa Lysholmovim profilom. Dvije knjige su publikovane<br />

na njema~kom jeziku [35] 1979, prezentira<br />

metod generacije profila baziran na teoriji zup~anika<br />

Svenska Rotor Maskiner (SRM), a Swedish company,<br />

was the pioneer and are still leaders in the field<br />

of screw compressor design and development practice.<br />

Other companies, such as Compair in the U.K,<br />

Atlas-Copco in Belgium, Ingersoll-Rand and Denver<br />

Gardner in the USA and GHH in Germany are the<br />

main air compressor manufacturers. York, Trane and<br />

Carrier in the USA lead in refrigeration and air conditioning<br />

applications. Japanese screw compressor<br />

manufacturers, such as Hitachi, Mycom and Kobe-<br />

Steel are also well known. In recent years there<br />

have been a number of mergers and buy outs of<br />

smaller companies by these larger ones. New markets<br />

in China, India and other developing countries<br />

in the Middle and Far East have led to new screw<br />

compressor companies being founded there as well<br />

as factories being built there by the major manufacturers.<br />

Although they do not manufacture compressors,<br />

Holroyd, a British company is the world's<br />

largest screw rotor manufacturer. They are also<br />

world leaders in tool design and machine tool production<br />

for the manufacture of screw compressor<br />

rotors.<br />

Despite the rapid growth in screw compressor<br />

usage, public knowledge of the scientific basis of<br />

their design is still limited. Three classical screw<br />

compressor textbooks were published in Russia in<br />

the early nineteen sixties. [40] 1960 gives a full<br />

analysis on how to generate circular, elliptic and<br />

cycloidal rotor profiles as well as a russian asymmetric<br />

profile later named SKBK. The method of profile<br />

generation in this book was based on an envelope<br />

approach. [2], 1961 demonstrates this theory<br />

and, in addition, makes a contribution to the field<br />

of rotor tool profile generation. [15], 1964, is a more<br />

general textbook but its section on screw compressors<br />

is very interesting and informative. A Russian<br />

handbook, [1], published in 1977, gives a reproducible<br />

presentation of how to generate the SRM<br />

- 65 -


Ma{instvo 2(3), 63 - 78, (1999)<br />

N.Sto{i},...: SAVREMENI RAZVOJ KONSTRUKCIJE...<br />

kako bi rekonstruisao SRM asimetri~ni profil 7 godina<br />

nakon {to je patentiran, a [23] 1988, publikuje<br />

neke in`enjerske aspekte vij~anih <strong>kompresora</strong>.<br />

Mali je broj knjiga koje se bave vij~anim kompresorima<br />

objavljen na engleskom jeziku: [32] 1993, o<br />

industrijskim kompresorima i [3] 1994 o rotacionim<br />

kompresorima sa dva vratila. Me|utim, sve one su<br />

suvi{e generalne da bi bile razmatrane kao referentna<br />

literatura o vij~anim kompresorima.<br />

Nekoliko priru~nika o vij~anim kompresorima su<br />

objavili proizvo|a}i vij~anih <strong>kompresora</strong>, isto kao i<br />

odre|eni broj bro{ura koje daju korisne informacije,<br />

ali su one ili povjerljive ili su nedostupne i daleko<br />

od javnosti. Neke od njih, kao {to je, na primjer,<br />

SRM Data Book, ina~e dobro ~uvane i dostupne<br />

samo licensorima, ~esto su citirane kao literatura iz<br />

oblasti vij~anih <strong>kompresora</strong>.<br />

Me|utim, broj patenata koji su se pojavili u zadnjih<br />

trideset godina je neproporcionalno velik, mo`e se<br />

re~i da je patenata objavljeno na hiljade. Samo je<br />

SRM objavio 750 patenata. Svi se patenti bave<br />

razli~itim aspektima vij~anih <strong>kompresora</strong> a njihov<br />

najve}i broj profilima rotora. SRM je objavio patente<br />

[33] 1946 simetri~nog, [41] 1973 za asimetri~ni i [4]<br />

1982 za "D" profil. Oni su klasi~na referentna literatura<br />

koja prikazuje vje{tinu profilisanja rotora<br />

vij~anog <strong>kompresora</strong>. Jo{ neki patenti mogu se<br />

spomenuti kao primjer uspje{nog na~ina generacije<br />

profila: Atlas-Copco, Compair [19], Denver Gardner<br />

[9], Hitachi [20], Ingersol-Rand. U posljednjih je<br />

nekoliko godina jedan broj relativno malih kompanija<br />

objavio vi{e izuzetno uspje{nih patenata, kao {to<br />

su, na primjer, [24] i [8]. Potpuno novi pristup generaciji<br />

profila po kojem se polazne krive zadaju na<br />

zup~astom stapu objavljen je u [37] i u [50].<br />

Svi patentirani profili su generisani na osnovu neke<br />

valjane metode, ali su korisne informacije o<br />

kori{tenim metodama pa`ljivo uklonjene iz patenta ili<br />

iz prate}ih publikovanih radova. Informacije u patentima<br />

su ili sakrivene ili je iz njih gotovo nemogu}e<br />

direktno dobiti profil. Ova se ~injenica mo`e ilustrovati<br />

kroz tri primjera. U radu [29] 1978 objavljuje<br />

se izvodjenje simetri~nog kru`nog profila koji je<br />

patentiran 32 godine prije toga. U [35] se koristi<br />

klasi~nim uslovima sprezanja konjugovanih zup~anika<br />

da bi reprodukovao asimetri~ni SRM profil 9 godina<br />

nakon {to se patent pojavio. Kao kuriozitet mo`e se<br />

pomenuti da je jedan SRM-ov licencor, nakon 13<br />

godina <strong>proizvodnje</strong> <strong>kompresora</strong>, iskoristio sav<br />

akademski potencijal kako bi analiti~ki reprodukovao<br />

SRM "D" profil.<br />

asymmetric profile only 5 years after it was patented<br />

as well as the classical Lysholm profile. There<br />

are two German textbooks. [35], 1979, used a profile<br />

generation method based on gear theory to<br />

reconstruct the SRM asymmetric profile 7 years after<br />

it was patented. [23], 1988, published some engineering<br />

aspects of screw compressors.<br />

Only recently have any textbooks on screw compressors<br />

been published in English. [32], 1993, was<br />

on industrial compressors and [3], 1994, was on<br />

rotary twin shaft compressors. However, these are<br />

too general to be useful as detailed reference literature.<br />

A few compressor manufacturers' handbooks on<br />

screw compressors and a number of brochures give<br />

useful information, but they are either classified or<br />

of very limited accessibility. Some, like the SRM<br />

Data Book, although cited in screw compressor literature,<br />

are available only to SRM licencees.<br />

Literally thousands of patents have been awarded<br />

on screw compressors in the past thirty years and<br />

SRM alone has 750. They cover various aspects of<br />

screw compressor design but are mainly for rotor<br />

profiles. SRM patents [33], 1946, for symmetric,<br />

[41], 1973, for asymmetric and [4], 1982, for the<br />

"D" profiles are classical examples of state of the<br />

art screw compressor profile generation. Other<br />

succesful profiling patents are those of Atlas-Copco,<br />

Compair [19], Denver Gardner [9], Hitachi [20] and<br />

Ingersoll-Rand [6]. In recent years, several highly<br />

successful patents such as [24] and [8] have been<br />

granted to relatively small companies. A fresh<br />

approach to profile generation based on the use of<br />

a rack for the primary curves was published in [37]<br />

and [50].<br />

Although all patented profiles were generated by<br />

well defined procedures, so little of the methods on<br />

which they were based was published that it was<br />

very difficult to reproduce them. Thus details of how<br />

to derive the circular symmetric profile, [29], were<br />

not published until 1978, 32 years after it was<br />

patented. Similarly, a derivation of the SRM asymmetric<br />

profile based on classical gear conjugacy criteria,<br />

[35], was not published until 9 years after the<br />

patent appeared. It is even more interesting to note<br />

that one SRM licencee funded a university research<br />

programme to obtain an analytical derivation of the<br />

SRM "D" profile in 1995, after 13 years of manufacturing<br />

it.<br />

- 66 -


Ma{instvo 2(3), 63 - 78, (1999)<br />

N.Sto{i},..: SAVREMENI RAZVOJ KONSTRUKCIJE...<br />

Me|u patentima iz podru~ja vij~anih <strong>kompresora</strong> mogu<br />

se na}i i oni koji se bave drugim aspektima ove<br />

oblasti. Uglavnom su patentirane sve dobro poznate<br />

karakteristike vij~anih <strong>kompresora</strong>, kao {to je ubrizgavanje<br />

