26.03.2013 Views

Rock Coatings: Potential Biogenic Indicators

Rock Coatings: Potential Biogenic Indicators

Rock Coatings: Potential Biogenic Indicators

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Rock</strong> <strong>Coatings</strong>: <strong>Potential</strong><br />

<strong>Biogenic</strong> <strong>Indicators</strong><br />

Michael N. Spilde<br />

Inst. of Meteoritics, Univ. of New Mexico, Albuquerque, NM<br />

Penelope J. Boston<br />

Dept. of Earth & Environmental Science<br />

NM Institute of Mining & Technology, Socorro, NM<br />

Diana E. Northup, Kylea Odenbach<br />

Biology Dept, Univ. of New Mexico, Albuquerque, NM


<strong>Rock</strong> Crusts & <strong>Coatings</strong><br />

• Interface between the atmosphere & solid<br />

substrate (lithosphere)<br />

• Life on the rocks –an ancient terrestrial niche<br />

(Gorbushina 2007)<br />

• Critical zone: in, under, and on rocks<br />

– endolithic & hypolithic life in deserts and cold regions<br />

– mineral deliquescence<br />

– desert varnish<br />

“Rotten <strong>Rock</strong>s” near Columbia Hills<br />

Bonneville Crater


The Manganese Connection<br />

• Protection from UV radiation<br />

– Among the most radiation-resistant bacterial groups,<br />

Deinococcus, Enterococcus, Lactobacillus, and<br />

cyanobacteria accumulate Mn<br />

– UV resistance exhibits a concentration-dependent response<br />

to Mn(II)-chloride (Daly et al. 2004)<br />

• Protection from oxidation<br />

– Manganese acts catalytically as an antioxidant<br />

– Accumulation of manganese may provide detoxification of<br />

harmful reactive oxygen species (Horsburgh et al. 2002)


Glen Canyon, UT<br />

<strong>Rock</strong> Crusts and <strong>Coatings</strong><br />

Atacama Desert, Chile<br />

Mojave Desert, CA


<strong>Biogenic</strong> <strong>Rock</strong> Varnish Formation


Hanksville, UT<br />

Mojave Desert, CA<br />

Fine Structure in Varnish


Mn concentrated into<br />

specific areas<br />

Fine Structure in Varnish<br />

“Micro-stromatolites”


Socorro, NM<br />

Mn<br />

Fine Structure in Varnish<br />

Mn X-ray map<br />

Botryoidal varnish<br />

BSE image of botryoidal varnish<br />

in thin section


Fine Structure in Varnish<br />

Evidence of debris trapping<br />

in botryoidal structures<br />

Microbial filaments<br />

Micro-colonial fungi


Socorro, NM<br />

BSE image of “bare” rock<br />

Surface Colonization<br />

“Bare <strong>Rock</strong>”<br />

Road cut (apx ( apx 60 yrs old)


