24.03.2013 Views

Chapter 7. Polarization Optics - Jones Matrix

Chapter 7. Polarization Optics - Jones Matrix

Chapter 7. Polarization Optics - Jones Matrix

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Chapter</strong> <strong>7.</strong> <strong>Polarization</strong> <strong>Optics</strong> - <strong>Jones</strong><br />

<strong>Matrix</strong><br />

The optics of LCD is complicated by the fact that it is<br />

birefringent as well as electroactive (with a twist).<br />

The simplest approach of modeling LCD optics is to use<br />

the 2x2 matrix. (<strong>Jones</strong> matrix). The LC cell is<br />

characterized by θ(z) and φ(z). Once these two functions<br />

are known, the optical properties of the LCD can be<br />

calculated.<br />

<strong>7.</strong>1 2x2 matrix<br />

The 2x2 <strong>Jones</strong> matrix is just a simple shorthand way to<br />

represent the polarization state of light. Since LCD is<br />

based on polarization manipulation, the <strong>Jones</strong> matrix is<br />

very useful.<br />

The polarization state of light is described by a 2x1 vector<br />

(<strong>Jones</strong> vector). Any polarization state can be represented<br />

as a sum of two perpendicularly polarized waves with<br />

different amplitude and phase:<br />

E = (xa + yb e jδ jωt – jkz<br />

)Eo e<br />

2 2<br />

where a + b = 1,<br />

and δ is the phase delay between the<br />

x and y components. The <strong>Jones</strong> vector corresponding to<br />

this wave is<br />

⎛ a<br />

⎞<br />

⎜ jδ<br />

⎟<br />

⎝be<br />

⎠<br />

1


Notice that any common phase in a and b can be taken<br />

out and be absorbed by the phase term e jωt-jkz. .<br />

Examples of <strong>Jones</strong> vectors:<br />

⎛cosα<br />

⎞<br />

⎜ ⎟<br />

⎝ sinα<br />

⎠<br />

1 ⎛1<br />

⎞<br />

⎜ ⎟<br />

2 ⎝ j ⎠<br />

refers to light polarized at angle α to the x-axis.<br />

represents a right-circularly polarized light<br />

In the <strong>Jones</strong> vector and <strong>Jones</strong> matrix approach, every<br />

optical element is represented by a 2x2 matrix.<br />

Jin<br />

M<br />

Then Jout = M Jin<br />

Jout<br />

A few examples of <strong>Jones</strong> matrices:<br />

⎛1<br />

0⎞<br />

x-axis polarizer Mx = ⎜ ⎟<br />

⎝0<br />

0⎠<br />

2


Retardation plate with y-axis as the fast axis:<br />

Mδ =<br />

1 ⎛ δ<br />

⎜e<br />

j<br />

2 ⎜<br />

⎝ 0<br />

<strong>Polarization</strong> rotator:<br />

0 ⎞<br />

⎟<br />

− δ<br />

e<br />

j ⎟<br />

⎠<br />

⎛cosθ − sinθ<br />

⎞<br />

MR(θ) = ⎜<br />

⎟<br />

⎝ sinθ<br />

cosθ<br />

⎠<br />

Can easily show that a linearly polarized light polarized at<br />

α to the x-axis becomes α+θ to the x-axis after passing<br />

through M3.<br />

⎛cos(<br />

α + θ ) ⎞<br />

⎜ ⎟ =<br />

⎝ sin( α + θ ⎠<br />

⎛cosα<br />

⎞<br />

M R(<br />

θ ) ⎜ ⎟<br />

⎝ sinα<br />

⎠<br />

The <strong>Jones</strong> matrix is very useful in problems concerning<br />

polarization manipulation, such as the LCD. If there are<br />

more than one polarization manipulation element, we<br />

simply multiply the <strong>Jones</strong> matrices:<br />

Jin<br />

M1 M2 M3 MN<br />

Jout<br />

3


and φ is the rotation angle from (x,y) to (x’,y’) as shown in<br />

the diagram.<br />

Note that Rφ = ΜR −1 (φ) = ΜR(-φ)<br />

Also R-φ = Rφ −1 = Rφ ’<br />

Proof:<br />

⎛ x ⎞ −1⎛<br />

x'⎞<br />

⎛ x'⎞<br />

It is easy to show that ⎜ ⎟ = Rφ<br />

⎜ ⎟ = M R( φ)<br />

⎜ ⎟<br />

⎝ y⎠<br />

⎝ y'⎠<br />

⎝ y'⎠<br />

Also, any vector J in (x, y) system is related to J’ in (x’, y’)<br />

system by a rotation<br />

J = R-φ J’<br />

or J’ = Rφ J<br />

Hence, if K = M J<br />

then K’ = Rφ K = Rφ M J = Rφ M R-φ Rφ J<br />

or K’ = M’ J’<br />

where M’ = Rφ M R-φ<br />

Also the reverse transformation is given by<br />

M = Rφ −1 M’ Rφ<br />

5


For example, rotate x axis by +90 o ,<br />

R90<br />

⎛ 0<br />

= ⎜<br />

⎝−<br />

1<br />

1⎞<br />

⎟<br />

0⎠<br />

A retardation plate with x-axis as fast axis will have a<br />

<strong>Jones</strong> matrix of<br />

⎛ 0<br />

⎜<br />

⎝−<br />

1<br />

1⎞⎛<br />

jδ<br />

⎟⎜e<br />

0⎠<br />

⎜<br />

⎝ 0<br />

⎞⎛<br />

− ⎞ ⎛ − jδ<br />

0 0 1<br />

⎞<br />

⎟⎜<br />

⎟ = ⎜e<br />

0 ⎟<br />

− jδ<br />

⎟<br />

⎝ ⎠<br />

⎜ jδ<br />

e<br />

⎟<br />

⎠ 1 0 ⎝ 0 e ⎠<br />

The <strong>Jones</strong> matrix of a retardation plate with the fast axis at<br />