ulja, usisni i tla~ni otvori koji prate helikoidu<br />

rotora, kompenzacija aksijalnih sila, rastere~enje <strong>kompresora</strong>,<br />

usisni klip, ekonomajzerski otvor, uglavnom od<br />

strane SRM-a, ali i neke druge kompanije tako|er vrlo<br />

revnosno objavljuju patente. Izgleda da patentni<br />

stru~njaci za vij~ane kompresore imaju isti ili sli~an<br />

zna~aj kao i in`enjeri koji se bave njihovim <strong>razvoj</strong>em.<br />

Iako su ~lanci o vij~anim kompresorima rijetkost u<br />

~asopisima, oni su izuzetno korisna literatura o kompresorima<br />

mada ne odaju mogo detalja o profilisanju<br />

vij~anih <strong>kompresora</strong>. Tako Lysholmovi klasi~ni ~lanci<br />

[26] iz 1942 i [27] iz 1966 ne spomenju ni jedan detalj<br />

o profilisanju koje je autor koristio u svojoj uspje{noj<br />

praksi da bi pobolj{ao zaptivenost <strong>kompresora</strong>. ^lanci<br />

[45] i [46] se mogu vi{e smatrati izuzetkom nego praksom.<br />

U posljednje vrijeme je objavljivano ne{to vi{e<br />

materijala o vij~anim komopresorima u ~asopisima, {to<br />

je podstaknuto od strane nekoliko institucija, kao {to<br />

su International Institution of Refrigeration [15] i [48],<br />

IMechEng [44], [12], [13], [55] i [57] i ASME [16] i [51].<br />

Ovakvom aktivno{}u je u nekoliko zadnjih godina u<br />

~asopisima distribuirano vi{e informacija o vij~anim<br />

kompresorima nego {to je objavljeno tokom svih<br />

prethodnih godina zajedno. [52] je primjer ~lanka koji<br />

je objavljen u skladu sa najmodernijim trendovima vremenski<br />

dobro izabranog trenutka za publikovanje.<br />

Tri kompresorske konferencije su u potpunosti ili djelomi~no<br />

orjentisane na vij~ane kompresore: Purdue<br />

Compressor Technology Conference u Lafayette, SAD,<br />

IMechEng konferencija o industrijskim kompresorima u<br />

Londonu, Engleska i "VDI Schraubenkompressoren<br />

Tagung" u Dortmundu, Njema~ka. Usprkos obilju<br />

~lanaka o vij~anim kompresorima, samo mali broj<br />

~lanaka sa konferencija daje korisne informacije o profilisanju<br />

rotora vij~anog <strong>kompresora</strong> i o konstrukcijama<br />

<strong>kompresora</strong>. Svi ~lanci sa konferencija daju valjan<br />

prikaz obavljenih istra`ivanja ali skoro ni jedan od njih<br />

ne daje reproducibilne informacije koje se odnose na<br />

kori{tene metode profilisanja. ^lanci kakakteristi~ni za<br />

Purdue konferenciju su oni koji se vrlo ~esto citiraju,<br />

ali iz kojih ~italac mo`e saznati vrlo malo o generaciji<br />

profila, kao {to su: [11], [47] i [49], a tako|er i [42],<br />

[43], [53] i [56]. ^lanci [34], [58], [59] i [60] ukazuju na to<br />

da je teorija obvojnice naj~e{}e kori{tena metoda za<br />

izra~unavanje geometrijskih karakteristika rotora. U<br />

zbornik radova sa Dortmundske konferencije nalazi se<br />

odre|eni broj vrlo interesantnih ~lanaka o vij~anim<br />

kompresorima. [36] iz 1984 prezentira na~in generisanja<br />

profila na bazi zup~astog {tapa pri ~emu daje<br />

potpuno reproducibilan patent [37] baziran na klasi~noj<br />

Most of the well known characteristics of screw<br />

compressors, such as oil flooding, making the suction<br />

and discharge ports follow the rotor tip helices,<br />

axial force compensation, unloading, the slide valve<br />

and the economizer port, were also patented, mainly<br />

by SRM. However other companies were equally<br />

keen to file patents. It appears that, in the field<br />

of screw compressors, patent experts are as important<br />

as engineers.<br />

There are surprisingly few journal publications on<br />

screw compressors in the technical literature.<br />

Notable exceptions are Lysholm's [26-27] classical<br />

papers of 1942 and 1966. However neither of<br />

these described any of the profiling details which<br />

he developed successfully in order to reduce the<br />

blow-hole area. Other exceptions are [45] and<br />

[46]. In recent years, journal publication of screw<br />

compressor material has been encouraged by the<br />

International Institution of Refrigeration [15] and<br />

[48], the IMechE [44], [12], [13], [55] and [57] and<br />

ASME [16] and [51]. This led to more information<br />

on screw compressors in journals during<br />

recent years than in all previous years together.<br />

[52] is an example of the modern practice of more<br />

timely publishing.<br />

There are three compressor conferences which deal<br />

exclusively or partly with screw compressors. These<br />

are: the Purdue University compressor technology<br />

conferences in the U.S.A, the ImechE conferences<br />

on industrial compressors in England and the "VDI<br />

Schraubenkompressoren Tagung" in Germany.<br />

Despite the wealth of screw compressor papers<br />

which these contain, very few give useful information<br />

on rotor profiling procedures and compressor<br />

design.<br />

Typical Purdue papers, frequently cited, from which<br />

a reader will gain a little on profile generation are:<br />

[11], [47] and [49] , also [42], [43], [53], [56]. Refs<br />

[34], [58], [59], and [60] indicate that envelope theory<br />

was used to calculate some geometric features<br />

of their rotors.<br />

The "VDI Schraubenkompressoren Tagung" proceedings<br />

contain some interesting screw compressor<br />

papers. [36] 1984 presents a rack method<br />

of rotor profile generation, based on classical<br />

gearing theory, which is fully reproducible.<br />

Unfortunately, although soundly conceived, profiles<br />

produced by this method were not commercially<br />

successfull because of their poor tightness. [16]<br />

and [18] give some more details on profiling and<br />

manufacturing control. [21], [22] and [54] are typi-<br />

- 67 -


Ma{instvo 2(3), 63 - 78, (1999)<br />

N.Sto{i},...: SAVREMENI RAZVOJ KONSTRUKCIJE...<br />

teoriji zup~anika. Me|utim, na`alost, na prikazani na~in<br />

dobiveni profil, iako baziran na odli~nim osnovama<br />

nema velik komercijalni zna~aj zbog vrlo slabog zaptivanja.<br />

[16] i [18] daju ne{to vi{e detalja o profilisanju<br />

i kontroli <strong>proizvodnje</strong>. [21], [22] i [54] su tipi~ni primjeri<br />

uspje{nog akademskog istra`ivanja primjenjenog na<br />

stvarno in`enjerstvo. [38] i [39] se mogu nazvati primjerom<br />

prakti~ne primjene preciznog in`enjerskog<br />

rada. Londonska kompresorska konferencija, iako ne<br />

tako u~estala, dala je nekoliko vrlo interesantnih ~lanaka<br />

kao {to je, na primjer [10].<br />

Mnoge referentne knjige o zup~anicima su korisna<br />

polazna osnova za profilisanje rotora vij~anog <strong>kompresora</strong>,<br />

