06.04.2013 Views

coal mine methane and coalbed methane development in the ...

coal mine methane and coalbed methane development in the ...

coal mine methane and coalbed methane development in the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

COAL MINE METHANE AND COALBED METHANE<br />

DEVELOPMENT IN THE DONETSK REGION,<br />

UKRAINE<br />

Prepared for:<br />

Donetsk Regional Adm<strong>in</strong>istration<br />

<strong>and</strong><br />

U.S. Trade <strong>and</strong> Development Agency<br />

Prepared by:<br />

Advanced Resources International, Inc.<br />

Arl<strong>in</strong>gton, VA USA<br />

In association with:<br />

Ecometan; Donetsk Geological Company;<br />

Bazhanov M<strong>in</strong>e <strong>and</strong> South Donbass #3 M<strong>in</strong>e;<br />

May, 2008<br />

This report was funded by <strong>the</strong> U.S. Trade <strong>and</strong> Development Agency (USTDA),<br />

an agency of <strong>the</strong> U.S. Government. The op<strong>in</strong>ions, f<strong>in</strong>d<strong>in</strong>gs, conclusions, or<br />

recommendations expressed <strong>in</strong> this document are those of <strong>the</strong> author(s) <strong>and</strong> do not necessarily<br />

represent <strong>the</strong> official position or policies of USTDA. USTDA makes no representation about,<br />

nor does it accept responsibility for, <strong>the</strong> accuracy or completeness of <strong>the</strong> <strong>in</strong>formation conta<strong>in</strong>ed<br />

<strong>in</strong> this report.<br />

Mail<strong>in</strong>g <strong>and</strong> Delivery Address: 1000 Wilson Boulevard, Suite 1600, Arl<strong>in</strong>gton, VA 22209-3901<br />

Phone: 703–875–4357 • Fax: 703–875–4009 • Web site: www.tda.gov • email: <strong>in</strong>fo@tda.gov


The U.S. Trade <strong>and</strong> Development Agency<br />

The U.S. Trade <strong>and</strong> Development Agency (USTDA)<br />

advances economic <strong>development</strong> <strong>and</strong> U.S. commercial<br />

<strong>in</strong>terests <strong>in</strong> develop<strong>in</strong>g <strong>and</strong> middle <strong>in</strong>come countries. The<br />

agency funds various forms of technical assistance,<br />

feasibility studies, tra<strong>in</strong><strong>in</strong>g, orientation visits <strong>and</strong> bus<strong>in</strong>ess<br />

workshops that support <strong>the</strong> <strong>development</strong> of a modern<br />

<strong>in</strong>frastructure <strong>and</strong> a fair <strong>and</strong> open trad<strong>in</strong>g environment.<br />

USTDA’s strategic use of foreign assistance funds to<br />

support sound <strong>in</strong>vestment policy <strong>and</strong> decision-mak<strong>in</strong>g <strong>in</strong><br />

host countries creates an enabl<strong>in</strong>g environment for trade,<br />

<strong>in</strong>vestment <strong>and</strong> susta<strong>in</strong>able economic <strong>development</strong>.<br />

Operat<strong>in</strong>g at <strong>the</strong> nexus of foreign policy <strong>and</strong> commerce,<br />

USTDA is uniquely positioned to work with U.S. firms<br />

<strong>and</strong> host countries <strong>in</strong> achiev<strong>in</strong>g <strong>the</strong> agency’s trade <strong>and</strong><br />

<strong>development</strong> goals. In carry<strong>in</strong>g out its mission, USTDA<br />

gives emphasis to economic sectors that may benefit from<br />

U.S. exports of goods <strong>and</strong> services.<br />

Mail<strong>in</strong>g <strong>and</strong> Delivery Address: 1000 Wilson Boulevard, Suite 1600, Arl<strong>in</strong>gton, VA 22209-3901<br />

Phone: 703–875–4357 • Fax: 703–875–4009 • Web site: www.tda.gov • email: <strong>in</strong>fo@tda.gov


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

CONTENTS<br />

TASK 1<br />

CMM/CBM Degasification <strong>and</strong> Production Concept ..................................................................1-1<br />

TASK 2<br />

Screen Applicable Technologies – Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design.......................2-1<br />

TASK 3<br />

Market Assessment for Produced Methane...............................................................................3-1<br />

TASK 4<br />

Prelim<strong>in</strong>ary Design for CMM <strong>and</strong> CBM Utilization Infrastructure ...............................................4-1<br />

TASK 5<br />

Prelim<strong>in</strong>ary Environmental Assessment ....................................................................................5-1<br />

TASK 6<br />

F<strong>in</strong>al Cost Estimates <strong>and</strong> Economic Assessments....................................................................6-1<br />

TASK 7<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits..........................................................................................7-1<br />

TASK 8<br />

Developmental Impact ...............................................................................................................8-1<br />

i Advanced Resources International


Unit Abbreviations<br />

o<br />

C degrees Celsius<br />

o<br />

F degrees Fahrenheit<br />

$ United States Dollar<br />

$/hp dollars per horsepower<br />

$/<strong>in</strong>.-mi dollars per <strong>in</strong>ch mile<br />

$/w/mo dollars per well per month<br />

Bcf billion (10 9 ) st<strong>and</strong>ard cubic feet<br />

Bcfd billion (10 9 ) st<strong>and</strong>ard cubic feet per<br />

day<br />

Bmt billion (10 9 ) metric tons<br />

bpd barrels per day<br />

Btu British <strong>the</strong>rmal unit<br />

cc cubic centimeter<br />

CK matrix differential swell<strong>in</strong>g factor<br />

cP centipoise<br />

D day<br />

dB decibel<br />

ft feet<br />

g gram<br />

GJ gigajoule (10 9 J)<br />

ha hectare<br />

hp horsepower<br />

hr hour<br />

<strong>in</strong>. <strong>in</strong>ch<br />

J joule<br />

K permeability<br />

kg kilogram<br />

km kilometer (10 3 m)<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

ABBREVIATIONS<br />

km 2 square kilometer<br />

kPa kilopascal (10 3 Pa)<br />

kW kilowatt (10 3 W)<br />

lb pound<br />

m meter<br />

m 3 cubic meter<br />

Ma megaannum (million years ago)<br />

Mcf thous<strong>and</strong> (10 3 ) st<strong>and</strong>ard cubic feet<br />

Mcfd thous<strong>and</strong> (10 3 ) st<strong>and</strong>ard cubic feet<br />

per day<br />

md millidarcy (10 -3 D)<br />

mg/L milligrams per liter<br />

mi mile<br />

MJ megajoule (10 6 J)<br />

mm millimeter (10 -3 m)<br />

MMcf million (10 6 ) st<strong>and</strong>ard cubic feet<br />

MPa megapascal (10 6 Pa)<br />

MW megawatt (10 6 W)<br />

MWh megawatt hour<br />

ppm parts per million<br />

psi(a) pounds per square <strong>in</strong>ch (absolute)<br />

S sk<strong>in</strong><br />

scf st<strong>and</strong>ard cubic feet<br />

Tcf trillion (10 12 ) st<strong>and</strong>ard cubic feet<br />

Tcm trillion (10 12 ) cubic meter<br />

TJ terajoule (10 12 J)<br />

yr year<br />

ii Advanced Resources International


O<strong>the</strong>r Abbreviations<br />

ARI Advanced Resources International,<br />

Inc.<br />

BAT Best Available<br />

Techniques/Technology<br />

BLM U.S. Bureau of L<strong>and</strong> Management<br />

BMP Best Management Practices<br />

Ca Calcium<br />

CBM Coalbed Methane<br />

CCGT Comb<strong>in</strong>ed Cycle Gas Turb<strong>in</strong>e<br />

CCP Carbon Capture Project<br />

CCS Carbon Capture <strong>and</strong> Storage<br />

CDM Clean Development Mechanism<br />

CER Certified Emission Reduction<br />

CH4 Methane<br />

Cl Chlor<strong>in</strong>e<br />

CMM Coal M<strong>in</strong>e Methane<br />

CO Carbon Monoxide<br />

CO2 Carbon Dioxide<br />

CO2eq CO2 Equivalent<br />

CSLF Carbon Sequestration Leadership<br />

Forum<br />

CTL Coal to Liquids<br />

DOE U.S. Department of Energy<br />

E&P Exploration <strong>and</strong> Production<br />

E.U. European Union<br />

ECBM Enhanced Coalbed Methane<br />

EGR Enhanced Gas Recovery<br />

EIA Environmental Impact Assessment or<br />

Energy Information Adm<strong>in</strong>istration<br />

EIS Environmental Impact Statement<br />

EOR Enhanced Oil Recovery<br />

EPA U.S. Environmental Protection<br />

Agency<br />

ER Emission Reduction<br />

ETS Emissions Trad<strong>in</strong>g Scheme<br />

GHG Greenhouse Gas<br />

GIP Gas <strong>in</strong> Place<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

GWP Global Warm<strong>in</strong>g Potential<br />

H2O Water<br />

H2S Hydrogen Sulfide<br />

HC Hydrocarbons<br />

HCO3 Bicarbonate<br />

HDPE High Density Polyethylene<br />

IAPs Interested <strong>and</strong> Affected Parties<br />

ID Inner Diameter<br />

IOGCC Interstate Oil <strong>and</strong> Gas Compact<br />

Commission<br />

IPCC Intergovernmental Panel on Climate<br />

Change<br />

IRR Internal Rate of Return<br />

MAC Multistakeholder Advisory Committee<br />

MDEA Methyldiethanola<strong>m<strong>in</strong>e</strong><br />

Mg Magnesium<br />

MMV Measurement, Monitor<strong>in</strong>g, <strong>and</strong><br />

Verification<br />

MPDS Maximum Practical Drill<strong>in</strong>g Schedule<br />

N2O Nitrous Oxide<br />

Na Sodium<br />

NEPA National Environmental Policy Act<br />

NETL National Energy Technology<br />

Laboratory<br />

NGO Non-Governmental Organization<br />

NMVOCS Non-Methane Volatile Organic<br />

Compounds<br />

Nox Nitrogen Oxide<br />

NSCR Non-Selective Catalyst Reduction<br />

O3 Ozone<br />

OD Outer Diameter<br />

PEIA Prelim<strong>in</strong>ary Environmental Impact<br />

Assessment<br />

PM10 Particulate matter 10 microns <strong>and</strong><br />

smaller<br />

PM2.5 Particulate matter 2.5 microns <strong>and</strong><br />

smaller<br />

PRB Powder River Bas<strong>in</strong><br />

iii Advanced Resources International


RIS Regulatory Impact Statement<br />

RO Reverse Osmosis<br />

ROW Right of Way<br />

RST Reservoir Saturation Tool<br />

SAR Sodium Adsorption Ratio<br />

SOx Sulfur Oxide<br />

SRCCS Special Report on Carbon Capture<br />

<strong>and</strong> Storage<br />

TDS Total Dissolved Solids<br />

TEG Triethylene Glycol<br />

TOC Total Organic Content<br />

ToR Terms of Reference<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

U.S. United States of America<br />

UIC Underground Injection Control<br />

USDW Underground Source of Dr<strong>in</strong>k<strong>in</strong>g<br />

Water<br />

VL Langmuir Volume<br />

VOC Volatile Organic Compound<br />

VP Langmuir Pressure<br />

VSP Vertical Seismic Profile<br />

WHO World Health Organization<br />

WRI World Resources Institute<br />

iv Advanced Resources International


Conversions<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Except where stated, all references to <strong>coal</strong>/shale are <strong>in</strong> short tons (tons), <strong>and</strong> all references to CO2 are <strong>in</strong><br />

metric tons (tonnes).<br />

Mass<br />

1 short ton (ton) = 907.1847 kilograms (kg)<br />

1 metric ton (tonne) = 1000 kilograms (kg) = 2204.623 pounds (lb)<br />

Volume<br />

1 cubic meter (m 3 ) = 35.3 cubic feet (ft 3 )<br />

1 thous<strong>and</strong> cubic feet (Mcf) = 28.32 cubic meters (m 3 )<br />

1 cubic meter (m 3 ) = 6.2898 petroleum barrels (bbl)<br />

1 cubic foot (ft 3 )= 7.48052 gallons (gal)<br />

Length / Area<br />

1 <strong>in</strong>ch (<strong>in</strong>) = 2.54 centimeters (10 -2 m or cm)<br />

1 foot (ft) = 0.3048 meters (m)<br />

1 mile (mi) = 1609.344 meters (m)<br />

1 acre = 0.4047 hectare (ha)<br />

Pressure<br />

1 pound per square <strong>in</strong>ch (psi) = 6.894757 kilo-Pascals (10 3 Pa or kPa)<br />

1 mega-Pascal (10 6 Pa or MPa) = 145.0377 pounds per square <strong>in</strong>ch (psi)<br />

Temperature<br />

1 degrees Fahrenheit ( o F) = 1.8 (degrees C) + 32<br />

1 degrees Celsius ( o C) = (degrees F – 32)/1.8<br />

Density<br />

19.26 thous<strong>and</strong> cubic feet (Mcf) CO2 = 1 metric ton (tonne) CO2<br />

0.6800 kilogram (kg) CH4 = 1 cubic meter (M 3 ) CH4<br />

Energy<br />

1 million Btu (10 6 Btu) = 1.055056 giga-Joules (10 9 J or GJ)<br />

1.0425 thous<strong>and</strong> cubic feet (Mcf) CH4 = 1 giga-Joule (10 9 J or GJ)<br />

0.0288 cubic meters (m 3 ) CH4 = 1 giga-Joule (10 9 J or GJ)<br />

1kilowatt (kW) = 1.341022 horsepower (hp)<br />

1 kilowatt-hour (kWh) = 3.6 mega-Joule (10 6 J or MJ)<br />

266 megawatt (MW) = 1 million cubic feet (MMcf) CH4<br />

0.2778 megawatt-hour (MWh) = 1 giga-Joule (10 9 J or GJ)<br />

v Advanced Resources International


Task 1<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

CMM/CBM Degasification <strong>and</strong> Production<br />

Concept<br />

Advanced Resources International


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

TASK 1 CONTENTS<br />

Task 1 - Section 1 Geologic Assessment <strong>and</strong> Estimate<br />

of <strong>the</strong> CMM/CBM Resource Base..............................................1-i<br />

1.1 Introduction......................................................................................................................1-1<br />

1.2 Regional Geology ............................................................................................................1-1<br />

1.3 Coal Geology of <strong>the</strong> Donbass Coalfield ......................................................................1-10<br />

1.4 Estimate of Methane Reserves <strong>in</strong> <strong>the</strong> Donbass Bas<strong>in</strong> ...............................................1-13<br />

1.5 Methane <strong>in</strong> Associated Strata.......................................................................................1-15<br />

1.6 Coal M<strong>in</strong>e Methane Project Areas ................................................................................1-17<br />

1.7 Coalbed Methane Project Areas...................................................................................1-36<br />

Task 1 - Section 2 Reservoir Simulations ...............................................................2-i<br />

2.1 Introduction......................................................................................................................2-1<br />

2.2 CBM Reservoir Model<strong>in</strong>g ................................................................................................2-2<br />

2.3 CMM Reservoir Model<strong>in</strong>g..............................................................................................2-17<br />

Advanced Resources International


Task 1 Summary<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Task 1 is split <strong>in</strong>to two sections. The first section comprises a geologic assessment of <strong>the</strong><br />

study areas, along with an estimate of <strong>the</strong> <strong>coal</strong> bed <strong>methane</strong> (CBM) <strong>and</strong> <strong>coal</strong> <strong>m<strong>in</strong>e</strong> <strong>methane</strong><br />

(CMM) resources of those areas. Section two details <strong>the</strong> process of perform<strong>in</strong>g thirty-year<br />

gas <strong>and</strong> water production simulations, for <strong>the</strong> two CBM leases, us<strong>in</strong>g COMET3, Advanced<br />

Resources' proprietary reservoir simulator. Estimates of potential gas <strong>and</strong> water flows were<br />

made from <strong>the</strong> resultant production curves.<br />

Under <strong>the</strong> orig<strong>in</strong>al terms of reference (TOR), task 1 calls for a comprehensive CBM<br />

<strong>development</strong> plan. This was considered too broad a subject to <strong>in</strong>clude <strong>in</strong> one task <strong>and</strong><br />

appeared to repeat large sections of o<strong>the</strong>r tasks. The sections review<strong>in</strong>g <strong>the</strong> <strong>development</strong><br />

plans for drill<strong>in</strong>g, dewater<strong>in</strong>g, gas collection, compression <strong>and</strong> transmission <strong>in</strong>frastructure can<br />

be found <strong>in</strong> task 2 <strong>and</strong> task 4.<br />

Advanced Resources International


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Advanced Resources International


Task 1 - Section 1<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Geologic Assessment <strong>and</strong> Estimate of <strong>the</strong><br />

CMM/CBM Resource Base<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-i


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

SECTION 1 CONTENTS<br />

1.1 Introduction......................................................................................................................1-1<br />

1.2 Regional Geology ............................................................................................................1-1<br />

1.2.1 Regional Stratigraphy................................................................................................1-4<br />

1.2.2 Regional Tectonics....................................................................................................1-7<br />

1.3 Coal Geology of <strong>the</strong> Donbass Coalfield ......................................................................1-10<br />

1.4 Estimate of Methane Reserves <strong>in</strong> <strong>the</strong> Donbass Bas<strong>in</strong> ...............................................1-13<br />

1.5 Methane <strong>in</strong> Associated Strata.......................................................................................1-15<br />

1.6 Coal M<strong>in</strong>e Methane Project Areas ................................................................................1-17<br />

1.6.1 Yuzhno-Donbasskaya #3 M<strong>in</strong>e................................................................................1-17<br />

1.6.1.1 Geology..........................................................................................................................1-17<br />

1.6.1.2 Coal Geology <strong>and</strong> Properties.........................................................................................1-18<br />

1.6.1.3 Coal Reserves................................................................................................................1-19<br />

1.6.1.4 Coal Properties ..............................................................................................................1-19<br />

1.6.1.5 Gas Properties ...............................................................................................................1-22<br />

1.6.1.6 M<strong>in</strong>e Degass<strong>in</strong>g .............................................................................................................1-23<br />

1.6.1.7 Gas In-Place ..................................................................................................................1-24<br />

1.6.1.8 Estimation of Gas Reserves ..........................................................................................1-27<br />

1.6.2 Bazhanov M<strong>in</strong>e........................................................................................................1-29<br />

1.6.2.1 Geologic Structure .........................................................................................................1-29<br />

1.6.2.2 Coal Geology <strong>and</strong> Properties.........................................................................................1-32<br />

1.6.2.3 CMM Gas Composition..................................................................................................1-33<br />

1.6.2.4 M<strong>in</strong>e Degass<strong>in</strong>g .............................................................................................................1-34<br />

1.6.2.5 Estimation of Gas-In-Place. ...........................................................................................1-35<br />

1.7 Coalbed Methane Project Areas...................................................................................1-36<br />

1.7.1 Grish<strong>in</strong>o Andreyevskaya Area .................................................................................1-36<br />

1.7.1.1 Methane Reserves Estimates ........................................................................................1-36<br />

1.7.2 South Donbass CBM Development Area – ECOMETAN........................................1-39<br />

1.7.2.1 Geology..........................................................................................................................1-39<br />

1.7.2.2 Methane Reserves Estimate..........................................................................................1-39<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-i


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

SECTION 1 EXHIBITS<br />

Exhibit 1.1 Map of Donetsk Region show<strong>in</strong>g CBM Lease Areas <strong>and</strong> CMM M<strong>in</strong>es .............................1-2<br />

Exhibit 1.2 Location of <strong>the</strong> study area <strong>and</strong> geologic sketch map of <strong>the</strong> Donetsk Bas<strong>in</strong> (from R.F.<br />

Sachsenhofer et al., 2002). ...............................................................................................1-3<br />

Exhibit 1.3 Stratigraphic column of <strong>the</strong> Dnieper-Donetsk Bas<strong>in</strong>..........................................................1-5<br />

Exhibit 1.4 Detailed Structure Map of <strong>the</strong> Donetsk Bas<strong>in</strong> ...................................................................1-9<br />

Exhibit 1.5 Exp<strong>and</strong>ed Stratigraphic Section of <strong>the</strong> Carboniferous Coal-Bear<strong>in</strong>g Sequence.............1-11<br />

Exhibit 1.6 Coal Districts of <strong>the</strong> Donetsk Region...............................................................................1-12<br />

Exhibit 1.7 Estimated Total Methane In Place of <strong>the</strong> 10 Pr<strong>in</strong>cipal M<strong>in</strong><strong>in</strong>g Districts <strong>in</strong> Ukra<strong>in</strong>e..........1-14<br />

Exhibit 1.8 Methane Reserve Concentrations <strong>in</strong> <strong>the</strong> Donbass Region .............................................1-15<br />

Exhibit 1.9 Coal Classification Equivalents .......................................................................................1-16<br />

Exhibit 1.10 Lithologic Composition of <strong>the</strong> Coal Bear<strong>in</strong>g Sequence ...................................................1-19<br />

Exhibit 1.11 Coal Thickness, Yuzhno-Donbasskaya #3 M<strong>in</strong>e.............................................................1-20<br />

Exhibit 1.12 Ash Content, Yuzhno-Donbasskaya #3 M<strong>in</strong>e..................................................................1-21<br />

Exhibit 1.13 Sulfur <strong>and</strong> Phosphorus Content, Yuzhno-Donbasskaya #3 M<strong>in</strong>e ...................................1-21<br />

Exhibit 1.14 Coal Petrography, Yuzhno-Donbasskaya #3 M<strong>in</strong>e .........................................................1-22<br />

Exhibit 1.15 Thermal Maturity, Yuzhno-Donbasskaya #3 M<strong>in</strong>e ..........................................................1-22<br />

Exhibit 1.16 Gas Composition, Yuzhno-Donbasskaya #3 M<strong>in</strong>e..........................................................1-23<br />

Exhibit 1.17 Gas-<strong>in</strong>-Place for Specific Depths, Yuzhno-Donbasskaya #3 M<strong>in</strong>e .................................1-24<br />

Exhibit 1.18 Gas-<strong>in</strong>-Place of Individual Coal Beds of Yuzhno-Donbasskaya #3 M<strong>in</strong>e........................1-26<br />

Exhibit 1.19 Coal Production <strong>and</strong> Methane Emissions of Yuzhno-Donbasskaya #3 M<strong>in</strong>e .................1-27<br />

Exhibit 1.20 Coal Production <strong>and</strong> Methane Emissions at Yuzhno-Donbasskaya #3 M<strong>in</strong>e from Coal<br />

Seam C11 only..................................................................................................................1-28<br />

Exhibit 1.21 Summary Table of Fault Systems of <strong>the</strong> Bazhanov M<strong>in</strong>e ...............................................1-31<br />

Exhibit 1.22 Gas Composition Accord<strong>in</strong>g to Depth, Bazhanov M<strong>in</strong>e ..................................................1-33<br />

Exhibit 1.23 Coal Production <strong>and</strong> Methane Emissions - Bazhanov <strong>m<strong>in</strong>e</strong> (2004-2005).......................1-34<br />

Exhibit 1.24 Coal Bed Methane Resource Estimates - Bazhanov M<strong>in</strong>e .............................................1-35<br />

Exhibit 1.25 The Grish<strong>in</strong>o-Andreyevskaya CBM Lease Area..............................................................1-37<br />

Exhibit 1.26 Estimated Methane Reserves of <strong>the</strong> Grish<strong>in</strong>o-Andreyevskaya Area ..............................1-38<br />

Exhibit 1.27 The South Donbass CBM Lease Area ............................................................................1-40<br />

Exhibit 1.28 Estimated Gas Reserves of <strong>the</strong> South Donbass CBM lease ..........................................1-41<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-ii


1.1 Introduction<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Four separate areas are considered <strong>in</strong> this study for <strong>coal</strong> <strong>m<strong>in</strong>e</strong>/<strong>coal</strong>bed <strong>methane</strong><br />

(CMM/CBM) <strong>development</strong>. Two of <strong>the</strong> areas are active <strong>m<strong>in</strong>e</strong> sites, <strong>the</strong> Bazhanov <strong>and</strong> <strong>the</strong><br />

Yuzhno-Donbasskaya #3 <strong>m<strong>in</strong>e</strong>s, where CMM projects will be conducted. The rema<strong>in</strong><strong>in</strong>g two<br />

areas are <strong>coal</strong>bed <strong>methane</strong> lease areas, one of which is held by Ecometan <strong>and</strong> <strong>the</strong> o<strong>the</strong>r by<br />

<strong>the</strong> Donetskgeologiya Company (Exhibit 1.1). This section of <strong>the</strong> report presents a general<br />

geologic overview of <strong>the</strong> Donbass Bas<strong>in</strong>, followed by more detailed geologic <strong>and</strong> CMM/CBM<br />

resource assessments of <strong>the</strong> four <strong>in</strong>dividual areas studied. In addition to <strong>the</strong> CMM/CBM<br />

resources, an estimate of <strong>the</strong> amount of <strong>methane</strong> conta<strong>in</strong>ed with<strong>in</strong> <strong>the</strong> <strong>in</strong>terbedded<br />

s<strong>and</strong>stones is also provided, as <strong>the</strong>se resources are considerable <strong>and</strong> will be produced <strong>in</strong><br />

conjunction with CMM/CBM.<br />

Geologic <strong>in</strong>formation for this portion of <strong>the</strong> study was supplied pr<strong>in</strong>cipally by <strong>the</strong> State<br />

Department of <strong>the</strong> Coal Industry of <strong>the</strong> M<strong>in</strong>istry of Fuel <strong>and</strong> Energy of Ukra<strong>in</strong>e, <strong>the</strong><br />

Donetskgeologiya Company, Ecometan, <strong>the</strong> Yuzhno-Donbasskaya #3 (South Donbass #3)<br />

<strong>and</strong> Bazhanov M<strong>in</strong>e technical staff, <strong>and</strong> U.S. Environmental Protection Agency (USEPA) <strong>and</strong><br />

U.S. Geological Survey (USGS) publications.<br />

1.2 Regional Geology<br />

The Donbass Bas<strong>in</strong> is <strong>the</strong> sou<strong>the</strong>astern segment of <strong>the</strong> Dniepr–Donetsk Bas<strong>in</strong>, a Late<br />

Devonian rift structure located on <strong>the</strong> sou<strong>the</strong>rn part of <strong>the</strong> Eastern European craton (Exhibit<br />

1.2). The Dniepr–Donetsk Bas<strong>in</strong> cont<strong>in</strong>ues westward <strong>in</strong>to <strong>the</strong> relatively shallow Pripyat<br />

Trough <strong>and</strong> eastward <strong>in</strong>to <strong>the</strong> Karp<strong>in</strong>sky Swell encompass<strong>in</strong>g a 60,000 km 2 area. The<br />

basement is formed by crystall<strong>in</strong>e rocks of <strong>the</strong> Eastern European craton <strong>and</strong> is<br />

unconformably overla<strong>in</strong> by middle Devonian to Carboniferous sediments that reach a<br />

thickness of more than 20 km 1 .<br />

1 (Chekunov et al.. 1993).<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-1


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 1.1 Map of Donetsk Region show<strong>in</strong>g CBM Lease Areas <strong>and</strong> CMM M<strong>in</strong>es<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-2


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 1.2 Location of <strong>the</strong> study area <strong>and</strong> geologic sketch map of <strong>the</strong> Donetsk Bas<strong>in</strong> (from R.F. Sachsenhofer et al., 2002).<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-3


1.2.1 Regional Stratigraphy<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The stratigraphy of <strong>the</strong> Dniepr-Donetsk Bas<strong>in</strong> spans <strong>the</strong> Devonian to Cenozoic/ Miocene <strong>and</strong><br />

is complex <strong>and</strong> variable by region (Exhibit 1.3). The basement of <strong>the</strong> Dniper- Donetsk bas<strong>in</strong><br />

is gneisses, granites, crystall<strong>in</strong>e shales, amphibolites, <strong>and</strong> metavolcanogenic-sedimentary<br />

rocks of Archean <strong>and</strong> Lower Proterozoic.<br />

The earliest bas<strong>in</strong> fill is a complex of volcanogenic <strong>and</strong> terrigenous formations with a total<br />

thickness of 4-5+ km of Devonian Frasnian <strong>and</strong> Famennian stages. The Frasnian stage is<br />

represented by three substages. Its basal part is expressed by mottled terrigenous deposits<br />

