06.03.2013 Views

Tutorial: Quantum Information & Cold Atoms

Tutorial: Quantum Information & Cold Atoms

Tutorial: Quantum Information & Cold Atoms

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Tutorial</strong>:<br />

<strong>Quantum</strong> <strong>Information</strong> & <strong>Cold</strong> <strong>Atoms</strong><br />

• cold atoms as a tool in quantum information<br />

• applications:<br />

• quantum computing<br />

• quantum communications<br />

• precision measurements<br />

Peter Zoller<br />

Institute for Theoretical Physics<br />

University of Innsbruck Austria<br />

1


Entangled States<br />

• entanglement<br />

A B<br />

states:<br />

but also ...<br />

|0 |0<br />

|1 |1<br />

1<br />

2<br />

|0 |0 |1 |1<br />

... product states<br />

... entangled<br />

• fundamental aspects of quantum mechanics<br />

- incompatibility of QM with LHVT<br />

- decoherence<br />

- measurement theory (?)<br />

• applications<br />

- quantum communications & computing<br />

- precision measurement<br />

Schrödinger:<br />

Verschränkung<br />

2


Engineering Entangled States<br />

We need ...<br />

• “quantum engineering”<br />

A B environment<br />

A B<br />

|aA|bB cab|aA|bB<br />

Hamiltonian evolution<br />

• or: “quantum gambling”<br />

measurement<br />

• isolation<br />

|A|B|E |ABE<br />

AB trE|ABE|<br />

|AB|<br />

<strong>Quantum</strong> optical systems provide one of the best set-ups to create<br />

entangled states in a controlled way.<br />

3


<strong>Quantum</strong> Optics Road Map<br />

• Starting from the quantum optical tool box:<br />

photons<br />

... manipulate & couple on level of single quanta<br />

atoms<br />

• we assemble large systems ...<br />

node<br />

channel<br />

• Nodes: local quantum computing<br />

- store quantum information<br />

- local quantum processing<br />

• Channels: quantum communication<br />

- transmit quantum information<br />

4


<strong>Quantum</strong> information processing<br />

• quantum computing<br />

ouput<br />

quantum<br />

processor<br />

input<br />

• quantum communications<br />

|<br />

| |<br />

|<br />

|out<br />

|out Û|in<br />

|in<br />

|<br />

transmission of a quantum state<br />

quantum weirdness:<br />

superposition<br />

entanglement<br />

interference<br />

nonclonability and<br />

uncertainty<br />

no decoherence!<br />

teleportation<br />

crytography<br />

5


Qubits, <strong>Quantum</strong> Gates etc.<br />

• quantum bits or qubits<br />

n spin1/2<br />

• single qubit gate<br />

• two qubit gate<br />

|1i<br />

|0i<br />

example: two qubits<br />

| Û1| U1<br />

control target<br />

| c00|00 c01|01 c10|10 c11|11<br />

|a<br />

|b<br />

|a<br />

Controlled-NOT<br />

|a b<br />

6


1. <strong>Cold</strong> atoms as quantum memory<br />

• technique; cooling and trapping of atoms<br />

• decoherence properties<br />

2. How to entangle atoms?<br />

7


1. <strong>Cold</strong> atoms as quantum memory<br />

• cold atoms • single qubit gates<br />

single trapped atom:<br />

|0 |1<br />

qubit in longlived<br />

internal states<br />

trap<br />

addressing<br />

single qubit<br />

laser<br />

laser<br />

|0 |1<br />

8


Remarks: Traps ...<br />

• ion traps<br />

200 µm<br />

Boulder linear ion trap<br />

NIST Boulder, Innsbruck, Munich,<br />

Hamburg, Aarhus, Oxford, London, ...<br />

ions<br />

issues:<br />

conservative potential<br />

(heating?)<br />

single atom loading<br />

laser cooling to ground<br />

state<br />

9


Remarks: Traps ...<br />

• far-offresonance optical lattice<br />

nonresonant<br />

laser<br />

arrays of microtraps<br />

AC Stark shift<br />

laser<br />

optical lattice<br />

issues:<br />

linear ion trap<br />

conservative potential<br />

single atom loading (?!)<br />

laser cooling<br />

laser<br />

10


Remarks: Traps ...<br />

• loading a lattice from a Bose Einstein condensate<br />

– regular filling with exactly 1, 2 or 3 atoms per lattice site via Mott insulator<br />

