05.04.2013 Views

Wavelets and differential operators: from fractals to Marrs primal sketch

Wavelets and differential operators: from fractals to Marrs primal sketch

Wavelets and differential operators: from fractals to Marrs primal sketch

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

BIOMEDICAL IMAGING GROUP (BIG)<br />

LABORATOIRE D’IMAGERIE BIOMEDICALE<br />

EPFL LIB<br />

Bât. BM 4.127<br />

CH 1015 Lausanne<br />

Switzerl<strong>and</strong><br />

Téléphone :<br />

Fax :<br />

E-mail :<br />

Site web :<br />

Joint work with Pouya Tafti<br />

Dear Dr. Liebling,<br />

<strong>and</strong> Dimitri Van De Ville<br />

Lausanne, August 19, 2004<br />

I am pleased <strong>to</strong> inform you that you were selected <strong>to</strong> the receive the 2004 Research Award of the<br />

Swiss Society of Biomedical Engineering for your thesis work “On Fresnelets, interference<br />

fringes, Plenary <strong>and</strong> talk, digital SMAI holography”. 2009, The La Colle award will sur be Loup, presented 25-29 during Mai, the 2009 general assembly of the<br />

SSBE, September 3, Zurich, Switzerl<strong>and</strong>.<br />

Please, lets us know if<br />

1) you will be present <strong>to</strong> receive the award,<br />

2) you would be willing <strong>to</strong> give a 10 minutes presentation of the work during the general<br />

assembly.<br />

The award comes with a cash prize of 1000.- CHF.<br />

Would you please send your banking information <strong>to</strong> the treasurer of the SSBE, Uli Diermann<br />

(Email:uli.diermann@bfh.ch), so that he can transfer the cash prize <strong>to</strong> your account ?<br />

Invariance <strong>to</strong> coordinate transformations<br />

I congratulate you on your achievement.<br />

Primary transformations (X): translation (T), scaling (S), rotation (R),<br />

With best affine regards, (similarity) (A=S+R)<br />

+ 4121 693 51 85<br />

+ 4121 693 37 01<br />

Michael.Unser@epfl.ch<br />

http://bigwww.epfl.ch<br />

<strong>Wavelets</strong> <strong>and</strong> <strong>differential</strong> Dr. <strong>opera<strong>to</strong>rs</strong>:<br />

Michael Liebling<br />

<strong>from</strong> <strong>fractals</strong> <strong>to</strong> Marr!s <strong>primal</strong> <strong>sketch</strong><br />

Michael Unser<br />

Biomedical Imaging Group<br />

EPFL, Lausanne, Switzerl<strong>and</strong><br />

The quest for invariance<br />

∀f ∈ L2(R<br />

Michael Unser, Professor<br />

Chairman of the SSBE Award Committee<br />

d ), XLf = CX · LXf CX: normalization constant<br />

All classical physical laws are TSR-invariant<br />

cc: Ralph Mueller, president of the SSBE; Uli Diermann, treasurer<br />

Classical signal/image processing <strong>opera<strong>to</strong>rs</strong> are invariant<br />

Biological Imaging Center<br />

California Inst. of Technology<br />

Mail Code 139-74<br />

Pasadena, CA 91125, USA<br />

A continuous-domain opera<strong>to</strong>r L is X-invariant iff. it commutes with X; i.e,<br />

(<strong>to</strong> various extents)<br />

Filters (linear or non-linear): T-invariant<br />

Differentia<strong>to</strong>rs, wavelet transform: TS-invariant<br />

Con<strong>to</strong>ur/ridge detec<strong>to</strong>rs (Gradient, Laplacian, Hessian): TSR-invariant<br />

Steerable filters: TR-invariant<br />

2


Invariant signals<br />

Natural signals/images often exhibit some degree of invariance<br />

(at least locally, if not globally)<br />

Stationarity, texture: T-invariance<br />

Isotropy (no preferred orientation): R-invariance<br />

Self-similarity, fractality: S-invariance<br />

(Pentl<strong>and</strong> 1984; Mumford, 2001)<br />

OUTLINE<br />

! Splines <strong>and</strong> T-invariant <strong>opera<strong>to</strong>rs</strong><br />

