20.03.2013 Views

Principles of Animal Physiology

Principles of Animal Physiology

Principles of Animal Physiology

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

▪ Functions:<br />

▸ Provides O2 Respiratory System<br />

Introduction<br />

▸ Eliminates CO 2<br />

▸ Regulates blood [H + ] (pH)<br />

▸ Phonation<br />

▸ Defends against microbes<br />

▸ Remo Removes es some chemicals as well as producing<br />

others<br />

▸ Trap and dissolve blood clots<br />

▸ Temperature control


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

▪ Atmospheric pressure<br />

Respiratory System<br />

Introduction


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

▪ Composition <strong>of</strong> air<br />

Respiratory System<br />

Introduction


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Introduction<br />

▪ Diversity <strong>of</strong> gas exchange structures


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

External & Internal Respiraton<br />

▪ External respiration can<br />

involve four major steps:<br />

▸ External bulk transport<br />

▸ Respiratory surface<br />

diffusion<br />

▸ Circulation<br />

▸ Tissue diffusion


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Water Breathers<br />

▪ It is more difficult to exchange gases in water<br />

▸ O 2 relatively insoluble in water, 10k slower<br />

▸ CO CO2 is 20 times more soluble in water than O O2 ▸ Their solubility decreases with increasing salinity<br />

▸ Th Their i soulbility lbilit decreases d with ith iincreasing i<br />

temperature<br />

▸ O O2 content in water varies more than in air<br />

▸ Unlike air, water has other life-sustaining<br />

components other than gases, gases like dissolved ions, ions<br />

organic matter and water


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Introduction<br />

▪ Respiration in gill-breathing fish


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

▪ Nonrespiratory functions <strong>of</strong> aquatic respirers<br />

▸ Fluid and solute balance<br />

♦ Regulate osmotic and ionic gradients<br />

▸ Acid-base balance<br />

♦ Removal <strong>of</strong> H + and HCO 3-<br />

▸ Excretion<br />

♦ Removal <strong>of</strong> ammonia<br />

▸ NNutrient i and d mineral i l uptake k<br />

♦ Intake <strong>of</strong> NaCl and Ca2+ ▸ FFeeding di<br />

♦ Ciliated gills trap plankton<br />

▸ T t l ti


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Air Respirers<br />

▪ Transition from water to land had its<br />

challenges<br />

▪ Air has much more oxygen yg than water<br />

▪ Air is less viscous than water<br />

▪ It takes less energy to pump air<br />

▪ However, respiratory surfaces must be kept<br />

moist i t for f proper diffusion<br />

diff i


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Air Respirers<br />

▪ Since respiratory surfaces must be kept moist<br />

for proper diffusion<br />

▸ Land animals must remain in moist conditions<br />

▸ Land animals must have covered or fully internal<br />

structures for gas exchange<br />

♦ Internal air tubes - tracheae (insects)<br />

♦ Gill-like book lungs (scorpions)<br />

♦ MMantle tl cavities iti (snails) ( il )<br />

♦ Vascularized sacs - lungs (snails & land vertebrates)


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

▪ Book lung <strong>of</strong> a<br />

Spider<br />

▸ Modified gill?<br />

Respiratory System<br />

Air Respirers


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

▪ Bimodal breathers<br />

Respiratory System<br />

Air Respirers<br />

▸ Have gills & another respiratory surface<br />

♦ Integumentary exchange<br />

♦ Modified gills<br />

♦ Digestive system<br />

♦ Air sacs (lungs)