(alternat<strong>in</strong>g quartz s<strong>and</strong>stones <strong>and</strong> aleurolites with argillites). The middle part of <strong>the</strong> stage is<br />

15 to 120 m thick, composed pr<strong>in</strong>cipally of limestones <strong>and</strong> dolomites. The upper part<br />

represents <strong>the</strong> thickest package, up to 3 km or more, <strong>and</strong> is comprised of volcanogenic,<br />

volcanogenic-sedimentary <strong>and</strong> salt-bear<strong>in</strong>g deposits.<br />

The Famennian stage, whose sediments unconformably lie on <strong>the</strong> Frasnian formations, is<br />

divided <strong>in</strong>to two parts. The Lower Famennian substage is present only <strong>in</strong> localized paleodepressions<br />

<strong>and</strong> is composed of clay-carbonate <strong>and</strong> terrigenous deposits up to 3,500 m <strong>in</strong><br />

thickness. The Upper Famennian substage is a transitional complex from Devonian to<br />

Carboniferous sediments. It is a thick (to 3 to 4 km) formation which <strong>in</strong>cludes salt-bear<strong>in</strong>g<br />

grey <strong>and</strong> red-colored terrigenous sediments <strong>and</strong> volcanogenic deposits.<br />

Carboniferous deposits are present throughout <strong>the</strong> Dniper-Donetsk Bas<strong>in</strong>. Paleontological<br />

data has made it possible to classify <strong>the</strong> section <strong>in</strong>to stages, substages, <strong>and</strong> horizons. In<br />

contrast to <strong>the</strong> Devonian sequence, <strong>the</strong> thickness of Carboniferous section <strong>in</strong>creases from<br />

<strong>the</strong> edges to <strong>the</strong> bas<strong>in</strong> center <strong>and</strong> towards <strong>the</strong> south-eastern region, reach<strong>in</strong>g 10 km thick<br />

<strong>and</strong> more as shown by seismic data. Formations of <strong>the</strong> Tournaisian stage <strong>and</strong> Lower Visean<br />

substage are established only <strong>in</strong> <strong>the</strong> graben limits. The lithological composition of <strong>the</strong><br />

Carboniferous rocks is relatively uniform <strong>and</strong> lateral changes of facial <strong>and</strong> material<br />

composition of <strong>the</strong> section take place gradually.<br />

The deposits of <strong>the</strong> lower Carboniferous are represented by <strong>the</strong> Tournaisian, Visean, <strong>and</strong><br />

Serpukhovian stages. The Tournaisian stage or Donetsk zones C1tb-C1td <strong>in</strong> <strong>the</strong> central <strong>and</strong><br />

south-eastern parts of <strong>the</strong> depression is composed of terrigenous-carbonate mar<strong>in</strong>e<br />

formations. They are littoral-shelf carbonates with bioherms, biostromes, <strong>and</strong> barrier-reef<br />

massifs.<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-4


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 1.3 Stratigraphic column of <strong>the</strong> Dnieper-Donetsk Bas<strong>in</strong><br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-5


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The Visean stage, unconformably lies over Tournaisian <strong>and</strong> Upper Devonian deposits. They<br />

are comprised of mar<strong>in</strong>e terrigenous-carbonate deposits rang<strong>in</strong>g from 100 to 300 m thick.<br />

The sediments of Upper Visean substage are present <strong>in</strong> nearly all <strong>the</strong> parts of <strong>the</strong> bas<strong>in</strong>. In<br />

<strong>the</strong> center of <strong>the</strong> bas<strong>in</strong>, <strong>the</strong>ir thickness reaches 800 to 1,000 m <strong>and</strong> more. The upper part of<br />

<strong>the</strong> section is a mar<strong>in</strong>e to alluvial deltaic system of aleurolites <strong>and</strong> s<strong>and</strong>stones <strong>in</strong>terbedded<br />

with m<strong>in</strong>or <strong>coal</strong>. In <strong>the</strong> deepest part of <strong>the</strong> bas<strong>in</strong>, <strong>the</strong> <strong>coal</strong> <strong>in</strong>terbeds disappear <strong>and</strong> grade <strong>in</strong>to<br />

shale.<br />

The sediments of Serpukhovian stage lie conformably over <strong>the</strong> Upper Visean deposits. At <strong>the</strong><br />

edge of <strong>the</strong> north-western portion of <strong>the</strong> bas<strong>in</strong>, thickness varies from 50 to 150 m <strong>and</strong> to <strong>the</strong><br />

sou<strong>the</strong>ast it <strong>in</strong>creases to 1,500 to 2,000 m. The Serpukhovian is comprised of argillites with<br />

<strong>in</strong>terbeds of occasional <strong>coal</strong>.<br />

Middle Carboniferous deposits of this section are present <strong>in</strong> Bashkirian <strong>and</strong> Moskovian<br />

stages. Their thickness from <strong>the</strong> edge of <strong>the</strong> bas<strong>in</strong> to <strong>the</strong> axial depression zone <strong>in</strong>creases <strong>in</strong><br />

a uniform manner <strong>and</strong> also <strong>in</strong> <strong>the</strong> direction of <strong>the</strong> Donbass region. They resemble upper<br />

Visean <strong>and</strong> Serpukhovian formations <strong>in</strong> that <strong>the</strong>y are dom<strong>in</strong>ated by fluvial mar<strong>in</strong>e deltaic<br />

sequences. The sediments of Bashkirian stage are regionally unconformable over <strong>the</strong><br />

different horizons of Serpukhovian <strong>and</strong> Visean stages <strong>and</strong> <strong>in</strong> some places along <strong>the</strong> sou<strong>the</strong>rn<br />

edge lie directly upon Precambrian basement.<br />

The lower Bashkirian substage <strong>in</strong>cludes a small group of s<strong>and</strong>stone <strong>and</strong> shale deposits<br />

overlapped with mar<strong>in</strong>e shaley limestones with a thickness of between 50 to 400 m. The<br />

upper Bashkirian is represented with cyclic, alluvial-deltaic <strong>and</strong> lagoon deposits of<br />

<strong>in</strong>terbedded of s<strong>and</strong>stones <strong>and</strong> clays with carbonate <strong>and</strong> <strong>coal</strong> beds. Its thickness varies from<br />

100 to 1,500m. The shallow mar<strong>in</strong>e limestone layers repeat at regular <strong>in</strong>tervals <strong>and</strong> may rest<br />

directly on top of <strong>coal</strong> seams. The Moskovian stage cont<strong>in</strong>ues with an alluvial deltaic <strong>and</strong><br />

lagoonal facies characterized by <strong>in</strong>terbedded s<strong>and</strong>stones, shale, <strong>and</strong> <strong>coal</strong>. The thickness of<br />

this stage ranges from 150m up to 1,800m.<br />

The lower Serpukhonvian <strong>and</strong> <strong>the</strong> Moskovian successions are especially rich <strong>in</strong> <strong>coal</strong> 2 <strong>and</strong><br />

compose <strong>the</strong> majority of <strong>the</strong> <strong>m<strong>in</strong>e</strong>able <strong>coal</strong> seams <strong>in</strong> <strong>the</strong> Donbass Bas<strong>in</strong>. The <strong>coal</strong> seams <strong>in</strong><br />

<strong>the</strong>se successions form <strong>the</strong> ma<strong>in</strong> focus of this report <strong>and</strong> <strong>the</strong>ir geology is discussed <strong>in</strong> more<br />

detail <strong>in</strong> Section 1.3.<br />

2 rd<br />

Geologic Controls on Coalbed Occurrence <strong>in</strong> <strong>the</strong> Donets Bas<strong>in</strong>, Privalov, Zhykalyak <strong>and</strong> Panova, 3 International Methane &<br />

Nitrous Oxide Conference, Beij<strong>in</strong>g, Ch<strong>in</strong>a. Sept.2003<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-6


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The Upper Carboniferous sequence conformably overlies <strong>the</strong> Middle Carboniferous<br />

sequence <strong>and</strong> is most complete <strong>in</strong> <strong>the</strong> south-eastern portions of <strong>the</strong> bas<strong>in</strong>. Comprised of<br />

alluvial-deltaic formations with thickness 150 to 1,500 m, <strong>the</strong>y are represented by alternat<strong>in</strong>g<br />

beds of s<strong>and</strong>stones <strong>and</strong> argillites with occasional carbonate beds. In contrast to <strong>the</strong> Middle<br />

Carboniferous sequence, <strong>the</strong> <strong>coal</strong> beds are th<strong>in</strong> or absent <strong>in</strong> <strong>the</strong> Upper Carboniferous<br />

formation, with <strong>the</strong> exclusion of suite C13 of <strong>the</strong> south-eastern region of <strong>the</strong> bas<strong>in</strong>.<br />

In comparison with Carboniferous deposits, Permian deposits are less ubiquitous <strong>and</strong> have a<br />

less complete section. Despite <strong>the</strong>ir great thickness <strong>in</strong> <strong>the</strong> paleodepressions, Permian<br />

sediments are present only <strong>in</strong> <strong>the</strong> Asselian stage <strong>and</strong> <strong>the</strong> lower parts of Sakmarian stage.<br />

The thickness of Permian deposits ranges from 10 to 100 m on <strong>the</strong> northwest marg<strong>in</strong> of <strong>the</strong><br />

paleodepression to 2,500 to 2,700 m <strong>in</strong> <strong>the</strong> south-east <strong>in</strong> <strong>the</strong> central part of <strong>the</strong> Orchykivka<br />

depression.<br />

Triassic through Jurassic sediments sit unconformably on <strong>the</strong> Permian <strong>and</strong> Carboniferous<br />

formations. Primarily comprised of terrestrial deposits, <strong>the</strong> Jurassic also <strong>in</strong>cludes several<br />

mar<strong>in</strong>e carbonate units.<br />

Overly<strong>in</strong>g <strong>the</strong> Jurassic system, sedimentary formations <strong>in</strong>clude Lower Cretaceous cont<strong>in</strong>ental<br />

terrigenous deposits (up to 160 m thick), an Upper Cretaceous mar<strong>in</strong>e marl-carbonate (up to<br />

800 m thick), a Paleogene mar<strong>in</strong>e carbonate-silliceous-terrigenous deposit (up to 400 m<br />

thick), <strong>and</strong> Neogene-Quaternary terrigenous (up to 100 m thick) deposits.<br />

1.2.2 Regional Tectonics<br />

Among <strong>the</strong> paleorift structures <strong>in</strong> Eastern Europe, <strong>the</strong> Donbass Bas<strong>in</strong> is <strong>the</strong> most anomalous<br />

segment <strong>in</strong> <strong>the</strong> Dnieper-Donetsk Bas<strong>in</strong>, as it is unique <strong>in</strong> its pro<strong>m<strong>in</strong>e</strong>nt <strong>in</strong>version of <strong>the</strong> 24 km<br />

thick sedimentary column by <strong>the</strong> Donbass Foldbelt (Exhibit 1.4). The foldbelt is comprised of<br />

WNW–ESE-strik<strong>in</strong>g anticl<strong>in</strong>es <strong>and</strong> syncl<strong>in</strong>es. Major thrusts occur along <strong>the</strong> nor<strong>the</strong>rn marg<strong>in</strong><br />

of <strong>the</strong> bas<strong>in</strong>. M<strong>in</strong>or folds, reverse faults <strong>and</strong> rotated fault blocks occur along <strong>the</strong> sou<strong>the</strong>rn<br />

boundary of <strong>the</strong> bas<strong>in</strong>. The age of <strong>the</strong> compressional structures is a matter of debate; some<br />

consider a Permian age while o<strong>the</strong>rs deem it to be late Cretaceous (Alp<strong>in</strong>e) <strong>in</strong> age.<br />

The southwestern part of <strong>the</strong> Donbass Bas<strong>in</strong> comprises <strong>the</strong> Krasnoarmeisk Monocl<strong>in</strong>e <strong>and</strong><br />

<strong>the</strong> Kalmius–Torets Depression. The nor<strong>the</strong>astward-dipp<strong>in</strong>g rocks of <strong>the</strong> Krasnoarmeisk<br />

Monocl<strong>in</strong>e parallel <strong>the</strong> Mariupol– Kursk L<strong>in</strong>eament. Towards <strong>the</strong> east, <strong>the</strong> Krasnoarmeisk<br />

area grades <strong>in</strong>to <strong>the</strong> Kalmius–Torets Depression <strong>and</strong> represents <strong>the</strong> <strong>in</strong>tersection of <strong>the</strong><br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-7


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

northwestern cont<strong>in</strong>uation of <strong>the</strong> SE-trend<strong>in</strong>g South Syncl<strong>in</strong>e with <strong>the</strong> SW-trend<strong>in</strong>g<br />

Voltchansk synform. The eastern marg<strong>in</strong> of <strong>the</strong> Kalmius–Torets Depression is located near<br />

Donetsk <strong>and</strong> Makeevka.<br />

A significant tectonic element of <strong>in</strong>trabasional architecture is WNW-ESE trend<strong>in</strong>g pr<strong>in</strong>cipal<br />

displacement zone (PDZ) consist<strong>in</strong>g of a set of dextrally en echelon arranged deep<br />

basement faults with faults superimposed on depressions (pull-apart bas<strong>in</strong>s) <strong>in</strong> <strong>the</strong><br />

basement. Dur<strong>in</strong>g <strong>the</strong> post-rift stage, strike-slip pulses with<strong>in</strong> PDZs affected local<br />

depositional environments <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> pull-apart bas<strong>in</strong>s <strong>and</strong> <strong>in</strong>fluenced on<br />

depositional trends across <strong>the</strong> entire bas<strong>in</strong>. Major post-rift subsidence occurred dur<strong>in</strong>g <strong>the</strong><br />

Carboniferous.<br />

In contrast with adjacent rift sectors, <strong>the</strong> Donetsk Bas<strong>in</strong> had extensive <strong>coal</strong>-form<strong>in</strong>g<br />

environments dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>terval between 290-340 Ma, periodically triggered by <strong>the</strong> <strong>in</strong>terplay<br />

of PDZ strike-slip motions <strong>and</strong> variable rotations of <strong>the</strong> Donbass megablock. This caused<br />

recurrence from swampy coastal-mar<strong>in</strong>e pla<strong>in</strong>s with huge peatbogs to shallow sea<br />

environments <strong>and</strong> resulted <strong>in</strong> accumulation of thick (up to 14 km), paralic <strong>coal</strong>-bear<strong>in</strong>g<br />

Carboniferous (post- Early Visean) formations conta<strong>in</strong><strong>in</strong>g more than 300 <strong>coal</strong> seams <strong>and</strong><br />

layers.<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-8


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 1.4 Detailed Structure Map of <strong>the</strong> Donetsk Bas<strong>in</strong><br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-9


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

1.3 Coal Geology of <strong>the</strong> Donbass Coalfield<br />

The <strong>coal</strong>-bear<strong>in</strong>g series at <strong>the</strong> base of <strong>the</strong> Carboniferous sequence th<strong>in</strong>s along <strong>the</strong> southwest<br />

edge of <strong>the</strong> Donbass flexure <strong>and</strong> <strong>the</strong> <strong>m<strong>in</strong>e</strong>able <strong>coal</strong> seams are conta<strong>in</strong>ed <strong>in</strong> an <strong>in</strong>terval<br />

that is 400 to 500m thick. The beds are located close to one ano<strong>the</strong>r, generally 3 to 20m<br />

apart.<br />

The middle Carboniferous <strong>and</strong> its <strong>coal</strong> seams are widespread over <strong>the</strong> Donbass region. The<br />

ma<strong>in</strong> feature of this unit is a gradual decl<strong>in</strong>e <strong>in</strong> <strong>the</strong> <strong>m<strong>in</strong>e</strong>ability of <strong>the</strong> <strong>coal</strong> seams <strong>and</strong> general<br />

<strong>coal</strong>-bear<strong>in</strong>g series mov<strong>in</strong>g from <strong>the</strong> west to <strong>the</strong> east, as well as to <strong>the</strong> north. The highest<br />

concentration of <strong>coal</strong> seams <strong>in</strong> <strong>the</strong> C2 6 suite is found <strong>in</strong> <strong>the</strong> western parts of <strong>the</strong> bas<strong>in</strong>. The<br />

section is 170 to 250m thick <strong>and</strong> <strong>in</strong>cludes up to 8 <strong>m<strong>in</strong>e</strong>able layers. The upper part of <strong>the</strong> C2 5<br />

section is similar <strong>in</strong> nature. The total thickness of <strong>coal</strong>-bear<strong>in</strong>g <strong>in</strong>terval <strong>in</strong> <strong>the</strong> middle<br />

Carboniferous seams (C2 3 – C2 7 suites) is 1,500 to 3,000m (Exhibit 1.5).<br />

The total number of <strong>coal</strong> seams that are <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> Carboniferous section is about 330,<br />

two-thirds of which are not more than 0.45m thick. Only 130 seams are more than 0.45m<br />

thick. The typical thickness of <strong>in</strong>dividual <strong>coal</strong> seams is 0.6 to 0.8m. The presence of seams<br />

more than 2m thick is quite rare. There are 27 <strong>m<strong>in</strong>e</strong>able seams <strong>in</strong> <strong>the</strong> middle Carboniferous<br />

section <strong>and</strong> 8 <strong>m<strong>in</strong>e</strong>able seams <strong>in</strong> <strong>the</strong> Lower Carboniferous. The upper Carboniferous section<br />

has only one <strong>m<strong>in</strong>e</strong>able <strong>coal</strong> seam. The <strong>coal</strong>-bear<strong>in</strong>g series is irregular <strong>in</strong> thickness <strong>and</strong><br />

lateral extent across <strong>the</strong> bas<strong>in</strong>. The Donbass <strong>coal</strong> field has been divided <strong>in</strong>to 30 <strong>coal</strong> districts<br />

for adm<strong>in</strong>istrative purposes (Exhibit 1.6).<br />

Coal reserves of <strong>coal</strong> seams greater than 0.3m thick are 231 billion tons, for seams at depths<br />

of between 500 to 1,800m. All ranks of <strong>coal</strong> are found <strong>in</strong> <strong>the</strong> bas<strong>in</strong>, rang<strong>in</strong>g from brown <strong>coal</strong><br />

to anthracite.<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-10


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 1.5 Exp<strong>and</strong>ed Stratigraphic Section of <strong>the</strong> Carboniferous Coal-Bear<strong>in</strong>g Sequence<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-11


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 1.6 Coal Districts of <strong>the</strong> Donetsk Region<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-12


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

1.4 Estimate of Methane Reserves <strong>in</strong> <strong>the</strong> Donbass Bas<strong>in</strong><br />

The <strong>the</strong>rmal maturation of <strong>coal</strong> deposits <strong>in</strong> <strong>the</strong> Donbass <strong>coal</strong>field was accompanied by <strong>the</strong><br />

generation of huge quantities of <strong>methane</strong>. The amount of gas is estimated to be up to 117<br />

trillion m 3 (4,100 Tcf), <strong>and</strong> is thought to be one of <strong>the</strong> largest onshore gas resources <strong>in</strong> <strong>the</strong><br />

world. The peculiarities of <strong>the</strong> distribution of hydrocarbon gases <strong>in</strong> Donbass are closely<br />

connected with specific geological conditions of gas formation that were much affected by<br />

different chemical, biological <strong>and</strong> tectonic factors, that occurred at different periods of time<br />

<strong>and</strong> <strong>in</strong> different areas. 3<br />

Gas-bear<strong>in</strong>g areas <strong>in</strong> <strong>the</strong> Donbass Bas<strong>in</strong> were formed dur<strong>in</strong>g times of tectonic activity which<br />

began with <strong>in</strong>version. A complex nature of <strong>in</strong>version <strong>and</strong> denudation of <strong>coal</strong> seams caused<br />

gas migration that dom<strong>in</strong>ated over <strong>the</strong> gas generation processes <strong>and</strong> thus led to <strong>in</strong>tensive<br />

gas redistribution <strong>in</strong> <strong>and</strong> changes to exist<strong>in</strong>g gas-bear<strong>in</strong>g formations <strong>and</strong>, f<strong>in</strong>ally, to<br />

transform<strong>in</strong>g it <strong>in</strong>to <strong>the</strong> two current dist<strong>in</strong>ct patterns of vertical <strong>and</strong> areal distribution of gas <strong>in</strong><br />

<strong>the</strong> formations 4 . These events, <strong>and</strong> result<strong>in</strong>g distribution of <strong>methane</strong> with<strong>in</strong> <strong>the</strong> structure, are<br />

shared throughout many of <strong>the</strong> Carboniferous <strong>coal</strong> bas<strong>in</strong>s of Eastern Europe, <strong>in</strong>clud<strong>in</strong>g<br />

Pol<strong>and</strong> <strong>and</strong> <strong>the</strong> Czech Republic.<br />

The amplitude of movements dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>version process was from 4 to 11 km, with <strong>the</strong><br />

<strong>coal</strong>-bear<strong>in</strong>g strata exposed to shallow burial conditions. At that po<strong>in</strong>t, some gas was lost<br />

<strong>and</strong> areas of undersaturation with respect to gas were formed <strong>in</strong> <strong>the</strong> upper part of <strong>the</strong><br />

section. The composition of <strong>the</strong> <strong>coal</strong> seams’ gas consists of <strong>methane</strong>, but can also conta<strong>in</strong><br />

some ethane, propane, nitrogen <strong>and</strong> carbon dioxide.<br />

Heavier hydrocarbons are ma<strong>in</strong>ly conta<strong>in</strong>ed <strong>in</strong> <strong>coal</strong> seams of medium to low volatile rank.<br />

The gas conta<strong>in</strong>ed <strong>in</strong> highly metamorphized anthracites <strong>and</strong> meta-anthracites ma<strong>in</strong>ly<br />

consists of nitrogen <strong>and</strong> carbon dioxide with only a small amount of <strong>methane</strong>. Coal seams<br />

also conta<strong>in</strong> trace amounts of butane, pentane, hexane, heptane, hydrogen, helium, argon,<br />

neon, krypton <strong>and</strong> xenon.<br />

The absorptive capacity of <strong>coal</strong> <strong>in</strong>creases with rank <strong>and</strong> can reach up to 20 to 25 m 3 /t of dry<br />

basis for high to medium volatile <strong>coal</strong>s <strong>and</strong> up to 40 to 45 m 3 /t on a dry basis for higher rank<br />

<strong>coal</strong>.<br />

3<br />

V. Zaydenvarg, A. Ayruni, R. Glazov, A. Brizhanyov, Y. Petrova, “Complex Approaches to Methane Deposits”, Moscow,<br />

CNIEIUUgol, 1993<br />

4<br />

A. Brizhanyov, R. Glazov, “Specific Features of Methane Accumulations <strong>in</strong> Donetsk Bas<strong>in</strong>”, Moscow, CNIEIUUgol 1987, edition 6.<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-13


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Accord<strong>in</strong>g to published estimates, <strong>the</strong> total <strong>methane</strong> resources conta<strong>in</strong>ed <strong>in</strong> <strong>coal</strong> seams of<br />

0.3m or greater <strong>in</strong> thickness <strong>and</strong> located at depths between 500 to 1,800m are estimated to<br />

be 1,164 to 2,500 billion m 3 . Consider<strong>in</strong>g only <strong>the</strong> pr<strong>in</strong>cipal geologic/<strong>in</strong>dustrial districts, <strong>the</strong><br />

<strong>methane</strong> resource is estimated to be approximately 855 billion m 3 . 5,6 as referenced <strong>in</strong><br />

Exhibit 1.7.<br />

Geology Area<br />

Number of Coal Seams<br />

Under Analysis<br />

Content of Methane <strong>in</strong> Coal<br />

Seams, Billion m 3<br />

Krasnoarmeysk 33 231.5<br />

Donetsk-Makeyevka 59 202.1<br />

Central 46 84.8<br />

Torez-Snezhnoye 39 37.5<br />

Lisichnsk 25 37.5<br />

Lugansk 39 47.5<br />

Almazny-Mariyevsky 53 81.2<br />

Krasnodonsky 24 56.2<br />

Bokovo-Kyrustalsky 31 40.1<br />

Seleznyovsky 32 51.9<br />

Total: 855.3<br />

Exhibit 1.7 Estimated Total Methane In Place of <strong>the</strong> 10 Pr<strong>in</strong>cipal M<strong>in</strong><strong>in</strong>g Districts <strong>in</strong> Ukra<strong>in</strong>e<br />

The concentration of <strong>the</strong> CBM resource <strong>in</strong> <strong>the</strong> SW Donbass Region is relatively high<br />

compared to U.S. bas<strong>in</strong>s, with concentrations rang<strong>in</strong>g from 90 to 107 billion m 3 /km 2 . These<br />

estimates were made by <strong>the</strong> Donetskgeologiya Company <strong>and</strong> Raven Ridge Resources, Inc.<br />

(USA) (Exhibit 1.8).<br />

5<br />

B. Kosenko, “Methane Reserves of Coal Seams of Donbass”, Ukra<strong>in</strong>e Coal 1980, #12.<br />

6<br />

V. Zaydenvarg, A. Ayruni, R. Glazov, A. Brizhanyov, Y. Petrova, “Complex Approaches to Methane Deposits”, Moscow,<br />

CNIEIUUgol, 1993<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-14


Prospective Area<br />

Dobropolsk-<br />

Krasnoarmeys<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Area Size<br />

Estimate of<br />

Donetskgeologiya Company<br />

Km 2 Reserves<br />

Billion m 3<br />

Concentration<br />

Million m 3 /km 2<br />

Estimate of Raven Ridge<br />

Resources, Inc. (USA)<br />

Reserves<br />

Billion m 3<br />

Concentration<br />

Million m 3 /km 2<br />

963 76.4 79.3 101.0 104.9<br />

Grish<strong>in</strong>o-Andreyevskaya 557 18.2 32.7 29.7 53.3<br />

Yuzhno-Donbass 530 57.2 107.9 58.5 110.4<br />

Donetsk 293 44.5 151.9 46.5 158.7<br />

Makeyevskaya 246 35.9 145.9 42.0 170.7<br />

TOTAL 2,589 232.2 89.7 277.7 107.3<br />

Exhibit 1.8 Methane Reserve Concentrations <strong>in</strong> <strong>the</strong> Donbass Region<br />

1.5 Methane <strong>in</strong> Associated Strata<br />

For both CMM <strong>and</strong> CBM recovery projects, <strong>the</strong> <strong>methane</strong> conta<strong>in</strong>ed with<strong>in</strong> <strong>the</strong> non-<strong>coal</strong><br />

<strong>in</strong>terbeds can represent a significant source of additional <strong>methane</strong> beyond <strong>the</strong> targeted <strong>coal</strong><br />

seams. Therefore, it is important to consider <strong>the</strong>se sources when assess<strong>in</strong>g resource<br />

potential as well as <strong>in</strong> <strong>the</strong> <strong>development</strong> of <strong>the</strong> extraction programs.<br />

The current gas distribution <strong>in</strong> Donbass Bas<strong>in</strong> <strong>coal</strong> seams is strongly <strong>in</strong>fluenced by <strong>the</strong><br />

nature of <strong>the</strong> adjo<strong>in</strong><strong>in</strong>g strata. Due to catagenesis, <strong>the</strong> porosity <strong>and</strong> permeability of adjacent<br />

s<strong>and</strong>stones has been decreased. However, natural fractures have enhanced permeability <strong>in</strong><br />

<strong>the</strong> same s<strong>and</strong>stones, similar to tight gas s<strong>and</strong>s <strong>in</strong> <strong>the</strong> U.S. Gas prone areas <strong>in</strong> <strong>the</strong> Donbass<br />

are divided <strong>in</strong>to three ma<strong>in</strong> zones based on <strong>the</strong> vertical <strong>and</strong> areal distribution of <strong>the</strong> gas<br />

resource, <strong>the</strong> reservoir properties of adjo<strong>in</strong><strong>in</strong>g strata, <strong>and</strong> <strong>the</strong> producible reserves. 7 , 8 , 9 , 10<br />