! Green functions as elementary building blocks<br />

! Existence of a local B-spline basis<br />

! Link with s<strong>to</strong>chastic processes<br />

! Imposing affine (TSR) invariance<br />

! Fractional Laplace opera<strong>to</strong>r & polyharmonic splines<br />

! Fractal processes<br />

! Laplacian-like, quasi-isotropic wavelets<br />

! Polyharmonic spline wavelet bases<br />

! Analysis of fractal processes<br />

! The Marr wavelet<br />

! Complex Laplace/gradient opera<strong>to</strong>r<br />

! Steerable complex wavelets<br />

! Wavelet <strong>primal</strong> <strong>sketch</strong><br />

! Directional wavelet analysis<br />

3<br />

4


General concept of an L-spline<br />

L{·}: <strong>differential</strong> opera<strong>to</strong>r (translation-invariant)<br />

δ(x) = d<br />

i=1 δ(xi): multidimensional Dirac distribution<br />

Definition<br />

The continuous-domain function s(x) is a cardinal L-spline iff.<br />

L{s}(x) = <br />

k∈Z d<br />

a[k]δ(x − k)<br />

Cardinality: the knots (or spline singularities) are on the (multi-)integers<br />

Generalization: includes polynomial splines as particular case (L = dN<br />

dx N )<br />

Example: piecewise-constant splines<br />

! Spline-defining <strong>opera<strong>to</strong>rs</strong><br />

Continuous-domain derivative: D = d<br />

dx<br />

←→ jω<br />

Discrete derivative: ∆+{·} ←→ 1 − e −jω<br />

! Piecewise-constant or D-spline<br />

s(x) = <br />

s[k]β 0 +(x − k) D{s}(x) = <br />

k∈Z<br />

! B-spline function<br />

k∈Z<br />

β 0 +(x) = ∆+D −1 {δ}(x) ←→<br />

∆+s(k)<br />

<br />

a[k] δ(x − k)<br />

1 − e−jω<br />

jω<br />

5<br />

6


Existence of a local, shift-invariant basis?<br />

! Space of cardinal L-splines<br />

VL =<br />

⎧<br />

⎫<br />

⎨<br />

<br />

⎬<br />

s(x) : L{s}(x) = a[k]δ(x − k)<br />

⎩ ⎭ ∩ L2(R d )<br />

! Generalized B-spline representation<br />

continuous-domain signal<br />

k∈Z d<br />

A “localized” function ϕ(x) ∈ VL is called generalized B-spline if it gen-<br />

erates a Riesz basis of VL; i.e., iff. there exists (A > 0, B < ∞) s.t.<br />

A · cℓ2(Zd <br />

<br />

) ≤ <br />

k∈Zd <br />

<br />

c[k]ϕ(x − k) <br />

L2(Rd ) ≤ B · cℓ2(Zd )<br />

⎧<br />

⇓<br />

⎨ <br />

VL = s(x) = c[k]ϕ(x − k) : x ∈ R<br />

⎩ d , c ∈ ℓ2(Z d ⎫<br />

⎬<br />

)<br />

⎭<br />

k∈Z d<br />

discrete signal<br />

(B-spline coefficients)<br />

Link with s<strong>to</strong>chastic processes<br />

Splines are in direct correspondence with s<strong>to</strong>chastic processes<br />

(stationary or <strong>fractals</strong>) that are solution of the same partial<br />

<strong>differential</strong> equation, but with a r<strong>and</strong>om driving term.<br />

Defining opera<strong>to</strong>r equation: L{s(·)}(x) = r(x)<br />

Specific driving terms<br />

r(x) =δ(x) ⇒ s(x) =L −1 {δ}(x) : Green function<br />

r(x) = <br />

k∈Z d<br />

a[k]δ(x − k) ⇒ s(x) : Cardinal L-spline<br />

r(x): white Gaussian noise ⇒ s(x): generalized s<strong>to</strong>chastic process<br />

non-empty null space of L, boundary conditions<br />

References: stationary proc. (U.-Blu, IEEE-SP 2006), <strong>fractals</strong> (Blu-U., IEEE-SP 2007)<br />

