19.12.2016 Views

MPRA

n?u=RePEc:pra:mprapa:75582&r=ets

n?u=RePEc:pra:mprapa:75582&r=ets

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

By the similar arguments used to show ii) in the proof of Theorem 1, we can conclude<br />

that π = 0.<br />

Proof of Theorem 2<br />

Since<br />

̂θ<br />

(k)<br />

n<br />

strongly converges to θ (k)<br />

0 which belongs to the interior of the parameter<br />

t=1<br />

˜Q<br />

(k)<br />

n<br />

space Θ (k) , the derivative of the criterion is equal to zero at<br />

1 ∑ n ∂ 2 l kt (θ (k) )<br />

t=1<br />

. Applying a Taylor expansion for Q (k)<br />

n ∂θ (k) ∂θ (k)′ n<br />

theorem gives<br />

0 = 1 n∑ l kt (θ (k)<br />

0 )<br />

(¯θ(k)<br />

) (̂θ(k)<br />

+ J<br />

n ∂θ (k) kkn n n<br />

¯θ<br />

(k)<br />

n<br />

̂θ<br />

(k)<br />

n<br />

✷<br />

̂θ<br />

(k)<br />

n . Let J kkn (θ (k) ) =<br />

at θ (k)<br />

0 and the mean-value<br />

)<br />

− θ (k)<br />

0 , (29)<br />

where is between and θ (k)<br />

0 . By the points ii) and iii) in Lemma 2 and the<br />

(k)<br />

consistency of ̂θ (¯θ(k)<br />

)<br />

n , the matrix J kkn n is a.s. invertible for suciently large n. Hence<br />

multiplying by √ n and solving for √ )<br />

(̂θ(k)<br />

n − θ (k)<br />

0 gives<br />

Let . l t (θ) =<br />

have<br />

√ n<br />

(̂θ(k)<br />

n<br />

n<br />

)<br />

− θ (k) op(1)<br />

0 = −J −1<br />

kkn<br />

(¯θ(k) n<br />

) 1 √n<br />

n∑<br />

t=1<br />

l kt (θ (k)<br />

0 )<br />

∂θ (k) . (30)<br />

(<br />

)<br />

∂l 1t (θ (1) )<br />

, . . . , ∂l ′<br />

mt(θ (m) )<br />

. Collecting all these Taylor expansions, we<br />

∂θ (1)′ ∂θ (m)′<br />

√ n<br />

(̂θn − θ 0<br />

) op(1)<br />

= J −1 1 √ n<br />

Note that η ∗ t = D −1<br />

0t H 1/2<br />

0t η t . From (26), we then have<br />

Then, we get<br />

.<br />

(<br />

l t (θ 0 ) = −∆ t T m vec η ∗ t η ∗′<br />

t<br />

(<br />

= −∆ t T m D −1<br />

0t H 1/2<br />

0t<br />

√ n<br />

(̂θn − θ 0<br />

) op(1)<br />

= −J −1 1 √ n<br />

n∑<br />

t=1<br />

We now introduce the martingale dierence<br />

ν t = vec(ε t ε ′ t) − vec(H 0t ) =<br />

n∑ .<br />

l t (θ 0 ).<br />

t=1<br />

)<br />

− D −1<br />

0t H 0t D −1<br />

0t<br />

) ⊗2<br />

vec<br />

(η t η ′ t − I m<br />

)<br />

.<br />

( ) ⊗2 )<br />

∆ t T m D −1<br />

0t H 1/2<br />

0t vec<br />

(η t η ′ t − I m . (31)<br />

(<br />

)<br />

H 1/2<br />

0t ⊗ H 1/2<br />

0t vec(η t η ′ t − I m ).<br />

22

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!