19.12.2016 Views

MPRA

n?u=RePEc:pra:mprapa:75582&r=ets

n?u=RePEc:pra:mprapa:75582&r=ets

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Under Assumption A11 and using the same argument as in the reference, we have for<br />

some ν and δ > 0<br />

(<br />

)<br />

∥ H 1/2<br />

0t,s ⊗ H 1/2<br />

0t,s vec(η t η ′ t − I m ) ∥ < ∞.<br />

2+ν<br />

Note that D −1<br />

0t H 0t D −1<br />

0t is the conditional correlation matrix of ε t . Because D −1<br />

0t H 0t D −1<br />

( ) ( ) ′,<br />

D −1<br />

0t H 1/2<br />

0t D −1<br />

0t H 1/2<br />

0t all the elements of the matrix D<br />

−1<br />

0t H 1/2<br />

0t are smaller than one.<br />

( ) ( )<br />

It is thus easy to show that all the ones of the matrix D −1<br />

0t,sH 1/2<br />

0t,s ⊗ D −1<br />

0t,sH 1/2<br />

0t,s are<br />

also smaller than one. Using the Holder inequality, we then have<br />

( ) ( )<br />

∥<br />

∥∆ ts T m D −1<br />

0t,sH 1/2<br />

0t,s ⊗ D −1<br />

0t,sH 1/2<br />

0t,s vec(η t η ′ t − I m ) ∥<br />

2+ν<br />

∥ ( ) ( )<br />

∥∥Tm<br />

≤ ‖∆ ts ‖ (2+ν)(1+1/δ)<br />

D −1<br />

0t,sH 1/2<br />

0t,s ⊗ D −1<br />

0t,sH 1/2<br />

0t,s vec(η t η ′ ∥<br />

t − I m )<br />

∥<br />

(2+ν)(1+δ)<br />

0t =<br />

≤ K ‖∆ ts ‖ (2+ν)(1+1/δ)<br />

‖vec(η t η ′ t − I m )‖ (2+ν)(1+δ)<br />

< ∞,<br />

where the last inequality follows from (20) and Assumption A11. It implies that ‖Y t,s ‖ 2+ν <<br />

∞. The process (Y t,s ) t , for s xed, is thus strongly mixing under Assumption A11. Applying<br />

the central limit theorem of Herrndorf (1984), we get<br />

⎛<br />

∑ n<br />

1<br />

√ ⎝<br />

t=1 Υ 0tvec ( )<br />

⎞<br />

η t η ′ t − I m<br />

n<br />

∑<br />

⎠ → d N (0, Σ) .<br />

n<br />

t=1 vech(x tx ′ t − E(x t x t ))<br />

The asymptotic distribution of Theorem 2 thus follows from the Slutzky theorem.<br />

✷<br />

The proof of Theorem 3<br />

The strong consistency of ̂ξ n is obviously obtained.<br />

Now we turn to its asymptotic normality.<br />

Using the elementary relation vec(ABC) = (C ′ ⊗ A)vec(B), we have<br />

vec(Ân ̂Σ<br />

)<br />

εn  ′ n − A 0 Σ ε0 A ′ 0) =vec<br />

(Ân ̂Σεn (Â′ n − A ′ 0) + vec<br />

(Ân ( ̂Σ<br />

)<br />

εn − Σ ε )A ′ 0<br />

(<br />

)<br />

+ vec (Ân − A 0 )Σ ε A ′ 0<br />

=<br />

{I m ⊗ (Ân ̂Σ<br />

}<br />

εn ) + ((A 0 Σ ε ) ⊗ I m )M mm vec(Â′ n − A ′ 0)<br />

+ (A 0 ⊗ Ân)D m vech( ̂Σ εn − Σ ε ).<br />

24

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!