9<br />

10


Example: Brownian motion vs. spline synthesis<br />

white noise<br />

or<br />

stream of Diracs<br />

L= d<br />

dx ⇒ L−1 : integra<strong>to</strong>r<br />

L −1 {·}<br />

Brownian motion<br />

Cardinal spline (Schoenberg, 1946)<br />

IMPOSING SCALE INVARIANCE<br />

! Affine-invariant <strong>opera<strong>to</strong>rs</strong><br />

! Polyharmonic splines<br />

! Associated fractal r<strong>and</strong>om fields: fBms<br />

11<br />

12


Scale- <strong>and</strong> rotation-invariant <strong>opera<strong>to</strong>rs</strong><br />

Definition: An opera<strong>to</strong>r L is affine-invariant (or SR-invariant) iff.<br />

∀s(x), L{s(·)}(Rθx/a) = Ca · L{s(Rθ · /a)}(x)<br />

where Rθ is an arbitrary d × d unitary matrix <strong>and</strong> Ca a constant<br />

Invariance theorem<br />

The complete family of real, scale- <strong>and</strong> rotation-invariant<br />

convolution <strong>opera<strong>to</strong>rs</strong> is given by the fractional Laplacians<br />

(−∆) γ<br />

2<br />

F<br />

←→ ω γ<br />

Invariant Green functions (a.k.a. RBF) (Duchon, 1979)<br />

<br />

x<br />

ρ(x) =<br />

γ−d log x, if γ − d is even<br />

xγ−d , otherwise<br />

14


Polyharmonic splines<br />

Spline functions associated with fractional Laplace opera<strong>to</strong>r (−∆) γ/2<br />

Distributional definition<br />

s(x) is a cardinal polyharmonic spline of order γ iff.<br />

(−∆) γ/2 s(x) = <br />

d[k]δ(x − k)<br />

Explicit Shannon-like characterization<br />

<br />

V0 = s(x) = <br />

<br />

s[k]φγ(x − k)<br />

k∈Z 2<br />

φγ(x): Unique polyharmonic spline interpola<strong>to</strong>r s.t. φγ(k) = δk<br />

F<br />

←→<br />

k∈Z 2<br />

ˆ φγ(ω) =<br />

1<br />

1 + <br />

k∈Z d \{0}<br />

<br />

ω<br />

ω+2πk<br />

γ Construction of polyharmonic B-splines<br />

Laplacian opera<strong>to</strong>r: ∆<br />

Discrete Laplacian:<br />

! Polyharmonic B-splines (Rabut, 1992)<br />

Discrete opera<strong>to</strong>r: localization filter Q(e jω )<br />

2 sin(ω/2) γ<br />

ω γ<br />

∆d<br />

Continuous-domain opera<strong>to</strong>r: ˆ L(ω)<br />

F<br />

←→ −ω 2<br />

F<br />

←→<br />

d<br />

−<br />

i=1<br />

F −1<br />

−→ βγ(x)<br />

[Madych-Nelson, 1990]<br />

4 sin 2 (ωi/2) △ = −2 sin(ω/2) 2<br />

0 -1 0<br />

-1 4 -1<br />

0 -1 0<br />

15<br />

16


Polyharmonic B-splines properties<br />

Stable representation of polyharmonic splines (Riesz basis)<br />

V γ<br />

(−∆ 2 ) =<br />

⎧<br />

⎨ <br />

s(x) = c[k]βγ(x − k) :c[k] ∈ ℓ2(Z<br />

⎩ d ⎫<br />

⎬<br />

)<br />

⎭<br />

Two-scale relation: βγ(x/2) = <br />

hγ[k]βγ(x − k)<br />

Reproduction of polynomials<br />

Condition: γ > d<br />

2<br />

The polyharmonic B-splines {ϕγ(x − k)} k∈Z d reproduce the polynomials<br />

of degree n = ⌈γ − 1⌉. In particular,<br />

<br />

ϕγ(x − k) = 1 (partition of unity)<br />

k∈Z d<br />

k∈Z d<br />

k∈Z d<br />

Order of approximation γ (possibly fractional)<br />

(Rabut, 1992; Van De Ville, 2005)<br />

Associated r<strong>and</strong>om field: multi-D fBm<br />

Formalism: Gelf<strong>and</strong>!s theory of generalized s<strong>to</strong>chastic processes<br />

