28.02.2013 Views

Cooling IGBT Modules with VDF - Parker

Cooling IGBT Modules with VDF - Parker

Cooling IGBT Modules with VDF - Parker

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid (<strong>VDF</strong>)<br />

David B. Levett and Jeremy C. Howes<br />

<strong>Parker</strong> SSD Drives, Charlotte NC USA<br />

David L. Saums<br />

DS&A LLC, Amesbury MA USA<br />

IMAPS France Advanced Technology Workshop on Thermal<br />

Management 2008, La Rochelle, France 30-31 January 2008


Outline and Goals<br />

• Vaporizable dielectric fluid (<strong>VDF</strong>) concept:<br />

• Explain how a <strong>VDF</strong>-based cooling system operates;<br />

• Illustrate air-cooled heat sinks and liquid cold plate designs developed.<br />

• Show comparative test results for three cooling solutions:<br />

• Traditional forced-air cooling (as used in production drive systems)<br />

• Water/ethylene glycol and traditional liquid cooling<br />

• <strong>VDF</strong>-based liquid cold plates and cooling system<br />

• List positive and negative attributes of each system solution<br />

• Show test data to indicate <strong>VDF</strong> cooling system technical attributes.<br />

• Demonstrate a complete proof-of-concept 750kW/1000HP inverter design utilizing a<br />

<strong>VDF</strong> cooling system.<br />

2 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


A Brief History<br />

• 1999: Thermal Form & Function LLC contracts <strong>with</strong> Compaq Computer Corporation to<br />

develop pumped liquid multiphase cooling (PLMC) system concept.<br />

• 2004: TF&F demonstrates enterprise server cabinet PLMC system prototypes<br />

• 2005: <strong>Parker</strong> Hannifin acquires Eurotherm/SSD Drives.<br />

• 2007: <strong>Parker</strong> Hannifin Corporation and Thermal Form & Function LLC announce<br />

collaboration to develop and patent vaporizable dielectric fluid (<strong>VDF</strong>) cooling system for<br />

high performance server processors:<br />

• Highly constrained physical space availability <strong>with</strong>in server cabinets<br />

• Highly constrained cost targets for commercial applications<br />

• Very high heat flux<br />

• Processor die power level: 400W.<br />

• 2007: <strong>Parker</strong> Hannifin Corporation initiates joint development project to design<br />

production <strong>VDF</strong>-cooled drive system.<br />

• Question: “Can <strong>VDF</strong> technology be scaled up to cool power semiconductor<br />

devices?”<br />

3 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


A Brief History<br />

• Drive system development partners:<br />

• <strong>Parker</strong> Hannifin Climate Systems Division (New Haven IN USA) – Component<br />

development and manufacturing:<br />

Liquid cold plates<br />

Separator<br />

Condensor<br />

Quick-disconnects<br />

Fluid distributors<br />

• <strong>Parker</strong> Hannifin SSD Division (Charlotte NC USA) – <strong>IGBT</strong> drive system development<br />

• <strong>Parker</strong> Hannifin Corporation – Pump design and development<br />

• Thermal Form & Function LLC (Manchester MA USA) – Liquid cold plate,<br />

condensor, cooling system thermal analysis and component design<br />

<strong>VDF</strong>: Vaporizable Dielectric Fluid<br />

4 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


How does <strong>VDF</strong> cooling work?<br />

Pump<br />

3 x cold<br />

plates<br />

Vapor<br />

Air Cooled<br />

CONDENSER<br />

Liquid<br />

<strong>VDF</strong> cooling loop <strong>with</strong> a pump, three cold plates and air cooled condenser.<br />

5 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Key Points: <strong>VDF</strong> <strong>Cooling</strong> Loop<br />

• Water system:<br />

• For water, 4.2J (0.00398 BTU) are required to raise the temperature of 1g (0.035 oz.)<br />

of water by 1°C (1.8°F).<br />

• Therefore, to dissipate 1kW (3414 BTU/hr.) of power, a flow rate of 2.9 l/min. (46<br />

gal./hr.) is required, assuming a 5°C increase in water temperature.<br />

• <strong>VDF</strong> system:<br />

• Uses liquid-to-gas phase change of common refrigerant such as R134-A.<br />

• As long as there is fluid in the cold plate, the cold plate surface will be held close to<br />

the boiling point of the fluid.<br />

• For 40°C refrigerant, 151J (0.143 BTU) are required to convert 1g (0.035 oz.) of<br />

refrigerant from liquid to gas.<br />

• Therefore, to dissipate 1kW (3414 BTU/hr.) of power, a flow-rate of 0.35 l/min. (5.8<br />

gal./hr.) is required.<br />

• Lower flow rates for <strong>VDF</strong> system equate to a smaller pump, power supply, reservoir, and<br />

smaller tube diameters.<br />

6 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Key Points: <strong>VDF</strong> <strong>Cooling</strong> Loop<br />