The first zone occurs <strong>in</strong> Carboniferous sediments that <strong>in</strong>clude <strong>coal</strong> seams ranked as long<br />

flame <strong>coal</strong>, gas <strong>coal</strong> <strong>and</strong> some fat <strong>coal</strong>s (Exhibit 1.9). It is characterized by producible<br />

reserves <strong>and</strong> local gas accumulations that are connected to porous <strong>and</strong> fractured gas<br />

reservoirs, ma<strong>in</strong>ly tight gas s<strong>and</strong>s. Traditionally, <strong>coal</strong> seams of South <strong>and</strong> West Donbass,<br />

Lisichansk, Krasnoarmeysk, Millerovsky, <strong>the</strong> Bakhmutskaya <strong>and</strong> Kalmius-Torez bas<strong>in</strong>s are<br />

<strong>in</strong>cluded <strong>in</strong> <strong>the</strong> first zone.<br />

7<br />

A. Brizhanyov, R. Glazov, “Specific Features of Methane Accumulations <strong>in</strong> Donetsk Bas<strong>in</strong>”, Moscow, 1987, edition 6.<br />

8<br />

A. Ayruni, R. Glazov, “Gas Content of Coal M<strong>in</strong>es <strong>in</strong> <strong>the</strong> USSR”, Moscow, Nedra, 1990.<br />

9<br />

V. Zaydenvarg, A. Ayruni, R. Glazov, A. Brizhanyov, Y. Petrova, “Complex Approaches to Methane Deposits”, Moscow, 1993.<br />

10<br />

V. Pudak, V. Konarev, A. Alekseysev, A. Brizhanyov, ”Donbass Methane Deposits Research <strong>and</strong> Development”, Ukra<strong>in</strong>e Coal,<br />

1996 No. 10-11.<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-15


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The second zone is def<strong>in</strong>ed by <strong>the</strong> areas conta<strong>in</strong><strong>in</strong>g <strong>coal</strong> seams ranked as fat, cok<strong>in</strong>g <strong>and</strong><br />

lean-cok<strong>in</strong>g. It is characterized by producible reserves <strong>and</strong> local hydrocarbon accumulations<br />

that are connected to higher porosity <strong>and</strong> permeability reservoirs where <strong>the</strong> reservoirs are<br />

fractured. The zone’s dist<strong>in</strong>ctive feature is <strong>the</strong> high levels of gas content found <strong>in</strong> <strong>the</strong> <strong>coal</strong><br />

seams <strong>and</strong> surround<strong>in</strong>g strata. 11 The Donetsk-Makeyevka, Central, Seleznyovsky, Almazno-<br />

Mariyevsky <strong>and</strong> Krasnodon geological/<strong>in</strong>dustrial areas of Donbass are usually <strong>in</strong>cluded <strong>in</strong><br />

this zone.<br />

The third zone is associated with Carboniferous strata that conta<strong>in</strong> lean ranked <strong>coal</strong>s <strong>and</strong> low<br />

ranked anthracites. Coal seams <strong>and</strong> surround<strong>in</strong>g rock strata of this zone are characterized<br />

by low porosity <strong>and</strong> permeability, which limits <strong>the</strong> accumulation of hydrocarbons to localized<br />

areas of fractur<strong>in</strong>g <strong>and</strong> fissure. The Torez-Snezhnoye <strong>and</strong> Bokovo-Khrustalny geological<br />

areas are located <strong>in</strong> this zone.<br />

Ukra<strong>in</strong>ian Coal Type US Coal Type<br />

Long Flame, Gas High volatile, sub-bitum<strong>in</strong>ous<br />

Fat, Cok<strong>in</strong>g Medium volatile, bitum<strong>in</strong>ous<br />

Lean, Lean-Cok<strong>in</strong>g Low volatile, bitum<strong>in</strong>ous<br />

Exhibit 1.9 Coal Classification Equivalents<br />

Outside of <strong>the</strong> three gas-bear<strong>in</strong>g areas discussed above, <strong>the</strong>re is a complete absence of<br />

gaseous hydrocarbon accumulations. These areas are located <strong>in</strong> zones of highly metamorphized,<br />

high-ranked anthracitic <strong>coal</strong>. M<strong>in</strong>es <strong>in</strong> this area are not gassy <strong>and</strong> <strong>in</strong>clude those<br />

<strong>in</strong> <strong>the</strong> central <strong>and</strong> eastern parts of Bokovo-Khrustalny <strong>and</strong> Torez-Snezhnoye bas<strong>in</strong>s as well<br />

as <strong>the</strong> whole territory of Dolzhano-Rovensky geological area.<br />

The total <strong>methane</strong> resource of non-<strong>coal</strong> strata <strong>in</strong> <strong>the</strong> Donbass Bas<strong>in</strong> is between 9,820 to<br />

20,820 billion m 3 , <strong>in</strong>clud<strong>in</strong>g 982 to 3,374 billion m 3 of <strong>methane</strong> <strong>and</strong> 460 billion m 3 of solution<br />

gas. 12 Accord<strong>in</strong>g to Ukra<strong>in</strong>ian geological survey data, <strong>the</strong>re are more than 30 identified gas<br />

fields <strong>in</strong> <strong>the</strong> Donbass Bas<strong>in</strong> with an <strong>in</strong>-place resource of 180 billion m 3 , of which one-third, 60<br />

billion m 3 , is classified as proven reserves 13 .<br />

11 Opportunities for production <strong>and</strong> <strong>in</strong>vestment <strong>in</strong> <strong>the</strong> Donetsk Coal Bas<strong>in</strong>. PEER. Sept 2000<br />

12 A. Brizhanyov, R. Glazov, “Specific Features of Methane Accumulations <strong>in</strong> Donetsk Bas<strong>in</strong>”, Moscow, CNIEIUUgol, 1987, edition 6.<br />

13 Opportunities for production <strong>and</strong> <strong>in</strong>vestment <strong>in</strong> <strong>the</strong> Donetsk Coal Bas<strong>in</strong>. PEER. Sept 2000<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-16


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

1.6 Coal M<strong>in</strong>e Methane Project Areas<br />

1.6.1 Yuzhno-Donbasskaya #3 M<strong>in</strong>e<br />

Yuzhno-Donbasskaya #3 M<strong>in</strong>e is located <strong>in</strong> <strong>the</strong> Mariynsky <strong>and</strong> Volnovakha districts (rayons)<br />

of <strong>the</strong> Donetsk Oblast, 50 km to <strong>the</strong> southwest of <strong>the</strong> oblast capital Donetsk (Exhibit 1.1). The<br />

nearest towns are Dobropolye <strong>and</strong> Ugledar (6 km to <strong>the</strong> south). The latter is a large m<strong>in</strong><strong>in</strong>g<br />

town with a population of 20,000, most of <strong>the</strong>m employees of Yuzhno-Donbasskaya #1 <strong>and</strong><br />

#3 <strong>m<strong>in</strong>e</strong>s.<br />

The <strong>m<strong>in</strong>e</strong>’s surface facilities are adjacent to <strong>the</strong> Uglesborochnaya railroad h<strong>and</strong>l<strong>in</strong>g po<strong>in</strong>t,<br />

connect<strong>in</strong>g to Yuzhno-Donbasskaya station through a nearby rail junction. The <strong>m<strong>in</strong>e</strong> receives<br />

its electric power supply from Kurakhovskaya Power Plant that is situated 25 km north of <strong>the</strong><br />

property.<br />

The Yuzhno-Donbasskaya #3 <strong>m<strong>in</strong>e</strong> (South-Donbass) was put <strong>in</strong>to operation <strong>in</strong> 1985 with<br />

capacity of 2.4 million tons. The <strong>m<strong>in</strong>e</strong> covers an area of approximately 10 km by 5 km or<br />

about 50 km 2 . The total recoverable reserves of <strong>coal</strong> are approximately 158 million tons out<br />

of an estimated 192 million tons <strong>in</strong>-place. Currently, <strong>the</strong> <strong>m<strong>in</strong>e</strong> produces from two <strong>coal</strong>-beds:<br />

<strong>the</strong> C11<strong>and</strong> C10 2 at a rate of approximately 1.2 million tons per year.<br />

1.6.1.1 Geology<br />

The Yuzhno-Donbasskaya #3 <strong>m<strong>in</strong>e</strong> is located <strong>in</strong> <strong>the</strong> Kalmius–Torets Depression between <strong>the</strong><br />

Slozhny, Dol<strong>in</strong>ny, <strong>and</strong> Vladimirsky faults <strong>and</strong> covers most of <strong>the</strong> Shyrokaya syncl<strong>in</strong>e. The<br />

syncl<strong>in</strong>al axis is traced <strong>in</strong> <strong>the</strong> central part of <strong>the</strong> <strong>m<strong>in</strong>e</strong> with a plunge to <strong>the</strong> nor<strong>the</strong>ast. The<br />

nor<strong>the</strong>rn limb dips to northwest direction, <strong>the</strong> sou<strong>the</strong>rn one <strong>in</strong> a latitud<strong>in</strong>al direction.<br />

The axis of <strong>the</strong> Shyrokaya syncl<strong>in</strong>e <strong>in</strong>tersects <strong>the</strong> Krivorozhsko-Pavlovsky fault at almost 90<br />

degrees <strong>and</strong> plunges to <strong>the</strong> southwest. The saddle is located 1500m from <strong>the</strong> fault <strong>and</strong><br />

adjo<strong>in</strong>s <strong>the</strong> borders of <strong>the</strong> <strong>m<strong>in</strong>e</strong> field from <strong>the</strong> southwest.<br />

Given <strong>the</strong> <strong>in</strong>tense regional tectonic events surround<strong>in</strong>g <strong>the</strong> <strong>m<strong>in</strong>e</strong>, fault<strong>in</strong>g is pro<strong>m<strong>in</strong>e</strong>nt <strong>in</strong> <strong>the</strong><br />

area. The dip of <strong>the</strong> <strong>coal</strong> seams varies from 5-12°, <strong>in</strong>creas<strong>in</strong>g up to 40-70° <strong>in</strong> <strong>the</strong> fault zones.<br />

Often, <strong>the</strong> <strong>coal</strong>s are <strong>in</strong>tensely naturally fractured <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> fault systems. In terms<br />

of <strong>the</strong>ir morphological features <strong>the</strong> faults near <strong>the</strong> <strong>m<strong>in</strong>e</strong> can be divided <strong>in</strong>to follow<strong>in</strong>g<br />

subgroups:<br />

Regional thrust faults that strike West-Northwest, with primary dips to <strong>the</strong> Nor<strong>the</strong>ast<br />

(Krivorozhsko-Pavlovsky fault, Slozhny fault);<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-17


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

High-angled faults that strike to Northwest-Sou<strong>the</strong>ast <strong>and</strong> dip southwest (Dol<strong>in</strong>ny,<br />

Pridol<strong>in</strong>ny, Vladimirsky, <strong>and</strong> Shevchenkovsky faults);<br />

High-angled faults which that strike North-South (related to <strong>the</strong> Mariupol– Kursk<br />

L<strong>in</strong>eament);<br />

The Krivorozhsko-Pavlovsky fault is <strong>the</strong> primary structural feature of <strong>the</strong> area. It is a natural<br />

border of <strong>the</strong> <strong>m<strong>in</strong>e</strong> field located at <strong>the</strong> extreme southwest part of <strong>the</strong> <strong>coal</strong> field. The fault dips<br />

between 40 to 60° with a throw of approximately 1,000m. Near <strong>the</strong> fault, <strong>coal</strong>s are naturally<br />

fractured <strong>and</strong> often crumble when removed from <strong>the</strong> core barrel.<br />

The Slozhny fault is a major anti<strong>the</strong>tic fault of <strong>the</strong> ma<strong>in</strong> Krivorozhsko-Pavlovsky fault. In <strong>the</strong><br />

nor<strong>the</strong>ast part of <strong>the</strong> <strong>m<strong>in</strong>e</strong> area this system forms a wide zone of <strong>in</strong>tense natural fractur<strong>in</strong>g.<br />

The amount of fault throw reaches 150m <strong>in</strong> some areas of <strong>the</strong> fault. Fur<strong>the</strong>r to <strong>the</strong> south its<br />

amplitude decreases to 15m <strong>and</strong> near to <strong>the</strong> Pavlovsky crest <strong>the</strong> amplitude flattens.<br />

F<strong>in</strong>ally, <strong>the</strong>re is a group of high-angle, discordant faults that strike sou<strong>the</strong>ast <strong>and</strong> dip<br />

southwest <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part of <strong>the</strong> <strong>m<strong>in</strong>e</strong> field<br />

1.6.1.2 Coal Geology <strong>and</strong> Properties<br />

The South Donbass <strong>coal</strong> deposits are located <strong>in</strong> a strip along <strong>the</strong> southwest outskirts of <strong>the</strong><br />

Donetsk bas<strong>in</strong> that borders <strong>the</strong> Ukra<strong>in</strong>ian crystall<strong>in</strong>e massif. The <strong>coal</strong>-bear<strong>in</strong>g series of <strong>the</strong><br />

lowest <strong>coal</strong> sequence is stretched along <strong>the</strong> south-west side of <strong>the</strong> Donetsk flexure <strong>and</strong> <strong>the</strong><br />

recoverable <strong>coal</strong>-seams are located <strong>in</strong> a 400 to 500 m thick section.<br />

Middle <strong>and</strong> upper Carboniferous <strong>coal</strong> series occur throughout <strong>the</strong> territory of Donbass. The<br />

ma<strong>in</strong> characteristic feature of <strong>the</strong> sequence is a gradual decrease <strong>in</strong> <strong>the</strong> number of <strong>coal</strong>seams<br />

mov<strong>in</strong>g from <strong>the</strong> west to <strong>the</strong> east, as well as to <strong>the</strong> north.<br />

The entire Carboniferous sequence conta<strong>in</strong>s about 130 workable <strong>coal</strong> seams that vary <strong>in</strong><br />

thickness between 0.45 <strong>and</strong> 2.5 m, averag<strong>in</strong>g about 0.9 m. The Donbass <strong>coal</strong>s usually have<br />

high ash yields (12 to 18%) <strong>and</strong> high sulphur contents 2.5 to 3.5% (Panov, 1999).<br />

Lithologically, <strong>coal</strong> <strong>in</strong>terbeds are represented by alternat<strong>in</strong>g layers of argillites, aleurolites <strong>and</strong><br />

heterogeneously-gra<strong>in</strong>ed s<strong>and</strong>stones with rare layers of limestone. (Exhibit 1.10) The<br />

overburden is comprised of Mesozoic chalk-like marls <strong>and</strong> siliceous rocks 70 to 130 m thick<br />

covered by an additional 30 to 50m of Cenozoic (pr<strong>in</strong>cipally Neogene) clays with s<strong>and</strong>stone<br />

str<strong>in</strong>gers.<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-18


Rock Type<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Percentage of Rock Types <strong>in</strong> <strong>the</strong> Carboniferous Sequence<br />

C1 2 C1 3 C1 4 C1 5<br />

Aleurolites 60-70 75 60 59<br />

S<strong>and</strong>stones 16-17 12 22 20<br />

Argillites 11-20 11 16 18<br />

Limestones 1.5-2.0 0.5 1.6 2.2<br />

Coals 0.3 1.6 0.7 0.5<br />

Exhibit 1.10 Lithologic Composition of <strong>the</strong> Coal Bear<strong>in</strong>g Sequence<br />

1.6.1.3 Coal Reserves<br />

The thickness of <strong>the</strong> <strong>coal</strong>-bear<strong>in</strong>g strata <strong>in</strong> <strong>the</strong> <strong>m<strong>in</strong>e</strong> areas between <strong>the</strong> top <strong>and</strong> bottom <strong>coal</strong>beds<br />

is about 420m <strong>and</strong> conta<strong>in</strong>s more than 60 <strong>coal</strong> beds <strong>and</strong> <strong>in</strong>terbeds. A summary of <strong>the</strong><br />

<strong>coal</strong> seams present <strong>in</strong> <strong>the</strong> <strong>m<strong>in</strong>e</strong> area is shown <strong>in</strong> Exhibit 1.11.<br />

There are three pr<strong>in</strong>cipal <strong>coal</strong> beds that are exploited <strong>in</strong> <strong>the</strong> <strong>m<strong>in</strong>e</strong>. The C13 <strong>coal</strong> bed is one of<br />

<strong>the</strong> primary pays of <strong>the</strong> <strong>m<strong>in</strong>e</strong>, be<strong>in</strong>g a widespread <strong>and</strong> uniform bed, rang<strong>in</strong>g between 0.8-<br />

0.95m <strong>in</strong> thickness. Ano<strong>the</strong>r primary <strong>coal</strong> bed is <strong>the</strong> C11, which has been <strong>in</strong>tensively exploited<br />

s<strong>in</strong>ce <strong>the</strong> <strong>in</strong>itial operation of <strong>the</strong> <strong>m<strong>in</strong>e</strong>. The total area worked to date of <strong>the</strong> C11 <strong>coal</strong> seam is<br />

about 4.5 km 2 . The C11 <strong>coal</strong> is not uniform, however, <strong>and</strong> is divided by an <strong>in</strong>terbed of argillite.<br />

The net thickness of <strong>the</strong> <strong>coal</strong> ranges between 1.5 to 1.7m. The <strong>coal</strong> bed C10 2 is widespread<br />

as a s<strong>in</strong>gle seam <strong>in</strong> <strong>the</strong> extreme eastern part of <strong>the</strong> <strong>m<strong>in</strong>e</strong> cover<strong>in</strong>g 16 % of <strong>the</strong> area. The<br />

total area of work<strong>in</strong>g of <strong>the</strong> <strong>coal</strong> bed C10 2 is 65,000 m 2 .<br />

1.6.1.4 Coal Properties<br />

Data on petrographic <strong>and</strong> chemical characteristics of <strong>the</strong> <strong>coal</strong> <strong>m<strong>in</strong>e</strong>s at <strong>the</strong> Yuzhno-<br />

Donbasskaya #3 <strong>m<strong>in</strong>e</strong> are shown <strong>in</strong> Exhibit 1.12, Exhibit 1.13, Exhibit 1.14 <strong>and</strong> Exhibit 1.15.<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-19


Coalbed<br />

C18<br />

C13<br />

Cll B<br />

Cll<br />

Cll H<br />

C10 2<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Net Thickness m.<br />

From – To<br />

Average<br />

Total Recoverable<br />

0.55-1.0<br />

0.75<br />

0.55-1.25<br />

0.8<br />

0.55-1.04<br />

0.84<br />

0.99-1.88<br />

1.56<br />

0.6-0.94<br />

0.72<br />

0.65-1.38<br />

1.0<br />

C10 1 -<br />

C10<br />

C6 1<br />

C4 3<br />

C4 2<br />

C2<br />

C1 1<br />

B5 1<br />

-<br />

0.6-1.2<br />

0.97<br />

0.55-0.88<br />

0.61<br />

0.55-1.09<br />

0.85<br />

0.55-0.74<br />

0.59<br />

0.49-0.65<br />

0.57<br />

0.35-1.2<br />

0.84<br />

0.39-0.6<br />

0.51<br />

0.45-0.55<br />

0.51<br />

0.45-0.55<br />

0.5<br />

Distance<br />

between <strong>coal</strong>beds.<br />

m.<br />

Estimated Extent %<br />

Total Recoverable<br />

35 from C5 36.7 37.7<br />

88 53.5 5.0<br />

13 29.2 1.1<br />

- - 51.0 -<br />

0.7-0.85<br />

0.81<br />

0.55-1.0<br />

0.71<br />

0.45-0.64<br />

0.5<br />

0.45-0.6<br />

0.49<br />

0.62-0.74<br />

0.68<br />

0.45-0.88<br />

0.49<br />

0.39-0.5<br />

0.47<br />

0.45-0.64<br />

0.52<br />

0.4-0.65<br />

0.51<br />

0.35-1.38<br />

0.57<br />

0.0-4.0 24.8 5.5<br />

15 16 6<br />

4 - 23<br />

6 - 25<br />

78 99.8 0.03<br />

53 8.5 14.0<br />

9 68 2.5<br />

57 11 42.5<br />

19 8 50<br />

93 20.5 2<br />

Exhibit 1.11 Coal Thickness, Yuzhno-Donbasskaya #3 M<strong>in</strong>e<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-20


Coal bed<br />

C13<br />

C11<br />

C10 2<br />

C6 1<br />

Ash Content<br />

of Coal<br />

1.2 - 17.3<br />

5.3<br />

1.7 -19.7<br />

6.0<br />

1.5 -10.4<br />

4.2<br />

1.5 - 22.9<br />

5.6<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Parameters<br />

from – to<br />

average<br />

Ash Content Includ<strong>in</strong>g<br />

Contam<strong>in</strong>ants<br />

1.2 - 23.0<br />

5.6<br />

1.7 - 28.6<br />

6.9<br />

1.5 - 23.6<br />

5.0<br />

1.5 - 26.3<br />

5.8<br />

Operational Measure of contam<strong>in</strong>ation<br />

51.4 45.8<br />

19.6 - 25.3<br />

21.8<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-21<br />

14.9<br />

40.9 35.9<br />

27.0 21.2<br />

Exhibit 1.12 Ash Content, Yuzhno-Donbasskaya #3 M<strong>in</strong>e<br />

Specific Sulfur %<br />

from – to<br />

average - value<br />

Coal Bed Total Sulfur % Sulphate (S04) Sulphite (S03) Organic (So) Phosphorus<br />

C13<br />

C11<br />

C10 2<br />

c/<br />

1.1- 4.23<br />

1.99<br />

0.7 - 2.76<br />

1.26<br />

0.91-3.62<br />

2.04<br />

0.71- 3.48<br />

1.9<br />

0.0 - 0.09<br />

0.03<br />

0.01- 0.1<br />

0.02<br />

0.0 - 0.12<br />

0.04<br />

0.01- 0.21<br />

0.04<br />

0.4-3.51<br />

1.23<br />

0.1-1.94<br />

0.54<br />

0.20-1.8<br />

1.0<br />

0.1-2.43<br />

1.03<br />

0.4 -1.0<br />

0.72<br />

0.5 - 0.9<br />

0.70<br />

0.40 - 1.2<br />

0.88<br />

0.46 -1.3<br />

0.86<br />

Exhibit 1.13 Sulfur <strong>and</strong> Phosphorus Content, Yuzhno-Donbasskaya #3 M<strong>in</strong>e<br />

0.001- 0.145<br />

0.019<br />

0.003 - 0.035<br />

0.016<br />

0.001- 0.248<br />

0.008<br />

0.00 - 0.970<br />

0.019


Coal-bed<br />

C13<br />

C11<br />

C10 2<br />

C6 1<br />

Coal Bed<br />

C13<br />

C11<br />

C10 2<br />

C6 1<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Material composition %,<br />

M<strong>in</strong> – Max<br />

Average<br />

Vitr<strong>in</strong>ite Semivitr<strong>in</strong>ite Inert<strong>in</strong>ite Lipt<strong>in</strong>ite<br />

57 -71<br />

61<br />

56 – 76<br />

64<br />

53 – 67<br />

60<br />

55 -78<br />

65<br />

1-8<br />

2<br />

0-5<br />

2.1<br />

1-3<br />

2<br />

1-5<br />

2.5<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-22<br />

9-27<br />

21<br />

12 – 27<br />

18<br />

17 – 20<br />

19<br />

4-19<br />

15<br />

Exhibit 1.14 Coal Petrography, Yuzhno-Donbasskaya #3 M<strong>in</strong>e<br />

Thermal Maturity<br />

from – to<br />

average<br />

V daf % Ro %<br />

31.4-43.7<br />

39.3<br />

34.0 - 41.8<br />

35.7<br />

36.1- 42.8<br />

39.3<br />

33.9 - 44.2<br />

39.1<br />

0.59 - 0.93<br />

0.78<br />

0.56 - 0.84<br />

0.74<br />

0.79-0.79<br />

0.79<br />

0.61- 0.87<br />

0.75<br />

Exhibit 1.15 Thermal Maturity, Yuzhno-Donbasskaya #3 M<strong>in</strong>e<br />

10 – 26<br />

15<br />

9-20<br />

15<br />

13 – 26<br />

20<br />

11 – 25<br />

18<br />

1.6.1.5 Gas Properties<br />

The generalized data on all tested <strong>coal</strong>-beds is presented <strong>in</strong> Exhibit 1.16. It has been<br />

deter<strong>m<strong>in</strong>e</strong>d by m<strong>in</strong><strong>in</strong>g operations that <strong>the</strong> upper boundary of <strong>methane</strong> gases <strong>in</strong> <strong>the</strong> <strong>m<strong>in</strong>e</strong> lies<br />

at a depth of 170 to 200m. As one goes deeper, <strong>the</strong> concentration of <strong>methane</strong> decreases;<br />

for depth <strong>in</strong>tervals of 400 to 1100m <strong>methane</strong> concentrations are 52.9 to 94.1 % of total gas.<br />

The average values range between 73.8 to 83.0 %. The content of nitrogen ranges between<br />

0 to 17 % <strong>and</strong> <strong>the</strong> content of carbon dioxide averages around 3.5 % <strong>and</strong> ranges between 0.1<br />

to 8.7 %.


