02.04.2013 Views

Sumatra, Sunda Shelf, Natuna - Bibliography of Indonesia Geology

Sumatra, Sunda Shelf, Natuna - Bibliography of Indonesia Geology

Sumatra, Sunda Shelf, Natuna - Bibliography of Indonesia Geology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Sitanggang, J.M. (1983)- The use <strong>of</strong> alkali elements as a guide to tin mineralization in some granite rocks in the<br />

island <strong>of</strong> Bangka. Proc. 12th Ann. Conv. Indon. Assoc. Geol. (IAGI), p. 163-167.<br />

Sitanggang, J.M. (1986)- Distribution <strong>of</strong> major and some trace elements <strong>of</strong> some granites from Bangka,<br />

<strong>Indonesia</strong>. In: G.H. Teh & S. Paramananthan (eds.) Proc. GEOSEA V Conf., Kuala Lumpur 1984, 2, Geol. Soc.<br />

Malaysia Bull. 20, p. 401-422.<br />

Sitha, K., L.D. Setijadji, K. Sanematsu, T. Ikuno, A. Imai, A. Dimara & K. Watanabe (2009)- REE in monzogranites<br />

in Bangka Island, <strong>Indonesia</strong>. Proc. 2nd Reg. Conf. Interdisc. Res. Natural Resources and Materials<br />

Engineering, Yogyakarta 2009, p.<br />

Slik, JW.F., S. Aiba, M. Bastian, F.Q. Brearley, C.H. Cannon, K.A.O. Eichhorng, G. Fredriksson et al. (2011)-<br />

Soils on exposed <strong>Sunda</strong> shelf shaped biogeographic patterns in the equatorial forests <strong>of</strong> Southeast Asia. Proc.<br />

Nat. Acad. Sci. USA 108, 30, p. 12343-12347.<br />

(Marked present-day biogeographic difference between W (Malay Peninsula, <strong>Sumatra</strong>) and E <strong>Sunda</strong>land<br />

(Borneo) surprising as these areas formed single landmass for long time in Pleistocene. Dry savanna corridor<br />

dispersal barrier during glacial maxima proposed to explain this, but short duration <strong>of</strong> dry savanna conditions<br />

make it an unlikely sole cause. Analysis <strong>of</strong> tree inventories suggest exposed sandy sea-bed soils acted as<br />

dispersal barrier; no confirmation <strong>of</strong> savanna corridor)<br />

Smit Sibinga, G.L. (1949)- Pleistocene eustasy and glacial chronology in Java and <strong>Sumatra</strong>. Verhand. Nederl.<br />

Geol.-Mijnbouwk. Gen., Geol. Ser. 15, p. 1-31.<br />

Soeria-Atmadja, R., D. Darda & D. Hasanuddin (1986)- Some aspects <strong>of</strong> southern granitoid complex and tin<br />

mineralization in the northern part <strong>of</strong> Bangka, <strong>Indonesia</strong>. In: G.H. Teh & S. Paramananthan (eds.) Proc.<br />

GEOSEA V Conf., Kuala Lumpur 1984, 1, Geol. Soc. Malaysia Bull. 19, p. 349-367.<br />

(Petrographic details <strong>of</strong> S-type granitoids <strong>of</strong> Bangka. Tin mineralization mostly along WNW, NNE and N-S<br />

directions, seem related to Late Triassic deformation)<br />

Stattegger, K., W. Kuhnt, H.K. Wong, C. Buhring, C. Haft, T. Hanebuth et al. (1997)- Sequence stratigraphy,<br />

Late Pleistocene- Holocene sea level fluctuations and high resolution record <strong>of</strong> the Post-Pleistocene<br />

transgression on the <strong>Sunda</strong> <strong>Shelf</strong>. Cruise Report Sonne 115, <strong>Sunda</strong>flut, Univ. Kiel, Geol.-Pal. Institut, Reports<br />

86, 211p.<br />

Steinke, S., T.J.J. Hanebuth, C. Vogt & K. Stattegger (2008)- Sea level induced variations in clay mineral<br />

composition in the southwestern South China Sea over the past 17,000 yr. Marine Geol. 250, p. 199-210.<br />

(Variations in clay mineral composition <strong>of</strong> <strong>Sunda</strong> <strong>Shelf</strong> margin and slope cores over past 17,000 yrs. Deglacial<br />

sea level rise principal factor driving changes. Late Glacial high kaolinite reflect higher contribution <strong>of</strong> clays<br />

from soils formed on exposed <strong>Sunda</strong> <strong>Shelf</strong>. After coastline retreated close to present-day position in mid-<br />

Holocene stronger influence <strong>of</strong> illite-rich sources (e.g. Borneo))<br />

Steinke, S., M. Kienast & T. Hanebuth (2003)- On the significance <strong>of</strong> sea-level variations and shelf paleomorphology<br />

in governing sedimentation in the southern South China Sea during the last deglaciation. Marine<br />

Geol. 201, p. 179-206.<br />

(Quaternary deglacial sedimentation on outer <strong>Sunda</strong> <strong>Shelf</strong>, shelf margin and slope controlled by shelf paleophysiography<br />

and changes in sea level and sediment supply. Five sites along transect across outer shelf and<br />

continental slope document four intervals <strong>of</strong> significant depositional changes in last 20 000 years: drowning <strong>of</strong><br />

lower course <strong>of</strong> North <strong>Sunda</strong> (Molengraaff) River (16.5-14.5 ka), rapid rise in sea level with flooding <strong>of</strong> middle<br />

part <strong>of</strong> paleo-valley at 14.5-14 ka and flooding <strong>of</strong> surrounding plains <strong>of</strong> river valley (14-8.5 ka). Coastline<br />

reached modern position between ca. 8.5- 6 ka)<br />

Strimple, H.L. & T.E. Yancey (1976)- Moscovicrinus preserved in magnetite from Selumar, Belitung Island,<br />

<strong>Indonesia</strong>. J. Paleontology 50, 6 p. 1195-1202.<br />

<strong>Bibliography</strong> <strong>of</strong> <strong>Indonesia</strong> <strong>Geology</strong> v. 4.1 137 www.vangorselslist.com July 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!