• <strong>VDF</strong> system:<br />

• Pressure and temperature are allowed to “float” relative to ambient conditions.<br />

• System design target: System is designed for maximum power load at maximum<br />

ambient conditions.<br />

• No compression cycle: System cannot cool below heat exchanger medium<br />

temperature. This is not refrigeration.<br />

• Gravity fed:<br />

• Pump must be located below liquid cold plates in the loop.<br />

• Heat exchanger must be located above the liquid cold plates in the loop.<br />

• Heat exchanger can be:<br />

• Air-to-fluid (i.e., traditional tube-and-fin);<br />

• Water-to-fluid (e.g., shell-and-tube for external chilled water or tower).<br />

• System design engineer may set the refrigerant saturation temperature by adjusting<br />

system operating pressure:<br />

• Adds additional degree of freedom for system design;<br />

• Higher pressure will increase saturation temperature, enabling a higher junction<br />

temperature and smaller condenser and/or lower airflow.<br />

• Refrigerant or other dielectric vaporizable fluid will tolerate greater temperature<br />

extremes for outdoor applications.<br />

• “Refrigerant agnostic”: Alternative refrigerants and dielectric fluids may be selected,<br />

<strong>with</strong> some changes required in system component design.<br />

7 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Test Bed and Conditions<br />

• <strong>IGBT</strong> <strong>Modules</strong> tested are dual 1700V, 450A in the 122mm x 62mm EconoDUAL<br />

package.<br />

• Three modules are used in one mechanical assembly and can be configured as either:<br />

• Three-phase bridge<br />

• Single dual switch, operating in parallel.<br />

• Functional modules for system testing:<br />

• Supplied as production modules but <strong>with</strong>out internal protective gel;<br />

• Painted for improved emissivity;<br />

• Die temperatures measured <strong>with</strong> thermal camera.<br />

• Maximum module load measured for each type of heat sink or cold plate to produce an<br />

<strong>IGBT</strong> junction temperature (T J ) of 120°C.<br />

• Two test conditions selected:<br />

• 100% steady-state load;<br />

• Load condition <strong>with</strong> 220% 10-second overload capability.<br />

EconoDUAL is a trademark of Infineon Technologies<br />

8 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Test Bed and Conditions<br />

• Air-cooled heat sink operated at 40°C and 150CFM air flow.<br />

• All water-cooled liquid cold plates operated at:<br />

• Water flow rate of 2 gal/min per cold plate;<br />

• Operated in parallel for a 6 gal/min total flow rate;<br />

• Maximum air temperature: 40°C;<br />

• Maximum temperature rise in heat exchanger: 10°C.<br />

• <strong>VDF</strong> cold plates operated at:<br />

• Minimum flow rate of 0.4 gal/min per cold plate;<br />

• Operated in parallel for a 1.2 gal/min total flow rate;<br />

• Maximum air temperature: 40°C;<br />

• Maximum temperature rise in heat exchanger: 10°C.<br />

9 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Heat Sinks and Cold Plates Tested<br />

• Case A – Air-cooled Heat Sink:<br />

• Extruded aluminum monolithic heat sink, traditional stock design;<br />

• 14:1 fin length to pitch ratio.<br />

• Case B – Standard water-cooled liquid cold plate:<br />

• Extruded aluminum plate, traditional stock design;<br />

• Press-fit continuous copper tubing in back side of plate.<br />

• Case C – Custom water-cooled liquid cold plate:<br />

• Machined aluminum plate;<br />

• Continuous copper D-shaped tubing epoxy-bonded into device mounting surface of<br />

the plate;<br />

• Tubing circuit aligned <strong>with</strong> device die locations for maximum heat transfer.<br />