φ to the x-axis is given by<br />

⎛ − jδ<br />

−<br />

⎜e<br />

R φ ⎜<br />

⎝ 0<br />

⎞ ⎛cosφ − sinφ<br />

⎞⎛<br />

− jδ<br />

0 ⎟ = ⎜<br />

⎟⎜e<br />

R<br />

jδ<br />

⎟ φ<br />

e ⎝<br />

⎠<br />

⎜<br />

⎠ sinφ<br />

cosφ<br />

⎝ 0<br />

0 ⎞⎛<br />

cosφ<br />

⎟⎜<br />

jδ<br />

e<br />

⎟<br />

⎠⎝−<br />

sinφ<br />

Note that we are transforming from (x’,y’) to (x,y) in this<br />

case. The (x’,y’) frame is the principle axes of the<br />

retardation plate and the (x,y) axes are the fixed<br />

laboratory frame.<br />

This formula is very important. We shall see later that the<br />

LC cell can be regarded as a stack of birefringent plates.<br />

Some more manipulations of <strong>Jones</strong> matrices:<br />

1. Half wave plate:<br />

The Jone matrix of a half wave plate with c-axis on the xaxis<br />

is<br />

⎛− j<br />

⎜<br />

⎝ 0<br />

0⎞<br />

⎟<br />

j ⎠<br />

sinφ<br />

⎞<br />

⎟<br />

cosφ<br />

⎠<br />

6


Then Jout = MN …M3 M2 M1 Jin<br />

<strong>7.</strong>2 Coordinate transformation<br />

The <strong>Jones</strong> matrix depends on the definition of the<br />

coordinate system. If the coordinate is rotated by φ, the<br />

<strong>Jones</strong> matrix will become different.<br />

y’<br />

y<br />

φ<br />

P<br />

Rule: If the <strong>Jones</strong> matrix is M in the (x,y) coordinates and<br />

M’ in the (x’,y’) coordinate system, then<br />

M’ = Rφ M Rφ −1<br />

and M = Rφ −1 M’ Rφ<br />

where Rφ is the coordinate transformation matrix<br />

Rφ<br />

=<br />

⎛ cosφ<br />

⎜<br />

⎝−<br />

sinφ<br />

sinφ<br />

⎞<br />

⎟<br />

cosφ<br />

⎠<br />

x’<br />

x<br />

4


The <strong>Jones</strong> matrix of a half wave plate with c-axis at θ to<br />

the x-axis is<br />

⎛cosφ − sinφ<br />

⎞⎛−<br />

j<br />

⎜ ⎟⎜ ⎝ sinφ<br />

cosφ<br />

⎠⎝<br />

0<br />

Check:<br />

⎛cos2φ<br />

⎜<br />

⎝ sin 2φ<br />

0 ⎞⎛<br />

cosφ<br />

⎟⎜ j ⎠⎝−<br />

sinφ<br />

sinφ<br />

⎞ ⎛cos2φ<br />

⎟ = ⎜<br />

cosφ<br />

⎠ ⎝ sin 2φ<br />

sin 2φ<br />

⎞⎛1<br />

⎞ ⎛cos2φ<br />

⎞<br />

⎟⎜ ⎟ = ⎜ ⎟<br />

− cos2φ<br />

⎠⎝0<br />

⎠ ⎝ sin 2φ<br />

⎠<br />

sin 2φ<br />

⎞<br />

⎟<br />

− cos2φ<br />

⎠<br />

which is equivalent to a rotation of the linear polarization<br />

along x by 2φ. This <strong>Jones</strong> matrix is not the same as the<br />

polarization rotation matrix since the rotation is dependent<br />

on the polarizer angle.<br />

2. Quarterwave plate<br />

The <strong>Jones</strong> matrix of a quarterwave plate with c-axis along<br />

the x-axis<br />

M<br />

=<br />

1 ⎛1−<br />

j<br />

⎜<br />

2 ⎝ 0<br />

0 ⎞<br />

⎟<br />

1+<br />

j ⎠<br />

If light polarized at 45 o to the x-axis passes through it, the<br />

new <strong>Jones</strong> vector is<br />

1 ⎛1−<br />

j<br />

J = ⎜<br />

2 ⎝ 0<br />

0 ⎞⎛1⎞<br />

1 ⎛1−<br />

j ⎞ 1−<br />

j ⎛1<br />

⎞<br />

⎟⎜ ⎟ = ⎜ ⎟ = ⎜ ⎟<br />

1+<br />

j ⎠⎝1⎠<br />

2 ⎝1+<br />

j ⎠ 2 ⎝ j ⎠<br />

which is a right circularly polarized wave.<br />

3. Polarizer<br />

7


The <strong>Jones</strong> matrix of a polarizer with polarizing axis along x<br />

⎛1<br />

0⎞<br />

is ⎜ ⎟. So the <strong>Jones</strong> matrix of a polarizer with the<br />

⎝0<br />

0⎠<br />

polarizing axis at θ is given by<br />

⎛ cos φ − sin φ ⎞⎛<br />

1<br />

⎜<br />

⎟⎜<br />

⎝ sin φ cos φ ⎠⎝<br />

0<br />

⎛ 2<br />

= ⎜ cos φ<br />

⎜<br />

⎝sinφ<br />

cosφ<br />

sinφ<br />

cosφ<br />

⎞<br />

⎟<br />

2<br />

sin φ<br />

⎟<br />

⎠<br />

0 ⎞⎛<br />

cos φ<br />

⎟⎜<br />

0 ⎠⎝<br />

− sin φ<br />

sin φ ⎞<br />

⎟<br />

cos φ ⎠<br />

4. Eigenvalues and eigenvectors of the <strong>Jones</strong> matrix<br />

Any matrix can be diagonalized to find the eigenvalues<br />

and eigenvectors. For the 2x2 <strong>Jones</strong> matrix, the 2<br />

eigenvectors correspond to the <strong>Jones</strong> vector that can<br />

propagate through the system without any change of<br />

polarization state.<br />

M J = λ J<br />

Exercise: Find the eigenvectors of the retardation plate<br />

and the polarizer <strong>Jones</strong> matrices.<br />

<strong>7.</strong>3 LCD <strong>Optics</strong> Modeling<br />

In the most common model, the LC cell is thought of as<br />

composed of N retardation plates. N is sufficiently large so<br />

that each slice can be regarded as having constant θ and<br />

φ, i.e. constant c-axis orientation. For twist angle smaller<br />

than 180 0 , N


20 for accuracy. This is the approach used in all<br />

commercial LCD modeling software.<br />

The LC cell then has a <strong>Jones</strong> matrix given by<br />

MLC = MN ….M3 M2 M1<br />

where Mn is the <strong>Jones</strong> matrix of a birefringent plate with caxis<br />

