16.01.2014 Views

Overview of bioengineering and hydrocephalus: 50 years in 30 ...

Overview of bioengineering and hydrocephalus: 50 years in 30 ...

Overview of bioengineering and hydrocephalus: 50 years in 30 ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Barry Lutz, Ph.D.<br />

Research Assistant Pr<strong>of</strong>essor<br />

Department <strong>of</strong> Bioeng<strong>in</strong>eer<strong>in</strong>g<br />

University <strong>of</strong> Wash<strong>in</strong>gton<br />

Samuel R. Browd, M.D., Ph.D.<br />

Assistant Pr<strong>of</strong>essor <strong>of</strong> Neurological Surgery<br />

Department <strong>of</strong> Neurological Surgery<br />

University <strong>of</strong> Wash<strong>in</strong>gton<br />

Attend<strong>in</strong>g Pediatric Neurosurgeon<br />

Seattle Children’s Hospital<br />

Disclaimer: co‐founder <strong>of</strong> Aqueduct Neurosciences, Inc with<br />

q ,<br />

Sam Browd <strong>and</strong> Tom Clement (develop<strong>in</strong>g a smart shunt)


Shunt history: <strong>50</strong> <strong>years</strong> <strong>in</strong> 5 m<strong>in</strong>utes<br />

19<strong>50</strong>s<br />

Silicone<br />

1-way differential<br />

pressure valves<br />

(Hakim, Pudenz,<br />

Heyer-Schulte)<br />

today<br />

Dates derived from “The scientific history <strong>of</strong> <strong>hydrocephalus</strong> <strong>and</strong> its treatment.”<br />

Asch<strong>of</strong>f, Kremer, Hashemi, Kunze. Neurosurg. Reviews (1999).


Shunt history: <strong>50</strong> <strong>years</strong> <strong>in</strong> 5 m<strong>in</strong>utes<br />

19<strong>50</strong>s<br />

Silicone<br />

1-way differential<br />

pressure valves<br />

(Hakim, Pudenz,<br />

Heyer-Schulte)<br />

1970s<br />

Siphon control<br />

(ASD, SCD, gravity)<br />

Some adjustable<br />

designs (Portnoy,<br />

Hakim)<br />

today<br />

Dates derived from “The scientific history <strong>of</strong> <strong>hydrocephalus</strong> <strong>and</strong> its treatment.”<br />

Asch<strong>of</strong>f, Kremer, Hashemi, Kunze. Neurosurg. Reviews (1999).


Shunt history: <strong>50</strong> <strong>years</strong> <strong>in</strong> 5 m<strong>in</strong>utes<br />

19<strong>50</strong>s<br />

Silicone<br />

1-way differential<br />

pressure valves<br />

(Hakim, Pudenz,<br />

Heyer-Schulte)<br />

1970s<br />

Siphon control<br />

(ASD, SCD, gravity)<br />

Some adjustable<br />

designs (Portnoy,<br />

Hakim)<br />

1980s<br />

Programmable<br />

(Medos-Hakim)<br />

Flow control<br />

valve (OSV)<br />

today<br />

Dates derived from “The scientific history <strong>of</strong> <strong>hydrocephalus</strong> <strong>and</strong> its treatment.”<br />

Asch<strong>of</strong>f, Kremer, Hashemi, Kunze. Neurosurg. Reviews (1999).


Shunt history: <strong>50</strong> <strong>years</strong> <strong>in</strong> 5 m<strong>in</strong>utes<br />

19<strong>50</strong>s<br />

Silicone<br />

1-way differential<br />

pressure valves<br />

(Hakim, Pudenz,<br />

Heyer-Schulte)<br />

1970s<br />

Siphon control<br />

(ASD, SCD, gravity)<br />

Some adjustable<br />

designs (Portnoy,<br />

Hakim)<br />

1980s<br />

Programmable<br />

(Medos-Hakim)<br />

Flow control<br />

valve (OSV)<br />

1990s onward<br />

Modest changes<br />

Many clone devices<br />

Dates derived from “The scientific history <strong>of</strong> <strong>hydrocephalus</strong> <strong>and</strong> its treatment.”<br />

Asch<strong>of</strong>f, Kremer, Hashemi, Kunze. Neurosurg. Reviews (1999).


