20.03.2013 Views

Cutting cylinder oil costs without a break in service - Wärtsilä

Cutting cylinder oil costs without a break in service - Wärtsilä

Cutting cylinder oil costs without a break in service - Wärtsilä

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Cutt<strong>in</strong>g</strong> <strong>cyl<strong>in</strong>der</strong> <strong>oil</strong> <strong>costs</strong><br />

<strong>without</strong> a <strong>break</strong> <strong>in</strong> <strong>service</strong><br />

AUTHOR: Jürgen Gerdes, General Manager, Service Sales, <strong>Wärtsilä</strong> <strong>in</strong> Switzerland<br />

Cyl<strong>in</strong>der <strong>oil</strong><br />

daily tank<br />

Filter and<br />

measur<strong>in</strong>g unit<br />

FCM-20<br />

ALM-20<br />

Dosage pump<br />

Servo <strong>oil</strong> supply unit<br />

Lubricat<strong>in</strong>g <strong>oil</strong> dra<strong>in</strong> tank<br />

Lubricator<br />

Fig. 1 – Arrangement of the Retrofit Pulse Lubrication System on one <strong>cyl<strong>in</strong>der</strong> of<br />

a <strong>Wärtsilä</strong> low-speed eng<strong>in</strong>e.<br />

Pulse Lubricat<strong>in</strong>g Systems have<br />

quickly become popular as retrofits<br />

for <strong>Wärtsilä</strong> RTA and RT-flex low-<br />

speed eng<strong>in</strong>es, and s<strong>in</strong>ce summer<br />

2006, complete systems have been<br />

ordered for more than 80 eng<strong>in</strong>es.<br />

After-sales <strong>service</strong> is more than just<br />

supply<strong>in</strong>g spare parts. <strong>Wärtsilä</strong> offers<br />

a complete range of products and<br />

proactive <strong>service</strong>s to help customers<br />

get the best results from their eng<strong>in</strong>es.<br />

<strong>Wärtsilä</strong>’s centre for 2-stroke eng<strong>in</strong>es<br />

<strong>in</strong> Switzerland provides customers<br />

WÄRTSILÄ TECHNICAL JOURNAL 02.2007<br />

with orig<strong>in</strong>al equipment manufacturer<br />

(OEM) spare parts, tools and<br />

consumables, together with performance<br />

optimization, modernization, and<br />

operational support <strong>service</strong>s.<br />

Customers are mov<strong>in</strong>g their focus<br />

more and more to performance<br />

optimization, especially towards upgrades<br />

or retrofits that result <strong>in</strong> immediate<br />

fuel or lubricat<strong>in</strong>g <strong>oil</strong> sav<strong>in</strong>gs.<br />

For example, s<strong>in</strong>ce March 2004, the price<br />

of <strong>cyl<strong>in</strong>der</strong> lubricat<strong>in</strong>g <strong>oil</strong> has <strong>in</strong>creased by<br />

some 250% with an average cost today of<br />

about USD 1700 per tonne. Thus, on a 12<strong>cyl<strong>in</strong>der</strong><br />

<strong>Wärtsilä</strong> RTA96C eng<strong>in</strong>e with a<br />

68 MW output, even a modest cut of just<br />

0.3 g/kWh <strong>in</strong> the <strong>cyl<strong>in</strong>der</strong> <strong>oil</strong> feed rate can<br />

result <strong>in</strong> annual sav<strong>in</strong>gs of more than USD<br />

200,000. Therefore, it was decided <strong>in</strong> early<br />

2006 to accelerate development of the new,<br />

electronically-controlled Pulse Lubricat<strong>in</strong>g<br />

System (PLS) to make it available for<br />

retrofitt<strong>in</strong>g to RTA and RT-flex eng<strong>in</strong>es.<br />

PLS cuts <strong>cyl<strong>in</strong>der</strong> <strong>oil</strong> consumption<br />