at angle φn to the x-axis and at θn to the z-axis.<br />

<strong>Jones</strong> matrix Mn<br />

y<br />

x<br />

φn<br />

n<br />

θn z<br />

If the fast axis is at angle φn to the x-axis, then the <strong>Jones</strong><br />

matrix is given by a coordinate transformation:<br />

Mn = Rφn –1 M’ Rφn<br />

where Rφn is the transformation matrix<br />

9


R<br />

φn<br />

⎡ cosφn<br />

= ⎢<br />

⎣−<br />

sin φ<br />

n<br />

sin φ<br />

cosφ<br />

<strong>Jones</strong> matrix of the general birefringent plate with c-axis<br />

along the principle axis (x’) is given by<br />

where<br />

with<br />

M’ =<br />

⎛ − δ<br />

⎜e<br />

j<br />

⎜<br />

⎝ 0<br />

0 ⎞<br />

⎟<br />

δ<br />

e<br />

j ⎟<br />

⎠<br />

πd(<br />

n ( θ ) )<br />

δ e − n<br />

=<br />

o<br />

λ<br />

n<br />

1<br />

=<br />

( θ )<br />

2<br />

e<br />

cos<br />

n<br />

2<br />

2<br />

o<br />

θ<br />

+<br />

sin<br />

The above formulas can be used for the modeling of LCD<br />

with arbitrary φ(z) and θ(z) distribution numerically. In<br />

particular, we shall work out a simple case of φ(z) and θ(z)<br />

below.<br />

<strong>7.</strong>4 <strong>Jones</strong> matrix of twisted nematic cells with uniform<br />