ali je ve~ina od njih ograni~ena na klasi~e<br />

uslove sprezanja zup~anika. Kao primjer se mo`e<br />

ista}i klasi~na knjiga [7]. Knjiga [25] se mo`e smatrati<br />

izuzetkom od ovog pravila jer daje teoriju<br />

sprezanja zup~anika koja se direktno mo`e primijeniti<br />

i na profilisanje rotora vij~anog <strong>kompresora</strong>.<br />

3 SAVREMENI RAZVOJ VIJ^ANOG<br />

KOMPRESORA<br />

Efikasan rad vij~anog <strong>kompresora</strong> uglavnom zavisi<br />

od pravilne <strong>konstrukcije</strong> njegovih rotora. Dodatno se<br />

kao uslov za uspje{nu konstrukciju razli~itih vrsta<br />

<strong>kompresora</strong> postavlja i sposobnost da se radne<br />

karakteristike mogu precizno predvidjeti u slu~aju da<br />

se promijeni bilo koji parametar kao {to je na primjer<br />

zazor, oblik profila rotora, pozicija i koli~ina<br />

ubrizganog ulja ili nekog drugog fluida u radni prostor,<br />

pre~nik i proporcija rotora i brzina obrtanja.<br />

Danas, kad su zazori u kompresoru mali, unutra{nje<br />

curenje koje ima veliki uticaj na efikasnost sve vi{e<br />

zavisi od du`ine linije dodira rotora, tako da kao<br />

mogu}nost za pobolj{anje <strong>kompresora</strong> ostaje jo{<br />

samo bolje profilisanje rotora. Tako se posebna<br />

pa`nja posve}uje unapredjenju karakteristika rotora<br />

da se, {to je god vi{e mogu}e, pove}a unutra{nji<br />

protok <strong>kompresora</strong> a da se linija dodira izmedju<br />

rotora smanji, te da se istovremeno unutra{nje trenje<br />

usljed relativnog klizanja dodirnih povr{ina rotora<br />

u~ini {to je mogu}e manjim.<br />

Mada na prvi pogled izgleda da je u profilisanju rotora<br />

dosad u~injeno sve {to je bilo mogu}e, to je<br />

daleko od istine. U stvari, ima jo{ mnogo prostora za<br />

zna~ajna pobolj{anja. ^ini se da na~in profilisanja koji<br />

kao polaznu osnovu uzima zup~asti {tap, ima najvi{e<br />

izgleda da postigne najbolje rezultate jer se njime<br />

mogu dobiti ja~i i lak{i rotori sa ve}om dobavom i<br />

manjim kontaktnim naponima. Ovo posljednje<br />

omogu}ava da se u radni prostor kompreora ubrizgava<br />

fluid ni`e viskoznosti.<br />

Kori{tenjem metoda vi{eparametarske optimizacije<br />

dobivaju se sve bolje oblikovani otvori na ku~i{tu<br />

vij~anog <strong>kompresora</strong>. Time se smanjuju gubici na<br />

cal examples of successful university research<br />

applied to solve real engineering problems. [38]<br />

and [39] may be regarded as examples of fine<br />

engineering work.<br />

Although relatively infrequent, the London compressor<br />

conferences included some interesting papers,<br />

such as [10].<br />

Many reference textbooks on gears give a useful<br />

background to screw rotor profiling. However all of<br />

them are limited to the classical gear conjugate<br />

action condition. One example of this is [7]. [25] is<br />

an exception to this practice which contains gear<br />

theory directly applicable to screw compressor profiling.<br />

3 RECENT DEVELOPMENTS<br />

The efficient operation of screw compressors is<br />

mainly dependent on proper rotor design. An additional<br />

and important requirement for the successful<br />

design of all types of compressor is the ability to<br />

predict accurately the effects on performance of<br />

the change in any design parameter such as clearance,<br />

rotor profile shape, oil or fluid injection position<br />

and rate, rotor diameter and proportions and<br />

speed.<br />

Now that tight clearances are achievable, internal<br />

compressor leakage rates become small. Hence, further<br />

improvements are only possible by the introduction<br />

of more refined design principles. The main<br />

requirement is to improve the rotor profiles so that<br />

the internal flow area through the compressor is maximised<br />

while the leakage path is minimised and internal<br />

friction due to relative motion between the contacting<br />

rotor surfaces is made as small as possible.<br />

Although rotor profiling procedures may appear to be<br />

fully defined, substantial improvements are still possible.<br />

The most promising approach for this seems<br />

to be through rack profile generation which gives<br />

stronger but lighter rotors with higher throughput and<br />

lower contact stress. The latter enables fluids with<br />

lower viscosity than oil to be used for lubrication.<br />

Rotor housings with better shaped ports can be<br />

designed using multivariable optimization techniques.<br />

Flow losses may thereby be reduced permitting<br />

higher rotor speeds and hence more effective compressors.<br />

- 68 -


Ma{instvo 2(3), 63 - 78, (1999)<br />

N.Sto{i},..: SAVREMENI RAZVOJ KONSTRUKCIJE...<br />

usisu i na izlazu {to omogu}ava pove}anje broja<br />

obrtaja <strong>kompresora</strong>, a time se direktno pove~ava i<br />

njegova efektivnost.<br />

Zna~ajni uspjesi su u nekoliko zadnjih godina postignuti<br />

i u <strong>razvoj</strong>u le`ajeva za kompresore, ~ime je omogu}eno<br />

podmazivanje <strong>kompresora</strong> fluidom viskoznosti<br />

manje nego kod obi~no kori{tenih ulja. Zaptiva~i su,<br />

takodjer, mnogo efikasniji nego ranije. Sve ovo je dalo<br />

dobru osnovu za efikasniji rad <strong>kompresora</strong>.<br />

3.1 Profili rotora<br />

Naj~e{}e kori{ten metod generacije profila rotora<br />

vij~anog <strong>kompresora</strong> je da se defini{e primarni profil<br />

na jednom od rotora a da se nakon toga tra`e<br />

odgovaraju}e krive na drugom rotoru primjenom<br />

razli~itih uslova sprezanja. Na osnovnom rotoru je<br />

mogu}e definisati bilo koju krivu liniju ali je tradicionalno<br />

naj~e{}e kori{tena kriva upravo kru`nica.<br />

Bilo koja kru`nica sa centrom na podionom krugu<br />

generisa}e sli~nu kru`nicu na drugom rotoru. Ista<br />

situacija se dobije ako je centar kru`nice u osi rotora.<br />

Kru`nice sa centrom van podionog kruga na isti<br />

na~in kao i ostale krive: elipsa, parabola ili hiperbola<br />