White noise fractional Brownian field<br />

γ<br />

−<br />

(−∆) 2<br />

fractional integra<strong>to</strong>r<br />

(appropriate boundary conditions)<br />

(−∆) γ<br />

2<br />

Whitening<br />

(fractional Laplacian)<br />

(Tafti et al., IEEE-IP 2009)<br />

Hurst exponent: H = γ − d<br />

2<br />

17<br />

18


LAPLACIAN-LIKE WAVELET BASES<br />

! Opera<strong>to</strong>r-like wavelet design<br />

! Fractional Laplacian-like wavelet basis<br />

! Improving shift-invariance <strong>and</strong> isotropy<br />

! Wavelet analysis of fractal processes<br />

(multidimensional generalization of pioneering work<br />

of Fl<strong>and</strong>rin <strong>and</strong> Abry)<br />

Multiresolution analysis of L2(R d )<br />

s ∈ V (0)<br />

s1 ∈ V (1)<br />

s2 ∈ V (2)<br />

s3 ∈ V (3)<br />

Multiresolution basis functions: ϕi,k(x) = 2 −id/2 ϕ<br />

Subspace at resolution i: V (i) = span {ϕi,k} k∈Z d<br />

Two-scale relation ⇒ V (i) ⊂ V (j), for i ≥ j<br />

Partition of unity ⇔ <br />

i∈Z V (i) = L2(R d )<br />

19<br />

<br />

i<br />

x−2 k<br />

2i <br />

20


General opera<strong>to</strong>r-like wavelet design<br />

Search for a single wavelet that generates a basis of L2(R d ) <strong>and</strong> that<br />

is a multi-scale version of the opera<strong>to</strong>r L; i.e., ψ = L ∗ φ where φ is a<br />

suitable smoothing kernel<br />

General opera<strong>to</strong>r-based construction<br />

Basic space V0 generated by the integer shifts of the Green function ρ of L:<br />

V0 = span{ρ(x − k)} k∈Z d with Lρ = δ<br />

Orthogonality between V0 <strong>and</strong> W0 = span{ψ(x − 1<br />

2 k)} k∈Z d \2Z d<br />

〈ψ(· − x0), ρ(· − k)〉 = 〈φ, Lρ(· − k + x0)〉<br />

= 〈φ, δ(· − k + x0)〉 = φ(k − x0) = 0<br />

(can be enforced via a judicious choice of φ (interpola<strong>to</strong>r) <strong>and</strong> x0)<br />

Works in arbitrary dimensions <strong>and</strong> for any dilation matrix D<br />

Fractional Laplacian-like wavelet basis<br />

ψγ(x) = (−∆) γ<br />

2 φ2γ(Dx)<br />

φ2γ(x): polyharmonic spline interpola<strong>to</strong>r of order 2γ > 1<br />

D: admissible dilation matrix<br />

Wavelet basis functions: ψ (i,k)(x) | det(D)| i/2 ψγ<br />

D i x − D −1 k <br />

{ψ (i,k)} (i∈Z, k∈Z2 \DZ2 ) forms a semi-orthogonal basis of L2(R2 )<br />

∀f ∈ L2(R 2 ), f = <br />

〈f, ψ (i,k)〉 ˜ ψ (i,k) = <br />

i∈Z k∈Z2 \DZ2 where { ˜ ψ (i,k)} is the dual wavelet basis of {ψ (i,k)}<br />

The wavelets ψ (i,k) <strong>and</strong> ˜ ψ (i,k) have ⌈γ⌉ vanishing moments<br />

i∈Z k∈Z2 \DZ2 The wavelet analysis implements a multiscale version of the Laplace opera<strong>to</strong>r<br />

<strong>and</strong> is perfectly reversible (one-<strong>to</strong>-one transform)<br />