tilt<br />

The <strong>Jones</strong> matrix of a T-cell without any voltage applied<br />

can be obtained analytically.<br />

Assuming no pretilt for simplicity, θ(z) = 0. If there is a<br />

uniform tilt, then we can simply reduce Δn for all the<br />

birefringent plates.<br />

n<br />

2<br />

n<br />

2<br />

e<br />

n<br />

θ<br />

⎤<br />

⎥<br />

⎦<br />

10


The twist angle is given by<br />

φ(z) = qz = Φ z/d<br />

where Φ is the total twist angle of the LC cell. All twist<br />

angles are measured relative to the x-axis. The above<br />

equation already assumes that φ(0) = 0, i.e. the input<br />

director is parallel to the x-axis.<br />

Assuming N plates, then there are N <strong>Jones</strong> matrices. The<br />

twist angle of the nth plate is<br />

φn = n Δφ<br />

where Δφ = Φ / Ν<br />

Δφ 2Δφ<br />

NΔφ<br />

Therefore the LC <strong>Jones</strong> matrix is given by<br />

where<br />

MLC = (RNΔφ −1 M’RNΔφ)….(R2Δφ −1 M’R2Δφ)(RΔφ -1 M’RΔφ)<br />

⎛ − jδ<br />

/ N<br />

= ⎜e<br />

M '<br />

⎜<br />

⎝ 0<br />

y<br />

0 ⎞<br />

⎟<br />

jδ<br />

/ N<br />

e<br />

⎟<br />

⎠<br />

x<br />

z<br />

11


πdΔn<br />

with δ = = dΔk<br />

λ<br />

k k<br />

where Δk = e − o<br />

2<br />

πΔn =<br />

λ<br />

Now RnΔφR(n-1)Δφ −1 = RΔφ<br />

So MLC = RΦ −1 (M’RΔφ) N<br />

We can now make use of the Chebychev identity to<br />

simplify this matrix further. It can be shown that<br />

where<br />

⎛ A<br />

⎜<br />

⎝C<br />

N<br />

B ⎞<br />

⎟<br />

D⎠<br />

=<br />

⎛<br />

⎜<br />

⎝<br />

U N<br />

AU N −U<br />

N −1<br />

CU N<br />

sin NΩ<br />

=<br />

sin Ω<br />

and cos Ω = ½ (A + D)<br />

BU N ⎞<br />

⎟<br />

DU N −U<br />

N −1<br />

⎠<br />

This is valid for any unitary matrix with AD – BC = 1.<br />

(Exercise: Prove the Chebychev identity by induction)<br />

Then it is straight-forward to show that as N -> infinity,<br />

12


(M’RΔφ) N ⎛ Δk<br />

⎜cos<br />

βd<br />

− i sin βd<br />

= ⎜ β<br />

⎜ Φ<br />

⎜ − sin βd<br />

⎝ βd<br />

where β 2 d 2 = Φ 2 + Δk 2 d 2<br />

Finally, MLC can be written as a simple matrix<br />

MLC =<br />

⎛a−ib<br />

⎜<br />

⎝c−id<br />

−c−id⎞<br />

a+<br />

ib ⎠<br />

Φ ⎞<br />

sin βd<br />

⎟<br />

βd<br />

⎟<br />

Δk<br />

⎟<br />

cos βd<br />

+ i sin βd<br />

β<br />

⎟<br />

⎠<br />

Φ<br />

where a = cos Φ cos βd + sin Φ sin βd<br />

βd<br />

Δk b = cos Φ sin βd<br />

β<br />

Φ<br />

c = sin Φ cos βd - cos Φ sin βd<br />

βd<br />

Δ k<br />

d = sin Φ sin βd<br />

β<br />

This is an extremely useful result.<br />

Properties:<br />

(1) MLC is normalized, i.e. M LC = 1.<br />

(Check it.)<br />

13


(2) MLC is unitary. i.e. MLC *T = MLC -1 . (Check it). Recall<br />

from matrix algebra: the eigenvalues of unitary<br />

matrices have forms e jα (or unit length).<br />

(3) MLC changes if we change the twist sense, i.e.<br />

Φ → −Φ. The off-diagonal elements changes sign. But<br />

the properties remains the same. (e.g. the eigenvalues<br />

and eigenvectors are the same.) Therefore it does not<br />

matter how we define the twist sense, as long as it is<br />

consistent.<br />

(4) If the wave propagates in the opposite direction, i.e. we<br />

have a left-handed coordinate system, then MLC<br />

becomes MLC*. Proof: if z → -z, then M’ → Μ’*. This is<br />

a useful result for reflective displays.<br />

(5) It can be shown that<br />

MLC = Rφ −1 Τ −1<br />

⎛ −iβd<br />

⎜e<br />

⎜<br />

⎝ 0<br />

0 ⎞<br />

⎟ Τ<br />

iβd<br />

e<br />

⎟<br />

⎠<br />

⎛ cos χ − i sin χ ⎞<br />

where T = ⎜ ⎟ and sin 2χ = φ/βd.<br />

⎝−<br />

i sin χ cos χ ⎠<br />

In this form, the LC cell behaves as a “rotating<br />

waveplate”.<br />

<strong>7.</strong>5 Eigenvalues and eigenvectors of MLC<br />

The eigenvalues of the LC <strong>Jones</strong> matrix can be obtained<br />

indirectly. Let us first find the eigenvectors of (MRΔφ) N .<br />

Recall that MLC = RΦ −1 (M’RΔφ) N<br />

Write (M’RΔφ) N ⎛ g *<br />

h ⎞<br />

= ⎜ ⎟<br />

⎝−<br />

h g ⎠<br />

14


Δk<br />

where g = cos βd + i sin βd<br />

β<br />

and h = βd<br />

βd sin<br />

Φ<br />

Then the eigenvalues are given by the secular equation:<br />

⎢g<br />

* −λ<br />

⎢<br />

⎣ − h<br />

h ⎥<br />

⎥ = 0<br />

g − λ⎦<br />

The solution is easily derived to be:<br />

λ = e -jβd and e jβd<br />

The corresponding normalized eigenvectors are<br />

v1 =<br />

and v2 =<br />

⎛ β + Δk<br />

⎜<br />

⎜ 2β<br />

⎜ β − Δk<br />

⎜−<br />

j<br />

⎝ 2β<br />

⎛<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

j<br />

β − Δk<br />

2β<br />

β + Δk<br />

2β<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

These are elliptically polarized waves. Note that v1•v2 = 1<br />

which is another property of unitary matrices.<br />

This result is easily obtained if we note that<br />

15


(M’RΔφ) N = Τ −1<br />

⎛ −iβd<br />

⎜e<br />

⎜<br />

⎝ 0<br />

0 ⎞<br />

⎟ Τ<br />

iβ<br />

e<br />

d ⎟<br />

⎠<br />

⎛ cos χ − i sin χ ⎞<br />

where T = ⎜ ⎟ and sin 2χ = φ/βd.<br />

⎝−<br />

i sin χ cos χ ⎠<br />

By inspection we know that the eigenvalues are e -jβd and<br />

e jβd and the eigenvectors are<br />

⎛ cos χ ⎞ ⎛ sin χ ⎞<br />

⎜ ⎟ and ⎜ ⎟<br />

⎝−<br />

isin<br />

χ ⎠ ⎝i<br />

sin χ ⎠<br />

To visualize what is going on inside the LC cell, just take d<br />

= z in all the above formulas, and replace Φ by φ(z). Then<br />

everything else is still valid.<br />

Now MLC = RΦ −1 (M’RΔφ) N<br />

So MLC vI = RΦ −1 (M’RΔφ) N vI = λI RΦ −1 vI<br />

Hence inside the LC, the eigenvectors of polarization are<br />

rotating elliptically polarized waves. The rotation is in the<br />

same sense and pitch as the director twist angle. The<br />

physical picture is clearer if we take at the 2 limits of high<br />

pitch and low pitch.<br />

(1) Low twist large birefringence limit (dΔk >> φ)<br />

In this case β ∼ Δk<br />

The 2 eigenvectors are<br />

16


⎛1<br />

⎞<br />

v1 ~ ⎜ ⎟<br />

⎝0<br />

⎠<br />

⎛0<br />

⎞<br />

v2 ~ j⎜<br />

⎟<br />

⎝1<br />

⎠<br />

These are linearly polarized light along the x-axis (e-wave)<br />

and along the y-axis (o-wave). The waves inside the LC<br />