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Gas Composition by Depth Range.<br />

(%. from - to / average)<br />

Depths<br />

m He H2 CO2 CH4 C2H6<br />

C3H8<br />

<strong>and</strong> o<strong>the</strong>rs N2<br />

Gas per mass<br />

of dry ashfree<br />

<strong>coal</strong><br />

m 3 /ton<br />

400-500 - 4.1 8.3 59.1 0.1 0.0 31.2 10.5<br />

500-600<br />

600-700<br />

700-800<br />

800-900<br />

900-1000<br />

1000-<br />

1100<br />

0.0-0.74<br />

0.08<br />

0.0-0.11<br />

0.05<br />

0-0.11<br />

0.041.<br />

0.0-0.11<br />

0.04<br />

0.0-0.2<br />

0.06<br />

0.0-0.9<br />

0.04<br />

0.0-3.6<br />

0.37<br />

0.0-5.0<br />

0.4<br />

0-7.4<br />

0.595<br />

0.0-8.6<br />

0.42<br />

0.0-2.3<br />

0.47<br />

-<br />

0.1-8.7<br />

0.4<br />

0.1- 6.3<br />

2.8<br />

1.0-13.9<br />

8.0<br />

0.3-7.1<br />

3.4<br />

1.2-8.7<br />

3.0<br />

1.5 -17.0<br />

5.4<br />

60.3-94.1<br />

82.2<br />

52.9 - 93.5<br />

83.0<br />

57.5-92.9<br />

80.8<br />

59.2-93.4<br />

80.8<br />

61.8-93.6<br />

78.3<br />

53.5-91.3<br />

73.8<br />

0.0-0.2<br />

0.08<br />

0.0 - 0.7<br />

0.13<br />

0.0-1.8<br />

0.36<br />

0.0-3.9<br />

0.57<br />

0.0-2.6<br />

0.58<br />

0.0-2.1<br />

0.64<br />

0.0-1.4<br />

0.09<br />

0.0-0.1<br />

0.01<br />

0.0-0.4<br />

0.05<br />

0.0-1.32<br />

0.09<br />

0.0-0.8<br />

0.16<br />

0.0-0.8<br />

0.19<br />

Exhibit 1.16 Gas Composition, Yuzhno-Donbasskaya #3 M<strong>in</strong>e<br />

3.4-29.3<br />

13.6<br />

4.3-37.2<br />

12.8<br />

3.9-35.2<br />

14.3<br />

4.3-36.2<br />

14.1<br />

4.2-52.2<br />

15.0<br />

6.6-30.4<br />

18.7<br />

9.0-19.1<br />

13.5<br />

6.9-26.2<br />

15.8<br />

7.9-34.5<br />

14.3<br />

6.5-28.5<br />

15.5<br />

8.7-27.5<br />

15.3<br />

10.1-18.<br />

13.6<br />

Heavier hydrocarbons are found at depths start<strong>in</strong>g at 500 m <strong>and</strong> below 700 m ethane<br />

volumes reach 1.8 to 3.9 % <strong>and</strong> <strong>the</strong> presence of propane <strong>in</strong> <strong>the</strong> gas is observed (0.8 to<br />

1.4%).<br />

The dist<strong>in</strong>ctive feature of <strong>coal</strong>-bed derived gases <strong>in</strong> <strong>the</strong> Yuzhno-Donbasskaya #3 <strong>m<strong>in</strong>e</strong> is <strong>the</strong><br />

content of helium <strong>and</strong> hydrogen. The average values of H2 range between 0.4 to 0.5 %<br />

(maximum 8.6%) <strong>and</strong> helium ranges between 0.04 to 0.079 %. The presence of <strong>the</strong>se gases<br />

testifies to <strong>the</strong> activity of tectonic zones <strong>and</strong> <strong>the</strong> highest values are found near or along fault<br />

zones.<br />

1.6.1.6 M<strong>in</strong>e Degass<strong>in</strong>g<br />

The Yuzhno-Donbasskaya #3 <strong>m<strong>in</strong>e</strong> has <strong>m<strong>in</strong>e</strong>d <strong>the</strong> C10 2 , C11, C13 <strong>and</strong> C6 <strong>coal</strong> beds at depths<br />

of 585-940m. Accord<strong>in</strong>g to measurements made <strong>in</strong> 1996, <strong>the</strong> degass<strong>in</strong>g of <strong>the</strong> <strong>m<strong>in</strong>e</strong><br />

produced 98m 3 <strong>methane</strong> per ton of <strong>coal</strong> <strong>m<strong>in</strong>e</strong>d.<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-23


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The concentration of <strong>methane</strong> per ton of <strong>coal</strong> <strong>m<strong>in</strong>e</strong>d of <strong>the</strong> C13 <strong>coal</strong> bed at depths of 550-<br />

700m produces 20-182 m 3 per ton. Increased <strong>methane</strong> flows were observed along <strong>the</strong><br />

monocl<strong>in</strong>al fold <strong>in</strong> <strong>the</strong> sou<strong>the</strong>rn part of <strong>the</strong> <strong>m<strong>in</strong>e</strong> area. The <strong>methane</strong> emissions from m<strong>in</strong><strong>in</strong>g<br />

<strong>the</strong> C11 <strong>coal</strong> bed are a little less than that of <strong>the</strong> C13 <strong>coal</strong> at 6-33 m 3 per ton. The <strong>coal</strong> bed<br />

C10 2 was <strong>m<strong>in</strong>e</strong>d at depths of 600-700m. Its <strong>methane</strong> emissions were 16-17 m 3 per ton of <strong>coal</strong><br />

<strong>m<strong>in</strong>e</strong>d, much lower than that of <strong>the</strong> overly<strong>in</strong>g <strong>coal</strong>-beds.<br />

The lower levels of <strong>methane</strong> may be due to a high daily <strong>coal</strong> production, up to 700 tons a<br />

day. The <strong>methane</strong> emissions from <strong>the</strong> C6 <strong>coal</strong> bed ranges from 32 to 69 m 3 per ton at depths<br />

of 610 to 750 m. Dur<strong>in</strong>g a slow down <strong>in</strong> <strong>the</strong> extraction rate, <strong>methane</strong> production <strong>in</strong>creased<br />

sharply (almost twice as much) <strong>and</strong> is probably connected with high gas saturation of <strong>the</strong><br />

surround<strong>in</strong>g <strong>coal</strong> seams <strong>and</strong> strata.<br />

From 1998 to 1999 <strong>the</strong> total volume of <strong>methane</strong> produced by <strong>the</strong> degasification system of <strong>the</strong><br />

<strong>m<strong>in</strong>e</strong> was 6.16 million m 3 <strong>and</strong> when <strong>the</strong> ventilation system is <strong>in</strong>cluded, it is estimated that 39<br />

million m 3 was produced.<br />

1.6.1.7 Gas In-Place<br />

The gas-<strong>in</strong>-place of <strong>coal</strong>-beds <strong>and</strong> enclosed strata was measured <strong>in</strong> 20 core wells <strong>in</strong> <strong>the</strong><br />

complex KII-65 (MIG-65) as well as <strong>the</strong> composition of gases (Exhibit 1.17). In one of <strong>the</strong><br />

wells, <strong>the</strong> presence of natural gas <strong>in</strong> <strong>the</strong> <strong>coal</strong>-beds <strong>and</strong> enclosed strata was def<strong>in</strong>ed by <strong>the</strong><br />

MGRI complex method <strong>and</strong> with cont<strong>in</strong>uous gas logg<strong>in</strong>g. The collective properties of<br />

s<strong>and</strong>stones were also def<strong>in</strong>ed for <strong>the</strong> determ<strong>in</strong>ation of potential <strong>methane</strong>-bear<strong>in</strong>g capacity of<br />

<strong>the</strong> s<strong>and</strong>s.<br />

Depth Interval m Gas-<strong>in</strong>-Place by Coal Bed (m 3 /ton)<br />

C13 C11 C10 2 C6<br />

500 - 600 14.0 - - -<br />

12.6-19.1 6.9 - 21.8 20.1-30.5<br />

600 - 700<br />

16.3<br />

13 .7<br />

25.3 -<br />

10.2-12.4 8.5 - 21.0 9.0-11.7 10.4 - 34 .5<br />

700 - 800<br />

11.2<br />

14.1<br />

10.4<br />

15.6<br />

9.3-18.5 6.6-20.4<br />

6.5-15.7<br />

800 - 900<br />

13.2<br />

15.2 -<br />

12.3<br />

12.9-18.1<br />

14.8-18.4<br />

900 - 1000 -<br />

15.5 -<br />

16.4<br />

13.6-18.2<br />

1000 -1100 - - -<br />

15.2<br />

Exhibit 1.17 Gas-<strong>in</strong>-Place for Specific Depths, Yuzhno-Donbasskaya #3 M<strong>in</strong>e<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-24


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

When drill<strong>in</strong>g <strong>the</strong> area for <strong>the</strong> geologic determ<strong>in</strong>ation of thickness <strong>and</strong> depth, <strong>coal</strong> cores were<br />

not taken <strong>and</strong> unfortunately, nor were gas content measurements taken. The presence of<br />

gas however was logged <strong>in</strong> a few <strong>in</strong>tervals <strong>in</strong> <strong>the</strong> <strong>in</strong>terbedded s<strong>and</strong>stones <strong>and</strong> amounts<br />

between 1.34 to 2.93 m 3 /m 3 were noted <strong>and</strong> were associated with water <strong>in</strong> most cases. The<br />

o<strong>the</strong>r beds of s<strong>and</strong>stones were tested toge<strong>the</strong>r with <strong>coal</strong>-beds <strong>and</strong> <strong>the</strong>ir high gas capacity is<br />

more likely to be connected with <strong>coal</strong> seams <strong>and</strong> not with <strong>the</strong> s<strong>and</strong>stones. The high gas<br />

saturation of <strong>the</strong> <strong>coal</strong>-bear<strong>in</strong>g series <strong>in</strong> <strong>the</strong> Yuzhno-Donbasskaya #3 <strong>m<strong>in</strong>e</strong> is ma<strong>in</strong>ta<strong>in</strong>ed by<br />

<strong>the</strong> seal provided by <strong>the</strong> Cretaceous deposits <strong>and</strong> also <strong>the</strong> thick (20 to 30 m) series of<br />

argillites above <strong>the</strong> limestones.<br />

Estimates of potential gas <strong>in</strong> place are calculated by adsorption potential of <strong>the</strong> <strong>in</strong>dividual<br />

<strong>coal</strong> beds. Overall, <strong>the</strong> gas-<strong>in</strong>-place of <strong>the</strong> <strong>coal</strong> seams average between 15 m 3 per a ton at<br />

450m <strong>and</strong> 20 m 3 per a ton at 600 m depth (see Exhibit 1.17). Accord<strong>in</strong>g to this data, <strong>coal</strong>beds<br />

have gas content up to 20m 3 per a ton on a dry, ash-free (DAF) basis <strong>in</strong> <strong>the</strong> 600 to<br />

800m depth range <strong>and</strong> <strong>in</strong> <strong>the</strong> deeper horizons, only localized <strong>in</strong>creases <strong>in</strong> gas content were<br />

observed <strong>and</strong> were connected with tectonic fractures (<strong>the</strong> <strong>coal</strong> bed C1 had a gas content of<br />

28.5 m 3 per ton DAF near to <strong>the</strong> Noviy fault) as wells drilled near fault zones.<br />

The absorptive capacity of <strong>methane</strong> of <strong>the</strong> C13 <strong>coal</strong> at a pressure of 50 atmospheres<br />

(correspond<strong>in</strong>g to depths between 454 to 692 m) is 17 to 24 m 3 per ton. The <strong>coal</strong> bed C13 is<br />

characterized by quite high stable gas presence at borders of <strong>the</strong> <strong>m<strong>in</strong>e</strong>.<br />

The <strong>coal</strong> bed C11 is one of <strong>the</strong> most cont<strong>in</strong>uous <strong>coal</strong>-beds <strong>in</strong> <strong>the</strong> <strong>m<strong>in</strong>e</strong> area. The <strong>coal</strong> bed C11<br />

was tested by <strong>the</strong> GKN method. At a depth of 450 m, <strong>the</strong> <strong>coal</strong> bed conta<strong>in</strong>s 15m 3 per ton of<br />

gas <strong>and</strong> 20m 3 per ton of dry gas at 600 m. The absorptive capacity for <strong>methane</strong> of <strong>the</strong> <strong>coal</strong><br />

bed C11 at a depth of 600m is 20.1 to 29.0 m 3 per ton DAF at a pressure of 50 atmospheres.<br />

The <strong>methane</strong> content fluctuates between 6.7 - 151.8 m 3 per ton of daily <strong>m<strong>in</strong>e</strong> output <strong>and</strong><br />

averages 25 m 3 per ton of daily <strong>m<strong>in</strong>e</strong> output.<br />

The presence of gas <strong>in</strong> <strong>the</strong> <strong>coal</strong> bed C10 2 <strong>and</strong> adjo<strong>in</strong><strong>in</strong>g <strong>coal</strong>-beds C10 1 <strong>and</strong> C10 fluctuates<br />

with<strong>in</strong> <strong>the</strong> range of 15 to 20 m 3 per ton DAF. The <strong>methane</strong> content of <strong>the</strong> <strong>coal</strong> bed C10 at a<br />

depth of 624 to 740m has a gas content of 16.8 to 17.0 m 3 per DAF ton.<br />

The C6 <strong>coal</strong> bed has a gas content rang<strong>in</strong>g from 10-18m 3 ton DAF with an average of 15 m 3<br />

per ton DAF at depth of 500 m. The absorptive capacity of <strong>the</strong> C6 <strong>coal</strong> is 16.3 m 3 per ton DAF<br />

at a depth of 578.6m.<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-25


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The basic estimated area of <strong>the</strong> <strong>coal</strong> bed is characterized by gas presence from 15 – 20 m 3<br />

per ton on a dry ash-free basis. The total calculated gas-<strong>in</strong>-place reserves for all <strong>coal</strong> seams<br />

<strong>in</strong> <strong>the</strong> South-Donbass #3 <strong>m<strong>in</strong>e</strong> are 4.8 billion m 3 . (Exhibit 1.18)<br />

Coal-bed<br />

Gas-<strong>in</strong>-Place of Coals<br />

(million m 3 )<br />

Recoverable Resource Total<br />

C18 150 118 268<br />

C13 349 60 409<br />

C11 B 154 23 177<br />

C11 628 68 696<br />

C10 2 11 67 78<br />

C10 2H 9.4 17.4 27<br />

C10 1 - 281 281<br />

C10 - 208 208<br />

C6 1 589 40 629<br />

C4 3 61 331 392<br />

C4 2 493 49 542<br />

C2 - 256 256<br />

C1 1 - 394 394<br />

B5 1 - 510 510<br />

Total 2511 2356 4867<br />

Exhibit 1.18 Gas-<strong>in</strong>-Place of Individual Coal Beds of Yuzhno-Donbasskaya #3 M<strong>in</strong>e<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-26


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

1.6.1.8 Estimation of Gas Reserves<br />

As part of <strong>the</strong> process of estimat<strong>in</strong>g <strong>the</strong> CMM reserves of <strong>the</strong> Yuzhno-Donbasskaya #3 <strong>m<strong>in</strong>e</strong><br />

<strong>the</strong> degasification rate for an 11 year period (1995 to 2005) was analyzed (Exhibit 1.19).<br />

Dur<strong>in</strong>g that period <strong>the</strong> <strong>m<strong>in</strong>e</strong> produced between 1,502 to 4,301 tons of <strong>coal</strong> per day <strong>and</strong><br />

yielded <strong>methane</strong> emission rates of between 22.5 to 107.8 m 3 per m<strong>in</strong>ute.<br />

The average annual relative <strong>methane</strong> abundance of <strong>the</strong> <strong>m<strong>in</strong>e</strong> varied between 11.9 to 47.6 m 3<br />

per ton on a dry ash-free basis dur<strong>in</strong>g this time period <strong>and</strong> its normalized value <strong>in</strong>creased<br />

from 19.2 to 28.2 m 3 per ton. The <strong>in</strong>crease <strong>in</strong> this value for <strong>the</strong> last five years is caused<br />

ma<strong>in</strong>ly by an <strong>in</strong>crease <strong>in</strong> <strong>the</strong> depth of m<strong>in</strong><strong>in</strong>g for <strong>coal</strong> seam C11.<br />

12 0<br />

10 0<br />

80<br />

60<br />

40<br />

20<br />

0<br />

1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005<br />

Av. Coal Prod. (tons/day) Methane Emission Rate, m3/m<strong>in</strong><br />

Average Methane Content, m3/ton Normalized Av. Methane Content, m3/ton<br />

Exhibit 1.19 Coal Production <strong>and</strong> Methane Emissions of Yuzhno-Donbasskaya #3 M<strong>in</strong>e<br />

At <strong>the</strong> current time, <strong>the</strong> most detailed available data on <strong>methane</strong> emissions comes from a<br />

limited area of <strong>the</strong> C11 <strong>coal</strong> seam. Data provided by technical staff from <strong>the</strong> <strong>m<strong>in</strong>e</strong>, for a 15<br />

month period from October 2004 to December 2005 show that <strong>the</strong> normalized <strong>methane</strong><br />

production is relatively stable at 31.1 m 3 per ton of <strong>coal</strong> per day (Exhibit 1.20). Given <strong>the</strong><br />

<strong>m<strong>in</strong>e</strong>’s total <strong>coal</strong> reserves at 158 million tons, <strong>the</strong> total <strong>methane</strong> resource is approximately<br />

4.9 Billion m 3 . This is a slightly more conservative estimate of <strong>the</strong> EPA reported reserves of<br />

5.9 Billion m 3 <strong>in</strong> 2001.<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-27<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

0<br />

Coal production (tons/day)


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Data provided by <strong>the</strong> Chief Eng<strong>in</strong>eer of <strong>the</strong> South Donbass #3 <strong>m<strong>in</strong>e</strong> states that <strong>the</strong> <strong>m<strong>in</strong>e</strong><br />

degasification system is currently (May 2008) captur<strong>in</strong>g up to 25 million m 3 /year (68,500<br />

m 3 /day) of over 28% quality <strong>methane</strong>.<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Oct-04 Nov-04 Dec-04 Jan-05 Feb-05 Mar-05 Apr-05 May-05 Jun-05 Jul-05 Aug-05 Sep-05 Oct-05 Nov-05 Dec-05<br />

Av. Coal Prod. (tons/day) Methane Emission Rate, m3/m<strong>in</strong><br />

Average Methane Content, m3/ton Normalized Av. Methane Content, m3/ton<br />

Exhibit 1.20 Coal Production <strong>and</strong> Methane Emissions at Yuzhno-Donbasskaya #3 M<strong>in</strong>e<br />

from Coal Seam C11 only<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-28<br />

2500<br />

2000<br />

150 0<br />

10 0 0<br />

500<br />

0<br />

Average Daily Coal Production (tons/day)


1.6.2 Bazhanov M<strong>in</strong>e<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The Bazhanov <strong>m<strong>in</strong>e</strong> area is located with<strong>in</strong> <strong>the</strong> territory of <strong>the</strong> district of Makeyevka city <strong>in</strong><br />

Donetsk Region. The area is situated on watershed of <strong>the</strong> Krivoy Torets <strong>and</strong> <strong>the</strong> Kalmius<br />

Rivers. The area is located on a hilly steppe pla<strong>in</strong>, cut with rav<strong>in</strong>es <strong>and</strong> gullies.<br />

M<strong>in</strong>eral resources of <strong>the</strong> <strong>m<strong>in</strong>e</strong> are owned by <strong>the</strong> Makeyevugol State Coal M<strong>in</strong><strong>in</strong>g Company.<br />

The Bazhanov M<strong>in</strong>e is situated <strong>in</strong> <strong>the</strong> north-eastern part of <strong>the</strong> town of Makeyevka, a highly<br />

developed m<strong>in</strong><strong>in</strong>g area which <strong>in</strong>cludes by-product-cok<strong>in</strong>g <strong>and</strong> steel <strong>in</strong>dustries <strong>and</strong> is also a<br />

favorable location with respect to cok<strong>in</strong>g <strong>coal</strong> consumers, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> Makeyevka, Donetsk,<br />

Rutchekovsk cok<strong>in</strong>g plants, <strong>and</strong> <strong>the</strong> Kalmius Central Wash<strong>in</strong>g-house situated 30 km from <strong>the</strong><br />

<strong>m<strong>in</strong>e</strong>.<br />

The <strong>m<strong>in</strong>e</strong> is highly accessible to neighbor<strong>in</strong>g <strong>m<strong>in</strong>e</strong>s <strong>and</strong> centers of population by means of<br />

highway <strong>and</strong> asphalt roads. In <strong>the</strong> nor<strong>the</strong>rn part of <strong>the</strong> area, <strong>the</strong>re are two rail l<strong>in</strong>es, <strong>the</strong><br />

Yas<strong>in</strong>ovataya-Kr<strong>in</strong>ichnayaIlovaysk <strong>and</strong> Yas<strong>in</strong>ovataya- Makeyevka trunk l<strong>in</strong>es. These l<strong>in</strong>es<br />

are jo<strong>in</strong>ed with branch l<strong>in</strong>es to <strong>the</strong> Bazhanov M<strong>in</strong>e, <strong>the</strong> Yas<strong>in</strong>ovataya cok<strong>in</strong>g plant <strong>and</strong> <strong>the</strong><br />

Kirov Plant.<br />

The <strong>m<strong>in</strong>e</strong> is supplied with electricity by means of high-voltage l<strong>in</strong>es of <strong>the</strong> Donbassenergy<br />

System generated from <strong>the</strong> Zuevka Hydroelectric Power Station.<br />

The Bazhanov M<strong>in</strong>e began operations <strong>in</strong> 1957. Currently (2006), <strong>the</strong> capacity of <strong>the</strong> <strong>m<strong>in</strong>e</strong> is<br />

0.76 million tons of <strong>coal</strong> per year <strong>and</strong> only one <strong>coal</strong> layer, <strong>the</strong> m3 seam, is be<strong>in</strong>g exploited.<br />

The area of <strong>the</strong> <strong>m<strong>in</strong>e</strong> encompasses about 39 square km.<br />

1.6.2.1 Geologic Structure<br />

The <strong>m<strong>in</strong>e</strong> area is located between <strong>the</strong> Burozovskaya (aka Kal<strong>in</strong><strong>in</strong>skaya) <strong>and</strong> Chayk<strong>in</strong>skaya<br />

flexures. Between <strong>the</strong> Burozovskoy <strong>and</strong> Chaik<strong>in</strong>skoy folds, <strong>the</strong> regional dip is 4 to 8° to <strong>the</strong><br />

nor<strong>the</strong>ast. The Burozovskoy monocl<strong>in</strong>e fold near <strong>the</strong> <strong>m<strong>in</strong>e</strong> is traced with exploratory wells<br />

along <strong>the</strong> monocl<strong>in</strong>al strike. The dip of <strong>the</strong> <strong>coal</strong> seams is gentle, averag<strong>in</strong>g 4 to 15 °, but can<br />

reach 25-70° <strong>in</strong> region of <strong>the</strong> of monocl<strong>in</strong>e folds. Steep dips occur along <strong>the</strong> monocl<strong>in</strong>e fold<br />

area def<strong>in</strong>ed by <strong>the</strong> <strong>m<strong>in</strong>e</strong> work<strong>in</strong>gs at <strong>the</strong> Schmidt M<strong>in</strong>e NQ3, NQ4 <strong>and</strong> Kapitalnaya M<strong>in</strong>e NQ<br />

1, NQ2, where <strong>the</strong> dip angle is 60 to 90°.<br />

The Burozovskoy monocl<strong>in</strong>e fold stretches from sou<strong>the</strong>ast to <strong>the</strong> nor<strong>the</strong>ast with dips of 45 to<br />

50° <strong>in</strong> <strong>the</strong> northwest <strong>and</strong> <strong>in</strong>creas<strong>in</strong>g to 70 to 75° <strong>in</strong> <strong>the</strong> sou<strong>the</strong>ast. The sou<strong>the</strong>ast fold limb is<br />

considered to be <strong>the</strong> up-thrown side. Vertical displacement of <strong>the</strong> fold reaches 1,200 m. To<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-29


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

<strong>the</strong> south of <strong>the</strong> area, <strong>the</strong> axis of <strong>the</strong> fold is <strong>in</strong>terrupted by <strong>the</strong> Frantsuzskiy fault. The steep<br />

eastern flank of this major fault is complicated with numerous smaller faults that <strong>in</strong>clude <strong>the</strong><br />

Pervomayskiy fault, <strong>the</strong> Western fault NQ 1, a Branch of Western fault NQ 1, <strong>and</strong> Western<br />

NQ2.<br />

The above-described faults, <strong>in</strong> <strong>the</strong> region where <strong>the</strong> Bazhanov M<strong>in</strong>e is located, are<br />

subdivided <strong>in</strong>to two types of fault systems based on <strong>the</strong>ir character:<br />

Bedd<strong>in</strong>g plane faults, which have a north-west dip, parallel to <strong>the</strong> regional rock dip<br />

(Frantsuzskiy fault, Western fault NQ 1 <strong>and</strong> NQ2, <strong>the</strong> Branch of Western fault NQ 1 <strong>and</strong><br />

Bezymianniy fault).<br />

Steeply dipp<strong>in</strong>g down to <strong>the</strong> sou<strong>the</strong>ast faults that cut across regional dip (Pervomayskiy<br />

fault, Novo-Chaik<strong>in</strong>skiy fault).<br />

The characteristics of <strong>the</strong> fault systems which are located with<strong>in</strong> <strong>the</strong> limits of <strong>the</strong> <strong>m<strong>in</strong>e</strong> area,<br />

are given <strong>in</strong> Exhibit 1.21.<br />

The Frantsuzskiy fault can be traced to <strong>the</strong> south of <strong>the</strong> <strong>m<strong>in</strong>e</strong> area. The area of <strong>the</strong> nearby<br />

"Chaik<strong>in</strong>o" <strong>m<strong>in</strong>e</strong> is well explored <strong>and</strong> <strong>in</strong>vestigated where <strong>the</strong> fault has a throw of 240 to 320m.<br />

With<strong>in</strong> <strong>the</strong> limits of <strong>the</strong> Bazhanov <strong>m<strong>in</strong>e</strong>, <strong>the</strong> fault offsets reach 180m. The fault has a<br />

latitud<strong>in</strong>al strike with dips between 40 to 60° to <strong>the</strong> north. In <strong>the</strong> south <strong>the</strong> fault is term<strong>in</strong>ated<br />

by <strong>the</strong> Pervomayskiy fault.<br />

The Western Fault NQ 1 is traced along <strong>the</strong> south-east border of <strong>the</strong> area by 27 prospect<strong>in</strong>g<br />

wells with<strong>in</strong> <strong>the</strong> limits of <strong>the</strong> Bazhanov M<strong>in</strong>e <strong>and</strong> <strong>the</strong> Butovskiy-Glubokiy site NQ2.<br />

The Branch of Western Fault NQ 1 is traced by five prospect<strong>in</strong>g holes <strong>in</strong> <strong>the</strong> Pervomaiskiy<br />

fault <strong>in</strong> earlier published geological reports referred to as <strong>the</strong> Western Fault, however it<br />

spatially coord<strong>in</strong>ates with <strong>the</strong> Pervomaiskiy fault, as revealed <strong>and</strong> <strong>in</strong>vestigated with<strong>in</strong> <strong>the</strong><br />

limits of <strong>the</strong> field of <strong>the</strong> "Chaik<strong>in</strong>o" <strong>m<strong>in</strong>e</strong>.<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-30


Fault System<br />

Number of faults<br />

(from boreholes)<br />

Depth Range<br />

(m)<br />

Bezymianniy 22 -101.0-1185.0<br />

Pervomaiskiy 11 + 193.0-850.0<br />

Western NQ 1 27 -37.0-1335.0<br />

Branch of Western NQ 1 5 -590.0-789.0<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Dip azimuth<br />

Range / Average<br />

(degree)<br />

255-325<br />

295<br />

115 - 130<br />

120<br />

300-337<br />

300<br />

320-330<br />

325<br />

Hade<br />

Range / Average<br />

(degree)<br />

Thickness of Fault<br />

Breccia<br />

(m)<br />

Displacement<br />

(m)<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-31<br />

10 -74<br />

45<br />

40 – 75<br />

68<br />

64 – 75<br />

68<br />

Exhibit 1.21 Summary Table of Fault Systems of <strong>the</strong> Bazhanov M<strong>in</strong>e<br />

5 - 52 5 - 58<br />

15 - 44 15 - 170<br />

3 - 109 5 - 65<br />

48 – 55 5 - 30 5 - 31


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The Bezymianniy Fault limits <strong>the</strong> <strong>m<strong>in</strong>e</strong> area to <strong>the</strong> northwest, strik<strong>in</strong>g from south-west to<br />

north-east. In <strong>the</strong> center of <strong>the</strong> area <strong>the</strong> strike of <strong>the</strong> fault is close to N-S. With<strong>in</strong> <strong>the</strong> limits of<br />

<strong>the</strong> <strong>m<strong>in</strong>e</strong> area, <strong>the</strong> trace of <strong>the</strong> Bezymianniy fault does not appear at <strong>the</strong> surface, but is<br />

exhibited as a fault gouge <strong>in</strong> corewells 3983 <strong>and</strong> 3883, with no displacement of rocks<br />

observed. Along <strong>the</strong> Chaik<strong>in</strong>skoy flexure fold, <strong>the</strong> strata dip 30 to 40 o to <strong>the</strong> southwest,<br />

<strong>in</strong>creas<strong>in</strong>g up to 74°. The angle of dip of system decreases from 20° to 14° <strong>and</strong> with<strong>in</strong> <strong>the</strong><br />

limits of <strong>the</strong> "Chaik<strong>in</strong>o" <strong>m<strong>in</strong>e</strong>, <strong>the</strong> fault flattens.<br />

1.6.2.2 Coal Geology <strong>and</strong> Properties<br />

The <strong>m<strong>in</strong>e</strong>able <strong>coal</strong> of <strong>the</strong> Bazhanov <strong>m<strong>in</strong>e</strong> is concentrated <strong>in</strong> <strong>coal</strong>-measures of <strong>the</strong> series C3 1<br />

<strong>and</strong> C2 7 <strong>in</strong> which 48 <strong>coal</strong> layers <strong>and</strong> <strong>in</strong>terlayers are conta<strong>in</strong>ed. The series C3 1 conta<strong>in</strong>s 17<br />

<strong>coal</strong> layers <strong>and</strong> <strong>in</strong>terlayers, with only two of <strong>the</strong>m workable over significant areas. The series<br />

C2 7 conta<strong>in</strong>s 31 <strong>coal</strong> seams <strong>and</strong> <strong>in</strong>ter layers, <strong>in</strong>clud<strong>in</strong>g 8 seams which reach work<strong>in</strong>g seam<br />

thickness over most of <strong>the</strong> <strong>m<strong>in</strong>e</strong> area.<br />

The total <strong>m<strong>in</strong>e</strong>able reserves of <strong>the</strong> Bazhanov <strong>m<strong>in</strong>e</strong> are 62,628,000 tons with work<strong>in</strong>g seams<br />

account<strong>in</strong>g for 15,824,000 tons of <strong>the</strong> total. The current m<strong>in</strong><strong>in</strong>g capacity is approximately<br />