quantum phase transition (Bose Hubbard model)<br />

linear ion trap<br />

– large number of atoms<br />

Bose Hubbard model<br />

• superfluid phase<br />

• Mott insulator<br />

theory: Innsbruck 1998<br />

exp: Munich 2001<br />

. . . .<br />

. . . .<br />

<br />

b1 b2 bM |vac<br />

"Fock states"<br />

11


Remarks: Traps ...<br />

• single atom FORTs<br />

array of FORTs (Hannover)<br />

two movable single-atom<br />

FORTs (Orsay)<br />

4 µm<br />

12


Remarks: Traps ...<br />

• magnetic traps<br />

atom "chips"<br />

Schmiedmayer<br />

Heidelberg, Munich,<br />

Harvard, Orsay<br />

issues:<br />

linear ion trap<br />

conservative potential<br />

surface effects (?)<br />

single atom loading (?)<br />

laser cooling (?)<br />

13


... and tricks with traps<br />

• We can move atoms around<br />

|qubit |motion<br />

• optical traps: internal state<br />

dependent potentials<br />

|0 |1<br />

qubit<br />

fine structure<br />

Alkali atom<br />

|0<br />

|1<br />

14


2. Engineering entanglement: two-qubit gates<br />

• implement entanglement of two qubits<br />

U2<br />

• How?<br />

example:<br />

phase gate<br />

auxiliary collective mode as data bus<br />

controllable two body interactions<br />

dynamical phases<br />

geometric phases<br />

|00 |00<br />

|01 |01<br />

|10 |10<br />

|11 e i |11<br />

difficult<br />

15


Concept 1: two-qubit gates via quantum databus<br />

- Entanglement via collective auxiliary quantum degree of freedom<br />

Collective mode<br />

1 2<br />

qubits<br />

quantum<br />

data bus<br />

switch<br />

Examples:<br />

Ion traps<br />

Cavity QED<br />

state vector:<br />

| cx|xN1xN2 x0 |collective mode<br />

x<br />

gate:<br />

quantum register data bus<br />

swap<br />

requirement: cooling of the collective mode (= prepare a pure state)<br />

16


Ion Trap <strong>Quantum</strong> Computer<br />

• <strong>Cold</strong> ions in a linear trap<br />

laser pulses entangle ion pairs<br />

• State vector<br />

Blatt<br />

|Ψi = X cx|xN−1,... ,x0iat om |0iphonon<br />

quantum register databus<br />

theory: Innsbruck, Aarhus, London, Brisbane ...<br />

exp: NIST Boulder, Innsbruck, Munich, Oxford ..<br />

• Qubits: internal atomic states<br />

• <strong>Quantum</strong> gates: entanglement<br />

via exchange of phonons of<br />

quantized center-of-mass mode<br />

• Achievements:<br />

– entanglement of four ions<br />

– Bell measurements<br />

– individual addressing<br />

– ground state laser cooling<br />

17


Optical Cavity QED<br />

• optical photons in a high-Q cavity as "data bus"<br />

laser<br />

spontaneous<br />

emission<br />

cavity decay<br />

theory: Innsbruck, London ...<br />

exp: Caltech, Georgia Tech, Munich<br />

laser<br />

cavity<br />

adiabatic pasage<br />

decoherence free subspace<br />

18


Concept 2: two-qubit gates via two-body interactions<br />

- Controlled two-body interaction<br />

V(R)<br />

1 2<br />

qubits<br />

• physical mechanisms<br />

We must design a Hamiltonian<br />

so that<br />

optical dipole – dipole (Albuquerque)<br />

cold collisions (Innsbruck)<br />

H Et|1 11| |121|<br />

|11 |12 e i |11 |12<br />

Rydberg – Rydberg (Innsbruck + Harvard + Storrs)<br />

19


<strong>Cold</strong> controlled collisions<br />

• consider two atoms in different internal states stored e.g. in an optical<br />

