05.04.2013 Views

Drug Disposition Overview - Pharmacology and at UCSD

Drug Disposition Overview - Pharmacology and at UCSD

Drug Disposition Overview - Pharmacology and at UCSD

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

<strong>Drug</strong> Metabolism <strong>and</strong> <strong>Disposition</strong><br />

BIOM/PHAR 255<br />

James R. Halpert, Ph.D.<br />

Tuesday, January 17, 2013<br />

10:00 -12:00<br />

• Absorption<br />

– Transporters<br />

• Distribution<br />

– Transporters<br />

• Metabolism<br />

– Enzymes<br />

• Excretion<br />

– Transporters<br />

Routes of Elimin<strong>at</strong>ion of the Top 200 Prescribed<br />

<strong>Drug</strong>s in 2002 (Wienkers <strong>and</strong> He<strong>at</strong>h, 2005) <strong>Overview</strong><br />

1 of 22<br />

<strong>Drug</strong> <strong>Disposition</strong><br />

• Importance <strong>and</strong> general principles of drug<br />

metabolism (Phase I <strong>and</strong> II)<br />

• Cytochromes P450<br />

• Factors affecting drug metabolism <strong>and</strong> adverse<br />

reactions<br />

• Conjug<strong>at</strong>ing enzymes


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Importance <strong>and</strong> General Principles<br />

of <strong>Drug</strong> Metabolism<br />

<strong>Drug</strong> Therapy: The challenges<br />

1. Non-responders<br />

Only 30-60 % of p<strong>at</strong>ients respond to the<br />

common drugs.<br />

2. Serious adverse drug reactions (ADRs):<br />

5-7 % of all hospital admissions<br />

2 days prolonged hospital visit<br />

$2,500 per p<strong>at</strong>ient, $100 billion in USA per year<br />

100,000 de<strong>at</strong>hs annually in US<br />

2 of 22<br />

<strong>Drug</strong> Metabolism in Clinical<br />

Practice<br />

• Goals<br />

– Underst<strong>and</strong> factors th<strong>at</strong><br />

affect metabolism of a<br />

drug<br />

– Predict metabolism of<br />

the drug in an individual<br />

– Design r<strong>at</strong>ional therapy<br />

regimen th<strong>at</strong> is safe <strong>and</strong><br />

effective.<br />

• Need to know<br />

– Which enzymes<br />

(isoforms) metabolize<br />

the drug<br />

– How each enzyme is<br />

affected by genetic<br />

<strong>and</strong> environmental<br />

factors (including other<br />

drugs)<br />

– The rel<strong>at</strong>ive<br />

therapeutic efficacies<br />

<strong>and</strong> toxicities of drug<br />

<strong>and</strong> metabolites<br />

Reasons for termin<strong>at</strong>ion of drug c<strong>and</strong>id<strong>at</strong>es in<br />

development in 2000<br />

Attrition due to PK/bioavailability decreased from 40% to 8% between 1991 <strong>and</strong><br />

2000 in large measure due to incorpor<strong>at</strong>ion of these concepts in early drug<br />

discovery. Guengerich, F.P. (2007). Chem Res.<br />

Toxicol. 20:344-369.


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Metabolism → Termin<strong>at</strong>ion of drug action<br />

Bioinactiv<strong>at</strong>ion<br />

Detoxific<strong>at</strong>ion<br />

Elimin<strong>at</strong>ion<br />

Metabolism → Bioactiv<strong>at</strong>ion<br />

Active Metabolites<br />

Prodrugs<br />

Toxific<strong>at</strong>ion<br />

Role of the liver in drug<br />

metabolism<br />

• The liver is the most important organ in the<br />

biotransform<strong>at</strong>ion of most xenobiotics (foreign<br />

compounds).<br />

– All compounds absorbed from the g.i. tract reach<br />

the liver via the portal vein before they reach<br />

other organs.<br />

– The liver is the largest organ in the body <strong>and</strong><br />

contains the highest content of xenobioticmetabolizing<br />

enzymes.<br />

3 of 22<br />

Sites of drug<br />

biotransform<strong>at</strong>ion<br />

• Liver<br />

• Gastrointestinal tract<br />

• Kidney<br />

• Respir<strong>at</strong>ory tissues<br />

– lung<br />

– nose<br />

• Brain, skin, heart<br />

<strong>Drug</strong> metabolism <strong>and</strong> elimin<strong>at</strong>ion<br />

From Weinshilboum, R.(2003) NEJM 348 (6): 529-537


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Conversion of a Hydrophobic <strong>Drug</strong> to a<br />