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Air Respirers<br />

▪ Bimodal breather - Frogs g<br />

▸ From eggs, laval stages have gills<br />

♦ Uses lungs g & skin to breathe<br />

♦ Uses buccal pump to force air into lungs (like fish)<br />

♦ Several inspiratory oscillation needed to fill lungs<br />

♦ One long exhalation empties lungs<br />

♦ O2 intake mainly through lungs<br />

♦ CO CO2 elimination i i i through cutaneous


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Air Respirers<br />

▪ Bimodal breather - Frogs g - Fig g 11-11<br />

▸ Open nostrils<br />

▸ Lower floor <strong>of</strong> buccal cavity<br />

▸ Air rushes into buccal cavity<br />

▸ Close nostrils<br />

▸ Elevate floor <strong>of</strong> buccal cavity<br />

▸ Open glottis<br />

▸ Pump air into lungs<br />

▸ Close glottis<br />

▸ Repeat to inflate lungs<br />

K l tti d th t h l


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Air Respirers<br />

▪ Comparative lung structure <strong>of</strong> amphibians,<br />

reptiles, and mammals<br />

▪ Fig g<br />

11-10


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

▪ Avian respiration<br />

▸ Lungs are inelastic<br />

▸ Several air sacs<br />

Respiratory System<br />

Air Respirers<br />

▸ Unidirectional or flow-through<br />

▸ Membranous diaphragm


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Air Respirers<br />

▪ Avian respiration - Gas exchange surface<br />

▸ Capillaries smaller than mammals: 3-10µm vs 35µm<br />

in mammals<br />

▸ Air capillaries are not blind-ending, but<br />

communicate with each other<br />

▸ Diameter <strong>of</strong> air capillaries do not change during the<br />

respiratory p ycycle y<br />

▸ Surfactant’s role is limited to restricting fluid<br />

movement from blood to air capillaries<br />

▸ Mean thickness <strong>of</strong> the blood-gas barrier is less in<br />

birds


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

▪ Respiration in birds<br />

▪ Fig 11-16<br />

Respiratory System<br />

Air Respirers


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Air Breathers<br />

▪ Movement <strong>of</strong> pure O 2 (shaded) through the<br />

avian lung<br />

▪ Fig g<br />

11-16, Part II


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Air Respirers<br />

▪ Nonrespiratory functions <strong>of</strong> the avian<br />

respiratory system<br />

▸ Regulation <strong>of</strong> water loss and heat exchange<br />

▸ Circulation - enhances venous return<br />

▸ Acid Acid-base base balance<br />

▸ Vocalization, mating calls and other sounds<br />

▸ Defense<br />

▸ Removal, modification, activation, or inactivation<br />

<strong>of</strong> various materials<br />

▸ Olfaction


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Air Respirers<br />

▪ Anatomy <strong>of</strong> the respiratory system in a<br />

mammal<br />

▪ Fig 11 11-12<br />

12


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Air Respirers<br />

▪ Mammalian respiratory pathway


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Air Respirers<br />

▪ Ciliated respiratory epithelium cells


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Air Respirers<br />

▪ Diagram representing the human airways


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Air Respirers<br />

▪ Respiratory zone structures


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Air Respirers<br />

▪ Alveolus and associated pulmonary capillaries<br />

▪ Alveolar epithelial cells<br />

▸ Type I: flattened processes which cover most <strong>of</strong> the<br />

inner surface<br />

▸ Type II: produce and store surfactant<br />

▸ Macropharges: phagocytic cells<br />

▸ pores <strong>of</strong> Kohn permit airflow between adjacent<br />

▸ pores <strong>of</strong> Kohn - permit airflow between adjacent<br />

alveoli, a process known as collateral ventilation


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Air Respirers<br />

▪ Alveolus and associated pulmonary capillaries<br />

▪ Fig 11-13


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

▪ Pleural sac<br />

▪ Fig 11-14<br />

Respiratory System<br />

Air Respirers


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Respiratory Mechanics<br />

▪ Pressures associated with breathing<br />

▸ Atmospheric (barometric) pressure<br />

♦ At sealevel = 760mm Hg (1atm or 101.3 kPa)<br />

▸ Intrapulmonary (intra-alveolar) pressure<br />

♦ May be less ess tthan, a , equal equa to oor ggreater eate tthan a at atmospheric osp e c<br />

