19.12.2016 Views

MPRA

n?u=RePEc:pra:mprapa:75582&r=ets

n?u=RePEc:pra:mprapa:75582&r=ets

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

such that<br />

⎧<br />

⎨<br />

E<br />

⎩<br />

⎧<br />

⎨<br />

E<br />

⎩<br />

{<br />

E<br />

∥ ∥ ⎫ ∥∥∥∥ sup 1 ∂σkt 2 (θ(k) ) ∥∥∥∥<br />

4(1+1/δ)<br />

⎬<br />

< ∞, for some δ > 0, (22)<br />

0 ) σkt 2 (θ(k) ) ∂θ (k) ⎭<br />

θ (k) ∈V(θ (k)<br />

∥ ∥ ⎫ ∥∥∥∥ sup 1 ∂ 2 σkt 2 (θ(k) ) ∥∥∥∥<br />

2(1+1/δ)<br />

⎬<br />

< ∞, for some δ > 0, (23)<br />

0 ) σkt 2 (θ(k) ) ∂θ (k) ∂θ (k)′ ⎭<br />

∣ ∣∣∣∣<br />

σkt 2 (θ(k) 0 )<br />

s}<br />

< ∞, for any s > 0. (24)<br />

0 ) σkt 2 (θ(k) ) ∣<br />

θ (k) ∈V(θ (k)<br />

sup<br />

θ (k) ∈V(θ (k)<br />

Proof of Lemma 1<br />

Iteratively using the volatility equation in (4), we obtain<br />

{<br />

}<br />

∞∑<br />

m∑<br />

r∑<br />

σkt(θ 2 (k) ) = ω kk + a kl a kl ′ε l,t−j−1 ε l ′ ,t−j−1 + c ks c ks ′x s,t−j−1 x s ′ ,t−j−1 .<br />

j=0<br />

b 2j<br />

k<br />

l,l ′ =1<br />

Derive (25) with respect to θ (k) , we get<br />

s,s ′ =1<br />

(25)<br />

∂σ 2 kt (θ(k) )<br />

∂ω kk<br />

∂σkt 2 (θ(k) )<br />

∂a kl<br />

∂σkt 2 (θ(k) )<br />

∂b 2 k<br />

∂σkt 2 (θ(k) )<br />

∂c ks<br />

∑<br />

= ∞ b 2j<br />

k = 1 ,<br />

j=0 1 − b 2 k<br />

∑<br />

= 2 ∞ m∑<br />

b 2j<br />

k<br />

a kl ′ε l,t−j−1 ε l ′ ,t−j−1,<br />

j=0 l ′ =1{<br />

∑<br />

= ∞ ∑<br />

ω kk +<br />

m a kl a kl ′ε l,t−j−1 ε l ′ ,t−j−1 +<br />

j=1<br />

= 2 ∞ ∑<br />

j=0<br />

jb 2(j−1)<br />

k<br />

b 2j<br />

k<br />

l,l ′ =1<br />

m∑<br />

c ks ′x s,t−j−1 x s ′ ,t−j−1<br />

s ′ =1<br />

r ∑<br />

s,s ′ =1<br />

c ks c ks ′x s,t−j−1 x s ′ ,t−j−1<br />

}<br />

,<br />

.<br />

Silmilar expressions hold for the second order derivatives. Noting that<br />

ω kk :=<br />

inf<br />

θ (k) ∈Θ (k) σ 2 kt > 0.<br />

Using the moment conditions A10 and (20), we obtain (22) and (23).<br />

The moment condition (24) will be showed even if some components of a 0 k or c0 k are<br />

zero. Indeed, there exists a neighborhood V(θ (k)<br />

0 ) such that for all θ (k) ∈ V(θ (k)<br />

0 )<br />

⎧ ⎛<br />

⎞2<br />

⎛<br />

⎞ ⎫<br />

2<br />

⎜ m∑ a kl ⎟ ⎜ r∑ c ks ⎟<br />

⎝ √ ε l,t−j−1 ⎠ ⎝ √ x s,t−j−1 ⎠<br />

σkt 2 ∞ (θ(k) 0 )<br />

σkt 2 (θ(k) ) ≤ K+K ∑ (b<br />

⎪⎨ 0 l=1 ωkk s=1 ωkk ⎪⎬<br />

k )2j a 0 kl≠0<br />

b 2j ⎛<br />

⎞2 + c 0<br />

⎛<br />

ks≠0<br />

⎞2<br />

.<br />

j=0 k<br />

⎜ m∑ a kl ⎟ ⎜ r∑ c ks ⎟<br />

1 + ⎝ √ ε l,t−j−1 ⎠ 1 + ⎝ √ x s,t−j−1 ⎠<br />

⎪⎩<br />

ωkk ωkk ⎪⎭<br />

l=1<br />

a 0 kl≠0<br />

19<br />

s=1<br />

c 0 ks≠0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!