W<strong>at</strong>er-Soluble Metabolite<br />

Phenytoin<br />

O<br />

H<br />

N<br />

NH<br />

O<br />

CYP<br />

HO<br />

4-Hydroxy<br />

phenytoin<br />

O<br />

W<strong>at</strong>er solubility<br />

H<br />

N<br />

NH<br />

O<br />

UGT<br />

COOH<br />

O<br />

O<br />

HO OH<br />

General P<strong>at</strong>hways of <strong>Drug</strong> Metabolism<br />

REACTION ENZYME<br />

Hydrolysis<br />

Reduction<br />

Oxid<strong>at</strong>ion<br />

Esterase, peptidase, epoxide hydrolase<br />

Azo <strong>and</strong> nitro reduction<br />

Carbonyl, disulfide, sulfoxide, quinone<br />

Alchohol <strong>and</strong> aldehyde dehydrogenase<br />

Xanthine <strong>and</strong> diamine oxidase<br />

Monomine oxidase<br />

Prostagl<strong>and</strong>in H synthase<br />

Flavin-monooxygenases<br />

Cytochrome P450s<br />

Conjug<strong>at</strong>ion Glucuronide, sulf<strong>at</strong>e, glut<strong>at</strong>hione, acyl<strong>at</strong>ion,<br />

methyl<strong>at</strong>ion<br />

4-Hydroxy-phenytoin<br />

Β-D-glucuronide<br />

OH<br />

O<br />

H<br />

N<br />

Expose or<br />

Introduce.<br />

-OH<br />

-NH 2<br />

-SH<br />

-COOH<br />

NH<br />

Synthetic<br />

O<br />

4 of 22<br />

Phase I:<br />

Purpose of phase I <strong>and</strong> phase II<br />

metabolism<br />

Detoxify<br />

Enhance excretion<br />

RH --> ROH (more w<strong>at</strong>er<br />

soluble <strong>and</strong> prepares for<br />

phase II)<br />

Phase II = Conjug<strong>at</strong>ion:<br />

Enhance excretion<br />

Detoxify (e.g. GSH)<br />

Acts on parent drug<br />

Acts on phase I<br />

metabolite<br />

Cytochrome<br />

P450<br />

Cytochromes P450<br />

Excretion<br />

Xenobiotic<br />

Phase I<br />

Metabolism<br />

Excretion<br />

Phase II<br />

Metabolism<br />

Glucuronides<br />

Sulf<strong>at</strong>es<br />

GSH-conjug<strong>at</strong>es<br />

Other conjug<strong>at</strong>es<br />

Excretion


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

General Fe<strong>at</strong>ures of Cytochromes P450<br />

• Heme protein<br />

• Loc<strong>at</strong>ed in the smooth endoplasmic reticulum (<strong>and</strong><br />

sometimes mitochondria) of all major organs <strong>and</strong><br />

tissues<br />

• Require NADPH cytochrome P450 reductase to<br />

deliver electrons<br />

• Many are inducible<br />

Class II (Mammalian) Xenobiotic Metabolism System<br />

more polar<br />

metabolite<br />

H 2O<br />

Cytochrome<br />

P450<br />

heme<br />

lipophilic substr<strong>at</strong>e<br />

O 2<br />

Cytochrome<br />

P450 Reductase<br />

FMN<br />

FAD<br />

2 NADPH<br />

2 e -<br />

2 NADP +<br />

5 of 22<br />

Cytochromes P450 (CYP)<br />

Show peak <strong>at</strong> 450 nm in the<br />

P450 red-CO form<br />

Biochemical reaction:<br />

RH + O 2 + NADPH + H + ROH + H 2O + NADP +<br />

Heme pocket of cytochromes P450<br />

H H<br />

O<br />

Fe 3+<br />

S<br />

The heme group in P450 is invariant. It is the size <strong>and</strong> shape of the<br />

binding pocket th<strong>at</strong> distinguishes different P450 enzymes.


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Types of P450 Reactions<br />