• Limited options for type <strong>of</strong> control<br />

• Nearly every device is dff differential pressure valve<br />

• Siphon‐control (add‐on or <strong>in</strong>tegrated)<br />

• Adjustable pressure set po<strong>in</strong>t (from all majors)<br />

• A few flow control valves (OSV, Diamond)<br />

• Et Extraord<strong>in</strong>ary failure rates<br />

• 40% by year 1, <strong>50</strong>% by year 2, 98% by year 10<br />

• Obstruction is key cause: proximal (60%), valve (<strong>30</strong>%)<br />

• No sensors, no reliable failure diagnostics, no<br />

monitor<strong>in</strong>g i capability


What can we do to really advance the<br />

status quo?<br />

• Methods/designs that reduce obstruction &<br />

<strong>in</strong> vitro biological models to test them<br />

• Diagnostics for shunt failure & monitor<strong>in</strong>g<br />

• Smart Shunts for advanced control <strong>and</strong><br />

diagnostics & bench models to test them<br />

(dynamic models)<br />

• Improved underst<strong>and</strong><strong>in</strong>g di <strong>of</strong> the desirable<br />

control approaches (<strong>and</strong> devices to carry<br />

them out)


Shunt obstruction<br />

• Proximal catheter obstruction<br />

• Catheter geometry<br />

• Anti‐foul<strong>in</strong>g coat<strong>in</strong>gs<br />

• Active methods to fight <strong>in</strong>‐growth<br />

• How do we test new methods?


Proximal obstruction: geometry<br />

• Early efforts (from The Shunt Book!)


Proximal obstruction: geometry<br />

• Tissue <strong>in</strong>‐growth may favor distal holes<br />

• What effect does hole size have on flow?


Proximal obstruction: coat<strong>in</strong>gs<br />

Promis<strong>in</strong>g priority area, no clear w<strong>in</strong>ners yet


Filter added to proximal catheter<br />

• NJ Institute <strong>of</strong> Technology<br />

• Filter added to catheter<br />

• Group has large NIH grant<br />

for related work


Proximal obstruction: active method<br />

• Jack Judy, UCLA<br />

• Microelectromechanical<br />

(MEMS) “flappers” <strong>in</strong><br />

catheter holes break<br />

tissue growth<br />

• Activated by external<br />

magnetic field<br />

US Patent Disclosure‚ Self-Clear<strong>in</strong>g<br />

Catheter for Cl<strong>in</strong>ical Implantation (2004)


Proximal obstruction: test<strong>in</strong>g<br />

• Pat McAllister, Carolyn Harris<br />

• Flow‐based cell culture system for test<strong>in</strong>g<br />

proximal catheter obstruction (& valves too)<br />

“Mechanical contribution to astrocyte adhesion us<strong>in</strong>g a novel <strong>in</strong> vitro model <strong>of</strong> catheter<br />

obstruction.” Harris, Resau, Hudson, West, Moon, McAllister. Exptl Neurology (2010).


Obstruction: status <strong>and</strong> needs<br />

• Proximal catheter obstruction (60%)<br />

• Coat<strong>in</strong>gs: no proven solutions yet, but promis<strong>in</strong>g<br />

• Active methods: <strong>in</strong>trigu<strong>in</strong>g but research stage<br />

• Better CSF control may reduce failure (OSV)<br />

• Valve obstruction (<strong>30</strong>%)<br />

• Possible issues with ih valve designs: complex flow<br />

path, small gaps, CSF contacts <strong>in</strong>tricate parts<br />

• Little‐to‐no activity to reduce valve obstruction<br />

• Need <strong>in</strong> vitro biological models to evaluate<br />

new obstruction‐prevention bt ti ti methods


Shunt failure diagnostics<br />

• Common components:<br />

• Sensors (pressure or flow)<br />

• Some source <strong>of</strong> power (wireless or battery)<br />

• Option #1. External reader & transmitted<br />

power: on‐dem<strong>and</strong> measurement (cl<strong>in</strong>ic, home)<br />

• Option #2. Implant with battery: potential for<br />

cont<strong>in</strong>uous monitor<strong>in</strong>g to identify problems<br />

before they occur (<strong>and</strong> generate useful data)


Reader‐based flow diagnostics<br />

• NeuroDx ShuntCheck with Micropumper<br />

• Flow sensor based on classic “ice cube” test<br />

• Over‐sk<strong>in</strong> sensor (no implanted parts)<br />

• multiple NIH SBIRs, some cl<strong>in</strong>ical test<strong>in</strong>g


Reader‐based flow diagnostics<br />

• Transonic Systems<br />

• Ultrasonic flow<br />

detection (CSF<br />

flow is near<br />

detection limit for<br />

this technology)<br />

• External reader &<br />

transmitted power<br />

• Several cl<strong>in</strong>ical<br />

trials, outcome?