proizve{}e na drugom rotoru neku generisanu<br />

krivu, koja se naziva trohoida. Sli~no tome, ta~ka<br />

koja je fiksirana na jednom rotoru generisa}e epi- ili<br />

hipocikloidu na drugom rotoru. Sva vje{tina profilisanja<br />

rotora se decenijama svodila na pravilan izbor<br />

primarnih krivih na jednom rotoru koje }e omogu}iti<br />

izvo|enje odgovaraju}eg profila na drugom rotoru.<br />

Kru`ni simetri~ni profil se sastoji samo od kru`nica,<br />

dok se Lysholmov profil, osim od kru`nica postavljenih<br />

u centar podionog kruga, sastoji od sistema<br />

cikloida na strani visokog pritiska ~ime je dobiven<br />

prvi asimetri~ni profil rotora vij~anog <strong>kompresora</strong>. Za<br />

asimetri~ni SRM profil je prvi put iskori{tena ekscentri~na<br />

kru`nica na strani niskog pritiska na<br />

vo|enom rotoru dok je na SKBK profilu isto ura|eno<br />

na vode}em rotoru. U oba slu~aja su izvedene krive<br />

analiti~ki definisane kao epi- ili hipocikloide. SRM<br />

"D" profil se sastoji samo od kru`nica od kojih su<br />

neke sasvim male, ali su sve ekscentri~no postavljene<br />

na vode}em ili vo|enom rotoru. Svi patenti koji<br />

slijede nakon toga baziraju se na definisanju jednog<br />

od rotora i izvo|enju drugog, i svi su, vjerovatno,<br />

bazirani na klasi~nom sprezanju zup~anika ili na<br />

nekim sli~nim uslovima. Tek u posljednje vrijeme<br />

kru`nice su postepeno zamjenjuju nekim drugim<br />

krivuljama kao {to su: elipsa kod FuSheng profila<br />

[24], parabola na Compair [19] i Hitachi profilima i<br />

hiperbola na "hyper" profilu [8]. ^ini se da je hiperbola<br />

na posljednjem profilu odgovaraju}a zamjena za<br />

ostale krive, jer daje najbolji odnos dobave rotora i<br />

du`ine linije zaptivanja.<br />

3.1 Rotor Profiles<br />

The normal procedure used to generate rotor profiles<br />

is to create primary profile curves on one rotor<br />

and, by use of an appropriate conjugate criterion,<br />

a corresponding secondary profile curve on the<br />

other. Any curve can be used as the primary one,<br />

but traditionally a circle is the most comon. All circles<br />

with their centres on the pitch circle generate<br />

a similar circle on the other rotor. This is also true<br />

if the circle centres are at the rotor axes. Circles<br />

with centres not on the pitch circle and other<br />

curves, like ellipses, parabolae and hyperbolae<br />

require more elaborate curves to be generated, on<br />

the other rotor which are described as trochoids.<br />

Similarly, points located on one rotor will cut epior<br />

hypocycloids on the other rotor. For decades,<br />

the skill required to produce rotors was limited to<br />

the ability to choose a primary arc which would<br />

permit the derivation of an appropriate secondary<br />

profile.<br />

The symmetric circular profile consist of circles only.<br />

Apart from the use of pitch circle centred circles,<br />

Lysholm introduced a set of cycloids on the high<br />

pressure side to form the first asymmetric screw<br />

rotor profile. Later the SKBK profile used the same<br />

curves. The SRM asymmetric profile employs an<br />

eccentric circle on the low pressure side of the<br />

gate rotor. In all these cases the curves evolved<br />

analytically from them were epi- or hypocycloids.<br />

The SRM "D" profile consists exclusively of circles,<br />

almost all of them eccentrically positioned on the<br />

main or gate rotor. All patents which followed, specify<br />

primary curves on one rotor and secondary generated<br />

curves on the other rotor. All are probably<br />

derived from classical gear contact theory or a similar<br />

alternative criterion. More recently, circles have<br />

gradually been replaced by other curves such as<br />

ellipsae in the FuSheng profiles [24], parabolae in<br />

the Compair [19] and Hitachi [20] profiles and hyperbolae<br />

in the 'Hyper' [8] profile. Replacing the circle<br />

by a hyperbola in the latest profile, seems to give<br />

the best ratio of rotor displacement to sealing line<br />

length.<br />

Another method of rotor profile generation is to<br />

consider imaginary, or 'nonphysical' rotors. Since<br />

all gearing equations are independent of the coordinate<br />

system in which they are expressed, it is<br />

possible to define primary arcs as given curves<br />

using a coordinate system which is independent of<br />

both rotors. By this means, in many cases the<br />

defining equations may be simplified. Also, the<br />

- 69 -


Ma{instvo 2(3), 63 - 78, (1999)<br />

N.Sto{i},...: SAVREMENI RAZVOJ KONSTRUKCIJE...<br />

Drugi na~in na koji je mogu}e definisati profil rotora<br />

je da se osnovne krive izaberu na nekom<br />

zami{ljenom, "nefizikalnom" rotoru. Po{to su sve<br />

jedna~ine zup~anika neovisne od koordinatnog sistema<br />

u kojem su izra`ene, primarni luk je mogu}e<br />

definisati i u nekom koordinatnom sistemu koji je ne<br />

ovisi ni o jednom rotoru. U ve~ini slu~ajeva se na<br />

taj na~in jedna~ine mogu pojednostaviti. Upotreba<br />

jednog koordinatnog sistema za definisanje svih krivih<br />

na rotoru tako|er mo`e pojednostaviti proces<br />

profilisanja. Tako se polazni profil u cijelosti mo`e<br />

definisati u koordinatnom sistemu koji ne zavisi od<br />

rotora, {to vrijedi i za rotor sa beskona~nim<br />

pre~nikom koji se naziva zup~asti {tap. Prvi ikada<br />

publikovani patent koji prikazuje ovakvu generaciji<br />

profila rotora [30] objavljen 1977, iako nije prakti~no<br />

primjenljiv, vje{to koristi pomenutu teoriju. [37] i kasnije<br />

[50] prvi daju dobru osnovu za generaciju profila<br />

vij~anog <strong>kompresora</strong>.<br />

Efikasan vij~ani kompresor mora imati rotore ~iji profil<br />

osigurava veliki proto~ni presjek, kratku liniju zaptivanja<br />

i mali nezaptiveni prostor na vrhu rotora. To<br />

zna~i, da je za ve}i proto~ni presjek i broj obrtaja<br />

<strong>kompresora</strong>, i dobava <strong>kompresora</strong> ve}a. Kra}e linije<br />

