26.03.2013 Views

Is it necessary to install a downhole safety valve in a subsea ... - NTNU

Is it necessary to install a downhole safety valve in a subsea ... - NTNU

Is it necessary to install a downhole safety valve in a subsea ... - NTNU

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong><br />

<strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

A comparison of the risk level of a<br />

well w<strong>it</strong>h, and w<strong>it</strong>hout a <strong>safety</strong> <strong>valve</strong>.<br />

Diploma thesis<br />

By<br />

stud.tech<br />

Rune Vesterkjær<br />

June 2002<br />

Department of Production and Qual<strong>it</strong>y Eng<strong>in</strong>eer<strong>in</strong>g<br />

Norwegian Univers<strong>it</strong>y of Science and Technology


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Preface<br />

This report presents the results of a diploma thesis by Stud. Techn. Rune Vesterkjær,<br />

completed at the Department of Production and Qual<strong>it</strong>y Eng<strong>in</strong>eer<strong>in</strong>g, Norwegian Univers<strong>it</strong>y<br />

of Science and Technology. The work has been performed from January 2002 through May<br />

2002.<br />

The evaluation, analysis and calculations performed have been subjected <strong>to</strong> a number of<br />

assumptions, lim<strong>it</strong>ations and def<strong>in</strong><strong>it</strong>ions of system boundaries, all of which are stated further<br />

<strong>in</strong> the report.<br />

The author will accept no liabil<strong>it</strong>y for conclusions be<strong>in</strong>g deduced by readers of the report. The<br />

results derived <strong>in</strong> this report are based on a lim<strong>it</strong>ed amount of sources. Caution should be<br />

taken when us<strong>in</strong>g the results from this report further. A greater amount of reliabil<strong>it</strong>y data must<br />

be gathered <strong>to</strong> make use of the values calculated <strong>in</strong> the report.<br />

I would like <strong>to</strong> thank my supervisors Prof. Marv<strong>in</strong> Rausand, the Norwegian Univers<strong>it</strong>y of<br />

Science and Technology and Geir-Ove Strand, ExproSoft AS for valuable comments and<br />

contributions <strong>to</strong> this diploma thesis. I would also like <strong>to</strong> thank Ste<strong>in</strong> Børre Torp at Sta<strong>to</strong>il<br />

Åsgard RESU for provid<strong>in</strong>g <strong>in</strong>formation concern<strong>in</strong>g well <strong>in</strong>tervention, Ivar Ove Endresen at<br />

Sta<strong>to</strong>il for provid<strong>in</strong>g HAZOP <strong>in</strong>formation, and the rest of the staff at ExproSoft AS for<br />

help<strong>in</strong>g me when needed.<br />

Trondheim, 2002-06-05<br />

Rune Vesterkjær<br />

Diploma thesis, <strong>NTNU</strong> 2002 I


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Summary and conclusions<br />

The overall objective of this diploma thesis is <strong>to</strong> develop an understand<strong>in</strong>g of the contribution<br />

a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> (DHSV) represents <strong>to</strong> the overall risk <strong>in</strong> a <strong>subsea</strong> oil/gas well. The<br />

contribution the DHSV represents <strong>to</strong> the overall risk dur<strong>in</strong>g <strong><strong>in</strong>stall</strong>ation, production and well<br />

<strong>in</strong>tervention is considered.<br />

Norway and the Un<strong>it</strong>ed States of America have specific requirements of subsurface <strong>safety</strong><br />

devices like the DHSV. There are no specific requirements <strong>in</strong> the UK regulations for a DHSV.<br />

The Norwegian Petroleum Direc<strong>to</strong>rate (NPD) requires that there at all times shall be at least<br />

two <strong>in</strong>dependent and tested well barriers dur<strong>in</strong>g well activ<strong>it</strong>ies. Other countries have similar<br />

requirements.<br />

Acceptable level of risk <strong>in</strong> an activ<strong>it</strong>y is described by acceptance cr<strong>it</strong>eria. Comb<strong>in</strong><strong>in</strong>g<br />

acceptance cr<strong>it</strong>eria w<strong>it</strong>h the “ALARP”-pr<strong>in</strong>ciple solves acceptable risk problems. The<br />

Norwegian Oil Industry Association has developed a list of m<strong>in</strong>imum <strong>safety</strong> <strong>in</strong>tegr<strong>it</strong>y levels<br />

(SIL). The SIL requirement concern<strong>in</strong>g the shut-<strong>in</strong> of the flow <strong>in</strong> a well (W<strong>in</strong>g <strong>valve</strong>, Master<br />

<strong>valve</strong> and DHSV) is set <strong>to</strong> 3. It is therefore reasonable <strong>to</strong> require the SIL of the well w<strong>it</strong>hout a<br />

DHSV <strong>to</strong> be the same.<br />

There are two ma<strong>in</strong> risk fac<strong>to</strong>rs regard<strong>in</strong>g oil/gas production, delays <strong>in</strong> time (lost production)<br />

and the blowout risk. Lost production occurs when the well is unable <strong>to</strong> produce as expected<br />

due <strong>to</strong> different problems, and is equal <strong>to</strong> economic loss <strong>in</strong> oil production. Risk related <strong>to</strong> the<br />

<strong><strong>in</strong>stall</strong>ation and completion of a <strong>subsea</strong> oil/gas well is ma<strong>in</strong>ly related <strong>to</strong> blowout risk and time<br />

delays. Production related risk comprises economic and environmental risk. The workover<br />

risk is represented ma<strong>in</strong>ly by time delays and the blowout risk.<br />

A case example is <strong>in</strong>cluded illustrat<strong>in</strong>g the effect of a DHSV. A comparison of unavailabil<strong>it</strong>y<br />

calculations for a well w<strong>it</strong>h, and w<strong>it</strong>hout a DHSV proves the effect of a DHSV. Barrier<br />

diagrams and fault trees are constructed provid<strong>in</strong>g a basis for the calculations and illustrat<strong>in</strong>g<br />

the leakage paths.<br />

Fault trees display the <strong>in</strong>terrelationships between a potential cr<strong>it</strong>ical event <strong>in</strong> a system and the<br />

reasons for this event. The ‘TOP’ event of the fault tree analysis <strong>in</strong> this study is formulated,<br />

“Susta<strong>in</strong>able leakage <strong>to</strong> the surround<strong>in</strong>gs through e<strong>it</strong>her the x-mas tree or the wellhead dur<strong>in</strong>g<br />

normal shut-<strong>in</strong> cond<strong>it</strong>ions.”<br />

Unavailabil<strong>it</strong>y calculations are done <strong>in</strong> regard <strong>to</strong> the two exampled s<strong>it</strong>uations. The Mean<br />

Fractional Dead Time (MFDT) model is applied <strong>in</strong> the calculations. MFDT can be given two<br />

different mean<strong>in</strong>gs; the percentage of time where we are unprotected by the <strong>safety</strong> function, or<br />

the probabil<strong>it</strong>y that the <strong>safety</strong> function will fail on demand.<br />

An <strong>in</strong>troduction <strong>to</strong> well <strong>in</strong>tervention methods and equipment is given <strong>in</strong> the thesis. There are<br />

two types of well <strong>in</strong>terventions, light and heavy (also known as workover). A blowout<br />

preventer (BOP) system is a set of <strong>valve</strong>s <strong><strong>in</strong>stall</strong>ed on the wellhead <strong>to</strong> prevent the escape of<br />

pressure e<strong>it</strong>her <strong>in</strong> the annular space between the cas<strong>in</strong>g and tub<strong>in</strong>g dur<strong>in</strong>g drill<strong>in</strong>g, completion<br />

and workover operations.<br />

HAZOP (Hazard and Operabil<strong>it</strong>y analysis) is a method used <strong>to</strong> identify and assess problems<br />

that may represent risks <strong>to</strong> personnel or equipment, or prevent efficient operation. Essentially<br />

Diploma thesis, <strong>NTNU</strong> 2002 II


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

the HAZOP procedure <strong>in</strong>volves tak<strong>in</strong>g a full description of a process or a procedure and<br />

systematically question every part of <strong>it</strong> by the use of guide-words.<br />

A HAZOP of the BOP handl<strong>in</strong>g procedure dur<strong>in</strong>g workover is performed. The most frequent<br />

f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> this HAZOP is the need for preparation before the different operations beg<strong>in</strong> and<br />

secur<strong>in</strong>g of the <strong>subsea</strong> equipment. The ma<strong>in</strong> hazards related <strong>to</strong> the BOP handl<strong>in</strong>g procedure<br />

are delays <strong>in</strong> operation, dropped BOP and leakage <strong>to</strong> sea. If the operation is delayed <strong>it</strong> will<br />

result <strong>in</strong> lost production and extra cost related <strong>to</strong> hir<strong>in</strong>g of a workover rig and other<br />

equipment. If the BOP is dropped this will always lead <strong>to</strong> a time delay, but more serious<br />

scenarios may also occur.<br />

Based on the quant<strong>it</strong>ative f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> this study the DHSV reduces the risk of blowout. A<br />

removal of the DHSV represents an <strong>in</strong>creased failure probabil<strong>it</strong>y, and two <strong>in</strong>dependent and<br />

tested well barriers are not present <strong>in</strong> all cut sets. None of the cut sets do, however, violate a<br />

required SIL3 level when the DHSV is removed from the completion.<br />

The blowout frequency caused by the DHSV dur<strong>in</strong>g workover is 1.7E-4 per well year, and<br />

8.5E-5 per well year for a well w<strong>it</strong>hout a DHSV. Dur<strong>in</strong>g production the blowout frequency is<br />

found <strong>to</strong> be 4.47E-3 per well year for a well w<strong>it</strong>h a DHSV, and 1.85E-2 per well year when<br />

the DHSV is removed. In add<strong>it</strong>ion <strong>to</strong> the blowout frequency dur<strong>in</strong>g production and workover<br />

a blowout frequency caused by accidental events should be <strong>in</strong>cluded. The <strong>to</strong>tal blowout<br />

frequency is found add<strong>in</strong>g up the different contributions:<br />

f<strong>to</strong>tal = fproduction + f<strong>in</strong>tervention + (faccidential event * MFDTaccidential event)<br />

The DHSV blowout frequency contribution dur<strong>in</strong>g <strong><strong>in</strong>stall</strong>ation is not <strong>in</strong>cluded <strong>in</strong> this study.<br />

There is no data reveal<strong>in</strong>g the changes <strong>in</strong> blowout frequency when the DHSV is removed for<br />

the <strong><strong>in</strong>stall</strong>ation phase.<br />

The blowout frequencies found <strong>in</strong> the calculations are of very high. In <strong>to</strong>tal a removal of the<br />

DHSV <strong>in</strong>creases the blowout frequency. It is reasonable <strong>to</strong> believe that the calculations <strong>in</strong> this<br />

report are e<strong>it</strong>her based on <strong>in</strong>sufficient data, a bad model or calculated errors. Other fac<strong>to</strong>rs<br />

may also have contributed <strong>to</strong> the high frequency.<br />

An alternative calculation method based on the proportion of the frequencies of the ‘TOP’events,<br />

and the experience data found <strong>in</strong> ref.[7] is applied. In the new calculations a removal<br />

of the DHSV will <strong>in</strong>crease the blowout frequency of 3.0E-5 per well year. The author f<strong>in</strong>ds<br />

this result more reasonable.<br />

50% of the shut-<strong>in</strong>s of a well lead<strong>in</strong>g <strong>to</strong> a workover are caused by a DHSV failure. A DHSV<br />

failure requires a workover generat<strong>in</strong>g a loss of oil production of up <strong>to</strong> $5,6 million. In<br />

add<strong>it</strong>ion there will also be expenses concern<strong>in</strong>g the rental of a workover rig. A <strong>to</strong>tal cost of 20<br />

million dollars per <strong>in</strong>tervention is therefore not unrealistic.<br />

The author cannot recommend remov<strong>in</strong>g the Downhole <strong>safety</strong> <strong>valve</strong> (DHSV) from a <strong>subsea</strong><br />

oil/gas production well based on the f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> this thesis. Although there may be some<br />

economic advantages <strong>in</strong> remov<strong>in</strong>g the DHSV the risk of blowout should be given the greatest<br />

attention. In add<strong>it</strong>ion <strong>to</strong> caus<strong>in</strong>g pollution, the occurrence of a blowout may <strong>in</strong> severe cases<br />

lead <strong>to</strong> a bad reputation among consumers and environmental organisations. The<br />

consequences of a bad reputation are hard <strong>to</strong> estimate.<br />

Diploma thesis, <strong>NTNU</strong> 2002 III


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

A set of recommendations for further work regard<strong>in</strong>g the work done <strong>in</strong> this thesis is given at<br />

the end of the report.<br />

Diploma thesis, <strong>NTNU</strong> 2002 IV


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

List of Acronyms and Abbreviations<br />

AMV - Annulus master <strong>valve</strong><br />

AMVEXL - Annulus master <strong>valve</strong> external leakage<br />

API - The American Petroleum Inst<strong>it</strong>ute<br />

ASWV - Annulus swab <strong>valve</strong><br />

AWV - Annulus w<strong>in</strong>g <strong>valve</strong><br />

BOP - Blowout Preventer<br />

CARA - Computer Aided Reliabil<strong>it</strong>y Analysis<br />

CLW - Control l<strong>in</strong>e <strong>to</strong> well communication (DHSV)<br />

DHSV - Downhole <strong>safety</strong> <strong>valve</strong><br />

ESD - Emergency Shut Down<br />

EXL - External Leakage<br />

FAR - Fatal accident rate<br />

FAR - Fatal accident rate<br />

FSC - Fail Safe Close<br />

FTA - Fault Tree Analysis<br />

FTC - Fail To Close<br />

GoM - Gulf of Mexico<br />

HAZID - Hazardous identification analysis<br />

HAZOP - Hazardous operation analysis<br />

HID - The Hazardous Installations Direc<strong>to</strong>rate, UK<br />

HSE - The Health and <strong>safety</strong> executive, UK<br />

ISO - The International Organization for Standardization<br />

ITL - Internal leakage<br />

LCP - Leakage <strong>in</strong> Closed Pos<strong>it</strong>ion<br />

MMS - The M<strong>in</strong>erals Management Service<br />

MTTF - Mean Time To Failure<br />

MV - Production Master Valve<br />

MVEXL - Production Master <strong>valve</strong> External leakage<br />

NORSOK - The compet<strong>it</strong>ive stand<strong>in</strong>g of the Norwegian offshore<br />

sec<strong>to</strong>r<br />

NPD - The Norwegian Petroleum Direc<strong>to</strong>rate<br />

<strong>NTNU</strong> - Norwegian Univers<strong>it</strong>y of Technology and Science<br />

OCS - Outer Cont<strong>in</strong>ental Shelf<br />

OLF - Norwegian Oil <strong>in</strong>dustry association<br />

PLL - Potential Loss of Life<br />

PMV - Production master <strong>valve</strong><br />

PP - Production packer<br />

QRA Quant<strong>it</strong>ative Risk Analysis<br />

ROV - Remote operated vehicles<br />

SA - Seal assembly<br />

SCSSV - Surface Controlled SubSurface Safety Valve<br />

SIL - Safety <strong>in</strong>tegr<strong>it</strong>y level<br />

SPE - Society of Petroleum Eng<strong>in</strong>eers<br />

SWAB - Swab Valve<br />

TAC - Tub<strong>in</strong>g <strong>to</strong> Annulus communication<br />

TaDHSV - Tub<strong>in</strong>g above DHSV<br />

Diploma thesis, <strong>NTNU</strong> 2002 V


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

TbDHSV - Tub<strong>in</strong>g below DHSV<br />

ThPb Tub<strong>in</strong>g hanger seal on annulus bore side<br />

ThT - Tub<strong>in</strong>g hanger seal on production bore side<br />

TIF - Test Independent Failures<br />

TOP - Top cap flange<br />

TRSCSSV - Tub<strong>in</strong>g Retrievable Surface Controlled SubSurface Safety<br />

Valve<br />

US - Un<strong>it</strong>ed States of America<br />

WH - Wellhead<br />

WO - Workover<br />

WRSCSSV - Wirel<strong>in</strong>e Retrievable Surface Controlled SubSurface<br />

Safety Valve<br />

WV - W<strong>in</strong>g <strong>valve</strong><br />

XOL Crossover l<strong>in</strong>e<br />

XOV - Crossover <strong>valve</strong><br />

XOVEXL - Crossover <strong>valve</strong> external leakage<br />

XOVITL - Crossover <strong>valve</strong> <strong>in</strong>ternal leakage<br />

Diploma thesis, <strong>NTNU</strong> 2002 VI


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Contents<br />

Preface.........................................................................................................................................I<br />

Summary and conclusions......................................................................................................... II<br />

List of Acronyms and Abbreviations ........................................................................................ V<br />

Contents...................................................................................................................................VII<br />

List of figures ...........................................................................................................................IX<br />

List of tables .............................................................................................................................IX<br />

1 Introduction ........................................................................................................................ 1<br />

1.1 Objectives................................................................................................................... 1<br />

1.2 Lim<strong>it</strong>ations .................................................................................................................2<br />

1.3 Report structure.......................................................................................................... 3<br />

2 Rules and regulations .........................................................................................................4<br />

2.1 Norway....................................................................................................................... 4<br />

2.2 Un<strong>it</strong>ed K<strong>in</strong>gdom......................................................................................................... 4<br />

2.3 Un<strong>it</strong>ed States of America ........................................................................................... 5<br />

2.4 Standard organizations ............................................................................................... 5<br />

2.5 Regula<strong>to</strong>ry challenges ................................................................................................ 5<br />

3 Use of acceptance cr<strong>it</strong>eria .................................................................................................. 7<br />

3.1 The ALARP pr<strong>in</strong>ciple ................................................................................................ 8<br />

3.2 Safety <strong>in</strong>tegr<strong>it</strong>y level (SIL)......................................................................................... 9<br />

4 Overall risk assessment .................................................................................................... 11<br />

4.1 Consequences........................................................................................................... 11<br />

4.1.1 Economic.......................................................................................................... 12<br />

4.1.2 Blowouts........................................................................................................... 12<br />

4.2 Installation related risk............................................................................................. 14<br />

4.3 Production related risk ............................................................................................. 14<br />

4.4 Workover related risk............................................................................................... 15<br />

5 Risk reduc<strong>in</strong>g effect of a DHSV ...................................................................................... 17<br />

5.1 Case example............................................................................................................ 17<br />

5.1.1 Production tree ................................................................................................. 17<br />

5.1.2 Production well ................................................................................................ 18<br />

5.2 Barrier analysis......................................................................................................... 21<br />

5.2.1 Case example.................................................................................................... 21<br />

5.3 Fault Tree Analysis .................................................................................................. 25<br />

5.3.1 Case example.................................................................................................... 25<br />

5.4 Unavailabil<strong>it</strong>y calculations....................................................................................... 26<br />

5.4.1 The Mean Fractional Dead Time calculation model........................................ 26<br />

5.4.2 Calculations done <strong>in</strong> CARA............................................................................. 28<br />

5.4.3 Calculations done by hand ............................................................................... 28<br />

5.4.4 CARA calculation results................................................................................. 29<br />

5.4.5 Hand calculation results ................................................................................... 30<br />

5.5 Risk reduc<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> the Case example ............................................................ 33<br />

5.5.1 Comments <strong>to</strong> the risk reduc<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs .......................................................... 35<br />

6 Well <strong>in</strong>tervention.............................................................................................................. 36<br />

6.1 Intervention types..................................................................................................... 36<br />

6.1.1 Light <strong>in</strong>tervention............................................................................................. 36<br />

6.1.2 Heavy <strong>in</strong>tervention (workover) ........................................................................ 36<br />

6.1.3 Workover equipment........................................................................................ 36<br />

Diploma thesis, <strong>NTNU</strong> 2002 VII


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

6.1.4 Well <strong>in</strong>tervention example ............................................................................... 38<br />

6.2 HAZOP (Hazard and Operabil<strong>it</strong>y Analysis) ............................................................ 42<br />

6.2.1 Background ...................................................................................................... 42<br />

6.2.2 HAZOP methodology ...................................................................................... 43<br />

6.2.3 HAZOP of the BOP handl<strong>in</strong>g procedure.......................................................... 45<br />

6.2.4 The BOP handl<strong>in</strong>g procedure........................................................................... 45<br />

6.2.5 The HAZOP analysis ....................................................................................... 47<br />

6.2.6 Result of the HAZOP analysis ......................................................................... 52<br />

7 Conclusions and recommendations for further work ....................................................... 53<br />

7.1 Conclusions .............................................................................................................. 53<br />

7.2 Recommendations for further work ......................................................................... 55<br />

8 References ........................................................................................................................ 56<br />

9 Appendices....................................................................................................................... 58<br />

Diploma thesis, <strong>NTNU</strong> 2002 VIII


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

List of figures<br />

Figure 3-1 Levels of risk and the ALARP pr<strong>in</strong>ciple [32] .......................................................... 9<br />

Figure 4-1 Consequence breakdown structure of the <strong><strong>in</strong>stall</strong>ation of a <strong>subsea</strong> production well11<br />

Figure 4-2 Consequence breakdown structure of normal production on a <strong>subsea</strong> production<br />

well................................................................................................................................... 11<br />

Figure 4-3 Consequence breakdown structure of a workover on a <strong>subsea</strong> production well.... 12<br />

Figure 5-1 Horizontal X-mas tree from the Åsgard field [24] ................................................. 18<br />

Figure 5-2 A sketch of the production well used as an example <strong>in</strong> this thesis......................... 20<br />

Figure 5-3 Barrier diagram for an oil/gas produc<strong>in</strong>g well w<strong>it</strong>h a DHSV................................. 23<br />

Figure 5-4 Barrier diagram for an oil/gas produc<strong>in</strong>g well w<strong>it</strong>hout DHSV .............................. 24<br />

Figure 5-5 A plot compar<strong>in</strong>g the approximation and the general formula of unavailabil<strong>it</strong>y. .. 27<br />

Figure 5-6 The parallel structure of two tested barriers ........................................................... 29<br />

Figure 5-7 A fault tree illustrat<strong>in</strong>g the scenario when the flow has <strong>to</strong> be shut <strong>in</strong> due <strong>to</strong> a crisis<br />

.......................................................................................................................................... 32<br />

Figure 5-8 Sens<strong>it</strong>iv<strong>it</strong>y analysis of the <strong>to</strong>tal blowout frequency at different frequencies of<br />

accidental events per well year......................................................................................... 34<br />

Figure 6-1 A conventional <strong>subsea</strong> blowout preventer stack .................................................... 38<br />

Figure 6-2 Flow chart of a HAZOP exam<strong>in</strong>ation procedure (based on [2]) ............................ 44<br />

Figure 6-3 A typical blowout preventer used on <strong>subsea</strong> wells................................................. 46<br />

List of tables<br />

Table 3-1 Experienced overall FAR values for offshore workers <strong>in</strong> the UK, Norway, and U.S.<br />

GoM OCS, January 1980-January 1994 [7]....................................................................... 8<br />

Table 3-2 Safety <strong>in</strong>tegr<strong>it</strong>y levels for <strong>safety</strong> functions operat<strong>in</strong>g on demand or <strong>in</strong> a cont<strong>in</strong>uous<br />

demand mode from IEC 61508-1, Table 2 and 3)[28]..................................................... 10<br />

Table 3-3 M<strong>in</strong>imum SIL requirements - global <strong>safety</strong> functions, an extract [28] ................... 10<br />

Table 4-1 Blowout frequencies as <strong>in</strong>put <strong>to</strong> risk analysis of offshore <strong><strong>in</strong>stall</strong>ations, both <strong>subsea</strong><br />

and platform wells [7] ...................................................................................................... 13<br />

Table 5-1 The unavailabil<strong>it</strong>y of the ‘TOP’-event for a well w<strong>it</strong>h and w<strong>it</strong>hout a DHSV at<br />

different po<strong>in</strong>ts of time t and the annual average calculated <strong>in</strong> CARA............................ 30<br />

Table 5-2 The unavailabil<strong>it</strong>y of selected cut sets concerned by the presence of a DHSV....... 30<br />

Table 5-3 Calculation result of the cut sets w<strong>it</strong>h an applied lifetime of t=5years, t=10years and<br />

t=15years .......................................................................................................................... 31<br />

Table 5-4 Increased unavailabil<strong>it</strong>y of the different cut sets when the DHSV is removed ....... 31<br />

Table 5-5 The blowout frequency per well year for a well w<strong>it</strong>h and w<strong>it</strong>hout a DHSV, and the<br />

risk reduc<strong>in</strong>g effect of the DHSV..................................................................................... 34<br />

Table 6-1 Advantages and disadvantages w<strong>it</strong>h the HAZOP analysis [9] (w<strong>it</strong>h some<br />

supplements of the author.) .............................................................................................. 43<br />

Table 6-2 HAZOP work sheet of the BOP handl<strong>in</strong>g procedure............................................... 48<br />

Diploma thesis, <strong>NTNU</strong> 2002 IX


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

1 Introduction<br />

Subsea <strong><strong>in</strong>stall</strong>ations are expensive <strong>to</strong> repair. If a failure occurs a workover rig is needed <strong>to</strong><br />

perform an <strong>in</strong>tervention. The weather cond<strong>it</strong>ions <strong>in</strong> the area also affect the s<strong>it</strong>uation and repairs<br />

may take a long time. Accidents have <strong>to</strong> be avoided, and the production loss kept <strong>to</strong> a<br />

m<strong>in</strong>imum for the s<strong>it</strong>uation <strong>to</strong> be viable. High reliabil<strong>it</strong>y is therefore essential for all <strong>subsea</strong><br />

production systems.<br />

Accord<strong>in</strong>g <strong>to</strong> regulations issued by the Norwegian Petroleum Direc<strong>to</strong>rate and the U.S. M<strong>in</strong>eral<br />

Management Services (MMS), a Downhole Safety Valve (DHSV) is required <strong>in</strong> all production<br />

and <strong>in</strong>jection wells. The DHSV functions as a <strong>safety</strong> barrier. If a cr<strong>it</strong>ical s<strong>it</strong>uation occurs the<br />

DHSV may shut-<strong>in</strong> the flow from the reservoir and prevent a disaster.<br />

The DHSV protects the surround<strong>in</strong>gs when <strong>it</strong> functions as <strong>in</strong>tended dur<strong>in</strong>g production. Studies<br />

have shown that 50% of all well <strong>in</strong>terventions are caused by DHSV failure [25]. Dur<strong>in</strong>g well<br />

<strong>in</strong>tervention the risk of blowout is <strong>in</strong>creased <strong>to</strong> an essential degree compared <strong>to</strong> the production<br />

phase. The consequences related <strong>to</strong> <strong>subsea</strong> production blowouts are not of the same proportions<br />

as for a platform well. Human risk is dramatically reduced when the well is not <strong>in</strong> direct<br />

connection w<strong>it</strong>h the platform. All available reliabil<strong>it</strong>y data is provided ma<strong>in</strong>ly from platform<br />

wells. Due <strong>to</strong> the reduced human risk <strong>it</strong> is therefore reasonable <strong>to</strong> assume that <strong>subsea</strong> wells are<br />

subject <strong>to</strong> a lower risk level.<br />

Some experts say that the risks related <strong>to</strong> well <strong>in</strong>tervention caused by DHSV failure is equal or<br />

higher than the risk reduction a fully function<strong>in</strong>g DHSV represents. The need for a DHSV <strong>in</strong> a<br />

<strong>subsea</strong> well is therefore not considered <strong>necessary</strong> <strong>in</strong> a <strong>subsea</strong> well. A paper was issued <strong>in</strong> the<br />

Society of Petroleum Eng<strong>in</strong>eers (SPE) <strong>in</strong> 1999 [4] concern<strong>in</strong>g this matter. The basis for the<br />

statements made here is not well founded [19]. A better and more precise evaluation of the role<br />

of the DHSV is needed before a conclusion can be stated.<br />

1.1 Objectives<br />

The overall objective of this diploma thesis is <strong>to</strong> develop an understand<strong>in</strong>g of the contribution a<br />

<strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> (DHSV) represents <strong>to</strong> the overall risk <strong>in</strong> a <strong>subsea</strong> oil/gas well. This<br />

diploma thesis will focus on the risk related <strong>to</strong> a DHSV at different phases dur<strong>in</strong>g <strong>it</strong>s lifetime.<br />

The contribution the DHSV represents <strong>to</strong> the overall risk dur<strong>in</strong>g <strong><strong>in</strong>stall</strong>ation, production and<br />

well <strong>in</strong>tervention is considered.<br />

The objectives are as follows:<br />

a) Give an overview of the requirements related <strong>to</strong> <strong>safety</strong> barriers and <strong>downhole</strong> <strong>safety</strong><br />

<strong>valve</strong>s (DHSV), <strong>in</strong> Norway, the Un<strong>it</strong>ed K<strong>in</strong>gdom and the Un<strong>it</strong>ed States of America.<br />

b) Introduce the reader <strong>to</strong> the use of acceptance cr<strong>it</strong>eria w<strong>it</strong>h<strong>in</strong> offshore oil/gas production.<br />

Expla<strong>in</strong> the use of the “ALARP”-pr<strong>in</strong>ciple and the Safety Integr<strong>it</strong>y Level (SIL) <strong>in</strong><br />

solv<strong>in</strong>g acceptable risk problems.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

1


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

c) F<strong>in</strong>d the risk reduc<strong>in</strong>g effect of a DHSV <strong>in</strong> a <strong>subsea</strong> oil/gas well. A case example will<br />

be used <strong>to</strong> illustrate the effect. Barrier diagrams, fault trees and unavailabil<strong>it</strong>y<br />

calculations are used <strong>in</strong> the assessment.<br />

d) Comment the consequences related <strong>to</strong> an unwanted event <strong>in</strong> the different life phases of<br />

a well. Illustrate the economic and environmental effect <strong>in</strong> form of blowouts and lost<br />

production.<br />

e) Identify and describe risk related <strong>to</strong> the <strong><strong>in</strong>stall</strong>ation, production and workover phases of<br />

a well.<br />

f) Describe the different types of <strong>in</strong>tervention and the most important <strong>in</strong>tervention<br />

equipment. This is done will be order <strong>to</strong> provide a basis for a HAZOP of the BOP<br />

handl<strong>in</strong>g procedure <strong>in</strong> a workover s<strong>it</strong>uation.<br />

g) Introduce the reader <strong>to</strong> the use of HAZOP as a risk assessment <strong>to</strong>ol. Use the HAZOP<br />

method <strong>to</strong> perform a detailed risk analysis on a part of a well <strong>in</strong>tervention.<br />

h) Give a recommendation <strong>to</strong> whether or not a DHSV should be <strong><strong>in</strong>stall</strong>ed <strong>in</strong> a <strong>subsea</strong><br />

oil/gas well from a risk po<strong>in</strong>t of view. The recommendation is based on the f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong><br />

the thesis.<br />

1.2 Lim<strong>it</strong>ations<br />

The contents of System Reliabil<strong>it</strong>y Theory [8] are assumed known <strong>to</strong> the readers of this report.<br />