Reader‐based flow diagnostics<br />

• New Jersey<br />

Institute <strong>of</strong><br />

Technology<br />

(w/ Infoscitex)<br />

• Large NIH<br />

grant for flow<br />

sensor <strong>and</strong><br />

proximal<br />

catheter filter<br />

• SmartShunt TM


Sensorized Shunt Concept<br />

• Alfred Mann Foundation pressure sensors<br />

Current<br />

Technology<br />

Intermediate<br />

Goal<br />

F<strong>in</strong>al Goal<br />

20


Pressure Sensor Requirements<br />

AMF m<strong>in</strong>imum sensor requirements demonstrated<br />

• Range: 680 to 1220 cm H2O absolute (‐3<strong>50</strong> to +200<br />

cm H2O gauge)<br />

• Accuracy: ±2.7 cm H2O<br />

• Resolution: 0.27 cm H2O<br />

• Low current RF coupled power system<br />

• Package‐capable for long‐term implantation<br />

• Rlibl Reliable pressure measurement<br />

• Functional lifetime: at least 1 year<br />

21


Reader‐based pressure diagnostics<br />

• Many active developers, <strong>in</strong>clud<strong>in</strong>g majors<br />

Meithke<br />

• External‐power (no battery)<br />

• On‐dem<strong>and</strong> measurements<br />

• Meithke SensorReservior (left)<br />

• Radionics Telesensor<br />

• Medtronic InSite<br />

• Codman (2009 patent)<br />

• H‐cubed (development stage?)<br />

• Issys (development stage?)<br />

• Alfred Mann Foundation


Diagnostics: status <strong>of</strong> systems<br />

• High value, lots <strong>of</strong> activity (<strong>in</strong>clud<strong>in</strong>g majors)<br />

• Potential pay<strong>of</strong>f: cost sav<strong>in</strong>gs for averted<br />

diagnostic procedures ($1.3B/year???)<br />

• Sensor challenges: required accuracy (mL/hr,<br />

cm H2O) pushes technology limits<br />

• Other challenges: cost, regulatory<br />

• Most require external power (MRI issues?)<br />

• Little activity on st<strong>and</strong>‐alone implants<br />

• Early detection, potential use <strong>in</strong> a smart shunt<br />

• But, must be st<strong>and</strong>‐alone with power source


“Smart” Shunts –the common vision<br />

• Sensors (flow or pressure)<br />

• Pump or valve<br />

• Electronics<br />

• Implanted power (battery)<br />

• Control algorithm<br />

• Measure th<strong>in</strong>gs<br />

• Change pump/valve sett<strong>in</strong>g<br />

• Two‐way way communications<br />

(diagnostics, <strong>in</strong>tervention)<br />

Anticipated for decades. Why don’t we have one yet?


Smart Shunts: Codman & Shurtleff<br />

• Based on adjustable Codman‐Hakim valve<br />

• Smart actuator on adjustment cam<br />

actuator


Smart Shunts: Medtronic<br />

• Positive displacement pump (e.g. drug pump)<br />

• Timed pump program or P‐sensor controlled


Smart Shunts: Integra Lifesciences<br />

• Regulation based on<br />

transient component <strong>of</strong><br />

ICP as a measure <strong>of</strong><br />

bra<strong>in</strong> compliance


Smart Shunts: Meithke valve<br />

• Meithke valve mechanism (on‐<strong>of</strong>f switch)<br />

• Dra<strong>in</strong>age via on‐<strong>of</strong>f valve schedule<br />

• Al‐Nuaimy group develop<strong>in</strong>g algorithms<br />

Meithke patent (2005)<br />

Al-Nuaimy group (Univ. <strong>of</strong> Liverpool)