lattice<br />

• we move the lattice in a state dependent way, and induce a collision:<br />

the collision is sufficiently slow not to excite oscillations<br />

before ...<br />

during ...<br />

after collision<br />

atom 1 atom 2<br />

• phase gate via collisions ...<br />

cold atoms<br />

on site interaction =<br />

phase shift<br />

(coherent collision)<br />

20


Entanglement<br />

• parallelism<br />

e<br />

e<br />

• fidelity F~99%<br />

• ... slow <br />

i φ<br />

1 0 1 0<br />

i φ<br />

i φ<br />

e<br />

e i φ i φ<br />

e<br />

1 0 1 0 1 0 1 0 1 0<br />

Lift<br />

Shift<br />

Lower<br />

21


Rydberg – Rydberg interactions<br />

• Rydberg atom in constant electric field<br />

• setup<br />

atom<br />

E<br />

energy<br />

• linear Stark effect<br />

n ~ 15<br />

• Large dipole-dipole interaction<br />

µ 1<br />

Vdipr<br />

µ 2<br />

|r<br />

laser<br />

|g<br />

E<br />

theory: Harvard + Innsbruck +<br />

Storrs, Aarhus<br />

• permanent dipole moment<br />

E 1kV/cm<br />

n 2 huge!<br />

R opt/2 300 nm<br />

E 60 GHz<br />

Vdip 4 GHz<br />

for n 15<br />

22


• 2 qubit quantum gate<br />

|00 |00<br />

|01 |01<br />

|10 |10<br />

|11 e i |11<br />

fast gate<br />

energy shift for time<br />

interval = phase<br />

23


"Dipole blockade"<br />

• atomic configuration<br />

Atom 1 Atom 2<br />

|r1<br />

1<br />

|11<br />

qubit<br />

|01<br />

Vdip u<br />

laser laser<br />

|1 2<br />

qubit<br />

|0 2<br />

2<br />

|r 2<br />

• dipole blockade<br />

2<br />

| r0〉<br />

| 0r〉<br />

1<br />

| rr〉<br />

| 00〉<br />

Vdip u<br />

Large dipole-dipole<br />

interaction shifts level<br />

off resonance:<br />

No double excitation -<br />

no force!<br />

24


3. Mesoscopic atomic ensembles<br />

• idea<br />

– dipole blockade mechanism<br />

theory: Harvard + Innsbruck, exp: Storrs, ...<br />

25


Configuration<br />

• mesoscopic atomic ensembles (instead of microscopic quantum<br />

objects)<br />

- coherent manipulation of collective excitations of atomic ensembles<br />

10 m<br />

-underlying physics:<br />

dipole blockade<br />

N 100 atoms<br />

laser<br />

ground state<br />

|g<br />

|r<br />

laser<br />

|q<br />

26


Manipulating collective excitations<br />

• ground state<br />

|g N |g1|g2 |gN<br />

• one excitation (Fock state)<br />

|g N1 q i |g 1 |qi |g N<br />

• two excitations<br />

|g N2 q i,j |g 1 |qi |q j |gN<br />

laser<br />

etc.<br />

We can store and manipulate qubits.<br />

laser<br />

|g<br />

|r<br />

|q<br />

blockade<br />

27


• actual configuration<br />

hopping via resonant dipole-dipole interaction<br />

atom i atom j<br />

|g<br />

|p<br />

|r<br />

|p<br />

|p<br />

|r<br />

|p<br />

|q |q<br />

|g<br />

resonance condition: Er E p E p Er<br />

idea: Cote, Lukin<br />

28


cont.<br />

• qubits<br />

| |g N |g N1 q<br />

• entanglement of ensembles<br />

+<br />

superposition<br />

29


4. <strong>Quantum</strong> Communication<br />

• Question:<br />

– what can we do with 10 qubit quantum computers?<br />

• Example:<br />

