19.12.2016 Views

MPRA

n?u=RePEc:pra:mprapa:75582&r=ets

n?u=RePEc:pra:mprapa:75582&r=ets

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The proofs of i), iii) and i) are very similar to the ones given in Francq and Zakoïan<br />

(2010) for the standard GARCH without covariates and are omitted. Here I only thus<br />

show the point ii).<br />

Let L be the back-shift operator, i.e. L(u t ) = u t−1 . By Assumption A5, the polynomial<br />

1 − b 2 k L is invertible for any θ(k) ∈ Θ (k) . Assume that σ 2 kt (θ(k) 0 ) = σ 2 kt (θ(k) ) a.s. We<br />

have<br />

( m<br />

) 2 (<br />

∑<br />

m<br />

) 2<br />

∑<br />

(1 − (b 0 k) 2 L) −1 a 0 klε l,t−1 − (1 − b 2 kL) −1 a kl ε l,t−1<br />

l=1<br />

+ (1 − (b 0 k) 2 L) −1 ( r∑<br />

s=1<br />

l=1<br />

c 0 klx s,t−1<br />

) 2<br />

− (1 − b 2 kL) −1 ( r∑<br />

s=1<br />

c ks x s,t−1<br />

) 2<br />

=(1 − b 2 k) −1 ω kk − (1 − (b 0 k) 2 ) −1 ω 0 kk a.s.<br />

Then<br />

where a (k)<br />

ill ′<br />

∞∑<br />

m∑<br />

i=0 l,l ′ =1<br />

a (k)<br />

ill ′ ε l,t−i−1 ε l ′ ,t−i−1 +<br />

∞∑<br />

r∑<br />

j=0 s,s ′ =1<br />

c (k)<br />

jss ′ x s,t−j−1 x s ′ ,t−j−1 = c a.s. (21)<br />

= (b 0 k )2i a 0 kl a0 kl ′ − (b k) 2i a kl a kl ′, c (k)<br />

jss ′ = (b 0 k )2i c 0 ks c0 ks ′ − (b k) 2i c ks c ks ′ and c = (1 −<br />

(b 0 k )2 ) −1 ω kk − (1 − b 2 k )−1 ω 0 kk . If b0 k ≠ b k or there exists l ∗ such that a 0 kl ∗ ≠ a kl ∗ then<br />

ε 2 l ∗ ,t−1 is a linear combination of the x s,ux s ′ ,u, s, s ′ = 1, . . . , r, u < t, the ε l,v ε l ′ ,v, l, l ′ =<br />

1, . . . , m, v < t−1 and the ε l,t−1 ε l ′ ,t−1, (l, l ′ ) ≠ (l ∗ , l ∗ ) which is impossible by Assumption<br />

A7. Therefore b 0 k = b k and a 0 kl = a kl for all l = 1, . . . , m and (21) becomes<br />

∞∑<br />

r∑<br />

j=0 s,s ′ =1<br />

c (k)<br />

jss ′ x s,t−j−1 x s ′ ,t−j−1 = c<br />

a.s.<br />

Similarly, if there exists s ∗ such that c 0 ks ∗ ≠ c ks ∗, x2 s ∗ ,t−1 is a linear combination of<br />

x u,t−j x u ′ ,t−j, u, u ′<br />

= 1, . . . , r, j > 1 and x s,t−1 x s ′ ,t−1, (s, s ′ ) ≠ (s ∗ , s ∗ ) which contradicts<br />

Assumption A8. Therefore we have c 0 ks = c ks for all s = 1, . . . , r. Hence ii) is proved. ✷<br />

For the proof the asymptotic distribution in the Theorem 2, we need the following<br />

lemmas<br />

Lemma 1 Under assumptions of Theorem 2, there exists a neighborhood V(θ (k)<br />

0 ) of θ (k)<br />

0<br />

18

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!