Site 607-5: New Varnish Growth<br />

Young Varnish Deposition<br />

Lead smelters in Socorro<br />

operated from 1881-1894<br />

Mn<br />

Pb<br />

Rate of varnish formation =<br />

36 μm/ky<br />

Varnish < 114 yrs old<br />

4 μm


Mineral Deposition in Culture<br />

XRD on manganese minerals produced in<br />

culture: buserite, 10A precursor to birnesite<br />

3.34 A<br />

7.17 A<br />

4.00 A<br />

2.43 A<br />

LL-1 C Spot 1<br />

1.41 A<br />

Synchrotron micro-XRD on rock varnish.<br />

Line spacing matches “hexagonal<br />

birnessite”<br />

Manganese oxides produced in culture by<br />

desert varnish organisms<br />

Manganese oxide crystals on fungal<br />

hyphae


γ-Proteobacteria<br />

Proteobacteria<br />

Cyanobacteria<br />

β-Proteobacteria<br />

Proteobacteria<br />

Actinobacteria<br />

Low G-C G C Gram Positive<br />

Bacteroidetes/Flavobacteria<br />

Bacteroidetes Flavobacteria<br />

Nitrospira<br />

α-Proteobacteria<br />

Proteobacteria<br />

ε-Proteobacteria<br />

Proteobacteria


Known Manganese Oxidizing Fungi<br />

Nonvarnish clones<br />

Varnish clones<br />

Cultures<br />

87<br />

Fungal Phylogenetic Tree<br />

92<br />

60<br />

57<br />

97<br />

93<br />

100<br />

73<br />

56<br />

99<br />

79<br />

89<br />

56<br />

64<br />

63<br />

100<br />

89<br />

98<br />

100<br />

89<br />

100<br />

93<br />

100<br />

100<br />

61<br />

99<br />

65<br />

99 60<br />

99<br />

100<br />

99<br />

56<br />

83 100 100<br />

100<br />

100<br />

K44<br />

AY337712 Phoma herbarum<br />

NVLL3A8<br />

K43<br />

AY923098 Envir. fungi from Whipple Desert Varnish<br />

NVLL3C8<br />

U05194 Alternaria alternata<br />

NVLL3A7<br />

AY923091 Envir. fungi from Whipple Desert Varnish<br />

NVLL3A5<br />

AF250819 Phaeosphaeriopsis glauco-punctata<br />

NVLL3B5<br />

K21<br />

AB195634 Pleosporales sp.<br />

NVLL3C9<br />

L18<br />

NVLL3C2<br />

DV12LL1A12<br />

DV12LL2A2<br />

DQ066714 Cryomyces minteri<br />

EU009479 Aureobasidium pullulans<br />

NVLL3C10<br />

DQ810194 Penicillium sp.<br />

K17<br />

AB008403 Emericella nidulans<br />

X78539 Aspergillus nidulans<br />

L27<br />

K6<br />

K5<br />

K52<br />

M37<br />

M36<br />

AY604526 Endoconidioma populi<br />

AY220610 Scleroconidioma sphagnicola<br />

DQ479933 Dothiora cannabinae<br />

AY552543 Acarospora smaragdula<br />

NVLL3A6<br />

AF548071 Cladosporium cladosporioides<br />

K11<br />

NVLL3B9<br />

AY220613 Capnobotryella renispora<br />

DVLL5C5<br />

L76614 Cenococcum geophilum<br />

DV12LL5A7<br />

AY856939 Helicosporium aureum<br />

AB041250 Phyllosticta pyrolae<br />

AJ888458 Sarcinomyces sp.<br />

AY046271 Neurospora crassa<br />

AY706320 Leohumicola verrucosa<br />

DV12LL2A11<br />

DV12LL1A5<br />

DV12LL1B4<br />

DV12LL1A7<br />

NVLL3A3<br />

NVLL3C5<br />

DV12LL2A7<br />

NVLL3D7<br />

DV12LL1A1<br />

NVLL3D2<br />

DV12LL2A4<br />

NVLL3C7<br />

NVLL3D1<br />

NVLL3C11<br />

DV2bfF11<br />

NV3bfB8<br />

NV3bfB10<br />

DV2bfB11<br />

NV3bfC5<br />

NV3bfC12<br />

NV3bfD7<br />

DV12LL1A2<br />

DV12LL1A11<br />

AY635836 Lecophagus sp.<br />

NVLL3D10<br />

AY923099 Envir. fungi from Whipple Desert Varnish<br />

AY923093 Envir. fungi from Whipple Desert Varnish<br />

EF638564 Uncultured basidiomycete<br />

AB075545 Filobasidium elegans<br />

DV2bfE3<br />

NVLL3A1<br />

DV12LL5B5<br />

AF060452 Pseudoplatyophrya nana<br />

DV12LL5B1<br />

DVLL5B3<br />

AF113430 Mucor racemosus<br />

Ascomycota<br />

Basidiomycota<br />

Zygomycota


The Bottom Line<br />

• There is no “silver bullet” to determine the biogenicity of rock<br />

coatings<br />

– Evidence required from a number of techniques<br />

• Electron microscopy (SEM, FESEM, TEM)<br />

• Mn-enrichment cultures<br />

• Phylogenetic analysis<br />

• Conventional XRD<br />

• Synchrotron XRD<br />

• Difficult to provide in situ & remote analysis<br />

– Sample return will be the only way to adequately analyze coatings<br />

• Fine structures that may be present cannot be preserved if rock<br />

surface is ground up in order to sample<br />

– Coring will be required to preserve structural detail


Acknowledgments<br />

Funding from NSF Biogeosciences Division<br />

Thanks to Armand Dichosa (UNM Biology<br />

Dept) for phylogenetic analysis

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!