Smart Shunts: tube squeezer<br />

• Tube squeezer with feedback control<br />

• Aachen University (Leonhardt) simulated<br />

control dynamics<br />

“Simulation <strong>of</strong>….future electromechanical valves….” Leonhardt group (2012)


Early models <strong>of</strong> the CSF system<br />

• Early models: static s<strong>in</strong>gle‐compartment<br />

• Bench test<strong>in</strong>g <strong>of</strong> shunts follows similar<br />

“plumb<strong>in</strong>g” approach<br />

Hakim physical model<br />

Maramou electrical model


Advanced models <strong>of</strong> CSF dynamics<br />

• Dynamic models needed to test smart shunts<br />

• e.g., R. Penn (left), A. L<strong>in</strong>n<strong>in</strong>ger, Dr. Bradley<br />

• ETH Zurich SmartShunt project (right)<br />

Penn group


Smart shunts: challenges & pay<strong>of</strong>f<br />

• Rema<strong>in</strong><strong>in</strong>g challenges/needs<br />

• Sensors with sufficient accuracy (pressure, flow)<br />

• Power consumption (lifetime 5+ <strong>years</strong>?)<br />

• Size, MRI compatibility<br />

• Cost (viable under exist<strong>in</strong>g reimbursement?)<br />

• Regulatory (what is acceptable e test<strong>in</strong>g?)<br />

• Potential pay<strong>of</strong>f<br />

• Diagnostics, failure detection, improved safety<br />

• Data logg<strong>in</strong>g, new <strong>in</strong>sight <strong>in</strong>to condition<br />

• Opportunity to implement sophisticated control


Summary: potential w<strong>in</strong>s <strong>in</strong> next 5 <strong>years</strong><br />

• Reduc<strong>in</strong>g obstruction rema<strong>in</strong>s a key need<br />

• Proximal: coat<strong>in</strong>gs, active methods<br />

• Valve: almost no activity on this problem<br />

• Need biological models to evaluate methods<br />

• Shunt diagnostics & monitor<strong>in</strong>g<br />

• Many folks develop<strong>in</strong>g on‐dem<strong>and</strong> diagnostics<br />

• Cont<strong>in</strong>uous monitor<strong>in</strong>g could alert before problems<br />

occur <strong>and</strong> provide patient data – does not exist<br />

• Smart shunts (anticipated for decades)<br />

• Needs: designs to defeat the power draw problem,<br />

g p p ,<br />

implantable sensors, good regulatory strategies


This just <strong>in</strong> – CSF glucose power for bra<strong>in</strong><br />

mach<strong>in</strong>e <strong>in</strong>terface (June 2012)


Needs with promise <strong>in</strong> next 3‐5 <strong>years</strong><br />

1) Obstruction‐resistant shunts (proximal, valve) <strong>and</strong> <strong>in</strong><br />

vitro biological models to test them<br />

2) Fully‐implanted battery‐powered sensors for shunt<br />

failure diagnostics (& monitor<strong>in</strong>g to generate better<br />

data)<br />

3) Improved underst<strong>and</strong><strong>in</strong>g <strong>of</strong> desirable algorithms for<br />

CSF dra<strong>in</strong>age<br />

4) Smart shunts with diagnostics, advanced control, <strong>and</strong><br />

ma<strong>in</strong>tenance <strong>and</strong> bench models to test them<br />

5) Fund<strong>in</strong>g for collaborations between cl<strong>in</strong>icians,<br />

scientists, <strong>and</strong> eng<strong>in</strong>eers (program, center)


Questions<br />

1) What CSF control methods are needed that we don’t<br />

have today (pressure, flow, comb<strong>in</strong>ation, time<br />

variable, shunt wean<strong>in</strong>g)?<br />

2) What are the arguments for <strong>and</strong> aga<strong>in</strong>st antisiphon<strong>in</strong>g<br />

<strong>in</strong> a differential pressure shunt?<br />

3) What are the key needs <strong>of</strong> different patient<br />

populations (pediatric, i adult, NPH)?<br />

4) For implanted electrical systems (diagnostics, smart<br />

shunts), is there an acceptable battery replacement<br />

model by elective surgery (e.g., pacemaker) ?<br />

5) What test<strong>in</strong>g threshold is needed (bench, animal,<br />

human) to reach a comfort level for cl<strong>in</strong>ician adoption<br />

(for implantable diagnostics, smart shunts)?

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!