26.03.2013 Views

A Crash Course in Radio Astronomy and Interferometry: 3 ... - NRAO

A Crash Course in Radio Astronomy and Interferometry: 3 ... - NRAO

A Crash Course in Radio Astronomy and Interferometry: 3 ... - NRAO

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

A <strong>Crash</strong> <strong>Course</strong> <strong>in</strong><br />

<strong>Radio</strong> <strong>Astronomy</strong> <strong>and</strong> <strong>Interferometry</strong>:<br />

3. Interferometric Imag<strong>in</strong>g<br />

James Di Francesco<br />

National Research Council of Canada<br />

North American ALMA Regional Center – Victoria<br />

(thanks to S. Dougherty, C. Ch<strong>and</strong>ler, D. Wilner & C. Brogan)


Aperture Synthesis<br />

Aperture Synthesis<br />

• sample V(u,v) at enough po<strong>in</strong>ts to synthesize the equivalent large<br />

aperture of size (u max ,v max )<br />

– 1 pair of telescopes → 1 (u,v) sample at a time<br />

– N telescopes → number of samples = N(N-1)/2<br />

– fill <strong>in</strong> (u,v) plane by mak<strong>in</strong>g use of Earth rotation: Sir<br />

Mart<strong>in</strong> Ryle, 1974 Nobel Prize <strong>in</strong> Physics<br />

– reconfigure physical layout of N telescopes for more<br />

Sir Mart<strong>in</strong> Ryle<br />

1918-1984<br />

2 configurations<br />

of 8 SMA antennas<br />

345 GHz<br />

Dec = -24 deg<br />

2


Imag<strong>in</strong>g<br />

(u,v) Plane Sampl<strong>in</strong>g<br />

• <strong>in</strong> aperture synthesis, V(u,v) samples are limited by number of<br />

telescopes, <strong>and</strong> Earth-sky geometry<br />

– high spatial frequencies:<br />

• maximum angular resolution<br />

– low spatial frequencies:<br />

• extended structures <strong>in</strong>visible<br />

(aka. only a max scale can be<br />

imaged; also ``zero-spac<strong>in</strong>g<br />

problem” = no large scales)<br />

– irregular with<strong>in</strong> high/low limits:<br />

• sampl<strong>in</strong>g theorem violated<br />

• still more <strong>in</strong>formation miss<strong>in</strong>g


Imag<strong>in</strong>g<br />

• sample Fourier doma<strong>in</strong> at discrete po<strong>in</strong>ts, i.e.,<br />

• so, the <strong>in</strong>verse Fourier transform of the ensemble of visibilities is:<br />

I<br />

Formal Description<br />

δ ij (u,v)<br />

• but the convolution theorem tells us:<br />

I I<br />

where (the po<strong>in</strong>t spread function)<br />

Fourier transform of sampled visibilities yields the true sky brightness<br />

convolved with the po<strong>in</strong>t spread function<br />

(the “dirty image” is the true image convolved with the “dirty beam”)


Imag<strong>in</strong>g<br />

b(x,y)<br />

(dirty<br />

beam)<br />

I(x,y)<br />

Dirty Beam <strong>and</strong> Dirty Image<br />

B(u,v)<br />

I D (x,y)<br />

(dirty<br />

image)