pressure<br />

▸ Intrapleural (intrathoracic) pressure<br />

♦ Always less than atmospheric pressure, except during<br />

maximal, forced expiration<br />

▸ TTransmural l pressure<br />

♦ Pressure difference between alveolus and pleural cavity<br />

♦ Pressure difference betwen atmostphere and pleural


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Respiratory Mechanics<br />

▪ Pressures important to ventilation <strong>of</strong> a<br />

mammalian lung


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Respiratory Mechanics<br />

▪ Transmural pressure gradient in a mammalian<br />

lung


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

▪ Boyle’s Boyle s law<br />

Respiratory System<br />

Respiratory Mechanics


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Respiratory Mechanics<br />

▪ Anatomy <strong>of</strong> the respiratory muscles in<br />

mammal


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Respiratory Mechanics<br />

▪ Respiratory p y muscle activity y during g inspiration p<br />

in humans


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Respiratory Mechanics<br />

▪ Respiratory p y muscle activity y during g expiration p in<br />

humans


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Respiratory Mechanics<br />

▪ Pressures changes during breathing


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Respiratory Mechanics<br />

▪ Pressures associated with breathing


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Respiratory Mechanics<br />

▪ Sufactant and Law <strong>of</strong> LaPlace


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Respiratory Mechanics<br />

▪ Lung volumes & Spirometry


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Respiratory Mechanics<br />

▪ Variations in lung volume


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Respiratory Mechanics<br />

▪ Dead Space - regions where there is not gas<br />

exchange<br />

▸ - Anatomical Dead Space (ADS)<br />

♦ Man - 0.15 L<br />

♦ Giraffe - 1.7 L<br />

♦ Horse - 1.8 L<br />

▸ - Alveolar Dead Space p


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

▪ Pulmonary Ventilation<br />

Respiratory System<br />

Respiratory Mechanics<br />

▸ Total pulmonary ventilation = minute ventilation =<br />

minute respiratory p yvolume<br />

▸ Minute ventilation = Tidal volume x respiratory<br />

frequency q y<br />

▸ If VE = 500 ml, f = 12 breaths/min, then VE (V dot E,<br />

minute ventilation) ) = 6000 ml/min<br />

▸ Alveoli ventilation = amount fresh air reaching<br />

alveoli per minute<br />

▸ VA (V dot A) = (VE -VD) x f , if VD = 150 ml then,<br />

▸ V dot A = (500 - 150) x f = 350 x 12 = 4200 ml/min


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Gas Transport<br />

▪ O 2 and CO 2 levels in the respiratory system <strong>of</strong><br />

mammals


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Gas Transport<br />

▪ Most O 2 in animals is carried bound to<br />

respiratory pigments<br />

▸ O 2 carried in blood in two forms<br />

♦ Physically dissolved<br />

♦ Chemically y bound<br />

– Hemoglobin (Hb), most common<br />

– Hemocyanin - crustaceans & mullusks<br />

Hemerythrin some worms<br />

– Hemerythrin - some worms<br />

♦ Most insects do not need respiratory pigments


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Gas Transport<br />

▪ Hemoglobin molecule from a mammal


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Gas Transport<br />

▪ Oxygen-hemoglobin Oxygen hemoglobin dissociation curves


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Gas Transport<br />

▪ Factors that affect the O 2-Hb 2 Hb curve


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Gas Transport<br />

▪ Effects on the O O2-Hb 2 Hb dissociation curve<br />

▸ Amount <strong>of</strong> O2 combined with Hb varies with major<br />

factors accompanying p y g tissue metabolism, , eg: g<br />

♦ Acidity: Bohr effect:- ↑PCO2 & [H + ] → shift to the right<br />

♦ Temperature: ↑temp → shift to the right<br />

♦ Organic Phosphates<br />

– 2-3-diphosphoglycerate: Affinity <strong>of</strong> Hb to O2 decreased in its<br />

presence presence. Acute or chronic exposure to low PO 2 → ↑2-3-D ↑2 3 D.P.G. PG →<br />

shift to the right (in mammals)<br />

– Inositol pentaphosphate (IPP) in birds<br />

– Nuleoside triphosphates (NTPs) in fishes<br />

– Adenosine triphosphate (ATP) in salmonoids, sharks and rays<br />

– Guanosine triphosphate (GTP) in eels, carp, goldfish


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

▪ Bohr and root effects<br />

Respiratory System<br />

Gas Transport


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Gas Transport<br />

▪ Carbon dioxide transport in blood


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Gas Transport<br />

▪ Abnormal blood-gas blood gas levels<br />

▸ Arterial O 2 abnomalities<br />

♦ Hypoxic hypoxia<br />

– Low arterial blood O 2 - inadequate Hb & blood saturation<br />

♦ Anemic hypoxia<br />

– Reduced O 2-carrying capacity<br />

♦ Circulating hypoxia<br />

– Too little oxygenated blood delivered to tissues<br />

♦ Histoxic hypoxia<br />

–O 2 delivery normal, but cells cannot use the O 2 delivered to them


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Gas Transport<br />

▪ Abnormal blood-gas blood gas levels<br />

▸ Arterial CO 2 abnomalities<br />

♦ Hypercapnia<br />

– Excessive CO2 in arterial blood, caused by hypoventilation -<br />

underbreathing<br />

♦ HHypocapnia i<br />

– Below normal arterial CO 2 levels, caused by hyperventilation -<br />

overbreating


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

▪ Effects <strong>of</strong><br />

hyperventilation and<br />

hypoventilation yp<br />

on blood<br />

gasses<br />

Respiratory System<br />

Gas Transport


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Control <strong>of</strong> Respiration<br />

▪ Peripheral chemoreceptors<br />

▸ pH<br />

▸ PCO 2<br />

▸ PO 2


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Control <strong>of</strong> Respiration<br />

▪ Central Chemoreceptors<br />

▸ Mediate response by changes in PCO 2 and H +<br />

▸ Arterial PCO 2 crosses BBB → CSF PCO 2<br />

▸ In CSF: CO2 + H2O → H + + HCO -<br />

3<br />

▸ H + ▸ H causes ↑ ventilation<br />

* H + ▸ * H d tdiff BBB<br />

+ do not diffuse across BBB


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Control <strong>of</strong> Respiration<br />

▪ Respiratory control centers in the brainstem


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

Respiratory System<br />

Control <strong>of</strong> Respiration<br />

▪ Neural and chemical influences


<strong>Principles</strong> <strong>of</strong> <strong>Animal</strong> <strong>Physiology</strong><br />

▪ Stop here<br />

▪ RReview i<br />

Respiratory System

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!