This <strong>in</strong>cludes the pr<strong>in</strong>ciples of fault tree analysis and reliabil<strong>it</strong>y def<strong>in</strong><strong>it</strong>ions. A lim<strong>it</strong>ed<br />

understand<strong>in</strong>g of oil production is also required, although a brief <strong>in</strong>troduction <strong>to</strong> <strong>subsea</strong> oil<br />

production is given <strong>in</strong> appendix A.<br />

The <strong>in</strong>cluded rules and regulations concern<strong>in</strong>g the presence of a Downhole Safety Valve<br />

(DHSV) are lim<strong>it</strong>ed <strong>to</strong> those of Norway, the Un<strong>it</strong>ed K<strong>in</strong>gdom and the Un<strong>it</strong>ed States of<br />

America.<br />

Due <strong>to</strong> lack of provided cost <strong>in</strong>formation from the operation companies, part four of the<br />

diploma task is removed <strong>in</strong> agreement w<strong>it</strong>h Prof. Marv<strong>in</strong> Rausand, supervisor.<br />

When identify<strong>in</strong>g the risk reduc<strong>in</strong>g effect of a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> (DHSV) is the case<br />

example only the barrier s<strong>it</strong>uation “<strong>to</strong> prevent leakage <strong>to</strong> the surround<strong>in</strong>gs dur<strong>in</strong>g a normal<br />

shut-<strong>in</strong>” will be modelled. External fac<strong>to</strong>rs affect<strong>in</strong>g the barrier s<strong>it</strong>uation like sabotage,<br />

earthquakes and environmental <strong>in</strong>fluence on the well will not be applied <strong>to</strong> the barrier scenario.<br />

The barriers analysed <strong>in</strong> the unavailabil<strong>it</strong>y calculations are considered <strong>to</strong> be <strong>in</strong>dependent and<br />

common failures are not <strong>in</strong>cluded.<br />

A HAZOP analysis of a well <strong>in</strong>tervention is <strong>to</strong>o extensive <strong>to</strong> be fully performed <strong>in</strong> this thesis.<br />

Therefore the HAZOP is restricted <strong>to</strong> the BOP handl<strong>in</strong>g procedure, <strong>in</strong> understand<strong>in</strong>g w<strong>it</strong>h Prof.<br />

Marv<strong>in</strong> Rausand.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

2


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

1.3 Report structure<br />

The report structure of this thesis is evolved around seven chapters. Necessary background<br />

<strong>in</strong>formation and a presentation of the diploma thesis is given <strong>in</strong> chapter one. Different<br />

objectives and lim<strong>it</strong>ations set by the author are also presented here.<br />

In chapter two overview of the different rules and regulations concern<strong>in</strong>g the presence of a<br />

Downhole Safety Valve issued <strong>in</strong> Norway, U.K. and the U.S. are presented.<br />

The third chapter gives an <strong>in</strong>troduction <strong>to</strong> the use of acceptance cr<strong>it</strong>eria <strong>in</strong> a risk assessment.<br />

The ALARP-pr<strong>in</strong>ciple and use of a <strong>safety</strong> <strong>in</strong>tegr<strong>it</strong>y level (SIL) are expla<strong>in</strong>ed <strong>to</strong> perform a<br />

evaluation basis for the assessment done <strong>in</strong> the follow<strong>in</strong>g chapters.<br />

A qual<strong>it</strong>ative overall risk assessment w<strong>it</strong>h respect <strong>to</strong> the completion, production and workover<br />

phase of a well is performed <strong>in</strong> chapter four. Chapter five presents the risk reduc<strong>in</strong>g effect of a<br />

DHSV. Unavailabil<strong>it</strong>y calculations are done <strong>to</strong> give quant<strong>it</strong>ative results of the risk reduc<strong>in</strong>g<br />

effect.<br />

Chapter six looks <strong>in</strong><strong>to</strong> well <strong>in</strong>tervention and provides a basis for an <strong>in</strong>tervention where the<br />

DHSV is replaced. A HAZOP analysis is carried though <strong>to</strong> reveal weaknesses <strong>in</strong> the BOP<br />

handl<strong>in</strong>g procedure.<br />

The f<strong>in</strong>al chapter, seven, concludes the thesis. The author’s recommendation <strong>to</strong> whether or not<br />

a DHSV should be present <strong>in</strong> a <strong>subsea</strong> well is given. Recommendations for further work are<br />

also provided.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

3


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

2 Rules and regulations<br />

This chapter will give an overview of the requirements related <strong>to</strong> <strong>safety</strong> barriers and hav<strong>in</strong>g a<br />

<strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> (DHSV), <strong>in</strong> Norway, the Un<strong>it</strong>ed K<strong>in</strong>gdom and the Un<strong>it</strong>ed States of<br />

America.<br />

2.1 Norway<br />

In Norway, the follow<strong>in</strong>g requirements <strong>to</strong> well barriers are <strong>in</strong>cluded <strong>in</strong> the regulations from the<br />

Norwegian Petroleum Direc<strong>to</strong>rate (NPD):<br />

“Section 76:<br />

Dur<strong>in</strong>g drill<strong>in</strong>g and well activ<strong>it</strong>ies there shall at all times be at least two <strong>in</strong>dependent<br />

and tested well barriers after the surface cas<strong>in</strong>g is <strong>in</strong> place, cf. also the Facil<strong>it</strong>ies<br />

Regulations Section 47 on well barriers.<br />

If a barrier fails, no other activ<strong>it</strong>ies shall take place <strong>in</strong> the well than those<br />

<strong>in</strong>tended <strong>to</strong> res<strong>to</strong>re the barrier.”[29]<br />

“Section 47:<br />

Well barriers shall be designed so that un<strong>in</strong>tentional <strong>in</strong>flux, crossflow <strong>to</strong> shallow<br />

formation layers and outflow <strong>to</strong> the external environment is prevented, and so that they<br />

do not obstruct ord<strong>in</strong>ary well activ<strong>it</strong>ies.” [30]<br />

The NPD has also issued specific requirements related <strong>to</strong> the use of <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong>s<br />

(DHSV):<br />

“Section 53:<br />

Completion str<strong>in</strong>gs shall be equipped w<strong>it</strong>h <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong>s (SCSSV). If the<br />

production annulus is used for gas <strong>in</strong>jection, this equipment shall also be equipped w<strong>it</strong>h<br />

<strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> (SCSSV) <strong>to</strong> provide for annulus barrier test<strong>in</strong>g.” [30]<br />

2.2 Un<strong>it</strong>ed K<strong>in</strong>gdom<br />

In the Un<strong>it</strong>ed K<strong>in</strong>gdom (UK), the offshore <strong>safety</strong> regulations are issued and followed up by the<br />

Health and Safety Executive (HSE).<br />

There are no specific requirements <strong>in</strong> the UK regulations for the <strong><strong>in</strong>stall</strong>ation of any type of<br />

<strong>downhole</strong> <strong>valve</strong> <strong>in</strong> any type of well. The regulations, which do apply <strong>to</strong> this s<strong>it</strong>uation, are; The<br />

Offshore Installations and Wells (Design and Construction etc,) regulations 1996, regulation<br />

13.1:<br />

“The well-opera<strong>to</strong>r shall ensure that a well is so designed, modified, commissioned,<br />

constructed, equipped, operated, ma<strong>in</strong>ta<strong>in</strong>ed, suspended and abandoned that—<br />

(a) so far as is reasonably practicable, there can be no unplanned escape of<br />

fluids from the well;”[31]<br />

and The Offshore Installations (Prevention of Fire and Explosion and Emergency Response)<br />

regulations 1995, regulation 9.1 which requires <strong><strong>in</strong>stall</strong>ation owners <strong>to</strong> take appropriate<br />

measures <strong>to</strong> prevent the uncontrolled release of flammable fluids. This regulation applies <strong>in</strong><br />

pr<strong>in</strong>ciple <strong>to</strong> <strong>subsea</strong> wells [31].<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

4


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

In practice the HSE would question any proposal <strong>to</strong> complete a production well w<strong>it</strong>hout a<br />

<strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> but <strong>in</strong> some cases <strong>it</strong> might be possible for the company propos<strong>in</strong>g the<br />

well completion <strong>to</strong> argue that the <strong>in</strong>clusion of such <strong>valve</strong>s was not “reasonably practicable”.<br />

This would require a demonstration that the “sacrifice” (time, trouble and expense, <strong>in</strong>clud<strong>in</strong>g<br />

<strong>in</strong>creased risk) of <strong><strong>in</strong>stall</strong><strong>in</strong>g the <strong>valve</strong> was “grossly disproportionate” <strong>to</strong> the benef<strong>it</strong> [31].<br />

2.3 Un<strong>it</strong>ed States of America<br />

The M<strong>in</strong>erals Management Service (MMS) manage the US's offshore m<strong>in</strong>eral resources<br />

<strong>in</strong>clud<strong>in</strong>g the oil/gas production. Regulations concern<strong>in</strong>g offshore operations on the outer<br />

cont<strong>in</strong>ental shelf states<br />

“Paragraph 250.800:<br />

Production <strong>safety</strong> equipment shall be designed, <strong><strong>in</strong>stall</strong>ed, used, ma<strong>in</strong>ta<strong>in</strong>ed, and tested<br />

<strong>in</strong> a manner <strong>to</strong> assure the <strong>safety</strong> and protection of the human, mar<strong>in</strong>e, and coastal<br />

environments.” [11]<br />

Specific requirements of subsurface <strong>safety</strong> devices are <strong>in</strong>cluded:<br />

“Paragraph 250.801:<br />

All tub<strong>in</strong>g <strong><strong>in</strong>stall</strong>ations open <strong>to</strong> hydrocarbon-bear<strong>in</strong>g zones shall be equipped w<strong>it</strong>h<br />

subsurface <strong>safety</strong> devices that will shut off the flow from the well <strong>in</strong> the event of an<br />

emergency unless, after application and justification, the well is determ<strong>in</strong>ed by the<br />

District Supervisor <strong>to</strong> be <strong>in</strong>capable of natural flow<strong>in</strong>g. These devices may consist of a<br />

surface-controlled subsurface <strong>safety</strong> <strong>valve</strong> (SSSV), a subsurface-controlled SSSV, an<br />

<strong>in</strong>jection <strong>valve</strong>, a tub<strong>in</strong>g plug, or a tub<strong>in</strong>g/annular subsurface <strong>safety</strong> device, and any<br />

associated <strong>safety</strong> <strong>valve</strong> lock or land<strong>in</strong>g nipple.” …”(c) Surface-controlled SSSV’s. All<br />

tub<strong>in</strong>g <strong><strong>in</strong>stall</strong>ations open <strong>to</strong> a hydrocarbon-bear<strong>in</strong>g zone which is capable of natural<br />

flow shall be equipped w<strong>it</strong>h a surface-controlled SSSV.” [11]<br />

2.4 Standard organizations<br />

The NORSOK standards (the compet<strong>it</strong>ive stand<strong>in</strong>g of the Norwegian offshore sec<strong>to</strong>r) and are<br />

approved as <strong>in</strong> force regulations of the NPD and state:<br />

“Dur<strong>in</strong>g production activ<strong>it</strong>ies at least two <strong>in</strong>dependent and tested barriers shall be<br />

normally available between reservoir and environment <strong>in</strong> order <strong>to</strong> prevent an<br />

un<strong>in</strong>tentional flow from the well. The barriers shall be designed for rapid<br />

reestablishment of a lost barrier. The pos<strong>it</strong>ion status of the barriers shall be known at<br />

all times.”[17]<br />

Standards issued from the American Petroleum Inst<strong>it</strong>ute (API) and the International<br />

Organization for Standardization (ISO) refers <strong>to</strong> the DHSV as if the presence <strong>in</strong> an oil/gas well<br />

is obvious. The standards <strong>in</strong>clude descriptions of design, <strong><strong>in</strong>stall</strong>ation, repair and operation of<br />

the DHSV. The exist<strong>in</strong>g standards are more of technical character. None of the current API and<br />

ISO standards, however, <strong>in</strong>cludes a demand for a DHSV <strong>in</strong> a <strong>subsea</strong> well.<br />

2.5 Regula<strong>to</strong>ry challenges<br />

The regulations from the concern<strong>in</strong>g author<strong>it</strong>ies are clear. A <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> (DHSV) is<br />

required <strong>in</strong> both the Norwegian and U.S. regulations. In the U.K. the HSE states that they will<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

5


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

question any proposal w<strong>it</strong>hout a DHSV, but if the <strong>in</strong>clusion was not “reasonably practicable”<br />

an assessment should be done. The author sees an opportun<strong>it</strong>y <strong>to</strong> persuade the author<strong>it</strong>ies if a<br />

proper documentation of the needlessness of a DHSV is provided. In Norway the regulations<br />

do, however, also require a m<strong>in</strong>imum of two <strong>in</strong>dependent and tested barriers between the<br />

reservoir and the environment. The DHSV is considered <strong>to</strong> be the primary barrier and the xmas<br />

tree <strong>to</strong> be the secondary barrier. A revision of the barrier formulation must be done if the<br />

DHSV is <strong>to</strong> be removed from the completion. Considerations of mak<strong>in</strong>g the x-mas tree e<strong>it</strong>her<br />

the only barrier or implement<strong>in</strong>g another and more reliable <strong>downhole</strong> barrier solution should be<br />

taken. This thesis will consider the first alternative, mak<strong>in</strong>g the x-mas tree the only barrier.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

6


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

3 Use of acceptance cr<strong>it</strong>eria<br />

To ga<strong>in</strong> an impression of the risk an event represents, the consequence of and the probabil<strong>it</strong>y<br />

for the event must be considered. The assessment may be based on a load of different<br />

developed risk assessment <strong>to</strong>ols. F<strong>in</strong>d<strong>in</strong>g the right measurement for risk and by what cr<strong>it</strong>erion<br />

<strong>it</strong> is acceptable may be tricky.<br />

An acceptable level of risk <strong>in</strong> an activ<strong>it</strong>y is described by acceptance cr<strong>it</strong>eria. The cr<strong>it</strong>eria are<br />

e<strong>it</strong>her based on standards, experience or theoretical knowledge. Acceptance cr<strong>it</strong>eria express the<br />

probabil<strong>it</strong>y and consequence of a hazardous event, and may e<strong>it</strong>her be qual<strong>it</strong>ative or<br />

quant<strong>it</strong>ative. In a risk assessment the use of acceptance cr<strong>it</strong>eria is important <strong>to</strong> identify areas<br />

that need risk reduc<strong>in</strong>g efforts. Acceptance cr<strong>it</strong>eria should be expressed <strong>in</strong> a way that makes<br />

them applicable <strong>to</strong> the different areas of the assessment. The cr<strong>it</strong>eria should reflect the <strong>safety</strong><br />

goals of the opera<strong>to</strong>r and requirements set by the author<strong>it</strong>ies. For an <strong><strong>in</strong>stall</strong>ation the acceptance<br />

cr<strong>it</strong>eria perform a basis for what is consider acceptable at the present time. Formulation<br />

accuracy may vary <strong>in</strong> accordance w<strong>it</strong>h the demand set by author<strong>it</strong>ies and the operat<strong>in</strong>g<br />

company. To verify whether the contents of the acceptance cr<strong>it</strong>eria are met, the values have <strong>to</strong><br />

be quant<strong>it</strong>ative. In other cases the use of qual<strong>it</strong>ative cr<strong>it</strong>eria are acceptable.<br />

Acceptance cr<strong>it</strong>eria are established accord<strong>in</strong>g <strong>to</strong> the extent and purpose of the assessment.<br />

There are ma<strong>in</strong>ly three different ways <strong>to</strong> establish acceptance cr<strong>it</strong>eria.<br />

A comparison w<strong>it</strong>h established and accepted methods<br />

By the use of risk-matrixes and the ALARP-pr<strong>in</strong>ciple<br />

By the use of predef<strong>in</strong>ed cr<strong>it</strong>eria for qual<strong>it</strong>ative analysis<br />

In the Norwegian sec<strong>to</strong>r of the North Sea, all opera<strong>to</strong>rs have <strong>to</strong> def<strong>in</strong>e risk acceptance cr<strong>it</strong>eria<br />

accord<strong>in</strong>g <strong>to</strong> requirements by the NPD. Different regulations are issued <strong>to</strong> standardize<br />

acceptance cr<strong>it</strong>eria.<br />

Many <strong>in</strong>terest are <strong>in</strong>volved when discuss<strong>in</strong>g acceptable risk problems: the <strong>in</strong>terest of society,<br />

the <strong>in</strong>terests of employees, and the <strong>in</strong>terests of the oil company [32]. An important issue of risk<br />

analysis is <strong>to</strong> determ<strong>in</strong>e what hazards present more danger than society is will<strong>in</strong>g <strong>to</strong> accept. A<br />

level of acceptable risk can be hard <strong>to</strong> f<strong>in</strong>d. To f<strong>in</strong>d a balance between hav<strong>in</strong>g guarantee for a<br />

safe, environmental friendly and healthy focus and mak<strong>in</strong>g a reasonable prof<strong>it</strong> is sometimes<br />

difficult. The use of the ALARP-pr<strong>in</strong>ciple (“As Low as Reasonable Practicable”) is one<br />

method <strong>to</strong> set acceptance cr<strong>it</strong>eria. Personnel risk is often subject <strong>to</strong> the use of the ALARPpr<strong>in</strong>ciple.<br />

A further description of The ALARP-pr<strong>in</strong>ciple is given <strong>in</strong> section 3.1.<br />

When deal<strong>in</strong>g w<strong>it</strong>h quant<strong>it</strong>ative cr<strong>it</strong>eria are set by different methods of measurement. The<br />

Norwegian Oil Industry Association has <strong>in</strong> the latter times standardized acceptance cr<strong>it</strong>eria for<br />

certa<strong>in</strong> operations <strong>in</strong> the North Sea. A Safety Integr<strong>it</strong>y Level (SIL) <strong>to</strong> provide a basis for the<br />

evaluation of appropriate risk levels for different events. SIL will be discussed further <strong>in</strong><br />

section 3.2.<br />

Human risk<br />

The most common rat<strong>in</strong>g when deal<strong>in</strong>g w<strong>it</strong>h personnel risk is the fatal accident rate (FAR) and<br />

the PLL-rate (Potential Loss of Life). The PLL-rate presents the average fatal accident per<br />

year. The FAR value is the most common and represents the predicted number of fatal<strong>it</strong>ies per<br />

100 million hours exposed <strong>to</strong> the hazard [7]. The FAR value is a reasonable measure for risk<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

7


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

analysis and a useful <strong>in</strong>dica<strong>to</strong>r <strong>in</strong> an overall risk approach. It should be noted that FAR values<br />

for specific <strong><strong>in</strong>stall</strong>ations could never be verified through experienced fatal<strong>it</strong>y statistics. Low<br />

probabil<strong>it</strong>y <strong>in</strong>cidents w<strong>it</strong>h a high number of fatal<strong>it</strong>ies will have high <strong>in</strong>fluence on the estimated<br />

FAR value. The Piper Alpha and the Alexander Kielland accidents completely changed the<br />

FAR values for the entire North Sea. The FAR represents an average for all offshore workers;<br />

<strong>it</strong> is obvious that the value will vary from the drill<strong>in</strong>g crew <strong>to</strong> the cater<strong>in</strong>g personnel on the<br />

platform. Table 3-1 presents the experienced FAR value for offshore workers.<br />

Table 3-1 Experienced overall FAR values for offshore workers <strong>in</strong> the UK, Norway, and U.S. GoM OCS,<br />

January 1980-January 1994 [7]<br />

Area Cond<strong>it</strong>ions for the FAR calculations FAR (fatal<strong>it</strong>ies per<br />

10 8 work<strong>in</strong>g hours)<br />

UK<br />

Total FAR (<strong>in</strong>cl. Piper Alpha) 36.5<br />

Total FAR (disregard<strong>in</strong>g Piper Alpha) 14.2<br />

Norway<br />

Total FAR (<strong>in</strong>cl. Alexander Kielland) 47.3<br />

Total FAR (disregard<strong>in</strong>g Alexander<br />

Kielland)<br />

8.5<br />

US GoM OCS Total FAR 9.0<br />

Environmental risk<br />

The environmental risk is ma<strong>in</strong>ly expressed by a spill rate. The spill rate is denoted by<br />

discharges per kg or m 3 per <strong>to</strong>n produced material. A blowout <strong>in</strong> Nigeria (1980) is the most<br />

severe <strong>in</strong>cident reported of spills from an <strong><strong>in</strong>stall</strong>ation. 30,000 <strong>to</strong>ns of crude oil polluted the<br />

islands and channels of the Niger delta. In the North Sea or the U.S. GoM OCS there has been<br />

no severe pollution caused by oil spills <strong>to</strong> sea.<br />

Environmental acceptance cr<strong>it</strong>eria must consider the overall risk through the lifetime of a well.<br />

An evaluation of the surround<strong>in</strong>g environment, the effect of other <strong><strong>in</strong>stall</strong>ations <strong>in</strong> the area and<br />

the possibil<strong>it</strong>y for immediate help <strong>in</strong> case of emergency must be performed. The use of risk<br />

matrixes and superior cr<strong>it</strong>eria, e.g. maximum blowout frequency, provide a basis <strong>in</strong> a<br />

quantification of the environmental risk.<br />

F<strong>in</strong>ancial risk<br />

In a risk assessment the economic aspect will ma<strong>in</strong>ly be expressed by cost-efficient<br />

evaluations. The evaluations <strong>in</strong>clude a series of important parameters like material loss, loss of<br />

production and costs related <strong>to</strong> environmental damages. Compilation of acceptance cr<strong>it</strong>eria<br />

concern<strong>in</strong>g f<strong>in</strong>ancial risk is problematic. The risk analysis should ensure that the <strong><strong>in</strong>stall</strong>ation<br />

does not <strong>in</strong>volve an unacceptable high f<strong>in</strong>ancial risk as a result of an accident.<br />

3.1 The ALARP pr<strong>in</strong>ciple<br />

The ALARP-pr<strong>in</strong>ciple imply<strong>in</strong>g that the risk should be reduced <strong>to</strong> a level “as low as reasonably<br />

practicable” is widely used. ALARP is normally demonstrated us<strong>in</strong>g cost/benef<strong>it</strong> evaluations<br />

w<strong>it</strong>h risk reduc<strong>in</strong>g measures be<strong>in</strong>g implemented when e.g. the cost of avert<strong>in</strong>g a fatal<strong>it</strong>y are not<br />

prohib<strong>it</strong>ively high.<br />

Comb<strong>in</strong><strong>in</strong>g the acceptance cr<strong>it</strong>eria w<strong>it</strong>h the ALARP-pr<strong>in</strong>ciple solves acceptable risk problems<br />

[32]. It is compulsory for operat<strong>in</strong>g companies <strong>to</strong> def<strong>in</strong>e probabil<strong>it</strong>y values for certa<strong>in</strong><br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

8


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

undesired events, correspond<strong>in</strong>g <strong>to</strong> the upper horizontal l<strong>in</strong>e <strong>in</strong> the ALARP-pr<strong>in</strong>ciple. A<br />

s<strong>it</strong>uation is unacceptable and must be treated further if a Quant<strong>it</strong>ative Risk Assessment (QRA)<br />

reveals higher probabil<strong>it</strong>ies than accepted. The ALARP-pr<strong>in</strong>ciple shown <strong>in</strong> Figure 3-1 is<br />

commonly accepted. In the ALARP region add<strong>it</strong>ional efforts may be performed <strong>to</strong> reduce the<br />

risk further. A weigh<strong>in</strong>g of cost and risk is done.<br />

Unacceptable region<br />

The ALARP or Tolerabil<strong>it</strong>y<br />

region (Risk is undertaken only<br />

if a benef<strong>it</strong> is desired)<br />

Broadly acceptable region<br />

(No need for detailed work <strong>to</strong><br />

demonstrate ALARP)<br />

Negligible risk<br />

Figure 3-1 Levels of risk and the ALARP pr<strong>in</strong>ciple [32]<br />

Risk cannot be justified except<br />

<strong>in</strong> extraord<strong>in</strong>ary circumstances<br />

Tolerable only if risk reduction<br />

is impracticable or <strong>it</strong>s cost is<br />

grossly disproportionate <strong>to</strong> the<br />

improvement ga<strong>in</strong>ed<br />

Tolerable if cost of reduction<br />

would exceed the improvement<br />

ga<strong>in</strong>ed<br />

Necessary <strong>to</strong> ma<strong>in</strong>ta<strong>in</strong><br />

assurance that risk rema<strong>in</strong>s at<br />

this level<br />

3.2 Safety <strong>in</strong>tegr<strong>it</strong>y level (SIL)<br />

The Norwegian Oil Industry Association has provided recommended guidel<strong>in</strong>es for the<br />

application of IEC 61508 and IEC 61511 standards <strong>in</strong> the petroleum activ<strong>it</strong>ies on the<br />

Norwegian Cont<strong>in</strong>ental Shelf. A list of m<strong>in</strong>imum <strong>safety</strong> <strong>in</strong>tegr<strong>it</strong>y levels (SIL) for the most<br />

common <strong>safety</strong> functions has been provided. [28]<br />

SIL is a discrete level for specify<strong>in</strong>g the <strong>safety</strong> <strong>in</strong>tegr<strong>it</strong>y requirements of the <strong>safety</strong> functions.<br />

The SIL requirements are based on experience, w<strong>it</strong>h a design practice that has resulted <strong>in</strong> an<br />

adequate <strong>safety</strong> level. This reduces the need for time-consum<strong>in</strong>g SIL calculations on “standard<br />

solutions” and ensures a m<strong>in</strong>imum level of <strong>safety</strong>. Another advantage of us<strong>in</strong>g pre-determ<strong>in</strong>ed<br />

SIL is that these figures can be used as <strong>in</strong>put <strong>to</strong> a Quant<strong>it</strong>ative Risk Analysis (QRA) dur<strong>in</strong>g<br />

early design stages and thereby set between the risk analysis and the <strong>in</strong>tegr<strong>it</strong>y levels for<br />

important <strong>safety</strong> functions.<br />

For several <strong>safety</strong> functions <strong>it</strong> is difficult <strong>to</strong> establish generic def<strong>in</strong><strong>it</strong>ions. Due <strong>to</strong> process<br />

specific cond<strong>it</strong>ions, design and operational philosophies etc., the number of f<strong>in</strong>al elements <strong>to</strong><br />

be activated will differ from case <strong>to</strong> case. Consequently, several of the requirements are given<br />

on a sub-function level.<br />

It is important <strong>to</strong> emphasise that SIL requirements are m<strong>in</strong>imum values, and therefore need <strong>to</strong><br />

be verified w<strong>it</strong>h respect <strong>to</strong> the overall risk level. If the QRA reveals that the overall risk level is<br />

<strong>to</strong>o high, e.g. due <strong>to</strong> a particularly large number of high pressure wells or risers, then this could<br />

trigger a stricter requirement <strong>to</strong> one or more of the <strong>safety</strong> functions. Table 3-2 is found <strong>in</strong> ref.<br />

[28] and shows the quantification of the four different SIL levels. The SIL requirement applies<br />

only <strong>to</strong> a complete function, i.e. the field sensor, the logic solver and the f<strong>in</strong>al element. It is<br />

therefore <strong>in</strong>correct <strong>to</strong> refer <strong>to</strong> any <strong>in</strong>dividual <strong>it</strong>em or equipment hav<strong>in</strong>g a <strong>safety</strong> <strong>in</strong>tegr<strong>it</strong>y level.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

9


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Table 3-2 Safety <strong>in</strong>tegr<strong>it</strong>y levels for <strong>safety</strong> functions operat<strong>in</strong>g on demand or <strong>in</strong> a cont<strong>in</strong>uous demand mode<br />

from IEC 61508-1, Table 2 and 3)[28]<br />

Safety<br />

Integr<strong>it</strong>y<br />

Level (SIL)<br />

Demand Mode of Operation<br />

(average probabil<strong>it</strong>y of failure <strong>to</strong><br />

perform <strong>it</strong>s design function on<br />

demand –PFD)<br />

Cont<strong>in</strong>uous / High Demand<br />

Mode of Operation<br />

(probabil<strong>it</strong>y of a dangerous<br />

failure per hour)<br />

4 ≥ 10 -5 <strong>to</strong> < 10 -4 ≥ 10 -9 <strong>to</strong> < 10 -8<br />

3 ≥ 10 -4 <strong>to</strong> < 10 -3 ≥ 10 -8 <strong>to</strong> < 10 -7<br />

2 ≥ 10 -3 <strong>to</strong> < 10 -2 ≥ 10 -7 <strong>to</strong> < 10 -6<br />

1 ≥ 10 -2 <strong>to</strong> < 10 -1 ≥ 10 -6 <strong>to</strong> < 10 -5<br />

An extract of the m<strong>in</strong>imum SIL requirements given <strong>in</strong> ref. [28] relat<strong>in</strong>g <strong>to</strong> the object of this<br />

thesis is presented <strong>in</strong> Table 3-3. The SIL requirement concern<strong>in</strong>g the shut-<strong>in</strong> of the flow <strong>in</strong> a<br />

well (W<strong>in</strong>g <strong>valve</strong>, Master <strong>valve</strong> and DHSV) is set <strong>to</strong> 3. It is therefore reasonable <strong>to</strong> also require<br />

a SIL3 for a well w<strong>it</strong>hout a DHSV.<br />

Table 3-3 M<strong>in</strong>imum SIL requirements - global <strong>safety</strong> functions, an extract [28]<br />

Safety function SIL Functional boundaries for given SIL<br />

requirement / comments<br />

<strong>Is</strong>olation of well;<br />

(shut <strong>in</strong> of one well)<br />

3 The SIL requirement applies <strong>to</strong> the sub-function<br />

needed for isolation of one well, i.e:<br />

- ESD-node (wellhead control panel)<br />

- W<strong>in</strong>g <strong>valve</strong> (WV) and master <strong>valve</strong> (MV)<br />