cell are linearly polarized light rotating along as the<br />

director. This is called the waveguiding limit. It is also<br />

called the adiabatic limit or the Mauguin limit.<br />

(2) High twist limit small birefringence limit (φ φ φ >> >> dΔk)<br />

In this case β ∼ φ/d<br />

The 2 eigenvectors are<br />

1 ⎛ 1 ⎞<br />

v1 ~ ⎜ ⎟<br />

2 ⎝−<br />

j ⎠<br />

1 ⎛1<br />

⎞<br />

v2 ~ ⎜ ⎟<br />

2 ⎝ j ⎠<br />

These are circularly polarized waves. Hence the waves<br />

inside the LC cell are rotating circularly polarized waves. It<br />

turns out from more rigorous wave propagation theory that<br />

only the circularly polarized wave with the same twist<br />

sense as the director can propagate. Hence the other<br />

circularly polarized wave will be reflected. This is the<br />

principle of the cholesteric display.<br />

17


<strong>7.</strong>6 Parameter space<br />

All the operating modes of a LCD can be shown on the<br />

parameter space.<br />

If the LCD is composed of a polarizer at angle α to the xaxis,<br />

an LC cell with input director along the x-axis, and an<br />

output polarizer at angle γ to the x-axis, then the<br />

transmission is given by<br />

T = T(α, γ, φ, dΔn) = ( sinγ<br />

)<br />

2<br />

⎛cosα<br />

⎞<br />

cosγ • M LC • ⎜ ⎟<br />

⎝ sinα<br />

⎠<br />

There are only 4 parameters, in the zero volt state. If we<br />

fix any 2 of the parameters, T can be plotted as a function<br />

of the other 2 parameters in a 2D contour map. This is<br />

called the parameter space. In most cases, the polarizers<br />

are either parallel of perpendicular. So γ = α or γ = α+π/2.<br />

So in fact there are 3 parameters in T(α, φ, dΔn).<br />

Common situation: α = 0, γ = 90 o . This is for example the<br />

case for a TN display. The following parameter space can<br />

be obtained:<br />

18


2<br />

1.5<br />

1<br />

dΔn<br />

0.5<br />

0<br />

-400 -200 0 200 400<br />

Each line represents a constant transmittance contour.<br />

The increment is 10% transmittance. The shaded part<br />

represents T>90%. The series of peaks show the Mauguin<br />

modes. The series at 90 o twist is the normal TN display.<br />

The series at 270 o shows the STN display. The series at<br />

180 o does not show near 100% transmittance. It is called<br />

the OMI mode. It has a maximum transmittance of 41%,<br />

but has other advantages such as B/W operation and low<br />

dispersion.<br />

This parameter space contains a lot of information. It is<br />

also very easy to understand the similarities and<br />

differences of TN, HTN (High TN), STN (Supertwisted<br />

nematic), OMI (Optical mode interference), SBE<br />

(Supertwist birefringent effect) and ECB modes.<br />

Nomenclature:<br />

Twist angle<br />

19


LCD Mode Twist Angle Polarizer Angle<br />

ECB 0 o<br />

45 o<br />

TN 90 o<br />

0 o<br />

HTN 120-150 o<br />

15 o<br />

STN 180-240 o<br />

45 o<br />

SBE 270 o<br />

-32.5 0<br />

OMI 180 o<br />

0 o<br />

The PS gives the transmittance at no voltage (nonselect).<br />

When a voltage is applied, the transmittance will change<br />

because Δn decreases. For a first approximation, we can<br />

regard this change as a vertical line going towards the xaxis.<br />

Also the dispersion can be visualized easily. A change in λ<br />

is equivalent to change in Δn since the parameter Δn/λ<br />

appears together in all formulas. Therefore it is equivalent<br />

to a vertical axis scaling.<br />

The parameter space above is for the waveguiding<br />

situation, with α = 0. If α = 45 o , the ECB modes will be<br />

obtained. Here we show a series of parameter spaces to<br />

show the systematic variation of the operating modes of<br />

any LCD.<br />

20


The parameter space can also be plotted with α and dΔn<br />

as the free parameters. They are useful for designing new<br />

LCD operating modes. For example, the following PS<br />

shows the 240 o twist STN display with cross polarizers.<br />

The optimum dΔn of 0.75μm, and optimum polarizer angle<br />

of 30 o can be obtained easily. This is in agreement with<br />

the best design.<br />

d x delta n<br />

2.5<br />

2<br />

1.5<br />

1<br />

0.5<br />

0<br />

0 20 40<br />

Polarizer angle<br />

60 80<br />

<strong>7.</strong>7 Gooch and Tarry formulas:<br />

Gooch and Tarry derived the analytical expressions of the<br />

optical properties of the GTN cell. We can derive those<br />

important formulas using the <strong>Jones</strong> matrix easily.<br />

22


Case 1: α = 0, γ = Φ+π/2.<br />

The transmission of the LCD is given by<br />

Therefore<br />

where u =<br />

2<br />

⎛1⎞<br />

= ( cos( Φ + π / 2)<br />

sin( Φ + / 2)<br />

) • M LC • ⎜ ⎟<br />

⎝0⎠<br />

T π<br />

2<br />

Φ 2 1 2<br />

T = sin βd<br />

= sin βd<br />

2 2<br />

2<br />

β d 1+<br />

u<br />

δ πdΔn<br />

dΔk<br />

= =<br />

Φ λΦ<br />

Φ<br />

This is the original Gooch and Tarry formula. In particular,<br />

for the 90 o TN cell, the LCD will have parallel polarizers<br />

and the transmission is given by<br />

2<br />

Φ 2<br />

T = sin βd<br />

2 2<br />

β d<br />

which can be used to derive the waveguiding modes of<br />

the TN LCD. This will be discussed in the next <strong>Chapter</strong>.<br />

Case 2: α = 0, γ = Φ.<br />

The transmission of the LCD is given by<br />

2<br />

⎛1⎞<br />

T<br />

= ( cosΦ sin Φ)<br />

• M LC • ⎜ ⎟<br />

⎝0⎠<br />

23


Therefore<br />

T =<br />

1<br />

{u<br />

2<br />

1+<br />

u<br />

2 + cos2 βd}<br />

This is just 1-T of case (1).<br />

Here is a plot for φ = 90 ο , 180 ο and 270 ο . These are the<br />

waveguiding modes.<br />

24


The 90 o TN cell with cross polarizers is a special example<br />

of this case. Here the transmission is given by<br />

2<br />

Φ 2<br />

T = 1 - sin βd<br />

2 2<br />

β d<br />

Case 3: α = 45 o , γ = −45 ο .<br />

The transmission of the LCD is given by<br />

2<br />

1<br />

⎛1⎞<br />

T =<br />

LC +<br />

4<br />

⎝1⎠<br />

( 1 −1)<br />

• M • ⎜ ⎟ = b<br />

2<br />

c<br />

2<br />

This can be used to analyze the ECB mode displays,<br />

which will be presented in the next <strong>Chapter</strong>. Here is a plot<br />