dodira i manji nezaptiveni prostor smanji}e unutra{nje<br />

curenje. Ve}a dobava i manje curenje }e pove}ati<br />

volumetrijski stepen iskori{tenja <strong>kompresora</strong>, koji je<br />

defini{an kao dobava podijeljena zbirom ukupnog<br />

protoka i curenja. Time se dalje pove}ava adijabatski<br />

stepen iskori{tenja, jer se za kompresiju gasa koji<br />

recirkuli{e unutar <strong>kompresora</strong> tro{i manje snage.<br />

Izbor odnosa veli~ine nezaptivenog prostora i broja<br />

radnih zapremina zavisi}e od namjene <strong>kompresora</strong>.<br />

Kako je za manje razlike pritisaka curenje proporcionalno<br />

manje, dobici postignuti velikim proto~nim<br />

presjekom mogu poni{titi ili smanjiti gubitke nastale<br />

usljed velikog nezaptivenog prostora. Na sli~an na~in<br />

se mo`e dobiti optimalni broj zuba vij~anog <strong>kompresora</strong>,<br />

po{to manji broj zuba daje ve}i proto~ni<br />

presjek ali i rezultira u ve}oj razlici pritiska izme|u<br />

radnih prostora.<br />

Sa smanjenjem zazora izmedju rotora, bez obzira na<br />

podmazivanje <strong>kompresora</strong> uljem, vjerovatno}a direktnog<br />

dodira me|u rotorima sa pove}ava. Dodir<br />

me|u rotorima dovodi do pove}anja kontaktnih sila i<br />

optere}enja rotora {to dalje uzrokuje deformaciju<br />

vo|enog rotora. Zbog toga, njegov profil mora biti<br />

konstruisan tako da se rizik od pucanja ili plasti~ne<br />

deformacije rotora smanji na najmanju mogu}u mjeru.<br />

Brzi <strong>razvoj</strong> metoda matematskog modeliranja i<br />

ra~unarske simulacije je, u posljednje vrijeme, podstakao<br />

i olak{ao istra`ivanje novih profila rotora.<br />

use of one coordinate system to define all the<br />

curves, simplifies the design process. Typically, the<br />

template is specified in a rotor independent coordinate<br />

system. This is valid for a rotor of infinite<br />

radius, which is a rack. From this, a secondary arc<br />

on some of the rotors is obtained by a procedure,<br />

which is called 'rack generation'. The first patent<br />

on rack generation published, [30], is based on<br />

this theory but lacks practicality. [37] and, more<br />

recently, [50] give a good basis for rotor profile<br />

generation.<br />

For a screw compressor to be efficient, the rotor<br />

profile must form a large flow cross section area, a<br />

short sealing line and a small blow-hole area. The<br />

larger the cross section area, the higher the flow<br />

rate for the same rotor sizes and speeds. Shorter<br />

sealing lines and a smaller blow-hole reduce leakages.<br />

Higher flow and smaller leakage rates both<br />

increase the compressor volumetric efficiency, which<br />

is the rate of flow delivered as a fraction of the<br />

sum of the flow plus leakages. This in turn increases<br />

the adiabatic efficiency because less power is<br />

wasted in the compression of gas which is recirculated<br />

internally.<br />

The optimum choice between blow hole and flow<br />

areas depends on the compressor duty since, for<br />

low pressure differences, the leakage rate will be<br />

relatively small and hence the gains achieved by<br />

a large cross section area may outweigh the losses<br />

associated with a larger blow-hole. Similar considerations<br />

determine the best choice for the number<br />

of lobes since fewer lobes imply greater flow<br />

area but increased pressure difference between<br />

them.<br />

As precise manufacture permits rotor clearances to<br />

be reduced, despite oil flooding, the likeliehood of<br />

direct rotor contact is increased. Hard rotor contact<br />

leads to deformation of the gate rotor, increased<br />

contact forces and ultimately rotor seizure. Hence<br />

the profile should be designed so that the risk of<br />

seizure is minimised.<br />

The search for new profiles has been both stimulated<br />

and facilitated by recent advances in mathematical<br />

modelling and computer simulation. These<br />

analytical methods may be combined to form a<br />

powerful tool for process analysis and optimisation<br />

and thereby eliminate the earlier approach of intuitive<br />

changes, verified by tedious trial and error testing.<br />

As a result, this approach to the optimum<br />

design of screw rotor lobe profiles has substantial-<br />

- 70 -


Ma{instvo 2(3), 63 - 78, (1999)<br />

N.Sto{i},..: SAVREMENI RAZVOJ KONSTRUKCIJE...<br />

Analiti~ke metode je mogu}e kombinovati na taj<br />

na~in da se dobije mo}no sredstvo za analizu i optimizaciju<br />

procesa vij~anog <strong>kompresora</strong>, ~ime se u<br />

potpunosti mo`e zaobi}i ranije kori{tena metoda intuitivne<br />

<strong>konstrukcije</strong> zasnovana na mukotrpnom metodu<br />

poku{aja i pogre{ke. Kao rezultat, ovaj pristup optimalnom<br />

konstruisanju rotora vij~anog <strong>kompresora</strong><br />

zna~ajno je evoluirao u nekoliko zadnjih godina sa<br />

velikim {ansama da se u narednim godinama<br />

postignu dalja pobolj{anja karakteristika ma{ine.<br />

Me|utim, i geometrija rotora, isto kao i radni proces<br />

u vij~anom kompresoru su toliko kompleksni da je<br />

potrebno uvesti niz aproksimacija kako bi modeliranje<br />

bilo ostvarivo. Kao posljedica, u otvorenoj literaturi<br />

se mogu na}i matematski modeli i numeri~ki<br />

kodovi sa vrlo {arolikim pristupom problemu i sa<br />

razli~itim matematskim nivoima modeliranja fenomena<br />

u vij~anom kompresoru. Nedostatak uporedivih<br />

eksperimentalnih rezultata jo{ uvijek onemogu}ava<br />

verifikaciju i svestranu ocjenu razli~itih koncepcija<br />

modeliranja. Uprkos tome, matematsko modeliranje i<br />

simulacija ra~unarom sve vi{e dobivaju na popularnosti<br />

i sve se vi{e koriste za unapre|enje konstruktivnih<br />

karakteristika vij~anog <strong>kompresora</strong>.<br />

Na slici 1. prikazan je niz rotora vij~anog <strong>kompresora</strong><br />

tako da se oni mogu me|usobno usporediti.<br />

Profili su ozna~eni brojevima u zagradama, koji u<br />

popisu literature ukazuju na patente za te rotore.<br />

U prvu prikazanu grupu spadaju rotori sa 4 zuba na<br />

vode}em i 6 zubi na vo|enom rotoru. Ovakva konfiguracija<br />

rotora je kori{tena skoro za svaku aplikaciju.<br />

Asimetri~ni SRM profil [41], koji se mo`e smatrati<br />

do sada najuspje{nijim profilom rotora vij~anog<br />

<strong>kompresora</strong>, nalazi se na po~etku. Slijede}i je SRM<br />

"D" profil [4]. Na kraju je prikazan profil generisan<br />

na osnovu zup~astog {tapa - rack generisan profil<br />

[50]. Izbor i raspored osnovnih krivih na zup~astom<br />

{tapu pomo}u kojih su generisani ovi rotori daje<br />

ve}i popre~ni presjek me|uzublja i ja~i zub vo|enog<br />

rotora u odnosu bilo koji drugi poznati profil rotora<br />

vij~anog <strong>kompresora</strong> ove konfiguracije.<br />

Konfiguracija vij~anog <strong>kompresora</strong> sa 5 zubi vode}eg<br />

i 6 zubi vo|enog rotora postaje sve popularnija, jer<br />

se njome postize kompromis izmedju velike dobave i<br />

velikog tla~nog otvora sa skoro nenadma{nim strujnim<br />

karakteristikama za manji pre~nik rotora.<br />

Kompresori sa ovakvom konfiguracijom rotora su jednako<br />

pogodni za kompresiju zraka kao i za rashladnu<br />

tehniku ili za klimatizaciju. U nastavku je, radi<br />

upore|enja, data ve}a skupina ovih rotora koja<br />

po~inje sa SRM "D" profilom [4], nakon toga slijede<br />

"Sigma" profil [5], FuSheng [24] i "Hyper" profil [8].<br />

Svi ovi profili su 'rotor generisani' profili a osnovna<br />

ly evolved over the past few years and is likely to<br />

lead to further improvements in machine performance<br />

in the near future.<br />

A comparison of several pairs of screw compressor<br />

rotors is shown in Fig. 1. Each pair is labeled by<br />

a number in brackets which denotes its patent.<br />

The first group gives rotors with 4 lobes on the<br />

main and 6 lobes on the gate rotor. This rotor configuration<br />

is the most universally accepted for almost<br />

any application. The SRM asymmetric profile [41],<br />

which historically was the most successful, is on the<br />

top. The next one is the SRM "D" profile [4]. The<br />