<strong>without</strong> compromis<strong>in</strong>g piston-runn<strong>in</strong>g<br />

reliability by accurately meter<strong>in</strong>g and<br />

precisely tim<strong>in</strong>g the <strong>oil</strong> delivery, and<br />

improv<strong>in</strong>g the distribution of <strong>cyl<strong>in</strong>der</strong><br />

lubricat<strong>in</strong>g <strong>oil</strong> to an eng<strong>in</strong>e’s <strong>cyl<strong>in</strong>der</strong><br />

l<strong>in</strong>ers. It enables the guide feed rate<br />

for <strong>cyl<strong>in</strong>der</strong> lubricat<strong>in</strong>g <strong>oil</strong> to be cut<br />

to 0.8 g/kWh <strong>in</strong> <strong>Wärtsilä</strong> RTA and<br />

RT-flex eng<strong>in</strong>es retrofitted with PLS.<br />

When, dur<strong>in</strong>g the SMM exhibition <strong>in</strong><br />

Hamburg at the end of September 2006,<br />

the Retrofit Pulse Lubricat<strong>in</strong>g System<br />

(RPLS) was officially announced it attracted<br />

much <strong>in</strong>terest from shipowners. The first<br />

retrofits were already on order before the<br />

announcement, and by the end of August<br />

2007, orders for more than 80 complete<br />

eng<strong>in</strong>e <strong>in</strong>stallations had been received,<br />

amount<strong>in</strong>g to 850 <strong>cyl<strong>in</strong>der</strong>s. By mid-<br />

August, 16 eng<strong>in</strong>es of both RTA and<br />

RT-flex types had been successfully<br />

retrofitted, while the first orders<br />

had also been booked for RTA84C<br />

and RTA84T eng<strong>in</strong>es.<br />

The first retrofit went <strong>in</strong>to <strong>service</strong> at<br />

the beg<strong>in</strong>n<strong>in</strong>g of September 2006. By<br />

mid-2007, the RPLS had been released<br />

for RTA96C, RT-flex96C, RTA84C<br />

and RTA84T eng<strong>in</strong>e types while further<br />

eng<strong>in</strong>e types will be added dur<strong>in</strong>g 2008.<br />

Retrofit <strong>in</strong>stallation<br />

A retrofit is especially attractive to<br />

shipowners if it can be undertaken <strong>without</strong><br />

disturb<strong>in</strong>g commercial operation of the p<br />

<strong>in</strong>detail 51


p [ MARINE / IN DETAIL ]<br />

[ MARINE / IN DETAIL ]<br />

vessel. <strong>Wärtsilä</strong>’s two-stroke center and the<br />

<strong>Wärtsilä</strong> <strong>service</strong>s network are thus work<strong>in</strong>g<br />

<strong>in</strong> close co-operation to m<strong>in</strong>imize the<br />

required <strong>in</strong>stallation time so that RPLS can<br />

be retrofitted <strong>in</strong> a ship while on passage and<br />

dur<strong>in</strong>g a normal port stay. For example,<br />

<strong>Wärtsilä</strong> <strong>in</strong> Korea is manufactur<strong>in</strong>g all<br />

pipework and other mechanical parts.<br />

Before dispatch<strong>in</strong>g the material to the<br />

vessel, it is prefitted on a dummy <strong>in</strong> the<br />

<strong>Wärtsilä</strong> workshop <strong>in</strong> Noksan, South<br />

Korea, to verify that the work is correct.<br />

RPLS is an <strong>in</strong>dependent system with few<br />

connections or <strong>in</strong>terfaces to other systems,<br />

and utilizes the eng<strong>in</strong>e’s exist<strong>in</strong>g <strong>cyl<strong>in</strong>der</strong><br />

l<strong>in</strong>ers. Thus preparation and <strong>in</strong>stallation<br />

are easy and fast. All equipment, <strong>in</strong>clud<strong>in</strong>g<br />

prefabricated pip<strong>in</strong>g, is supplied with<br />

<strong>in</strong>stallation and commission<strong>in</strong>g work be<strong>in</strong>g<br />

undertaken by <strong>Wärtsilä</strong> <strong>service</strong> eng<strong>in</strong>eers.<br />