• Case D – Custom water-cooled liquid cold plate:<br />

• Machined aluminum plate <strong>with</strong> machined cavity;<br />

• Aluminum offset convoluted fin brazed into machined cavity.<br />

• Case E – Custom <strong>VDF</strong> cold plate:<br />

• Machined copper cold plate <strong>with</strong> machined cavity;<br />

• Copper offset convoluted fin brazed into machined cavity.<br />

10 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Phase Module: 1200VAC 450A EconoDUAL<br />

Three module assembly. Bus capacitors at top. Gel-less painted module on right. Copper tube bonded<br />

water cold plate fitted. (Liquid cold plates illustrated are Case C – Custom machined aluminum cold plate.)<br />

11 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


<strong>IGBT</strong> Internal View<br />

Open module showing DCB and die layout. Larger die are <strong>IGBT</strong>’s and smaller die diodes.<br />

12 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


<strong>IGBT</strong> Thermal Image at Load<br />

Thermal image of module die operating at load<br />

13 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


<strong>IGBT</strong> Die Layout<br />

Die layout and equivalent thermal image<br />

14 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Case A: Air-Cooled Extruded Aluminum Heat Sink<br />

Aluminum extruded air-cooled heatsink<br />

15 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Case B: Water-Cooled Continuous Copper Tube Aluminum Liquid Cold Plate<br />

Aluminum water-cooled plate <strong>with</strong> press-fitted copper tube inserts<br />

16 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Case D: Water-cooled Custom Aluminum Convoluted Fin Liquid Cold Plate<br />

Aluminum water cold plate <strong>with</strong> inserted aluminum convoluted fin pack brazed into cavity<br />

17 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Case E: Prototype <strong>VDF</strong> Copper Offset Convoluted Fin/Copper Liquid Cold Plate<br />

Prototype single <strong>VDF</strong> copper cold plate <strong>with</strong> copper convoluted fin brazed into cavity. (Test cold plate shown<br />

has a thicker plate to allow for insertion of thermocouples.) <strong>IGBT</strong> module attached.<br />

18 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Case E: Prototype <strong>VDF</strong> Liquid Cold Plate – Thermocouple Locations<br />

<strong>VDF</strong> Cold plate thermocouple locations under <strong>IGBT</strong> and diode die<br />

19 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Case E: Prototype <strong>VDF</strong> Copper Convoluted Fin/Copper Cold Plate – Internal View<br />

<strong>VDF</strong> prototype cold plate <strong>with</strong> a clear cover and convoluted copper fin<br />

pack. (Note: Case E1 and E2 test data reflect straight fin pack.)<br />

Convoluted copper fin pack for <strong>VDF</strong> cold plate<br />

used for test data for Case E1 and E2<br />

20 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Heat Sink/Cold Plate Performance Comparison Table<br />

Table 1<br />

Module Loss (W)<br />

for 120°C junction,<br />

Steady State<br />

Module Loss (W) for<br />

120°C junction,<br />

220% overload<br />

Heat Sink/Cold<br />

Plate Resistance +<br />

21 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France<br />

°C /W<br />

Equivalent rms output<br />

current* and ratio to air,<br />

Steady State<br />

Equivalent rms output<br />

current* and ratio to air,<br />

220% overload<br />

Case A: Air Cooled 600 405 0.094 194/1.0 120/1.0<br />

Case B: Water-cooled<br />

Aluminum Cold Plate<br />

(Press-fit Standard<br />

Copper Tubing)<br />

Case C: Water-Cooled<br />

Aluminum Cold Plate<br />

(Bonded Copper<br />

D-Shape Tubing)<br />

Case D: Water-Cooled<br />

Aluminum Cold Plate<br />

(Brazed Convoluted<br />

Fin, Machined Cavity)<br />

Case E1: <strong>VDF</strong> Copper<br />

Cold Plate<br />

(450A device)<br />

Case E2: <strong>VDF</strong> Copper<br />

Cold Plate<br />

(225A device)<br />

736 437 0.051 220/1.13 130/1.08<br />

1070 500 0.035 295/1.52 152/1.27<br />

1040 490 0.037 293/1.51 150/1.25<br />

1461 660 0.009 396/2.04 190/1.58<br />

1184 568 0.008 330/1.7 164/1.37<br />

+ Thermal resistance measured to heat sink base.<br />

* Equivalent rms current calculated at 60Hz output, switching at 2kHz <strong>with</strong> a 1000V DC bus.