Ingersol-Rand profile, [6], shows how attempts were<br />

made to produce more displacement from the same<br />

compresor size. Finally, rack generated rotors [50]<br />

are presented.<br />

The second group shown are 4/5 rotors which is<br />

becoming a very popular combination for oil-flooded<br />

air compressors. The first pair, SRM "D" [4]<br />

rotors are applied in "Tamrotor" compressors which<br />

are regarded as best compressors in their class.<br />

They are followed by "Cyclon" [19] rotors. The last<br />

in this group are 'rack-generated' rotors [50]. The<br />

selection and distribution of primary curves on the<br />

rack which was used to create these rotors, gives<br />

a larger cross section area with stronger gate rotor<br />

lobes than any other known screw compressor<br />

rotor pair.<br />

The largest group of rotors presented has a 5/6<br />

configuration. This is becoming the most popular<br />

rotor combination because it permits a good compromise<br />

between large displacement and large discharge<br />

ports with favourable load characteristics in<br />

small rotor sizes. These rotors are equally successful<br />

for air compression and refrigeration and air-conditioning<br />

applications. The group starts with the SRM<br />

"D" profile, [4], followed by the "Sigma", [5],<br />

FuSheng, [24] and "Hyper" [8] profiles. All are 'rotorgenerated'<br />

profiles and the main diference between<br />

them is in the leading lobe which is mainly an<br />

eccentric circle followed by a line, ellipse and<br />

hyperbola respectively. The hyperbola appeared to<br />

be the best possible geometrical solution for that<br />

purpose. However at the end of the group are two<br />

rack-generated profiles, [37] and [50]. The last of<br />

these shows the best delivery for its size. it also<br />

has two additional features. Firstly, the rotors retain<br />

a seal over the entire contact length while maintaining<br />

a small blow-hole, which was not the case<br />

in [37]. Secondly, two contact bands in the prox-<br />

- 71 -


Ma{instvo 2(3), 63 - 78, (1999)<br />

N.Sto{i},...: SAVREMENI RAZVOJ KONSTRUKCIJE...<br />

Slika 1. Upore|enje nekih rotora vij~anih <strong>kompresora</strong><br />

Figure 1. A comparison of several pairs of screw compresor rotors<br />

- 72 -


Ma{instvo 2(3), 63 - 78, (1999)<br />

N.Sto{i},..: SAVREMENI RAZVOJ KONSTRUKCIJE...<br />

razlika izme|u njih se uo~ava na vode}em rotoru koji<br />

po~inje sa ekscentri~nom kru`nicom a nastavlja se<br />

linijom, elipsom ili hiperbolom respektivno. Pokazuje<br />

se da je hiperbola najbolje mogu}e primjenjivo<br />

geometrijsko rje{enje. Na kraju grupe se nalaze dva<br />

'rack generisana' profila [37] i [50]. Mo`e se vidjeti da<br />

posljednji profil ima najve}u dobavu. Tako|er, mogu<br />

se uo~iti jo{ dvije osobine koje karakteri{u te rotore<br />

i favorizuju ih u odnosu na ostale. Postignuto je zaptivanje<br />

du` cijele linije dodira i time manji nezaptiveni<br />

prostor, {to nije slu~aj kod profila [37]. Dodatno, kontaktne<br />

povr{ine sa jedne i druge strane profila u blizini<br />

podionog kruga su ravne linije na zup~astom {tapu<br />

tako da formiraju evolventu na rotorima. Zbog toga<br />

{to je relativno kretanje jednog rotora u odnosu na<br />

drugi gotovo ~isto kotrljanje, to je najbolji dodir {to<br />

ga je mogu}e posti}i izme|u rotora. Rack generisani<br />

rotori konfiguracije 5/6 su prikazani na slici 2.<br />

Posljednja grupa rotora sa 4 i 5 rotora u vode}em<br />

i vo|enom vijku respektivno, postaje sve vi{e popularna<br />

za uljnopodmazivane zra~ne kompresore. Prvi<br />

par rotora su "Cyclon" rotori [19]. Iza njih su SRM<br />

"D" rotori [4] i na kraju grupe rotori generisani<br />

pomo}u zup~astog {tapa [50].<br />

3.2 Konstrukcija <strong>kompresora</strong><br />

Iako je moderan profil rotora neophodan uslov da<br />

bi vij~ani kompresor bio efikasan, sve ostale komponente<br />

tako|er moraju biti konstruisane tako da se<br />

na najbolji na~in iskoristi potencijal rotora i ostvare<br />

najbolje mogu}e performanse <strong>kompresora</strong>. Zbog<br />

toga je vrlo va`no pravilno odabrati zazor izme|u<br />

ku}i{ta i rotora, posebno na strani visokog pritiska.<br />

To, povratno, zahtijeva ili skuplje le`ajeve sa manjim<br />

zazorima ili jeftinije le`ajeve kod kojih su prednaprezanjem<br />

zazori svedeni na prihvatljivu veli~inu.<br />

Vij~ani kompresor je op}enito, a slu~aju uljnopodmazivanog<br />

<strong>kompresora</strong>, kada radi sa velikom razlikom<br />

pritisaka, posebno optere}en aksijalnim i radijalnim<br />

silama koje se na ku}i{te prenose preko<br />

le`ajeva. Za vij~ane kompresore malog i srednjeg<br />

kapaciteta obi~no se koriste kotrljaju}i le`ajevi, koji<br />

u tom slu~aju moraju biti tako dobro odabrani da<br />

zadovolje sve zadane uslove rada. Obi~no se koriste<br />

dva le`aja na tla~noj strani vratila rotora kako bi se<br />

aksijalne i radijalne sile na ku}i{te prenijele odvojeno.<br />

Tako|er je bitno je da je me|uosno rastojanje<br />

djelimi~no odre|eno i veli~inom le`ajeva i njihovim<br />

unutra{njim zazorima.<br />

Kontaktne sile, koje su definisane obrtnim momentom<br />

koji se prenosi izme|u rotora, igraju klju~nu ulogu<br />

kod <strong>kompresora</strong> sa direktnim dodirom rotora. Ove su<br />

sile relativno male u slu~aju pogona preko vode}eg<br />

imity of the pitch circles are straight lines on the<br />

rack which form involutes on the rotors. Hence the<br />

relative motion between the rotors is close to pure<br />

rolling which is the best possible.<br />

3.2 Compressor Design<br />

Screw compressor design has gradually evolved and<br />

the trend is to get as small as possible a machine<br />

to meet the required performance. This means that<br />

rotor tip speeds are as high as possible within the<br />

limits imposed by efficiency requirements. Normal<br />

practice is to use rolling element bearings wherever<br />

possible because these permit smaller clearances<br />

than journal bearings. Similarly, the ports are made<br />

as large as possible to minimize suction and discharge<br />

gas speeds. These features lead to great<br />

similarity in all designs for any specified application.<br />

Although advanced rotor profiles are a necessary<br />

condition for a screw compressor to be efficient, all<br />

other components must be designed to minimise<br />

losses if maximum improvements are to be<br />

achieved. Thus the rotor to housing clearances must<br />

be properly selected, especially at the high pressure<br />

end. This in turn requires either expensive<br />

bearings with small clearances or cheaper bearings<br />

with their clearances reduced to an acceptable<br />

value by preloading.<br />

A screw compressor, especially of the oil flooded<br />

type, operates with high pressure differences.<br />

These create large axial and radial bearing forces.<br />

Rolling element bearings are normally chosen for<br />

small and medium screw compressors and these<br />

must be carefully selected to obtain a satisfactory<br />

design since, inter alia, the distance between the<br />

rotor centre lines is in part determined by them. It<br />

must be added that recent advances in the development<br />

of advanced low friction rolling element<br />

bearings greatly contributes to this choice [31].<br />

Usually two bearings are fitted at the high pressure<br />

end of the rotor shafts in order to absorb the radial<br />

and axial loads separately.<br />

The contact force between the rotors is determined<br />

by the torque transferred between them and is very<br />

significant when they make direct contact. It is relatively<br />

small when the compressor drive is through<br />

the main rotor. However, when the drive is through<br />

the gate rotor, the contact force is substantially larger<br />

and, as far as possible, this arrangement should<br />

be avoided.<br />

- 73 -


Ma{instvo 2(3), 63 - 78, (1999)<br />

N.Sto{i},...: SAVREMENI RAZVOJ KONSTRUKCIJE...<br />

Slika 2. Rack generisani rotori vij~anog <strong>kompresora</strong> konfiguracije 5/6<br />