<strong>in</strong>clud<strong>in</strong>g solenoide(s) and actua<strong>to</strong>rs<br />

- Downhole <strong>safety</strong> <strong>valve</strong> (DHSV) <strong>in</strong>clud<strong>in</strong>g<br />

solenoide(s) and actua<strong>to</strong>r<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

Ref.<br />

APP. A<br />

A.6<br />

10


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

4 Overall risk assessment<br />

Risk may be denoted by the probabil<strong>it</strong>y for and the consequence of unwanted events. When<br />

discuss<strong>in</strong>g risk a focus on environmental damage, economic loss and the loss of human life are<br />

essential. These fac<strong>to</strong>rs must be considered <strong>in</strong> all well life phases <strong>in</strong> an overall risk assessment.<br />

Hazard identification performs a basis for the assessment. The frequency and the related<br />

consequences are evaluated and employed <strong>to</strong> the problem <strong>in</strong> order <strong>to</strong> provide a solution or a<br />

documentation of the potential danger.<br />

The role of the <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> (DHSV) will be discussed <strong>in</strong> each of the well life<br />

phases. In this study the completion, production and workover phases will be the ma<strong>in</strong> focus.<br />

The DHSV is not present dur<strong>in</strong>g the drill<strong>in</strong>g phase; this phase is therefore excluded from the<br />

study.<br />

4.1 Consequences<br />

The consequences related <strong>to</strong> the presence of a DHSV are equal <strong>to</strong> the ones of well w<strong>it</strong>hout a<br />

DHSV. The DHSV is rather the cause of e<strong>it</strong>her an improvement or deterioration of the failure<br />

frequency.<br />

The consequences relat<strong>in</strong>g <strong>to</strong> <strong>in</strong>cidents occurr<strong>in</strong>g <strong>in</strong> the different life phases of the well can be<br />

broken down as illustrated <strong>in</strong> Figure 4-1 <strong>to</strong> Figure 4-3.<br />

Consequences<br />

Human Economic Environmental<br />

Injured<br />

personnel<br />

Broken<br />

equipment<br />

Delayed<br />

operations<br />

Blowout +<br />

Leakages<br />

Lost<br />

objects<br />

Figure 4-1 Consequence breakdown structure of the <strong><strong>in</strong>stall</strong>ation of a <strong>subsea</strong> production well<br />

Lost<br />

production<br />

Consequences<br />

Economic Environmental<br />

Shut-<strong>in</strong> of<br />

well<br />

Blowout +<br />

leakages<br />

Figure 4-2 Consequence breakdown structure of normal production on a <strong>subsea</strong> production well<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

11


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Injured<br />

personnel<br />

Abandonment<br />

of well<br />

Consequences<br />

Human Economic Environmental<br />

Expencive<br />

repairs<br />

Delayed<br />

operations<br />

Blowout +<br />

leakages<br />

Figure 4-3 Consequence breakdown structure of a workover on a <strong>subsea</strong> production well<br />

Objects left<br />

on seabed<br />

Each of the possible consequences should be subject <strong>to</strong> cr<strong>it</strong>ical evaluation. The frequency<br />

estimates are found e<strong>it</strong>her by statistical methods or by the use of eng<strong>in</strong>eer<strong>in</strong>g judgement. The<br />

human risk may be neglected dur<strong>in</strong>g the production phase when there are no personnel at the<br />

<strong>subsea</strong> s<strong>it</strong>e.<br />

Consequences related <strong>to</strong> the DHSV will be subject <strong>to</strong> further description. There are two ma<strong>in</strong><br />

risk fac<strong>to</strong>rs <strong>to</strong> consider, delays <strong>in</strong> time (lost production) and the blowout risk. One is of<br />

economic character and the other of a more complex character related both <strong>to</strong> economic and<br />

environmental issues. These two fac<strong>to</strong>rs are discussed <strong>in</strong> the follow<strong>in</strong>g subsections.<br />

4.1.1 Economic<br />

The economic perspective is important <strong>in</strong> all bus<strong>in</strong>esses. For operat<strong>in</strong>g oil companies the<br />

economic loss is related <strong>to</strong> not be<strong>in</strong>g able <strong>to</strong> produce as much as <strong>in</strong>tended. Loss of production<br />

occurs when the well is unable <strong>to</strong> produce as expected due <strong>to</strong> different problems.<br />

To illustrate the economic loss a calculation from the Åsgard field is given.<br />

The Åsgard field consists of 52 <strong>subsea</strong> wells produc<strong>in</strong>g 3.3 million cubic meters of gas,<br />

200,000 barrels of oil and 65,000 barrels of condensate per day, [23]. If one s<strong>in</strong>gle well were <strong>to</strong><br />

be closed <strong>in</strong> for a day, w<strong>it</strong>h an oil price of $20 per barrel (price <strong>to</strong>day is about $25), the<br />

economic loss would be of $76,920 per day. In add<strong>it</strong>ion <strong>to</strong> this the gas and the condensate that<br />

contribute substantially <strong>to</strong> the earn<strong>in</strong>gs are left out here.<br />

A failure of the DHSV would require a workover. A workover on one of the Åsgard Smørbukk<br />

wells replac<strong>in</strong>g a failed DHSV lasted for 43 days [35]. In add<strong>it</strong>ion there may be a wa<strong>it</strong><strong>in</strong>g time<br />

of e.g. 30 days or more <strong>to</strong> get a workover rig <strong>to</strong> the s<strong>it</strong>e. All <strong>in</strong> all this failure will generate a<br />

loss of oil production of up <strong>to</strong> $5,6 million. In add<strong>it</strong>ion there will also be expenses concern<strong>in</strong>g<br />

the rental of a workover rig ($200.000 per day), operat<strong>in</strong>g equipment and personnel costs. The<br />

author<strong>it</strong>ies may also f<strong>in</strong>e the operat<strong>in</strong>g company for any leakages that may occur. A <strong>to</strong>tal cost<br />

of 20 million dollars per <strong>in</strong>tervention is therefore not unrealistic.<br />

4.1.2 Blowouts<br />

A blowout is def<strong>in</strong>ed <strong>in</strong> ref. [7]<br />

“An uncontrolled flow of fluids from a wellhead or wellbore is classified as a blowout.<br />

Unless otherwise specified, a flow from a flowl<strong>in</strong>e is not considered a blowout as long<br />

as the wellhead control <strong>valve</strong> can be activated.”<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

12


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Blowouts are e<strong>it</strong>her caused by barrier failures, external fac<strong>to</strong>rs or a comb<strong>in</strong>ation of these two.<br />

When all barriers <strong>in</strong> one or more leak paths fail <strong>in</strong> a shut-<strong>in</strong> system, <strong>it</strong> is considered <strong>to</strong> be a<br />

blowout. The external fac<strong>to</strong>rs lead<strong>in</strong>g <strong>to</strong> a blowout are more complex and difficult <strong>to</strong> expla<strong>in</strong>.<br />

Potential accidental events caus<strong>in</strong>g a blowout may be <strong>in</strong>cidents like dropped objects, collisions,<br />

or explosion loads.<br />

The statistical numbers presented here are collected <strong>in</strong> the period from January 1980 through<br />

January 1994. The latter years SINTEF has collected blowout data, but the data are not<br />

publicly available yet. The results presented here have <strong>to</strong> go through m<strong>in</strong>or changes <strong>to</strong> be up <strong>to</strong><br />

date. All theoretical considerations are, however, applicable for the scenario we have <strong>to</strong>day.<br />

Table 4-1 lists the blowout frequencies on offshore <strong><strong>in</strong>stall</strong>ations <strong>in</strong> the Gulf of Mexico outer<br />

cont<strong>in</strong>ental shelf (US GoM OCS) and the North Sea. A homogenous Poisson process is used <strong>to</strong><br />

describe the occurrences of blowouts, w<strong>it</strong>h blowout frequency λ. The blowout frequency is<br />

estimated by [7]:<br />

λ = ˆ<br />

Number<br />

accumulated<br />

of blowouts<br />

=<br />

operat<strong>in</strong>g time<br />

Table 4-1 Blowout frequencies as <strong>in</strong>put <strong>to</strong> risk analysis of offshore <strong><strong>in</strong>stall</strong>ations, both <strong>subsea</strong> and platform<br />

wells [7]<br />

Phase<br />

Blowout frequencies<br />

Recommended<br />

frequency<br />

North Sea<br />

frequency<br />

US GoM<br />

OCS<br />

frequency<br />

Completion Per well- completion 0.00023 - 0.00023<br />

Production Per well- year 0.00005 0.00006 0.00005<br />

Per well- year 0.00012 0.00006 0.00017<br />

Workover Per workover (8<br />

years)<br />

0.00093 0.00050 0.00136<br />

In add<strong>it</strong>ion <strong>to</strong> cause pollution the occurrence of a blowout may <strong>in</strong> severe cases lead <strong>to</strong> a bad<br />

reputation among consumers and environmental organisations. The consequences of a bad<br />

reputation are hard <strong>to</strong> estimate. If a boycott of the operat<strong>in</strong>g company is carried out <strong>it</strong> could<br />

lead <strong>to</strong> greater economic losses.<br />

The oil spill disaster of the Exxon Valdez tanker <strong>in</strong> 1989 is <strong>in</strong>cluded <strong>to</strong> illustrate a possible<br />

outcome of a major blowout. Although this is not an offshore <strong><strong>in</strong>stall</strong>ation the consequences<br />

may be of the same proportions. The Exxon Valdez caused a spillage of over 40.000 <strong>to</strong>n of<br />

crude oil. Rough estimates claim that 30.000 seabirds, 5.000 sea otters and 22 killer whales<br />

were killed. In the aftermath of the Exxon Valdez disaster a 900 million dollar settlement w<strong>it</strong>h<br />

Exxon was announced <strong>to</strong> settle all federal and state claims. In add<strong>it</strong>ion an extra 100 million<br />

dollars <strong>in</strong> f<strong>in</strong>es were given <strong>to</strong> cover any add<strong>it</strong>ional damage [18]. The negative public<strong>it</strong>y this<br />

<strong>in</strong>cident has caused Exxon (now Exxon Mobile) is hang<strong>in</strong>g over them <strong>to</strong>day. Negative<br />

public<strong>it</strong>y not only affects the concerned company but the entire oil <strong>in</strong>dustry. The economic<br />

losses related <strong>to</strong> this are impossible <strong>to</strong> estimate.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

n<br />

s<br />

13


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

The risk of terror attacks on an oil <strong><strong>in</strong>stall</strong>ation is always present and represents an <strong>in</strong>creas<strong>in</strong>g<br />

threat <strong>to</strong>day. We have seen multiple terrorist-attacks on different target the latter years. The oil<br />

and gas <strong>in</strong>dustry is very prof<strong>it</strong>able and may very well be subject <strong>to</strong> a strik<strong>in</strong>g terror attack. The<br />

fatal consequences related <strong>to</strong> such an attack might not be the major concern of the terrorist.<br />

4.2 Installation related risk<br />

Risk related <strong>to</strong> the <strong><strong>in</strong>stall</strong>ation and completion of a <strong>subsea</strong> oil/gas well is ma<strong>in</strong>ly related <strong>to</strong><br />

blowout risk and time delays. Dur<strong>in</strong>g the <strong><strong>in</strong>stall</strong>ation phase equipment may be broken or<br />

dropped objects caus<strong>in</strong>g a delay. Human risk <strong>in</strong> form of <strong>in</strong>jured personnel or fatal<strong>it</strong>ies may<br />

occur. Normal focus on <strong>safety</strong> <strong>in</strong> operations and at the s<strong>it</strong>e will prevent this from happen<strong>in</strong>g.<br />

Completion blowouts occur dur<strong>in</strong>g <strong><strong>in</strong>stall</strong>ation of <strong>downhole</strong> and <strong>subsea</strong> equipment. There have<br />

been seven blowouts concern<strong>in</strong>g the completion phase of the wells dur<strong>in</strong>g the study <strong>in</strong> ref. [7].<br />

Most of the blowouts resulted <strong>in</strong> flow through the tub<strong>in</strong>g or drill str<strong>in</strong>g. Holand po<strong>in</strong>ts out that<br />

for several of these blowouts the BOP-stack (Blowout preventer) did not <strong>in</strong>clude a bl<strong>in</strong>d-shear<br />

ram. The presence of a functional shear ram would have s<strong>to</strong>pped many of these blowouts at an<br />

early stage and thus prevented the blowout. None of the completion blowouts have caused any<br />

casualties. One blowout caused severe damage when ign<strong>it</strong>ed; otherwise there have only been<br />

m<strong>in</strong>or spillage.<br />

Dur<strong>in</strong>g <strong><strong>in</strong>stall</strong>ation the presence of a DHSV makes the procedure more complex. The DHSV<br />

may be scratched or deformed by the pressure and not function. A hydraulic control l<strong>in</strong>e is<br />

strapped <strong>to</strong> the tub<strong>in</strong>g, which <strong>in</strong>crease the <strong><strong>in</strong>stall</strong>ation time. This will not result <strong>in</strong> any<br />

significant change of blowout risk. Other than the <strong>in</strong>creased <strong><strong>in</strong>stall</strong>ation time the author cannot<br />

se any other <strong>in</strong>conveniences w<strong>it</strong>h the <strong><strong>in</strong>stall</strong>ation of a well w<strong>it</strong>h the DHSV.<br />

4.3 Production related risk<br />

Production related risk comprises economic and environmental risk. There are no personnel<br />

present at the s<strong>it</strong>e dur<strong>in</strong>g production and therefore the human risk is neglected.<br />

Production blowouts occur <strong>in</strong> produc<strong>in</strong>g or mechanically closed <strong>in</strong> production or <strong>in</strong>jection<br />

wells. The SINTEF offshore blowout database <strong>in</strong>cludes 12 production blowouts. External<br />

forces like ships collision, s<strong>to</strong>rm and fire, caused half the blowouts. The other half was caused<br />

by mechanical failure <strong>in</strong> the primary and secondary barriers. Five of the six blowouts blew <strong>in</strong><br />

the x-mas tree and the last came outside the cas<strong>in</strong>g. Only one of the production blowouts has<br />

caused small pollution. There have been no casualties. The blowout outside the cas<strong>in</strong>g caused a<br />

<strong>subsea</strong> crater that tilted the platform and was the only severe damage. A $220 million<br />

<strong>in</strong>surance claim was the result of this <strong>in</strong>cident.<br />

Dur<strong>in</strong>g normal production the DHSV may fail. The failures occurr<strong>in</strong>g are categorised <strong>in</strong><strong>to</strong> two<br />

groups, cr<strong>it</strong>ical and non-cr<strong>it</strong>ical failures. Cr<strong>it</strong>ical failures are fail <strong>to</strong> close (FTC), leakage <strong>in</strong><br />

closed pos<strong>it</strong>ion (LCP) or <strong>in</strong>ternal leakage (ITL). These failures will, however, not cause the<br />

well <strong>to</strong> s<strong>to</strong>p the production, but are significant if the DHSV is supposed <strong>to</strong> fulfil <strong>it</strong>s task.<br />

Premature closure (PC) and fail <strong>to</strong> open (FTO) will s<strong>to</strong>p the production. If a failure occurs <strong>in</strong><br />

between the workover <strong>in</strong>tervals the operat<strong>in</strong>g company must force open the DHSV by wirel<strong>in</strong>e,<br />

proceed w<strong>it</strong>h a full workover or close <strong>in</strong> the well. The sever<strong>it</strong>y of this <strong>in</strong>cident varies accord<strong>in</strong>g<br />

<strong>to</strong> when <strong>it</strong> occurs <strong>in</strong> the well lifetime. In some cases if failure occurs at the end of the lifetime.<br />

The well pressure may be low and the well may be produc<strong>in</strong>g e.g. 80% water. An application<br />

may than be sent <strong>to</strong> the governmental author<strong>it</strong>ies obta<strong>in</strong><strong>in</strong>g a dispensation <strong>to</strong> produce w<strong>it</strong>hout a<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

14


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

function<strong>in</strong>g DHSV. In these cases a wirel<strong>in</strong>e <strong>in</strong>tervention may be carried out provid<strong>in</strong>g a<br />

locked open DHSV awa<strong>it</strong><strong>in</strong>g abandonment or a scheduled workover. This option is also<br />

applicable if the DHSV fails w<strong>it</strong>h a FTC or LCP. The lost production may <strong>in</strong> these cases be<br />

reduced by this option. An early DHSV failure, when the production is <strong>in</strong> <strong>it</strong>s prime, will cause<br />

a more substantial economic loss.<br />

Recent studies show that 50 % of the shut-<strong>in</strong>s of a well lead<strong>in</strong>g <strong>to</strong> a workover is caused by<br />

DHSV failure [25]. W<strong>it</strong>h a DHSV failure rate of 5.84E-6 [13] this means that the DHSV<br />

causes a well workover approximately every 19.6 well year. At the Åsgard field there are 52<br />

wells. Every 2.7 years they have <strong>to</strong> carry out an <strong>in</strong>tervention. On the field the <strong>to</strong>tal loss of<br />

production, equipment and rental cost will amount <strong>to</strong> approximately 20 million dollars (see<br />

subsection 4.1.1). In a well lifetime (15 years), this will represent a <strong>to</strong>tal value of 111 million<br />

dollars for the operat<strong>in</strong>g company. These numbers have not taken <strong>in</strong> account that the well may<br />

have been abandoned as a consequence of DHSV failure.<br />

4.4 Workover related risk<br />

The workover risk is represented ma<strong>in</strong>ly by the risk of delay and the risk of blowout. Other<br />

th<strong>in</strong>gs may also occur, like failures caus<strong>in</strong>g a need for abandonment of the well or extra repairs<br />

due <strong>to</strong> equipment failures. The risk of <strong>in</strong>jured personnel is as for the <strong><strong>in</strong>stall</strong>ation phase always<br />

present. The opera<strong>to</strong>rs must be precautious and the operat<strong>in</strong>g companies must provide a safe<br />

work<strong>in</strong>g environment.<br />

A workover is more likely <strong>to</strong> cause severe pollution than the other stages of the well. The well<br />

is perforated and the production zone is “alive” nearly all the time. Dur<strong>in</strong>g workover the<br />

opera<strong>to</strong>rs usually use solid-free workover fluids. A mud filter cake, which dur<strong>in</strong>g drill<strong>in</strong>g acts<br />

as a seal aga<strong>in</strong>st the formation, will not be created. As a result cont<strong>in</strong>uous losses of formation<br />

occur and may lead <strong>to</strong> a loss of the well. The cas<strong>in</strong>gs may have deteriorated due <strong>to</strong> the stress<br />

they have been affected by <strong>in</strong> the well.<br />

All blowouts cause economic losses. Downtime of the well <strong>in</strong>volves lost production. Millions<br />

of dollars may be lost if damage <strong>to</strong> well equipment or workover rigs also occurs. W<strong>it</strong>h such<br />

large amounts of money at stake the prevention of a blowout is preferable <strong>in</strong> preference <strong>to</strong><br />

sav<strong>in</strong>g money dur<strong>in</strong>g the completion phase.<br />

None of the blowouts recorded <strong>in</strong> the SINTEF offshore blowout database has caused severe<br />

pollution. The most severe blowout recorded <strong>in</strong> the period from 1980-94 of was an oil blowout<br />

em<strong>it</strong>t<strong>in</strong>g 10 m 3 <strong>in</strong><strong>to</strong> the ocean [7]. Out of the 41 workover blowouts after January 1970, there<br />

have been two reported blowouts w<strong>it</strong>h large spills. The Bravo blowout <strong>in</strong> 1977, 20.000m 3<br />

spilled <strong>in</strong><strong>to</strong> the North Sea. The second one was <strong>in</strong> 1992 <strong>in</strong> the U.S. Timbalier Bay’s shallow<br />

waters offshore Louisiana. 500m 3 of oil drifted ashore and caused damage <strong>to</strong> the wildlife [7].<br />

The role of a DHSV <strong>in</strong> the workover process is vague. Dur<strong>in</strong>g the workover the DHSV is<br />

pulled <strong>to</strong>gether w<strong>it</strong>h the tub<strong>in</strong>g. This process will last slightly longer than if the DHSV was not<br />

present. The control l<strong>in</strong>es strapped on<strong>to</strong> the tub<strong>in</strong>g ma<strong>in</strong>ly cause the delay. Dur<strong>in</strong>g the tub<strong>in</strong>g<br />

retrieval process the straps must be removed and the control l<strong>in</strong>es handled w<strong>it</strong>h care. For a<br />

completion w<strong>it</strong>hout a DHSV the amount of control l<strong>in</strong>es is reduced. Therefore the presence of<br />

a DHSV will result <strong>in</strong> a more complex workover s<strong>it</strong>uation. A DHSV will not cause any<br />

significant change of blowout risk dur<strong>in</strong>g workover.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

15


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Probabil<strong>it</strong>y of dropp<strong>in</strong>g an object and h<strong>it</strong>t<strong>in</strong>g the x-mas tree<br />

Prior <strong>to</strong> the workover operation the workover rig is located at the s<strong>it</strong>e above the well. Dur<strong>in</strong>g<br />

the period of preparation until the BOP is connected <strong>to</strong> the wellhead, there is a possibil<strong>it</strong>y of<br />

dropp<strong>in</strong>g objects. This may result <strong>in</strong> a destruction of the x-mas tree and result <strong>in</strong> a blowout. If<br />

this happens the <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> (DHSV) will play an important role. The DHSV will<br />

seal off the well and prevent leakage. This scenario is, however, reasonably unlikely <strong>to</strong> happen.<br />

Accord<strong>in</strong>g <strong>to</strong> ref. [3] the probabil<strong>it</strong>y of dropp<strong>in</strong>g any crane load and h<strong>it</strong> someth<strong>in</strong>g w<strong>it</strong>h<strong>in</strong> 25<br />

meter radius at 1000meters depth is 9,17E-3, for a derrick 7,84E-4. In add<strong>it</strong>ion there is a<br />

probabil<strong>it</strong>y of dropp<strong>in</strong>g a crane load of 2.0E-5. The probabil<strong>it</strong>y of dropp<strong>in</strong>g a BOP or a<br />

compact object from the derrick is 5.75E-4.<br />

The x-mas tree is cover<strong>in</strong>g an area of about 4 square meters on the seabed. This is about 0.2<br />

percent of the area for the crane load and 5 percent of the area for the derrick. In <strong>to</strong>tal the<br />

frequency of dropp<strong>in</strong>g someth<strong>in</strong>g from a crane or a derrick and h<strong>it</strong>t<strong>in</strong>g the x-mas tree at the<br />

seabed is 2.29E-8 per year.<br />

These calculations have not considered the impact the h<strong>it</strong> will have and does not <strong>in</strong>clude the<br />

effect of water currents. Currents contribute significantly <strong>to</strong> the <strong>to</strong>tal spread<strong>in</strong>g. [3]. Although<br />

the wellhead is h<strong>it</strong>, the impact may also vary. Not all h<strong>it</strong>s end w<strong>it</strong>h a broken x-mas tree. If the<br />

use of <strong>safety</strong> <strong>in</strong>tegr<strong>it</strong>y level (SIL) (see section 3.2) for a low demand system is required, the<br />

probabil<strong>it</strong>y of dropp<strong>in</strong>g an object and h<strong>it</strong>t<strong>in</strong>g the someth<strong>in</strong>g on the seabed is fulfill<strong>in</strong>g the<br />

requirements of SIL4. A dropped object damag<strong>in</strong>g the x-mas tree and provid<strong>in</strong>g a need for the<br />

DHSV <strong>to</strong> prevent a blowout is therefore by any means w<strong>it</strong>h<strong>in</strong> the acceptance cr<strong>it</strong>eria.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

16


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

5 Risk reduc<strong>in</strong>g effect of a DHSV<br />

The presence of a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> (DHSV) shall reduce the risk of blowout <strong>in</strong> a <strong>subsea</strong><br />

production well. In this chapter, the risk reduc<strong>in</strong>g effect of a DHSV is found. A case study of a<br />

<strong>subsea</strong> production well is <strong>in</strong>cluded as an illustrative example. A comparison of unavailabil<strong>it</strong>y<br />

calculations for a well w<strong>it</strong>h, and w<strong>it</strong>hout a DHSV proves the pos<strong>it</strong>ive effect of the DHSV<br />

dur<strong>in</strong>g production. Barrier diagrams and fault trees are constructed <strong>to</strong> provide a basis for the<br />

calculations and illustrate the leakage paths.<br />

5.1 Case example<br />

The studied well is composed out of standard well components. A technical description of the<br />

different components is given <strong>in</strong> appendix A. The study is lim<strong>it</strong>ed <strong>to</strong> the <strong>downhole</strong> and x-mas<br />

tree configurations; <strong>to</strong>pside equipment, manifolds and riser systems are not <strong>in</strong>cluded.<br />

To be able <strong>to</strong> calculate the risk w<strong>it</strong>h and w<strong>it</strong>hout a DHSV <strong>in</strong> the well, the well lifetime is<br />

assumed <strong>to</strong> be 15 years. This generates <strong>in</strong> most cases a conservative value for the non-tested<br />

barriers. Periodic test<strong>in</strong>g is carried out <strong>to</strong> reveal hidden failures <strong>in</strong> the system. For <strong>safety</strong><br />

reasons the most cr<strong>it</strong>ical functions, <strong>in</strong>clud<strong>in</strong>g the DHSV, are tested every 6 months. Other parts<br />

of the system are not tested.<br />

The tested functions are:<br />

Clos<strong>in</strong>g, open<strong>in</strong>g and leak tight function of the DHSV<br />

Clos<strong>in</strong>g, open<strong>in</strong>g and leak tight function of the master <strong>valve</strong><br />

Clos<strong>in</strong>g, open<strong>in</strong>g and leak tight function of the production w<strong>in</strong>g <strong>valve</strong><br />

5.1.1 Production tree<br />

The production tree <strong>in</strong> the example is a horizontal tree, as illustrated <strong>in</strong> Figure 5-1. A<br />

production tree is an assembly of <strong>valve</strong>s. It provides control of the well flow dur<strong>in</strong>g production<br />

and is capable, among other th<strong>in</strong>gs, of cutt<strong>in</strong>g of the flow from the reservoir.<br />

In the risk assessment the failure modes, external leakage (EXL), fail <strong>to</strong> close (FTC), <strong>in</strong>ternal<br />

leakage (ITL) and leakage <strong>in</strong> closed pos<strong>it</strong>ion (LCP) are considered for the different <strong>valve</strong>s.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

17


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Figure 5-1 Horizontal X-mas tree from the Åsgard field [24]<br />

5.1.2 Production well<br />

The studied production well is a standard completion and illustrated <strong>in</strong> Figure 5-2. The<br />

example well is similar <strong>to</strong> an oil production well at the Oseberg B field. A figure present<strong>in</strong>g the<br />

<strong>downhole</strong> completion of the Oseberg B well is shown <strong>in</strong> appendix B.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

18


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

In the example the most common components are <strong>in</strong>cluded and listed below. Other well<br />

equipment is neglected.<br />

The system of the example well comprise the follow<strong>in</strong>g ma<strong>in</strong> <strong>it</strong>ems:<br />

13 5/8” cas<strong>in</strong>g hanger seals<br />

Annulus master <strong>valve</strong><br />

Annulus swab <strong>valve</strong><br />

Annulus w<strong>in</strong>g <strong>valve</strong><br />

Crossover l<strong>in</strong>e<br />

Crossover <strong>valve</strong><br />

Downhole <strong>safety</strong> <strong>valve</strong><br />

Hydraulic control l<strong>in</strong>e<br />

Production master <strong>valve</strong><br />

Production packer<br />

Production w<strong>in</strong>g <strong>valve</strong><br />

Seal assembly<br />

Swab <strong>valve</strong><br />

Tub<strong>in</strong>g<br />

Tub<strong>in</strong>g hanger seal (annulus bore)<br />

Tub<strong>in</strong>g hanger seal (production bore)<br />

Wellhead seal<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

19


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Annulus swab <strong>valve</strong><br />

Annulus w<strong>in</strong>g <strong>valve</strong><br />

Control panel<br />

Annulus<br />

master <strong>valve</strong><br />

Tub<strong>in</strong>g hanger seal<br />

Annulusbore<br />

Cas<strong>in</strong>g<br />

hanger seals<br />

Hydraulic<br />

control l<strong>in</strong>e<br />

Tree cap<br />

Swab <strong>valve</strong><br />

Figure 5-2 A sketch of the production well used as an example <strong>in</strong> this thesis<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

Crossover <strong>valve</strong><br />

W<strong>in</strong>g <strong>valve</strong><br />

Production master <strong>valve</strong><br />

Tub<strong>in</strong>g hanger seal<br />

(productionbore)<br />

SEA BED<br />

Wellhead seal<br />

Tub<strong>in</strong>g hanger<br />

Cas<strong>in</strong>g<br />

hanger seals<br />

DHSV<br />

Seal<br />

assembly<br />

L<strong>in</strong>er hanger seal<br />

Production packer<br />

20


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

5.2 Barrier analysis<br />

The theory presented <strong>in</strong> this section is based on reference [7].<br />

A well barrier is def<strong>in</strong>ed as:<br />

“An <strong>it</strong>em that, by <strong>it</strong>self, prevents flow of the well reservoir fluids from the reservoir <strong>to</strong><br />

the atmosphere” [26]<br />

A well barrier system will vary depend<strong>in</strong>g on the operational phases of the well.<br />

The barrier analyses are carried out <strong>to</strong> identify potential leakage paths and are based on barrier<br />

diagrams.<br />

Components provide <strong>safety</strong> barriers when work<strong>in</strong>g as supposed <strong>to</strong>. There are two ma<strong>in</strong> types of<br />

barriers, dynamic barriers and static barriers. A static barrier is a barrier available over a “long”<br />

period of time. A dynamic barrier is a barrier that varies over time. This will apply for drill<strong>in</strong>g,<br />

workover, and completion operations.<br />

The barriers are normally denoted as primary, secondary and third barrier. It can be stated <strong>in</strong><br />

general that the primary barrier is the one <strong>in</strong> contact w<strong>it</strong>h the reservoir. For completion and<br />

workover, <strong>in</strong> a shut-<strong>in</strong> well, the hydrostatic pressure is regarded as the primary barrier, and the<br />