of the transmission as a function of dΔn for<br />

φ = 0 ο , 90 ο , 180 ο , 270 ο . It can be seen that these are truly<br />

interference modes.<br />

25


Case 4: α = 0, γ = π/2<br />

Here the polarizers are always crossed. The transmission<br />

is given by<br />

2<br />

1<br />

⎛1⎞<br />

T =<br />

LC +<br />

4<br />

⎝0⎠<br />

( 0 1)<br />

• M • ⎜ ⎟ = c<br />

2<br />

d<br />

2<br />

These examples show the power of the <strong>Jones</strong> matrix and<br />

the parameter space approach in analyzing LCD optics.<br />

<strong>7.</strong>7 Wave propagation theory of LC cell<br />

There is another approach to LCD optics – wave<br />

propagation theory. It yields the same results as the <strong>Jones</strong><br />

matrix approach.<br />

We first obtain the differential equation for the <strong>Jones</strong><br />

vector.<br />

z<br />

L(z)<br />

Let n = (cos φ, sin φ, 0)<br />

φ = qz<br />

km = (ne + no) π/λ<br />

Δz<br />

26


φm = km Δz<br />

Δk = πΔn/2λ<br />

δ = Δk Δz<br />

then as before the Jone matrix of the nth slice of LC cell<br />

can be approximated by a birefringent plate:<br />

jδ<br />

jφ<br />

⎛ −<br />

e<br />

L z e m −1<br />

( ) = Rφ<br />

⎜<br />

⎝ 0<br />

0 ⎞<br />

⎟R<br />

jδ<br />

φ<br />

e<br />

⎟<br />

⎠<br />

Represent the <strong>Jones</strong> vector at z by J(z), then<br />

Therefore<br />

J(z+Δz) = L(z) J(z)<br />

ΔJ = J(z+Δz) – J(z) = [ L(z) – I] J(z)<br />

As Δz 0,<br />

−1⎛1<br />

− jδ<br />

0 ⎞<br />

L( z)<br />

≈ ( 1−<br />

jφm)<br />

Rφ<br />

⎜<br />

⎟Rφ ⎝ 0 1+<br />

jδ<br />

⎠<br />

Simplifying, we get<br />

⎡ − ⎛ jΔk<br />

0 ⎞ ⎤<br />

L( z)<br />

= ( 1−<br />

jkmΔz)<br />

⎢I<br />

− R<br />

1<br />

φ ⎜<br />

⎟Rφ<br />

Δz⎥<br />

⎣ ⎝ 0 − jΔk<br />

⎠ ⎦<br />

Hence the differential equation for J(z) is given by<br />

27


dJ ( z)<br />

⎡<br />

−1⎛<br />

jΔk<br />

0 ⎞ ⎤<br />

= ⎢−<br />

jkm<br />

− Rφ<br />

⎜<br />

⎟Rφ<br />

J ( z)<br />

dz<br />

0 j k<br />

⎥<br />

⎣<br />

⎝ − Δ ⎠ ⎦<br />

Now we need to get rid of Rφ by making the transformation<br />

jk<br />

Let J ( z)<br />

e mz<br />

R = Rφ<br />

J ( z)<br />

Then it can be shown that, after a few steps,<br />

dJR<br />

( z)<br />

=<br />

dz<br />

⎛−<br />

Δk<br />

j⎜<br />

⎝ jq<br />

− jq⎞<br />

⎟J<br />

R(<br />

z)<br />

Δk<br />

⎠<br />

Now we need to diagonalize this equation. Let the<br />

eigenvalue be β, then<br />

which gives<br />

− Δk<br />

− β<br />

β =<br />

jq<br />

±<br />

− jq<br />

= 0<br />

Δk<br />

− β<br />

2 2<br />

Δk<br />

+ q<br />

which is the same as β 2 d 2 = Φ 2 + Δk 2 d 2<br />

obtained previously in section <strong>7.</strong>4.<br />

Now the normalized eigenvectors corresponding to the +<br />

and – solutions are<br />

28


v + =<br />

⎛<br />

⎜<br />

⎜<br />

⎜<br />

⎜<br />

⎝<br />

j<br />

β − Δk<br />

2β<br />

β + Δk<br />

2β<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

and v - ⎛ β + Δk<br />

⎜<br />

=<br />

⎜ 2β<br />

⎜ β − Δk<br />

⎜−<br />

j<br />

⎝ 2β<br />

⎞<br />

⎟<br />

⎟<br />

⎟<br />

⎟<br />

⎠<br />

Therefore the solutions for JR(z) are<br />

J<br />

J<br />

+<br />

R<br />

−<br />

R<br />

( z)<br />

= v<br />

( z)<br />

= v<br />

+<br />

−<br />

e<br />

e<br />

jβz<br />

jβz<br />

[Verify that these are indeed the solutions of the<br />

differential equation for JR(z)].<br />

Therefore the <strong>Jones</strong> vectors inside the LC cell is given by<br />