To a substantial extent this material<br />

can be <strong>in</strong>stalled dur<strong>in</strong>g the voyage,<br />

thereby considerably reduc<strong>in</strong>g the<br />

port time required for fi nish<strong>in</strong>g the<br />

<strong>in</strong>stallation and for the commission<strong>in</strong>g.<br />

Installation of controls, pumps, wir<strong>in</strong>g,<br />

and <strong>in</strong>terface connections to remote and<br />

alarm monitor<strong>in</strong>g systems, is executed<br />

dur<strong>in</strong>g the voyage. Ample attention is<br />

paid to commission<strong>in</strong>g, fi ne adjustment<br />

and the runn<strong>in</strong>g-<strong>in</strong> of the RPLS <strong>in</strong> port<br />

and dur<strong>in</strong>g a confi rmation voyage.<br />

The whole retrofit and commission<strong>in</strong>g<br />

on the first vessel, the 7500 TEU conta<strong>in</strong>er<br />

ship “COSCO SHENZHEN” with a 12<strong>cyl<strong>in</strong>der</strong><br />

<strong>Wärtsilä</strong> RTA96C ma<strong>in</strong> eng<strong>in</strong>e,<br />

could be completed <strong>in</strong> five steps <strong>without</strong><br />

<strong>in</strong>terrupt<strong>in</strong>g the vessel’s schedule:<br />

1. Pre-<strong>in</strong>spection <strong>in</strong> Hong Kong<br />

on 22 June 2006.<br />

2. First <strong>in</strong>stallation trip from Hong<br />

Kong to Yantian dur<strong>in</strong>g 26–27<br />

August. Installation work cont<strong>in</strong>ued<br />

<strong>in</strong> Yantian and dur<strong>in</strong>g the Pacifi c<br />

cross<strong>in</strong>g to Long Beach (USA),<br />

arriv<strong>in</strong>g there on 9 September.<br />

3. The second and fi nal <strong>in</strong>stallation<br />

period <strong>in</strong> Long Beach dur<strong>in</strong>g 9–<br />

11 September, <strong>in</strong>cluded pistonrunn<strong>in</strong>g<br />

related modifi cations.<br />

4. The commission<strong>in</strong>g was carried-out<br />

while on passage from Long Beach to<br />

Oakland, where on 13 September the<br />

f<strong>in</strong>al <strong>in</strong>spection was also carried out.<br />

5. F<strong>in</strong>ally, on her ‘maiden’ passage<br />

to Ch<strong>in</strong>a, measurements and<br />

documentation of the RPLS<br />

performance were carried out.<br />

52 <strong>in</strong>detail<br />

Cyl<strong>in</strong>der <strong>oil</strong> tank<br />

Alarm<br />

monitor<strong>in</strong>g<br />

system<br />

Filter WECS<br />

Ma<strong>in</strong><br />

bear<strong>in</strong>g<br />

<strong>oil</strong><br />

Servo <strong>oil</strong><br />

supply unit<br />

Junction<br />

box<br />

Pressure<br />

sensors<br />

Servo <strong>oil</strong><br />

overfl ow<br />

Fig 2. – Schematic of the RPLS.<br />

Work<strong>in</strong>g pr<strong>in</strong>ciple<br />

The basic pr<strong>in</strong>ciple of the Pulse<br />

Lubricat<strong>in</strong>g System is to deliver metered<br />

quantities of <strong>cyl<strong>in</strong>der</strong> lubricat<strong>in</strong>g <strong>oil</strong><br />

under pressure at precise tim<strong>in</strong>g exactly<br />

<strong>in</strong>to the piston r<strong>in</strong>g package, from<br />

where it is evenly distributed around the<br />

circumference of the <strong>cyl<strong>in</strong>der</strong> l<strong>in</strong>er.<br />

The RPLS is based on a lubricat<strong>in</strong>g<br />

module for each <strong>cyl<strong>in</strong>der</strong> with a dosage<br />

pump and monitor<strong>in</strong>g electronics,<br />

which delivers pressurized <strong>cyl<strong>in</strong>der</strong><br />

lubricat<strong>in</strong>g <strong>oil</strong> to newly developed<br />

lubricators (formerly known as quills)<br />

that fit exist<strong>in</strong>g <strong>cyl<strong>in</strong>der</strong> l<strong>in</strong>ers of the<br />