Imag<strong>in</strong>g<br />

Dirty Beam Shape <strong>and</strong> N Antennas<br />

2 Antennas


Imag<strong>in</strong>g<br />

Dirty Beam Shape <strong>and</strong> N Antennas<br />

3 Antennas


Imag<strong>in</strong>g<br />

Dirty Beam Shape <strong>and</strong> N Antennas<br />

4 Antennas


Imag<strong>in</strong>g<br />

Dirty Beam Shape <strong>and</strong> N Antennas<br />

5 Antennas


Imag<strong>in</strong>g<br />

Dirty Beam Shape <strong>and</strong> N Antennas<br />

6 Antennas


Imag<strong>in</strong>g<br />

Dirty Beam Shape <strong>and</strong> N Antennas<br />

7 Antennas


Imag<strong>in</strong>g<br />

Dirty Beam Shape <strong>and</strong> N Antennas<br />

8 Antennas


Imag<strong>in</strong>g<br />

Dirty Beam Shape <strong>and</strong> N Antennas<br />

8 Antennas x 6 Samples


Imag<strong>in</strong>g<br />

Dirty Beam Shape <strong>and</strong> N Antennas<br />

8 Antennas x 30 Samples


Imag<strong>in</strong>g<br />

Dirty Beam Shape <strong>and</strong> N Antennas<br />

8 Antennas x 60 Samples


Imag<strong>in</strong>g<br />

Dirty Beam Shape <strong>and</strong> N Antennas<br />

8 Antennas x 120 Samples


Imag<strong>in</strong>g<br />

Dirty Beam Shape <strong>and</strong> N Antennas<br />

8 Antennas x 240 Samples


Imag<strong>in</strong>g<br />

Dirty Beam Shape <strong>and</strong> N Antennas<br />

8 Antennas x 480 Samples


Imag<strong>in</strong>g<br />

How to analyze <strong>in</strong>terferometer data?<br />

• uv plane analysis<br />

– best for “simple” sources, e.g., po<strong>in</strong>t sources, disks<br />

• image plane analysis<br />

– Fourier transform V(u,v) samples to image plane, get I D (x,y)<br />

– but difficult to do science on dirty image<br />

– deconvolve b(x,y) from I D (x,y) to determ<strong>in</strong>e (model of) I(x,y)<br />

visibilities dirty image sky brightness


Imag<strong>in</strong>g<br />

Weight<strong>in</strong>g <strong>and</strong> Taper<strong>in</strong>g<br />

• Visibility Weight<strong>in</strong>g <strong>in</strong> the FT:<br />

– Includ<strong>in</strong>g weight<strong>in</strong>g function W to modify dirty beam sidelobes:<br />

– natural weight<strong>in</strong>g: density of uv-coverage = highest compact flux<br />

sensitivity<br />

– uniform weight<strong>in</strong>g: extent of uv-coverage = highest resolution<br />

– robust weight<strong>in</strong>g: compromise between natural <strong>and</strong> uniform<br />

– taper<strong>in</strong>g: downweights high spatial frequencies = higher<br />

extended flux sensitivity<br />

• imag<strong>in</strong>g parameters provide a lot of freedom<br />

• appropriate choice depends on science goals<br />

• recall that the primary beam FWHM is the “field-of-view” of a<br />

s<strong>in</strong>gle-po<strong>in</strong>t<strong>in</strong>g <strong>in</strong>terferometric image


Imag<strong>in</strong>g<br />

Natural<br />

0.77x0.62<br />

σ = 1.0<br />

Uniform<br />

0.39x0.31<br />

σ = 3.7<br />

Weight<strong>in</strong>g <strong>and</strong> Taper<strong>in</strong>g: Examples<br />

Robust 0<br />

0.41x0.36<br />

σ = 1.6<br />

Robust 0<br />

+ Taper<br />

0.77x0.62<br />

σ = 1.7


~4’<br />

Field of View: S<strong>in</strong>gle Po<strong>in</strong>t<strong>in</strong>g<br />

B68 ALMA s<strong>in</strong>gle po<strong>in</strong>t<strong>in</strong>g<br />

FOV [12 m]<br />

B<strong>and</strong> 3 (54”)<br />

B<strong>and</strong> 6 (27”)<br />

B<strong>and</strong> 7 (18”)<br />

B<strong>and</strong> 9 (9”)


~4’<br />

Field of View: Mosaics<br />

B68 ALMA B<strong>and</strong> 3 mosaic<br />

Nyquist Spac<strong>in</strong>g<br />

= 3 -1/2 (λ/D) rad.<br />

= 29.75” x<br />

(ν/100 GHz) -1<br />

= constant rms<br />

over <strong>in</strong>ner area<br />

Mosaics of up to<br />

50 po<strong>in</strong>t<strong>in</strong>gs OK<br />

for Early Science


Next: Deconvolution

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!