1. Hydroxyl<strong>at</strong>ion of aliph<strong>at</strong>ic or arom<strong>at</strong>ic carbons<br />

2. Epoxid<strong>at</strong>ion of a double bond<br />

3. Hetero<strong>at</strong>om (S-, N-) oxygen<strong>at</strong>ion <strong>and</strong> N-hydroxyl<br />

4. Hetero<strong>at</strong>om (O-, S-, N-) dealkyl<strong>at</strong>ion<br />

5. Oxid<strong>at</strong>ive group transfer<br />

6. Cleavage of esters<br />

7. Dehydrogen<strong>at</strong>ion<br />

P450 oxid<strong>at</strong>ion reactions<br />

Epoxid<strong>at</strong>ion (arene oxide form<strong>at</strong>ion)<br />

benzo[a]pyrene<br />

N-, O- <strong>and</strong> S-dealkyl<strong>at</strong>ion<br />

O<br />

H3 C CH3 N<br />

CH3CH2 C C CH2CH CH3 methadone<br />

O<br />

benzo[a]pyrene-7,8-epoxide<br />

H3C H<br />

O N<br />

CH3 CH2 C C CH2CH CH3 +<br />

H C<br />

H<br />

O<br />

6 of 22<br />

P450 reactions: oxid<strong>at</strong>ion <strong>at</strong><br />

C<br />

aliph<strong>at</strong>ic hydroxyl<strong>at</strong>ion<br />

H 3 C<br />

CH 3CH 2<br />

O<br />

CH2 CH2 CH2 CH3 pentobarbital<br />

arom<strong>at</strong>ic hydroxyl<strong>at</strong>ion<br />

CH 3CH 2<br />

O<br />

phenobarbital<br />

N<br />

NH ONa<br />

O<br />

NH ONa<br />

O<br />

N<br />

HO<br />

H 3C<br />

CH 3 CH 2<br />

P450 nomencl<strong>at</strong>ure<br />

Based on sequence identity:<br />

O<br />

CH<br />

OH<br />

CH 3 CH 2<br />

CH 2<br />

N<br />

O<br />

CH2 CH3 NH ONa<br />

O<br />

NH ONa<br />

MELSVLLLLALLTGLLLLMARGHPKAYGHLPPGPRP…<br />

MEFSLLLLLAFLAGLLLLLFRGHPKAHGRLPPGPSP…<br />

Family: ≥ 40% sequence identity.<br />

for example: CYP1, CYP2<br />

Subfamily: 40% - 55% sequence identity.<br />

for example: CYP2A, CYP2B<br />

Within subfamily: ≥ 55% sequence identity.<br />

for example: CYP2B1, CYP2B4<br />

O<br />

N


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Major Human Liver <strong>Drug</strong><br />

Metabolizing Cytochromes P450<br />

P450 Substr<strong>at</strong>e Inducer Inhibitor<br />

1A2 Caffeine PAH Furafylline<br />

2A6 Coumarin Phenytoin Tranylcypromine<br />

2B6 Bupropion Phenobarbital Ticlopidine<br />

2C8 Taxol Rifampicin Trimethoprim<br />

2C9 Tolbutamide Secobarbital Sulfaphenazole<br />

2C19 S-Mephenytoin Rifampicin Benzylnirvanol<br />

2D6 Debrisoquine Quinidine<br />

2E1 Chlorzoxazone Ethanol Diethyldithiocarbam<strong>at</strong>e<br />

3A4 Midazolam Rifampicin Trole<strong>and</strong>omycin<br />

3A5 Midazolam Glucocorticoids Ketoconazole<br />

Cytochrome P450 1A2<br />

Planar arom<strong>at</strong>ic/heterocyclic amines <strong>and</strong> amides<br />

Substr<strong>at</strong>es Inhibitor<br />

Caffeine<br />

Phenacetin<br />

Furafylline (MBI)<br />

MBI = mechanismbased<br />

inactiv<strong>at</strong>or<br />

7 of 22<br />

Characteristics of Human P450 Substr<strong>at</strong>es<br />

•1A2: Planar arom<strong>at</strong>ic/heterocyclic amines <strong>and</strong> amides<br />

• 2A6: Small polar compounds with a ketone or nitroso group<br />

•2B6: Non-planar (often V-shaped), lipophilic molecules<br />

•2C8: Large organic anions<br />

•2C9: Weakly acidic compounds<br />

•2C19:Neutral or basic compounds<br />

•2D6: Nitrogenous bases with site of metabolism 4-7 Å<br />

from basic nitrogen<br />

•2E1 Generally neutral compounds of low molecular weight<br />

•3A4 Structurally diverse compounds of rel<strong>at</strong>ively high<br />

molecular weight<br />

Cytochrome P450 2A6<br />

Small polar compounds with a ketone or nitroso group<br />

Substr<strong>at</strong>es Inhibitors<br />

Coumarin<br />

(R)-(+)Menthofuran (MBI)<br />

Tranylcypromine


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Cytochrome P450 2B6<br />

Substr<strong>at</strong>es Inhibitor<br />

(S)-Mephenytoin<br />

Buproprion<br />

Non-planar (often V-shaped), lipophilic molecules<br />

Cytochrome P450 2C9<br />

Ticlopidine (MBI)<br />

Substr<strong>at</strong>es Inhibitors<br />

Tolbutamide<br />

Diclofenac<br />

Weakly acidic compounds<br />

Tienilic acid (MBI)<br />

Sulfaphenazole<br />

8 of 22<br />

Cytochrome P450 2C8<br />

Large organic anions<br />

Substr<strong>at</strong>e Inhibitor<br />

Taxol (paclitaxel) Trimethoprim<br />

Cytochrome P450 2C19<br />

Neutral or basic compounds<br />

Substr<strong>at</strong>e Inhibitor<br />

(S)-Mephenytoin<br />

(+)-N-3-Benzyl-nirvanol


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Cytochrome P450 2D6<br />

Nitrogenous bases with site of metabolism 4-<br />

7 Å from basic nitrogen<br />

Substr<strong>at</strong>es Inhibitors<br />

Debrisoquine<br />

Dextromorphan Hydrobromide<br />

Testosterone<br />

Cytochrome P450 3A4<br />

Quinidine<br />

Paroxetine (QI)<br />

QI = quasi-irreversible<br />

Structurally diverse compounds of rel<strong>at</strong>ively high molecular weight<br />

Substr<strong>at</strong>es Inhibitors<br />

Midazolam<br />

Ketoconazole<br />

9 of 22<br />

Cytochrome P450 2E1<br />

Generally neutral compounds of low molecular weight<br />

Substr<strong>at</strong>es Inhibitors<br />

Chlorzoxazone<br />

N-Nitrosodimethylamine<br />

Cytochrome P450 3A4<br />

4-Methylpyrazole<br />

Diethyldithiocarbam<strong>at</strong>e<br />

Substr<strong>at</strong>es Inhibitors<br />

Erythromycin Trole<strong>and</strong>omycin (QI)


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Cytochromes P450 (Enzyme<br />