<strong>Wärtsilä</strong> RTA and RT-flex eng<strong>in</strong>e types.<br />

Each lubricat<strong>in</strong>g module is equipped<br />

with two separate supply l<strong>in</strong>es – for<br />

<strong>cyl<strong>in</strong>der</strong> lubricat<strong>in</strong>g <strong>oil</strong> and servo <strong>oil</strong>.<br />

A separate servo <strong>oil</strong> supply unit is<br />

needed to drive the lubricat<strong>in</strong>g module<br />

for RTA eng<strong>in</strong>es, whereas on RT-fl ex<br />

common rail eng<strong>in</strong>es, the servo <strong>oil</strong> is<br />

taken from the servo <strong>oil</strong> common rail<br />

through a pressure reduc<strong>in</strong>g valve.<br />

Once the <strong>Wärtsilä</strong> Eng<strong>in</strong>e Control<br />

System (WECS) switches the 4/2-way<br />

solenoid valve <strong>in</strong> the lubricat<strong>in</strong>g module<br />

Lubricator<br />

ALM-20<br />

Dosage pump<br />

Cyl<strong>in</strong>der<br />

CAN bus<br />

Power supply<br />

Cyl<strong>in</strong>der <strong>oil</strong><br />

Servo <strong>oil</strong><br />

Servo <strong>oil</strong> return<br />

to the open position, servo <strong>oil</strong> fl ows to<br />

the drive side of the central piston of the<br />

dosage pump <strong>in</strong> the lubricat<strong>in</strong>g module.<br />

As the central piston is actuated, it feeds<br />

<strong>cyl<strong>in</strong>der</strong> lubricat<strong>in</strong>g <strong>oil</strong> from the lubricat<strong>in</strong>g<br />

<strong>oil</strong> supply to the meter<strong>in</strong>g ducts, and then<br />

discharges it from the lubricators at high<br />

pressure. The <strong>cyl<strong>in</strong>der</strong> <strong>oil</strong> is accurately<br />

supplied at def<strong>in</strong>ed positions of the work<strong>in</strong>g<br />

piston whose position is constantly detected<br />

by the control system from the reference<br />

signal given by the crank angle sensor. At<br />

the end of the lubrication work cycle, the<br />

directional valve <strong>in</strong> the lubricat<strong>in</strong>g module<br />

directs the servo <strong>oil</strong> to the return-fl ow<br />

side of the central piston of the dosage<br />

pump, which then returns to its <strong>in</strong>itial<br />

position. The meter<strong>in</strong>g chamber is fi lled<br />

aga<strong>in</strong> with <strong>cyl<strong>in</strong>der</strong> lubricat<strong>in</strong>g <strong>oil</strong> to be<br />

ready for the next lubricat<strong>in</strong>g cycle.<br />

A separate servo <strong>oil</strong> supply unit is<br />

provided for RTA eng<strong>in</strong>es. It <strong>in</strong>cludes two<br />

gear pumps, one supply<strong>in</strong>g the lubricat<strong>in</strong>g<br />

module with servo <strong>oil</strong> taken from the<br />

ma<strong>in</strong> eng<strong>in</strong>e <strong>oil</strong> system, with the second<br />

pump as a standby. The <strong>oil</strong> supply unit<br />

also <strong>in</strong>cludes a pressure limit<strong>in</strong>g and safety<br />

valve, pressure gauge, pressure sensor, and


Photo: Nordcapital<br />

Pressure<br />

sensor<br />

Shut-off<br />

valve for<br />

lubricat<strong>in</strong>g <strong>oil</strong><br />

Cyl<strong>in</strong>der<br />

<strong>oil</strong> <strong>in</strong>let<br />

To system <strong>oil</strong><br />

dra<strong>in</strong> tank<br />

Relief valve<br />

for servo <strong>oil</strong><br />

Shut-off valve<br />

for servo <strong>oil</strong><br />

Fig. 3 – The RPLS lubricat<strong>in</strong>g module with lubricator connections and<br />

