20.02.2013 Views

Atomic Structure Theory

Atomic Structure Theory

Atomic Structure Theory

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A3p 3/2→3p 1/2 = 2.69735 × 1013 × (4/3)<br />

(10 8 /112.061) 3 × 4 =1.26526 10−5 s −1<br />

τ(3p3/2) = 1<br />

= 79035.18 s = 21 h 57 m 15 s .<br />

A<br />

Relativistic Calculation:<br />

Solutions 291<br />

In a relativistic calculation, the reduced magnetic-dipole matrix element is<br />

given by<br />

〈bMa〉 =2c 〈bq (0)<br />

3<br />

1 a〉 =2c 〈b<br />

=2c κb + κa<br />

2<br />

〈−κbC1κa〉<br />

k t(0) 1 a〉<br />

∞<br />

0<br />

dr 3<br />

k j1(kr)<br />

<br />

PbQa + PaQb<br />

We make two approximations: Firstly, kr ≈ 2πa0/λ ≈ 410−6≪ 1. This<br />

approximation permits us to ignore higher-order terms in the expansion of<br />

the spherical Bessel function and approximate 3j1(kr)/k by r. Secondly, we<br />

use the Pauli approximation for the atomic wave functions of the 3p states in<br />

Al. This approximation, which is valid provided (αZ) 2 ≈ 10−5 ≪ 1, permits<br />

us to approximate the small-component wave function by<br />

∞ <br />

<br />

dr r PbQa + PaQb<br />

0<br />

≈− 1<br />

∞ <br />

dPa κa<br />

dr r Pb +<br />

2c 0<br />

dr r Pa<br />

<br />

dPb κb<br />

+ Pa +<br />

dr r Pb<br />

<br />

= − 1<br />

∞ <br />

d (rPbPa)<br />

dr<br />

+(κa + κb − 1)PbPa<br />

2c 0 dr<br />

= − κa<br />

∞<br />

+ κb − 1<br />

drPbPa = −<br />

2c 0<br />

κa + κb − 1<br />

,<br />

2c<br />

wherewehaveusedthefactthatPb = Pa = P3p in the Pauli approximation,<br />

where P3p(r) isthenonrelativistic 3p radial wave function. Therefore, in the<br />

Pauli approximation, the magnetic-dipole matrix element for transitions from<br />

states with ja = l +1/2, κa = −l − 1 to states with jb = l − 1/2, κb = l<br />

becomes,<br />

〈bMa〉 = − 2c κb + κa<br />

2<br />

= − 1<br />

2<br />

κa + κb − 1<br />

2c<br />

〈−κbC1κa〉<br />

(l − l − 1)(−l − 1+l − 1) 〈−κbC1κa〉<br />

= −〈jb = l − 1/2C1ja = l +1/2〉<br />

<br />

2l(l +1)<br />

=<br />

2l +1 .<br />

Therefore, the relativistic matrix element, in the Pauli approximation, agrees<br />

precisely with the nonrelativistic matrix element.<br />

<br />

.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!