Structures)<br />

Six Protein Regions th<strong>at</strong> Contribute to<br />

Substr<strong>at</strong>e Selectivity: SRS<br />

Substr<strong>at</strong>e Recognition Sites<br />

(SRS)<br />

Gotoh (1992) J. Biol. Chem. 267,<br />

83-90.<br />

SRS1<br />

SRS2<br />

SRS3<br />

SRS4<br />

SRS5<br />

SRS6<br />

heme<br />

2B4<br />

PDB 1SUO<br />

10 of 22<br />

General Structure of Mammalian<br />

Cytochromes P450<br />

Structural<br />

components<br />

alpha helix<br />

beta sheet<br />

heme<br />

protoporphyrin<br />

IX prosthetic<br />

group<br />

2B4<br />

PDB: 1PO5<br />

Major structural fe<strong>at</strong>ures th<strong>at</strong><br />

determine specificity of P450 enzymes<br />

• Length <strong>and</strong> positioning of α−helices <strong>and</strong> βsheets<br />

determines size <strong>and</strong> shape of binding<br />

pocket<br />

• Identity of active site residues determines<br />

binding orient<strong>at</strong>ion of substr<strong>at</strong>es


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Comparison between the active site cavity volumes for human P450 1A2 (A) (PDB: 2HI4),<br />

P450 2A6 (B) (PDB: 1Z10 (6)), <strong>and</strong> P450 3A4 (C) (PDB: 1TQN (14)).<br />

Sansen S et al. J. Biol. Chem. 2007;282:14348-14355<br />

©2007 by American Society for Biochemistry <strong>and</strong> Molecular Biology<br />

Comparison of P450 Inhibition <strong>and</strong> Induction<br />

Inhibition Induction<br />

Mechanism Direct effect on Synthesis of new<br />

existing enzyme protein<br />

Onset Rapid Slow<br />

Prior exposure Not needed Needed<br />

11 of 22<br />

Factors Affecting <strong>Drug</strong> Metabolism <strong>and</strong><br />

Adverse <strong>Drug</strong> Reactions<br />

Age<br />

Diet<br />

Disease<br />

<strong>Drug</strong> Dose<br />

Enzyme Induction<br />

Enzyme Inhibition<br />

Gender<br />

Genetics<br />

Pregnancy<br />

Metabolic Basis of <strong>Drug</strong> Interactions<br />

Perpetr<strong>at</strong>or Victim Consequence<br />

P450 Inhibitor <strong>Drug</strong> Increased effect/ADR<br />

P450 Inhibitor Pro-<strong>Drug</strong> Decreased effect<br />

P450 Inducer <strong>Drug</strong> Decreased effect<br />

P450 Inducer Pro-<strong>Drug</strong> Increased effect/ADR


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Mechanisms of P450 Inhibition<br />

•Altern<strong>at</strong>e substr<strong>at</strong>e inhibition<br />

•Binding of nitrogen heterocycles to heme<br />

iron (ketoconazole, itraconazole)<br />

•Binding of a metabolite to the reduced<br />

heme iron (trole<strong>and</strong>omycin, paroxetine)<br />

•Irreversible modific<strong>at</strong>ion of the protein or<br />

heme moiety by a reactive metabolite<br />

(tienilic acid, ticlopidine, chloramphenicol)<br />

Factors affecting drug metabolism<br />

Enzyme induction: examples<br />

12 of 22<br />

Effect of fluovoxamine on caffeine<br />

pharmacokinetics (>10-fold increase in<br />

t 1/2 <strong>and</strong> AUC)<br />

Nuclear Receptors Th<strong>at</strong> Induce <strong>Drug</strong> Metabolism<br />

RECEPTOR LIGANDS<br />

• Aryl hydrocarbon receptor (AhR)<br />

• Constitutive <strong>and</strong>rostane receptor<br />

(CAR)<br />

• Pregnane X receptor (PXR)<br />

• Farnesoid X receptor (FXR)<br />

• Vitamin D receptor<br />

• Peroxisome prolifer<strong>at</strong>or activ<strong>at</strong>ed<br />

receptor (PPAR)<br />

• Retinoic acid receptor (RAR)<br />

• Retinoid X receptor (RXR)<br />

• Omeprazole, Flavonoids<br />

• Phenobarbital<br />

• Rifampin<br />

• Bile Acids<br />

• Vitamin D<br />

• Fibr<strong>at</strong>es<br />

• all-trans-Retinoic acid<br />

• 9-cis-Retinoic acid


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Model for PXR in Xenobiotic Regul<strong>at</strong>ion<br />