associated electronics for eight lubricators.<br />

WÄRTSILÄ TECHNICAL JOURNAL 02.2007<br />

Cyl<strong>in</strong>der <strong>oil</strong><br />

outlet to<br />

lubricators<br />

Vent<strong>in</strong>g plug for<br />

<strong>cyl<strong>in</strong>der</strong> <strong>oil</strong><br />

Vent<strong>in</strong>g plug<br />

for servo <strong>oil</strong><br />

4/2-way<br />

solenoid valve<br />

Diaphragm<br />

accumulator<br />

Fig. 4 – One of the n<strong>in</strong>e conta<strong>in</strong>er ships managed by E.R. Schiffahrt, which have<br />

been completely retrofitted with the Pulse Lubricat<strong>in</strong>g System. The ships are<br />

powered by <strong>Wärtsilä</strong> RTA96C low-speed diesel eng<strong>in</strong>es.<br />

shut-off valve. For RT-flex eng<strong>in</strong>es, servo<br />

<strong>oil</strong> is drawn from the eng<strong>in</strong>e servo <strong>oil</strong><br />

system through a pressure reduc<strong>in</strong>g valve<br />

by which the <strong>oil</strong> pressure is reduced from<br />

200 bar to 50 bar. The reduced pressure<br />

is monitored by pressure transmitters<br />

directly connected to the alarm system; the<br />

pipes are SOLAS compliant. The reduced<br />

pressure can be adjusted and its level is<br />

shown on an analogue pressure gauge.<br />

The lubricat<strong>in</strong>g module for each<br />

<strong>cyl<strong>in</strong>der</strong> consists of a dosage pump, a<br />

4/2-way solenoid valve, monitor<strong>in</strong>g<br />

electronics, pressure sensor, and diaphragm<br />

accumulator on a base plate. The timed<br />

lubricat<strong>in</strong>g module feeds a predefi ned<br />

metered quantity of <strong>cyl<strong>in</strong>der</strong> <strong>oil</strong> at high<br />

speed to the lubricators at the precise<br />

tim<strong>in</strong>g ascerta<strong>in</strong>ed by the eng<strong>in</strong>e control<br />

system. Part of the control <strong>oil</strong> fl ow from<br />

the servo <strong>oil</strong> l<strong>in</strong>e is routed to the 4/2-way<br />

solenoid valve. At the same time, the loaddependent<br />

<strong>cyl<strong>in</strong>der</strong> lubricat<strong>in</strong>g <strong>oil</strong> needs<br />

of the respective <strong>cyl<strong>in</strong>der</strong>s are ascerta<strong>in</strong>ed<br />

by the eng<strong>in</strong>e control system, which sends<br />

a correspond<strong>in</strong>g signal to the monitor<strong>in</strong>g<br />

electronics of the lubricat<strong>in</strong>g module. The<br />

ALM-20 (Advanced Lubricat<strong>in</strong>g Module)<br />

checks that the dosage pump is work<strong>in</strong>g<br />

correctly. The ALM-20 communicates<br />

with the master control unit through a<br />

redundant bus system, sends the signal to<br />

the 4/2-way solenoid valve, and processes<br />

the data from the pressure transmitter.<br />

The redesigned lubricator delivers the<br />

<strong>cyl<strong>in</strong>der</strong> <strong>oil</strong> radially as compact <strong>oil</strong> pulse<br />

feeds exactly <strong>in</strong>to the piston r<strong>in</strong>g package,<br />

from where it is equally distributed around<br />

the circumference of the <strong>cyl<strong>in</strong>der</strong> l<strong>in</strong>er.<br />