Heat Sink/Cold Plate Performance Comparison: Additional Capacity Achieved<br />

22 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


<strong>Cooling</strong> Loop Comparison Table<br />

Table 2<br />

Fan/pump<br />

power to<br />

cool 1KW<br />

load (W)<br />

Cost ratio of<br />

complete<br />

cooling system,<br />

<strong>IGBT</strong> modules<br />

Ratio of cooling<br />

system and <strong>IGBT</strong><br />

module cost per amp<br />

Steady State<br />

Ratio of cooling<br />

system and <strong>IGBT</strong><br />

module cost per amp<br />

220% overload<br />

Heat Sink ΔT<br />

during 10s<br />

600W Overload<br />

(°C)<br />

23 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France<br />

Heat Sink ΔT<br />

under module<br />

Steady State<br />

(°C)<br />

Case A: Air Cooled 45 1.0 1.0 1.0 29 23<br />

Case B: Water-cooled<br />

Aluminum Cold Plate<br />

(Press-fit Standard<br />

Copper Tubing)<br />

Case C: Water-Cooled<br />

Aluminum Cold Plate<br />

(Bonded Copper<br />

D-Shape Tubing)<br />

Case D: Water-Cooled<br />

Aluminum Cold Plate<br />

(Brazed Convoluted<br />

Fin, Machined Cavity)<br />

Case E1: <strong>VDF</strong> Copper<br />

Cold Plate<br />

(450A device)<br />

Case E2: <strong>VDF</strong> Copper<br />

Cold Plate<br />

(225A device)<br />

295 1.3 0.87 0.83 18 18<br />

203 1.5 1.01 0.84 20 19<br />

209 1.7 0.94 0.74 19 23<br />

12 1.3 1.57 1.22 5 6<br />

15 0.95 1.79 1.44 5 4


Forced Air <strong>Cooling</strong> System<br />

Pros<br />

• Low cost heatsinks and fans.<br />

• Large supplier base and range of options.<br />

• Air can cool other components such as bus bars,<br />

electronic circuits.<br />

• Low maintenance.<br />

• Very broad design knowledge base.<br />

Cons<br />

• Not very efficient for heat transfer.<br />

• Large volume of air requires ducting which can impose<br />

constraints on mechanical layout and design.<br />

• Space inefficient.<br />

• Air can contain water/contamination.<br />

• Acoustical noise.<br />

• Performance is affected by altitude.<br />

24 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Water-based <strong>Cooling</strong> System<br />

• Pros<br />

• Water is readily available.<br />

• Choice of liquid cold plate suppliers <strong>with</strong><br />

different price/performance ratios.<br />

• Small size and low weight of cold plates.<br />

• Heat exchanger can be placed remote to<br />

heat source.<br />

25 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Water-based <strong>Cooling</strong> System<br />

• Cons<br />

• Fluid leaks can cause serious damage and failure of equipment.<br />

• Water can be corrosive and has potential for biological contamination.<br />

• High flow rates require large pumps, power supply, pipe diameters and reservoir.<br />

• Protection required as a pressurized system.<br />

• If operated in series there is thermal stacking.<br />

• Potential for condensation.<br />

• Ethylene glycol is not environmentally friendly.<br />

26 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


<strong>VDF</strong>-Based <strong>Cooling</strong> System<br />

• Pros<br />

• Very good thermal performance/cost ratio.<br />

• Under cyclical load, reduced module baseplate ΔT.*<br />

• Low flow rates allow use of:<br />

• Small, low-power pump<br />

• Small reservoir<br />

• Reduced-diameter tubing.<br />

• Lower overall system weight.<br />

• Dielectric coolant reduces risk of short circuits or<br />

damage in case of a leak.<br />

• Heat exchanger location can be remote from heat sources.<br />

• Low thermal stacking for liquid cold plates operated in series.<br />

• Allows use of simple quick-disconnect system for coolant loop.<br />

* For module failure mode due to insulator-to-baseplate delamination, a 10°C reduction<br />

can increase life by a factor of three.<br />

27 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


<strong>VDF</strong>-Based <strong>Cooling</strong> System<br />

• Cons<br />

• Medium and pumps not as readily available.<br />

• Protection required as a pressurized system.<br />

• Very narrow design and application knowledge base.<br />

• Gravity feed requirement restricts large changes in operating orientation and places<br />

limits on mechanical design and system layout.<br />

• R134A is a greenhouse gas.<br />

28 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


750kW/1000hp Proof-of-Concept Inverter <strong>with</strong> <strong>VDF</strong> <strong>Cooling</strong> Loop and Air-based<br />