Figure 2. A pair of 5/6 rack generated screw compressor rotors<br />

rotora. Pogon preko vo|enog rotora uzrokuje<br />

zna~ajno pove}anje kontaktnih sila tako da se ovaj<br />

slu~aj mora isklju~iti iz bilo kakvog ozbiljnijeg razmatranja.<br />

Ulje koje se u vij~anom kompresoru ubrizgava izme|u<br />

rotora za podmazivanje, hladjenje i zaptivanje, koristi<br />

se i za podmazivanje le`ajeva. Pri tom je vrlo va`no<br />

uspostaviti odvojen sistem snabdijevanja le`ajeva<br />

uljem i sistem za evakuaciju ulja iz le`ajeva da bi se<br />

gubici usljed trenja smanjili. Ulje se u radni prostor<br />

<strong>kompresora</strong> ubrizgava na onom mjestu na kojem se,<br />

prema termodinamskim prora~unima, temperature<br />

radnog fluida i ulja podudaraju. Polo`aj otvora za<br />

ubrizgavanje ulja je definisan uglom na helikoidi rotora<br />

ali se obi~no postavlja tako da ulje tangencijalno<br />

ulazi u radni prostor kako bi se iskoristilo {to je god<br />

mogu}e vi{e njegove kineti~ke energije.<br />

Kompresor moderne <strong>konstrukcije</strong> treba imati male<br />

gubitke na usisu i potisu. Zato se usisni otvor unutar<br />

ku}i{ta <strong>kompresora</strong> postavlja tako da usisani gas na<br />

svom putu {to manje mijenja smijer kretanja te da<br />

bi imao malu brzinu strujanja. To se posti`e<br />

pove}anjem zapremine usisnog otvora. Veli~ina i<br />

oblik tla~nog otvora definisani su ugra|enim odnosom<br />

pritiska koji }e dati optimalne termodinamske<br />

performanse <strong>kompresora</strong>. Nakon toga se popre~ni<br />

presjek izlaznog toka dodatno pove}ava da bi se<br />

smanjila brzina toka na izlazu i time postigla minimizacija<br />

gubitaka u unutra{njem i izlaznom toku.<br />

Ku}i{te treba da bude pa`ljivo dimenzionisano kako<br />

bi se smanjila te`ina <strong>kompresora</strong> a jedan od na~ina<br />

da se to postigne je ugradnja pre~ke u usisnom<br />

otvoru u cilju pove}anja ~vrsto}a <strong>kompresora</strong> na<br />

vi{im pritiscima.<br />

Vij~ani kompresor je vrlo jednostavna toplotna ma{ina<br />

The oil which is injected into the compressor for<br />

flooding is also used for bearing lubrication but, to<br />

minimise friction losses, the bearing feed and return<br />

system is separate. The position in the compressor<br />

chamber where the oil is injected is set at the<br />

point where thermodynamic calculations show the<br />

gas and oil inlet temperatures to coincide. It is<br />

defined on the rotor helix with the injection hole<br />

located so that the oil enters tangentially in line with<br />

the gate rotor tip in order to recover as much as<br />

possible of the oil kinetic energy.<br />

To minimise flow losses in the suction and discharge<br />

ports, the following features must be included.<br />

The suction port should be positioned in the<br />

housing to let the gas enter with the fewest possible<br />

bends and the gas approach velocity kept low<br />

by making the flow area as large as possible. The<br />

discharge port size is first determined by estimating<br />

the built-in-volume ratio required for optimum thermodynamic<br />

performance. It is then increased in<br />

order to reduce the exit gas velocity and hence<br />

obtain the minimum combination of internal and discharge<br />

flow losses.<br />

The casing should be carefully dimensioned to minimize<br />

its weight and contain reinforcing bars across<br />

the suction port to improve its rigidity at higher<br />

pressures.<br />

- 74 -


Ma{instvo 2(3), 63 - 78, (1999)<br />

N.Sto{i},..: SAVREMENI RAZVOJ KONSTRUKCIJE...<br />

sa samo nekoliko pokretnih dijelova: dva rotora i<br />

obi~no ~etiri ili {est le`ajeva. Tokom njegovog <strong>razvoj</strong>a<br />

do{lo se do vrlo tipi~nog oblika po ~emu postaje<br />

vrlo prepoznatljiv. Tendencija je da se dobije {to<br />

je god mogu}e manja ma{ina koja }e jo{ uvijek dati<br />

zadovoljavaju}e performanse. To zna~i da se brzina<br />

vrha zuba mora {to je mogu}e vi{e pove}ati, ali je<br />

treba jo{ uvijek dr`ati u granicama koje daju prihvatljive<br />

mehani~ke gubitke. Upotreba kotrljaju~ih<br />

umjesto kliznih le`ajeva skoro da se mo`e postaviti<br />

kao pravilo koje treba uvijek po{tovati, jer su zazori<br />

na kotrljaju~im le`ajevima, a i gubici zna~ajno manji.<br />

Otvori za komunikaciju radnog fluida moraju biti {to<br />

je god mogu}e otvoreniji da bi se smanjile brzine<br />

gasa na usisu i izlazu. Sve ovo dovodi do vrlo sli~nih<br />

konstrukcija <strong>kompresora</strong> tako da su izuzetci vrlo rijetki<br />

i skoro zanemarivi. Primjer savremene <strong>konstrukcije</strong><br />

uljnopodmazivanog vij~anog <strong>kompresora</strong> sa reduktorom<br />

dat je na slici 3.<br />

Valja tako|er napomenuti da je u zadnje vrijeme<br />

dosta uradjeno na <strong>razvoj</strong>u kotrljaju~ih le`ajeva sa<br />

vrlo niskim trenjem [31], {to }e zna~ajno doprinijeti<br />

pobolj{anju performansi <strong>kompresora</strong>.<br />

Na slici 4. prikazuju se svi vitalni dijelovi modernog<br />

uljnopodmazivanog vij~anog <strong>kompresora</strong>.<br />

4. CONCLUSIONS<br />

At the onset of the millenium, the twin screw compressor<br />

has become a mature product. As a result<br />

of orchestrated efforts by a large number of companies,<br />

driven by market forces, it has become a<br />

compact, efficient and reliable machine. Every detail<br />

counts today. Even small advances in any feature<br />

will give distinctive improvements which may be<br />

used to gain commercial advantage. Hence,<br />

despite its now established role in industry, efforts<br />

continue to make advances in every aspect of its<br />

design, manufacture and mode of operation.<br />

Although improvements so gained are most likely to<br />

be evolutionary, there is still scope for revolutionary<br />

methods or procedures to achieve a better product.<br />

The most promising development appears to be<br />

rack profile generation to produce stronger but<br />

lighter rotors with higher displacement<br />

and lower contact stress.<br />

4 ZAKLJU^AK<br />

Vij~ani kompresor je proizvod koji je dorastao<br />

trenutku smjene vijekova. Pa`ljivo usmjereni napori<br />

velikog broja kompanija dirigovani zahtjevima tr`i{ta<br />

rezultirali su kompaktnom i efikasnom vij~anom<br />

ma{inom. U <strong>razvoj</strong>u vij~anih <strong>kompresora</strong> do{lo se u<br />

fazu kad se unapre|enja razmatraju do najsitnijih<br />

detalja. Male razlike dovode do malih ali zna~ajnih<br />

pomaka koji ~ine individualne prednosti svakog od<br />

<strong>kompresora</strong>.<br />

Iako se ~ini da se samo kontinualnim <strong>razvoj</strong>em<br />

vij~ani kompresori mogu promijeniti na bolje, jo{ uvijek<br />

ima dosta mjesta za primjenu manje ili vi{e revolucionarnih<br />

metoda ili procedura koje }e rezultirati<br />

boljim proizvodom. ^ini se da je najperspektivniji<br />

metod generacije profila pomo}u zup~astog {tapa<br />

koji daje ja~e, ali i lak{e rotore sa ve}om dobavom<br />

i manjim kontaktnim naponima me|u rotorima.<br />

- 75 -


Ma{instvo 2(3), 63 - 78, (1999)<br />

N.Sto{i},...: SAVREMENI RAZVOJ KONSTRUKCIJE...<br />

Slika 3. Konstrukcija vij~anog <strong>kompresora</strong> sa reduktorom<br />

Figure 3. A screw compressor with a gearbox design<br />

Slika 4. Sastavni dijelovi modernog uljnopodmazivanog vij~anog <strong>kompresora</strong><br />