The wavelet transform has a fast filterbank algorithm (based on FFT)<br />

〈f, ˜ ψ (i,k)〉 ψ (i,k)<br />

[Van De Ville, IEEE-IP, 2005]<br />

21<br />

22


Laplacian-like wavelet decomposition<br />

Nonredundant transform<br />

f(x)<br />

dyadic sampling pattern<br />

D =<br />

<br />

<br />

2 0<br />

0 2<br />

first decomposition level (one-<strong>to</strong>-one)<br />

βγ(D −1 x − k)<br />

scaling functions<br />

(dilated by 2)<br />

di[k] =〈f,ψ (i,k)〉<br />

ψγ(D −1 x − k)<br />

wavelets<br />

(dilated by 2)<br />

Improving shift-invariance <strong>and</strong> isotropy<br />

Wavelet subspace at resolution i<br />

Wi = span {ψi,k} (k∈Z 2 \DZ 2 )<br />

Augmented wavelet subspace at resolution i<br />

W +<br />

i = span <br />

ψ (i,k)<br />

(k∈Z 2 ) = span{ψ iso,(i,k)} (k∈Z 2 )<br />

Admissible polyharmonic spline wavelets<br />

Opera<strong>to</strong>r-like genera<strong>to</strong>r: ψγ(x) = (−∆) γ/2 φ2γ(Dx)<br />

More isotropic wavelet: ψiso(x) = (−∆) γ/2 β2γ(Dx)<br />

“Quasi-isotropic” polyharmonic B-spline [Van De Ville, 2005]<br />

β2γ(x) → Cγ exp(−x 2 /(γ/6))<br />

23<br />

Wavelet sampling patterns<br />

Non-redundant<br />

(basis)<br />

Mildly redundant<br />

(frame)<br />

24


Building Mexican-Hat-like wavelets<br />

ψγ(x) = (−∆) γ/2 φ2γ(2x) ψiso(x) = (−∆) γ/2 β2γ(2x)<br />

Mexican-Hat multiresolution analysis<br />

Pyramid decomposition: redundancy 4/3<br />

Dyadic sampling pattern<br />

First decomposition level:<br />

ϕ(D −1 x − k)<br />

Scaling functions<br />

(U.-Van De Ville, IEEE-IP 2008)<br />

Gaussian-like smoothing kernel: β2γ(2x)<br />

ψ(D −1 (x − k))<br />

<strong>Wavelets</strong><br />

(redundant by 4/3)<br />

ψiso(x) = (−∆) γ/2 β2γ(Dx)<br />

25<br />

26


Wavelet analysis of fBm: whitening revisited<br />

Opera<strong>to</strong>r-like behavior of wavelet<br />

Analysis wavelet: ψγ =(−∆) γ<br />

2 φ(x) =(−∆) H<br />

2<br />

Reduced-order wavelet: ψ ′ γ′<br />

γ ′(x) = (−∆)<br />

Stationarizing effect of wavelet analysis<br />

+ d<br />

4 ψ ′ γ ′(x)<br />

2 φ(x) with γ ′ = γ − (H + d<br />

2<br />

Analysis of fractional Brownian field with exponent H:<br />

〈BH, ψγ<br />

H d<br />

〉 ∝ 〈(−∆) 2 + 4 BH, ψ ′ γ ′<br />

<br />

′ 〉 = 〈W, ψ γ ′<br />

·−x0<br />

a<br />

·−x0<br />

a<br />

·−x0<br />

a 〉<br />

Equivalent spectral noise shaping: Swave(e jω )= <br />

n∈Z d | ˆ ψ ′ γ(ω +2πn)| 2<br />

⇒ Extent of wavelet-domain whitening depends on flatness of Swave(e jω )<br />

“Whitening” effect is the same at all scales up <strong>to</strong> a proportionality fac<strong>to</strong>r<br />

⇒ fractal exponent can be deduced <strong>from</strong> the log-log plot of the variance<br />