Xenobiotic Pregnane X<br />

PXR RXR<br />

CYP3A gene<br />

“Other drug metabolism genes”<br />

Xenobiotic<br />

CYP3A<br />

Common Perpetr<strong>at</strong>or <strong>Drug</strong>s<br />

HO-Xenobiotic<br />

Steroid<br />

HO-Steroid<br />

•Strong inducers of CYP3A4 (rifampicin, dexamethasone,<br />

phenobarbital, carbamazepine)<br />

•Strong inhibitors of CYP3A4 (ritonavir, ketoconazole)<br />

•Strong inhibitors of CYP2D6 (quinidine, fluoxetine,<br />

paroxetine)<br />

•Inhibitors of multiple P450 enzymes (fluvoxamine)<br />

Common Victim <strong>Drug</strong>s<br />

•<strong>Drug</strong>s with a narrow therapeutic index (warfarin,<br />

phenytoin, digoxin)<br />

•Substr<strong>at</strong>es of CYP3A with low oral bioavailability<br />

(triazolam)<br />

13 of 22<br />

Why are clinically significant drug<br />

interactions rel<strong>at</strong>ively uncommon?<br />

•The interaction, while st<strong>at</strong>istically significant, is<br />

too small to produce a clinically important<br />

change in the dynamics of the drug.<br />

•The therapeutic index of the victim drug is<br />

large enough th<strong>at</strong> even a substantial change in<br />

plasma levels does not alter therapeutics or<br />

toxicity.<br />

•Kinetics <strong>and</strong> response to the victim drug are so<br />

variable th<strong>at</strong> they overshadow changes in<br />

plasma levels due to the interaction.<br />

CYP dependent metabolism of drugs (80 % of<br />

all phase I metabolism of drugs)<br />

Beta blockers<br />

Antidepressants<br />

Antipsychotics<br />

Dextromethorphan<br />

Codeine<br />

Debrisoquine<br />

CYP2D6* CYP2C19*<br />

CYP2E1<br />

CYP1A2<br />

CYP2B6*<br />

CYP3A4/5/7<br />

Cyclosporin<br />

Taxol<br />

Tamoxifen<br />

Tacrolimus<br />

Amprenavir<br />

Amiodarone<br />

Cerivast<strong>at</strong>in<br />

Erythromycin<br />

Methadone<br />

Quinine<br />

CYP2C9*<br />

Tolbutamide<br />

Warfarin<br />

Phenytoin<br />

NSAID<br />

Diazepam<br />

Citalopram<br />

Anti ulcer drugs<br />

Clozapine<br />

Ropivacaine<br />

Efavirenz<br />

Cyclophosphamide<br />

40 % of the phase I<br />

metabolism is carried out<br />

by polymorphic P450s<br />

(enzymes in Italics)


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Consequences of genetically impaired<br />

metabolism (similar to chemical inhibition)<br />

•When drug is inactiv<strong>at</strong>ed by<br />

metabolism: Higher blood levels<br />

= increased therapeutic effect<br />

<strong>and</strong> risk for side effects.<br />

•When drug is activ<strong>at</strong>ed by<br />

metabolism: Higher blood levels<br />

of unchanged prodrug <strong>and</strong> lower<br />

levels of active metabolite =<br />

decreased therapeutic effect.<br />

Single dose<br />

Poor metabolizer<br />

(PM)<br />

Time<br />

Mult iple dosage<br />

PM, t 1 / 2 = 2 4 h<br />

Cm ean = 2 8 m / L<br />

EM, t1/ 2 = 6 h<br />

C mean = 7 .5<br />

mg/ L<br />

Time<br />

Extensive<br />

m e t aboliz e r<br />

(EM)<br />

Molecular Mechanisms th<strong>at</strong> Alter CYP Function<br />

Log (plasma conc.)<br />

TiPS, 20: 342, 1999<br />

14 of 22<br />

Gene Dosage Effect (similar to induction)<br />

Nortriptyline<br />

antidepressant<br />

CYP2D6 genes<br />

Major P450 Alleles<br />

10-hydroxynortriptyline<br />

TiPS, 20: 342, 1999<br />

TiPS, 20: 342, 1999


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Most Clinically Relevant CYP<br />

Polymorphisms (2C9, 2C19. 2D6)<br />

Ingelman-Sundberg, M. (2004) TIPS 25: 193-200<br />

Metabolic Activ<strong>at</strong>ion of Ticlopidine<br />

<strong>and</strong> Clopidogrel<br />

Metabolic activ<strong>at</strong>ion of ticlopidine, 1a, <strong>and</strong> clopidogrel, 1b, into their pharmacologically active thiol<br />

deriv<strong>at</strong>ives 3a (5) <strong>and</strong> 3b (6). Metabolite 3b was identified after trapping with acrylonitrile leading to<br />

3′b (6).<br />

Published in: P<strong>at</strong>rick M. Dansette; Julie Libraire; Gildas Bertho; Daniel Mansuy; Chem. Res. Toxicol. 2009, 22, 369-373.<br />

DOI: 10.1021/tx8004828<br />

Copyright © 2009 American Chemical Society<br />

15 of 22<br />

S-mephenytoin<br />

hexobarbital<br />

R-mephobarbital<br />

phenytoin<br />

diazepam<br />

citalopram<br />

omeprazole<br />

lansoprazole<br />

pantoprazole<br />

CYP2C19 Substr<strong>at</strong>es<br />

R-warfarin (8-OH)<br />

propranolol (in part)<br />

imipramine<br />

clomipramine<br />

amitryptylline<br />

proguanil<br />

teniposide<br />

nilutamide<br />

indomethacin<br />

moclobemide<br />

Human Cytochromes P450 Involved in the Oxid<strong>at</strong>ion<br />

of Clopidogrel<br />

CYP2C19 contributes substantially to both oxid<strong>at</strong>ion steps required to<br />

form the active metabolite of clopidogrel. Kazui, M. et al., <strong>Drug</strong> Metab<br />

Dispos. 38:92-9. 2010.