Figure 4. A modern oil floded screw compressor parts<br />

LITERATURA - REFERENCES<br />

[1] Amosov P.E et al, 1977: Vintovie kompresornie<br />

mashinii - Spravochnik (Screw Compression<br />

Machines - Handbook), Mashinstroienie, Leningrad<br />

[2] Andreev P.A, 1961: Vintovie kompressornie<br />

mashinii (Screw Compression Machines), SUDPROM<br />

Leninngrad<br />

[3] Arbon I.M, 1994: The Design and Application of<br />

Rotary Twin-shaft Compressors in the Oil and Gas<br />

Process Industry, MEP London<br />

[4] Astberg A, 1982: Patent GB 2092676B<br />

[5] Bammert K, 1979: Patent Application FRG<br />

2911415<br />

[6] Bowman J.L, 1983: US Patent 4,412,796<br />

[7] Buckingham E, 1963: Analytical Mechanics of<br />

Gears, Dover Publ, N.York<br />

[8] Chia-Hsing C, 1995: US Patent 5,454,701<br />

- 76 -


Ma{instvo 2(3), 63 - 78, (1999)<br />

N.Sto{i},..: SAVREMENI RAZVOJ KONSTRUKCIJE...<br />

[9] Edstrom S.E, 1974: US Patent 3,787,154<br />

[10] Edstrom S.E, 1989: Quality Classes for screw<br />

Compressor Rotors, Proc IMechE Conference<br />

Development in Industrial Compressors, 83<br />

[11] Edstrom S.E, 1992: A Modern Way to Good<br />

Screw Compressors, International Compressor<br />

Engineering Conference At Purdue, 18<br />

[12] Fleming J.S, Tang Y, 1994: The Analysis of<br />

Leakage in a Twin Screw Compressor and its<br />

Application to Performance Improvement, Proc<br />

IMechE, Journal of Process Mechanical Engineering,<br />

Vol 209, 125<br />

[13] Fleming J.S, Tang Y, Cook G, 1998: The Twin<br />

Helical Screw Compressor, Part 1: Development,<br />

Applications and Competetive Position, P. 2:A<br />

Mathematical Model of the Working process, Proc<br />

IMechE, Journal of Mechanical Engineering Science,<br />

Vol 212, p369<br />

[14] Fujiwara M, Osada Y, 1995: Performance<br />

Analysis of Oil Injected Screw Compressors and their<br />

Application, Int J Refrig Vol 18, 4<br />

[15] Golovintsov A. G et al, 1964: Rotatsionii kompresorii<br />

(Rotary Compressors), Mashinostroenie,<br />

Moscow<br />

[16] Hanjali} K, Sto{i} N, 1994: Application of mathematical<br />

modeling of screw engines to the optimization<br />

of lobe profiles, Proc. VDI Tagung<br />

"Schraubenmaschinen 94" Dortmund VDI Berichte<br />

1135<br />

[17] Hanjali} K, Sto{i} N, 1997: Development and<br />

Optimization of Screw Machines with a Simulation<br />

Model, Part II: Thermodynamic Performance<br />

Simulation and Design, ASME Transactions, Journal<br />

of Fluids Engineering, Vol 119, p 664<br />

[18] Holmes C.S, 1994: Towards a Core program for<br />

the Measurement of Screw Rotor Bodies by Co-ordinate<br />

Measuring Machine, Proc. VDI Tagung<br />

"Schraubenmaschinen 94", Dortmund VDI Berichte<br />

1135<br />

[19] Hough D, Morris S.J, 1984: Patent Application<br />

GB 8413619<br />

[20] Kasuya K. et al, 1983: US Patent 4,406,602<br />

[21] Kauder K, Harling H.B, 1994: Visualisierung der<br />

Olverteilung in Schraubenkompressoren (Visualisation<br />

of Oil Effects in Screw Compressors), Proc. VDI<br />

Tagung "Schraubenmaschinen 94", Dortmund VDI<br />

Berichte 1135<br />

[22] Kauder K, Helpertz M, 1998: Einlauf- und<br />

Hybridschichten für Schraubenkompressoren (Run-in<br />

and Hybrid Coatings for Twin-Screw Compressors),<br />

Proc. VDI Tagung "Schraubenmaschinen 98",<br />

Dortmund VDI Berichte 1391<br />

[23] Konka K-H, 1988: Schraubenkompressoren<br />

(Screw Compressors) VDI-Verlag, Duesseldorf<br />

[24] Lee H-T, 1988: US Patent 4,890,992<br />

[25] Litvin F.L, 1956: Teoria zubchatiih zaceplenii<br />

(Theory of Gearing), Nauka Moscow, second edition<br />

1968, also Gear Geometry and Applied Theory<br />

Prentice-Hill, Englewood Cliffs, NJ 1994<br />

[26] Lysholm A, 1942: A New Rotary Compressor,<br />

Proc. I.Mech.E. 150,11<br />

[27] Lysholm A, 1966: The Fundamentals of a New<br />

Screw Engine, ASME Paper No 66-GT-86<br />

[28] Lysholm A, 1967: US Patent 3,314,598<br />

[29] Margolis D.L, 1978: Analytical Modelling of<br />

Helical Screw Turbines for Performance Prediction,<br />

J.Engr.for Power 100(3)482<br />

[30] Menssen E, 1977: US Patent 4,028,026<br />

[31] Meyers K, 1997: Creating the Right Environment<br />

for Compressor Bearings, Evolution, SKF Ind.Journal,<br />

Vol 4, 21<br />

[32] O'Neill P.A, 1993: Industrial Compressors,<br />

Theory and Equipment, Butterworth-Heinemann,<br />

Oxford<br />

[33] Nilson, 1952: US Patent 2,622,787<br />

[34]Peng N, Xing Z, 1990: New Rotor Profile and its<br />

Performance Prediction of Screw Compressor,<br />

International Compressor Engineering Conference At<br />

Purdue, 18<br />

[35] Rinder L, 1979: Schraubenverdichter (Screw<br />

Compressors), Springer Verlag, New York<br />

[36] Rinder L, 1984: Schraubenverdichterl?ufer mit<br />

Evolventenflanken (Screw Compressor Rotor with<br />

Involute Lobes), Proc. VDI Tagung<br />

"Schraubenmaschinen 84" VDI Berichte Nr. 521<br />

- 77 -


Ma{instvo 2(3), 63 - 78, (1999)<br />

N.Sto{i},...: SAVREMENI RAZVOJ KONSTRUKCIJE...<br />

[37] Rinder L, 1987: US Patent 4,643,654<br />

[38] Sauls J, 1994: The Influence of Leakage on the<br />

Performance of Refrigerant Screw Compressors,<br />

Proc. VDI Tagung "Schraubenmaschinen 94",<br />

Dortmund VDI Berichte 1135<br />

[39] Sauls J, 1998: An Analytical Study of the Effects<br />

of Manufacturing on Screw Rotor Profiles and Rotor<br />

Pair Clearances, Proc. VDI Tagung<br />

"Schraubenmaschinen 98", Dortmund VDI Berichte<br />

1391<br />

[40] Sakun I.A, 1960: Vintovie kompresorii (Screw<br />

Compressors), Mashinostroenie Leningrad<br />

[41] Shibbie, 1979: US Patent 4,140,445<br />

[42] Singh P.J, Onuschak A.D, 1984: A<br />

Comprehensive Computerized Method For Twin<br />

Screw Rotor Profile Generation and Analysis, Purdue<br />

Compressor Technology Conference 544<br />

[43] Singh P.J, Schwartz J.R, 1990: Exact Analytical<br />

Representation of Screw Compressor Rotor<br />

Geometry, International Compressor Engineering<br />

Conference At Purdue, 925<br />

[44] Smith I. K, Sto{i} N, Aldis C. A, 1996:<br />

Development of the trilateral flash cycle system, Part<br />

3: The design of high efficiency two-phase screw<br />

expanders, Proc IMechE, Journal of Power and<br />

Energy, Vol 210, p 75<br />

[45] Sto{i} N, Hanjali} K, 1977: Contribution towards<br />

Modelling of Two-Stage Reciprocating Compressors,<br />

Int.J.Mech.Sci. 19, 439<br />

[46] Sto{i} N, Hanjali} K, Koprivica J, Lovren N,<br />

Ivanovi} M, 1986: CAD of Screw Compressor<br />

Elements, Strojarstvo Journal Zagreb 28, 181<br />

[47] Sto{i} N, Kova~evi} A, Hanjali} K, Milutinovi}<br />

Lj, 1988: Mathematical Modelling of the Oil<br />

Influence upon the Working Cycle of Screw<br />

Compressors, International Compressor Engineering<br />

Conference at Purdue, 355<br />

[48] Sto{i} N, Milutinovi} Lj., Hanjali} K, Kova~evi}<br />

A, 1992: Investigation of the Influence of Oil<br />

Injection upon the Screw Compressor Working<br />

Process, Int.J.Refrig. 15,4,206<br />

[49] Sto{i} N, Hanjali} K, 1994: Development and<br />

optimization of screw engine rotor pairs on the basis<br />

of computer modeling, Proc. XVII Conference on<br />

Compressor Engineering at Purdue, 55<br />

[50] Sto{i} N, 1996: Patent Application GB<br />

9610289.2<br />

[51] Sto{i} N, Hanjali} K, 1997: Development and<br />

Optimization of Screw Machines with a Simulation<br />

Model, Part I: Profile Generation, ASME Transactions,<br />

Journal of Fluids Engineering, Vol 119, p 659<br />

[52] Sto{i} N, Smith I K, Kova~evi} A, Aldis C A,<br />

1997: The Design of a Twin-screw Compressor<br />

Based on a New Profile, Journal of Engineering<br />

Design, Vol 8, 389<br />

[53] Sto{i} N, Kova~evi} A. and Smith I.K, 1998:<br />

Modelling of Screw Compressor Capacity Control,<br />

Proc. XIV Conference on Compressor Engineering at<br />

Purdue, 607<br />

[54] Sto{i} N, Smith I.K, Brasz J.J, Sishtla V, 1998:<br />

The Performance of a Screw Compressor with<br />

Involute Contact Rotors in a Low Viscosity Gas-<br />

Liquid Mixture Environment, Proc. VDI Tagung<br />

"Schraubenmaschinen 98", Dortmund VDI Berichte<br />

1391<br />

[55] Sto{i} N, 1998: On Gearing of Helical Screw<br />

Compressor Rotors, Proc IMechE, Journal of<br />

Mechanical Engineering Science, Vol 212, 587<br />

[56] Tang Y, Fleming J.S, 1992: Obtaining the<br />

Optimum Geometrical Parameters of a Refrigeration<br />

Helical Screw Compressor, International Compressor<br />

Engineering Conference at Purdue 213<br />

[57] Tang Y, Fleming J.S, 1994: Clearances between<br />

the Rotors of Helical Screw Compressors: Their<br />

determination, Optimization and Thermodynamic<br />

Consequences, Proc IMechE, J. of Process<br />

Mechanical Engineering, Vol 208, 155<br />

[58] Xion Z. Dagang X, 1986: Study on Actual Profile<br />

Surface and Engaging Clearance of Screw<br />

Compressor Rotors, Purdue Compressor Technology<br />

Conference 239<br />

[59] Zenan X, 1984: The Dynamic Measurement and<br />

Mating Design of a Screw Compressor Rotor Pair,<br />

Purdue Compressor Technology Conference 314<br />

[60] Zhang L, Hamilton J.F, 1992: Main Geometric<br />

Characteristics of the Twin Screw Compressor,<br />

International Compressor Engineering Conference at<br />

Purdue 2136<br />

- 78 -

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!