) > 0<br />

(Tafti et al., IEEE-IP 2009)<br />

Wavelet analysis of fractional Brownian fields<br />

Theoretical scaling law : Var{wa[k]} = σ 2 0 · a (2H+d)<br />

log √ 2 〈w2 log n[k]〉<br />

√ 2 (Var{wa})<br />

40<br />

38<br />

36<br />

34<br />

32<br />

30<br />

28<br />

26<br />

24<br />

log-log plot of variance<br />

Hest =0.31<br />

22<br />

√ √ √ √<br />

12 2 23 2 4 45 2 68 8 72 16 8<br />

Scale scale [n] a<br />

27<br />

28


Fractals in bioimaging: fibrous tissue<br />

DDSM: University of Florida<br />

(Digital Database for Screening Mammography)<br />

Wavelet analysis of mammograms<br />

log √ 2 〈w2 log n[k]〉<br />

√ 2 (Var{wa})<br />

35<br />

30<br />

25<br />

20<br />

(Laine, 1993; Li et al., 1997)<br />

log-log plot of variance<br />

Hest =0.44<br />

15 √<br />

12 2<br />

√<br />

23 2 4<br />

√<br />

45 2 68 √<br />

8 72 16 8<br />

Scale scale [n] a<br />

Fractal dimension: D = 1 + d − H = 2.56 with d = 2 (<strong>to</strong>pological dimension)<br />

29<br />

30


Brain as a biofractal<br />

(Bullmore, 1994)<br />

Wavelet analysis of fMRI data<br />

Brain: courtesy of Jan Kybic<br />

log √ 2 〈w2 n[k]〉<br />

38<br />

36<br />

34<br />

32<br />

30<br />

28<br />

26<br />

24<br />

Hest Hest=0.35<br />

1mm<br />

Courtesy R. Mueller ETHZ<br />

√1 2 3√ 4 5 √ √<br />

4<br />

2 2 2 2<br />

6 7√<br />

4 42 2 82<br />

8 22<br />

scale [n]<br />

√ 8 2<br />

√ 2 8<br />

4<br />

Fractal dimension: D = 1 + d − H = 2.65 with d = 2 (<strong>to</strong>pological dimension)<br />

31<br />

32


...<strong>and</strong> some non-biomedical images...<br />

log√ 2 〈w2 log n[k]〉<br />

√ 2 (Var{wa})<br />

THE MARR WAVELET<br />

! Laplace/gradient opera<strong>to</strong>r<br />

! Steerable Marr wavelets<br />

! Wavelet <strong>primal</strong> <strong>sketch</strong><br />

! Directional wavelet analysis<br />

40<br />

35<br />

30<br />

25<br />

Hest=0.53<br />

√ √ √ √<br />

21 2<br />

23 2 4 45 2 68 87 2 816<br />

Scale<br />

scale a[n]<br />

33<br />

34


Complex TRS-invariant <strong>opera<strong>to</strong>rs</strong> in 2D<br />

Invariance theorem<br />

The complete family of complex, translation-, scale- <strong>and</strong> rotation-<br />

invariant 2D <strong>opera<strong>to</strong>rs</strong> is given by the fractional complex Laplace-<br />

gradient <strong>opera<strong>to</strong>rs</strong><br />

Lγ,N =(−∆) γ−N<br />

2<br />

∂<br />

∂x1<br />

with N ∈ N <strong>and</strong> γ ≥ N ∈ R<br />

Key property: steerability<br />

Lγ,N{δ}(Rθx) =e jNθ Lγ,N {δ}(x)<br />

+ j ∂<br />

N ∂x2<br />

F<br />

←→ ω γ−N (jω1 − ω2) N<br />

Simplifying the maths: Unitary Riesz mapping<br />

Complex Laplace-gradient opera<strong>to</strong>r<br />

Lγ,N =(−∆) γ−N<br />

<br />

∂<br />

2<br />

∂x1<br />

+ j ∂<br />

N =(−∆)<br />

∂x2<br />

γ<br />

2 R N<br />

where R =L1<br />

2 ,1<br />

F<br />

←→<br />

<br />

jω1 − ω2<br />

ω<br />

Property of Riesz opera<strong>to</strong>r R<br />

R is shift- <strong>and</strong> scale-invariant<br />

R is rotation covariant (a.k.a. steerable)<br />

R is unitary<br />

in particular, R will map a Laplace-like wavelet basis in<strong>to</strong><br />

a complex Marr-like wavelet basis<br />

35<br />

36


Complex Laplace-gradient wavelet basis<br />

ψ ′ γ(x) =(−∆) γ−1<br />

2<br />

∂<br />

∂x1<br />

+ j ∂<br />

<br />

φ2γ(Dx) =Rψγ(x)<br />

∂x2<br />

φ2γ(x): polyharmonic spline interpola<strong>to</strong>r of order 2γ > 1<br />

D: admissible dilation matrix<br />

Wavelet basis functions: ψ ′ (i,k) (x) =Rψ (i,k)(x) =| det(D)| i/2ψ ′ <br />

i −1<br />

γ D x − D k<br />

{ψ ′ (i,k) } (i∈Z, k∈Z 2 \DZ 2 ) forms a complex semi-orthogonal basis of L2(R 2 )<br />