<strong>subsea</strong> equipment, usually a BOP, is regarded as the secondary barrier. Dur<strong>in</strong>g production the<br />

<strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> (DHSV) among others acts as the primary barrier and the x-mas tree as<br />

the secondary.<br />

Barrier diagrams are easy <strong>to</strong> understand and provide a good view of the barrier s<strong>it</strong>uation.<br />

Possible leakage paths between the reservoir and the environment have <strong>to</strong> be identified <strong>to</strong><br />

establish a barrier diagram. The diagrams are read from the reservoir at the bot<strong>to</strong>m and up<br />

through <strong>to</strong> the surround<strong>in</strong>gs. In the construction of barrier diagrams the <strong>safety</strong> barriers are<br />

represented w<strong>it</strong>h rounded rectangles and connected w<strong>it</strong>h l<strong>in</strong>es. To make the diagram easier <strong>to</strong><br />

understand triangles and colour codes are added represent<strong>in</strong>g different areas of the well.<br />

Barrier rat<strong>in</strong>gs are also presented w<strong>it</strong>h a colour code. This is not standard, but gives the reader<br />

a better overview of the diagram.<br />

The leakage probabil<strong>it</strong>y depends on each barrier and the structural relationship between the<br />

barriers. If reliabil<strong>it</strong>y data for the various components are added, a <strong>to</strong>tal leakage probabil<strong>it</strong>y is<br />

possible <strong>to</strong> assess from the diagram. The complex<strong>it</strong>y <strong>in</strong> calculation <strong>in</strong>creases w<strong>it</strong>h the<br />

complex<strong>it</strong>y of the s<strong>it</strong>uation. Therefore barrier diagrams are often transferred <strong>to</strong> fault trees; these<br />

are commented <strong>in</strong> section 5.3.<br />

Chapter two of this thesis deals w<strong>it</strong>h regulations regard<strong>in</strong>g well barriers. The Norwegian<br />

Petroleum Direc<strong>to</strong>rate states:<br />

“Dur<strong>in</strong>g drill<strong>in</strong>g and well activ<strong>it</strong>ies there shall at all times be at least two <strong>in</strong>dependent<br />

and tested barriers after the surface cas<strong>in</strong>g is <strong>in</strong> place “[29].<br />

Other countries have similar requirements.<br />

5.2.1 Case example<br />

In the case example the barrier s<strong>it</strong>uation, “<strong>to</strong> prevent leakage <strong>to</strong> the surround<strong>in</strong>gs dur<strong>in</strong>g<br />

temporary shut-<strong>in</strong> of a production well”, is modelled. The <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> (DHSV), the<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

21


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

master production <strong>valve</strong> and the w<strong>in</strong>g <strong>valve</strong> are ordered <strong>to</strong> close <strong>in</strong> and be tight. Only the static<br />

barrier scenario of the production phase is <strong>in</strong>cluded.<br />

The barrier diagrams are based on the follow<strong>in</strong>g assumptions:<br />

The master production <strong>valve</strong>, w<strong>in</strong>g <strong>valve</strong> and the DHSV have been given a close<br />

command from the surface control.<br />

The system is shut-<strong>in</strong>.<br />

Leakage through the tub<strong>in</strong>g and back <strong>in</strong><strong>to</strong> the tub<strong>in</strong>g is possible but not considered here.<br />

The x-mas tree is not considered as a s<strong>in</strong>gle barrier, but each ma<strong>in</strong> component is<br />

regarded as a barrier.<br />

The probabil<strong>it</strong>y of leakage <strong>to</strong> the surround<strong>in</strong>gs through the cas<strong>in</strong>gs and cement is very<br />

low and is not accounted for <strong>in</strong> the barrier- and fault tree analysis.<br />

The leakage paths are illustrated <strong>in</strong> Figure 5-2. The reliabil<strong>it</strong>y data dossiers <strong>in</strong> appendix D<br />

<strong>in</strong>clude a column where the applied leakage modes of each <strong>valve</strong> are listed.<br />

The barrier diagrams for the oil/gas production well w<strong>it</strong>h and w<strong>it</strong>hout a DHSV are presented <strong>in</strong><br />

Figure 5-3 and Figure 5-4.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

22


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Wellhead<br />

seal leak<br />

Annulus<br />

master <strong>valve</strong><br />

EXL<br />

Annulus w<strong>in</strong>g<br />

<strong>valve</strong> ITL/EXL<br />

Tub<strong>in</strong>g hange tub<strong>in</strong>g<br />

hanger seal leak<br />

Tub<strong>in</strong>g hanger seal<br />

annulus bore leak<br />

Wellhead<br />

13 5/8" cas<strong>in</strong>g<br />

seal leak<br />

A-annulus area<br />

Through the DHSV<br />

Wellhead area<br />

Master production<br />

<strong>valve</strong> ITL<br />

Crossover l<strong>in</strong>e/<br />

annulus area<br />

Primary barrier<br />

Secodary barrier<br />

Third barrier<br />

Annulus swab<br />

<strong>valve</strong> ITL/EXL<br />

Crossover<br />

Annulus<br />

master <strong>valve</strong><br />

ITL<br />

Production<br />

packer leaks<br />

Surround<strong>in</strong>gs<br />

Crossover<br />

<strong>valve</strong>, ITL<br />

Tub<strong>in</strong>g hanger seal<br />

production bore leak<br />

A-<br />

Annulus<br />

Crossover l<strong>in</strong>e<br />

EXL<br />

ITL<br />

M. Valve<br />

Production tub<strong>in</strong>g<br />

above DHSV<br />

DHSV<br />

EXL<br />

Production tub<strong>in</strong>g<br />

below DHSV<br />

Reservoir<br />

Crossover<br />

<strong>valve</strong>, EXL<br />

Figure 5-3 Barrier diagram for an oil/gas produc<strong>in</strong>g well w<strong>it</strong>h a DHSV<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

Production<br />

swab <strong>valve</strong>,<br />

ITL/EXL<br />

Production<br />

master <strong>valve</strong>,<br />

ITL<br />

DHSV leak<br />

or FTC<br />

Production<br />

w<strong>in</strong>g <strong>valve</strong>,<br />

ITL/EXL<br />

Through<br />

DHSV<br />

Production<br />

master <strong>valve</strong>,<br />

EXL<br />

23


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Wellhead<br />

seal leak<br />

Annulus<br />

master <strong>valve</strong><br />

EXL<br />

Annulus w<strong>in</strong>g<br />

<strong>valve</strong> ITL/EXL<br />

Tub<strong>in</strong>g hange tub<strong>in</strong>g<br />

hanger seal leak<br />

Tub<strong>in</strong>g hanger seal<br />

annulus bore leak<br />

Wellhead<br />

13 5/8" cas<strong>in</strong>g<br />

seal leak<br />

A-annulus area<br />

Above tub<strong>in</strong>g<br />

Wellhead area<br />

Master production<br />

<strong>valve</strong> ITL<br />

Crossover l<strong>in</strong>e/<br />

annulus area<br />

Primary barrier<br />

Secodary barrier<br />

Third barrier<br />

Annulus swab<br />

<strong>valve</strong> ITL/EXL<br />

Crossover<br />

Annulus<br />

master <strong>valve</strong><br />

ITL<br />

Production<br />

packer leaks<br />

Surround<strong>in</strong>gs<br />

Crossover<br />

<strong>valve</strong>, ITL<br />

Tub<strong>in</strong>g hanger seal<br />

production bore leak<br />

A-<br />

Annulus<br />

Crossover l<strong>in</strong>e<br />

EXL<br />

Production<br />

tub<strong>in</strong>g<br />

ITL<br />

M. Valve<br />

Reservoir<br />

Crossover<br />

<strong>valve</strong>, EXL<br />

Figure 5-4 Barrier diagram for an oil/gas produc<strong>in</strong>g well w<strong>it</strong>hout DHSV<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

Production<br />

swab <strong>valve</strong>,<br />

ITL/EXL<br />

Production<br />

master <strong>valve</strong>,<br />

ITL<br />

Production<br />

w<strong>in</strong>g <strong>valve</strong>,<br />

ITL/EXL<br />

Above<br />

tub<strong>in</strong>g<br />

Production<br />

master <strong>valve</strong>,<br />

EXL<br />

24


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

5.3 Fault Tree Analysis<br />

The construction of the fault trees is based on the theory given <strong>in</strong> [8].<br />

Fault tree analysis is a deductive technique that focuses on a particular unwanted system event<br />

and provides a method for determ<strong>in</strong><strong>in</strong>g causes for that event. A risk analysis often <strong>in</strong>cludes the<br />

fault tree analysis technique for evaluation of the <strong>in</strong>dividual component failure modes and their<br />

impact on the system reliabil<strong>it</strong>y.<br />

The fault tree is constructed w<strong>it</strong>h the use of different logic gates and displays the<br />

<strong>in</strong>terrelationships between a potential cr<strong>it</strong>ical event <strong>in</strong> a system and the reasons for this event.<br />

The ma<strong>in</strong> logic elements are the ‘TOP’-event, the ‘AND’ and ‘OR’ gates, and the basic events.<br />

The comb<strong>in</strong>ation of the basic events and the system structure determ<strong>in</strong>es whether or not the<br />

‘TOP’-event will occur.<br />

The fault tree provides a static picture of the comb<strong>in</strong>ations of failures and events that may cause a<br />

‘TOP’-event <strong>to</strong> occur. Fault tree analysis, as barrier diagrams, is thus not a su<strong>it</strong>able technique for<br />

analys<strong>in</strong>g dynamic systems.<br />

5.3.1 Case example<br />

In the case example the ‘TOP’-event is “leakage <strong>to</strong> the surround<strong>in</strong>gs”. The ‘TOP’-event occurs<br />

e<strong>it</strong>her if there is a “leakage <strong>to</strong> the surround<strong>in</strong>gs from the x-mas tree” or “leakage <strong>to</strong> the<br />

surround<strong>in</strong>gs from the wellhead”. A more concise def<strong>in</strong><strong>it</strong>ion of the ‘TOP’ event is:<br />

“Susta<strong>in</strong>able leakage <strong>to</strong> the surround<strong>in</strong>gs through e<strong>it</strong>her the x-mas tree or the wellhead dur<strong>in</strong>g<br />

normal shut-<strong>in</strong> cond<strong>it</strong>ions.” This ‘TOP' event covers s<strong>it</strong>uations where the barrier comb<strong>in</strong>ation<br />

<strong>in</strong> one or more cut sets have failed.<br />

The different components of the production well presented <strong>in</strong> subsection 5.1.2, are represent<br />

basic events <strong>in</strong> the fault trees. The barrier diagrams, of subsection 5.2.1, provide the basis for<br />

the fault tree construction. In order <strong>to</strong> simplify the construction of the fault tree, external stress<br />

and common cause failures are not <strong>in</strong>cluded.<br />

The fault trees constructed for the oil/gas production well w<strong>it</strong>h and w<strong>it</strong>hout a DHSV are<br />

presented <strong>in</strong> appendix C. The CARA-fault tree program is used <strong>in</strong> the construction.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

25


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

5.4 Unavailabil<strong>it</strong>y calculations<br />

The average unavailabil<strong>it</strong>y of a <strong>safety</strong> function is often called Mean Fractional Dead Time<br />

(MFDT). MFDT can be given two different mean<strong>in</strong>gs; the percentage of time where we are<br />

unprotected by the <strong>safety</strong> function, or the probabil<strong>it</strong>y that the <strong>safety</strong> function will fail on<br />

demand for <strong>it</strong>. The most important well barriers have “hidden” cr<strong>it</strong>ical failure modes and are<br />

thus function tested regularly. The <strong>in</strong>terval between two consecutive tests may be denoted by τ.<br />

The MFDT formulas are based on a number of assumptions. The most dist<strong>in</strong>ctive are:<br />

The failure rate of components is constant<br />

All failures are detected dur<strong>in</strong>g test<strong>in</strong>g<br />

The barrier failures are <strong>in</strong>dependent of each other<br />

Production unavailabil<strong>it</strong>y dur<strong>in</strong>g test<strong>in</strong>g and repair is neglected<br />

5.4.1 The Mean Fractional Dead Time calculation model<br />

The theory and all equations used <strong>in</strong> this section are found <strong>in</strong> reference [8].<br />

If based on the fault tree analysis, the Mean Fractional Dead Time (MFDT) of the different cut<br />

sets determ<strong>in</strong>es the probabil<strong>it</strong>y of the ‘TOP’-event.<br />

The MFDT of a s<strong>in</strong>gle barrier i is given by <strong>it</strong>s unavailabil<strong>it</strong>y qi(t). A s<strong>in</strong>gle well barrier is tested<br />

w<strong>it</strong>h regular <strong>in</strong>tervals of length τ, and a constant failure rate λi. The general formula is given:<br />

1 τ<br />

−λ<br />

1<br />

iu −τλi<br />

MFDTi(t)= qi<br />

(t) = (1-<br />

∫ e du)<br />

= 1−<br />

( 1−<br />

e )<br />

τ 0<br />

λ τ<br />

i<br />

Equation 5-1<br />

The unavailabil<strong>it</strong>y of the <strong>safety</strong> barrier may also be calculated us<strong>in</strong>g the approximation formula<br />

below. This approximation is based on Taylor series development of Equation 5-1. Practical<br />

calculations often make use of this approximation. A rule of thumb is that when λ⋅τ is small<br />

(λ⋅τ


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

If the unavailabil<strong>it</strong>y of a barrier i is expressed by qi(t), which states the probabil<strong>it</strong>y that basic<br />

event i occurs at time t. Cut set unavailabil<strong>it</strong>y can be calculated by the use of Equation 5-5:<br />

∨<br />

∏<br />

i∈K<br />

j<br />

Q ( t)<br />

= q ( ) ,<br />

i t<br />

Equation 5-5<br />

Equation 5-5 is also applied when comb<strong>in</strong><strong>in</strong>g tested and non-tested barriers <strong>in</strong> a cut set.<br />

The approximation formula 4-2<br />

The approximation formula of Equation 5-2 is not always valid. Figure 5-5 illustrates the<br />

relationship between the approximation of Equation 5-2 and the general unavailabil<strong>it</strong>y formula<br />

<strong>in</strong> Equation 5-1. By us<strong>in</strong>g the approximation formula an error will be generated. This error<br />

<strong>in</strong>creases as λ⋅τ <strong>in</strong>creases (see Figure 5-5). For a λ⋅τ-value of 10 -2 the generated error is 1.67E-<br />

5. The difference will cont<strong>in</strong>ue <strong>in</strong>creas<strong>in</strong>g as λ⋅τ <strong>in</strong>creases. When λ⋅τ is set <strong>to</strong> 0.1, which is the<br />

case for some of the barriers <strong>in</strong> this report, the unavailabil<strong>it</strong>y difference between the two is<br />

1.67E-3. The use of the thumb rule is applied <strong>in</strong> the CARA-calculations, but not <strong>in</strong> the<br />

calculations done by hand.<br />

Approximation of λ⋅τ<br />

2<br />

The approximation<br />

The general formula<br />

Figure 5-5 A plot compar<strong>in</strong>g the approximation and the general formula of unavailabil<strong>it</strong>y.<br />

Calculation uncerta<strong>in</strong>ties<br />

In reliabil<strong>it</strong>y studies of technical system one always has <strong>to</strong> work w<strong>it</strong>h models of the system. As<br />

a rule <strong>to</strong> model construction, the models should be sufficiently simple <strong>to</strong> be handled by<br />

available mathematical and statistical methods [8]. The reliabil<strong>it</strong>y models are constructed by<br />

apply<strong>in</strong>g generic data from exist<strong>in</strong>g systems. Models deduced from different formulas and<br />

methods are never 100% correct. The value of express<strong>in</strong>g reliabil<strong>it</strong>y values by decimals is<br />

therefore lim<strong>it</strong>ed. Failure rates and methods applied <strong>to</strong> determ<strong>in</strong>e reliabil<strong>it</strong>y values have many<br />

uncerta<strong>in</strong>ties and exact values are unlikely <strong>to</strong> be found.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

λ⋅τ<br />

27


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Even if the mathematical model is correct the data applied will not be perfect for the specific<br />

s<strong>it</strong>uation. Data books often pool data from a number of samples that all have <strong>in</strong>dividual<br />

differences <strong>in</strong> construction and operat<strong>in</strong>g environment. These data are applied <strong>to</strong> the new<br />

model and may not be valid there. Data books normally leave out environmental and<br />

operational effects when assign<strong>in</strong>g reliabil<strong>it</strong>y values <strong>to</strong> components.<br />

Reliabil<strong>it</strong>y data<br />

Dur<strong>in</strong>g the process of select<strong>in</strong>g a data set applicable for reliabil<strong>it</strong>y quantification, the data<br />

sources have been carefully exam<strong>in</strong>ed. As a result of different data collection approaches,<br />

reliabil<strong>it</strong>y data often vary significantly from one data source <strong>to</strong> another. For some components<br />

<strong>in</strong> the barrier system the data is scarce. An estimation is therefore done <strong>in</strong> understand<strong>in</strong>g w<strong>it</strong>h<br />

Marv<strong>in</strong> Rausand, supervisor [19]. The reliabil<strong>it</strong>y <strong>in</strong>put data used <strong>in</strong> the reliabil<strong>it</strong>y calculations<br />

are presented by data dossiers <strong>in</strong> appendix D. Reliabil<strong>it</strong>y data used <strong>in</strong> this study ma<strong>in</strong>ly<br />

orig<strong>in</strong>ates from platform wells and are found <strong>in</strong> SINTEF reports and the OREDA handbook.<br />

5.4.2 Calculations done <strong>in</strong> CARA<br />

The fault trees of the case example are constructed by the use of a computerised fault tree<br />

analysis package, CARA (Computer Aided Reliabil<strong>it</strong>y Analysis). This program may also be used<br />

for unavailabil<strong>it</strong>y calculations. CARA assumes an exponentially distributed lifetime w<strong>it</strong>h<br />

constant failure rates for the components is.<br />

CARA calculates the unavailabil<strong>it</strong>y of the ‘TOP’ event by us<strong>in</strong>g approximation formula 5-2 for<br />

tested barriers and Equation 5-4 for the non-tested barriers. The fault trees of appendix C, w<strong>it</strong>h<br />

reliabil<strong>it</strong>y values found <strong>in</strong> the data dossiers of appendix D, perform the basis for the<br />

calculations. The results of the CARA-calculations are presented <strong>in</strong> subsection 5.4.4.<br />

5.4.3 Calculations done by hand<br />

The general MFDT formula (Equation 5-1) is applied when f<strong>in</strong>d<strong>in</strong>g the unavailabil<strong>it</strong>y of tested<br />

barriers. The non-tested barriers make use of Equation 5-4 and Equation 5-5. Some of the<br />

exam<strong>in</strong>ed cut sets consist of comb<strong>in</strong>ations of tested and non-tested barriers. Divid<strong>in</strong>g the<br />

comb<strong>in</strong>ed cut set <strong>in</strong><strong>to</strong> two parts solves this problem. The unavailabil<strong>it</strong>y of the comb<strong>in</strong>ed cut set<br />

is found as the product of the unavailabil<strong>it</strong>y of each part. The results of the calculations are<br />

presented <strong>in</strong> subsection 5.4.5.<br />

The non-tested barriers that are given a lifetime t=131400 hours (15 years). When applied <strong>to</strong><br />

the cut sets this generates the most conservative value of unavailabil<strong>it</strong>y. Periodically tested<br />

barriers are tested w<strong>it</strong>h time distribution τ=4380 hours (6 months). In these calculations<br />

components are assumed <strong>to</strong> be “as good as new” when tested. The methods also consider the<br />

barriers <strong>to</strong> have constant failure rates and be <strong>in</strong>dependent of each other.<br />

Ex. 1 Unavailabil<strong>it</strong>y of two tested barriers<br />

The calculation of two tested barriers of a parallel structure will be done here. The reliabil<strong>it</strong>y<br />

function is derived from the structure function of the parallel structure as shown <strong>in</strong> Figure 5-6.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

28


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Tested<br />

barrier 1<br />

Tested<br />

barrier 2<br />

R (t) = R (t) + R (t) - R (t) ⋅ R (t) = e<br />

Figure 5-6 The parallel structure of two tested barriers<br />

s<br />

1<br />

2<br />

1<br />

2<br />

+ e<br />

− e<br />

−λ<br />

1t<br />

−λ2t<br />

−(<br />

λ1<br />

+ λ2<br />

) t<br />

The reliabil<strong>it</strong>y function is applied <strong>to</strong> Equation 5-1 and determ<strong>in</strong>es the unavailabil<strong>it</strong>y.<br />

∨ 1 τ<br />

1 τ<br />

−λ1t<br />

MFDTS<br />

( t)<br />

= Q1(<br />

t)<br />

= 1-<br />

∫ RS<br />

( t)<br />

dt = 1-<br />

∫ ( e + e<br />

τ 0<br />

τ 0<br />

1 −τλ<br />

1<br />

1<br />

1<br />

−τλ2<br />

1−<br />

( ( 1−<br />

e ) + ( 1−<br />

e ) − ( 1−<br />

e<br />

λ τ<br />

λ τ<br />

( λ + λ ) τ<br />

1<br />

2<br />

1<br />

2<br />

−λ2t<br />

− e<br />

−(<br />

λ1<br />

+ λ2<br />

) τ<br />

−(<br />

λ1<br />

+ λ2<br />

) t<br />

))<br />

) dt =<br />

Equation 5-6<br />

The {MV, WV} cut set is calculated w<strong>it</strong>h λWV =1.7E-6 hours and λMV=2.0E-6 hours. Apply<strong>in</strong>g<br />

these values <strong>in</strong> Equation 5-6 obta<strong>in</strong> the unavailabil<strong>it</strong>y, 2.16E-5<br />

Ex. 2 Unavailabil<strong>it</strong>y of two non-tested barriers<br />

Unavailabil<strong>it</strong>y of two non-tested barriers is calculated by the use of Equation 5-3 and Equation<br />

5-5. The unavailabil<strong>it</strong>y of barriers 1 and 2 is determ<strong>in</strong>ed by the use of Equation 5-3. Than the<br />

results are applied <strong>in</strong> Equation 5-5.<br />

−λ1t<br />

q ( t)<br />

= (1-<br />

e ) ,<br />

1<br />

q ( t)<br />

= (1-<br />

e<br />

2<br />

−λ2t<br />

)<br />

∨<br />

Q(<br />

t)<br />

= (1-<br />

e<br />

− 1t<br />

) ⋅ (1-<br />

e<br />

λ −λ<br />

2t<br />

)<br />

Equation 5-7<br />

The {AMVEXL, Tub} cut set is calculated w<strong>it</strong>h λAMVEXL =0.6E-6 hours and λTub=0.4E-6<br />

hours. Apply<strong>in</strong>g these values <strong>to</strong> Equation 5-7 obta<strong>in</strong> the unavailabil<strong>it</strong>y, 3.88E-3.<br />

Ex. 3 Unavailabil<strong>it</strong>y of a comb<strong>in</strong>ation of two tested and one non-tested barriers<br />

A comb<strong>in</strong>ed cut set of two tested and two non-tested barriers is calculated by the use of<br />

∨<br />

Equation 5-5. Q ( ) represents the unavailabil<strong>it</strong>y of the two tested components, calculated <strong>in</strong><br />

1 t<br />

ex.1 and 2( ) represents the non-tested barrier. The unavailabil<strong>it</strong>y of the comb<strong>in</strong>ed cut set is<br />

calculated<br />

t Q∨<br />

∨<br />

comb(<br />

∨<br />

i<br />

∨<br />

1<br />

∨<br />

2<br />

i∈K<br />

j<br />

Q<br />

t)<br />

= ∏ Q ( t)<br />

= Q ( t)<br />

⋅Q<br />

( t)<br />

Equation 5-8<br />

Reliabil<strong>it</strong>y data is <strong>in</strong>serted <strong>to</strong> the {DHSV, MV, SWAB} cut set, where λDHSV =2.8E-6 hours<br />

and λMV=2.0E-6 hours and λSWAB=2.2E-6 hours. Apply<strong>in</strong>g these values <strong>to</strong> Equation 5-8 obta<strong>in</strong><br />

the unavailabil<strong>it</strong>y, 8.92E-6.<br />

5.4.4 CARA calculation results<br />

The results of the unavailabil<strong>it</strong>y calculations done <strong>in</strong> CARA are presented here. The<br />

unavailabil<strong>it</strong>y of the ‘TOP’-event for a well w<strong>it</strong>h and w<strong>it</strong>hout a DHSV is presented <strong>in</strong> Table<br />

5-1. Calculations of the well w<strong>it</strong>h and w<strong>it</strong>hout an x-mas tree are also <strong>in</strong>cluded. The calculations<br />

of a well w<strong>it</strong>hout an x-mas tree reflect a s<strong>it</strong>uation where the x-mas tree is unavailable as a<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

29


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

<strong>safety</strong> barrier due <strong>to</strong> an external event. This s<strong>it</strong>uation is used <strong>to</strong> calculate the accidental<br />

frequencies <strong>in</strong> section 5.5.<br />

Table 5-1 The unavailabil<strong>it</strong>y of the ‘TOP’-event for a well w<strong>it</strong>h and w<strong>it</strong>hout a DHSV at different po<strong>in</strong>ts of<br />

time t and the annual average calculated <strong>in</strong> CARA.<br />

CARA unavailabil<strong>it</strong>y calculations<br />

W<strong>it</strong>h x-mas tree W<strong>it</strong>hout x-mas tree<br />

Time t<br />

W<strong>it</strong>h DHSV<br />

W<strong>it</strong>hout<br />

DHSV<br />

W<strong>it</strong>h DHSV<br />

W<strong>it</strong>hout<br />

DHSV<br />

5 years 1.42E-3 4.76E-3 4,15E-02 1<br />

10 years 7.17E-3 1.43E-2 7,25E-02 1<br />

15 years 1.90E-2 3.29E-2 1,02E-01 1<br />

Annual average 5,87E-03 1,19E-02 5,67E-02 1<br />

The average unavailabil<strong>it</strong>y of the ‘TOP’-event of a well w<strong>it</strong>hout a DHSV is approximately<br />

twice has high as for a well w<strong>it</strong>h a DHSV.<br />

The blowout frequency dur<strong>in</strong>g production is given by the frequency of the ‘TOP’-event and<br />

represents the blowout frequency caused by <strong>in</strong>tr<strong>in</strong>sic events. CARA calculates the frequency of<br />

the ‘TOP’-event for a well w<strong>it</strong>h a DHSV of 4.47E-3 per year, and 1.85E-2 per well year<br />

w<strong>it</strong>hout a DHSV. The frequency of the ’TOP’-event is 3.3 times higher for a well w<strong>it</strong>h a<br />

w<strong>it</strong>hout a DHSV compared <strong>to</strong> one w<strong>it</strong>hout.<br />

5.4.5 Hand calculation results<br />

The results of the unavailabil<strong>it</strong>y calculations done by hand are presented here. Only cut sets<br />

concerned by the DHSV are <strong>in</strong>cluded and presented <strong>in</strong> Table 5-2.<br />

Table 5-2 The unavailabil<strong>it</strong>y of selected cut sets concerned by the presence of a DHSV<br />

Cut set unavailabil<strong>it</strong>y<br />

W<strong>it</strong>h DHSV W<strong>it</strong>hout DHSV<br />

[DHSV, MVEXL]<br />

1.07E-5<br />

[DHSV, MV, WV]<br />

1.87E-7<br />

[DHSV, MV, SWAB]<br />

8.92E-6<br />

[DHSV, AMVEXL, Tub]<br />

2.37E-5<br />

[DHSV, AMV, AWV, Tub]<br />

1.57E-5<br />

[MVEXL]<br />

1.31E-3<br />

[MV, WV]<br />

2.16E-5<br />

[MV, SWAB]<br />

1.10E-3<br />

[AMVEXL, Tub]<br />

3.88E-3<br />

[AMV, AWV, Tub]<br />

2.57E-3<br />

The Safety Integr<strong>it</strong>y Level (SIL) level is set by the Norwegian Oil Industry Association (OLF).<br />

The SIL expresses the average probabil<strong>it</strong>y of failure <strong>to</strong> perform <strong>it</strong>s design function on demand.<br />

The author cannot f<strong>in</strong>d that any of the cut sets of a <strong>subsea</strong> production well violates a required<br />

SIL 3 level even for the most conservative value (t=15years). Thus the reliabil<strong>it</strong>y of a well<br />

w<strong>it</strong>hout a DHSV is considered <strong>to</strong> be acceptable.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

30


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Non-tested barriers<br />

The failure probabil<strong>it</strong>y of the non-tested components <strong>in</strong>creases w<strong>it</strong>h time. To achieve a more<br />

reasonable calculation result an applied lifetime of 10 years could be applied. This would give<br />

a more realistic value for the non-tested barriers. This change would not affect the tested<br />

barriers.<br />

To ga<strong>in</strong> an impression how these results change a calculation w<strong>it</strong>h lifetime t=43500 (5years) or<br />

t=87600 (10 years) is done. A presentation of the results w<strong>it</strong>h different t-values is given <strong>in</strong><br />

Table 5-3.<br />

Table 5-3 Calculation result of the cut sets w<strong>it</strong>h an applied lifetime of t=5years, t=10years and t=15years<br />

Cut set unavailabil<strong>it</strong>y<br />

t=131400 t=87600 T=43500<br />

Cut set<br />

hours hours hours<br />

(15years) (10years) (5years)<br />

[MVEXL] (tested) 1.31E-3 1.31E-3 1.31E-3<br />

[MV, WV] (tested) 2.16E-5 2.16E-5 2.16E-5<br />

[MV, SWAB] 1.10E-3 7.65 E-4 4.01E-4<br />

[AMVEXL, Tub] 3.88E-3 1.76E-3 4.48E-4<br />

[AMV, AWV, Tub] 2.57E-3 7.97E-4 2.19E-4<br />

The unavailabil<strong>it</strong>y of the cut set w<strong>it</strong>h only tested components rema<strong>in</strong> the same. The<br />

unavailabil<strong>it</strong>y of cut sets <strong>in</strong>clud<strong>in</strong>g non-tested barriers does <strong>in</strong>crease w<strong>it</strong>h time. Table 5-4<br />

presents the <strong>in</strong>creased unavailabil<strong>it</strong>y that is archived by remov<strong>in</strong>g the DHSV from the well<br />

w<strong>it</strong>h different lifetimes t applied.<br />

Table 5-4 Increased unavailabil<strong>it</strong>y of the different cut sets when the DHSV is removed<br />