– quantum communication with memory and quantum error<br />

correction = quantum repeater<br />

30


<strong>Quantum</strong> Communications<br />

• classical communications • quantum communications<br />

0 0<br />

Alice Bob Alice Bob<br />

0 0<br />

1<br />

1<br />

0<br />

0<br />

1<br />

|Ψ1i|Ψ2i<br />

networks<br />

cryptopgraphy<br />

|Ψ3i |Ψ4i<br />

|Ψ5i|Ψ6i<br />

Alice Bob Alice Bob<br />

1 0<br />

0<br />

0<br />

1<br />

|Ψ1i|Ψ2i<br />

ρ ρ<br />

Eve Eve<br />

ρ ρ<br />

|Ψ4i<br />

31


Optical Interconnects<br />

• A cavity QED implementation<br />

Optical cavities connected by a quantum channel<br />

Node A Node B<br />

Laser<br />

• memory:<br />

atoms<br />

fiber<br />

• databus:<br />

photons<br />

• memory:<br />

atoms<br />

Laser<br />

32


<strong>Quantum</strong> Communication Protocols<br />

• Problem: the basic problem of quantum communication is noise /<br />

decoherence<br />

Alice Bob<br />

|φi<br />

A<br />

noise<br />

ρ 6= |φihφ|<br />

pure state mixed state:<br />

fidelity F || 1<br />

• Solution: quantum communication in the presence of noise is based on<br />

- teleportation<br />

- purification (error correction)<br />

33


1. Teleportation<br />

Bennett et al. PRL '93; exp with photons: Innsbruck, Rome, Caltech<br />

|φi<br />

C<br />

Alice Bob<br />

A<br />

noise<br />

|AB |0A|1B |1A|0B (singlet)<br />

EPR pair<br />

• Assume: Alice and Bob share a singlet state (given resource)<br />

• Idea: Alice can transmit a qubit to Bob without physically sending the<br />

qubit<br />

B<br />

34


Teleportation protocol:<br />

1. Alice performs a CNOT followed by a measurement of A and C<br />

|φi<br />

C A<br />

CNOT + state measurement<br />

2. Alice tells Bob the measurement outcome<br />

3. Rotation<br />

C<br />

C<br />

A<br />

A<br />

classical communication<br />

The state has been teleported to B.<br />

How do we get the EPR pair?<br />

⎧<br />

⎪⎨<br />

4 possible outcomes =<br />

⎪⎩<br />

∀|φi with prob 1<br />

4<br />

B<br />

|φi<br />

B<br />

00<br />

01<br />

10<br />

11<br />

unitary operation<br />

35


2. Purifying EPR pairs<br />

• A noisy quantum channel allows us to generate many noisy EPR pairs.<br />

1/2 < F < 1<br />

...<br />

Bennett et al., Deutsch et al. PRL '95<br />

purification<br />

F ~ 1<br />

If F 1/2 we can purify and obtain one EPR pair with F 1.<br />

To do this we need a small quantum computer.<br />

• In summary: quantum communication via a noisy channel:<br />

- we generate one high fidelity EPR pair by purification<br />

- we teleport the quantum state<br />

36


3. <strong>Quantum</strong> Repeater<br />

• classical repeater<br />

"1"<br />

"0"<br />

A<br />

classical<br />

signal<br />

L0<br />

C 1<br />

absorption<br />

& dispersion<br />

A B<br />

• quantum repeater:<br />

– we cannot clone a quantum state!?<br />

– Idea: purify segments of EPR pairs ... and teleport<br />

L0<br />

C 2<br />

H. Briegel et al. PRL '98<br />

37


cont.<br />

• <strong>Quantum</strong> repeater protocol: generate a long distance EPR pair<br />

