19.12.2016 Views

MPRA

n?u=RePEc:pra:mprapa:75582&r=ets

n?u=RePEc:pra:mprapa:75582&r=ets

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

In the representation of vec(H 0t ) obtained from (2), we replace vec(H 0t ) by vec(ε t ε ′ t)−ν t .<br />

Then, we get<br />

vec (ε t ε ′ t − E(ε t ε ′ t)) = ( ) (<br />

A ⊗2<br />

0 + B ⊗2<br />

0 vec εt−1 ε ′ t−1 − E(ε t−1 ε ′ t−1) )<br />

+ C ⊗2<br />

0 vec ( x t−1 x ′ t−1 − Ex t−1 x ′ t−1<br />

) ( )<br />

+ νt − B ⊗2<br />

0 ν t−1 .<br />

Note that under assumption A5, the matrix I m 2 − A ⊗2<br />

0 − B ⊗2<br />

0 is inversible. Taking the<br />

average of the two sides of the equality for t = 1, . . . , n gives<br />

̂γ ε,n − γ ε,0 =L m (I m 2 − A ⊗2<br />

0 − B ⊗2<br />

0 ) −1 (I m 2 − B ⊗2<br />

0 ) 1 n∑<br />

n<br />

+ L m (I m 2 − A ⊗2<br />

0 − B ⊗2<br />

0 ) −1 C ⊗2<br />

0 D r<br />

(̂γx,n − γ x,0<br />

)<br />

+ op (1), a.s.<br />

t=1<br />

ν t<br />

We then have<br />

⎛<br />

√ ) ⎞<br />

n<br />

(̂θn − θ 0 √ ⎜ n (̂γεn − γ<br />

⎝<br />

ε ) ⎟<br />

⎠<br />

√ n (̂γxn − γ x )<br />

o p(1)<br />

=<br />

⎛<br />

⎞<br />

−J −1 0 0<br />

⎜ 0 N<br />

⎝<br />

1 N 2 ⎟<br />

⎠<br />

0 0 I r(r+1)/2<br />

⎛<br />

1<br />

√ ⎝<br />

n<br />

The arguments for establishing the limiting distribution of<br />

∑ n<br />

t=1 Υ 0tvec ( η t η ′ t − I m<br />

)<br />

∑ n<br />

t=1 vech(x tx ′ t − E(x t x t ))<br />

⎛<br />

1<br />

√ ⎝<br />

n<br />

∑ n<br />

t=1 Υ 0tvec ( η t η ′ t − I m<br />

)<br />

⎞<br />

⎠ .<br />

∑ n<br />

t=1 vech(x tx ′ t − E(x t x t ))<br />

⎞<br />

⎠<br />

being very similar to Lemma 6 in Thieu (2016), I just give a sketch of proof. For any<br />

s > 0, the k-th individual volatility in (4) can be written σkt 2 = σ2 kts + σ2 kts , where<br />

⎧ (<br />

s∑ ⎨<br />

m<br />

) 2 (<br />

σ 2 kts = b 2j<br />

k<br />

⎩ ω ∑<br />

r∑<br />

) ⎫<br />

2⎬ kk + a kl ε l,t−j−1 + c ks x s,t−j−1<br />

⎭<br />

j=0<br />

l=1<br />

s=1<br />

⎧ (<br />

∞∑ ⎨<br />

m<br />

) 2 (<br />

σ 2 kts = b 2j<br />

k<br />

⎩ ω ∑<br />

r∑<br />

) ⎫<br />

2⎬ kk + a kl ε l,t−j−1 + c ks x s,t−j−1<br />

⎭ .<br />

s=1<br />

j=s+1<br />

l=1<br />

Then we can write Υ 0t vec(η t η ′ t − I m ) = Y t,s + Y ∗ t,s, where<br />

⎛ ( ) ( ) ⎞<br />

Y t,s = ⎝ ∆ tsT m D −1<br />

0tsH 1/2<br />

0t,s ⊗ D −1<br />

0tsH 1/2<br />

0t,s<br />

⎠ vec(η<br />

H 1/2<br />

0t,s ⊗ H 1/2<br />

t η ′ t − I m ),<br />

0t,s<br />

with D 0ts = diag(σ 1ts , . . . , σ mts ) and ∆ ts = diag(∆ 1ts , . . . ∆ mts ), ∆ kts = 1<br />

for k = 1, . . . , m and Y ∗ t,s is stationary and centered process satisfying<br />

(∥ )<br />

∥∥∥∥ n∑<br />

lim lim sup P n −1/2 Y ∗ t,s<br />

s→∞ n→∞<br />

∥ > ɛ = 0.<br />

23<br />

t=1<br />

σ 2 kts<br />

∂σ 2 kts (θ(k) 0 )<br />

∂θ (k) ,

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!