Cut set<br />

Increased cut set unavailabil<strong>it</strong>y<br />

t=131400<br />

hours<br />

(15years)<br />

t=87600<br />

hours<br />

(10years)<br />

t=43500<br />

hours<br />

(5years)<br />

[(DHSV), MVEXL] (tested) 1.30E-3 1.30E-3 1.30E-3<br />

[(DHSV), MV, WV] (tested) 2.14E-5 2.14E-5 2.14E-5<br />

[(DHSV), MV, SWAB] 1.10E-3 6.23E-6 2.74E-6<br />

[(DHSV), AMVEXL, Tub] 3.88E-3 1.07E-5 2.74E-6<br />

[(DHSV), AMV, AWV, Tub] 2.57E-3 4.87E-6 1.34E-6<br />

Need <strong>to</strong> close flow on demand<br />

Different scenarios occurr<strong>in</strong>g on the platform may lead <strong>to</strong> a demanded shut-<strong>in</strong> of the well; such<br />

as collision w<strong>it</strong>h ships, explosions, collapse due <strong>to</strong> wear, etc. If a crisis should occur on the<br />

platform, the flow has <strong>to</strong> be closed immediately. A fault tree related <strong>to</strong> this s<strong>it</strong>uation is<br />

presented <strong>in</strong> Figure 5-7<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

31


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

The DHSV is<br />

present or not<br />

House<br />

1<br />

Crisis on the<br />

platform<br />

f<br />

FTC or ITL of<br />

the DHSV<br />

Off<br />

And<br />

Fail <strong>to</strong> close the<br />

flow when a crisis<br />

occurs<br />

And<br />

FTC or ITL of<br />

theDHSV<br />

DHSV<br />

Fail <strong>to</strong> shut-<strong>in</strong><br />

the flow<br />

And<br />

FTC and ITL of<br />

theproduction<br />

w<strong>in</strong>g <strong>valve</strong><br />

W<br />

V<br />

FTC and ITL of<br />

the production<br />

master <strong>valve</strong><br />

Figure 5-7 A fault tree illustrat<strong>in</strong>g the scenario when the flow has <strong>to</strong> be shut <strong>in</strong> due <strong>to</strong> a crisis<br />

The risk related <strong>to</strong> this <strong>in</strong>cident may be expressed as <strong>in</strong> the equations below.<br />

The well w<strong>it</strong>h<br />

DHSV<br />

The well w<strong>it</strong>h<br />

DHSV<br />

:<br />

R1= C•p2<br />

M<br />

V<br />

C, represents a consequence<br />

: R2= C•p1 P, represents the probabil<strong>it</strong>y<br />

of the “TOP”-event<br />

∆R = R2-R1 = C•(p2-p1) = C•∆p<br />

∆p = MFDT2 – MFDT1 = 2.16E-5 – 1.87 E-7 = 2.14E-5<br />

A consequence C may e<strong>it</strong>her represent environmental damage, loss of human life, or economic,<br />

loss due <strong>to</strong> an occurred event. ∆R represents the risk of not <strong>in</strong>clud<strong>in</strong>g the DHSV <strong>in</strong> the<br />

completion. The cut set <strong>in</strong> the flow direction consists of the barriers [DHSV, MV, WV].<br />

Remov<strong>in</strong>g the DHSV <strong>in</strong>creases the probabil<strong>it</strong>y of not be<strong>in</strong>g able <strong>to</strong> shut <strong>in</strong> the well if crises<br />

occur on the platform <strong>to</strong> 2.14E-5. The MFDT only tells us the percentage of the time where the<br />

cut set function as a <strong>safety</strong> barrier. This means that the flow is unprotected 0.189 hours per well<br />

year w<strong>it</strong>hout a DHSV. If the DHSV were present this event would occur 0.0016 hours per well<br />

year.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

32


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

The required Safety Integr<strong>it</strong>y Level (SIL) for the [DHSV, MV, WV] or [MV, WV] cut set is<br />

SIL3 (≥10 -4 <strong>to</strong> < 10 -3 ) [28]. The results <strong>in</strong> show that the probabil<strong>it</strong>y of not be<strong>in</strong>g able <strong>to</strong> close <strong>in</strong><br />

the well is <strong>in</strong>creased when remov<strong>in</strong>g the DHSV. The SIL3 requirements are, however, still met<br />

for all cut sets. The consequences of a leakage or a blowout are the same whether the DHSV is<br />

present or not.<br />

The events lead<strong>in</strong>g <strong>to</strong> a shut-<strong>in</strong> of the well, or the consequence of a blowout is not further<br />

discussed <strong>in</strong> this thesis.<br />

5.5 Risk reduc<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> the Case example<br />

A weigh<strong>in</strong>g of the blowout frequency dur<strong>in</strong>g production and workover proves the effect of the<br />

<strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> (DHSV). A contribution of external fac<strong>to</strong>rs must also be <strong>in</strong>cluded <strong>in</strong><br />

f<strong>in</strong>d<strong>in</strong>g a <strong>to</strong>tal blowout frequency. The DHSV blowout frequency contribution dur<strong>in</strong>g<br />

<strong><strong>in</strong>stall</strong>ation is not <strong>in</strong>cluded. There is no data reveal<strong>in</strong>g the changes <strong>in</strong> blowout frequency when<br />

the DHSV is removed for the <strong><strong>in</strong>stall</strong>ation phase.<br />

The blowout frequency dur<strong>in</strong>g production is given by the frequency of the ‘TOP’-event (see<br />

subsection 5.4.4) and represents the blowout frequency caused by <strong>in</strong>tr<strong>in</strong>sic events. CARA<br />

calculates the frequency of the ‘TOP’-event for a well w<strong>it</strong>h a DHSV of 4.47E-3 per year, and<br />

1.85E-2 per well year w<strong>it</strong>hout a DHSV. Susta<strong>in</strong>able leakage does not always classify as a<br />

blowout, but this approximation is done here.<br />

About 50% of the shut-<strong>in</strong>s of a well lead<strong>in</strong>g <strong>to</strong> a workover are caused by DHSV failure. The<br />

blowout frequency dur<strong>in</strong>g workover for a well w<strong>it</strong>h a DHSV is 1.7E-4 per well year (see<br />

subsection 4.1.2). It is reasonable <strong>to</strong> assume that when the DHSV is removed the blowout<br />

frequency will be reduced by 50%. The blowout frequency for a well w<strong>it</strong>hout a DHSV dur<strong>in</strong>g<br />

workover is then 8.5E-5 per well year.<br />

External fac<strong>to</strong>rs have impact on the blowout frequency. The contribution rema<strong>in</strong>s the same<br />

whether the DHSV is present or not. In this thesis the consequence of the external fac<strong>to</strong>r<br />

comprise an accident where the x-mas tree is unavailable as a <strong>safety</strong> barrier due <strong>to</strong> impact by a<br />

dropped object. The MFDT-contribution is found by remov<strong>in</strong>g the x-mas tree components <strong>in</strong><br />

the fault tree calculations (see subsection 5.4.5). The frequency caus<strong>in</strong>g an accidental event is<br />

denoted, faccidential event. The blowout frequency caused by external fac<strong>to</strong>rs is found <strong>in</strong> the<br />

product of the accidental event frequency and the MFDT of the <strong>downhole</strong> barrier s<strong>it</strong>uation<br />

(Unavailabil<strong>it</strong>y w<strong>it</strong>hout the x-mas tree). In these calculations the accidental event frequency is<br />

2.29E-8 per well year. The contribution comprises dropp<strong>in</strong>g and h<strong>it</strong>t<strong>in</strong>g the x-mas tree from a<br />

crane or a derrick (see section 4.4).<br />

The <strong>to</strong>tal blowout risk is found by the use of Equation 5-9 and presented <strong>in</strong> Table 5-5.<br />

f<strong>to</strong>tal = fproduction + f<strong>in</strong>tervention + (faccidential event * MFDTaccidential event) Equation 5-9<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

33


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Table 5-5 The blowout frequency per well year for a well w<strong>it</strong>h and w<strong>it</strong>hout a DHSV, and the risk reduc<strong>in</strong>g<br />

effect of the DHSV.<br />

Reduced blowout frequency<br />

W<strong>it</strong>h a DHSV W<strong>it</strong>hout a DHSV Risk reduc<strong>in</strong>g effect<br />

Normal production 4.47E-3 1.85E-2 1.14E-2<br />

Accidental event 1.30E-9 2.29E-8 2.16E-8<br />

Workover 1.7E-4 8.5E-5 -8.5E-5<br />

Total 1.13E-2<br />

In <strong>to</strong>tal a removal of the DHSV will <strong>in</strong>crease the risk of blowout due <strong>to</strong> the ‘TOP’-event by a<br />

frequency of 1.13E-2 per well year.<br />

A sens<strong>it</strong>iv<strong>it</strong>y analysis is performed <strong>to</strong> illustrate the accidental event contribution <strong>in</strong> the <strong>to</strong>tal<br />

blowout frequency. Different frequencies of accidental events are applied <strong>to</strong> Equation 5-9. The<br />

result of the sens<strong>it</strong>iv<strong>it</strong>y analysis is presented <strong>in</strong> Figure 5-8. The <strong>to</strong>tal blowout risk is always<br />

higher for a well w<strong>it</strong>hout a DHSV than for a well w<strong>it</strong>h a DHSV. Prior <strong>to</strong> the calculations the<br />

author was assum<strong>in</strong>g that for some values the blowout frequency was lower for a well w<strong>it</strong>h a<br />

DHSV than for a well w<strong>it</strong>hout a DHSV. The po<strong>in</strong>t where the two l<strong>in</strong>es cross would represent<br />

an equal blowout frequency <strong>in</strong> the sens<strong>it</strong>iv<strong>it</strong>y analysis.<br />

Figure 5-8 Sens<strong>it</strong>iv<strong>it</strong>y analysis of the <strong>to</strong>tal blowout frequency at different frequencies of accidental events<br />

per well year<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

34


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

5.5.1 Comments <strong>to</strong> the risk reduc<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>gs<br />

The author was expect<strong>in</strong>g <strong>to</strong> f<strong>in</strong>d a blowout frequency for a well w<strong>it</strong>h a DHSV similar <strong>to</strong> ref.<br />

[7], 5E-5 per well year. The frequencies <strong>in</strong> ref.[7] are based on actual events. The blowout<br />

frequency found <strong>in</strong> the CARA-calculations is about 100 times larger. It is reasonable <strong>to</strong> believe<br />

that the calculations <strong>in</strong> this report are e<strong>it</strong>her based on <strong>in</strong>sufficient data, a bad model or<br />

calculation errors. Other fac<strong>to</strong>rs may also have contributed <strong>to</strong> the high frequency.<br />

Reliabil<strong>it</strong>y data<br />

The author has lim<strong>it</strong>ed access <strong>to</strong> valid data. The reliabil<strong>it</strong>y data used <strong>in</strong> the calculations is<br />

gathered for both platform and <strong>subsea</strong> wells. Valid data only for <strong>subsea</strong> wells should be applied<br />

<strong>in</strong> the calculations. Another problem is the age of the applied data. All data <strong>in</strong> this thesis is<br />

more than five years old due <strong>to</strong> the confidential<strong>it</strong>y of the operat<strong>in</strong>g companies. Implement<strong>in</strong>g<br />

new up-<strong>to</strong>-date data may change the outcome of the <strong>to</strong>tal blowout frequency and is<br />

recommended.<br />

Calculation model<br />

In the model of this thesis the blowout frequency dur<strong>in</strong>g production is based on the assumption<br />

that all leakage classifies as a blowout. This generates a very conservative value. The leakage<br />

may <strong>in</strong> some cases be very small and not classify as a blowout. The frequency of the ‘TOP’event<br />

of the CARA calculations are assum<strong>in</strong>g that a leakage <strong>in</strong> closed pos<strong>it</strong>ion and fail <strong>to</strong> close<br />

failure of the w<strong>in</strong>g <strong>valve</strong> leads directly <strong>to</strong> sea. If the <strong>safety</strong> barriers <strong>in</strong> the flow direction fail<br />

there are still barriers further up the l<strong>in</strong>e that may prevent a blowout, e.g. the manifold,<br />

separa<strong>to</strong>r or other equipment. The calculation methods used are, however, valid.<br />

Alternative calculation method<br />

To illustrate the effect of the DHSV a calculation based on the blowout frequency found <strong>in</strong> ref.<br />

[7] will be performed. It is obvious that the assumption that the all occurrences of the ‘TOP’event<br />

result <strong>in</strong> blowout is wrong. If the applied reliabil<strong>it</strong>y data for the barriers is correct the<br />

proportion between the frequency of the ‘TOP’-event w<strong>it</strong>h and w<strong>it</strong>hout a DHSV will be<br />

reasonable.<br />

The frequency of the ‘TOP’-event <strong>in</strong> CARA is 3.3 times higher, for a well w<strong>it</strong>h than a well<br />

w<strong>it</strong>hout a DHSV (see subsection 5.4.4). It may therefore also be reasonable <strong>to</strong> operate w<strong>it</strong>h a<br />

production blowout frequency 3.3 times higher. A blowout frequency of 5E-5 per well year<br />

dur<strong>in</strong>g production [7] is applied for a well w<strong>it</strong>h a DHSV. This results <strong>in</strong> a production blowout<br />

frequency of 1.65E-4 per well year for a well w<strong>it</strong>hout a DHSV. The same values for the<br />

accidental event frequency and the well <strong>in</strong>tervention frequency are applied.<br />

In <strong>to</strong>tal a removal of the DHSV will then <strong>in</strong>crease the blowout frequency of 3.0E-5 per well<br />

year. This result sounds more reasonable than the one found <strong>in</strong> the other calculation.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

35


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

6 Well <strong>in</strong>tervention<br />

6.1 Intervention types<br />

In this subchapter a description of different <strong>in</strong>tervention types and the most important<br />

<strong>in</strong>tervention equipment will be expla<strong>in</strong>ed. The theory is based on ref. [14], [21], [33] and [34].<br />

There are two types of well <strong>in</strong>terventions, light and heavy (also known as workover). An<br />

<strong>in</strong>tervention requires a separate vessel or workover rig and is therefore complicated due <strong>to</strong> the<br />

motion of the vessel. The <strong>subsea</strong> well <strong>in</strong>tervention costs are very high especially when<br />

operat<strong>in</strong>g <strong>in</strong> deep water. Equipment has <strong>to</strong> be rented and brought out <strong>to</strong> the location. Gett<strong>in</strong>g<br />

the equipment out <strong>to</strong> the s<strong>it</strong>e requires a lot of plann<strong>in</strong>g and logistics. If a failure should occur <strong>in</strong><br />

between scheduled <strong>in</strong>terventions <strong>it</strong> might take months before an <strong>in</strong>tervention can be performed.<br />

This could result <strong>in</strong> a production s<strong>to</strong>p and be of great cost <strong>to</strong> the operat<strong>in</strong>g company.<br />

6.1.1 Light <strong>in</strong>tervention<br />

Light <strong>in</strong>terventions <strong>in</strong>clude operations performed w<strong>it</strong>h<strong>in</strong> the flow condu<strong>it</strong> <strong>in</strong>side the tub<strong>in</strong>g<br />

str<strong>in</strong>g and the x-mas tree. There are many types of light <strong>in</strong>terventions, e.g.:<br />

• Plugback operations<br />

• Coiled tub<strong>in</strong>g operations<br />

• Fish<strong>in</strong>g operations<br />

• Wirel<strong>in</strong>e operations<br />

In some cases a failed DHSV can be repaired by a wirel<strong>in</strong>e operation if <strong>it</strong> is arranged for<br />

<strong>in</strong>sertion of an <strong>in</strong>sert <strong>valve</strong> <strong>in</strong> the DHSV. An <strong>in</strong>sert Wirel<strong>in</strong>e Retrievable Surface Controlled<br />

SubSurface Safety Valve (WRSCSSV) can be <strong><strong>in</strong>stall</strong>ed as a backup <strong>in</strong>side the failed DHSV<br />

and be activated by wirel<strong>in</strong>e. The <strong>in</strong>sertion of an <strong>in</strong>sert WRSCSSV reduces the diameter of the<br />

production tub<strong>in</strong>g and thus the production is reduced.<br />

When the wirel<strong>in</strong>e method is applied a <strong>to</strong>ol str<strong>in</strong>g attached <strong>to</strong> a wire is run by grav<strong>it</strong>y force <strong>in</strong><strong>to</strong><br />

the well. Wirel<strong>in</strong>e methods are easy <strong>to</strong> operate and well known <strong>to</strong> the operat<strong>in</strong>g companies.<br />

Short time is needed for the rigg<strong>in</strong>g and rig down. A problem may occur if the method is<br />

applied <strong>in</strong> deviated and horizontal wells due <strong>to</strong> the dependabil<strong>it</strong>y on grav<strong>it</strong>y.<br />

6.1.2 Heavy <strong>in</strong>tervention (workover)<br />

A workover on a <strong>subsea</strong> completed well require the use of a semi submersible drill<strong>in</strong>g rig w<strong>it</strong>h<br />

heavy lift capabil<strong>it</strong>ies. A workover <strong>in</strong>volves a pull<strong>in</strong>g of the production tub<strong>in</strong>g. When a vertical<br />

<strong>subsea</strong> x-mas tree is <strong><strong>in</strong>stall</strong>ed the x-mas tree has <strong>to</strong> be removed as well. The tub<strong>in</strong>g has <strong>to</strong> be<br />

pulled for various reasons, e.g. <strong>to</strong> replace or repair the DHSV. Dur<strong>in</strong>g the workover a blowout<br />

preventer (BOP) stack and a drill<strong>in</strong>g riser <strong><strong>in</strong>stall</strong>ed. Normally several jobs are done dur<strong>in</strong>g one<br />

workover. A full workover is required for repairs or replacement of the DHSV.<br />

6.1.3 Workover equipment<br />

The follow<strong>in</strong>g section will describe some of the ma<strong>in</strong> equipment used when a workover is<br />

needed <strong>to</strong> replace a DHSV.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

36


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Workover control system<br />

A workover control system connects <strong>to</strong> the x-mas tree and overrides the <strong><strong>in</strong>stall</strong>ed control<br />

system at seabed. It controls the lower riser package and tub<strong>in</strong>g hanger runn<strong>in</strong>g <strong>to</strong>ol dur<strong>in</strong>g<br />

<strong><strong>in</strong>stall</strong>ation and workover. Workover control systems normally <strong>in</strong>clude an emergency<br />

shutdown system (ESD). The ESD system secures a safe shut-<strong>in</strong> and prevents the release of<br />

well fluid for all operation modes.<br />

Risers<br />

Several risers serve different purposes dur<strong>in</strong>g the different stages of a workover. The<br />

completion/workover riser is used for wirel<strong>in</strong>e <strong>in</strong>tervention and retrieval of the x-mas tree.<br />

Separate bores are <strong>in</strong>cluded <strong>in</strong> the riser <strong>to</strong> provide communication w<strong>it</strong>h the tub<strong>in</strong>g and the<br />

annulus. The lower riser package is connected <strong>to</strong> the end of the riser and functions as a barrier<br />

dur<strong>in</strong>g workover. Riser pipes are used when runn<strong>in</strong>g the blowout preventer (BOP) from the<br />

workover rig. An iron roughneck screws new pipes on for every ten meters until the BOP<br />

reaches the seabed.<br />

Blowout preventer (BOP)<br />

The blowout preventer (BOP) system is a set of <strong>valve</strong>s <strong><strong>in</strong>stall</strong>ed on the wellhead <strong>to</strong> prevent the<br />

escape of pressure e<strong>it</strong>her <strong>in</strong> the annular space between the cas<strong>in</strong>g and tub<strong>in</strong>g dur<strong>in</strong>g drill<strong>in</strong>g,<br />

completion and workover operations. Most BOP stacks are designed w<strong>it</strong>h a triple ram<br />

configuration, which provides pos<strong>it</strong>ive protection aga<strong>in</strong>st blowouts and secures the well <strong>in</strong><br />

emergencies [27]. The BOP is normally hydraulically operated from the workover control<br />

system. When <strong><strong>in</strong>stall</strong>ed the BOP is run on guidel<strong>in</strong>es and attached <strong>to</strong> the wellhead. Prior <strong>to</strong> the<br />

operation a remotely operated vehicle (ROV) attaches the guidel<strong>in</strong>es <strong>to</strong> guideposts of a square<br />

wellhead land<strong>in</strong>g base. The BOP is close <strong>to</strong> the seabed, the guidel<strong>in</strong>es are tightened <strong>to</strong> f<strong>in</strong>d the<br />

right pos<strong>it</strong>ion for connection <strong>to</strong> the wellhead. The BOP is locked on and the operation can<br />

beg<strong>in</strong>. An illustration of a BOP is shown <strong>in</strong> Figure 6-1.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

37


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Figure 6-1 A conventional <strong>subsea</strong> blowout preventer stack<br />

6.1.4 Well <strong>in</strong>tervention example<br />

This section describes a workover preformed on a well <strong>in</strong> the North Sea [35]. The ma<strong>in</strong><br />

objective of the <strong>in</strong>tervention is <strong>to</strong> get the DHSV function<strong>in</strong>g aga<strong>in</strong> by replac<strong>in</strong>g the whole<br />

completion. This <strong>in</strong>tervention will <strong>in</strong>clude pull<strong>in</strong>g of the production tub<strong>in</strong>g.<br />

The workover also <strong>in</strong>cluded a replacement of the flow control module, pull<strong>in</strong>g and mill<strong>in</strong>g of a<br />

production packer <strong>to</strong> <strong>in</strong>crease the production potential. These events are neglected from this<br />

workover example.<br />

The description is given by the use of short sentences. A full detailed description is <strong>to</strong>o<br />

extensive for the work of this thesis.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

38


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

1) Anchor<strong>in</strong>g procedure<br />

A workover rig has <strong>to</strong> be put <strong>in</strong> trans<strong>it</strong> <strong>to</strong> the s<strong>it</strong>e<br />

The anchors are run <strong>to</strong> keep the rig at the s<strong>it</strong>e.<br />

Guide wires are established <strong>to</strong> direct the workover <strong>to</strong>ols <strong>to</strong> the seabed.<br />

2) Run <strong>in</strong> hole and test BOP<br />

Prepare for runn<strong>in</strong>g BOP on well.<br />

The BOP is moved <strong>to</strong> the drill center.<br />

Connect riser <strong>in</strong> rotary.<br />

Run Mar<strong>in</strong> riser/BOP,<br />

Tests are preformed on the BOP and wellhead connec<strong>to</strong>r.<br />

A jumper frame is <strong><strong>in</strong>stall</strong>ed<br />

Function test the BOP.<br />

3) Run Workover riser and pull Tub<strong>in</strong>g hanger crown plug<br />

Pressure is mon<strong>it</strong>ored thru the tree cap isolation l<strong>in</strong>e.<br />

Run tub<strong>in</strong>g hanger runn<strong>in</strong>g <strong>to</strong>ol, electric stab assembly, workover riser and surface tree<br />

w/45 ft bails.<br />

Rig up wirel<strong>in</strong>e and f<strong>in</strong>d the <strong>in</strong>ner diameter (drift) of the tree cap ball <strong>valve</strong>.<br />

Pull tub<strong>in</strong>g hanger crown plug.<br />

4) Kill well<br />

Install tub<strong>in</strong>g hanger isolation sleeve w/lockr<strong>in</strong>g<br />

Bullhead 1,18 sg br<strong>in</strong>e <strong>to</strong> kill well, this means that the production fluid is pushed back<br />

<strong>in</strong><strong>to</strong> the reservoir so that the well can be killed.<br />

Flow check the well for leakages.<br />

Rig up wirel<strong>in</strong>e.<br />

Run <strong>in</strong> hole and punch tub<strong>in</strong>g above production polished bore receptacle (PBR)<br />

Circulate out annulus fluid and flow check<br />

Set back surface tree <strong>in</strong> moosehole.<br />

Pull tree cap, workover riser, electric stab assembly.<br />

Lay down surface tree on pipe-deck<br />

5) Pull tub<strong>in</strong>g, DHSV and <strong>downhole</strong> permanent gauges (DHPG) w/cable<br />

Make up tub<strong>in</strong>g hanger runn<strong>in</strong>g <strong>to</strong>ol on 5” <strong>in</strong>ner tag drill pipe.<br />

Run <strong>in</strong> hole.<br />

Lock tub<strong>in</strong>g hanger runn<strong>in</strong>g <strong>to</strong>ol <strong>to</strong> tub<strong>in</strong>g hanger.<br />

Unlock tub<strong>in</strong>g hanger.<br />

Pick up <strong>to</strong> shear production polished bore receptacle (PBR).<br />

Pull out of hole the 7” tub<strong>in</strong>g, DHSV, DHPG and clamps.<br />

Install x-mas tree bore protec<strong>to</strong>r on drill pipe <strong>to</strong> protect the tub<strong>in</strong>g hanger seal area.<br />

6) Clean well<br />

Run clean-out bot<strong>to</strong>m hole assembly w<strong>it</strong>h a mill.<br />

Pull x-mas tree bore protec<strong>to</strong>r on drill pipe.<br />

7) Dummy tub<strong>in</strong>g hanger<br />

Run dummy tub<strong>in</strong>g hanger.<br />

8) Run tub<strong>in</strong>g<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

39


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Prepare for runn<strong>in</strong>g completion.<br />

Make up 7” double and rack back same.<br />

Make up and run bot<strong>to</strong>m of tub<strong>in</strong>g completion assemblies.<br />

Run tub<strong>in</strong>g <strong>to</strong> DHSV depth.<br />

Run <strong>in</strong> hole production PBR on drill pipe for space-out.<br />

Close BOP and mark drill pipe.<br />

Pull drill pipe out of hole.<br />

Make up DHSV assembly.<br />

Test control l<strong>in</strong>es.<br />

Run rema<strong>in</strong><strong>in</strong>g tub<strong>in</strong>g accessory <strong>to</strong> f<strong>in</strong>al space out<br />

9) Run tub<strong>in</strong>g hanger<br />

Make up tub<strong>in</strong>g hanger <strong>to</strong> tub<strong>in</strong>g.<br />

Connect control l<strong>in</strong>es <strong>to</strong> tub<strong>in</strong>g hanger. Install tub<strong>in</strong>g hanger <strong>in</strong> center.<br />

Make up tub<strong>in</strong>g hanger runn<strong>in</strong>g <strong>to</strong>ol <strong>to</strong> tub<strong>in</strong>g hanger<br />

Run tub<strong>in</strong>g hanger on drill pipe.<br />

Land and lock tub<strong>in</strong>g hanger <strong>to</strong> the x-mas tree.<br />

Open <strong>downhole</strong> supply <strong>valve</strong>s DS1-DS4.<br />

Engage electric stab and hydraulic system.<br />

Close middle pipe ram.<br />

Pressure test tub<strong>in</strong>g hanger gallery seals, DHSV control l<strong>in</strong>es and tub<strong>in</strong>g hanger.<br />

Spot high viscos<strong>it</strong>y mud across tub<strong>in</strong>g hanger.<br />

Unlatch tub<strong>in</strong>g hanger runn<strong>in</strong>g <strong>to</strong>ol. Pull out of hole w<strong>it</strong>h tub<strong>in</strong>g hanger runn<strong>in</strong>g <strong>to</strong>ol on<br />

drill pipe.<br />

10) Pull tub<strong>in</strong>g hanger isolation sleeve<br />

Pull tub<strong>in</strong>g hanger isolation sleeve on 0.125” slick l<strong>in</strong>e through the mar<strong>in</strong>e riser.<br />

11) Run workover riser<br />

Run tree cap, tree cap runn<strong>in</strong>g <strong>to</strong>ol, electric stab assembly, workover riser and surface<br />

tree w/45 ft bails<br />

Land and lock tree cap.<br />

12) Set prod packer<br />

Displace well <strong>to</strong> diesel, drop ball <strong>to</strong> seal off tub<strong>in</strong>g side.<br />

Pressure up tub<strong>in</strong>g <strong>to</strong> set production packer<br />

Inflow test DHSV. Test production packer. Function test LBV and OBV<br />

13) Pull Pre <strong><strong>in</strong>stall</strong>ed production packer<br />

Rig up wire l<strong>in</strong>e and run <strong>in</strong> hole. Pull pre-<strong><strong>in</strong>stall</strong>ed production packer sett<strong>in</strong>g plug<br />

14) Flow well<br />

Flow well <strong>to</strong> test plant.<br />

Rig up wirel<strong>in</strong>e production logg<strong>in</strong>g <strong>to</strong>ol.<br />

Log and flow well.<br />

15) Test and abandonment of well<br />

Shut <strong>in</strong> and <strong>in</strong>flow test DHSV.<br />

Pump MEG on <strong>to</strong>p of DHSV<br />

Rig up tub<strong>in</strong>g hanger crown plug.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

40


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Run <strong>in</strong> hole, set and test tub<strong>in</strong>g hanger crown plug.<br />

Pull out of hole.<br />

Rig down wire l<strong>in</strong>e.<br />

Test x-mas tree for abandonment<br />

16) Pull workover riser<br />

Disconnect tree cap runn<strong>in</strong>g <strong>to</strong>ol.<br />

Set back surface tree <strong>in</strong> moosehole.<br />

Pull workover riser and electric stab assembly.<br />

Lay down surface tree<br />

17) Pull BOP, lay down pipes<br />

Disconnect BOP.<br />

Move rig.<br />

Pull BOP and mar<strong>in</strong> riser.<br />

Lay down pipes<br />

18) Anchor handl<strong>in</strong>g<br />

Install x-mas tree debris cap. Install wellhead protective roof. Pull anchors.<br />

19) End of operations<br />

In chapter 6.2.3 the role of the BOP will be analysed <strong>in</strong> a HAZOP study. The entire workover<br />

process will not be analysed due <strong>to</strong> the lim<strong>it</strong>ation of time <strong>in</strong> this thesis.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

41


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

6.2 HAZOP (Hazard and Operabil<strong>it</strong>y Analysis)<br />

6.2.1 Background<br />

HAZOP (Hazard and Operabil<strong>it</strong>y analysis) is a method for identify<strong>in</strong>g and assess<strong>in</strong>g problems<br />

that may represent a risk <strong>to</strong> personnel or equipment, or prevent efficient operation. The<br />