The lubricators (up to eight) are arranged<br />

around the l<strong>in</strong>er <strong>in</strong> one row to ensure an<br />

excellent distribution of the <strong>cyl<strong>in</strong>der</strong> <strong>oil</strong> on<br />

the <strong>cyl<strong>in</strong>der</strong> l<strong>in</strong>er. The vertical distribution<br />

is governed by the lubricat<strong>in</strong>g <strong>oil</strong> <strong>in</strong>jection<br />

tim<strong>in</strong>g as a function of the crank angle.<br />

A generously dimensioned 40micron<br />

<strong>cyl<strong>in</strong>der</strong> lubricat<strong>in</strong>g <strong>oil</strong> fi lter is<br />

arranged before the lubricat<strong>in</strong>g modules.<br />

It effectively removes any particles of<br />

dirt, thereby ensur<strong>in</strong>g reliable operation<br />

of the lubricat<strong>in</strong>g modules. A 12 litre<br />

buffer tank is provided with a scaled<br />

sight glass that enables <strong>cyl<strong>in</strong>der</strong> <strong>oil</strong><br />

consumption measurements of up to<br />

five litres. The buffer tank also allows<br />

the filter to be changed while the eng<strong>in</strong>e<br />

is runn<strong>in</strong>g. When the filter is dirty,<br />

the <strong>in</strong>tegrated sensor gives a signal on<br />

the excessive differential pressure. p<br />

<strong>in</strong>detail 53


p<br />

[ MARINE / IN DETAIL ]<br />

[ MARINE / IN DETAIL ]<br />

Fig. 5 – Excellent <strong>service</strong> experience with the RPLS revealed by the piston r<strong>in</strong>g<br />

pack <strong>in</strong> an RT-flex96C eng<strong>in</strong>e after runn<strong>in</strong>g with a <strong>cyl<strong>in</strong>der</strong> <strong>oil</strong> feed rate of<br />

0.8 g/kWh dur<strong>in</strong>g shipboard trials.<br />

Distant down<br />

from jo<strong>in</strong>t<br />

face, mm<br />

Specific diametrical l<strong>in</strong>er wear,<br />

mm/1000 hours<br />

Fig 6. – Specifi c diametrical<br />

l<strong>in</strong>er wear, mm/1000 runn<strong>in</strong>g<br />

hours, <strong>in</strong> one <strong>cyl<strong>in</strong>der</strong> of the<br />

12-<strong>cyl<strong>in</strong>der</strong> RTA96C eng<strong>in</strong>e of<br />