Heat Exchanger<br />

• Inverter and heat exchanger built into a 500mm wide, 600mm deep and 2000mm tall<br />

enclosure.<br />

• Five pluggable sections:<br />

• Pump module.<br />

• Three <strong>VDF</strong>-cooled inverter phases each <strong>with</strong> three 1700V 450A <strong>IGBT</strong> modules.<br />

• Additional capacitor module.<br />

• 150mm long 50mm diameter pump.<br />

• <strong>Cooling</strong> loop designed for 10kW of losses from <strong>IGBT</strong> modules operating in 50°C<br />

ambient air.<br />

29 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


750kW/1000HP Proof-of-Concept Drive <strong>with</strong> 10kW <strong>VDF</strong> <strong>Cooling</strong> Loop<br />

Fluid to air<br />

heat<br />

exchanger<br />

Vapor liquid<br />

separator<br />

Internal view from back of drive<br />

Scroll fan<br />

for heat<br />

exchanger<br />

Capacitor module<br />

Three inverter<br />

modules<br />

Pump module<br />

Front view of complete drive<br />

30 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


<strong>VDF</strong> <strong>Cooling</strong> Loop for Single Pluggable Phase Assembly<br />

Mechanical mounting frame<br />

<strong>IGBT</strong> module mounted<br />

on cold plate<br />

Exploded cold plate <strong>with</strong> fin pack<br />

Pluggable coolant<br />

inlet connector<br />

Pluggable coolant<br />

outlet connector<br />

31 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


The Future<br />

<strong>VDF</strong> cooling offers the design engineer another level of flexibility and performance<br />

but is not the solution for every application<br />

Arenas which lend themselves to this technology:<br />

• Where weight and size are important.<br />

• Applications which experience high cyclical loads.<br />

• Applications using “live” heatsinks for example <strong>with</strong> puck style devices or for EMC<br />

reduction.<br />

• Designs that require more power output from a given device package for example<br />

increased switching frequency or difficulty in paralleling devices.<br />

• Systems <strong>with</strong> multiple loads in the cooling loop connected in series which also require<br />

low thermal stacking.<br />

• Applications which already have a refrigerant loop.<br />

• Systems that require fast easy servicing and quick connect coolant connectors that can<br />

be used alongside high voltage.<br />

32 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Mérci!<br />

33 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Contact Information:<br />

<strong>Parker</strong> Hannifin Corporation Dale R. Thompson, Business Development Manager<br />

Climate Systems Division E: dale.thompson@parker.com<br />

10801 Rose Avenue www.microsystemscooling.com<br />

New Haven IN 46774 USA<br />

<strong>Parker</strong> SSD Drives Division Jeremy Howes, Senior Mechanical Engineer<br />

<strong>Parker</strong> Hannifin Corporation E: jchowes@parker.com<br />

9225 Forsyth Park Drive<br />

Charlotte NC 28273 USA David B. Levett PhD, R&D Engineer<br />

E: dblevett@parker.com<br />

DS&A LLC David L. Saums, Principal<br />

100 High Street E: dsaums@dsa-thermal.com<br />

Amesbury MA 01913 USA www.dsa-thermal.com<br />

34 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Appendix<br />

35 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Cross Section of a Complete Three-phase Inverter <strong>with</strong> a <strong>VDF</strong> <strong>Cooling</strong> System<br />

36 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France


Vaporizable Dielectric Fluids<br />

• Available fluids:<br />

• Dupont DP-1<br />

• 3M EMMD Fluoroketones (FK) and Hydrofluoroethers (HFEs):<br />

• Novec<br />

• Solvay Galden<br />

• Others (including other refrigerants in HFC family)<br />

• Certain vaporizable dielectric liquids address Greenhouse Gas (GHG) potential <strong>with</strong><br />

values less than 1.0<br />

• Selection of fluid for <strong>VDF</strong> systems requires consideration for system design:<br />

• Fluid heat capacity (as different from water)<br />

• Pump (type of pump, flow-through lubrication and selection of lubricants, and pump<br />

sizing)<br />

• Condenser (sizing)<br />

• Tubing diameter<br />

37 Levett, Howes, Saums – <strong>Cooling</strong> of <strong>IGBT</strong> <strong>Modules</strong> <strong>with</strong> Vaporizable Dielectric Fluid • IMAPS France ATW Thermal 2008 • La Rochelle, France

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!