1,600 tons/day from 10 <strong>coal</strong> seams, although currently only <strong>the</strong> m3 seam is <strong>m<strong>in</strong>e</strong>d via<br />

longwall technique. The rank of <strong>the</strong> m3 <strong>coal</strong> is high-vol bitum<strong>in</strong>ous A with an average ash<br />

content of 8.0%, a moisture content of 0.8% <strong>and</strong> <strong>the</strong> sulfur content around 3.5%.<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-32


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

1.6.2.3 CMM Gas Composition.<br />

The composition of gas <strong>in</strong> <strong>the</strong> <strong>coal</strong> layers is predom<strong>in</strong>antly <strong>methane</strong>, with m<strong>in</strong>or amounts of<br />

ethane, nitrogen <strong>and</strong> carbon dioxide (Exhibit 1.22). Methane concentrations <strong>in</strong> <strong>coal</strong> layers<br />

are on average 98+%. The high content of <strong>methane</strong> <strong>in</strong> samples testifies that all pr<strong>in</strong>cipal <strong>coal</strong><br />

seams are <strong>in</strong> <strong>the</strong> <strong>methane</strong> saturated zone.<br />

Ethane is present almost <strong>in</strong> all samples with <strong>the</strong> contents from 0.1 up to 11.2 %. Propane<br />

<strong>and</strong> butane are also present <strong>in</strong> <strong>the</strong> majority of samples, rang<strong>in</strong>g from 0.0 to 8.9%. The<br />

<strong>in</strong>creased content of heavier hydrocarbons is characteristic of <strong>the</strong> <strong>m<strong>in</strong>e</strong> work<strong>in</strong>g. Carbon<br />

dioxide is found <strong>in</strong> all samples at concentration less than 2.0 %. Hydrogen was detected <strong>in</strong><br />

only a few samples <strong>and</strong> <strong>the</strong> concentration did not exceed 0.11 %.<br />

Depth, m<br />

800 - 900<br />

900 -1000<br />

1000 - 1100<br />

1100 - 1200<br />

Gas Composition, %: from - up to/average<br />

(number of determ<strong>in</strong>ations)<br />

CO2 CH4 C2H6 C3H8 + C4H10 02 N2<br />

0.2 - 1.3 / 0.5<br />

(18)<br />

0.2 - 1.1 / 0.4<br />

(14)<br />

0.3 - 1.9 / 0.7<br />

(7)<br />

0.3 - 0.7 / 0.4<br />

(7)<br />

80.6 - 96.2 /<br />

87.8<br />

(18)<br />

65.9 - 90.7 /<br />

81.7<br />

(14)<br />

55.7 -96.7 /<br />

81,,9<br />

(6)<br />

81.8 -91.5 /<br />

86.2<br />

(6)<br />

0.9 - 9.7 / 6.5<br />

(18)<br />

1.1 - 11.2 /<br />

4.6<br />

(5)<br />

0.0 - 5.1 / 2.3<br />

(4)<br />

0.2 - 5.1 / 2.0<br />

(7)<br />

0.0 -7.9 / 1.4<br />

(18)<br />

0.9 - 4.3 / 2.5<br />

(12)<br />

1.0 -7.5 / 3.1<br />

(4)<br />

3.6 - 8.9 / 6.0<br />

(6)<br />

0.3 -1.4 / 0.7<br />

(7)<br />

0.2 - 2.9 / 1.1<br />

(12)<br />

0.4 - 3.4 / 1.4<br />

(3)<br />

0.2 - 0.8 / 0.4<br />

(6)<br />

Exhibit 1.22 Gas Composition Accord<strong>in</strong>g to Depth, Bazhanov M<strong>in</strong>e<br />

0.9 - 9.2 / 4.9<br />

(18)<br />

3.2 - 13.0 /<br />

47.7<br />

(11)<br />

1.0 -7.0 / 3.1<br />

(4)<br />

3.6 - 8.9 / 6.0<br />

(4)<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-33


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

1.6.2.4 M<strong>in</strong>e Degass<strong>in</strong>g<br />

The Bazhanov <strong>m<strong>in</strong>e</strong> is considered a dangerous <strong>m<strong>in</strong>e</strong> due to rock bursts <strong>and</strong> gas explosions.<br />

Ventilation <strong>and</strong> underground degasification is applied by drill<strong>in</strong>g of <strong>the</strong> m3 seam, <strong>and</strong> s<strong>in</strong>ce<br />

1986, of <strong>the</strong> 1n H seam. S<strong>in</strong>ce 1963, approximately 23,000 m 3 /day of pure <strong>methane</strong> has been<br />

vented from seam m3. Thus, <strong>methane</strong> vented to <strong>the</strong> atmosphere dur<strong>in</strong>g m<strong>in</strong><strong>in</strong>g of seam m3<br />

totals 224 million m 3 .<br />

Detailed <strong>coal</strong> production <strong>and</strong> <strong>methane</strong> emissions data for <strong>the</strong> years 2004 <strong>and</strong> 2005 was<br />

provided by <strong>the</strong> <strong>m<strong>in</strong>e</strong> technical staff (Exhibit 1.23).<br />

10 0<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

Jan-04 Mar-04 May-04 Jul-04 Sep-04 Nov-04 Jan-05 Mar-05 May-05 Jul-05 Sep-05 Nov-05<br />

Av. Coal Prod. (tons/day) Methane Emission Rate, m3/m<strong>in</strong><br />

Average Methane Content, m3/ton Normalized Av. Methane Content, m3/ton<br />

Exhibit 1.23 Coal Production <strong>and</strong> Methane Emissions - Bazhanov <strong>m<strong>in</strong>e</strong> (2004-2005)<br />

Personal communication from <strong>the</strong> Director of <strong>the</strong> Bazhanov M<strong>in</strong>e Management Company<br />

states that <strong>in</strong> 2007, 9.9 million cubic meters of <strong>methane</strong> was extracted from <strong>the</strong> <strong>m<strong>in</strong>e</strong>, with<br />

5.5 million cubic meters from that total used to fire <strong>the</strong> <strong>m<strong>in</strong>e</strong>’s boiler.<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-34<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

150 0<br />

10 0 0<br />

500<br />

0<br />

Average Daily Coal Production (tons/day)


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

1.6.2.5 Estimation of Gas-In-Place.<br />

With<strong>in</strong> <strong>the</strong> limits of <strong>the</strong> <strong>m<strong>in</strong>e</strong> area, an estimation of <strong>the</strong> volume of <strong>methane</strong> conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong><br />

<strong>coal</strong> seams was calculated us<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g formula:<br />

where<br />

Vr=S*m*g*KB*r,<br />

Vr - volume of gas;<br />

m - thickness of a layer, m;<br />

g - density of <strong>coal</strong>, ton/m 3 ;<br />

S - <strong>the</strong> area of calculation, m 2 ;<br />

r - average <strong>methane</strong> content, m 3 /ton;<br />

KB - factor of ash- free weights.<br />

All <strong>coal</strong> seams <strong>in</strong> <strong>the</strong> Bazhanov <strong>m<strong>in</strong>e</strong> possess gas content values greater than 10 m 3 /ton<br />

from tests conducted on <strong>the</strong> <strong>coal</strong> seams. Methane resources are divided <strong>in</strong>to two categories,<br />

Category C1, reserves <strong>in</strong> <strong>the</strong> <strong>m<strong>in</strong>e</strong>able <strong>coal</strong>, <strong>and</strong> Category C2 which are potential resources<br />

from o<strong>the</strong>r <strong>coal</strong> seams (Exhibit 1.24). The total gas-<strong>in</strong>-place is calculated to be 1.62 billion m 3<br />

for <strong>the</strong> <strong>coal</strong> reserves <strong>in</strong> <strong>the</strong> <strong>m<strong>in</strong>e</strong> area. By <strong>in</strong>clud<strong>in</strong>g all <strong>the</strong> potential <strong>coal</strong>s seams beyond <strong>the</strong><br />

<strong>m<strong>in</strong>e</strong>able reserves, <strong>the</strong> amount of <strong>coal</strong> bed <strong>methane</strong> resource <strong>in</strong>creases to 3.79 billion m 3 .<br />

Coal<br />

Methane Resource<br />

1000 m 3<br />

Primary Secondary C1 C2 Totals<br />

1<br />

n1<br />

n1 1 +n1 0 20838<br />

H<br />

n1<br />

n04+n03+n02 + n01 +n0 51172<br />

m9 m9 1 +m9 0 +m8 1b +m8 1H 261077<br />

m7<br />

m6 3 +m6 2<br />

m5 1<br />

m8<br />

m6 1 +m6 0 +m6+<br />

m5 4 +m5 3<br />

m5 2 +m5 6 +m5 H +<br />

m4 5 +m4 4<br />

m4 1 m4 3 +m4 2 +m4 0<br />

m3<br />

m4<br />

359473<br />

236955<br />

421069<br />

m2 m1 2 +m1 1 +m1 0 +m1 272628<br />

43858 64967<br />

58967 58967<br />

17463 68635<br />

49023 49023<br />

47928 309005<br />

279575 279575<br />

1344 360817<br />

93680 93680<br />

274601 274801<br />

256204 256204<br />

156816 156816<br />

2893 239848<br />

240207 240207<br />

141331 141331<br />

145118 145118<br />

21064 442133<br />

39550 39550<br />

78948 351576<br />

221334 221334<br />

Total 1623212 2170104 3793316<br />

Exhibit 1.24 Coal Bed Methane Resource Estimates - Bazhanov M<strong>in</strong>e<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-35


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

1.7 Coalbed Methane Project Areas<br />

1.7.1 Grish<strong>in</strong>o Andreyevskaya Area<br />

The Grish<strong>in</strong>o Andreyevsk Area (license is granted to <strong>the</strong> Donetskgeologiya Company)<br />

<strong>in</strong>cludes a m<strong>in</strong><strong>in</strong>g lease of one <strong>m<strong>in</strong>e</strong> <strong>and</strong> six exploration shafts with a total area of more than<br />

557 km 2 (Exhibit 1.25). The area is located <strong>in</strong> <strong>the</strong> Krasnoarmeysk district of <strong>the</strong> Donetsk<br />

Region. N<strong>in</strong>ety-five percent of <strong>the</strong> area is used for agricultural purposes. The l<strong>and</strong> is owned<br />

by <strong>in</strong>dividuals <strong>and</strong> farmers <strong>and</strong> has hard cover roads. There is a ma<strong>in</strong> railway l<strong>in</strong>e to <strong>the</strong><br />

north of <strong>the</strong> area that connects <strong>the</strong> cities of Donetsk <strong>and</strong> Kiev. The closest gas pipel<strong>in</strong>e is<br />

<strong>the</strong> Krasnoarmeysk-Selidovo l<strong>in</strong>e, which is located outside of <strong>the</strong> area.<br />

The <strong>m<strong>in</strong>e</strong>ral rights belong to <strong>the</strong> State with <strong>the</strong> <strong>coal</strong> seams ma<strong>in</strong>ly located <strong>in</strong> <strong>the</strong> Lower<br />

Carboniferous sediments <strong>in</strong> <strong>the</strong> western part of <strong>the</strong> area <strong>and</strong> Lower <strong>and</strong> Middle<br />

Carboniferous sediments <strong>in</strong> <strong>the</strong> eastern part. The complex structure of <strong>the</strong> area is caused by<br />

<strong>the</strong> large, transverse Kotl<strong>in</strong>sky <strong>and</strong> Yal<strong>in</strong>sky fracture thrusts <strong>and</strong> associated structures. The<br />

western edge of <strong>the</strong> area borders on <strong>the</strong> Krivoy Rog - Pavlovsk structure.<br />

1.7.1.1 Methane Reserves Estimates<br />

The number of <strong>m<strong>in</strong>e</strong>able/completeable <strong>coal</strong> seams <strong>in</strong> <strong>the</strong> area varies from 1 to 9. The<br />

average gas content of <strong>the</strong> <strong>coal</strong> varies from 10 to 20 m 3 /t on a dry, ash-free basis. Experts at<br />

<strong>the</strong> Donetsk Region Geology Company estimate <strong>the</strong> total <strong>methane</strong> reserves of <strong>the</strong> area to be<br />

18.2 billion m 3 (Exhibit 1.26) <strong>and</strong> <strong>the</strong>se estimates appear to be <strong>in</strong> l<strong>in</strong>e with <strong>the</strong> measured gas<br />

content data <strong>and</strong> <strong>coal</strong> thickness data.<br />

The gas reserves <strong>in</strong> adjo<strong>in</strong><strong>in</strong>g rock beds are more difficult to estimate as only a few tests of<br />

<strong>the</strong> <strong>methane</strong> content have been made. In one example, taken from core-hole #3623, <strong>the</strong><br />

<strong>methane</strong> content of <strong>the</strong> s<strong>and</strong>stone layer E8 3 SE4, at a depth of 120 to 140m, is about 0.43<br />

m 3 /m 3 . For s<strong>and</strong>stone layer E6SE6 at <strong>the</strong> depth of 230m <strong>the</strong> <strong>methane</strong> content is about<br />

2.2m 3 /m 3 <strong>and</strong> for s<strong>and</strong>stone layer of D1 5B SD2 at <strong>the</strong> depth of 716 to 733 m is about 2.3 m 3 /m 3 .<br />

These s<strong>and</strong>stone units will def<strong>in</strong>itely contribute <strong>methane</strong> dur<strong>in</strong>g both CMM <strong>and</strong> CBM<br />

production <strong>and</strong> <strong>the</strong>refore an estimate of <strong>the</strong> amount of <strong>methane</strong> conta<strong>in</strong>ed with<strong>in</strong> <strong>the</strong>m is<br />

<strong>in</strong>cluded. Assum<strong>in</strong>g a porosity of 7.0%, a 56% gas saturation, an average depth of 1000m<br />

<strong>and</strong> an average thickness of 31m, <strong>the</strong> total amount of gas conta<strong>in</strong>ed with<strong>in</strong> <strong>the</strong> s<strong>and</strong>stones is<br />

approximately 40 billion m 3 .<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-36


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 1.25 The Grish<strong>in</strong>o-Andreyevskaya CBM Lease Area<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-37


# Explored Reserves <strong>and</strong> M<strong>in</strong><strong>in</strong>g Field<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Number of<br />

Industrial<br />

Layers of<br />

Coal<br />

Total Output<br />

of Coal<br />

Layers<br />

(>0.3m,m)<br />

Gas Content<br />

of Coal<br />

Seams, m 3 /t,<br />

Dry Basis<br />

Methane<br />

Reserves<br />

(Billion<br />

m 3 )<br />

1 Solyonovsky #1 <strong>and</strong> #2 5 4.9 10 2.2<br />

2 Solyonovsky #3 5 5.1 10 1.3<br />

3 Krasnoarmeyskaya Zapadnaya M<strong>in</strong>e #1 1 3.2 (10-20)/15 2.95<br />

4 Krasnoarmeyskaya Zapadnaya M<strong>in</strong>e #2-3 3 4.7 15 4.6<br />

5 Andreyevo-Kurakhovskaya Site 9 8.5 (10-15)/13 2.5<br />

6 Krasnoarmeyskaya Zapadnaya M<strong>in</strong>e #2-3 1 3.7 15 1.4<br />

7 Andreyevsky Yuzhny 5 7 (12-16)/14 3.2<br />

TOTAL 18.2<br />

Exhibit 1.26 Estimated Methane Reserves of <strong>the</strong> Grish<strong>in</strong>o-Andreyevskaya Area<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-38


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

1.7.2 South Donbass CBM Development Area – ECOMETAN<br />

The South Donbass CBM lease area (licensed to ECOMETAN) <strong>in</strong>cludes 2 <strong>m<strong>in</strong>e</strong>s <strong>and</strong> 7<br />

exploration shafts. The total area of <strong>the</strong> lease is 530 km 2 . (Exhibit 1.27) It is located ma<strong>in</strong>ly<br />

<strong>in</strong> <strong>the</strong> Mar<strong>in</strong>ka District of <strong>the</strong> Donetsk Oblast, with small areas of <strong>the</strong> lease stretch<strong>in</strong>g <strong>in</strong>to <strong>the</strong><br />

Velikonovosyolovka District to <strong>the</strong> west <strong>and</strong> <strong>the</strong> Volnovakha District to <strong>the</strong> south. The lease<br />

area has a SE-NW orientation <strong>and</strong> <strong>the</strong> largest nearby towns are Ugledar (to <strong>the</strong> south-west)<br />

<strong>and</strong> Mar<strong>in</strong>ka (to <strong>the</strong> north-east). N<strong>in</strong>ety percent of <strong>the</strong> lease area is used for agricultural<br />

purposes or is not cultivated, <strong>and</strong> is owned by <strong>in</strong>dividuals, farmers or municipal bodies. The<br />

large (700mm diameter) Donetsk – Mariupol pipel<strong>in</strong>e runs to <strong>the</strong> east of <strong>the</strong> lease.<br />

1.7.2.1 Geology<br />

A detailed discussion of <strong>the</strong> general geology <strong>and</strong> <strong>the</strong> <strong>coal</strong> geology of <strong>the</strong> South Donbass<br />

area can be found <strong>in</strong> Sections 1.6.1.1 <strong>and</strong> 1.6.1.2. Coal beds <strong>in</strong> <strong>the</strong> area are found <strong>in</strong> <strong>the</strong> C1 3<br />

section <strong>in</strong> <strong>the</strong> Lower Carboniferous, with <strong>the</strong> section vary<strong>in</strong>g <strong>in</strong> thickness from 11.7 m to 18.1<br />

m <strong>and</strong> conta<strong>in</strong><strong>in</strong>g 7-16 <strong>coal</strong> seams. The <strong>coal</strong>s are typically medium to low volatile bitum<strong>in</strong>ous<br />

<strong>coal</strong>s.<br />

1.7.2.2 Methane Reserves Estimate<br />

The technical staff at <strong>the</strong> Donetskgeologiya Company estimates <strong>the</strong> South Donbass lease<br />

area reserves <strong>in</strong> <strong>the</strong> <strong>coal</strong> seams are 57.2 billion m 3 . (Exhibit 1.28) The average <strong>methane</strong><br />

content of <strong>the</strong> <strong>coal</strong> varies from 6 to 22 m 3 /t (on a dry, ash free basis). The lease area is<br />

characterized by a large number of <strong>in</strong>terbedded s<strong>and</strong>stone layers <strong>in</strong> <strong>the</strong> <strong>coal</strong> section <strong>and</strong><br />

above it. Tests <strong>in</strong> <strong>m<strong>in</strong>e</strong> <strong>and</strong> exploration shafts have shown abundant gas reserves <strong>in</strong> <strong>the</strong>se<br />

s<strong>and</strong>stones. Tests from <strong>the</strong> South Donbass shafts #1, 3, 4, 6, <strong>and</strong> 12/1 resulted <strong>in</strong> gas<br />

content measurements of <strong>the</strong> s<strong>and</strong>stone between 0.33 to 1.57 m 3 per ton. The porosity of<br />

<strong>the</strong> s<strong>and</strong>stone varied between 2.6-14% <strong>and</strong> gave permeability values of 0.01-15.5 mD.<br />

Us<strong>in</strong>g <strong>the</strong>se data, comb<strong>in</strong>ed with discussions with Ukra<strong>in</strong>ian experts, <strong>the</strong> gas <strong>in</strong> place <strong>in</strong> <strong>the</strong><br />

<strong>in</strong>terbedded s<strong>and</strong>stones is between 120 <strong>and</strong> 500 billion m 3 .<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-39


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 1.27 The South Donbass CBM Lease Area<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-40


M<strong>in</strong>e or Exploration Shaft<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

# of Economic<br />

Coal Seams<br />

Total thickness of<br />

Coal Section<br />

(seams >0.3m)<br />

(m)<br />

Gas Content of<br />

Coal Seams<br />

(m 3 /t daf)<br />

Gas Reserves<br />

(billion m 3 )<br />

South Donbass M<strong>in</strong>e #1 11 12.1 6-15 2.1<br />

South Donbass M<strong>in</strong>e #3 15 15.6 12.1-18.3 5.0<br />

South Donbass Shaft 4 16 18.1 11.1-20 7.3<br />

South Donbass Shaft 5 12 12.5 10-17.3 4.3<br />

South Donbass Shaft 6 13 14.5 12.5 8.2<br />

South Donbass Shaft 8-9 7 11.7 12-18 7.6<br />

South Donbass Shaft 12/1 13 14.2 12.1-20.8 6.7<br />

South Donbass Shaft 12/2 10 13.8 14.7-20 6.0<br />

South Donbass Shaft 13-14 12 14.9 11.4-22.1 10.0<br />

Total: 57.2<br />

Exhibit 1.28 Estimated Gas Reserves of <strong>the</strong> South Donbass CBM lease<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-41


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Geologic Assessment <strong>and</strong> CMM/CBM Resource Base Analysis 1-42


Task 1 - Section 2<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Reservoir Simulations<br />

Reservoir Simulations 2-i


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

SECTION 2 CONTENTS<br />

2.1 Introduction......................................................................................................................2-1<br />

2.2 CBM Reservoir Model<strong>in</strong>g ................................................................................................2-2<br />

2.2.1 Permeability...............................................................................................................2-3<br />

2.2.2 S<strong>and</strong>stone permeability.............................................................................................2-4<br />

2.2.3 Langmuir Volume <strong>and</strong> Pressure ................................................................................2-4<br />

2.2.4 Relative Permeability.................................................................................................2-7<br />

2.2.4.1 Coal Relative Permeability...............................................................................................2-8<br />

2.2.4.2 S<strong>and</strong>stone Relative Permeability.....................................................................................2-9<br />

2.2.5 Reservoir (Coal <strong>and</strong> S<strong>and</strong>) Depth <strong>and</strong> Thickness. ..................................................2-10<br />

2.2.6 Well Completion <strong>and</strong> Model Construction ...............................................................2-10<br />

2.2.7 Porosity <strong>and</strong> Initial Water Saturation .......................................................................2-12<br />

2.2.8 Sorption Time ..........................................................................................................2-12<br />

2.2.9 Spac<strong>in</strong>g....................................................................................................................2-12<br />

2.2.10 Simulation Results:..................................................................................................2-13<br />

2.3 CMM Reservoir Model<strong>in</strong>g..............................................................................................2-17<br />

Reservoir Simulations 2-ii


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

SECTION 2 EXHIBITS<br />

Exhibit 2.1 COMET3 Reservoir Simulation Input Data, Donetsk CBM Study .....................................2-2<br />

Exhibit 2.2 Natural Cleat Fracture System ..........................................................................................2-3<br />

Exhibit 2.3 Graph Illustrat<strong>in</strong>g Permeability Scale Effects <strong>in</strong> Coal Seam..............................................2-3<br />

Exhibit 2.4 Summary of Published Data..............................................................................................2-5<br />

Exhibit 2.5 Summary of Published Data (cont..)..................................................................................2-6<br />

Exhibit 2.6 Donetsk Bas<strong>in</strong> Gas Iso<strong>the</strong>rm Derived from Gas Content Data .........................................2-7<br />

Exhibit 2.7 Donetsk Bas<strong>in</strong> Coal Relative Permeability ........................................................................2-8<br />

Exhibit 2.8 Donetsk Bas<strong>in</strong> S<strong>and</strong> Relative Permeability .......................................................................2-9<br />

Exhibit 2.9 Typical Depth <strong>and</strong> Thicknesses for Coal <strong>and</strong> S<strong>and</strong> <strong>in</strong> a Donetsk Region well................2-10<br />

Exhibit 2.10 Modeled Depth <strong>and</strong> Thickness of Coal <strong>and</strong> S<strong>and</strong> for Reservoir Simulation ...................2-11<br />

Exhibit 2.11 Summary of Simulation Results ......................................................................................2-13<br />

Exhibit 2.12 Simulation Results - Case 1 ............................................................................................2-14<br />

Exhibit 2.13 Simulation Results - Case 1 ............................................................................................2-14<br />

Exhibit 2.14 Simulation Results - Case 2 ............................................................................................2-15<br />

Exhibit 2.15 Simulation Results - Case 2 ............................................................................................2-15<br />

Exhibit 2.16 Tabular Type Curve Production Data..............................................................................2-16<br />

Reservoir Simulations 2-iii


2.1 Introduction<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The gas production curves developed for both <strong>the</strong> CBM <strong>and</strong> CMM portions of <strong>the</strong> study form<br />

<strong>the</strong> basis of <strong>the</strong> economic analyses performed <strong>in</strong> Section 6 of this report. In addition,<br />

estimat<strong>in</strong>g <strong>the</strong> gas production rates is critical <strong>in</strong> <strong>the</strong> plann<strong>in</strong>g <strong>and</strong> design of production<br />

equipment, surface facilities, <strong>and</strong> end use options.<br />

For <strong>the</strong> two CBM areas, Grish<strong>in</strong>o-Andreyevskaya <strong>and</strong> South Donbass, thirty-year gas <strong>and</strong><br />

water production simulations were performed us<strong>in</strong>g COMET3, Advanced Resources'<br />

proprietary reservoir simulator. COMET3 is a fully implicit, f<strong>in</strong>ite-difference simulator<br />

specifically designed for model<strong>in</strong>g <strong>the</strong> flow of gas <strong>and</strong> water <strong>in</strong> <strong>coal</strong> seams <strong>and</strong><br />

unconventional reservoirs.<br />

The simulator is a triple porosity model that <strong>in</strong>cludes <strong>the</strong> <strong>coal</strong> matrix <strong>and</strong> <strong>coal</strong> cleat system. It<br />

<strong>in</strong>cludes two-phase (gas <strong>and</strong> water) flow that is modeled via gas/water relative permeability<br />

curves. COMET3 also <strong>in</strong>cludes gas desorption <strong>and</strong> diffusion processes that are essential for<br />

<strong>the</strong> accurate model<strong>in</strong>g of gas production from <strong>coal</strong> seams.<br />

Type wells were constructed to represent <strong>the</strong> average reservoir characteristics of each CBM<br />

production area. Most of <strong>the</strong> <strong>in</strong>put data used to model gas recoveries were obta<strong>in</strong>ed from <strong>the</strong><br />

geologic <strong>and</strong> reservoir property data discussed <strong>in</strong> Section 1. For those parameters that were<br />

not available from <strong>the</strong> study data, Advanced Resources used reservoir properties from <strong>coal</strong><br />

<strong>and</strong> s<strong>and</strong>stone formations that are most analogous to <strong>the</strong> Donetsk Region, primarily Permo-<br />

Carboniferous local bas<strong>in</strong>s <strong>in</strong> neighbor<strong>in</strong>g countries, such as Pol<strong>and</strong> <strong>and</strong> <strong>the</strong> Czech<br />

Republic.<br />

For <strong>the</strong> CMM portion of <strong>the</strong> study, detailed model<strong>in</strong>g of <strong>the</strong> rate <strong>and</strong> quality of <strong>the</strong> gas<br />

produced is a difficult <strong>and</strong> complex task because of <strong>the</strong> <strong>in</strong>teraction between <strong>the</strong> geologic<br />

conditions, <strong>m<strong>in</strong>e</strong> advance rates, <strong>and</strong> degasification drill<strong>in</strong>g programs. Fur<strong>the</strong>rmore, accurate<br />

model<strong>in</strong>g would require detailed data on all of <strong>the</strong> strata affected <strong>in</strong> <strong>the</strong> gob area (e.g.<br />

permeability, gas saturation, porosity, etc.), data that are not readily available. Therefore, <strong>the</strong><br />

estimate of CMM production from each <strong>m<strong>in</strong>e</strong> is based on historical production rates of CMM<br />

produced from each <strong>m<strong>in</strong>e</strong> <strong>and</strong> projected future m<strong>in</strong><strong>in</strong>g plans.<br />

Reservoir Simulations 2-1


2.2 CBM Reservoir Model<strong>in</strong>g<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The <strong>in</strong>put parameters used <strong>in</strong> <strong>the</strong> COMET3 reservoir simulation study are presented <strong>in</strong><br />