and<br />

+ − j( k − z − +<br />

J z = e m β ) 1<br />

( )<br />

Rφ<br />

v<br />

− − j( k + z − −<br />

J z = e m β ) 1<br />

( )<br />

Rφ<br />

v<br />

These are exactly the same results as in section <strong>7.</strong>5. The<br />

waves inside the LC cell are elliptically polarized waves<br />

with rotating axis guided by the LC director. The results<br />

here also provide the additional phase factors.<br />

29


The wave propagation approach is especially useful for<br />

cholesteric case if we take into consideration continuous<br />

reflection inside the cell. It will give the reflection of the<br />

circular polarized light, which we cannot get here.<br />

30


<strong>Chapter</strong> 8. LCD Optical Modes<br />

LCD can operate in many modes. Every point in the<br />

parameter space can be a quiescent operating point for<br />

the LCD. Depending on the polarizer angle, an LCD can<br />

be in either the ECB, or waveguiding or mixed mode of<br />

operation.<br />

8.1 ECB modes (Interference modes)<br />

Classic ECB: No twist<br />

There are several classic ECB modes (homogeneous cell,<br />

hybrid aligned cell, homeotropic cell). They all rely on the<br />

birefringence of the LC cell. The LC cell behaves as a<br />

retardation plate with variable retardation.<br />

Polarizer LC cell<br />

Analyzer<br />

The polarizer and the input director are always at 45 o to<br />

each other. The polarizers can be cross (as shown) or<br />

parallel.<br />

For a cross polarizer geometry, the transmission is given<br />

by<br />

31


T = sin 2 d<br />

∫<br />

0<br />

π Δn(<br />

z)<br />

dz<br />

λ<br />

where d = film thickness<br />

Δn = birefringence<br />

λ = wavelength<br />

For a parallel-parallel polarizer geometry<br />

T= 1 - sin 2 d<br />

∫<br />

0<br />

π Δn(<br />

z)<br />

dz<br />

λ<br />

Example: for a homogeneous cell, Δn(z) = constant<br />

Transmission<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 0.5 1 1.5 2<br />