HAZOP orig<strong>in</strong>ated w<strong>it</strong>h<strong>in</strong> the chemical process <strong>in</strong>dustry and developed from cr<strong>it</strong>ical<br />

exam<strong>in</strong>ation techniques <strong>in</strong> the 1960’s. Different activ<strong>it</strong>ies were exam<strong>in</strong>ed and questioned w<strong>it</strong>h<br />

cr<strong>it</strong>ical questions like: What is achieved? What else could have been achieved? How is <strong>it</strong><br />

achieved? [10]<br />

The International Electrotechnical Commission (IEC) developed <strong>in</strong> 1998 a proposal for an<br />

<strong>in</strong>ternational standard that was published <strong>in</strong> 2001, the IEC 61882. In this standard HAZOP is<br />

def<strong>in</strong>ed:<br />

“A HAZOP study is a detailed hazard and operabil<strong>it</strong>y problem identification process,<br />

carried out by a team. HAZOP deals w<strong>it</strong>h the identification of potential deviations from<br />

the design <strong>in</strong>tent, exam<strong>in</strong>ation of their possible causes and assessment of their<br />

consequences.” [2]<br />

The classical process HAZOP technique is based on assess<strong>in</strong>g plants and process systems e.g.<br />

<strong>in</strong> a chemical plant. The system is broken down <strong>in</strong><strong>to</strong> pipe segments and ma<strong>in</strong> plant <strong>it</strong>ems.<br />

Guide-words are applied <strong>to</strong> different process parameters <strong>to</strong> identify derivations <strong>in</strong> the system.<br />

Different failure modes of every system component are evaluated when employ<strong>in</strong>g the process<br />

HAZOP. The components impact on system functional<strong>it</strong>y is identified and preventive action is<br />

performed.<br />

The HAZOP technique has developed <strong>to</strong> be applied <strong>in</strong> many different areas <strong>to</strong>day. W<strong>it</strong>h<strong>in</strong> the<br />

oil <strong>in</strong>dustry a driller’s HAZOP has been developed <strong>to</strong> enhance offshore drill<strong>in</strong>g <strong>safety</strong>. Other<br />

HAZOPs like Human HAZOP and Software HAZOP are developed <strong>to</strong> focus on their specific<br />

area. When deal<strong>in</strong>g w<strong>it</strong>h well operations and workovers the employment of a procedure<br />

HAZOP is preferred. In subsection 6.2.3 a HAZOP of a BOP handl<strong>in</strong>g procedure will be<br />

performed.<br />

A procedure HAZOP is also called a Safe Operations Analysis (SAFOP) and may be applied <strong>to</strong><br />

all sequences of operations. Procedure HAZOP is a further development of the orig<strong>in</strong>al<br />

HAZOP method. Focus on both human errors and failures of technical systems are held<br />

through the analysis. A procedure e.g. a workover s<strong>it</strong>uation is broken down <strong>in</strong><strong>to</strong> different sub<br />

procedures and f<strong>in</strong>ally operational steps. An identification of the potential causes and<br />

consequences related <strong>to</strong> the different steps are done. An outcome of the study may normally be<br />

a list of preventive actions. The procedure HAZOP is best su<strong>it</strong>ed for detailed assessments, but<br />

may also be used for coarse prelim<strong>in</strong>ary assessments. In order <strong>to</strong> have an effective and useful<br />

procedure the work description should be clear and unambiguous. All relevant <strong>in</strong>formation<br />

should be available prior <strong>to</strong> the study.<br />

As <strong>in</strong> all risk assessment <strong>to</strong>ols there are advantages and disadvantages <strong>in</strong> accomplish<strong>in</strong>g a<br />

HAZOP study, these are presented <strong>in</strong> Table 6-1.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

42


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Table 6-1 Advantages and disadvantages w<strong>it</strong>h the HAZOP analysis [9] (w<strong>it</strong>h some supplements of the<br />

author.)<br />

Advantages and disadvantages w<strong>it</strong>h the HAZOP analysis<br />

Advantages Disadvantages<br />

Identifies potential hazards before they become<br />

built <strong>in</strong><strong>to</strong> the system<br />

The systematic method covers all the<br />

potential hazards for of system<br />

Provides a basis for a list of “actions” <strong>in</strong> order <strong>to</strong><br />

prevent or rectify problems<br />

People w<strong>it</strong>h different fields of profession are<br />

work<strong>in</strong>g <strong>to</strong>gether.<br />

The different parties <strong>in</strong>cluded <strong>in</strong> the process or<br />

procedure get an <strong>in</strong>sight <strong>to</strong> the other areas of the<br />

work or process.<br />

Requires a mixed team of eng<strong>in</strong>eers and personnel<br />

from all fields <strong>in</strong> order <strong>to</strong> cover all aspects of the<br />

system<br />

Human fac<strong>to</strong>rs may sometimes be set as the reason<br />

for hazards rather than look<strong>in</strong>g at the underly<strong>in</strong>g<br />

reasons<br />

The study will generate extensive <strong>in</strong>formation.<br />

This must be recorded by someone responsible<br />

The study takes long time <strong>to</strong> complete depend<strong>in</strong>g<br />

on the extent of the <strong>in</strong>vestigation.<br />

The HAZOP only reveals component weaknesses<br />

and is not an <strong>in</strong>-depth review of the causes and<br />

consequences.<br />

6.2.2 HAZOP methodology<br />

Essentially the HAZOP procedures <strong>in</strong>volve tak<strong>in</strong>g a full description of a process or a procedure<br />

and systematically question every part of <strong>it</strong>. A number of “bra<strong>in</strong>-s<strong>to</strong>rm<strong>in</strong>g” sessions help<br />

f<strong>in</strong>d<strong>in</strong>g deviations from the design <strong>in</strong>tent. Once identified, an assessment is made as <strong>to</strong> whether<br />

such deviations and their consequences may have a negative effect on the safe and efficient<br />

operation of the analysed system. If considered <strong>necessary</strong>, action is then taken <strong>to</strong> remedy the<br />

s<strong>it</strong>uation. The outcome of a HAZOP may be a recommendation of actions that are <strong>to</strong> be taken<br />

<strong>in</strong> order <strong>to</strong> address the concerns found dur<strong>in</strong>g the analysis. The different steps of the HAZOP<br />

procedure is presented <strong>in</strong> appendix D<br />

An essential feature <strong>in</strong> the process of systematically question<strong>in</strong>g is the use of guide-words <strong>in</strong><br />

comb<strong>in</strong>ation w<strong>it</strong>h different parameters <strong>in</strong> order <strong>to</strong> focus the attention on deviations and their<br />

possible causes. The entire technique of HAZOP revolves around the effective use of these<br />

guide-words, so their mean<strong>in</strong>g and use must be clearly unders<strong>to</strong>od. A HAZOP study is <strong>in</strong><br />

pr<strong>in</strong>ciple qual<strong>it</strong>ative, there is no quantification of risk. However, the hazards identified form<br />

the basis for further quant<strong>it</strong>ative risk or reliabil<strong>it</strong>y analysis.<br />

After f<strong>in</strong>d<strong>in</strong>g appropriate the guide-words the procedure may beg<strong>in</strong> by access<strong>in</strong>g each of the<br />

different elements of the study. By mak<strong>in</strong>g use of the flow diagram <strong>in</strong> Figure 6-2 the potential<br />

problems can be identified.<br />

The output of the study consists of a set of recommendations on how <strong>to</strong> approach a better<br />

solution.<br />

A HAZOP study is a team effort. The success is very much dependent on the team. To ga<strong>in</strong> the<br />

relevant <strong>in</strong>formation and a successful HAZOP analysis a reasonable compos<strong>it</strong>ion by<br />

experienced and contribut<strong>in</strong>g members must be established. Representatives of all discipl<strong>in</strong>es<br />

<strong>in</strong>volved <strong>in</strong> the operations should be <strong>in</strong>cluded <strong>in</strong> the team. Input based on their responsibil<strong>it</strong>y <strong>in</strong><br />

the performance of the operations is essential. The divers<strong>it</strong>ies <strong>in</strong> background help the different<br />

members identify<strong>in</strong>g all the important issues of the study and provide an abil<strong>it</strong>y <strong>to</strong> see the<br />

scenario from different angles. A study will generally <strong>in</strong>volve at least four and rarely more than<br />

seven persons. The larger the team, the slower the process.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

43


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

The need for an experienced HAZOP chairman is crucial. It is important that the chairman is<br />

familiar w<strong>it</strong>h the type of work be<strong>in</strong>g analyzed and that sufficient author<strong>it</strong>y is achieved <strong>to</strong><br />

control the discussion. Dur<strong>in</strong>g the team discussion the chairman should act as a catalyst and<br />

guide the team <strong>in</strong> pos<strong>in</strong>g the appropriate type of questions. F<strong>in</strong>ally the leader should draw the<br />

conclusions from the discussion and propose the appropriate entry <strong>in</strong> the record sheet.<br />

YES<br />

NO<br />

NO<br />

Select a procedure<br />

Have all the relevant guide-words for<br />

this procedure been considered?<br />

NO<br />

Select a relevant guide-word not<br />

previously considered<br />

Are there any causes for this<br />

deviation not discussed and recorded<br />

YES<br />

Record the new cause<br />

Are the associated consequences of<br />

any significance?<br />

YES<br />

Record the consequences<br />

Record any safeguards identified<br />

Hav<strong>in</strong>g regard <strong>to</strong> the consequences<br />

and safeguards, is an action<br />

<strong>necessary</strong>?<br />

YES<br />

Record the agreed action<br />

Figure 6-2 Flow chart of a HAZOP exam<strong>in</strong>ation procedure (based on [2])<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

NO<br />

44


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

6.2.3 HAZOP of the BOP handl<strong>in</strong>g procedure<br />

In an overall risk assessment the identification of hazards and hazardous events are important.<br />

The implementation of a procedure HAZOP on a workover will help identify<strong>in</strong>g the hazards<br />

and <strong>it</strong>s potential consequences. A complete HAZOP of a workover is <strong>to</strong> comprehensive for this<br />

thesis and the competence of the author. In this study only the handl<strong>in</strong>g of the Blowout<br />

preventer (BOP) is considered.<br />

The HAZOP of the BOP handl<strong>in</strong>g procedure provided <strong>in</strong> this thesis has not been subject <strong>to</strong> a<br />

group discussion and a HAZOP team. The outcome will be fully dependent on the authors<br />

understand<strong>in</strong>g of the problem. Important issues might have been left out and the weigh<strong>in</strong>g of<br />

cr<strong>it</strong>ical<strong>it</strong>y may not have been done <strong>to</strong> the satisfaction of all readers.<br />

In the trad<strong>it</strong>ional HAZOP analysis the guide-words; NO, MORE, LESS, AS WELL AS, etc.<br />

are used. In a procedure HAZOP these words are, from some po<strong>in</strong>t of views, not as well su<strong>it</strong>ed.<br />

Instead a set of guide-words <strong>in</strong> <strong>in</strong>terest for the specific analysis are developed for the specific<br />

procedure. The author experimented w<strong>it</strong>h the use of such guide-words <strong>in</strong> the procedure<br />

HAZOP w<strong>it</strong>hout success. The trad<strong>it</strong>ional guide-words are of a general character and easier <strong>to</strong><br />

apply <strong>to</strong> the different procedures <strong>in</strong> the study of BOP handl<strong>in</strong>g. An understand<strong>in</strong>g of why this<br />

guide-word is applied is given for each of the steps <strong>in</strong> the “causes”-column of the HAZOPsheet.<br />

The need for more specific guide-words was therefore neglected. Trad<strong>it</strong>ional guidewords<br />

are also more common and easier <strong>to</strong> understand. As a result the trad<strong>it</strong>ional guide-words<br />

are applied <strong>in</strong> this thesis. The guide-words used and their mean<strong>in</strong>g is presented <strong>in</strong> appendix E.<br />

6.2.4 The BOP handl<strong>in</strong>g procedure<br />

In this chapter a Blowout preventer (BOP) handl<strong>in</strong>g procedure is described. This procedure<br />

will be analysed systematically as a part of a procedure HAZOP. The procedure is only used <strong>to</strong><br />

illustrate the employment of a HAZOP study and is therefore reduced. If a full HAZOP study<br />

of the BOP handl<strong>in</strong>g procedure is wanted a more extensive description of each step should be<br />

done.<br />

1. The BOP is tested on a hub<br />

2. The AX-seal r<strong>in</strong>g on the BOP is checked<br />

3. The BOP is moved by forklift truck over the hole on the cellar deck.<br />

4. A riser pipe is lifted off the pipe rack w<strong>it</strong>h the pipe handl<strong>in</strong>g equipment<br />

5. The riser pipe is lowered through the drill<strong>in</strong>g deck and screwed on <strong>to</strong> the <strong>to</strong>p of the<br />

BOP by an iron roughneck.<br />

6. The BOP is lifted off the fork truck by a riser eleva<strong>to</strong>r, lowered and hung at the drill<strong>in</strong>g<br />

deck.<br />

7. The roughneck screws a new riser pipe on and the riser eleva<strong>to</strong>r is used <strong>to</strong> lower the<br />

riser w<strong>it</strong>h the BOP attached.<br />

8. This procedure is repeated until the BOP is lowered <strong>to</strong> the seabed.<br />

9. The guidel<strong>in</strong>e wires are tightened <strong>to</strong> f<strong>in</strong>d the right pos<strong>it</strong>ion for the BOP<br />

10. The BOP is connected <strong>to</strong> the wellhead<br />

11. The BOP is pressure tested for leakage <strong>in</strong> the AX-seal<br />

12. Workover is performed through BOP<br />

13. BOP is disconnected from wellhead<br />

14. The BOP is raised w<strong>it</strong>h the riser eleva<strong>to</strong>r<br />

15. Guidel<strong>in</strong>es are loosened <strong>to</strong> move BOP away from well<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

45


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

16. Riser pipes are unscrewed w<strong>it</strong>h iron roughneck and placed on rack until BOP is on<br />

cellar deck.<br />

To ga<strong>in</strong> an <strong>in</strong>sight <strong>in</strong><strong>to</strong> the dimensions and the extent of the procedure a picture of a BOP is<br />

presented <strong>in</strong> Figure 6-3.<br />

Figure 6-3 A typical blowout preventer used on <strong>subsea</strong> wells<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

46


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

6.2.5 The HAZOP analysis<br />

The HAZOP study consists of four basic sequential steps, def<strong>in</strong><strong>it</strong>ion, preparation, exam<strong>in</strong>ation<br />

and documentation. Appendix D will describe the different steps <strong>in</strong> detail. The study of the<br />

BOP handl<strong>in</strong>g procedure is done <strong>to</strong> illustrate the use of a HAZOP analysis. A lot of the<br />

essential documentation and prepara<strong>to</strong>ry work has not been done. Focus has been on the<br />

exam<strong>in</strong>ation. This lim<strong>it</strong>ation is done due <strong>to</strong> the educational perspective of this thesis.<br />

Table 6-2 presents the result of the HAZOP analysis on a BOP handl<strong>in</strong>g procedure. The<br />

columns <strong>in</strong> the HAZOP sheet are based on ref. [2]. A column where exist<strong>in</strong>g safeguards are<br />

listed is left out due <strong>to</strong> the author’s lim<strong>it</strong>ed knowledge of the procedure.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

47


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

Table 6-2 HAZOP work sheet of the BOP handl<strong>in</strong>g procedure<br />

HAZOP of the BOP handl<strong>in</strong>g procedure<br />

ID Work Guide Possible causes Consequences Actions required Action<br />

step word<br />

by<br />

1 1 NO The test HUB is not The BOP can not be tested Make sure the HUB is present<br />

present or does not work<br />

and is function<strong>in</strong>g<br />

2 1 NOT The test<strong>in</strong>g is not done The BOP may have failures The BOP should be tested<br />

that are not recovered before the procedure takes<br />

place<br />

3 1 MORE The test<strong>in</strong>g procedure is The workover may be Only essential functions should<br />

<strong>to</strong> extensive or lasts <strong>to</strong> unnecessarily delayed be tested on the rig, others are<br />

long<br />

tested prior <strong>to</strong> go<strong>in</strong>g offshore<br />

4 2 NOT The AX-seal is not<br />

present<br />

The BOP will leak<br />

5 2 PART A part of the AX-seal is The BOP will leak<br />

OF ruptured or scratched<br />

6 3 NO No BOP is present on the Delayed operation Make sure that BOP placed on<br />

fork lift<br />

the forklift<br />

7 3 MORE The forklift places the BOP has <strong>to</strong> be moved aga<strong>in</strong><br />

BOP <strong>in</strong> the wrong<br />

pos<strong>it</strong>ion<br />

and the operation is delayed<br />

8 3 MORE The BOP falls off the The BOP may not function<br />

forklift or is bumped as <strong>in</strong>tended or be broken<br />

9 4 NO The riser pipe rack is not Operation will be delayed as Check the programm<strong>in</strong>g of the<br />

<strong>in</strong> the right pos<strong>it</strong>ion or the rack must be moved or pipe handl<strong>in</strong>g system prior <strong>to</strong><br />

the system is<br />

the pipe handl<strong>in</strong>g system be operation<br />

programmed wrong re-programmed<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

48


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

10 4 NO Riser pipes are not<br />

present <strong>in</strong> the time of<br />

11 5 OTHER<br />

THAN<br />

12 5 REVER<br />

SE<br />

operation<br />

The riser pipes are not<br />

connected; the roughneck<br />

is screw<strong>in</strong>g the pipe the<br />

oppos<strong>it</strong>e direction.<br />

The riser pipes are not<br />

connected, they are<br />

upside down<br />

13 5 LESS Riser is not properly<br />

connected <strong>to</strong> BOP<br />

14 5 MORE Riser is screwed <strong>to</strong> tight<br />

<strong>to</strong> the BOP<br />

15 5 MORE Roughneck damages the<br />

rise by hold<strong>in</strong>g <strong>to</strong> tight<br />

16 5 PART<br />

OF<br />

The Riser pipe is<br />

lowered, but <strong>in</strong> the wrong<br />

pos<strong>it</strong>ion <strong>to</strong> be screwed on<br />

17 6 LESS The riser flange<br />

dimension is <strong>to</strong>o narrow<br />

<strong>to</strong> hang on drill<strong>in</strong>g deck.<br />

18 6 MORE The drill<strong>in</strong>g deck does<br />

not hold the weight of the<br />

BOP.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

Delayed operation Make sure riser pipes are<br />

present<br />

This may lead <strong>to</strong> a delay <strong>in</strong><br />

the operation and <strong>in</strong> worst<br />

case dropp<strong>in</strong>g the BOP<br />

Delayed operation and<br />

possibil<strong>it</strong>y dropp<strong>in</strong>g the<br />

BOP.<br />

The riser is not screwed<br />

properly <strong>to</strong> the BOP. The<br />

BOP may fall down<br />

Threads are damaged and<br />

may not hold the BOP as<br />

<strong>in</strong>tended. BOP may fall<br />

down<br />

The riser may leak or be<br />

damaged.<br />

The riser is not connected <strong>to</strong><br />

the BOP<br />

The riser and BOP will fall<br />

down<br />

The riser and BOP will fall<br />

down<br />

Check the programm<strong>in</strong>g of the<br />

iron roughneck prior <strong>to</strong><br />

operation<br />

Make sure the riser pipes are<br />

stacked <strong>in</strong> the right direction<br />

Use <strong>in</strong>struments <strong>to</strong> measure the<br />

<strong>to</strong>rque and pos<strong>it</strong>ion<br />

Use <strong>in</strong>struments <strong>to</strong> measure the<br />

<strong>to</strong>rque and pos<strong>it</strong>ion<br />

Make sure the riser pipe is<br />

controlled before the pipe is<br />

lowered<br />

Use <strong>in</strong>struments <strong>to</strong> measure the<br />

pos<strong>it</strong>ion<br />

Control dimensions prior <strong>to</strong><br />

workover and use eye control<br />

when operat<strong>in</strong>g<br />

Check the drill<strong>in</strong>g deck for<br />

corrosion and wear<br />

49


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

19 6 MORE The runn<strong>in</strong>g speed of the<br />

riser/BOP is <strong>to</strong>o high<br />

20 6 PART The riser eleva<strong>to</strong>r is<br />

OF jammed<br />

21 7 NOT The riser eleva<strong>to</strong>r is<br />

broken<br />

22 7 LESS The assembly is lowered<br />

<strong>to</strong> slow<br />

23 7 MORE The assembly is lowered<br />

<strong>to</strong> fast<br />

24 7 LESS Riser is not properly<br />

connected<br />

Caus<strong>in</strong>g the drill<strong>in</strong>g deck <strong>to</strong><br />

crack and the BOP may<br />

sw<strong>in</strong>g and cause oscillat<strong>in</strong>g<br />

The assembly can not be<br />

lowered <strong>to</strong> the seabed<br />

The assembly can not be<br />

lowered <strong>to</strong> the seabed<br />

Caus<strong>in</strong>g the procedure <strong>to</strong> last<br />

<strong>to</strong>o long<br />

May cause the str<strong>in</strong>g <strong>to</strong> jerk<br />

when s<strong>to</strong>pped <strong>to</strong> connect a<br />

new riser pipe and the<br />

assembly may sw<strong>in</strong>g<br />

The riser is not screwed<br />

properly on. The BOP<br />

assembly may fall down<br />

25 7 MORE Riser is screwed <strong>to</strong> tight Threads are damaged and<br />

may not hold the assembly as<br />

<strong>in</strong>tended. BOP may fall<br />

26 7 NOT New riser pipes are not<br />

present<br />

27 9 LESS The guidel<strong>in</strong>es are not The BOP is not <strong>in</strong> the right<br />

tightened enough<br />

28 10 MORE The BOP is attached <strong>to</strong><br />

the Wellhead w<strong>it</strong>h <strong>to</strong><br />

much force<br />

29 10 NOT The BOP is not <strong>in</strong><br />

pos<strong>it</strong>ion w<strong>it</strong>h the<br />

Wellhead<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

F<strong>in</strong>d a runn<strong>in</strong>g speed that is<br />

ideal for this operation<br />

Make sure eleva<strong>to</strong>r is<br />

function<strong>in</strong>g prior <strong>to</strong> operation<br />

F<strong>in</strong>d a runn<strong>in</strong>g speed that is<br />

ideal for this operation<br />

F<strong>in</strong>d a runn<strong>in</strong>g speed that is<br />

ideal for this operation creat<strong>in</strong>g<br />

a smooth s<strong>to</strong>p when<br />

connect<strong>in</strong>g new pipes<br />

Use <strong>in</strong>struments <strong>to</strong> measure the<br />

<strong>to</strong>rque and pos<strong>it</strong>ion<br />

Use <strong>in</strong>struments <strong>to</strong> measure the<br />

<strong>to</strong>rque<br />

The operation is delayed Make sure that enough riser<br />

pipes are present<br />

pos<strong>it</strong>ion<br />

Stabs, AX-seal and lock<strong>in</strong>g<br />

screws are damaged.<br />

The BOP may not connect <strong>to</strong><br />

the wellhead due <strong>to</strong> wrong<br />

pos<strong>it</strong>ion<strong>in</strong>g<br />

Make sure the connection of<br />

the BOP is nice and steady<br />

Use <strong>in</strong>struments <strong>to</strong> measure the<br />

exact pos<strong>it</strong>ion<br />

50


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

30 11 LESS The pressure is low The BOP is leak<strong>in</strong>g Acceptable leakage must be<br />

def<strong>in</strong>ed prior <strong>to</strong> operation<br />

31 12 NOT The BOP is not work<strong>in</strong>g The operations may be<br />

properly<br />

harder <strong>to</strong> perform or not able<br />

<strong>to</strong> be performed<br />

32 12 LESS Fluid is flow<strong>in</strong>g from the<br />

connection<br />

The BOP is leak<strong>in</strong>g<br />

33 13 NOT The BOP is jammed The BOP does not<br />

disconnect<br />

34 14 NOT The riser eleva<strong>to</strong>r is The BOP can not be lifted Make sure <strong>to</strong> have redundant<br />

broken<br />

from the seabed<br />

lift<strong>in</strong>g systems<br />

35 14 MORE The riser/ BOP assembly The BOP can not be lifted Make sure the riser eleva<strong>to</strong>r<br />

is <strong>to</strong> heavy <strong>to</strong> lift from the seabed<br />

and lift<strong>in</strong>g gear is properly<br />

proportionate for the job<br />

36 15 NO The guidel<strong>in</strong>es are not The BOP may not be moved<br />

able <strong>to</strong> loosen<br />

away from the seabed<br />

equipment and has <strong>to</strong> be<br />

raised above the <strong>subsea</strong><br />

equipment<br />

37 16 MORE Riser is screwed on <strong>to</strong> The pipes may not be able <strong>to</strong> Make sure <strong>to</strong> have cutt<strong>in</strong>g gear<br />

tight<br />

demount<br />

present at the s<strong>it</strong>e<br />

38 16 OTHER The roughneck is This may lead <strong>to</strong> a delay <strong>in</strong> Make sure the programm<strong>in</strong>g of<br />

THAN screw<strong>in</strong>g the pipe the the operation<br />

the iron roughneck is right<br />

oppos<strong>it</strong>e direction.<br />

prior <strong>to</strong> operation<br />

39 16 NO The riser pipe rack is not Operation will be delayed as Make sure the programm<strong>in</strong>g of<br />

<strong>in</strong> the right pos<strong>it</strong>ion or the rack must be moved or is right prior <strong>to</strong> operation<br />

the pipe handl<strong>in</strong>g system the roughneck be re-<br />

is programmed wrong programmed<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

51


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

6.2.6 Result of the HAZOP analysis<br />

The HAZOP analysis has revealed several hazards. The hazards and <strong>it</strong>s causes should be<br />

evaluated <strong>in</strong> order <strong>to</strong> reduce the risk related <strong>to</strong> this procedure. The ma<strong>in</strong> hazards related <strong>to</strong><br />

the BOP handl<strong>in</strong>g procedure are delay <strong>in</strong> operation, dropped BOP and leakage <strong>to</strong> sea. If<br />

the operation is delayed <strong>it</strong> will result <strong>in</strong> lost production and extra cost related <strong>to</strong> hir<strong>in</strong>g of<br />

a workover rig and other equipment. If the BOP is dropped this will always lead <strong>to</strong> a<br />

delay, but more serious scenarios may also occur. The BOP may fall down and h<strong>it</strong> the xmas<br />

tree, manifold or other <strong>subsea</strong> equipment. A damaged x-mas tree is not only a<br />

scenario of economic character but there are also environmental consequences related <strong>to</strong><br />

this. The <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> (DHSV) will play an important role if the x-mas tree is<br />

damaged. If no DHSV is present the leakage of hydrocarbons from the reservoir can be<br />

significant. It would be a disaster. If by any chance a DHSV is present the leakages still<br />

will be extensive and the damages may require an abandonment of the well.<br />

The most frequent f<strong>in</strong>d<strong>in</strong>g <strong>in</strong> this HAZOP is the need for preparation before the different<br />

operations beg<strong>in</strong>. It is important that all steps are carefully planned and the test<strong>in</strong>g of the<br />

equipment is done properly. Another important issue is the secur<strong>in</strong>g of the <strong>subsea</strong><br />

equipment. This should be considered already when a new well is <strong>in</strong> the plann<strong>in</strong>g phase.<br />

If the BOP should be lost, or any other equipment, and h<strong>it</strong> the <strong>subsea</strong> equipment the<br />

consequences may be enormous.<br />

A list of the most important recommended actions derived from this HAZOP analysis is<br />

given below.<br />

1. Evaluate the probabil<strong>it</strong>y of dropp<strong>in</strong>g the BOP and potential consequences<br />

2. Make sure the AX-seal is present and adjusted on the BOP and that the BOP is<br />

tested and function<strong>in</strong>g prior <strong>to</strong> runn<strong>in</strong>g<br />

3. Make sure the pipe handl<strong>in</strong>g system and the iron roughneck is operated correctly<br />

4. Make sure there are enough riser pipes present and that they are stacked the right<br />

way<br />

5. F<strong>in</strong>d a satisfac<strong>to</strong>ry runn<strong>in</strong>g and pull<strong>in</strong>g speed on the riser eleva<strong>to</strong>r<br />

6. Have redundant lift<strong>in</strong>g gear present on the workover rig if the riser eleva<strong>to</strong>r should<br />

fail<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

52


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

7 Conclusions and recommendations for further<br />

work<br />

7.1 Conclusions<br />

The overall objective has been <strong>to</strong> determ<strong>in</strong>e whether or not a DHSV should be <strong><strong>in</strong>stall</strong>ed <strong>in</strong><br />

a <strong>subsea</strong> oil/gas well from a risk po<strong>in</strong>t of view. A conclusion is presented <strong>in</strong> this section.<br />

Based on the quant<strong>it</strong>ative f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> this study the DHSV reduces the risk of blowout<br />

w<strong>it</strong>h approximately 50%. A removal of the DHSV represents an <strong>in</strong>creased failure<br />

probabil<strong>it</strong>y, and two <strong>in</strong>dependent and tested well barriers are not present <strong>in</strong> all cut sets.<br />

None of the cut sets do, however, violate a required SIL3 level when the DHSV is<br />

removed from the completion.<br />

The blowout frequency caused by the DHSV dur<strong>in</strong>g workover is 1.7E-4 per well year,<br />

and 8.5E-5 per well year for a well w<strong>it</strong>hout a DHSV. The blowout frequency dur<strong>in</strong>g<br />

production is based on the assumption that all occurrences of the ‘TOP’-event, “leakage<br />

<strong>to</strong> the surround<strong>in</strong>gs”, classify as a blowout. Dur<strong>in</strong>g production the blowout frequency is<br />

found <strong>to</strong> be 4.47E-3 per well year for a well w<strong>it</strong>h a DHSV, and 1.85E-2 per well year<br />

when the DHSV is removed. In add<strong>it</strong>ion <strong>to</strong> the blowout frequency dur<strong>in</strong>g production and<br />

workover a blowout frequency caused by accidental events should be <strong>in</strong>cluded. The <strong>to</strong>tal<br />

blowout frequency is found add<strong>in</strong>g up the different contributions:<br />

f<strong>to</strong>tal = fproduction + f<strong>in</strong>tervention + (faccidential event * MFDTaccidential event)<br />