Exhibit 2-1. A brief discussion of each parameter is provided below:<br />

Parameter Value Range<br />

Dra<strong>in</strong>age Area 60 Ac (0.25 Km 2 )<br />

Reservoir Thickness See Exhibit 2.10<br />

Fracture Half-Length 15 m (50ft) (sk<strong>in</strong> = -4)<br />

Depth to Reservoir See Exhibit 2.10<br />

Initial Reservoir Pressure See Exhibit 2.10<br />

Cleat <strong>and</strong> Pore Water Saturation 100% <strong>in</strong> Coal / 44% <strong>in</strong> S<strong>and</strong>stone<br />

Cleat Permeability (md) 0.1 md <strong>in</strong> Coal; 0.62 md <strong>in</strong> S<strong>and</strong>stone<br />

Porosity 1% <strong>in</strong> Coal, 7.1% <strong>in</strong> S<strong>and</strong>stone<br />

Pore-Vol. Compressibility 400 x 10 -6 Coal<br />

Cleat Spac<strong>in</strong>g 2.5 cm (1<strong>in</strong>) Coal<br />

Langmuir Volume (Coal) 865 cf/ton (27 m 3 /tonnes)<br />

Langmuir Pressure (Coal) 339 psia<br />

Gas Content (Coal) See Exhibit 2.6<br />

Gas Gravity 0.60<br />

Reservoir Temperature Gradient 1.1 Degree (F) per 100 ft.<br />

Water Viscosity 0.62 cp<br />

Sorption Time 12 Days<br />

Exhibit 2.1 COMET3 Reservoir Simulation Input Data, Donetsk CBM Study<br />

Reservoir Simulations 2-2


2.2.1 Permeability<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Coal bed permeability, as it applies to CBM production, is a result of <strong>the</strong> natural cleat<br />

(fracture) system of <strong>the</strong> <strong>coal</strong> <strong>and</strong> consists of face cleats <strong>and</strong> butt cleats (see Exhibit 2.2). This<br />

natural cleat system is sometimes enhanced by natural fractur<strong>in</strong>g caused by tectonic forces<br />

<strong>in</strong> <strong>the</strong> bas<strong>in</strong>.<br />

C o a l<br />

Cleat System<br />

Exhibit 2.2 Natural Cleat Fracture System<br />

The permeability result<strong>in</strong>g from <strong>the</strong> fracture systems <strong>in</strong> <strong>the</strong> <strong>coal</strong> is called “absolute<br />

permeability” <strong>and</strong> it is a critical <strong>in</strong>put parameter for reservoir simulation studies. Absolute<br />

permeability data <strong>in</strong> <strong>the</strong> Donetsk Bas<strong>in</strong> consists of measurements taken on whole core which<br />

were obta<strong>in</strong>ed from <strong>coal</strong> exploration core holes. In naturally fractured reservoirs, corederived<br />

permeability measurements do not necessarily provide reliable absolute permeability<br />

values because <strong>the</strong>y only reflect <strong>the</strong> <strong>in</strong>-situ permeability <strong>and</strong> reservoir conditions over a small<br />

area. In general, a larger areal sampl<strong>in</strong>g, results <strong>in</strong> higher observed permeability values,<br />

(illustrated graphically <strong>in</strong> Exhibit 2.3).<br />

Permeability<br />

Core<br />

Kilogram<br />

S<strong>in</strong>gle Well Multi-Well<br />

300 Tons<br />

Sample Size<br />

50,000 Tons<br />

JAF02606.PPT<br />

Exhibit 2.3 Graph Illustrat<strong>in</strong>g Permeability Scale Effects <strong>in</strong> Coal Seam<br />

Reservoir Simulations 2-3


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Based on extensive work conducted by numerous <strong>coal</strong> <strong>m<strong>in</strong>e</strong>s <strong>in</strong> <strong>the</strong> Donetsk region, <strong>the</strong><br />

permeability of <strong>the</strong> <strong>coal</strong> seams appears to be low, on <strong>the</strong> order of 0.1 md. This value is<br />

consistent with permeability measurements derived from o<strong>the</strong>r Eastern European <strong>coal</strong> bas<strong>in</strong>s<br />

which generally <strong>in</strong>dicate permeability values of less than 1.0 md <strong>in</strong> <strong>the</strong> <strong>coal</strong> seams.<br />

2.2.2 S<strong>and</strong>stone permeability<br />

The Donetsk Bas<strong>in</strong> is also rich <strong>in</strong> s<strong>and</strong>stone deposits that have been shown to produce gas.<br />

The critical reservoir parameters of porosity <strong>and</strong> permeability have been measured for <strong>the</strong>se<br />

s<strong>and</strong>stone reservoirs throughout <strong>the</strong> bas<strong>in</strong>, <strong>and</strong> have been presented <strong>in</strong> published<br />

literature 14 . Based on this <strong>in</strong>formation, an average permeability of 0.62 md was used <strong>in</strong><br />

reservoir simulations. In <strong>the</strong> United States, s<strong>and</strong>stone reservoirs are considered “tight”, or<br />

very low permeability, if <strong>the</strong> absolute permeability is equal to or less than 0.1 md.<br />

Never<strong>the</strong>less, with average permeability of 0.62 md <strong>the</strong> s<strong>and</strong>stone reservoirs of <strong>the</strong> Donetsk<br />

bas<strong>in</strong> can be considered relatively tight, or <strong>in</strong> <strong>the</strong> lower range of conventional natural gas<br />

reservoirs.<br />

2.2.3 Langmuir Volume <strong>and</strong> Pressure<br />

Langmuir volumes <strong>and</strong> pressures, measured <strong>in</strong> <strong>the</strong> laboratory for Donetsk Bas<strong>in</strong> <strong>coal</strong>s, were<br />

not available for <strong>the</strong> study. Therefore, it was necessary to construct a syn<strong>the</strong>tic iso<strong>the</strong>rm<br />

based on gas content data. Gas content has been measured <strong>in</strong> cores taken from many <strong>coal</strong><br />

exploration core holes throughout <strong>the</strong> Donetsk Bas<strong>in</strong>. These data have been summarized<br />

<strong>and</strong> are presented <strong>in</strong> Exhibit 2.4 <strong>and</strong> Exhibit 2.5.<br />

The gas content data was plotted as pressure versus gas content <strong>in</strong> m 3 /tonne. Pressure was<br />

derived by apply<strong>in</strong>g a pressure gradient of 0.433 psi/ft to <strong>the</strong> reported depth of each<br />

respective <strong>coal</strong> seam. A regression analysis was performed us<strong>in</strong>g <strong>the</strong> Langmuir equation:<br />

C = (VL x P) / (PL + P):<br />

(Where C is gas concentration, VL is Langmuir volume, PL is Langmuir pressure, <strong>and</strong> P is<br />

pressure.)<br />

The result<strong>in</strong>g Langmuir volume <strong>and</strong> pressure are 27 m 3 /tonne <strong>and</strong> 339 psia, respectively,<br />

<strong>and</strong> this syn<strong>the</strong>tic iso<strong>the</strong>rm was used <strong>in</strong> lieu of measured data. The iso<strong>the</strong>rm derived by this<br />

methodology is shown <strong>in</strong> Exhibit 2.6.<br />

14<br />

Coal M<strong>in</strong>e Methane <strong>in</strong> Ukra<strong>in</strong>e, Opportunities for Production <strong>and</strong> Investment <strong>in</strong> <strong>the</strong> Donetsk Coal Bas<strong>in</strong>, U.S. Environmental<br />

Protection Agency, January 2001.<br />

Reservoir Simulations 2-4


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Summary of "Coal M<strong>in</strong>e Methane <strong>in</strong> Ukra<strong>in</strong>e: Opportunities for Production <strong>and</strong> Investment <strong>in</strong> <strong>the</strong> Donetsk Coal Bas<strong>in</strong>"<br />

Power Heat S<strong>and</strong> Permeability<br />

Gas<br />

M<strong>in</strong>e M<strong>in</strong>e Area Consumption Consumption Boiler S<strong>and</strong> Porosity<br />

md<br />

Thickness Depth Content<br />

M<strong>in</strong>e No. Area Seam km2 MW/Yr Gcal Fuel m<strong>in</strong> max m<strong>in</strong> max Rank M Dip M Ash Moisture Sulfur M3/Tonne<br />

Almaznaya 1 a m5 31.7 41490 16584 Coal 8 15 0.02 1.5 HVBb,c 1 11 510 19.5 6.5 3.3 12<br />

1 a l1 HVBb,c 1.4 11 500 16.5 6.4 1.9 5<br />

1 a l3 HVBb,c 1.99 11 505 11.3 5.4 1.3 25.5<br />

Bazhanova 2 b m3 39 74400 Methane 4 6 0.05 0.09 HVBa 1.65 5 1200 8 0.8 3.5 20<br />

Belitskaya 3 a m2 80 43760 79000 Coal 6 12 0.02 1.9 HVBb 1.12 9.5 233 15.3 4.6 4.6 4.5<br />

3 a l8 HVBb 0.65 7 435 4.6 4.3 1.2 12.5<br />

Belozerskaya 4 a m5 13.7 84000 Coal 8 12 0.01 2.5 HVBc 0.9 10 260 14.8 9 3.26 5<br />

4 a l8 HVBa,b 2.19 615 10 6.4 1.71 15<br />

4 a l3 HVBb,c 2.29 890 6.8 5.1 1.87 17<br />

Dobropolskaya 5 a m4 50.7 37539 33340 Coal 5 16 0.03 1.8 HVBb 1 10 550 12 2.9 3.4 14<br />

5 a m5 HVBb 0.93 530 12.4 2.6 2.6 16<br />

Faschevskaya 6 b l8 26.71 34030 11071 Coal 8.2 9.5 0.01 0.02 LVB 0.75 15 450 19.1 2 2 30<br />

6 b l6 LVB 0.85 15 335 30.2 2 2.5 22.5<br />

6 b m3 LVB 0.76 14 500 15 2 2 30<br />

Glubokaya 7 b h10 55 73761 36150 Methane 2 6 0.01 0.03 LVB 1.43 25.5 988 12.7 1.3 3.6 32<br />

7 b h8 LVB 0.7 9 665 11.6 0.7 30<br />

7 b h6 LVB 0.92 6 570 13.4 2.8 30<br />

7 b h4 LVB 0.8 6 875 11 0.9 30<br />

Gorskaya 8 b k8 48.5 62370 42491 Coal 0.01 0.03 HVBc,b 1.8 5 950 16 4.5 4.15 16<br />

8 b m3 HVBc 1.4 7 900 25 8 4.5 15<br />

Holodnaya 9 b h10 55.56 44108 81700 Methane 3 6 0.01 0.02 LVB 1.05 11.5 750 14.3 4.1 4.2 18<br />

Kal<strong>in</strong><strong>in</strong> 10 b h10 28 58969 11613 Methane 3 5 0.01 0.02 HVBa,b/MVB 1.3 20 1240 10.3 2 3.2 23.6<br />

Kirov 11 b l4 36 55880 14400 Coal 3 7 0.01 0.02 MVB 0.7 6 440 11.2 0.8 1.65 21<br />

11 b h10 LVB 0.95 7.5 260 13.1 1.2 3.5 30<br />

11 b l1 MVB 1.1 7 490 20 1.2 2.6 21<br />

Komsomolets 12 b l7 62.5 146330 71008 Coal 0.7 5.7 0.001 0.001 LVB 1.08 13 709 9.3 2.9 1.9 25<br />

12 b l4 LVB 1.02 16 709 10.1 3 3.2 25<br />

12 b l3 LVB 1.38 15 604 12.5 3 2.8 25<br />

Krasnorarmeyskaya 13 a d4 96 119862 42820 Coal 4.5 21 0.03 1.93 HVBa 1.7 7 645 15.1 1.3 0.9 20<br />

Krasnolimanskaya 14 a l3 21.4 133800 94220 Oil 4 11 0.06 0.09 HVB 2.19 8 857 12.8 4.1 3.4 20<br />

14 a k5 HVB 1.64 8 1000 6.5 3.8 1.93 20<br />

Molodogvardeyskaya 15 c k2 28 40060 12157 Coal 5.9 6.4 HVB 1.875 8 691 12 1.9 3.6 15<br />

15 c i3 HVB 1.45 8 664.5 13 0.9 3.3 16<br />

Exhibit 2.4 Summary of Published Data 15<br />

15 Coal M<strong>in</strong>e Methane <strong>in</strong> Ukra<strong>in</strong>e, Opportunities for Production <strong>and</strong> Investment <strong>in</strong> <strong>the</strong> Donetsk Coal Bas<strong>in</strong>, U.S. Environmental Protection Agency, January 2001.<br />

Reservoir Simulations 2-5


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Power Heat Gas<br />

M<strong>in</strong>e M<strong>in</strong>e Area Consumption Consumption Boiler Thickness Depth Content<br />

M<strong>in</strong>e No. Area Seam km2 MW/Yr Gcal Fuel m<strong>in</strong> max m<strong>in</strong> max Rank M Dip M Ash Moisture Sulfur M3/Tonne<br />

Oktyabrsky 16 b m3 48.58 75825 26900 Coal,Methane 1<br />

Summary of "Coal M<strong>in</strong>e Methane <strong>in</strong> Ukra<strong>in</strong>e: Opportunities for Production <strong>and</strong> Investment <strong>in</strong> <strong>the</strong> Donetsk Coal Bas<strong>in</strong>"<br />

nd Permeabi<br />

S<strong>and</strong> Porosit md<br />

5 10 0.01 0.2 HVBb 1.1 10 1200 5.5 28 1 20<br />

16 b l8 HVBb 1.5 10.5 1060 9.1 2.6 1.4 20<br />

Rassvet 17 b m3 29.04 9264 Coal 3 5 0.001 0.001 LVB 0.95 10.5 470 9.8 10 3.6 32<br />

17 b l6 LVB 0.84 14.5 355 8.2 1.3 0.7 30<br />

17 b l3 LVB 1.27 15 515 26.2 1.3 2.8 30<br />

Samsonovskaya 18 c k2 3.6 16 0.02 1.9 HVB 1.25 7 785 13.5 2 2 25<br />

Skoch<strong>in</strong>sky 19 b h6 80 82994 15136 Coal 2 11 0.005 0.02 HVBb 1.5 12 1298 4.6 2.2 1.05 19<br />

Stakhanov 20 a l7 Coal 6 12 0.08 0.4 HVBb,c 1.25 10 967.5 4.7 3.2 1 15<br />

20 a k5 HVBb 1.15 11 907.5 4.9 1.9 1 12.8<br />

20 a l1 HVBb,c 1.1 9.5 912.5 7.3 2.4 2.6 13.5<br />

20 a l3 HVBc 1.65 8 982.5 9.4 1.9 4.4 15<br />

Suhodolskaya 21 c i3 58 78819 65770 Coal 4.6 6.6 HVBa 1.45 9.5 906.5 14.5 4 1.1 23.4<br />

Vynnitskaya 22 b l3 23600 9907 Coal 0.73 3.62 0 0.24 Anth 1 8 430 12 3.5 0.9 29<br />

22 b i4 Anth 0.95 10 390 11.8 2.3 3.2 29<br />

Yas<strong>in</strong>ovskaya 23 b l6 52.7 58021 10019 Coal 3 5 0.01 0.08 MVB 1.61 8.5 606 8.6 1.4 1.52 25<br />

23 b l4 MVB 0.68 5 575 8.2 1 1.14 25<br />

23 b l2 MVB 1.01 4.5 475 15.9 1.5 2.62 25<br />

Yuzhnodonbasskaya #1 24 b c18 48 72200 36642 Coal 3.7 19.9 0.05 5.88 HVBc 0.8 5 355 5.5 5 0.95 6.5<br />

24 b c13 HVBc 0.75 4.5 480 5 6.5 1 6.5<br />

24 b c11 HVBc 1.3 5.5 480 6.1 6.2 1.1 10<br />

24 b c10 HVBc 1.075 6 480 4.9 6 2.2 7.5<br />

Yuzhnodonbasskaya #3 25 b c11 47 112836 65842 Coal 8 13 0.05 2.7 HVBa 1.65 9 624 6.6 6 1 13<br />

Zasyadko 26 b m3 215000 163972 Coal/Methane 5 11 0.02 0.03 HVBb 1.8 8.5 1175 4.8 1 2.3 23<br />

26 b l4 HVBb 1 10.5 726 4.3 1 0.8 19.5<br />

26 b l1 HVBb 1.85 14 990 9.3 0.8 3.2 21<br />

26 b k8 HVBb 0.9 14 950 9.2 1 1.5 20<br />

Zhdanovskaya 27 b l7 27.2 35600 41000 Coal 3 8 0.08 0.4 LVB 1.55 17.5 660 7.1 4.1 2.3 25<br />

27 b l4 LVB 1.1 18 548 13.4 3 3.1 30<br />

27 b l6 LVB 1.12 17 567 9.6 3.5 1.3 32.5<br />

27 b l3 LVB 1.3 18 470 8.1 1.4 2 27.5<br />

Zuyevskaya 28 b k5 20 34308 32380 Coal 2 7 0.002 0.03 LVB 1.03 19 577 9.7 7.1 1.2 32.5<br />

28 b k3 LVB 1.45 21.5 560 11.4 8.9 2.2 32.5<br />

28 b k2 LVB 1.05 22 525 13.7 9.4 2.1 27.5<br />

50 Years of <strong>the</strong> USSR 29 c k2 14 89800 19393 2.4 9 HVBb 1.77 30 497.5 12.3 3.9 4.4 32<br />

29 c i3 HVBb,a 1.18 23 680 13.6 2.9 2.8 NA<br />

Exhibit 2.5 Summary of Published Data (cont..) 16<br />

16 Coal M<strong>in</strong>e Methane <strong>in</strong> Ukra<strong>in</strong>e, Opportunities for Production <strong>and</strong> Investment <strong>in</strong> <strong>the</strong> Donetsk Coal Bas<strong>in</strong>, U.S. Environmental Protection Agency, January 2001.<br />

Reservoir Simulations 2-6


Gas Content (m 3 /tonne)<br />

25<br />

20<br />

15<br />

10<br />

5<br />

-<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Gas Content vs. Pressure (Depth x 0.433 psi/ft) for <strong>the</strong> Donetsk Coal Bas<strong>in</strong><br />

0 200 400 600 800 1000 1200 1400 1600 1800 2000<br />

Pressure (psia)<br />

Exhibit 2.6 Donetsk Bas<strong>in</strong> Gas Iso<strong>the</strong>rm Derived from Gas Content Data<br />

For <strong>the</strong> Langmuir volume, COMET3 utilizes units of st<strong>and</strong>ard cubic feet of gas per cubic foot<br />

(SCF/CF) of bulk volume for <strong>coal</strong>. Assum<strong>in</strong>g a <strong>coal</strong> density of 1.6 gm/cc, <strong>the</strong> Langmuir<br />

volume of 27 m 3 /tonne converts to 43.2 SCF/CF.<br />

2.2.4 Relative Permeability<br />

The flow of gas <strong>and</strong> water through <strong>coal</strong> seams is governed by permeability, of which <strong>the</strong>re<br />

are two types, depend<strong>in</strong>g on <strong>the</strong> amount of water <strong>in</strong> <strong>the</strong> cleats <strong>and</strong> pore spaces. When only<br />

one fluid exists <strong>in</strong> <strong>the</strong> pore space, <strong>the</strong> measured permeability is considered absolute<br />

permeability. Absolute permeability represents <strong>the</strong> maximum permeability of <strong>the</strong> cleat <strong>and</strong><br />

natural fracture space <strong>in</strong> <strong>coal</strong>s <strong>and</strong> <strong>in</strong> <strong>the</strong> pore space <strong>in</strong> <strong>coal</strong>s.<br />

However, once production starts <strong>and</strong> <strong>the</strong> pressure <strong>in</strong> <strong>the</strong> cleat system beg<strong>in</strong>s to decl<strong>in</strong>e due<br />

to <strong>the</strong> removal of water, gas is released from <strong>the</strong> <strong>coal</strong>s <strong>in</strong>to <strong>the</strong> cleat <strong>and</strong> natural fracture<br />

network. The <strong>in</strong>troduction of gas <strong>in</strong>to <strong>the</strong> cleat system results <strong>in</strong> multiple fluid phases (gas<br />

<strong>and</strong> water) <strong>in</strong> <strong>the</strong> pore space, <strong>and</strong> <strong>the</strong> transport of both fluids must be considered <strong>in</strong> order to<br />

accurately model production. To accomplish this, relative permeability functions are used <strong>in</strong><br />

conjunction with specific permeability to deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> effective permeability of each fluid<br />

phase.<br />

Reservoir Simulations 2-7


Relative Permeability (frac.)<br />

0.2<br />

0.1<br />

0<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

2.2.4.1 Coal Relative Permeability<br />

Relative permeability data for <strong>the</strong> <strong>coal</strong> of <strong>the</strong> Donetsk bas<strong>in</strong> does not exist, <strong>the</strong>refore ARI<br />

used a relative permeability data set derived from a production history match<strong>in</strong>g effort on <strong>the</strong><br />

Recopol 17 project <strong>in</strong> Pol<strong>and</strong>, which we believe to be a suitable analogue for <strong>the</strong> Donetsk<br />

Bas<strong>in</strong>. The Recopol project is a pilot project designed to deter<strong>m<strong>in</strong>e</strong> whe<strong>the</strong>r CO2 can be<br />

sequestered <strong>in</strong> <strong>the</strong> <strong>coal</strong> seams. Because of <strong>the</strong> research nature of <strong>the</strong> project, a tremendous<br />

amount of reservoir data has been collected <strong>and</strong> is available for study. ARI believes that <strong>the</strong><br />

Recopol data should be somewhat representative of Donbass Bas<strong>in</strong> <strong>coal</strong> seams as <strong>the</strong>y are<br />

age-equivalent <strong>and</strong> have experienced similar tectonic histories. However, ARI recognizes<br />

that <strong>the</strong>re could be variation between <strong>the</strong> two <strong>coal</strong> bas<strong>in</strong>s. Exhibit 2.7 is a graph of <strong>the</strong><br />

relative permeability curves that are used <strong>in</strong> <strong>the</strong> reservoir simulation.<br />

With 100% water occupy<strong>in</strong>g <strong>the</strong> pore space, <strong>the</strong> permeability is equal to <strong>the</strong> absolute<br />

permeability (0.1 md for this study). With <strong>the</strong> onset of water production from <strong>the</strong> <strong>coal</strong>,<br />

pressure is drawn down <strong>in</strong> <strong>the</strong> formation <strong>and</strong> gas beg<strong>in</strong>s to desorb from <strong>the</strong> <strong>coal</strong> <strong>and</strong> <strong>in</strong>to its<br />

porous fracture network. At this early stage of production, most of <strong>the</strong> pore space is still<br />

1<br />

occupied by water, which<br />

enables <strong>the</strong> water phase to<br />

0.9<br />

move through <strong>the</strong> porosity more<br />

0.8<br />

easily due to <strong>the</strong> fact it’s <strong>the</strong><br />

0.7<br />

more cont<strong>in</strong>uous phase. At <strong>the</strong><br />

0.6<br />

same time, <strong>the</strong> cont<strong>in</strong>uous<br />

0.5<br />

water phase is offer<strong>in</strong>g<br />

0.4<br />

resistance to gas movement<br />

0.3<br />

through <strong>the</strong> porosity.<br />

0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1<br />

Water Saturation<br />

CH4 Water<br />

Exhibit 2.7 Donetsk Bas<strong>in</strong> Coal Relative Permeability<br />

17 Development of a field experiment of ECBM <strong>in</strong> <strong>the</strong> Upper Silesian <strong>coal</strong> bas<strong>in</strong> of Pol<strong>and</strong> (RECOPOL) - F. van Bergen, H.J.M.<br />

Pagnier, L.G.H. van der Meer, F.J.G. van den Belt <strong>and</strong> P.L.A. W<strong>in</strong>thaegen, Ne<strong>the</strong>rl<strong>and</strong>s Institute of Applied Geoscience TNO (<strong>the</strong><br />

Ne<strong>the</strong>rl<strong>and</strong>s), P. Krzystolik, Central M<strong>in</strong><strong>in</strong>g Institute (Pol<strong>and</strong>)<br />

Reservoir Simulations 2-8


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

2.2.4.2 S<strong>and</strong>stone Relative Permeability<br />

S<strong>and</strong>stone relative permeability <strong>in</strong> <strong>the</strong> Donetsk bas<strong>in</strong> is unknown. Therefore, Advanced<br />

Resources has used relative permeability data from a similar tight gas formation <strong>in</strong> <strong>the</strong> U.S.<br />

with a permeability of 0.62 md. The relative permeability curve assumed for s<strong>and</strong>stone<br />

reservoirs of <strong>the</strong> Donetsk bas<strong>in</strong> is shown <strong>in</strong> Exhibit 2.8.<br />

Relative Permeability (frac.)<br />

1<br />

0.9<br />

0.8<br />

0.7<br />

0.6<br />

0.5<br />

0.4<br />

0.3<br />

0.2<br />

0.1<br />

0<br />

Donetsk Bas<strong>in</strong> S<strong>and</strong> Relative Permeability<br />

0.3<br />

0.35<br />

0.45<br />

0.6<br />

0.65<br />

0.7<br />

Water Saturation<br />

CH4 Water<br />

0.75<br />

0.8<br />

0.85<br />

0.9<br />

0.95<br />

Exhibit 2.8 Donetsk Bas<strong>in</strong> S<strong>and</strong> Relative Permeability<br />

Reservoir Simulations 2-9<br />

1


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

2.2.5 Reservoir (Coal <strong>and</strong> S<strong>and</strong>) Depth <strong>and</strong> Thickness.<br />

Reservoir thickness <strong>and</strong> depth for <strong>the</strong> prospective <strong>coal</strong> seams <strong>and</strong> s<strong>and</strong>stones have been<br />

documented <strong>in</strong> <strong>the</strong> geological section <strong>and</strong> are summarized <strong>in</strong> Exhibit 2.9. The model<br />

assumes that six <strong>in</strong>dividual zones will be hydraulically fractured <strong>in</strong> <strong>the</strong> well. Because of <strong>the</strong><br />

<strong>in</strong>terbedded nature of <strong>the</strong> <strong>coal</strong> seams <strong>and</strong> s<strong>and</strong>stones, it was assumed that <strong>the</strong> hydraulic<br />

fracture would be <strong>in</strong>itiated <strong>in</strong> a s<strong>and</strong> unit <strong>and</strong> grow <strong>in</strong>to <strong>the</strong> overly<strong>in</strong>g <strong>and</strong> underly<strong>in</strong>g <strong>coal</strong><br />

seams.<br />

Donetsk Coal Bas<strong>in</strong><br />

Typical Well Completion Intervals <strong>and</strong> Coal <strong>and</strong> S<strong>and</strong> Thickness<br />

Gross Interval<br />

Net Coal Net S<strong>and</strong><br />

Top Bottom Thickness Thickness<br />

Stage (m) ft (m) ft (m) ft (m) ft<br />

1 1041 3415 1051 3448 1.02 3.3 2 6.6<br />

2 980 3215 1009 3310 1.22 4.0 3 9.8<br />

3 948 3110 955 3133 2.3 7.5 1 3.3<br />

4 862 2828 868 2848 1.11 3.6 15 49.2<br />

5 759 2490 819 2687 2.86 9.4 8 26.2<br />

6 741 2431 745 2444 1.48 4.9 2 6.6<br />

Total 9.99 32.8 31 101.7<br />

Exhibit 2.9 Typical Depth <strong>and</strong> Thicknesses for Coal <strong>and</strong> S<strong>and</strong> <strong>in</strong> a Donetsk Region well<br />

2.2.6 Well Completion <strong>and</strong> Model Construction<br />

Vertical wells are projected to be drilled <strong>and</strong> completed to a depth of 1100 m (3600 ft) <strong>and</strong><br />

completed <strong>in</strong> six stages us<strong>in</strong>g ei<strong>the</strong>r a ball <strong>and</strong> baffle or bridge plug <strong>and</strong> tub<strong>in</strong>g/packer<br />

technique.<br />

Advanced Resources has presented a forecast for <strong>coal</strong> only, as well as a forecast which<br />