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Rel<strong>at</strong>ionship between CYP2C19 Genetic Classific<strong>at</strong>ion <strong>and</strong><br />

Pharmacokinetic <strong>and</strong> Pharmacodynamic Responses after the<br />

Rel<strong>at</strong>ionship between CYP2C19 Genetic Classific<strong>at</strong>ion <strong>and</strong> Pharmacokinetic <strong>and</strong><br />

Pharmacodynamic Responses after the Administr<strong>at</strong>ion of Loading <strong>and</strong> Maintenance Doses of<br />

Administr<strong>at</strong>ion of Loading <strong>and</strong> Maintenance Doses of<br />

Clopidogrel in Healthy Subjects<br />

Clopidogrel in Healthy Subjects<br />

Mega JL et al. N Engl J Med 2009;360:354-362<br />

Carriers of a reduced-function CYP2C19 allele had lower levels of active metabolite form<strong>at</strong>ion,<br />

diminished pl<strong>at</strong>elet inhibition, <strong>and</strong> higher risk of major adverse cardiovascular effects.<br />

Role of Genetics in Codeine Metabolism<br />

1. Codeine to norcodeine <strong>and</strong><br />

codeine 6G accounts for 80%<br />

of the metabolism<br />

2. Conversion of codeine to<br />

morphine by CYP2D6 accounts<br />

for 10% of the metabolism<br />

3. Fast CYP2D6 metabolizers will<br />

accumul<strong>at</strong>e excess morphine<br />

4. Morphine <strong>and</strong> morphine 6G<br />

have opioid activity<br />

Gashe Y. et al. N. Engl. J. Med 2005<br />

16 of 22<br />

Conversion of an active drug to an<br />

active metabolite<br />

CYP2D6<br />

Codeine<br />

CYP3A4<br />

<strong>Drug</strong> metabolizing systems<br />

Evans, W.E. (1999). Science 286:487-491.


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Conjug<strong>at</strong>ing Enzymes<br />

A comparison of the major conjug<strong>at</strong>ion<br />

p<strong>at</strong>hways<br />

Reaction Cosubstr<strong>at</strong>e Functional Groups Capacity<br />

Glucuronid<strong>at</strong>ion UDP-glucuronic acid -OH, -COOH, -NH 2,<br />

-SH, -NR 2, -R 3C-H<br />

Sulf<strong>at</strong>ion 3´-phosphoadeno sine-5´phosphosulf<strong>at</strong>e<br />

(PAPS)<br />

-OH, -NH 2<br />

High<br />

Acetyl<strong>at</strong>ion Acetyl-CoA -OH, -NH 2 Variable<br />

Glut<strong>at</strong>hione<br />

conjug<strong>at</strong>ion<br />

Amino acid<br />

conjug<strong>at</strong>ion<br />

Low<br />

Glut<strong>at</strong>hione Electrophiles Low<br />

Amino acids -COOH Medium<br />

Methyl<strong>at</strong>ion S-adenosylmethionine -OH, -NH 2<br />

17 of 22<br />

Properties of Phase II Enzymes<br />

• C<strong>at</strong>alyze biosynthetic reactions<br />

• Utilize a high-energy co-factor<br />

• Generally react with nucleophilic groups (OH<br />

<strong>and</strong> NH2 most common)<br />

• Generally lead to increase in w<strong>at</strong>er solubility<br />

Notable exceptions:<br />

• Glut<strong>at</strong>hione reacts with electrophiles<br />

• Acetyl<strong>at</strong>ion leads to decreased w<strong>at</strong>er solubility<br />

Cofactors Utilized in Phase 2 Reactions<br />

UDP-glucuronic acid<br />

Glut<strong>at</strong>hione<br />

N<br />

H<br />

COOH<br />

H<br />

OH<br />

O<br />

H<br />

H<br />

OH<br />

O UDP<br />

H OH<br />

Phosphoadenosine-<br />

Phosphosulf<strong>at</strong>e (PAPS)<br />

N<br />

H 2<br />

N<br />

N<br />

N<br />

O-<br />

CH2O P<br />

OH<br />

O<br />

P<br />

O<br />

O SO 3 -<br />

C<br />

H 3<br />

N<br />

H 2<br />

N<br />

N<br />

C<br />

N<br />

H 2<br />

CH 2 CH 2 CO NH CH<br />

H 2 C<br />

SH<br />

Acetyl-CoA<br />

CH 2 NH CH 2 COOH<br />

N<br />

OH OH<br />

N<br />

CH2O P O P O<br />

O<br />

O O<br />

CH3 OH<br />

CH2 CH<br />

H3C CO NH CH2 CH2 S<br />

O<br />

C<br />

OH O PO3H2 S-adenosyl-methionine<br />

N<br />

NH 2<br />

N<br />

N<br />

N<br />

CH2 OH HO<br />

O<br />

S +<br />

CH 3<br />

CH 2 CH 2 CH 2 COOH<br />

CH 3


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Properties of UGTs<br />

• Normally detoxifying, but can be involved in bioactiv<strong>at</strong>ion<br />