The DHSV blowout frequency contribution dur<strong>in</strong>g <strong><strong>in</strong>stall</strong>ation is not <strong>in</strong>cluded <strong>in</strong> this<br />

study. There is no data reveal<strong>in</strong>g the changes <strong>in</strong> blowout frequency when the DHSV is<br />

removed for the <strong><strong>in</strong>stall</strong>ation phase.<br />

The blowout frequencies found <strong>in</strong> the calculations are of very high. In <strong>to</strong>tal a removal of<br />

the DHSV <strong>in</strong>creases the blowout frequency by 1.13E-2 per well year. It is reasonable <strong>to</strong><br />

believe that the calculations <strong>in</strong> this report are e<strong>it</strong>her based on <strong>in</strong>sufficient data, a bad<br />

model or calculated errors. Other fac<strong>to</strong>rs may also have contributed <strong>to</strong> the high frequency.<br />

An alternative calculation method based on the proportion of the frequencies of the<br />

‘TOP’-events, and the experience data found <strong>in</strong> ref.[7] is applied. In the new calculations<br />

a removal of the DHSV will <strong>in</strong>crease the blowout frequency of 3.0E-5 per well year. The<br />

author f<strong>in</strong>ds this result more reasonable.<br />

50% of the shut-<strong>in</strong>s of a well lead<strong>in</strong>g <strong>to</strong> a workover are caused by a DHSV failure. A<br />

DHSV failure requires a workover generat<strong>in</strong>g a loss of oil production of up <strong>to</strong> $5,6<br />

million. In add<strong>it</strong>ion there will also be expenses concern<strong>in</strong>g the rental of a workover rig. A<br />

<strong>to</strong>tal cost of 20 million dollars per <strong>in</strong>tervention is therefore not unrealistic.<br />

The author cannot recommend remov<strong>in</strong>g the Downhole <strong>safety</strong> <strong>valve</strong> (DHSV) from a<br />

<strong>subsea</strong> oil/gas production well based on the f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong> this thesis. Although there may be<br />

some economic advantages <strong>in</strong> remov<strong>in</strong>g the DHSV the risk of blowout should be given<br />

the greatest attention. In add<strong>it</strong>ion <strong>to</strong> caus<strong>in</strong>g pollution, the occurrence of a blowout may <strong>in</strong><br />

severe cases lead <strong>to</strong> a bad reputation among consumers and environmental organisations.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

53


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

The consequences of a bad reputation are hard <strong>to</strong> estimate. If a boycott of the operat<strong>in</strong>g<br />

company is carried out <strong>it</strong> could lead <strong>to</strong> greater economic losses. Negative public<strong>it</strong>y not<br />

only affects the concerned company but the entire oil <strong>in</strong>dustry.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

54


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

7.2 Recommendations for further work<br />

This thesis is carried out w<strong>it</strong>h<strong>in</strong> a lim<strong>it</strong>ed period of time and w<strong>it</strong>h lim<strong>it</strong>ed access <strong>to</strong> data. It<br />

is recommended that the conclusion of the thesis be explored further. A range of tasks<br />

may be carried out <strong>to</strong> provide an even better basis <strong>in</strong> decid<strong>in</strong>g whether or not a <strong>downhole</strong><br />

<strong>safety</strong> <strong>valve</strong> (DHSV) should be present <strong>in</strong> a <strong>subsea</strong> oil/gas well<br />

Improved calculation model<br />

In the calculation model of this thesis the blowout frequency dur<strong>in</strong>g production is based<br />

on the assumption that all leakage classifies as a blowout. This generates a very<br />

conservative value. The leakage may <strong>in</strong> some cases be very small and not classify as a<br />

blowout. The model used <strong>in</strong> the fault tree calculations assume that a leakage <strong>in</strong> closed<br />

pos<strong>it</strong>ion and fail <strong>to</strong> close failure of the w<strong>in</strong>g <strong>valve</strong> leads directly <strong>to</strong> sea. If the <strong>safety</strong><br />

barriers <strong>in</strong> the flow direction fail there are still barriers further up the l<strong>in</strong>e that may<br />

prevent a blowout, e.g. the manifold, separa<strong>to</strong>r or other equipment. A better and improved<br />

model could generate a better and more realistic blowout frequency result.<br />

Data accuracy<br />

The author has lim<strong>it</strong>ed access <strong>to</strong> valid data. The reliabil<strong>it</strong>y data used <strong>in</strong> the calculations is<br />

gathered for both platform and <strong>subsea</strong> wells. Valid data only for <strong>subsea</strong> wells should be<br />

applied <strong>in</strong> the calculations. Another problem is the age of the applied data. All data <strong>in</strong> this<br />

thesis is more than five years old due <strong>to</strong> the confidential<strong>it</strong>y of the operat<strong>in</strong>g companies.<br />

Implement<strong>in</strong>g new up-<strong>to</strong>-date data may change the outcome of the <strong>to</strong>tal blowout<br />

frequency and is recommended. The presented approach is, however, valid and applicable<br />

when new data is found.<br />

Includ<strong>in</strong>g the consequence<br />

The calculations done <strong>in</strong> this thesis do not consider the blowout consequences. Although<br />

a blowout occurs <strong>it</strong> may not always cause severe pollution. None of the blowouts <strong>in</strong> the<br />

production, workover or <strong><strong>in</strong>stall</strong>ation phase, recorded <strong>in</strong> ref. [7], has caused severe<br />

pollution. Dur<strong>in</strong>g the production phase only one of seven blowouts caused small<br />

pollution; the other six caused no pollution. A workover blowout is more likely <strong>to</strong> cause<br />

severe pollution than the other stages of the well. An evaluation of the consequences of a<br />

blowout at the different well life phases should be <strong>in</strong>cluded <strong>in</strong> a further evaluation of the<br />

risk reduc<strong>in</strong>g effect of the DHSV.<br />

Economic cost evaluation<br />

In this thesis some of the economic aspects related <strong>to</strong> the DHSV are discussed. Due <strong>to</strong> a<br />

lack of cost <strong>in</strong>formation from operat<strong>in</strong>g companies an evaluation of the reduced cost a<br />

removal of the DHSV would represent is not <strong>in</strong>cluded. A <strong>to</strong>tal economic evaluation of the<br />

costs related <strong>to</strong> the DHSV for the operat<strong>in</strong>g company should be performed. The f<strong>in</strong>d<strong>in</strong>gs<br />

<strong>in</strong> this thesis have revealed that a substantial amount of money may be saved.<br />

Alternative solutions<br />

In some cases alternative solutions may be more reliable than a DHSV. A further study<br />

develop<strong>in</strong>g new solutions and exam<strong>in</strong><strong>in</strong>g other exist<strong>in</strong>g solutions is recommended. The<br />

economic cost and the environmental risk related <strong>to</strong> a frequent workover rate caused by<br />

the DHSV may be reduced.<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

55


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

8 References<br />

1. Aleksandersen, J., Sangesland, S., Well <strong>in</strong>tervention <strong>in</strong> <strong>subsea</strong> completed wells,<br />

Department of Petroleum Eng<strong>in</strong>eer<strong>in</strong>g and Applied Geophysics, The Norwegian<br />

Inst<strong>it</strong>ute of Technology, The Univers<strong>it</strong>y of Trondheim, Trondheim, 1994<br />

2. Br<strong>it</strong>ish Standard Inst<strong>it</strong>ute (BSI), Hazard and operabil<strong>it</strong>y studies (HAZOP<br />

studies)- Application guide, 2001<br />

3. Dovre Safetech, Dropped object analysis Large water depths SAGA, April 1995<br />

4. Durham, C.J, Paveley, C.A., SPE 56934 Radical Solutions Required:<br />

Completion W<strong>it</strong>hout packers and Downhole Valves Can Be Safe, Society of<br />

Petroleum Eng<strong>in</strong>eers, Inc. Offshore Europe Conference, Aberdeen, Scotland, 1999<br />

5. Goland, M., Wh<strong>it</strong>son, C.H., Well Performance 2 nd ed<strong>it</strong>ion, Prentice Hall,<br />

Trondheim, 1991<br />

6. Herfjord, H. J., Brønnteknologi, NKI Forlaget, Larvik, 1988<br />

7. Holand P., Offshore Blowouts Causes and Control, Gulf Publish<strong>in</strong>g Company,<br />

Hous<strong>to</strong>n, TX, USA, 1997<br />

8. Høyland, A. and Rausand, M., System Reliabil<strong>it</strong>y Theory - Models and<br />

Statistical Methods, John Wiley & Sons Inc., New York, 1994.<br />

9. Kirwan, B., A<strong>in</strong>sworth, L.K., A guide <strong>to</strong> task analysis, Taylor & Francis Ltd.,<br />

Great Br<strong>it</strong>a<strong>in</strong>, 1992<br />

10. Kletz, T.A., HAZOP AND HAZAN – Identify<strong>in</strong>g and Assess<strong>in</strong>g Process Industry<br />

Hazards, The Inst<strong>it</strong>ution of Chemical Eng<strong>in</strong>eers, Warwickshire, England, 1992<br />

11. M<strong>in</strong>erals Management Service, Part 250-Oil and gas and sulphur operations <strong>in</strong><br />

the outer cont<strong>in</strong>ental shelf,<br />

12. Mobile E. & P Technical Center, Mobile completions handbook, Dallas, TX,<br />

USA, 1996<br />

13. Molnes E., Sundet, I., Reliabil<strong>it</strong>y of well completion equipment – Phase II<br />

Report. (SINTEF report no. STF75 F95051, 1996, Safety and Reliabil<strong>it</strong>y,<br />

SINTEF, Trondheim)<br />

14. Molnes E., Sundet, I., Vatn, J., Reliabil<strong>it</strong>y of well completion equipment – Ma<strong>in</strong><br />

Report. (SINTEF report no. STF75 F92019, 1992, Safety and Reliabil<strong>it</strong>y,<br />

SINTEF, Trondheim).<br />

15. Molnes, E., Holand, P., Sundet, I., Vatn, J., Reliabil<strong>it</strong>y of surface controlled Sub<br />

Safety Valves- Phase III- Ma<strong>in</strong> Report. (SINTEF report no. STF75 F89030, 1989,<br />

Safety and Reliabil<strong>it</strong>y, SINTEF, Trondheim).<br />

16. Molnes, E., Sundet, I., Vatn, J., Reliabil<strong>it</strong>y of surface controlled Sub Safety<br />

Valves- Phase IV. (SINTEF report no. STF75 F91038, 1992, Safety and<br />

Reliabil<strong>it</strong>y, SINTEF, Trondheim).<br />

17. NORSOK, 1998, Subsea production systems, [onl<strong>in</strong>e] Found at<br />

http://www.nts.no/norsok/u/u00102/u00102.htm, 18.11.01<br />

18. Offshore Technology, Exxon Valdez Oil Spill, [onl<strong>in</strong>e] Found at<br />

http://www.offshore-technology.com/contrac<strong>to</strong>rs/environmental/exxonvaldez.html,<br />

02.05.02<br />

19. Rausand M., Personal conversation, Inst<strong>it</strong>utt for Produksjons og<br />

Kval<strong>it</strong>etsteknikk, <strong>NTNU</strong>, Norway, 08.02.2002<br />

20. Rausand, M., Vatn, J., Reliabil<strong>it</strong>y modell<strong>in</strong>g of surface controlled subsurface<br />

<strong>safety</strong> <strong>valve</strong>s, Reliabil<strong>it</strong>y Eng<strong>in</strong>eer<strong>in</strong>g and System Safety, Vol. 61, 1998<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

56


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

21. Sangesland, Sigbjørn, Petroleum Technology Introduction Part II, Department<br />

of Petroleum Eng<strong>in</strong>eer<strong>in</strong>g and Applied Geophysics, The Norwegian Inst<strong>it</strong>ute of<br />

Technology, The Univers<strong>it</strong>y of Trondheim, Trondheim, 1994<br />

22. SINTEF Industrial Management, Offshore Reliabil<strong>it</strong>y Data 3 rd Ed<strong>it</strong>ion, OREDA<br />

97, 1997<br />

23. Sta<strong>to</strong>il, 2002, Åsgard, [onl<strong>in</strong>e] Found at<br />

http://www.sta<strong>to</strong>il.com/STATOILCOM/SVG00990.nsf/UNID/EB5BA0F3138B8<br />

93D41256657004B2695?OpenDocument, 05.03.2002<br />

24. Sta<strong>to</strong>il, Personal handbook Subsea Equipment, Kongsberg, Norway, 1998<br />

25. Strand G. O, Personal conversation, Exprosoft AS, Norway, 02.05.2002<br />

26. Tallby R. J., Barriers <strong>in</strong> Well Operations, Sta<strong>to</strong>il Report no R00290rjt/RJT,<br />

Stavanger, Norway, 1990.<br />

27. The Drill<strong>in</strong>g People's Webs<strong>it</strong>e, 2002, Blowout Preventer: (BOP), [onl<strong>in</strong>e] Found<br />

at http://www.workover.co.uk/bops/blow_out_prevention_bops.htm, 17.02.02<br />

28. The Norwegian Oil Industry Foundation (OLF), 2001, RECOMMENDED<br />

GUIDELINESFOR THE APPLICATION OF IEC 61508 AND IEC 61511 IN THE<br />

PETROLEUM ACTIVITIES ON THE NORWEGIAN CONTINENTAL SHELF,<br />

[onl<strong>in</strong>e] Found at http://www.<strong>it</strong>k.ntnu.no/sil/Guidel<strong>in</strong>e_IEC.pdf, 10.04.2002<br />

29. The Norwegian Petroleum Direc<strong>to</strong>rate, 2001, REGULATIONS RELATING TO<br />

CONDUCT OF ACTIVITIES IN THE PETROLEUM ACTIVITIES (THE<br />

ACTIVITIES REGULATIONS), [onl<strong>in</strong>e] Found at<br />

http://www.npd.no/regelverk/r2002/Aktiv<strong>it</strong>etsforskriften_e.htm, 07.03.2002<br />

30. The Norwegian Petroleum Direc<strong>to</strong>rate, 2001,REGULATIONS RELATING TO<br />

DESIGN AND OUTFITTING OF FACILITIES ETC. IN THE PETROLEUM<br />

ACTIVITIES (THE FACILITIES REGULATIONS), [onl<strong>in</strong>e] Found at<br />

http://www.npd.no/regelverk/r2002/Innretn<strong>in</strong>gsforskriften_e.htm, 02.05.02<br />

31. Thomson, G., email 13.02.2002, HM Pr<strong>in</strong>cipal Inspec<strong>to</strong>r UK<br />

32. Vatn, J., 1999, A discussion of the acceptable risk problem, [onl<strong>in</strong>e] Found at<br />

http://www.ipk.ntnu.no/RAMS/Notater/accept.pdf, 17.04.2002<br />

33. Wahlstrøm, E., Safety analysis of <strong>subsea</strong> production system workover, Inst<strong>it</strong>utt<br />

for produksjons og kval<strong>it</strong>etsteknikk, Norges Tekniske Høgskole, Trondheim, 1994<br />

34. ÅSG RESU Åsgard Intervention Program Smørbukk Well 6506/12-I-4 H, Sta<strong>to</strong>il,<br />

2001<br />

35. ÅSG RESU, Åsgard Intervention Summary Report Smørbukk Well 6506/12-I-4 H,<br />

Sta<strong>to</strong>il, 2001<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

57


<strong>Is</strong> <strong>it</strong> <strong>necessary</strong> <strong>to</strong> <strong><strong>in</strong>stall</strong> a <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> <strong>in</strong> a <strong>subsea</strong> oil/gas well?<br />

9 Appendices<br />

Appendix A: Introduction <strong>to</strong> a <strong>subsea</strong> production system<br />

Appendix B: The production well<br />

Appendix C The fault trees<br />

Appendix D: Reliabil<strong>it</strong>y data dossiers<br />

Appendix E: The basic steps of a HAZOP procedure<br />

Appendix F:<br />

Diploma thesis, <strong>NTNU</strong> 2002<br />

HAZOP guide-words<br />

58


APPENDIX A<br />

A1 Subsea production system<br />

This appendix is based on <strong>in</strong>formation found <strong>in</strong> references [5, 6, 12, 21]. The appendix is<br />

<strong>in</strong>cluded <strong>to</strong> provide a basis of understand<strong>in</strong>g of a <strong>subsea</strong> production system and the different<br />

hardware components <strong>in</strong>cluded.<br />

A production system is essentially a system that provides transportation of fluids from the<br />

reservoir <strong>to</strong> the surface and separates <strong>it</strong> <strong>in</strong><strong>to</strong> oil, gas and water. The oil and gas streams are<br />

transported from the field and prepared for sale. The water is treated and <strong>in</strong>jected <strong>to</strong> the<br />

reservoir or brought <strong>to</strong> disposal. A production system consists of different groups of<br />

mechanical elements.<br />

Subsea system components are normally exposed directly <strong>to</strong> the sea. The <strong><strong>in</strong>stall</strong>ation and<br />

ma<strong>in</strong>tenance operations are carried out by specially designed manipula<strong>to</strong>rs, remote operated<br />

vehicles (ROV), conventional divers, drill str<strong>in</strong>g from a vessel, or by recover<strong>in</strong>g components<br />

<strong>to</strong> the surface.<br />

A1.1 Natural flow production well<br />

Production from a natural flow well is probably the most common method of oil production.<br />

Figure A-1 shows a naturally flow<strong>in</strong>g production well. To be able <strong>to</strong> produce fluid from this<br />

well different components are required. The ma<strong>in</strong> components relevant for a natural flow<br />

<strong>subsea</strong> well are:<br />

1. Cas<strong>in</strong>gs<br />

2. Tub<strong>in</strong>g str<strong>in</strong>g<br />

3. Production packer<br />

4. Downhole Safety Valve (DHSV)<br />

5. Subsea wellhead<br />

6. Subsea x-mas tree<br />

7. Control system<br />

A-1


DHSV<br />

Figure A-1 Natural flow well<br />

The components mentioned here will be expla<strong>in</strong>ed more detailed later <strong>in</strong> this chapter. The<br />

build up of the well is as follows. A production cas<strong>in</strong>g is perforated along the hydrocarbonbear<strong>in</strong>g<br />

formation <strong>to</strong> allow reservoir fluid <strong>to</strong> enter the well and flow upward through the<br />

tub<strong>in</strong>g. The tub<strong>in</strong>g is the pipe that provides a flow path for the produced fluid from the<br />

reservoir. A production packer is located <strong>in</strong> the annulus <strong>to</strong> seal off the annular space between<br />

the cas<strong>in</strong>g and tub<strong>in</strong>g. The tub<strong>in</strong>g str<strong>in</strong>g may <strong>in</strong>clude accessories like seal assembly, <strong>safety</strong><br />

<strong>valve</strong>, packers and pumps. It is suspended from a tub<strong>in</strong>g hanger <strong><strong>in</strong>stall</strong>ed at the wellhead. The<br />

tub<strong>in</strong>g hanger provides a seal<strong>in</strong>g between the <strong>to</strong>p of the tub<strong>in</strong>g and the annulus. A series of<br />

<strong>valve</strong>s are placed above the tub<strong>in</strong>g hanger, known as the x-mas tree assembly. The x-mas tree<br />

production master <strong>valve</strong> functions as a <strong>safety</strong> barrier and is capable of cutt<strong>in</strong>g of the flow<br />

from the reservoir. The production w<strong>in</strong>g <strong>valve</strong> directs the flow away from the well <strong>in</strong><strong>to</strong> a<br />

production manifold or s<strong>to</strong>rage un<strong>it</strong>. A swab <strong>valve</strong> is located <strong>in</strong> the <strong>to</strong>p of the x-mas tree and<br />

used <strong>to</strong> perform safe vertical re-entries <strong>in</strong><strong>to</strong> the tree and well dur<strong>in</strong>g workover. The control<br />

system allows operation of <strong>subsea</strong> <strong>valve</strong>s dur<strong>in</strong>g production.<br />

A1.2 Well <strong><strong>in</strong>stall</strong>ation<br />

Installation of <strong>subsea</strong> well and <strong>downhole</strong> ma<strong>in</strong>tenance is normally carried out from a drill<strong>in</strong>g<br />

rig. It is normal for the well <strong>to</strong> be drilled, completed, and the tree <strong><strong>in</strong>stall</strong>ed <strong>in</strong> one cont<strong>in</strong>uous<br />

operation. On previously drilled wells, the <strong>subsea</strong> tree would be <strong><strong>in</strong>stall</strong>ed after re-entry, clean<br />

up, and completion. As w<strong>it</strong>h any offshore operation, the successful <strong><strong>in</strong>stall</strong>ation of a <strong>subsea</strong><br />

well requires considerable logistics and plann<strong>in</strong>g. Add<strong>it</strong>ional process<strong>in</strong>g facil<strong>it</strong>ies may be<br />

required on the drill<strong>in</strong>g vessel <strong>to</strong> perm<strong>it</strong> <strong>in</strong><strong>it</strong>ial clean up and test<strong>in</strong>g of the well <strong>in</strong> order <strong>to</strong><br />

prevent <strong>in</strong>troduction of sand or debris from the completion <strong>in</strong><strong>to</strong> the <strong>subsea</strong> flowl<strong>in</strong>es. The<br />

completion of wells from a float<strong>in</strong>g vessel is somewhat more complicated than from a<br />

platform. The motion vessel requires extra care and heave compensation equipment <strong>to</strong> prevent<br />

damag<strong>in</strong>g of completion tub<strong>in</strong>g and seals.<br />

A-2


A1.3 Well completion<br />

A1.3.1 Tub<strong>in</strong>g<br />

The tub<strong>in</strong>g is a str<strong>in</strong>g of pipes stretch<strong>in</strong>g from the reservoir and up <strong>to</strong> the wellhead. This is<br />

where the produced fluid is led upward <strong>to</strong> the platform. Different accessories can be mounted<br />

on the tub<strong>in</strong>g <strong>to</strong> control the flow.<br />

A1.3.2 Cas<strong>in</strong>g program<br />

The well consists of a group of concentric pipes, which are tapped <strong>to</strong>gether <strong>in</strong><strong>to</strong> what is called<br />

a cas<strong>in</strong>g program. Dur<strong>in</strong>g drill<strong>in</strong>g operation a new cas<strong>in</strong>g pipe is added for every drilled<br />

diameter. When the hole is drilled, a cas<strong>in</strong>g pipe is cemented <strong>in</strong> place. Usually three cas<strong>in</strong>gs<br />

are used. The outer cas<strong>in</strong>g is called a conduc<strong>to</strong>r pipe and provides a fundament for the well.<br />

When the conduc<strong>to</strong>r cas<strong>in</strong>g is <strong>in</strong> place the surface cas<strong>in</strong>g, <strong>in</strong>termediate cas<strong>in</strong>g and the<br />

production cas<strong>in</strong>g is added on. The production cas<strong>in</strong>g is also called a l<strong>in</strong>ear cas<strong>in</strong>g and varies<br />

from the other cas<strong>in</strong>gs by not go<strong>in</strong>g all the way up <strong>to</strong> the wellhead. The ma<strong>in</strong> function of the<br />

cas<strong>in</strong>g is <strong>to</strong> provide a stabilisation barrier for the well and <strong>to</strong> protect the production tub<strong>in</strong>g.<br />

A1.3.3 Subsea x-mas tree<br />

The <strong>subsea</strong> x-mas tree, an assembly of <strong>valve</strong>s, provides the control of the well dur<strong>in</strong>g<br />

production and is located at the <strong>to</strong>p of the wellhead. Configuration and design of the x-mas<br />

tree depends upon several fac<strong>to</strong>rs. The x-mas tree may be a s<strong>in</strong>gle block type or several<br />

<strong>valve</strong>s jo<strong>in</strong>ed <strong>to</strong>gether; <strong>it</strong> may be of a horizontal or conventional vertical alignment (dual<br />

bore). The vertical tree is designed <strong>to</strong> connect <strong>to</strong> a wellhead and <strong>in</strong>terface w<strong>it</strong>h the tub<strong>in</strong>g<br />

hanger previously <strong><strong>in</strong>stall</strong>ed <strong>in</strong> the wellhead. A horizontal tree differs from the conventional<br />

w<strong>it</strong>h the annulus bore branch horizontally out <strong>to</strong> the side of the tree and the <strong>valve</strong>s are<br />

oriented on a horizontal axis. The access <strong>to</strong> the well bore is ga<strong>in</strong>ed by remov<strong>in</strong>g the <strong>in</strong>ternal<br />

tree cap.<br />

The ma<strong>in</strong> purpose of the x-mas tree is <strong>to</strong> provide an abil<strong>it</strong>y <strong>to</strong> shut <strong>in</strong> the well at the wellhead.<br />

The x-mas tree also fulfils the follow<strong>in</strong>g functions<br />

Direct the production flow from the well<br />

Safely s<strong>to</strong>p the flow.<br />

Inject protection fluids <strong>in</strong><strong>to</strong> the well or the flowl<strong>in</strong>e<br />

Allow <strong>in</strong>jection of fluid <strong>to</strong> kill the well.<br />

Provide annulus control.<br />

Provide access <strong>to</strong> the annulus dur<strong>in</strong>g the <strong><strong>in</strong>stall</strong>ation and the production phases.<br />

Allow an easy connection of the tree runn<strong>in</strong>g <strong>to</strong>ol and <strong>it</strong>s associated completion riser.<br />

Facil<strong>it</strong>ate all aspects of the ma<strong>in</strong>tenance outside of the tree.<br />

Operate as a <strong>safety</strong> barrier.<br />

A1.3.4 X-mas tree components<br />

The components of a <strong>subsea</strong> x-mas tree are described <strong>in</strong> brief w<strong>it</strong>h the functions.<br />

The production master <strong>valve</strong> is located on the vertical production bore. The master<br />

<strong>valve</strong> always rema<strong>in</strong>s open except for emergencies or dur<strong>in</strong>g pressure tests of the tree.<br />

The production master <strong>valve</strong> is a fail-safe-gate <strong>valve</strong>.<br />

A-3


The w<strong>in</strong>g <strong>valve</strong> is located on the horizontal outlet from the x-mas tree. If <strong>it</strong> becomes<br />

<strong>necessary</strong> <strong>to</strong> close the well, the w<strong>in</strong>g <strong>valve</strong> is the first <strong>to</strong> be closed. This is where the<br />

produced fluid is flow<strong>in</strong>g through.<br />

The swab <strong>valve</strong> is located on the vertical bores of the tree above the w<strong>in</strong>g <strong>valve</strong>. The<br />

swab <strong>valve</strong> is used <strong>to</strong> perform safe vertical re-entries <strong>in</strong><strong>to</strong> the tree and well dur<strong>in</strong>g<br />

workover.<br />

The crossover <strong>valve</strong> connects the production bore <strong>to</strong> the annulus bore via a crossover<br />

service l<strong>in</strong>e.<br />

The annulus master <strong>valve</strong> is located on the vertical annulus bore. It is normally closed<br />

and opened only if fluid is <strong>to</strong> be <strong>in</strong>jected <strong>to</strong> the annulus bore.<br />

The annulus w<strong>in</strong>g <strong>valve</strong> is normally closed. It closes the side outlet oft the tree block<br />

<strong>to</strong> isolate the service l<strong>in</strong>e dur<strong>in</strong>g production and <strong>in</strong>tervention.<br />

Gate <strong>valve</strong>s are the most common type <strong>valve</strong>s <strong>in</strong> the x-mas tree. The gate <strong>valve</strong>s are normally<br />

operated e<strong>it</strong>her hydraulically, by mechanical override or remotely operated vehicle (ROV).<br />

A1.4 Subsea wellhead<br />

The <strong>subsea</strong> wellhead system is the primary component of a <strong>subsea</strong> production well. It<br />

functions both as a pressure vessel and a structural support at the seabed. Dur<strong>in</strong>g oil and gas<br />

production the wellhead support and seal the x-mas tree and holds the cas<strong>in</strong>gs and the tub<strong>in</strong>g.<br />

In the wellhead, the tub<strong>in</strong>g hanger and cas<strong>in</strong>g hangers are connect<strong>in</strong>g and carry<strong>in</strong>g the load of<br />

the tub<strong>in</strong>g and cas<strong>in</strong>gs.<br />

The tub<strong>in</strong>g head is attached <strong>to</strong> the uppermost cas<strong>in</strong>g head and supports the tub<strong>in</strong>g str<strong>in</strong>g. The<br />

tub<strong>in</strong>g hanger is an <strong>in</strong>tegrated part of the wellhead. It seals and locks the tub<strong>in</strong>g <strong>in</strong>side the<br />

wellhead hous<strong>in</strong>g. Seals isolate the production and annulus fluids and prevent leakage. The<br />

tub<strong>in</strong>g hanger can e<strong>it</strong>her be locked <strong>to</strong> the wellhead hous<strong>in</strong>g or directly via a cas<strong>in</strong>g hanger<br />

lock down profile, or locked <strong>in</strong> the last cas<strong>in</strong>g hanger suspended <strong>in</strong> the wellhead. Hydraulic<br />

and electrical communication w<strong>it</strong>h <strong>downhole</strong> equipment requires the use of penetra<strong>to</strong>rs <strong>in</strong> the<br />

tub<strong>in</strong>g hanger and x-mas tree.<br />

The cas<strong>in</strong>g head is attached <strong>to</strong> the wellhead on a cas<strong>in</strong>g hanger. A seal is provided <strong>to</strong> avoid<br />

leakage of annulus fluids <strong>in</strong><strong>to</strong> the next cas<strong>in</strong>g or <strong>to</strong> the surround<strong>in</strong>gs.<br />

A1.5 Guid<strong>in</strong>g system<br />

Two different guid<strong>in</strong>g systems have been developed for well completions and workover,<br />

guidel<strong>in</strong>es and guidel<strong>in</strong>eless. These systems are used <strong>to</strong> guide the Blowout preventer (BOP)<br />

down <strong>to</strong> the seabed and place <strong>it</strong> <strong>in</strong> the right pos<strong>it</strong>ion.<br />

A1.5.1 Guidel<strong>in</strong>e system<br />

The guidel<strong>in</strong>e system is the most conventional and experienced method used for <strong>subsea</strong><br />

equipment <strong><strong>in</strong>stall</strong>ation. Four guidel<strong>in</strong>es are connected <strong>to</strong> guideposts of a square wellhead<br />

land<strong>in</strong>g base. The BOP is lowered down on the guidel<strong>in</strong>es. When the BOP is clos<strong>in</strong>g <strong>in</strong> on the<br />

seabed they are tightened. This helps the BOP <strong>to</strong> connect <strong>to</strong> the wellhead at a precise pos<strong>it</strong>ion.<br />