1/2 < F


Other (easier?) implementations<br />

• single atoms, single photons and high-Q cavities: "quantum engineering"<br />

Node A Node B<br />

Laser<br />

• memory:<br />

atoms<br />

fiber<br />

• databus:<br />

photons<br />

• memory:<br />

atoms<br />

Laser<br />

• atomic ensembles, free space, or low-Q cavities: "quantum gambling"<br />

Sample A<br />

Sample B<br />

deterministic<br />

strong coupling on<br />

single quantum level<br />

difficult !<br />

probabilistic<br />

scheme<br />

noise tolerant<br />

linear optics<br />

simpler !<br />

39


To illustrate the ideas ...<br />

Single <strong>Atoms</strong><br />

laser<br />

laser<br />

ion A<br />

ion B<br />

Internal states<br />

ionA ionB<br />

- Weak (short) laser pulse, so that the excitation probability is small.<br />

- If no detection, pump back and start again.<br />

|1i |1i<br />

|0i |0i<br />

- If detection, an entangled state is created.because we do not know<br />

which atom emitted the photon<br />

|0, 1i±|1, 0i<br />

40


Atomic Ensembles<br />

• system: cloud of cold atoms<br />

laser Stokes<br />

ensemble<br />

• Raman process:<br />

|0 N |vac (atomic ground state)<br />

1<br />

Na<br />

Na<br />

<br />

i1<br />

• state of atomic collective mode + Stokes photon<br />

Internal states<br />

laser<br />

|0i<br />

|r<br />

Stokes<br />

|1i<br />

|01 1i 0Na a |vac (single atomic excitation)<br />

| |vac pc a <br />

cStokes|vac O pc<br />

a,a 1 (for weak excitation)<br />

2 pc 1<br />

... analogous to parametric<br />

downconversion<br />

41


Generation of Entanglement (Ensembles)<br />

Sample A<br />

Sample B<br />

|A |B |vacA pc a c s |vacA |vacB pc b c s |vacB<br />

measurement gives<br />

|AB a b |vac<br />

|1a,0b |0a,1b<br />

We have generated entanglement between collective atomic states<br />

42


Continuous Variable Teleportation<br />

• Instead of qubits we consider now continuous variable quantum states<br />

| dx|x x x position<br />

p momentum<br />

x,p i<br />

• transmission of a cv state<br />

|φi |φi |φi<br />

• continuous variable teleportation<br />

|φi<br />

C A<br />

EPR pair<br />

|φi<br />

Alice Bob<br />

|EPRAB dx |xA|xB<br />

dp |pA| pB<br />

|φi<br />

B<br />

Vaidman<br />

Braunstein<br />

Kimble (exp)<br />

x A x B|EPR x 1|EPR<br />

p A p B|EPR p 1|EPR<br />

43


Teleportation with Squeezed Light<br />

• Two-mode squeezed light:<br />

electric field<br />

• Scheme<br />

S. Braunstein, H.J. Kimble et al., PRL '98; Science '99<br />

E ae ikxit<br />

x ip<br />

quadrature components<br />

Bell<br />

3<br />

|φi<br />

out<br />

in 1 2<br />

pump squeezed light<br />

=EPR state<br />

2<br />

parametric<br />

downconversion<br />

EPR source<br />

squeezed light<br />

1<br />

2<br />

44


Atomic ensembles as quantum memory for cont var states<br />

• We consider an ensemble of N atoms<br />

ensemble of<br />

atoms<br />

two-level atom<br />

=spin -1/2<br />

• a collection of two-level atoms can be described in terms of a collective<br />

“angular momentum“<br />

~S a =<br />

collective angular<br />

momentum<br />

NX<br />

µ=1<br />

1<br />

2 ~σ(µ)<br />

two-level atom<br />

= spin -1/2<br />

1 2<br />

Bloch vector<br />

x<br />

z<br />

45<br />

y


atoms cont.<br />

• superposition of the two ground states: coherent spin state<br />

1 2<br />

Bloch vector<br />

• quantum fluctuations<br />

S y a , Sz a iSx a<br />

S y a Sz a 1<br />

2 |S x a |<br />

we treat S x a classically and rescale<br />

X a , P a i X a P a 1<br />

2<br />

canonical communation relations<br />

1<br />

2<br />

|1 |2 N<br />

S a Sx a , Sy a , Sz a N a<br />

2 ,0,0<br />

x<br />

P a<br />

Bloch picture<br />

z<br />

X a<br />

| 46<br />

a dXa |XaX a y<br />

coherent spin state =vacuum state<br />

there are many cv quantum states<br />

around it:


Teleportation with coherent light + atomic ensembles<br />

coherent<br />

light<br />

ex<br />

atoms 1 atoms 2<br />

in<br />

out<br />

measurement projects atomic ensembles<br />

into continuous variable EPR state<br />

|EPR dP|P A| PB dX |XA|XB<br />

theory: Innsbruck<br />

EPR<br />

experiment: E. Polzik et al. (Aarhus), Nature 2001<br />

measure<br />

47


Atomic ensembles: quantum memory for light<br />

• purpose<br />

incoming light pulse<br />

unknown (arbitrary) state<br />

known shape of wave<br />

packet<br />

• how? example ...<br />

theory Harvard, Aarhus<br />

exp: Harvard<br />

write<br />

[ Atomic ensemble ]<br />

storage medium outgoing light pulse<br />

cavity<br />

a1<br />

atoms<br />

read<br />

cavity laser<br />

same state<br />

reshaping<br />

48


4. Precision measurements<br />

• maximally entangled states and squeezed atomic states for precision<br />

measurement beyond the standard quantum limit<br />

theory: NIST Boulder, Innsbruck, Aarhus, Georgia Tech, Harvard<br />

exp: NIST Boulder, Aarhus, Rochester<br />

49


Ramsey method<br />

|0 |1<br />

π /<br />

π /<br />

2<br />

2<br />

#ofatomsin|0<br />

|0 1<br />

2<br />

P0T cos 1<br />

2 L 0T 2<br />

|0 |1<br />

1<br />

2 |0 e i L 0t |1<br />

cos 1<br />

2 L 0t|0 sin 1<br />

2 L 0t<br />

y<br />

<br />

/2<br />

Nb<br />

/2 <br />

0T<br />

x<br />

L 0T<br />

x<br />

x<br />

Bloch picture<br />

z<br />

|0<br />

z<br />

y<br />

y<br />

y<br />

50


We compare ...<br />

• N independent atoms<br />

SQL <br />

1<br />

T nrep<br />

1<br />

N<br />

standard quantum noise limit<br />

Remarks:<br />

N is limited: density / collisions<br />

T is limited: decoherence<br />

• N entangled atoms<br />

ent <br />

• figure of merit: to achieve the same uncertainty ...<br />

2 nrep SQL<br />

nrep ent<br />

N<br />

fN 2 1 N<br />

1<br />

T nrep<br />

• present experiments: NIST Boulder 4 ions entangled<br />

1<br />

fN <br />

1<br />

T nrep<br />

|0000 |1111<br />

1<br />

N<br />

Heisenberg limit:<br />

maximally entangled state<br />

We want 2 1<br />

51


Jx<br />

Example: Spin Squeezing with BEC<br />

• Entanglement via collisions<br />

BEC<br />

|0 N<br />

product<br />

state<br />

Jz<br />

N<br />

laser<br />

• Bloch vector picture<br />

Jy<br />

# atoms N<br />

Jx<br />

[ 1<br />

2<br />

(|0 |1 N<br />

<br />

product<br />

state<br />

Jz<br />

collisions<br />

Jx<br />

Jy<br />

theory: Aarhus + Innsbruck, Georgia Tech,<br />

Harvard; exp.: see also Yale<br />

cn|0 n |1 Nn<br />

entangled state<br />

Jz<br />

squeezing below the<br />

standard quantum limit<br />

Jy<br />

52


5. Topological quantum computing<br />

concept: Kitaev, Preskill, Freedman<br />

• engineering model systems with topologically protected ground states:<br />

indistinguishable under local operations<br />

• Fractional quantum Hall effect: electron in 2D + magnetic field: isolated<br />