• Glucuronides excreted in bile or urine<br />

– Smaller glucuronides excreted in urine<br />

– Larger glucuronides excreted in bile (undergo enterohep<strong>at</strong>ic<br />

circul<strong>at</strong>ion)<br />

• Genetic defect in UGT1A1 leads to hyperbilirubinemia<br />

diseases<br />

• Glucuronid<strong>at</strong>ion can be impaired when cofactor is<br />

depleted (e.g fasting)<br />

18 of 22<br />

OH<br />

OCH 2 CHCH 2 NHCH(CH 3 ) 2<br />

Propanolol<br />

(Alkylhydroxy-glucuronide)<br />

N<br />

CH 2 CH 2 CH 2 N<br />

Imipramine<br />

(Qu<strong>at</strong>ernary-glucuronide)<br />

Examples: UGT Substr<strong>at</strong>es<br />

(CH 3 ) 2<br />

HO<br />

O<br />

Morphine<br />

OH<br />

H 2 N<br />

N<br />

N<br />

CH3 N-Hydroxy-PhIP<br />

(N-glucuronide)<br />

N<br />

Benzidine<br />

(Arylamine-glucuronide)<br />

A single gene encodes multiple UGTs with differing<br />

substr<strong>at</strong>e preferences<br />

(Ritter et al, 1992)<br />

Each isoform of UGT1 results from differential splicing of<br />

exon1s (N-terminal 287 AA) to common exons 2-5 (245 AA).<br />

1A12<br />

1A10 1A8 1A6 1A4 1A2 2 3 4 5<br />

1A11 1A9 1A7 1A5 1A3 1A1<br />

pseudogene<br />

H<br />

OH<br />

NH 2<br />

UGT1A


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Sulfotransferases<br />

(sulf<strong>at</strong>e ester form<strong>at</strong>ion)<br />

The reaction<br />

PAPS + R-OH<br />

sulfotransferases<br />

-----------------> R-OSO -<br />

3 + ADP<br />

UGT1A1<br />

ONLY<br />

Synthesis of PAPS<br />

SO 2-<br />

4 + ATP<br />

ATP sulfurylase<br />

-----------------> Adenosine 5'-phosphosulf<strong>at</strong>e (APS) + PPi<br />

APS kinase<br />

APS + ATP -----------------> 3'-phosophoadenosine- 5'-phosphosulf<strong>at</strong>e<br />

(PAPS) + ATP<br />

NHCOCH 3<br />

NHCOCH 3<br />

+ 3'-phosphoadenosine-<br />

5'-phosphosulf<strong>at</strong>e<br />

(PAPS)<br />

sulfotransferase<br />

+ PAP<br />

OH<br />

-<br />

OSO 3<br />

acetaminophen acetaminophen sulf<strong>at</strong>e<br />

19 of 22<br />

Reduced levels of conjug<strong>at</strong>ed bilirubin<br />

Sulfotransferases <strong>and</strong> sulfon<strong>at</strong>ion<br />

reactions<br />

• PAPS concentr<strong>at</strong>ions in cells are rel<strong>at</strong>ively low: highaffinity,<br />

low-capacity system<br />

– e.g. acetaminophen is mainly sulf<strong>at</strong>ed <strong>at</strong> low<br />

concentr<strong>at</strong>ions, mainly glucuronid<strong>at</strong>ed <strong>at</strong> high<br />

concentr<strong>at</strong>ions<br />

• Nucleophilic <strong>at</strong>tack of substr<strong>at</strong>e on electrophilic sulfur of<br />

PAPS<br />

• Substr<strong>at</strong>es include<br />

– -OH groups: alcohols, phenols, c<strong>at</strong>echols<br />

–NH 2 groups <strong>and</strong> N-oxides


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Human cytosolic sulfotransferases<br />

SULT Substr<strong>at</strong>es Remarks<br />

1A1<br />

1A2<br />

simple phenols, Minoxidil,<br />

acetaminophen, N-OHPhIP<br />

N-OH-AAF, simple phenols<br />

Most abundant 1A form in liver<br />

Only found in humans. Protein may not be<br />

expressed.<br />

1A3 Dopamine, other c<strong>at</strong>echolamines Low in liver, high in intestine, placenta<br />

1A4<br />

1B1<br />

C<strong>at</strong>echolamines<br />

Thyroid hormones Liver, intestine, leukocytes<br />

1C2 N-OH-AAF, simple phenols<br />

1C4 N-OH-AAF, simple phenols Highest in fetal liver, kidney<br />

Highest in fetal liver, kidney<br />

1E1 estrogens Liver, intestine, secretory endometrium<br />

Inhibited by PCB metabolites<br />

2A1 Steroids, DHEA, hydroxymethyl<br />

PAHs<br />

Liver, intestine, steroidogenic organs<br />

2B1 Steroids, cholesterol<br />

2 variants with altern<strong>at</strong>ive exons 1<br />

4A1 ?<br />

2 variants. High in brain<br />

N-Acetyl Transferase<br />

• Significant route of biotransform<strong>at</strong>ion<br />

• Two enzymes in humans<br />

NAT1-most tissues, abundant in bladder<br />

NAT2-primarily in liver<br />

Arom<strong>at</strong>ic - R-NH 2<br />

Hydrazines R-NH-NH 2<br />

CoA-S-COCH 3<br />

Arom<strong>at</strong>ic - R-NH-COCH 3<br />

Hydrazines R-NH-NH 2-COCH 3<br />

NAT2 – approxim<strong>at</strong>ely 50% slow acetyl<strong>at</strong>ors in US<br />

