02.04.2013 Views

Sumatra, Sunda Shelf, Natuna - Bibliography of Indonesia Geology

Sumatra, Sunda Shelf, Natuna - Bibliography of Indonesia Geology

Sumatra, Sunda Shelf, Natuna - Bibliography of Indonesia Geology

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

('Revision <strong>of</strong> Pre-Tertiary foraminifera from SE <strong>Sumatra</strong>'. Cretaceous foraminifera from SE <strong>Sumatra</strong> described<br />

by Silvestri (1925) as Ch<strong>of</strong>fatella should be assigned to Pseudocyclammina Yabe and Hanzawa and Lacazina<br />

lamellifera is a L<strong>of</strong>tusia)<br />

Simanjuntak, T.O., Surono, S. Gafoer & T.C. Amin (1991)- Geological map <strong>of</strong> the Muara Bungo Quadrangle,<br />

Sumatera, 1: 250,000. Geol. Res. Dev. Centre, Bandung.<br />

(Jurassic K-Ar dates <strong>of</strong> 180 and 159 Ma from Tigapuluh and Duabelas Mts granites <strong>of</strong> South <strong>Sumatra</strong>, but may<br />

be reset <strong>of</strong> older granites; Pulunggono & Cameron 1984)<br />

Simoes, M., J. Avouac, R. Cattin & P. Henry (2004)- The <strong>Sumatra</strong> subduction zone: a case for a locked fault<br />

zone extending into the mantle. J. Geophys. Res. 109, B10, B10402, 16p.<br />

(Subduction interface locked between large interplate earthquakes (locked fault zone, LFZ), postulated to not<br />

extend into mantle because serpentinization <strong>of</strong> mantle wedge favors aseismic sliding. Uplift rates from coral<br />

growth and GPS indicate LFZ extends ~132 km from trench, to 35-57 km depth. LFZ extends below forearc<br />

Moho, estimated at ~30 km depth, 110 km from trench, probably into mantle)<br />

Singh, S.C., H. Carton, P. Tapponier, N.D. Hananto, A.P.S. Chauhan et al. (2008)-. Seismic evidence for broken<br />

oceanic crust in the 2004 <strong>Sumatra</strong> earthquake epicentral region. Nature Geosc. 1, p. 777-781.<br />

(<strong>Sumatra</strong> 2004 earthquake caused by sudden slip along plate interface between subducting Indo-Australian<br />

plate and overriding <strong>Sunda</strong> plate. Deep seismic section <strong>of</strong> focal region reveals subducting crust and oceanic<br />

Moho are broken and displaced by landward-dipping thrust ramps, suggesting megathrust now lies in oceanic<br />

mantle. Active thrust faults at front <strong>of</strong> accretionary wedgeconsistent with thrust aftershocks on steeply dipping<br />

planes. Brittle failure <strong>of</strong> mantle rocks accounts for initiation <strong>of</strong> exceptionally large earthquake)<br />

Singh, S.C., N.D. Hananto & A.P.S. Chauhan (2011)- Enhanced reflectivity <strong>of</strong> backthrusts in the recent great<br />

<strong>Sumatra</strong>n earthquake rupture zones, Geophys. Res. Lett. 38, L04302, p. 1-5.<br />

Singh, S.C., N.D. Hananto, A.P.S. Chauhan, H. Permana, M. Denolle, A. Hendriyana & D. Natawidjaja (2010)-<br />

Evidence <strong>of</strong> active backthrusting at the NE margin <strong>of</strong> Mentawai Islands, SW <strong>Sumatra</strong>. Geoph. J. Int. 180, 2, p.<br />

703-714.<br />

(Onshore Great <strong>Sumatra</strong> Fault takes up significant part <strong>of</strong> strike-slip motion <strong>of</strong> oblique subduction <strong>of</strong> Indo-<br />

Australian plate beneath <strong>Sunda</strong> plate, but <strong>of</strong>fshoreMentawai Fault characterized by active SW dipping<br />

backthrusts)<br />

Singh, S.C., N. Hananto, M. Mukti, H. Permana, Y. Djajadihardja & H. Harjono (2011)- Seismic images <strong>of</strong> the<br />

megathrust rupture during the 25th October 2010 Pagai earthquake, SW <strong>Sumatra</strong>: Frontal rupture and large<br />

tsunami, Geophys. Res. Lett., 38, L16313, p. 1-6.<br />

Singh, S.C., N.D. Hananto, M. Mukti, D.P. Robinson, S. Das, A. Chauhan, H. Carton, B. Gratacos, S. Midnet,<br />

Y. Djajadihardja & H. Harjono (2011)- Aseismic zone and earthquake segmentation associated with a deep<br />

subducted seamount in <strong>Sumatra</strong>. Nature Geoscience 4, p. 308-311.<br />

(Imaging <strong>of</strong> subducted seamount 3-4 km high and 40 km wide at 30–40 km below <strong>Sumatra</strong> forearc mantle.<br />

Seamount remained intact despite >160 km <strong>of</strong> subduction, and no seismic activity above or below seamount.<br />

Coupling between seamount and overriding plate appears weak and aseismic. Subduction <strong>of</strong> such a<br />

topographic feature could lead to segmentation <strong>of</strong> subduction zone)<br />

Siregar, B.S.A., Y.A. Nagarani, S.H. Sinaga & K.P. Laya (2008)- Paleogeographic & paleoenvironment<br />

reconstruction <strong>of</strong> Tertiary Leman coal-bearing formation, Bengkulu Basin. Proc. 37th Ann. Conv. Indon. Assoc.<br />

Geol. (IAGI), Bandung, 1, p. 399-409.<br />

(Mid-Miocene coal-bearing Lemau Fm in Bengkulu Fore-Arc Basin. Lower Lemau Fm sapropelic coals (durite<br />

dominated) forming lenses and thin beds in massive claystone. Upper Lemau Fm humic coals with thicker<br />

seams (>2m and significant lateral extent; dominated by vitrites and klarites; marshes on coastal plain).<br />

Paleogeographic reconstruction shows rapid shoreline progradation)<br />

<strong>Bibliography</strong> <strong>of</strong> <strong>Indonesia</strong> <strong>Geology</strong> v. 4.1 90 www.vangorselslist.com July 2012

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!