<strong>in</strong>cludes both <strong>coal</strong> <strong>and</strong> s<strong>and</strong>stone reservoirs. The comb<strong>in</strong>ed <strong>coal</strong> <strong>and</strong> s<strong>and</strong>stone production<br />

forecast is considered to be <strong>the</strong> most likely case as <strong>the</strong> s<strong>and</strong>stone would likely be stimulated<br />

even if only <strong>the</strong> <strong>coal</strong>s were targeted. Note that <strong>in</strong> several CBM bas<strong>in</strong>s <strong>in</strong> <strong>the</strong> U.S., such as<br />

<strong>the</strong> Piceance <strong>and</strong> Cherokee bas<strong>in</strong>s, that operators rout<strong>in</strong>ely target both <strong>coal</strong>s <strong>and</strong> associated<br />

s<strong>and</strong>s.<br />

Based on typical <strong>coal</strong> <strong>and</strong> s<strong>and</strong> depth <strong>and</strong> thickness (Exhibit 2.9), a three layer model was<br />

constructed each for <strong>the</strong> <strong>coal</strong> <strong>and</strong> for <strong>the</strong> s<strong>and</strong>stone. Exhibit 2.10 shows <strong>the</strong> depths <strong>and</strong><br />

thickness values that were used for <strong>the</strong> reservoir simulation. In Exhibit 2.10: layer 1 is an<br />

average of stages 5&6 from Exhibit 2.9; layer 2 is modeled as stage 4 <strong>in</strong> Exhibit 2.9; layer 3<br />

is an average of stages 1,2 & 3 <strong>in</strong> Exhibit 2.9.<br />

Reservoir Simulations 2-10


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The gas water contact (GWC) serves as <strong>the</strong> reference po<strong>in</strong>t for pressure calculations <strong>in</strong> <strong>the</strong><br />

model. For purposes of <strong>the</strong> Donetsk bas<strong>in</strong> reservoir simulation, a GWC of 550 m (1800 ft)<br />

was selected, <strong>and</strong> model pressures are calculated for all layers based on a water gradient of<br />

9.81 kPa/m (0.433 psi/ft) from this depth at 5374 kPa (779.4 psia).<br />

Model 1 - Coal Only<br />

GWC 1,800.0<br />

Layer 1 2,558.4<br />

Layer 2 2,866.7<br />

Layer 3 3,278.4<br />

Model 2 - S<strong>and</strong><br />

GWC 1,800.0<br />

Layer 1 2,558.4<br />

Layer 2 2,866.7<br />

Layer 3 3,278.4<br />

Donetsk Coal Bas<strong>in</strong> Model Construction<br />

Formation<br />

Formation<br />

Mid<br />

Formation Formation Pressure Formation<br />

Po<strong>in</strong>t<br />

Top Thick @ top Temp<br />

(ft) (m) (ft) (m) (ft) (m) (psia) (kPa) deg F deg C<br />

548.8 779.4<br />

780.0 2551.3 777.8 14.24<br />

874.0 2864.9 873.4 3.64<br />

999.5 3270.9 997.2 14.89<br />

4.3 1,107.8<br />

1.1 1,241.3<br />

4.5 1,419.5<br />

548.8 779.4<br />

780.0 2,551.3<br />

874.0 2,864.9<br />

999.5 3,270.9<br />

777.8 32.8 10.0 1,107.8<br />

873.4 49.2 15.0 1,241.3<br />

997.2 19.68 6.0 1,419.5<br />

Reservoir Simulations 2-11<br />

5374<br />

7638 160.5<br />

8558 171.6<br />

9787 186.4<br />

5374<br />

7638 160.5<br />

8558 171.6<br />

9787 186.4<br />

Exhibit 2.10 Modeled Depth <strong>and</strong> Thickness of Coal <strong>and</strong> S<strong>and</strong> for Reservoir Simulation<br />

71<br />

77.5<br />

86<br />

71<br />

77.5<br />

86


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

2.2.7 Porosity <strong>and</strong> Initial Water Saturation<br />

In <strong>the</strong> <strong>coal</strong> seams, we used a porosity value of 1% <strong>and</strong> <strong>in</strong>itial water saturation of 100%.<br />

Aga<strong>in</strong>, porosity of 1% was used <strong>in</strong> <strong>the</strong> simulations s<strong>in</strong>ce it matches <strong>the</strong> results of reservoir<br />

simulation history match<strong>in</strong>g carried out on <strong>the</strong> Recopol 18 project <strong>in</strong> Pol<strong>and</strong>.<br />

Porosity estimates for <strong>the</strong> s<strong>and</strong>stone reservoir have been obta<strong>in</strong>ed from published data of<br />

<strong>the</strong> Donetsk Region 19 . Water saturation for <strong>the</strong> s<strong>and</strong>stone reservoirs has been measured <strong>in</strong><br />

geophysical logs <strong>and</strong> average about 56 percent. This water saturation is higher than <strong>the</strong><br />

typical residual s<strong>and</strong>stone water saturation with permeability of 0.62 md, <strong>the</strong>refore it is<br />

expected that <strong>in</strong>itial well production will <strong>in</strong>clude a component of water production from <strong>the</strong><br />

s<strong>and</strong>stone reservoirs.<br />

Wells drilled <strong>in</strong> <strong>the</strong> Donetsk bas<strong>in</strong> have produced both water <strong>and</strong> gas from s<strong>and</strong>stone<br />

reservoirs. Based on <strong>the</strong> relative permeability curve (Exhibit 2-9) <strong>the</strong> residual water<br />

saturation <strong>in</strong> <strong>the</strong> Donetsk bas<strong>in</strong> is assumed to be 25 percent.<br />

2.2.8 Sorption Time<br />

Sorption time is def<strong>in</strong>ed as <strong>the</strong> length of time required for 63% of <strong>the</strong> gas <strong>in</strong> a sample to be<br />

desorbed. In this study, sorption time has been assumed to be 12 days.<br />

2.2.9 Spac<strong>in</strong>g<br />

In consultation with Ecometan <strong>and</strong> <strong>the</strong> panel of Ukra<strong>in</strong>ian experts, <strong>the</strong> decision was made to<br />

run reservoir simulations on a well spac<strong>in</strong>g pattern of 0.25 Km 2 (60 Ac) on <strong>the</strong> South<br />

Donbass concession, which would allow <strong>the</strong> drill<strong>in</strong>g of up to 1600 wells over <strong>the</strong>ir 400 km 2<br />

lease block. Us<strong>in</strong>g <strong>the</strong> same spac<strong>in</strong>g pattern on <strong>the</strong> 550 km 2 Grish<strong>in</strong>o-Andreyevskaya lease<br />

block would allow <strong>the</strong> drill<strong>in</strong>g or up to 2200 wells.<br />

In <strong>the</strong> United States, where <strong>the</strong> natural gas <strong>in</strong>dustry is well developed, operators typically<br />

develop relatively tight s<strong>and</strong>stones (i.e., 1 md or less) on spac<strong>in</strong>g patterns of 60 acres (0.25<br />

Km 2 ) or less. Spac<strong>in</strong>g on <strong>the</strong> order of 16-32 hectares (40-80 acres) is common, with some<br />

operators go<strong>in</strong>g down to spac<strong>in</strong>g as tight as 4 hectares (10 acres).<br />

18<br />

Development of a field experiment of ECBM <strong>in</strong> <strong>the</strong> Upper Silesian <strong>coal</strong> bas<strong>in</strong> of Pol<strong>and</strong> (RECOPOLl) - F. van Bergen, H.J.M.<br />

Pagnier, L.G.H. van der Meer, F.J.G. van den Belt <strong>and</strong> P.L.A. W<strong>in</strong>thaegen, Ne<strong>the</strong>rl<strong>and</strong>s Institute of Applied Geoscience TNO (<strong>the</strong><br />

Ne<strong>the</strong>rl<strong>and</strong>s), P. Krzystolik, Central M<strong>in</strong><strong>in</strong>g Institute (Pol<strong>and</strong>)<br />

19<br />

Coal M<strong>in</strong>e Methane <strong>in</strong> Ukra<strong>in</strong>e, Opportunities for Production <strong>and</strong> Investment <strong>in</strong> <strong>the</strong> Donetsk Coal Bas<strong>in</strong>, U.S. Environmental<br />

Protection Agency, January 2001.<br />

Reservoir Simulations 2-12


2.2.10 Simulation Results:<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Reservoir simulation of <strong>the</strong> geologic <strong>and</strong> eng<strong>in</strong>eer<strong>in</strong>g data of <strong>the</strong> Donetsk bas<strong>in</strong> exa<strong>m<strong>in</strong>e</strong>d<br />

two cases. Coal fracture system absolute permeability was modeled with an absolute<br />

permeability value of 0.1 md on 0.25 Km 2 (60 Acre) spac<strong>in</strong>g. (60 acre spac<strong>in</strong>g is<br />

approximately 4 wells per km 2 ) Production estimates for <strong>coal</strong> only, <strong>and</strong> estimates for <strong>coal</strong><br />

<strong>and</strong> s<strong>and</strong>stone units comb<strong>in</strong>ed have been modeled.<br />

The two cases exa<strong>m<strong>in</strong>e</strong>d <strong>in</strong>clude <strong>the</strong> follow<strong>in</strong>g:<br />

Coal permeability = 0.1 md, 0.25 km 2 spac<strong>in</strong>g.<br />

Coal permeability = 0.1 md, 0.25 km 2 spac<strong>in</strong>g, s<strong>and</strong>stone units <strong>in</strong>cluded.<br />

Exhibit 2.11 is a summary of <strong>the</strong> cumulative gas <strong>and</strong> water that is generated by each case<br />

that was exa<strong>m<strong>in</strong>e</strong>d with reservoir simulation. Graphical results are presented <strong>in</strong> Exhibit 2.12<br />

through 2-15.<br />

Summary of Simulation Results<br />

Cumulative Cumulative<br />

Permeability Gas Water<br />

Spac<strong>in</strong>g (md) Formation (mcm) (m 3 )<br />

Case 1 60 Ac 0.1 Coal 1,465<br />

Case 2 60 Ac 0.1 / 0.67 Coal & S<strong>and</strong> 20,883<br />

Exhibit 2.11 Summary of Simulation Results<br />

4,474<br />

5,985<br />

Exhibit 2.16 provides a tabular list<strong>in</strong>g on a yearly basis of <strong>the</strong> amount of gas <strong>and</strong> water<br />

produced by each of <strong>the</strong> simulation cases evaluated.<br />

Additional reservoir simulations were run to exa<strong>m<strong>in</strong>e</strong> a higher permeability case of 1.0 md <strong>in</strong><br />

<strong>the</strong> <strong>coal</strong>, as well as <strong>the</strong> effect of larger spac<strong>in</strong>g on production. The results of this sensitivity<br />

study are presented <strong>in</strong> Appendix A <strong>and</strong> <strong>in</strong>dicate that <strong>the</strong> base case presented above <strong>and</strong><br />

used <strong>in</strong> <strong>the</strong> economic analysis represents <strong>the</strong> most likely production scenario.<br />

Reservoir Simulations 2-13


(Gas (m 3 /hour), Water (m3/hour X 100)<br />

Gas (thous<strong>and</strong> m 3 ), Water (m 3 / 10)<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

-<br />

1,000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

-<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Donetsk Bas<strong>in</strong> Simulation Results<br />

Coal Permeability = 0.1 md, 60 Acre Spac<strong>in</strong>g, Coal Only<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30<br />

Years<br />

Exhibit 2.12 Simulation Results - Case 1<br />

Gas Water<br />

Donetsk Bas<strong>in</strong> Simulation Results<br />

Coal Permeability = 0.1 md, 60 Acre Spac<strong>in</strong>g, Coal Only<br />

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930<br />

Years<br />

Exhibit 2.13 Simulation Results - Case 1<br />

Gas Water<br />

Reservoir Simulations 2-14


(Gas (m3/hour), Water (m3/hour X 100)<br />

Gas (thous<strong>and</strong> m3), Water (m3 / 10)<br />

1,000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

-<br />

22,000<br />

20,000<br />

18,000<br />

16,000<br />

14,000<br />

12,000<br />

10,000<br />

8,000<br />

6,000<br />

4,000<br />

2,000<br />

-<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Donetsk Bas<strong>in</strong> Simulation Results<br />

Coal Permeability = 0.1 md, 60 Acre Spac<strong>in</strong>g, Coal & S<strong>and</strong>stone<br />

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930<br />

Years<br />

Exhibit 2.14 Simulation Results - Case 2<br />

Gas Water<br />

Donetsk Bas<strong>in</strong> Simulation Results<br />

Coal Permeability = 0.1 md, 60 Acre Spac<strong>in</strong>g, Coal & S<strong>and</strong>stone<br />

1 2 3 4 5 6 7 8 9 101112131415161718192021222324252627282930<br />

Years<br />

Exhibit 2.15 Simulation Results - Case 2<br />

Gas Water<br />

Reservoir Simulations 2-15


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Case 1<br />

Case 2<br />

60 Acre, Coal K = 0.1md, Coal Only<br />

60 acre, Coal K = 0.1md, with S<strong>and</strong>stone<br />

Cumulative Gas Cumulative Water Cum. Gas Cum.Water<br />

51,709<br />

28,142<br />

737,156<br />

37,644<br />

Gas Gas Water Water Gas Gas Water Water<br />

Year mcf dec. bbl dec. Year mcf dec. bbl dec.<br />

1 2,098 0.0406 1,105 0.0393<br />

1 296,115 0.4017 3,285 0.0873<br />

2 1,555 0.0301 845 0.0300<br />

2 129,525 0.1757 2,067 0.0549<br />

3 1,394 0.0270 793 0.0282<br />

3 71,375 0.0968 1,655 0.0440<br />

4 1,327 0.0257 755 0.0268<br />

4 44,881 0.0609 1,413 0.0375<br />

5 1,273 0.0246 731 0.0260<br />

5 30,814 0.0418 1,258 0.0334<br />

6 1,226 0.0237 715 0.0254<br />

6 22,465 0.0305 1,151 0.0306<br />

7 1,190 0.0230 703 0.0250<br />

7 17,153 0.0233 1,072 0.0285<br />

8 1,160 0.0224 692 0.0246<br />

8 13,556 0.0184 1,010 0.0268<br />

9 1,136 0.0220 684 0.0243<br />

9 11,025 0.0150 961 0.0255<br />

10 1,116 0.0216 676 0.0240<br />

10 9,172 0.0124 920 0.0244<br />

11 1,098 0.0212 669 0.0238<br />

11 7,775 0.0105 886 0.0235<br />

12 1,081 0.0209 663 0.0236<br />

12 6,696 0.0091 857 0.0228<br />

13 1,067 0.0206 658 0.0234<br />

13 5,849 0.0079 833 0.0221<br />

14 1,053 0.0204 653 0.0232<br />

14 5,170 0.0070 811 0.0216<br />

15 1,041 0.0201 649 0.0230<br />

15 4,615 0.0063 793 0.0211<br />

16 1,030 0.0199 645 0.0229<br />

16 4,156 0.0056 776 0.0206<br />

17 1,020 0.0197 640 0.0228<br />

17 3,774 0.0051 761 0.0202<br />

18 1,012 0.0196 637 0.0226<br />

18 3,453 0.0047 747 0.0199<br />

19 1,004 0.0194 633 0.0225<br />

19 3,180 0.0043 735 0.0195<br />

20 998 0.0193 629 0.0224<br />

20 2,946 0.0040 723 0.0192<br />

21 993 0.0192 625 0.0222<br />

21 2,746 0.0037 712 0.0189<br />

22 989 0.0191 621 0.0221<br />

22 2,573 0.0035 702 0.0186<br />

23 987 0.0191 617 0.0219<br />

23 2,423 0.0033 691 0.0184<br />

24 987 0.0191 612 0.0217<br />

24 2,293 0.0031 681 0.0181<br />

25 989 0.0191 606 0.0215<br />

25 2,180 0.0030 670 0.0178<br />

26 992 0.0192 600 0.0213<br />

26 2,081 0.0028 660 0.0175<br />

27 997 0.0193 593 0.0211<br />

27 1,996 0.0027 649 0.0172<br />

28 1,005 0.0194 586 0.0208<br />

28 1,923 0.0026 639 0.0170<br />

29 1,014 0.0196 579 0.0206<br />

29 1,859 0.0025 628 0.0167<br />

30 1,002 0.0194 559 0.0199<br />

30 1,767 0.0024 604 0.0161<br />

31 991 0.0192 541 0.0192<br />

31 1,679 0.0023 582 0.0155<br />

32 980 0.0190 523 0.0186<br />

32 1,596 0.0022 560 0.0149<br />

33 970 0.0187 505 0.0179<br />

33 1,517 0.0021 539 0.0143<br />

34 959 0.0185 488 0.0173<br />

34 1,442 0.0020 519 0.0138<br />

35 948 0.0183 472 0.0168<br />

35 1,370 0.0019 499 0.0133<br />

36 938 0.0181 456 0.0162<br />

36 1,302 0.0018 481 0.0128<br />

37 927 0.0179 441 0.0157<br />

37 1,238 0.0017 463 0.0123<br />

38 917 0.0177 426 0.0151<br />

38 1,176 0.0016 445 0.0118<br />

39 907 0.0175 412 0.0146<br />

39 1,118 0.0015 429 0.0114<br />

40 897 0.0173 398 0.0141<br />

40 1,063 0.0014 413 0.0110<br />

41 887 0.0172 384 0.0137<br />

41 1,010 0.0014 397 0.0106<br />

42 877 0.0170 372 0.0132<br />

42 960 0.0013 382 0.0102<br />

43 868 0.0168 359 0.0128<br />

43 912 0.0012 368 0.0098<br />

44 858 0.0166 347 0.0123<br />

44 867 0.0012 354 0.0094<br />

45 849 0.0164 335 0.0119<br />

45 824 0.0011 341 0.0091<br />

46 839 0.0162 324 0.0115<br />

46 783 0.0011 328 0.0087<br />

47 830 0.0160 313 0.0111<br />

47 744 0.0010 316 0.0084<br />

48 821 0.0159 303 0.0108<br />

48 707 0.0010 304 0.0081<br />

49 812 0.0157 293 0.0104<br />

49 672 0.0009 293 0.0078<br />

50 803 0.0155 283 0.0101<br />

50 639 0.0009 282 0.0075<br />

Exhibit 2.16 Tabular Type Curve Production Data<br />

Reservoir Simulations 2-16


2.3 CMM Reservoir Model<strong>in</strong>g<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

For <strong>the</strong> CMM portion of <strong>the</strong> study, detailed model<strong>in</strong>g of <strong>the</strong> rate <strong>and</strong> quality of <strong>the</strong> gas<br />

produced is a difficult <strong>and</strong> complex task because of <strong>the</strong> <strong>in</strong>teraction between <strong>the</strong> geologic<br />

conditions, <strong>m<strong>in</strong>e</strong> advance rates, <strong>and</strong> degasification drill<strong>in</strong>g programs. Fur<strong>the</strong>rmore, accurate<br />

model<strong>in</strong>g would require detailed data on all of <strong>the</strong> strata affected <strong>in</strong> <strong>the</strong> gob area (e.g.<br />

permeability, gas saturation, porosity, etc.), data that are not readily available. Therefore, <strong>the</strong><br />

estimate of CMM production from each <strong>m<strong>in</strong>e</strong> is based on historical CMM production rates for<br />

each <strong>m<strong>in</strong>e</strong> <strong>and</strong> <strong>coal</strong> production forecasts for <strong>the</strong> life of <strong>the</strong> project.<br />

Reservoir Simulations 2-17


Task 2<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Screen Applicable Technologies -<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-i


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

TASK 2 CONTENTS<br />

2.1 Introduction........................................................................................................................2-1<br />

2.2 CBM Well Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation.................................................................2-1<br />

2.2.1 Well Design.................................................................................................................2-3<br />

2.2.1.1 Drill<strong>in</strong>g ................................................................................................................2-3<br />

2.2.1.2 Cas<strong>in</strong>g ................................................................................................................2-7<br />

2.2.1.3 Geophysical Logg<strong>in</strong>g <strong>and</strong> Wire L<strong>in</strong>e Operations ................................................2-9<br />

2.2.1.4 General Cement<strong>in</strong>g Design ..............................................................................2-10<br />

2.2.2 Stimulation................................................................................................................2-15<br />

2.2.3 Post Hydraulic Fracture Injection Fall-off Test<strong>in</strong>g .....................................................2-25<br />

2.3 CMM Dra<strong>in</strong>age Techniques .............................................................................................2-26<br />

2.3.1 Pre-M<strong>in</strong><strong>in</strong>g Degasification.........................................................................................2-28<br />

2.3.2 Gob Degasification ...................................................................................................2-30<br />

2.3.2.1 Surface Drilled Gob Wells. ...............................................................................2-30<br />

2.3.2.2 Cross-Measure Boreholes................................................................................2-32<br />

2.3.2.3 Superjacent Techniques...................................................................................2-32<br />

2.3.2.4 In-M<strong>in</strong>e Directionally Drilled Gob Boreholes.....................................................2-32<br />

2.4 Recovery of Gas from Sealed Areas ...............................................................................2-34<br />

2.5 Gas Collection .................................................................................................................2-34<br />

2.6 Methane Dra<strong>in</strong>age Practices In Ukra<strong>in</strong>e ..........................................................................2-36<br />

2.6.1 Pre-M<strong>in</strong><strong>in</strong>g Degasification.........................................................................................2-36<br />

2.6.1.1 Vertical Wells....................................................................................................2-36<br />

2.6.1.2 Underground Boreholes ...................................................................................2-36<br />

2.6.2 Gob Degasification ...................................................................................................2-37<br />

2.6.2.1 Vertical Gob Wells............................................................................................2-37<br />

2.6.2.2 Cross-Measure Boreholes................................................................................2-37<br />

2.6.3 Gas Collection ..........................................................................................................2-38<br />

2.7 Proposed Methane Dra<strong>in</strong>age Technology for Ukra<strong>in</strong>e.....................................................2-39<br />

2.7.1 Application of Directional Drill<strong>in</strong>g for Gob Gas Recovery .........................................2-39<br />

2.7.1.1 Considerations for <strong>the</strong> Application of Directionally Drilled Horizontal Gob<br />

Boreholes .........................................................................................................2-41<br />

2.7.1.2 Directional Drill<strong>in</strong>g Application at <strong>the</strong> Krasnolimonskaya M<strong>in</strong>e.........................2-43<br />

2.7.1.3 Directional Drill<strong>in</strong>g Application at <strong>the</strong> Belozyorskaya M<strong>in</strong>e...............................2-45<br />

2.8 Directional Drill<strong>in</strong>g Applications at <strong>the</strong> Bazhanov <strong>and</strong> South Donbass #3 M<strong>in</strong>es ............2-47<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-ii


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

TASK 2 EXHIBITS<br />

Exhibit 2.1 Ingersoll-R<strong>and</strong> RD 20 Drill Rig ..........................................................................................2-3<br />

Exhibit 2.3 Donbass Bas<strong>in</strong> Drill Prognosis for a Full-Field Development Well....................................2-6<br />

Exhibit 2.4 Pipe Specifications <strong>and</strong> Material for <strong>the</strong> 5-Spot Pilot Wells...............................................2-7<br />

Exhibit 2.5 Balls <strong>and</strong> Baffles of Vary<strong>in</strong>g Size used for Zone Isolation.................................................2-8<br />

Exhibit 2.6 Logg<strong>in</strong>g truck units.............................................................................................................2-9<br />

Exhibit 2.7 Guide Shoe......................................................................................................................2-12<br />

Exhibit 2.8 Cement Wiper Plug..........................................................................................................2-13<br />

Exhibit 2.9 Donbass Bas<strong>in</strong> Cement Materials Required for <strong>the</strong> Five Well Pilot ................................2-14<br />

Exhibit 2.10 Fracture Optimization Process ........................................................................................2-16<br />

Exhibit 2.11 Completion Zones with Hydraulic Fractur<strong>in</strong>g Stages for a Type Well <strong>in</strong> <strong>the</strong><br />

Donbass Bas<strong>in</strong>.................................................................................................................2-18<br />

Exhibit 2.12 S<strong>and</strong> Dump, Blender <strong>and</strong> Fractur<strong>in</strong>g Pumps...................................................................2-19<br />

Exhibit 2.13 Hydraulic Fractur<strong>in</strong>g Program Design .............................................................................2-20<br />

Exhibit 2.14 Schematic of a Typical U.S. Hydraulic Fractur<strong>in</strong>g Treatment .........................................2-21<br />

Exhibit 2.15 Graph of Pressure versus Time used to deter<strong>m<strong>in</strong>e</strong> Closure Pressure............................2-22<br />

Exhibit 2.16 Example of a Tip Screenout ............................................................................................2-22<br />

Exhibit 2.17 Materials Required for Hydraulically Fractur<strong>in</strong>g 5 Wells..................................................2-24<br />

Exhibit 2.18 Coal Degasification: Production through Utilization ........................................................2-27<br />

Exhibit 2.19 In-Seam Boreholes Drilled across Longwall Panels dur<strong>in</strong>g Gateroad Development to<br />

Reduce <strong>the</strong> Gas Content of <strong>the</strong> Longwall Panel Prior to M<strong>in</strong><strong>in</strong>g .....................................2-28<br />

Exhibit 2.20 Long In-Seam Boreholes Directionally Drilled along <strong>the</strong> Longitud<strong>in</strong>al Axis of <strong>the</strong> Longwall<br />

Panels <strong>in</strong> Advance of Gateroad Development ................................................................2-29<br />

Exhibit 2.21 General Description of Gob Gas Recovery Methods ......................................................2-30<br />

Exhibit 2.22 Illustration of Vertical Drilled Gob Well ............................................................................2-31<br />

Exhibit 2.23 In-M<strong>in</strong>e Directionally Drilled Gob Boreholes placed <strong>in</strong> an Underly<strong>in</strong>g Coal Seam <strong>and</strong> above<br />

<strong>the</strong> M<strong>in</strong><strong>in</strong>g Seam..............................................................................................................2-33<br />

Exhibit 2.24 Vacuum Pump - Vertical Gas Gob Well ..........................................................................2-35<br />

Exhibit 2.25 Gas H<strong>and</strong>l<strong>in</strong>g <strong>and</strong> Collection System..............................................................................2-35<br />

Exhibit 2.26 Boreholes Drilled Immediately <strong>in</strong> Advance of M<strong>in</strong>e Developments to Target Gas..........2-37<br />

Exhibit 2.27 Cross-Measure Boreholes applied from Tailgate Entry for S<strong>in</strong>gle Entry Retreat Longwall<br />

M<strong>in</strong><strong>in</strong>g as implemented <strong>in</strong> some Ukra<strong>in</strong>ian M<strong>in</strong>es. ..........................................................2-38<br />

Exhibit 2.28 Long Hole Directional Drills .............................................................................................2-40<br />

Exhibit 2.29 Demonstration of Directionally Drilled Horizontal Gob Borehole planned for <strong>the</strong><br />

Krasnolimonskaya M<strong>in</strong>e ..................................................................................................2-44<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-iii


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 2.30 Plan for <strong>the</strong> Dual Purpose Horizontal Boreholes at <strong>the</strong> Krasnolimonskaya M<strong>in</strong>e ...........2-45<br />

Exhibit 2.31 Horizontal Gob Boreholes Planned for <strong>the</strong> 8th Sou<strong>the</strong>rn Longwall Panel at <strong>the</strong><br />

Belozorskaya M<strong>in</strong>e ..........................................................................................................2-45<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-iv


2.1 Introduction<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

This section presents <strong>the</strong> technical designs for <strong>the</strong> drill<strong>in</strong>g <strong>and</strong> completion of both CBM wells<br />

<strong>and</strong> CMM-related wells <strong>and</strong> boreholes. The design of <strong>the</strong> CBM wells <strong>in</strong>corporates strategies for<br />

complet<strong>in</strong>g both <strong>the</strong> <strong>coal</strong> <strong>and</strong> tight gas s<strong>and</strong> reservoirs <strong>in</strong> <strong>the</strong> wellbore utiliz<strong>in</strong>g vertical,<br />

hydraulically fractured wells. For <strong>the</strong> CMM boreholes, several different drill<strong>in</strong>g methods are<br />

exa<strong>m<strong>in</strong>e</strong>d <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>-<strong>m<strong>in</strong>e</strong> horizontal wells, vertical gob wells <strong>and</strong> cross-measure boreholes.<br />