d Δ n<br />

32


As the retardation depends on V, so the transmission will<br />

also depend on V. The shape of the curve depends on the<br />

initial retardation value. For example, dΔn(0)=2 μm:<br />

Transmittance<br />

0.50<br />

0.40<br />

0.30<br />

0.20<br />

0.10<br />

0.00<br />

This was calculated using DIMOS, and is an example of<br />

an electro-optic curve.<br />

General ECB modes:<br />

The general ECB mode can be analyzed using the<br />

parameter space. For a LC cell with any twist, the<br />

interference mode or ECB mode can be obtained by<br />

placing the input director at 45 o to the input director. The<br />

output polarizer is at 90 o to the input polarizer. In this<br />

case, it can be shown (homework exercise) easily that<br />

T = b 2 + c 2<br />

ECB cell<br />

0.00 1.00 2.00 3.00 4.00<br />

Voltage<br />

33


In particular, if Φ = 0, it can be easily shown that<br />

T = sin 2 δ<br />

which is what we have derived for a single birefringent<br />

plate with no twist. So the above formula is just an<br />

extension of the ECB mode to twisted nematic cells.<br />

It should noted that the STN and SBE modes with near<br />

45 o polarizer angles, are actually general ECB modes.<br />

They are not waveguiding and are dispersive (colored).<br />

The following curves show examples of ECB modes for<br />

90 o twist and 180 o twist cells.<br />

Transmission<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

0 2 4 6 8 10 12<br />

Retardation<br />

For the interference modes, the transmission is always<br />

periodic in dΔn. There is no waveguiding limit.<br />

34


For ECB mode, there can be several maxima and several<br />

minima. If the initial retardation value is reduced, it can<br />

have just one peak.<br />

Dispersion:<br />

Because of the dependence of T on wavelength, ECB<br />

displays are intrinsically dispersive, meaning that there is<br />

strong coloring of the transmitted light. This is bad for<br />

many applications but is good for some applications<br />

requiring color contrast.<br />

For classic ECB, the spectrum can be calculated easily. If<br />

Δn = constant independent of z, then the peaks<br />

corresponds to<br />

dΔn<br />

λo<br />

=<br />

1<br />

M +<br />

2<br />

where λο is the peak wavelength.<br />

So<br />

Similarly,<br />

1 πλ<br />

T sin ( M )<br />

o<br />

2 λ<br />

2<br />

−<br />

T<br />

for M = 1, 2, 3,…<br />

= for the ON states<br />

πλ<br />

M<br />

o<br />

λ<br />

2<br />

= sin<br />

for the OFF state<br />

Note that the ECB cell is designed to be either normally on<br />

or normally off, but not both, obviously.<br />

35


transmittance<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

M=1<br />

0<br />

400 450 500 550 600 650 700<br />

wavelength (nm)<br />

An ECB display does not have a true dark state. At any V,<br />

there is some Δn, and that must correspond to peak<br />

transmission of some color. So the color of the display<br />

changes as V changes.<br />

In the ECB mode, the input polarizer is always at 45 o to<br />

the input director.<br />

(Homework) Calculate the spectrum for the general ECB<br />

mode (i.e. with a twist).<br />

8.2 Waveguiding (Mauguin) modes<br />

M=2<br />

In the waveguiding mode, the input polarizer is at 0 o or 90 o<br />

to the input director of the LC cell. In this case, the<br />

polarization of the light rotates in the same way as the LC<br />

director of the LC cell. Therefore if the LC director twist is<br />

36


90 o , the polarization also twist by 90 o . This rotation is<br />

supposedly independent of wavelength.<br />

Typical configuration of a TN LCD:<br />

Let us apply the LC <strong>Jones</strong> matrix to analyze the<br />

waveguiding modes. Here the input polarizer is parallel to<br />

the input director and the output polarizer is parallel to the<br />

output director.<br />

Dout, Pout<br />

y<br />

DIn, Pin<br />

x<br />

37


We have shown above that the transmission is given by<br />

the famous Gooch and Tarry formula.<br />

T =<br />

1<br />

{u<br />

2<br />

1+<br />

u<br />

2 + cos2 βd}<br />

Let us examine the case of a 90 o twist TN cell. In this<br />

case, the transmission is given by<br />

where<br />

2<br />

Φ 2<br />

T = 1 - sin βd<br />

2 2<br />

β d<br />

βd<br />

=<br />

2<br />

⎛π<br />

⎞<br />

⎜ ⎟<br />

⎝ 2 ⎠<br />

2<br />

⎛πdΔn ⎞<br />

+ ⎜ ⎟<br />

⎝ λ ⎠<br />

dΔ n<br />

A plot of T vs shows several peaks.<br />

λ<br />

Transmission<br />

1<br />

0.8<br />

0.6<br />

0.4<br />

0.2<br />

0<br />

0 0.5 1 1.5 2<br />

d Δ n<br />

38


The transmission is 100% when<br />

βd = Nπ for N = 1,2,3…<br />

So the transmission peaks are at<br />

dΔn<br />

1 2<br />

= 4N<br />

−1<br />

λ 2<br />

These are called the Mauguin minima. (It will be minimum<br />

transmission if the polarizers are parallel). In the<br />

waveguiding limit, the transmission is 100% always,<br />

because the solution is a rotating linearly polarized wave.<br />

It occurs at large dΔn. For finite dΔn, the waves are<br />

slightly elliptical. The ellipticity parameter is defined as the<br />

ratio of the major to the minor axis.<br />

Definitions: If Pin is parallel to Din, the wave inside the cell<br />

is an e-wave. This is called an e-mode TN cell. If Pin ⊥ Din,<br />

then the wave inside the cell is an o-wave. This is o-mode<br />

operation. Whether an o-mode or an e-mode is used<br />

depends also on the viewing angle requirements.<br />

Most TN LCDs operate either in the first or second<br />

minimum. Here are their values<br />

dΔn<br />

First minimum 0.475 μm<br />

Second minimum 1.075 μm<br />

39


Recall from the discussion on refractive index of LC that<br />

most LC have Δn of 0.07-0.2. Therefore one can choose<br />

the right combination of cell gap and Δn to make first or<br />

second minimum cells.<br />

Sometimes, the choice of the first or second minimum also<br />

has to do with viewing angle.<br />

We shall show that the description of waveguiding modes<br />

for the Mauguin minima is correct only at large d – the<br />

waveguiding limit. There is some degree of birefringence<br />

in the normal first minimum or second minimum operation<br />

for TN LCD.<br />

Dispersion: the waveguiding effect is λ independent.<br />

Therefore the waveguiding modes are true black and<br />

white – no dispersion.<br />

8.3. Mixed modes<br />

If the polarizer angle is at angles other than 0, 45 o , or 90 o<br />

to the input director of the LC cell, then we have a mixed<br />

mode situation. The LCD operates somewhere between<br />

the ECB and the waveguiding limit.<br />

In transmittive LCD, mixed modes are not used. The<br />

optimized STN may have a little bit of mixed mode<br />

behavior because the polarizer and analyzer angles may<br />

not be 45 o to the directors exactly, and also they are not<br />

parallel or perpendicular to each other.<br />

40


8.4 Reflective modes: MTB (mixed TN and<br />

birefringence mode)<br />

A reflective display is different from a transflective display.<br />

There is only one polarizer.<br />

For such a truly reflective LCD without the rear polarizer,<br />

one has to use the MTB mode or the ECB mode. The<br />

analysis is greatly simplified by use of the <strong>Jones</strong> matrix.<br />

Pol<br />

LC cell<br />

Mirror<br />

For a reflective LCD with only one polarizer, the<br />

reflectance is given by<br />

R<br />

=<br />

2<br />

* −1<br />

⎛cosα<br />

⎞<br />

cosα • RΦM<br />

LC RΦ<br />

M LC • ⎜ ⎟<br />

⎝ sinα<br />

⎠<br />

( sinα<br />

)<br />

where M* means opposite twist sence for the LC.<br />

The following figures are parameter space for this display<br />

with various polarizer angles.<br />

41


1.5<br />

1.2<br />

dΔn<br />

0.9<br />

0.6<br />

0.3<br />

The minima in reflectance are called the TN-ECB modes,<br />

the MTN modes for α = 0. For nonzero α they are called<br />

MTB modes.<br />

The MTB modes are newly discovered by HKUST. There<br />

are many new uses of such modes for low power PDA<br />

and fancy applications.<br />

TN-ECB-2<br />

HFE<br />

TN-ECB-2<br />

RTN<br />

RSTN<br />

TN-ECB-1<br />

0<br />

-360 -240 -120 0<br />

α=0♣<br />

120 240 360<br />

Twist angle<br />

1.5<br />

1.2<br />

dΔn<br />

0.9<br />

0.6<br />

0.3<br />

RSTN<br />

SCTN<br />

0<br />

-360 -240 -120 0<br />

α=30♣<br />

120 240 360<br />

Twist angle<br />

1.5<br />

1.2<br />

dΔn<br />

0.9<br />

0.6<br />

0.3<br />

1.2<br />

dΔn<br />

0.9<br />

MTN<br />

0<br />

-360 -240 -120 0<br />

α=15♣<br />

120 240 360<br />

Twist angle<br />

1.5<br />

0.6<br />

0.3<br />

0<br />

-360 -240 -120 0<br />

α=45♣<br />

120 240 360<br />

Twist angle<br />

42


There are a lot of interesting physics contained in these<br />

parameter space diagrams. For the case of α = 45 o . the zero<br />

twist modes are exactly the ECB modes. For the case of α = o,<br />

the TN-ECB modes can be derived exactly.<br />

Given a x-polarized input wave, the ellipticity of the output<br />

through the LC cell is given by the Gooch Tarry formula:<br />

⎡1<br />

1⎛<br />

2u<br />

⎢ ⎜<br />

2<br />

χ = tan sin sin Φ 1+<br />

u<br />

2<br />

⎣2<br />

⎝1<br />

+ u<br />

− 2<br />

Therefore, for the TN-ECB mode, the reflected wave should be<br />

cross polarized. i.e. the LC cell should behave as a<br />

quarterwave plate. For this to happen, χ has to be 1.<br />

Then it can be derived easily (homework exercise) that this<br />

leads to the solution<br />

⎞⎤<br />

⎟⎥<br />

⎠⎦<br />

π<br />

Φ = ( 2N<br />

−1)<br />

where N=1,2,3…<br />

2 2<br />

and the corresponding retardation is given by<br />

dΔn = λΦ/π<br />

For example, at λ=550nm, the first 2 TN-ECB modes are (63 o .<br />

0.18μm), (189 o , 0.54μm). They corresponds exactly to the<br />

solutions depicted in the PS.<br />

43

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!