Leads to increased side effects of isoniazid,<br />

sulfonamides, procainamide, <strong>and</strong> hydralazine.<br />

20 of 22<br />

N-acetyltransferases<br />

CH 3<br />

N<br />

COO -<br />

CO NH NH 2<br />

H 2N S NH 2<br />

sulfanilamide<br />

O<br />

CoA-S-acetyltransferase<br />

+ CoASH CH3 C<br />

O<br />

O<br />

N-acetyltransferase<br />

H 3 C<br />

O<br />

C<br />

CO NH NH C<br />

N<br />

O<br />

O<br />

S CoA<br />

CH 3<br />

N S NH 2<br />

H<br />

Less w<strong>at</strong>er soluble<br />

Glut<strong>at</strong>hione conjug<strong>at</strong>ion<br />

• Enzym<strong>at</strong>ic <strong>and</strong> nonenzym<strong>at</strong>ic reactions<br />

• Crucial role in cellular protection from electrophilic, oxidizing xenobiotics<br />

<strong>and</strong> their metabolites<br />

e.g. epoxides<br />

• Glut<strong>at</strong>hione S-transferases c<strong>at</strong>alyze both substitution <strong>and</strong> addition reactions<br />

on electrophilic substr<strong>at</strong>es<br />

• [GSH] is usually very high in cells-10 mM range<br />

Substitution<br />

Addition<br />

Cl<br />

NO 2<br />

+<br />

γ-Glu-Cys-Gly<br />

glut<strong>at</strong>hione (GSH)<br />

NO2 2,4-dinitro-1-chlorobenzene<br />

O<br />

CH2 CH2 +<br />

γ-Glu-Cys-Gly<br />

glut<strong>at</strong>hione (GSH)<br />

Glut<strong>at</strong>hione<br />

S-transferase<br />

Glut<strong>at</strong>hione<br />

S-transferase<br />

NO 2<br />

O<br />

S glut<strong>at</strong>hione<br />

NO2 OH<br />

CH CH2 SG


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Properties of Glut<strong>at</strong>hione S-Transferases<br />

• Cytosolic GSTs: Homo- <strong>and</strong> heterodimers of <strong>at</strong> least 15 subunits<br />

– Alpha family: hGSTA1-5 (main forms in liver <strong>and</strong> kidney)<br />

– Pi family: hGSTP1a,1b (allelic variants: lung, gut, tumors)<br />

– Mu family: hGSTM1-5 (muscle, brain)<br />

– Theta family: hGSTT1-2<br />

– Single members of sigma <strong>and</strong> zeta families in humans<br />

• Microsomal GST - membrane associ<strong>at</strong>ed proteins in eicosanoid <strong>and</strong><br />

glut<strong>at</strong>hione metabolism (MAPEG) -<br />

• Mitochondrial GST - hGSTK1 (soluble)<br />

• Widespread tissue distribution<br />

• Some GSTs have nonc<strong>at</strong>alytic binding sites for hydrophobic lig<strong>and</strong>s:<br />

involved in intracellular transport<br />

• Differential regul<strong>at</strong>ion of GSTs<br />

– Chemicals<br />

– Sex differences, development<br />

– Increased expression in tumors - drug resistance<br />

Routes of Elimin<strong>at</strong>ion of the Top 200 Prescribed<br />

<strong>Drug</strong>s in 2002 (Wienkers <strong>and</strong> He<strong>at</strong>h, 2005)<br />

Other Conjug<strong>at</strong>ion P<strong>at</strong>hways<br />

Amino acid conjug<strong>at</strong>ion<br />

COOH<br />

+ ATP<br />

CoASH<br />

CO S CoA<br />

N-acetyltransferase<br />

+ NH 2 -CH 2 -COOH<br />

benzoic acid benzoyl-CoA glycine hippuric acid<br />

Methyl<strong>at</strong>ion<br />

+ S-adenosylmethionine<br />

methyltransferase<br />

N H<br />

(CH2 ) 2 N<br />

CH3 desmethylimipramine<br />

N CH3 (CH2 ) 2 N<br />

CH3 imipramine<br />

Ingelman-Sundberg, M., J Int Med 250: 186-200, 2001,<br />

21 of 22<br />

Interindividual differences in drug action<br />

CO NHCH 2 COOH<br />

+<br />

+ CoASH<br />

S-adenosylhomocysteine


BIOM/PHAR 255 Winter 2013 Halpert - Jan. 17, 2013<br />

Clinically significant drug interactions due to<br />

inhibition of Phase II enzymes are rel<strong>at</strong>ively rare<br />

because:<br />

• N-acetyl<strong>at</strong>ion <strong>and</strong> sulf<strong>at</strong>ion represent the primary<br />

clearance mechanism for few drugs.<br />

• UGTs are the primary clearance mechanism for<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!