∀f ∈ L2(R 2 ), f = <br />

<br />

i∈Z k∈Z2 \DZ2 〈f,ψ ′ (i,k) 〉 ˜ ψ ′ <br />

(i,k) =<br />

where { ˜ ψ ′ (i,k) } is the dual wavelet basis of {ψ′ (i,k) }<br />

<br />

i∈Z k∈Z2 \DZ2 The wavelet analysis implements a multiscale version of the Gradient-Laplace<br />

(or Marr) opera<strong>to</strong>r <strong>and</strong> is perfectly reversible (one-<strong>to</strong>-one transform)<br />

The wavelet transform has a fast filterbank algorithm<br />

Wavelet frequency responses<br />

〈f, ˜ ψ ′ (i,k) 〉 ψ′ (i,k)<br />

[Van De Ville-U., IEEE-IP, 2008]<br />

Laplacian-like / Mexican hat Marr pyramid (steerable)<br />

ˆψiso,i(ω) ˆ ψRe,i(ω) ˆ ψIm,i(ω)<br />

Unitary mapping<br />

(Riesz transform)<br />

γ = 4<br />

37<br />

38


Marr wavelet pyramid<br />

Steerable pyramid-like decomposition: redundancy 2 × 4<br />

3<br />

Basic dyadic sampling cell<br />

ψ1<br />

ψ2 ψ3<br />

Wavelet basis<br />

ψ0<br />

ψ1<br />

ψ2 ψ3<br />

ϕ(·/2) ϕ(·/2)<br />

Overcomplete by 1/3<br />

ψRe(x) = ∂<br />

∂x ∆β2γ(2x) ψIm(x) = ∂<br />

∂y ∆β2γ(2x)<br />

SUBMITTED TO IEEE TRANSACTIONS ON IMAGE PROCESSING 11<br />

Processing in early vision - <strong>primal</strong> <strong>sketch</strong><br />

Wavelet <strong>primal</strong> <strong>sketch</strong><br />

blurring — smoothing kernel φ<br />

Laplacian filtering — ∆<br />

zero-crossings <strong>and</strong> orientation — ∇<br />

Fig. 7. Marr-like pyramid (J =3decomposition levels) of the “Einstein” image.<br />

[Van De Ville-U., IEEE-IP, 2008]<br />

segment detection <strong>and</strong> grouping — Canny edge detection scheme<br />

image ✲ Marr-like wavelet<br />

pyramid ✲ ✲✲ Canny edge<br />

detec<strong>to</strong>r ✲ ✲✲ wavelet<br />

<strong>primal</strong> <strong>sketch</strong><br />

Fig. 8. Flowchart of how <strong>to</strong> extract the “wavelet <strong>primal</strong> <strong>sketch</strong>” <strong>from</strong> the Marr-like wavelet pyramid. The Canny edge detection procedure is applied <strong>to</strong><br />

every subb<strong>and</strong>. Real <strong>and</strong> imaginary part of the wavelet coefficients are interpreted as vertical <strong>and</strong> horizontal derivatives, respectively.<br />

subb<strong>and</strong> ✲<br />

gradient<br />

extraction<br />

phase<br />

❄<br />

✲ non-maximum<br />

suppression<br />

✲ hysteresis<br />

thresholding<br />

✲ edge<br />

mask<br />

Fig. 9. Flowchart of how the “Canny edge detec<strong>to</strong>r” is applied <strong>to</strong> a subb<strong>and</strong> of the Marr-like pyramid decomposition. First, the gradient is extracted by<br />

