20.02.2013 Views

Atomic Structure Theory

Atomic Structure Theory

Atomic Structure Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

82 3 Self-Consistent Fields<br />

I(nala) =<br />

∞<br />

0<br />

dr<br />

<br />

1<br />

2<br />

dPnala<br />

dr<br />

2<br />

+ la(la +1)<br />

2r2 P 2 Z<br />

nala −<br />

r P 2 <br />

nala . (3.52)<br />

We will need this term later in this section.<br />

Next, we examine the direct Coulomb matrix element gabab. To evaluate<br />

this quantity, we make use of the decomposition of 1/r12 given in (3.15).<br />

Further, we use the well-known identity<br />

Pl(cos θ) =<br />

l<br />

(−1) m C l −m(ˆr1)C l m(ˆr2) , (3.53)<br />

m=−l<br />

to express the Legendre polynomial of cos θ, whereθis the angle between the<br />

two vectors r1 and r2, in terms of the angular coordinates of the two vectors<br />

in an arbitrary coordinate system. Here, as in Chapter 1, the quantities Cl m(ˆr)<br />

are tensor operators, defined in terms of spherical harmonics by:<br />

C l <br />

4π<br />

m(ˆr) =<br />

2l +1 Ylm(ˆr) .<br />

With the aid of the above decomposition, we find:<br />

gabab =<br />

∞ l<br />

(−1) m<br />

l=0 m=−l<br />

∞<br />

0<br />

dr2P 2 nblb (r2)<br />

∞<br />

0<br />

dr1P 2 nala (r1)<br />

<br />

l r< r l+1<br />

<br />

><br />

dΩ1Y ∗<br />

lama (ˆr1)C l −m(ˆr1)Ylama (ˆr1)<br />

dΩ2Y ∗<br />

lbmb (ˆr2)C l m(ˆr2)Ylbmb (ˆr2). (3.54)<br />

The angular integrals can be expressed in terms of reduced matrix elements<br />

of the tensor operator C l m using the Wigner-Eckart theorem. We find<br />

gabab =<br />

∞<br />

l=0<br />

lama<br />

✻<br />

− l0<br />

lama<br />

lbmb<br />

✻<br />

− l0<br />

lbmb<br />

〈la||C l ||la〉〈lb||C l ||lb〉 Rl(nala,nblb,nala,nblb) ,<br />

(3.55)<br />

where<br />

∞<br />

∞<br />

l r< Rl(a, b, c, d) = dr1Pa(r1)Pc(r1) dr2Pb(r2)Pd(r2)<br />

0<br />

0<br />

r l+1<br />

<br />

. (3.56)<br />

><br />

These integrals of products of four radial orbitals are called Slater integrals.<br />

The Slater integrals can be written in terms of multipole potentials. We define<br />

the potentials vl(a, b, r) by<br />

∞<br />

l r< vl(a, b, r1) = dr2Pa(r2)Pb(r2)<br />

0<br />

r l+1<br />

<br />

. (3.57)<br />

>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!