ground state with gapped excitations<br />

• on a closed surface of genus g: renders the ground state degenerate.<br />

• transformation of degenerate ground states into each other via motion<br />

of flux quantum around nontrivial topological paths<br />

• Rem.: so far no atomic physics models<br />

53


A (small) first step: ½ - (abelian) anyons in small BECs<br />

• quantum degenerate Bose gas: 2D and rotating trap<br />

BEC<br />

Ω = 0<br />

1 vortex 2 vortices<br />

• what happens is a fractional quantum Hall scenario with bosons<br />

Ω<br />

rotate the trap<br />

?<br />

Ω<br />

Ω ∼ ω<br />

product states entangled states ☺<br />

Laughlin fluid excitations:<br />

½ anyons<br />

laser<br />

we can create and<br />

manipulate anyons!<br />

54


1. System: N bosonic atoms<br />

• N bosons<br />

• Hamiltonian in rotating frame<br />

H = 1<br />

2<br />

NX<br />

µ<br />

−∇ 2 i + r2 i<br />

i=1<br />

Ω<br />

− 2<br />

ω Liz<br />

<br />

+ η<br />

NX<br />

δ(ri − rj)<br />

length scale: motion in trap rotation contact interaction<br />

` =(¯h/mω) 1/2<br />

• In the limit Ω ∼ ω equivalent to (fermionic) quantum Hall Hamiltonian<br />

Gunn & Wilkin '00<br />

Ω<br />

harmonic trapping potential<br />

rotation<br />

Ω<br />

i


2. Energy spectrum<br />

• independent atoms<br />

harmonic trap<br />

...<br />

...<br />

¯hω<br />

2¯hω<br />

Landau wave functions:<br />

z m e − 1 2 |z|2<br />

+ rotation<br />

x + iy<br />

• we assume: dynamics restricted to first Landau levels<br />

Ω<br />

...<br />

...<br />

¯h(ω − Ω)<br />

"Landau levels":<br />

~ degenerate<br />

kT ¿ ¯hω<br />

56


• interacting atoms<br />

– dynamics in first "Landau level"<br />

Vint<br />

collisional interaction<br />

...<br />

¯h(ω − Ω)<br />

rotation<br />

• for Ω ∼ ω a parameter regime of effectively strong interactions<br />

Vint À ¯h(Ω − ω)<br />

external parameter<br />

strongly correlated qu fluid<br />

dilute gas!<br />

57


cont.<br />

• ground state: ½ - Laughlin state<br />

physics: atoms want to be in a collisional dark state to minimize energy:<br />

built from lowest<br />

Landau levels<br />

ψ[z] = Y<br />

i


3. Excitations: ½ anyons<br />

• quasihole at position<br />

ψ z0<br />

z0<br />

[z] =Y(zi<br />

− z0) ψ[z]<br />

i<br />

half atom missing:<br />

½ anyons z0<br />

• creating a quasiparticle: piercing with am offresonant laser<br />

z0<br />

laser<br />

H◦ = HL + V0<br />

X<br />

δ(zi − z0)<br />

i<br />

off-resonant laser interaction<br />

59


4. Anyons & fractional statistics<br />

We adiabatically drag the quasihole around ... and pick up a Berry's phase<br />

• one anyon<br />

• two anyons<br />

ψ z0 −→ eiφ ψ z0<br />

Berry's phase<br />

φ =2πn # atoms inside the curve<br />

ψ z0z1 −→ eiφ ψ z0z1<br />

φ =2π(n −<br />

2<br />

1 )=2πn− π<br />

½ anyons: π/2 bosons:<br />

(fractional statistics)<br />

fermions<br />

π<br />

there is an extra phase<br />

independent of area<br />

if we interchange the two<br />

holes: π/2<br />

2π<br />

π<br />

Fractional statistics has never been seen directly!<br />

60

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!