40<br />

considering real <strong>and</strong> imaginary parts of the wavelet coefficients. Then, non-maximum suppression is applied along the gradient direction, followed by hysteresis<br />

thresholding. Finally, a complex coefficient is res<strong>to</strong>red for the coefficients that are detected.<br />

complete directional control of the transform thanks <strong>to</strong> the<br />

steerability of the basis functions; in other words, we could as<br />

✲ × ❄<br />

subb<strong>and</strong><br />

<strong>primal</strong> <strong>sketch</strong><br />

✻<br />

interchanged the phases <strong>and</strong> magnitudes of the Marr-like<br />

wavelet pyramid of the same images. As with the Fourier<br />

39


Edge detection in wavelet domain<br />

Edge map (using Canny’s edge detec<strong>to</strong>r)<br />

Key visual information (Marr’s theory of vision)<br />

Similar <strong>to</strong> Mallat!s representation <strong>from</strong><br />

wavelet modulus maxima [Mallat-Zhong, 1992]<br />

... but much less redundant !<br />

Iterative reconstruction<br />

Reconstruction <strong>from</strong> information on edge map only<br />

Better than 30dB PSNR<br />

31.4dB<br />

[Van De Ville-U., IEEE-IP, 2008]<br />

41<br />

42


Directional wavelet analysis: Fingerprint<br />

Wavelet-domain structure tensor<br />

Marr wavelet pyramid - discussion<br />

Comparison against state-of-the-art<br />

Modulus<br />

Wavenumber Orientation<br />

Modulus Orientation<br />

Steerable Complex Marr wavelet<br />

pyramid dual-tree pyramid<br />

Translation invariance ++ ++ ++<br />

Steerability ++ + ++<br />

Number of orientations 2K 6 2<br />

Vanishing moments no yes, 1D ⌈γ⌉<br />

Implementation filterbank/FFT filterbank FFT<br />

Decomposition type tight frame frame complex frame<br />

Redundancy 8K/3 + 1 4 8/3<br />

Localization slow decay filterbank design fast decay<br />

Analytical formulas no no yes<br />

Primal <strong>sketch</strong> - - yes<br />

Gradient/structure tensor - - yes<br />

[Simoncelli, Freeman, 1995] [Kingsbury, 2001]<br />

[Selesnick et al, 2005]<br />

γ = 2, σ = 2<br />

43<br />

44


CONCLUSION<br />

! Unifying opera<strong>to</strong>r-based paradigm<br />

! Opera<strong>to</strong>r identification based on invariance principles (TSR)<br />

! Specification of corresponding spline <strong>and</strong> wavelet families<br />

! Characterization of s<strong>to</strong>chastic processes (<strong>fractals</strong>)<br />

! Isotropic <strong>and</strong> steerable wavelet transforms<br />

! Riesz basis, analytical formulaes<br />

! Mildly redundant frame extension for improved TR invariance<br />

! Fractal <strong>and</strong>/or directional analyses<br />

! Fast filterbank algorithm (fully reversible)<br />

! Marr wavelet pyramid<br />

! Multiresolution Marr-type analysis; wavelet <strong>primal</strong> <strong>sketch</strong><br />

! Reconstruction <strong>from</strong> multiscale edge map<br />

! Implementation will be available very soon (Matlab)<br />

References<br />

D. Van De Ville, T. Blu, M. Unser, “Isotropic Polyharmonic B-Splines: Scaling Functions <strong>and</strong><br />

<strong>Wavelets</strong>,” IEEE Trans. Image Processing, vol. 14, no. 11, pp. 1798-1813, November 2005.<br />

M. Unser, D. Van De Ville, “The pairing of a wavelet basis with a mildly redundant analysis<br />

with subb<strong>and</strong> regression,” IEEE Trans. Image Processing, Vol. 17, no. 11, pp. 2040-2052,<br />

November 2008.<br />

D. Van De Ville, M. Unser, “Complex wavelet bases, steerability, <strong>and</strong> the Marr-like pyramid,”<br />

IEEE Trans. Image Processing, Vol. 17, no. 11, pp. 2063-2080, November 2008.<br />

P.D. Tafti, D. Van De Ville, M. Unser, “Invariances, Laplacian-Like Wavelet Bases, <strong>and</strong> the<br />

Whitening of Fractal Processes,” IEEE Trans. Image Processing, vol. 18, no. 4, pp. 689-702,<br />

April 2009.<br />

EPFL!s Biomedical Imaging Group<br />

! Preprints <strong>and</strong> demos: http://bigwww.epfl.ch/<br />

45<br />

46

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!