The guidel<strong>in</strong>es can be <strong><strong>in</strong>stall</strong>ed and retrieved by ROV or a diver.<br />

A-4


A1.5.2 Guidel<strong>in</strong>eless system<br />

Several manufactures have provided a guidel<strong>in</strong>eless system for many years. Due <strong>to</strong> the<br />

variation <strong>in</strong> equipment from the different manufacturers different methods are used for the<br />

different manufacturer. One solution is described here. The guidel<strong>in</strong>eless x-mas tree is run on<br />

a completion riser. A sonar or TV <strong>to</strong>ol is used <strong>to</strong> locate the wellhead and connect the x-mas<br />

tree <strong>to</strong> <strong>it</strong>. Then the x-mas tree is oriented w<strong>it</strong>h reference <strong>to</strong> the tub<strong>in</strong>g hanger. After the tree is<br />

oriented <strong>in</strong> the right pos<strong>it</strong>ion, the pressure on 4 jack land<strong>in</strong>g cyl<strong>in</strong>ders is bleed off and the xmas<br />

tree is landed.<br />

A1.6 Tub<strong>in</strong>g str<strong>in</strong>g accessories<br />

A1.6.1 Downhole Safety Valve (DHSV)<br />

Downhole <strong>in</strong> the production str<strong>in</strong>g a Downhole Safety Valve (DHSV) is located <strong>to</strong> provide a<br />

shut <strong>in</strong> of the well if dangerous s<strong>it</strong>uations occur. The DHSV is normally hydraulically<br />

operated from the surface, w<strong>it</strong>h control l<strong>in</strong>e pressure be<strong>in</strong>g supplied through control l<strong>in</strong>e<br />

strapped <strong>to</strong> the tub<strong>in</strong>g. If the hydraulic pressure <strong>in</strong> the control l<strong>in</strong>e is cut a spr<strong>in</strong>g forces the<br />

<strong>valve</strong> <strong>to</strong> close. The fail-safe flapper or ball <strong>valve</strong> DHSV is also activated by an emergency<br />

shut down (ESD) system and if any physical damage should occur on the control system.<br />

The DHSV <strong>in</strong> the North Sea are set at up <strong>to</strong> 50 meters below the seabed. The hydrostatical<br />

weight of the hydraulic control fluid set the depth <strong>in</strong> which the DHSV is set. The hydrostatical<br />

weight is balanced by the use of a control l<strong>in</strong>e. If the pressure <strong>in</strong> the control l<strong>in</strong>e is <strong>in</strong>creased<br />

the DHSV will close.<br />

A1.6.2 Seal Assembly<br />

The seal assembly is connected as a part of the production tub<strong>in</strong>g and equipped w<strong>it</strong>h seal<strong>in</strong>g<br />

gaskets on both sides. The seal assembly provides a possibil<strong>it</strong>y for the tub<strong>in</strong>g <strong>to</strong> stretch<br />

w<strong>it</strong>hout ruptur<strong>in</strong>g the material dur<strong>in</strong>g pressure and temperature changes <strong>in</strong> the well.<br />

A1.6.3 Production packer<br />

A production packer is constructed <strong>to</strong> <strong>in</strong>crease the efficiency of the oil and gas production.<br />

The packers are function<strong>in</strong>g as a barrier <strong>to</strong> isolate the annulus from reservoir fluid and are a<br />

<strong>necessary</strong> part of the well. A tub<strong>in</strong>g-<strong>to</strong>-cas<strong>in</strong>g seal and pressure barrier is provided. The<br />

production packer also provides an anchor<strong>in</strong>g of the well. A well can have multiple packers <strong>to</strong><br />

isolate <strong>it</strong> <strong>in</strong><strong>to</strong> different zones.<br />

A1.7 Control system<br />

The control system must be configured <strong>to</strong> meet <strong>necessary</strong> requirements of the well. The<br />

control system <strong>in</strong>cludes various surface equipment and umbilical <strong>in</strong> add<strong>it</strong>ion <strong>to</strong> the <strong>subsea</strong><br />

control equipment. The control system may be operated by different configurations optical,<br />

electric or hydraulic. A direct hydraulic system is the most reliable system <strong>to</strong>day. One<br />

hydraulic l<strong>in</strong>e is required <strong>to</strong> operate each device. A pilot hydraulic system s<strong>to</strong>res the hydraulic<br />

pressure at the work s<strong>it</strong>e w<strong>it</strong>h pilot <strong>valve</strong>s <strong>to</strong> effect the actuation. A signal is sent from the<br />

platform by a hydraulic (can also be optic or electric) signal l<strong>in</strong>e <strong>in</strong> the umbilical. The<br />

umbilical also carries a ma<strong>in</strong> pressure l<strong>in</strong>e w<strong>it</strong>h hydraulic fluid <strong>to</strong> the hydraulic pressure<br />

system. A pilot <strong>valve</strong> <strong>in</strong>terprets the signal and actuates the <strong>valve</strong>, e.g. the DHSV. There are<br />

two different hydraulic pressure systems. A high-pressure system at 10.000psi activates the<br />

A-5


DHSV and a low-pressure at 5.000psi activates the x-mas tree <strong>valve</strong>s. Figure A-2 gives an<br />

overview of the actuation process.<br />

Platform<br />

control system<br />

Umbilical<br />

Hydraulic<br />

pressure<br />

system<br />

SEABED<br />

LOW<br />

HIGH<br />

Hydraulic<br />

signal<br />

X-mas tree<br />

gate <strong>valve</strong>s<br />

Pilot<br />

<strong>valve</strong>s<br />

Pilot<br />

<strong>valve</strong><br />

DHSV<br />

Figure A-2 An overview of a <strong>subsea</strong> control system provided w<strong>it</strong>h a pilot hydraulic system.<br />

A1.8 Umbilicals<br />

Electric and hydraulic umbilicals are needed for communication purposes. Depend<strong>in</strong>g upon<br />

the control system configuration umbilicals are made for the specific need of the control<br />

system.<br />

A-6


Appendix B<br />

In this appendix a figure of the well that provides the basis for the used <strong>in</strong> the case example <strong>in</strong><br />

the thesis will be given.<br />

In the example the completion of the well, see subchapter 5.1.2, is based on an oil production<br />

well from the Oseberg B field. The well data is provided from Wellmaster managed by<br />

ExproSoft AS. Some of the components are left out <strong>in</strong> the report. The <strong>downhole</strong> components<br />

<strong>in</strong>cluded <strong>in</strong> the report are:<br />

1. the tub<strong>in</strong>g<br />

2. the tub<strong>in</strong>g hanger<br />

3. one <strong>downhole</strong> <strong>safety</strong> <strong>valve</strong> (DHSV)<br />

4. a seal assembly<br />

5. a production packer<br />

These components are marked on the figure on the next page.<br />

B-1


.<br />

Figure B-1 A sketch of an oil production well from the Oseberg B field<br />

3<br />

1<br />

4<br />

2<br />

5<br />

B-2


Appendix C<br />

Fault trees constructed for the oil/gas production well of this thesis are presented <strong>in</strong><br />

Figure C-1 and Figure C-2.<br />

C-1


Leakage <strong>to</strong> the<br />

surround<strong>in</strong>gs<br />

Or 1<br />

Leakage <strong>to</strong> the<br />

surround<strong>in</strong>gs from<br />

the wellhead area<br />

Leakage <strong>to</strong> the<br />

surround<strong>in</strong>gs from<br />

the x-mas tree<br />

And 2<br />

And 1<br />

Leakage regard<strong>in</strong>g<br />

the tub<strong>in</strong>gstr<strong>in</strong>g<br />

Leakage <strong>in</strong> the a<br />

annulus<br />

X-mas tree <strong>valve</strong>s<br />

fail <strong>to</strong> seal<br />

DHSV failure LCP<br />

or FTC<br />

Or 3<br />

Or 5<br />

P2<br />

Leakage <strong>in</strong> the<br />

tub<strong>in</strong>g below the<br />

DHSV<br />

The DHSV fails <strong>to</strong><br />

close and the tub<strong>in</strong>g<br />

above leaks<br />

Leakage through<br />

Production Packer<br />

Leakage from the<br />

wellhead<br />

Annulus master<br />

<strong>valve</strong> EXL<br />

Leakage thrugh the<br />

annulus master<br />

<strong>valve</strong><br />

Figure C-1 Fault tree of an oil/gas produc<strong>in</strong>g well w<strong>it</strong>h and w<strong>it</strong>hout a DHSV, part 1<br />

And 17<br />

DHSV failure EXL<br />

DHSV failure LCP<br />

or FTC<br />

TbDHSV<br />

And 5<br />

PP<br />

And 10<br />

AMVEXL<br />

And 16<br />

And 9<br />

DHSV<br />

House 1<br />

DHSV failure EXL<br />

DHSV failure LCP<br />

or FTC<br />

Leakage <strong>in</strong> the<br />

tub<strong>in</strong>g above the<br />

Wellhead seal leak<br />

Leakage <strong>to</strong> the<br />

wellhead area<br />

Annulus master<br />

<strong>valve</strong> LCP<br />

Leakage <strong>in</strong> the<br />

x-mas tree annulus<br />

DHSV<br />

area<br />

DHSV<br />

EXL House 3<br />

And 20<br />

TaDHSV<br />

WH<br />

Or 7<br />

AMV<br />

Or 13<br />

DHSV failure LCP<br />

or FTC<br />

The 13 5/8" cas<strong>in</strong>g<br />

seal leaks<br />

Tub<strong>in</strong>g hanger seal<br />

production bore<br />

Tub<strong>in</strong>g hanger<br />

tub<strong>in</strong>g seal leak<br />

Crossover l<strong>in</strong>e EXL<br />

Annulus Swab Valve<br />

EXL/ITL<br />

Annulus W<strong>in</strong>g Valve<br />

EXL/ITL<br />

C-2<br />

DHSV<br />

ThT<br />

XOL<br />

ASWV<br />

AWV<br />

House 2<br />

13 5/8"<br />

ThPb


Production W<strong>in</strong>g<br />

<strong>valve</strong> ITL<br />

WV<br />

Production Master<br />

Valve ITL or FTC<br />

MV<br />

Crossover <strong>valve</strong><br />

EXL<br />

XOVEXL<br />

P2<br />

The master <strong>valve</strong><br />

fails <strong>to</strong> close or<br />

<strong>in</strong>ternal leakage<br />

And 4<br />

Annulus W<strong>in</strong>g<br />

Valve EXL/ITL<br />

AWV<br />

X-mas tree <strong>valve</strong>s<br />

fail <strong>to</strong> seal<br />

Or 2<br />

The <strong>valve</strong>s above<br />

the master <strong>valve</strong> fail<br />

<strong>to</strong> seal<br />

Or 4<br />

Production Swab<br />

Valve ITL/EXL<br />

SWAB<br />

ProductionMaster<br />

Valve EXL<br />

MVEXL<br />

Leakage <strong>in</strong> the<br />

x-mas tree annulus<br />

area<br />

Or 13<br />

Annulus Swab<br />

Valve EXL/ITL<br />

ASWV<br />

Leakage through<br />

the crossover <strong>valve</strong><br />

And 15<br />

Crossover Valve<br />

ITL<br />

XOVITL<br />

Crossover l<strong>in</strong>e EXL<br />

Figure C-2 Fault tree of an oil/gas produc<strong>in</strong>g well w<strong>it</strong>h and w<strong>it</strong>hout a DHSV, part 2<br />

XOL<br />

Production v<strong>in</strong>g<br />

<strong>valve</strong> EXL<br />

WVEXL<br />

C-3


Appendix D<br />

Reliabil<strong>it</strong>y data dossier<br />

This appendix presents the data dossiers, which form a basis for the <strong>in</strong>put <strong>to</strong> the reliabil<strong>it</strong>y<br />

calculations. Reliabil<strong>it</strong>y data dossiers are databases where the <strong>in</strong>formation used <strong>in</strong> the<br />

calculations are gathered <strong>to</strong> provide an easy access <strong>to</strong> the sources. Failure rates are found from<br />

for each component <strong>in</strong>cluded <strong>in</strong> the barrier system. The data collected are traceable and<br />

testable for future work based on this thesis. To provide an overview over the leakage<br />

s<strong>it</strong>uations of each component the dossiers of this report has <strong>in</strong>cluded the leakage paths<br />

concern<strong>in</strong>g the ‘TOP’-event, leakage <strong>to</strong> the surround<strong>in</strong>gs.<br />

Note that the ma<strong>in</strong>tenance and test <strong>in</strong>tervals are specific for this report (see subsection 5.4.2<br />

for details).<br />

The schemes are based on data from exist<strong>in</strong>g databases. The qual<strong>it</strong>y and quant<strong>it</strong>y of the<br />

provided data vary a lot. Many of the different components have got l<strong>it</strong>tle or no documented<br />

data available. For a wider quant<strong>it</strong>ative study <strong>it</strong> is suggested that failure rates from several<br />

more sources are supplied and even for the specific area the wells w<strong>it</strong>hout a DHSV are <strong>to</strong> be<br />

implemented. A weigh<strong>in</strong>g of the different sources accord<strong>in</strong>g <strong>to</strong> their relevance for each<br />

<strong>in</strong>dividual component is also suggested.<br />

Component: Tub<strong>in</strong>g<br />

Failure rate<br />

(10 -6 /hours)<br />

Reliabil<strong>it</strong>y data dossier<br />

Failure mode<br />

Data source/comment<br />

0.41 Leakage, TAC Reliabil<strong>it</strong>y of well completion<br />

equipment - Phase II p.18.<br />

Operational time 13364.03 years,<br />

failures 48.*<br />

Recommended values for calculations:<br />

Failure rate (10 -6 /hrs):<br />

TAC: 0.4<br />

Test<strong>in</strong>g and ma<strong>in</strong>tenance:<br />

The tub<strong>in</strong>g is never tested. Repairs on the tub<strong>in</strong>g would require a well workover.<br />

Comments and leakage paths:<br />

The tub<strong>in</strong>g leakage is trough the tub<strong>in</strong>g material or <strong>in</strong> the tub<strong>in</strong>g connections out <strong>to</strong> annulus.<br />

The leakage would normally occur <strong>in</strong> the connections.<br />

* The value does not <strong>in</strong>clude <strong><strong>in</strong>stall</strong>ation failures (i.e. failure occurr<strong>in</strong>g dur<strong>in</strong>g the first six days<br />

after <strong><strong>in</strong>stall</strong>ation).<br />

D-1


Component: Production Packer<br />

Failure rate<br />

(10 -6 /hours)<br />

Reliabil<strong>it</strong>y data dossier<br />

Failure mode<br />

Data source/comment<br />

0.357 Leakage, ITL Reliabil<strong>it</strong>y of well completion<br />

equipment - Phase II p.18.<br />

Operational time 3061.05 years,<br />

failures 9.*<br />

Recommended values for calculations:<br />

Failure rate (10 -6 /hrs):<br />

ITL: 0.35<br />

Test<strong>in</strong>g and ma<strong>in</strong>tenance:<br />

The production packer is never tested. A well workover would be required.<br />

Comments and leakage paths:<br />

The leakage is caused because the production packer has failed <strong>to</strong> seal off the annulus and the<br />

leakage flow cont<strong>in</strong>ues up the annulus.<br />

* The value does not <strong>in</strong>clude <strong><strong>in</strong>stall</strong>ation failures (i.e. failure occurr<strong>in</strong>g dur<strong>in</strong>g the first six days<br />

after <strong><strong>in</strong>stall</strong>ation).<br />

D-2


Component: DHSV (TRSCSSV flapper type)<br />

Failure rate<br />

(10 -6 /hours)<br />

Reliabil<strong>it</strong>y data dossier<br />

Failure mode<br />

Data source/comment<br />

5.84 Total Data for TRSCSSV, Reliabil<strong>it</strong>y of<br />

well completion equipment - Phase<br />

II p.20. Operational time 996.79<br />

2.87 ITL=<br />

LCP: 27.5%<br />

FTC: 21.6%<br />

=49.1%<br />

0.34 EXL=CLW=5.9%<br />

years, failures 51.<br />

Failures regard<strong>in</strong>g leakage through<br />

the DHSV. Reliabil<strong>it</strong>y of well<br />

completion equipment - Phase II<br />

p.21.<br />

Failures regard<strong>in</strong>g leakage through<br />

the DHSV control l<strong>in</strong>e. Reliabil<strong>it</strong>y<br />

of well completion equipment -<br />

Phase II p.21.<br />

3.00 Total Reliabil<strong>it</strong>y of surface controlled<br />

Sub Safety Valves- Phase IV p.18.<br />

Operational time 1140.9 years,<br />

failures regard<strong>in</strong>g the SCSSV for<br />

all TRSCSSV, 30.<br />

2.06 Total Reliabil<strong>it</strong>y of surface controlled<br />

Sub Safety Valves- Phase III p.61.<br />

Operational time 941.6 years,<br />

1.68 LCP: 11.8%<br />

FTC: 52.9%<br />

=64.4%<br />

Recommended values for calculations:<br />

Failure rate (10 -6 /hrs):<br />

EXL: 0.3<br />

LCP, FTC: 2.8<br />

failures 17.<br />

Test<strong>in</strong>g and ma<strong>in</strong>tenance:<br />

The DHSV is tested every 6 months and repaired if failure is detected.<br />

Comments and leakage paths:<br />

Reliabil<strong>it</strong>y of surface controlled<br />

Sub Safety Valves- Phase III p.62.<br />

Operational time 941.6 years,<br />

failures 17.<br />

The leakage is trough the DHSV, lead<strong>in</strong>g the fluid up the production tub<strong>in</strong>g. External leakage is<br />

from the DHSV <strong>to</strong> the annulus.<br />

D-3


Reliabil<strong>it</strong>y data dossier<br />

Component: Tub<strong>in</strong>g hanger seals, wellhead seal and cas<strong>in</strong>g hanger seals<br />

Failure rate<br />

(10 -6 /hours)<br />

Failure mode<br />

Data source/comment<br />

0.62 Leakage, EXL Reliabil<strong>it</strong>y of well completion<br />

equipment - Phase II p.18.<br />

Operational time 2403.71 years,<br />

failures 13.*<br />

Recommended values for calculations:<br />

Failure rate (10 -6 /hrs):<br />

EXL: 0.6<br />

Test<strong>in</strong>g and ma<strong>in</strong>tenance:<br />

The Tub<strong>in</strong>g hanger and cas<strong>in</strong>g hanger seals are never tested. Repair and replacement would require<br />

a well workover.<br />

Comments and leakage paths:<br />

The tub<strong>in</strong>g hanger failure rate is approximated <strong>to</strong> be identical <strong>to</strong> the cas<strong>in</strong>g hangers. The tub<strong>in</strong>g<br />

hanger is component tested <strong>in</strong> the “Reliabil<strong>it</strong>y of well completion equipment - Phase II”<br />

rapport. The leakage is though the seals at the cas<strong>in</strong>g/ tub<strong>in</strong>g hanger and <strong>in</strong><strong>to</strong> the annulus or<br />

wellhead.<br />

* The value does not <strong>in</strong>clude <strong><strong>in</strong>stall</strong>ation failures (i.e. failure occurr<strong>in</strong>g dur<strong>in</strong>g the first six days<br />

after <strong><strong>in</strong>stall</strong>ation).<br />

D-4


Reliabil<strong>it</strong>y data dossier<br />

Component: Production Master Valve and annulus master <strong>valve</strong><br />

Failure rate<br />

(10 -6 /hours)<br />

Failure mode<br />

Data source/comment<br />

4.57 All All failures of gate <strong>valve</strong> when<br />

calculat<strong>in</strong>g w<strong>it</strong>h a MTBF of 25 years,<br />

personal conversation w<strong>it</strong>h Marv<strong>in</strong><br />

Rausand [19].<br />

2.06<br />

1.66<br />

LCP: 21.76%<br />

FTC: 9.37%<br />

ITL: 14.74 %<br />

=45.15%<br />

LCP: 21.76%<br />

ITL: 14.74 %<br />

=36.34%<br />

0.56 EXL: 12.26%<br />

Recommended values for calculations:<br />

Failure rate (10 -6 /hrs):<br />

LCP, FTC, ITL: 2.0<br />

LCP, ITL: 1.7<br />

EXL: 0.6<br />

Test<strong>in</strong>g and ma<strong>in</strong>tenance:<br />

The master <strong>valve</strong>s are tested every 6 months and repaired if failure is detected.<br />

Failures regard<strong>in</strong>g leakage through<br />

the Production master <strong>valve</strong>. The<br />

distribution of failure modes is<br />

accord<strong>in</strong>g <strong>to</strong> those of gate <strong>valve</strong>s<br />

<strong>in</strong> OREDA 97, p 348.<br />

Failures regard<strong>in</strong>g leakage through<br />

the annulus master <strong>valve</strong>, always<br />

closed. The distribution of failure<br />

modes is accord<strong>in</strong>g <strong>to</strong> those of gate<br />

<strong>valve</strong>s <strong>in</strong> OREDA 97, p 348.<br />

Failures regard<strong>in</strong>g external leakage<br />

<strong>to</strong> the surround<strong>in</strong>gs. The<br />

distribution of failure modes is<br />

accord<strong>in</strong>g <strong>to</strong> those of gate <strong>valve</strong>s<br />

<strong>in</strong> OREDA 97, p 348.<br />

Comments and leakage paths:<br />

The external leakage is <strong>to</strong> the surround<strong>in</strong>gs through the material of the <strong>valve</strong>, the actua<strong>to</strong>r or the<br />

seals. The LPC and FTC failures provide a leakage path trough the master <strong>valve</strong> and further up the<br />

x-mas tree.<br />

D-5


Component: Production w<strong>in</strong>g <strong>valve</strong><br />

Failure rate<br />

(10 -6 /hours)<br />

Reliabil<strong>it</strong>y data dossier<br />

Failure mode<br />

Data source/comment<br />

4.57 All All failures of gate <strong>valve</strong>s are<br />

calculated w<strong>it</strong>h a MTBF of 25 years,<br />

personal conversation w<strong>it</strong>h Marv<strong>in</strong><br />

Rausand [19].<br />

2.23<br />

1.67<br />

LCP: 21.76%<br />

ITL: 14.74%<br />

EXL: 12.26%<br />

=48.70%<br />

LCP: 21.76%<br />

ITL: 14.74%<br />

=36.50%<br />

0.56 EXL: 12.26%<br />

Recommended values for calculations:<br />

Failure rate (10 -6 /hrs):<br />

LCP, ITL, EXL: 2.2<br />

LCP, ITL: 1.7<br />

EXL: 0.6<br />

Failures regard<strong>in</strong>g leakage through<br />

the <strong>valve</strong> and external leakage.<br />

The distribution of failure modes is<br />

accord<strong>in</strong>g <strong>to</strong> those of gate <strong>valve</strong>s<br />

<strong>in</strong> OREDA 97, p 348.<br />

Failures regard<strong>in</strong>g leakage through<br />

the <strong>valve</strong>. The distribution of<br />

failure modes is accord<strong>in</strong>g <strong>to</strong> those<br />

of gate <strong>valve</strong>s <strong>in</strong> OREDA 97, p 348.<br />

Failures regard<strong>in</strong>g leakage <strong>to</strong> the<br />

surround<strong>in</strong>gs. The distribution of<br />

failure modes is accord<strong>in</strong>g <strong>to</strong> those<br />

of gate <strong>valve</strong>s <strong>in</strong> OREDA 97, p 348.<br />

Test<strong>in</strong>g and ma<strong>in</strong>tenance:<br />

The production w<strong>in</strong>g <strong>valve</strong> is tested every 6 months and repaired if failure is detected<br />

Comments and leakage paths:<br />

The external leakage is <strong>to</strong> the surround<strong>in</strong>gs through the material of the <strong>valve</strong>, the actua<strong>to</strong>r or the<br />

seals. The LPC and FTC failures provide a leakage path trough the w<strong>in</strong>g <strong>valve</strong> and out of the x-mas<br />

tree.<br />

D-6


Reliabil<strong>it</strong>y data dossier<br />

Component: Swab <strong>valve</strong>, annulus swab <strong>valve</strong>, annulus w<strong>in</strong>g <strong>valve</strong> and crossover <strong>valve</strong><br />

Failure rate<br />

(10 -6 /hours)<br />

Failure mode<br />

Data source/comment<br />

4.57 All All failures of gate <strong>valve</strong>s are<br />

calculated w<strong>it</strong>h a MTBF of 25 years,<br />

personal conversation w<strong>it</strong>h Marv<strong>in</strong><br />

Rausand [19].<br />

2.23<br />

1.67<br />

LCP: 21.76%<br />

ITL: 14.74%<br />

EXL: 12.26%<br />

=48.70%<br />

LCP: 21.76%<br />

ITL: 14.74%<br />

=36.50%<br />

0.56 EXL: 12.26%<br />

Recommended values for calculations:<br />

Failure rate (10 -6 /hrs):<br />

LCP, ITL, EXL: 2.2<br />

LCP, ITL: 1.7<br />

EXL: 0.6<br />

Test<strong>in</strong>g and ma<strong>in</strong>tenance:<br />

The <strong>valve</strong>s are not tested. A well workover is required for replacement.<br />

Failures regard<strong>in</strong>g leakage through<br />

the <strong>valve</strong>s and external leakage.<br />

The distribution of failure modes is<br />

accord<strong>in</strong>g <strong>to</strong> those of gate <strong>valve</strong>s<br />

<strong>in</strong> OREDA 97, p 348.<br />

Failures regard<strong>in</strong>g leakage through<br />

the <strong>valve</strong>s. The distribution of<br />

failure modes is accord<strong>in</strong>g <strong>to</strong> those<br />

of gate <strong>valve</strong>s <strong>in</strong> OREDA 97, p 348.<br />

Failures regard<strong>in</strong>g leakage <strong>to</strong> the<br />

surround<strong>in</strong>gs. The distribution of<br />

failure modes is accord<strong>in</strong>g <strong>to</strong> those<br />

of gate <strong>valve</strong>s <strong>in</strong> OREDA 97, p 348.<br />

Comments and leakage paths:<br />

The external leakage of these <strong>valve</strong>s is through the material, actua<strong>to</strong>r or seals and <strong>to</strong> the<br />

surround<strong>in</strong>gs. Internal leakage goes thru the <strong>valve</strong>.<br />

D-7


Component: Crossover l<strong>in</strong>e<br />

Failure rate<br />

(10 -6 /hours)<br />

Reliabil<strong>it</strong>y data dossier<br />

Failure mode<br />

Data source/comment<br />

0.1 EXL The crossover l<strong>in</strong>e is very unlikely <strong>to</strong><br />

fail. Calculat<strong>in</strong>g w<strong>it</strong>h a MTBF of<br />

approx. 1140 years, personal<br />

conversation w<strong>it</strong>h Marv<strong>in</strong> Rausand<br />

[19].<br />

Recommended values for calculations:<br />

Failure rate (10 -6 /hrs):<br />

EXL: 0.1<br />

Test<strong>in</strong>g and ma<strong>in</strong>tenance:<br />

The crossover l<strong>in</strong>e is not tested.<br />

Comments and leakage paths:<br />

The external leakage of the crossover l<strong>in</strong>e will be through the material.<br />

D-8


Appendix E<br />

This appendix presents the four basic sequential steps of a HAZOP accord<strong>in</strong>g <strong>to</strong> the<br />

IEC 61882 [2]. Figure E-1 illustrates the basic steps.<br />

Def<strong>in</strong><strong>it</strong>ion<br />

Def<strong>in</strong>e scope and objectives<br />

Def<strong>in</strong>e responsibil<strong>it</strong>y<br />

Select team<br />

Plan the study<br />

Collect data<br />

Agree style of record<strong>in</strong>g<br />

Estimate the time<br />

Arrange a schedule<br />

Preparation<br />

Exam<strong>in</strong>ation<br />

Divide system <strong>in</strong><strong>to</strong> parts<br />

Select a part and def<strong>in</strong>e design <strong>in</strong>tent<br />

Identify deviation by us<strong>in</strong>g guide-words on each element<br />

Identify consequences and causes<br />

Identify whether a significant problem exists<br />

Identify protection, detection and <strong>in</strong>dicat<strong>in</strong>g mechanisms<br />

Identify possible remedial/m<strong>it</strong>igat<strong>in</strong>g measures (optional)<br />

Agree actions<br />

Repeat for each element and then each part of the system<br />

Documentation and follow-up<br />

Record the exam<strong>in</strong>ation<br />

Sign off the documentation<br />

Produce the report of the study<br />

Follow up that actions are implemented<br />

Re-study any parts of system if <strong>necessary</strong><br />

Produce f<strong>in</strong>al output report<br />

Figure E-1 The four basic sequential steps of a HAZOP [2]<br />

E-1


Appendix F<br />

The guide-words used <strong>in</strong> the HAZOP analysis provided <strong>in</strong> this thesis are based on the<br />

guide words found <strong>in</strong> the IEC standard, Hazard and operabil<strong>it</strong>y studies [2]. Table F-1<br />

present the guide-words.<br />

Table F-1 Procedure guide-words used <strong>in</strong> the HAZOP of this thesis<br />

Procedure HAZOP Guide words<br />

Guide words Description<br />

NO, NOT, DON’T The <strong>in</strong>tended activ<strong>it</strong>y does not occur, but no<br />

direct subst<strong>it</strong>ute activ<strong>it</strong>y takes place.<br />

MORE A greater activ<strong>it</strong>y than <strong>in</strong>tended e.g. force,<br />

pressure, weight, reaction and duration.<br />

LESS<br />

A lesser activ<strong>it</strong>y than <strong>in</strong>tended e.g. force,<br />

pressure, weight, reaction, and duration.<br />

OTHER THAN A <strong>to</strong>tally different activ<strong>it</strong>y e.g. “lifts” <strong>in</strong>stead of<br />

“roll”.<br />

PART OF One or more desired activ<strong>it</strong>ies are miss<strong>in</strong>g e.g.<br />

“transfer” <strong>in</strong>stead of “transfer and heat”.<br />

REVERSE The logical oppos<strong>it</strong>e <strong>to</strong> the desired activ<strong>it</strong>y e.g.<br />

reverse chemical reaction, reverse direction of<br />

flow.<br />

F-1

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!