the “COSCO SHENZHEN” at<br />

the second <strong>in</strong>spection at Long<br />

Beach: measurement taken<br />

fore–aft and port–starboard.<br />

54 <strong>in</strong>detail<br />

0.000 0.020 0.040<br />

0<br />

100<br />

200<br />

300<br />

400<br />

500<br />

600<br />

700<br />

800<br />

900<br />

1000<br />

1100<br />

1200<br />

1300<br />

1400<br />

1500<br />

Fore – Aft<br />

Port – Starboard<br />

Control and monitor<strong>in</strong>g of the Pulse<br />

Lubricat<strong>in</strong>g System is provided by the<br />

WECS eng<strong>in</strong>e control system, which is<br />

based on the system used on <strong>Wärtsilä</strong><br />

RT-flex common rail eng<strong>in</strong>es. The<br />

Advanced Lubricat<strong>in</strong>g Module (ALM­<br />

20) units communicate with the master<br />

control unit (FCM-20) by means of a<br />

redundant bus system. All control modules<br />

have a redundant power supply. When<br />

a lubricat<strong>in</strong>g pulse is <strong>in</strong>itiated by the<br />

eng<strong>in</strong>e control system, the monitor<strong>in</strong>g<br />

electronics associated with the respective<br />

lubricator activate the 4/2-way solenoid<br />

valve. The lubricat<strong>in</strong>g pulse is triggered<br />

electro-hydraulically as the pressure<br />

sensor sends a check signal to the ALM­<br />

20. When the pressure is with<strong>in</strong> the<br />

programmed range, the local signal<br />

confirms that the lubricat<strong>in</strong>g cycle was<br />

executed as specified. If, for <strong>in</strong>stance, no<br />

correct lubricat<strong>in</strong>g cycle is ascerta<strong>in</strong>ed<br />

ow<strong>in</strong>g to a fault such as a lubricator<br />

blockage, a shortage of lubricant, a lack<br />

of hydraulic drive power or a faulty shut<br />

off-valve position, a local fault signal is<br />

sent to the WECS eng<strong>in</strong>e control system.<br />

The redundant SSI bus connect<strong>in</strong>g the<br />

FCM-20 to the crank angle sensor is part<br />

of the retrofit package. The crank-angle<br />

sensor is mounted on the <strong>in</strong>termediate<br />

shaft and has built-<strong>in</strong> redundancy.<br />

From the outset, considerable<br />

thought and design work was put <strong>in</strong>to<br />

develop<strong>in</strong>g a cost-effective lubricat<strong>in</strong>g<br />

system that can deliver the shortest<br />

possible payback time. This required<br />

that the RPLS is able to be retrofi tted <strong>in</strong><br />

the m<strong>in</strong>imum work<strong>in</strong>g time on board<br />

ship with cost-effective components.<br />

Experience with RPLS<br />

S<strong>in</strong>ce the fi rst retrofit, the “COSCO<br />

SHENZHEN” has been visited by<br />

<strong>Wärtsilä</strong> eng<strong>in</strong>eers several times, and<br />

the <strong>cyl<strong>in</strong>der</strong> lubricat<strong>in</strong>g feed rate was<br />

reduced with<strong>in</strong> two weeks to the target<br />

level of 0.8 g/kWh from its orig<strong>in</strong>al<br />

sett<strong>in</strong>g of 1.36 g/kWh. The operat<strong>in</strong>g<br />

results have been very good dur<strong>in</strong>g the<br />

6000 runn<strong>in</strong>g hours so far accumulated.<br />

“With its improved capability and<br />

considerable cost sav<strong>in</strong>gs, this new <strong>cyl<strong>in</strong>der</strong><br />

lubricat<strong>in</strong>g system is a notable performance<br />

improvement to the <strong>Wärtsilä</strong> eng<strong>in</strong>es, and<br />

we look forward to rapid completion of<br />

the series of n<strong>in</strong>e retrofi ts”, said Willem<br />

Dekker, Chief Operat<strong>in</strong>g Offi cer, of<br />

E.R. Schiffahrt GmbH & Cie KG,<br />

the Hamburg manager of “COSCO<br />

SHENZHEN”, after review<strong>in</strong>g the<br />

<strong>service</strong> results at the end of 2006. In<br />

the meantime, the whole RTA96Ceng<strong>in</strong>ed<br />

fleet of E.R. Schiffahrt has been<br />

successful retrofitted with RPLS.<br />

Overall, experience with RPLS has<br />

been successful, and excellent l<strong>in</strong>er<br />

and piston r<strong>in</strong>g conditions have been<br />

recorded s<strong>in</strong>ce the earliest tests. Before<br />

the first commercial <strong>in</strong>stallation, trials<br />

had been carried out both on the<br />

<strong>Wärtsilä</strong> research eng<strong>in</strong>e <strong>in</strong> W<strong>in</strong>terthur,<br />

and on shipboard eng<strong>in</strong>es.<br />

The first RPLS test started on the<br />

research eng<strong>in</strong>e <strong>in</strong> June 2003. Shipboard<br />

test<strong>in</strong>g began with an RTA58T eng<strong>in</strong>e <strong>in</strong><br />

September 2004, and later with an<br />

RT-flex96C eng<strong>in</strong>e. Shipboard test<strong>in</strong>g<br />

has accumulated more than 20,000<br />

runn<strong>in</strong>g hours. Throughout, the<br />

outstand<strong>in</strong>g performance of the RPLS<br />

was confirmed, with all test<strong>in</strong>g be<strong>in</strong>g at or<br />

below the guide feed rate of 0.8 g/kWh.<br />

The Pulse Lubricat<strong>in</strong>g System<br />

is now established as a worthwhile<br />

retrofit for <strong>Wärtsilä</strong> RTA and RT-fl ex<br />

eng<strong>in</strong>es, and it offers ship owners and<br />

operators substantial sav<strong>in</strong>gs <strong>in</strong> operat<strong>in</strong>g<br />

<strong>costs</strong> <strong>without</strong> disturb<strong>in</strong>g the normal<br />

operat<strong>in</strong>g <strong>service</strong> of their ships.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!