2.2 CBM Well Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation<br />

This section sets forth <strong>the</strong> recommended drill<strong>in</strong>g, completion <strong>and</strong> stimulation designs for a<br />

CBM project <strong>in</strong> <strong>the</strong> Donbass Coal Bas<strong>in</strong>. All relevant specifications <strong>and</strong> guidel<strong>in</strong>es for <strong>the</strong><br />

above procedures are provided. Specifically, this section covers:<br />

A prelim<strong>in</strong>ary CBM production well design;<br />

Recommended cas<strong>in</strong>g <strong>and</strong> cement<strong>in</strong>g designs <strong>and</strong> procedures;<br />

Hydraulic stimulation design;<br />

Recommendations for artificial lift.<br />

The depths to <strong>the</strong> target reservoirs across <strong>the</strong> Donetsk Region vary greatly, with <strong>the</strong> deeper<br />

parts of <strong>the</strong> bas<strong>in</strong> at 1,500+m to shallower <strong>coal</strong> seams <strong>in</strong> <strong>the</strong> 200 meter depth range. This<br />

section outl<strong>in</strong>es a recommended well design based on an “average” <strong>coal</strong> bed <strong>methane</strong> well<br />

depth of about 1,100 m (3,600 ft) <strong>in</strong>clud<strong>in</strong>g a sump or “rat hole”. It is expected that<br />

recommendations will evolve as knowledge is acquired dur<strong>in</strong>g <strong>development</strong> of <strong>the</strong> project.<br />

For example, larger size cas<strong>in</strong>g may be used <strong>in</strong> <strong>the</strong> down dip portion of a structure <strong>in</strong> a field<br />

to maximize water production <strong>and</strong> accelerate <strong>the</strong> de-water<strong>in</strong>g of <strong>the</strong> reservoir. Some areas<br />

of <strong>the</strong> field may have more target <strong>in</strong>tervals available or a higher concentration of natural<br />

fractures <strong>in</strong> <strong>the</strong> reservoir, <strong>the</strong>reby <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> amount of produced water <strong>and</strong> <strong>the</strong> need for<br />

larger well bores.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-1


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The follow<strong>in</strong>g criteria will ultimately deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> f<strong>in</strong>al cas<strong>in</strong>g size, completion type, <strong>and</strong><br />

artificial lift equipment:<br />

Maximum depth of <strong>the</strong> productive <strong>in</strong>tervals;<br />

Number of productive <strong>in</strong>tervals completed;<br />

Maximum water production to draw down <strong>the</strong> reservoir;<br />

Reservoir pressure of each <strong>coal</strong> seams/productive <strong>in</strong>tervals.<br />

Advanced Resources presents two well designs <strong>and</strong> completion methods for <strong>the</strong> project.<br />

These design <strong>and</strong> completion practices can be used <strong>in</strong>terchangeably.<br />

The first design, recommended for <strong>the</strong> full-field <strong>development</strong> scenario, utilizes 114mm (4 ½<strong>in</strong>ch)<br />

cas<strong>in</strong>g <strong>in</strong> <strong>the</strong> hole <strong>and</strong> is completed us<strong>in</strong>g a ball <strong>and</strong> baffle technique to hydraulically<br />

fracture <strong>the</strong> target <strong>in</strong>tervals. This method can be used to stimulate up to 7 <strong>in</strong>dividual zones <strong>in</strong><br />

a well with off <strong>the</strong> shelf equipment.<br />

The second well design utilizes a 140 mm (5 ½-<strong>in</strong>ch) cas<strong>in</strong>g str<strong>in</strong>g <strong>in</strong> <strong>the</strong> hole <strong>and</strong> isolates<br />

<strong>the</strong> <strong>in</strong>dividual zones for completion with drillable composite bridge plugs. The number of<br />

zones completed <strong>in</strong> a well will h<strong>in</strong>ge on <strong>the</strong> volume of water from each zone <strong>and</strong> <strong>the</strong> relative<br />

reservoir pressures between zones. This assumes <strong>the</strong>re are no regulatory restrictions <strong>and</strong><br />

all <strong>coal</strong> seams are gas saturated <strong>and</strong> economic to produce.<br />

The larger well bore is an advantage where a greater number of zones are completed or <strong>the</strong><br />

water volumes require higher capacity production equipment. The larger cas<strong>in</strong>g provides<br />

added flexibility dur<strong>in</strong>g drill<strong>in</strong>g, completion, <strong>and</strong> production operations. Advanced Resources<br />

recommends us<strong>in</strong>g <strong>the</strong> 140 mm (5 ½-<strong>in</strong>ch) completion for <strong>the</strong> <strong>in</strong>itial 5-well pilot phase of <strong>the</strong><br />

project or until more <strong>in</strong>formation is known about <strong>the</strong> reservoir.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-2


2.2.1 Well Design<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

2.2.1.1 Drill<strong>in</strong>g<br />

The depth of <strong>in</strong>dividual wells over <strong>the</strong> two <strong>coal</strong>bed <strong>methane</strong> license areas varies<br />

considerably. In both areas, <strong>the</strong> ma<strong>in</strong> section of <strong>coal</strong> is between 500-850 meters <strong>in</strong> depth <strong>and</strong><br />

wells have been drilled <strong>in</strong> vary<strong>in</strong>g depths from 200 to 1,500 meters. An average target depth<br />

of 1,100 meters (3600 ft), <strong>in</strong>clud<strong>in</strong>g a sump or “rat-hole”, is used for design purposes. The<br />

sump at <strong>the</strong> bottom of <strong>the</strong> well facilitates placement of <strong>the</strong> production equipment below<br />

perforations. A drill rig rated to 1,400 meters (4600 ft) with a pull-back rat<strong>in</strong>g of at least 50<br />

metric tons (110,000 lbs) is recommended. Experience may allow downsiz<strong>in</strong>g of <strong>the</strong> rig as<br />

drill<strong>in</strong>g becomes rout<strong>in</strong>e <strong>and</strong> <strong>the</strong> reservoir is better understood. A rig common to <strong>the</strong><br />

Appalachian Bas<strong>in</strong> is <strong>the</strong> Ingersoll-R<strong>and</strong> RD-20 hydraulic top drive (Exhibit 2.1). The pullback<br />

rat<strong>in</strong>g is 50 metric tons (110,000 lbs). Properly configured this rig rout<strong>in</strong>ely drills 165<br />

mm (6 ½ -<strong>in</strong>ch) hole to run 140 mm (5 ½-<strong>in</strong>ch) cas<strong>in</strong>g over 1,200 meters (4,000 ft).<br />

Exhibit 2.1 Ingersoll-R<strong>and</strong> RD 20 Drill Rig<br />

Most wells drilled <strong>in</strong> <strong>the</strong> Appalachian Bas<strong>in</strong> (<strong>in</strong>clud<strong>in</strong>g many CBM wells) use compressed air<br />

as a carry<strong>in</strong>g fluid (Note that <strong>the</strong> Appalachian Bas<strong>in</strong> has some similarities to <strong>the</strong> Donetsk<br />

Bas<strong>in</strong> as both have numerous th<strong>in</strong> seams <strong>in</strong> <strong>the</strong> stratigraphic section). Drill<strong>in</strong>g “on air”<br />

maximizes penetration rates with rates over 30 m (100 ft) per hour achievable. A typical<br />

compressor package would <strong>in</strong>clude a primary compressor, such as a Sullair 2400kP/255<br />

cubic meters per m<strong>in</strong>ute (cmm) (350 psi /900 cubic feet per m<strong>in</strong>ute (cfm)) rig compressor, an<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-3


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

auxiliary compressor of similar rat<strong>in</strong>g <strong>and</strong> a booster, for example a Joy 7900kP/66 cmm<br />

(1,150 psi/2,200 cfm). The compressor package is sized by <strong>the</strong> rate of circulation (velocity)<br />

needed to clean <strong>the</strong> hole while drill<strong>in</strong>g <strong>and</strong> varies depend<strong>in</strong>g on <strong>the</strong> rig. A triplex rig pump<br />

capable of 0.5-0.8 cmm (3-5 bpm) at 6900kP (1,000 psi) <strong>and</strong> a 16 m 3 (100 bbl) steel mud pit<br />

with hydro-cyclone is necessary to drill on mud if water <strong>in</strong>flux becomes a problem.<br />

Drill<strong>in</strong>g with air/mist is also advantageous because it limits potential filtration damage to <strong>coal</strong><br />

(mud cake), reduces loss-of-circulation problems, provides straighter holes because of less<br />

weight-on-bit, <strong>and</strong> is lower cost because no mud is required. However, air/mist drill<strong>in</strong>g will<br />

not allow lift<strong>in</strong>g of large volumes of water, <strong>and</strong> equipment such as bits <strong>and</strong> drill pipe can wear<br />

more quickly due to s<strong>and</strong> blast<strong>in</strong>g effects. Selection of drill pipe diameter <strong>and</strong> compressor<br />

rate <strong>and</strong> horsepower are important to ensure <strong>the</strong> ability to lift cutt<strong>in</strong>gs.<br />

The hole should be started by hammer<strong>in</strong>g/drill<strong>in</strong>g a 410 mm (16-<strong>in</strong>ch) conductor pipe to 10-<br />

30 m (30-100 ft) or until bedrock is atta<strong>in</strong>ed. The surface str<strong>in</strong>g should be drilled with a 270<br />

mm (10 5 /8-<strong>in</strong>ch) air hammer or rotary cone bit to 61 m (200 ft) (actual depth deter<strong>m<strong>in</strong>e</strong>d by<br />

regulatory need or surface water flows) <strong>and</strong> 220 mm (8 5 /8-<strong>in</strong>ch) cas<strong>in</strong>g run to <strong>the</strong> bottom.<br />

The <strong>in</strong>termediate cas<strong>in</strong>g str<strong>in</strong>g should be cemented <strong>and</strong> drilled out with a 190 mm (7 3 /8-<strong>in</strong>ch)<br />

air hammer or rotary cone bit to 1,150 m (3,650 ft). The 140 mm, 740kP (5 ½-<strong>in</strong>ch, 15.5<br />

pound per foot), K-55 cas<strong>in</strong>g should <strong>the</strong>n be run to bottom <strong>and</strong> cemented <strong>in</strong> place over <strong>the</strong><br />

<strong>coal</strong> seams.<br />

The given depths are assumed for <strong>the</strong> purpose of design; actual depths will be deter<strong>m<strong>in</strong>e</strong>d<br />

by <strong>the</strong> geophysical logs of <strong>in</strong>dividual wells. Dry hole drill<strong>in</strong>g can require as little as 0.28 cmm<br />

(10 cfm) to lift cutt<strong>in</strong>gs to surface, whereas water <strong>in</strong>flux <strong>in</strong> <strong>the</strong> well bore may require several<br />

hundred cfm to clean <strong>the</strong> hole <strong>and</strong> fire <strong>the</strong> air hammer. is <strong>the</strong> drill<strong>in</strong>g prognosis for a pilot well<br />

<strong>in</strong> <strong>the</strong> project area <strong>and</strong> Exhibit 2.3 presents a drill<strong>in</strong>g prognosis for a full-field <strong>development</strong><br />

well.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-4


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Donbass Bas<strong>in</strong><br />

DEPTH DESCRIPTION<br />

FT. M WELL NUMBER LEASE NAME Donbass Bas<strong>in</strong> LEASE #<br />

0 Conductor 0 DISTRICT QUAD<br />

50 16" 75#, J-55 15.2 DATE 6/14/2007 COUNTY API #<br />

100 30.5 TARGET 3,600 ft. ELEVATION STATE Ukra<strong>in</strong>e<br />

150 CSG SHOE hole 45.7<br />

200 8 5/8" 32#, K-55 10 5/8" 61 DRILLING ACTIVITY PROGNOSIS Drill Time Curve<br />

250<br />

Class G w/ 2% CaCl 76.2 Project Day Activity<br />

Elapsed<br />

Time,<br />

hrs. Depth<br />

300<br />

500<br />

91.5<br />

152<br />

-<br />

1<br />

RU, <strong>in</strong>stall diverter & blooie l<strong>in</strong>e.<br />

Spud & air drill 10<br />

0 0<br />

5 / 8 <strong>in</strong>. hole to 65 m. 12 65<br />

750 229 1 Run 8 5 / 8 <strong>in</strong>., 32 ppf, K-55, R-II Cas<strong>in</strong>g to 61 m. 4 65<br />

1000 305 2 Cement Csg & WOC. 12 65<br />

1050<br />

1100<br />

320<br />

335<br />

2<br />

3<br />

Nipple up csg head, BOP & Diverter<br />

Air drill 7<br />

5 65<br />

3 1150 351 3<br />

/ 8 <strong>in</strong>. hole to 450 m.<br />

Trip bit, rig ma<strong>in</strong>tenance, etc.<br />

29<br />

10<br />

450<br />

450<br />

1200 366 5 Air drill 7 3 / 8 <strong>in</strong>. hole from 450 - 1,120 m. 37.5 1120<br />

1250 381 5 Open hole geophysical logg<strong>in</strong>g 8 1120<br />

1300 396 6 TOOH, pick up cas<strong>in</strong>g tongs, RIH w/ csg 4 1120<br />

1350<br />

1400<br />

412<br />

427<br />

6<br />

10<br />

Set 5 ½ <strong>in</strong>., 15.5 ppf, K-55, R-III csg to 915 m.<br />

Cmt long str<strong>in</strong>g & WOC<br />

6<br />

36<br />

1120<br />

1100<br />

1450 442 13 Perforate <strong>and</strong> complete target 72<br />

1500 457 Metric<br />

1600 488 Well Type: Donbass Bas<strong>in</strong> Prospect - CBM Cement: Yield circ wtr 3 m 3<br />

1700 518 Mud Type: Air drill 10 5/8" hole for surface cas<strong>in</strong>g to 65 m. Surface Cas<strong>in</strong>g: Class G w/ 2% CaCl 1.43 gel 0.8 m 3<br />

1800 549 Air drill 7 3/8" hole for long str<strong>in</strong>g to 1120 m. Bk circ w/19 bw, 5 bbls gel, 5 bbls spacer. Pump 11 bbls, spacer 0.8 m 3<br />

1900 579 14 ppg cmt. SD c/u l<strong>in</strong>es, displace w/ 7.9 bbls treated water. cmt 1.75 m 3<br />

2000 610 Drill<strong>in</strong>g Details: Bit Size: Csg Size: Grade: Depth: Prep to drill out cmt. treat wtr 1.26 m 3<br />

2100 640 API / Metric <strong>in</strong>ches m Intermediate Cas<strong>in</strong>g:<br />

2200 671 Conductor - - 16" 75#, J-55 5<br />

2300 701 Surface Str<strong>in</strong>g - 10 5/8" 8 5/8" 32#, K-55 61<br />

2400 732 Intermediate - - - - -<br />

2500 762 Long Str<strong>in</strong>g - 7 3/8" 5 1/2" 15.5#, K-55 1,100 Production Cas<strong>in</strong>g: ARI Lite w/ 2% CaCl 1.95<br />

2600 793 Bk circ w/ 150 bw, 30 bbls gel, 10 bbls spacer. Pump 111 circ wtr 24 m 3<br />

2700 823 bbls, 13.6 ppg cmt. SD c/u l<strong>in</strong>es, displace cmt w/ 85.7 bbls gel 4.8 m 3<br />

2800 854 treated water. Est. 1,000 psig surface to seat plug. spacer 1.6 m 3<br />

2900 884 cmt 17.7 m 3<br />

3000 915 treat wtr 13.70 m 3<br />

0<br />

Time (Days)<br />

100<br />

200<br />

300<br />

400<br />

500<br />

+<br />

600<br />

700<br />

800<br />

900<br />

0.0 2.0 4.0 6.0 8.0 10.0 12.0<br />

3100 945 Size Description ID Vol Vol Yield Column Volume # Sacks Bbls BBL CMT<br />

3200 976 <strong>in</strong>ches <strong>in</strong>ches bbls/ft cu ft/ft cu ft/sk ft cu ft sk/ft xcess→ 25%<br />

3300 1006 Hole 10 5/8 10.625 0.1096568 0.61572 1.43 10.0 6.157 0.43057 4.31 1.10<br />

3400 1037 Csg 8 5/8 32 #, K-55 7.92 0.06093 0.34212 200.0 68.424 12.19<br />

3500 CSG SHOE PBTD 1067 An 8 5/8"x10 5/8" 0.03740 0.2100 1.43 200.0 41.997 0.14684 29.37 7.48 10.72<br />

3600 5 1/2" 15.5#, K-55 hole 3,600.0 1098 Hole 0 0.000 0.00<br />

3675 ARI Lite w/ 2% CaCl 7 3/8" 1120 Csg 0.000 0.00<br />

3,675<br />

An 0 0.000<br />

Hole 7 3/8 7.375 0.05283 0.32759 1.95 75.0 24.569 0.16799 12.60 4.38<br />

Csg 5 1/2 15.5 #, K-55 4.95 0.02380 0.13364 3,600.0 481.105 85.68<br />

An 5 1/2"x 7 3/8" 0.02345 0.1317 1.95 3,600.0 474.000 0.06752 243.08 84.42 110.99<br />

Exhibit 2.2 Donbass Bas<strong>in</strong> Drill Prognosis <strong>and</strong> Cement Program for a Pilot Well<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-5


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Donbass Bas<strong>in</strong><br />

DEPTH DESCRIPTION<br />

FT. <strong>in</strong>ches <strong>in</strong>ches M WELL NUMBER LEASE NAME Donbass Bas<strong>in</strong> LEASE #<br />

0 Conductor 0 DISTRICT QUAD<br />

50 16 75#, J-55 15.2 DATE 6/14/2007 COUNTY API #<br />

100 30.5 TARGET 3,600 ft. ELEVATION STATE Ukra<strong>in</strong>e Job Param<br />

150 CSG SHOE hole 45.7 API<br />

200 7 5/8 20#, K-55 9 5/8 61 DRILLING ACTIVITY PROGNOSIS Drill Time Curve 16.1 bbls<br />

Elapsed<br />

Time,<br />

250 Class G w/ 2% CaCl 76.2 Project Day Activity<br />

hrs. Depth 2.4 bbls<br />

300<br />

350<br />

91.5<br />

107<br />

-<br />

1<br />

RU, <strong>in</strong>stall diverter & blooie l<strong>in</strong>e.<br />

Spud & air drill 9<br />

0 0 4.7 bbls<br />

5 / 8 <strong>in</strong>. hole to 65 m. 12 65 9.5 bbls<br />

400 122 1 Run 7 <strong>in</strong>.,20 ppf, K-55, R-II Cas<strong>in</strong>g to 61 m. 4 65 9.4 bbls<br />

500 152 2 Cement Csg & WOC. 12 65 bbls<br />

600 183 2 Nipple up csg head, BOP & Diverter 5 65 bbls<br />

700 213 2 Air drill 6 1/2 <strong>in</strong>. hole to 450 m. 29 450 bbls<br />

800 244 4 Trip bit, rig ma<strong>in</strong>tenance, etc. 10 450 bbls<br />

900 274 4 Air drill 6 1/2 <strong>in</strong>. hole from 450 - 1120 m. 37.5 1120 bbls<br />

1000 305 5 Open hole geophysical logg<strong>in</strong>g 8 1120 134.3 bbls<br />

1100<br />

1200<br />

335<br />

366<br />

6<br />

6<br />

TOOH, pick up cas<strong>in</strong>g tongs, RIH w/ csg<br />

Set 4 ½ <strong>in</strong>., 10.5 ppf, K-55, R-II csg to 1100 m<br />

4<br />

6<br />

1120<br />

1120<br />

42.9<br />

1.6<br />

bbls<br />

bbls<br />

1300 396 6 Cmt long str<strong>in</strong>g & WOC 36 1100 100.0 bbls<br />

1400 427 7 Perforate <strong>and</strong> complete target 72 57.4 bbls<br />

1500 457 Metric<br />

1600 488 Well Type: Donbass Bas<strong>in</strong> Prospect - CBM Cement: Yield circ wtr 2.57 m 3<br />

1700 518 Mud Type: Air drill 9 5/8" hole for surface cas<strong>in</strong>g to 65 m. Surface Cas<strong>in</strong>g: Class G w/ 2% CaCl 1.43 gel 0.38 m 3<br />

1800 549 Air drill 6 1/2" hole for long str<strong>in</strong>g to 1120 m. Bk circ w/17 bw, 2.5 bbls gel, 4 bbls spacer. Pump spacer 0.75 m 3<br />

1900 579 12 bbls, 14 ppg cmt. SD c/u l<strong>in</strong>es, drop plug, displace w/ cmt 1.51 m 3<br />

2000 610 Pipe Details: Bit Size: Csg Size: Grade: Depth: 8.1 bbls treated water. Prep to drill out cmt. treat wtr 1.50 m 3<br />

2100 640 API / Metric <strong>in</strong>ches <strong>in</strong>ches m Intermediate Cas<strong>in</strong>g: circ wtr m 3<br />

2200 671 Conductor - - 16 75#, J-55 5 gel m 3<br />

2300 701 Surface Str<strong>in</strong>g - 9 5/8 7 5/8 20#, K-55 61 spacer m 3<br />

2400 732 Intermediate - - - - - cmt m 3<br />

2500 762 Long Str<strong>in</strong>g - 6 1/2 4 1/2 10.5#, K-55 1,100 Production Cas<strong>in</strong>g: ARI Lite w/ 2% CaCl 1.95 treat wtr m 3<br />

2600 793 Bk circ w/ 115 bw, 35 bbls gel, 2 bbls spacer. Pump circ wtr 21.36 m 3<br />

2700 823 100 bbls, 13.6 ppg cmt. SD c/u l<strong>in</strong>es, drop plug, displace w/ gel 6.82 m 3<br />

2800 854 57.5 bbls treated water. Est. 1,000 psig surface to seat plug. spacer 0.25 m 3<br />

2900 884 cmt 15.90 m 3<br />

3000 915 treat wtr 9.13 m 3<br />

Time (Days)<br />

0<br />

100<br />

200<br />

300<br />

400<br />

500<br />

+<br />

600<br />

700<br />

800<br />

900<br />

0.0 2.0 4.0 6.0 8.0 10.0 12.0<br />

3100 945 Size Description ID Vol Vol Yield Column Volume # Sacks Bbls BBL CMT<br />

3200 976 <strong>in</strong>ches <strong>in</strong>ches bbls/ft cu ft/ft cu ft/sk ft cu ft sk/ft xcess→ 25%<br />

3300 1006 Hole 9 5/8 9.625 0.089987 0.50528 1.43 10.0 5.053 0.35334 3.53 0.90<br />

3400 1037 Csg 7 5/8 20#, K-55 6.969 0.04718 0.26489 0 200.0 52.978 9.44<br />

3500 CSG SHOE 1067 An 7" x 9 5/8" 0.03351 0.1882 1.43 200.0 37.634 0.13159 26.32 6.70 9.50<br />

3600 4 1/2 10.5#, K-55 hole PBTD 1098 Hole 0<br />

3675 ARI Lite w/ 2% CaCl 6 1/2 3,600 1120 Csg 0<br />

An 0.00000 0.0000 0<br />

3,675<br />

Hole 6 1/2 6.500 0.04104 0.23044 1.95 75.0 17.283 0.11817 8.86 3.08<br />

Csg 4 1/2 10.5#, K-55 4.052 0.01595 0.08955 0 3,600.0 322.380 57.41<br />

An 4 1/2" x 6 1/2" 0.02137 0.1200 1.95 3,600.0 431.969 0.06153 221.52 76.93 100.01<br />

Exhibit 2.3 Donbass Bas<strong>in</strong> Drill Prognosis for a Full-Field Development Well<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-6


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

2.2.1.2 Cas<strong>in</strong>g<br />

In most CBM applications, burst pressure is usually <strong>the</strong> most important factor <strong>in</strong> select<strong>in</strong>g<br />

cas<strong>in</strong>g. For example, <strong>the</strong> <strong>in</strong>ternal yield pressure of 114 mm, 500kP (4 ½-<strong>in</strong>ch, 10.5 pound per<br />

foot), K-55 cas<strong>in</strong>g is 33,050kP (4,790 psig), compared to 140 mm, 740kP (5 ½-<strong>in</strong>ch, 15.5<br />

ppf), K-55 cas<strong>in</strong>g which is 33,190kP (4,810 psig). This is an important constra<strong>in</strong>t to keep <strong>in</strong><br />

m<strong>in</strong>d <strong>in</strong> hydraulic fracture stimulation design. However, cas<strong>in</strong>g capacity for artificial lift<br />

equipment is an equally important consideration.<br />

Advanced Resources recommends that <strong>the</strong> full-field <strong>development</strong> phase utilize 114 mm (4.5<br />

<strong>in</strong>ch) cas<strong>in</strong>g versus <strong>the</strong> more commonly used 140 mm (5.5 <strong>in</strong>ch) cas<strong>in</strong>g <strong>in</strong> areas of <strong>the</strong> field<br />

that produce less water. The primary reason for this recommendation is that smaller diameter<br />

cas<strong>in</strong>g is significantly less expensive to purchase <strong>and</strong> ship. For example 114 mm (4.5 <strong>in</strong>ch)<br />

cas<strong>in</strong>g weighs 15.6 kg/m (10.5 lb/ft) which is 32% less than 140 mm (5.5 <strong>in</strong>ch) cas<strong>in</strong>g which<br />

weighs 23.1 kg/m (15.5 lb/ft). Assum<strong>in</strong>g an average well depth of 1,100 m (3,600 ft), a<br />

sav<strong>in</strong>gs of approximately 816 metric tons (900 US short tons) of steel can be realized for<br />

every 100 wells drilled, result<strong>in</strong>g <strong>in</strong> significant cost sav<strong>in</strong>gs. Drill<strong>in</strong>g smaller diameter holes<br />

will also result <strong>in</strong> faster drill<strong>in</strong>g times <strong>and</strong> fur<strong>the</strong>r cost sav<strong>in</strong>gs. Exhibit 2.4 lists <strong>the</strong> materials<br />

needed for an <strong>in</strong>itial 5-well pilot project utiliz<strong>in</strong>g 140 mm (5.5 <strong>in</strong>ch) cas<strong>in</strong>g.<br />

Donbass 5-spot Pilot Project Cas<strong>in</strong>g<br />

Requirements Units Per Well 5-well Pilot Req<br />

16-<strong>in</strong>ch H-40, 65 ppf, ERW R2 meters 25 125<br />

8 5 /8-<strong>in</strong>ch, 32 ppf, K-55 buttress meters 61 305<br />

5 ½-<strong>in</strong>ch, 15.5 ppf, K-55 buttress meters 1,100 5500<br />

Centralizers each 18 90<br />

Float Shoe each 1 5<br />

Float Collar each 1 5<br />

Wiper Plugs each 1 5<br />

Composite Bridge Plugs each 5 25<br />

Exhibit 2.4 Pipe Specifications <strong>and</strong> Material for <strong>the</strong> 5-Spot Pilot Wells<br />

Dur<strong>in</strong>g <strong>the</strong> full-field <strong>development</strong> stage, once <strong>the</strong> long str<strong>in</strong>g cas<strong>in</strong>g arrives on site, a tally is<br />

taken <strong>and</strong> <strong>the</strong> jo<strong>in</strong>ts are numbered. Utiliz<strong>in</strong>g <strong>the</strong> slim-hole completion method (114 mm (4.5<br />

<strong>in</strong>ch) cas<strong>in</strong>g), open-hole logs should be run <strong>and</strong> <strong>the</strong> depths at which <strong>the</strong> baffles will be set<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-7


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

are deter<strong>m<strong>in</strong>e</strong>d to isolate each set of perforations. The baffles are screwed <strong>in</strong>to <strong>in</strong>ternal<br />

thread<strong>in</strong>g <strong>in</strong> <strong>the</strong> p<strong>in</strong> at <strong>the</strong> top of <strong>the</strong> particular jo<strong>in</strong>t of cas<strong>in</strong>g between <strong>the</strong> fractur<strong>in</strong>g stages,<br />

smallest baffle (11.7 mm, 2 11 /16-<strong>in</strong>ch) on bottom, to <strong>the</strong> largest open baffle (9.56 mm, 3 9 /16<strong>in</strong>ch)<br />

at <strong>the</strong> top.<br />

Exhibit 2.5 Balls <strong>and</strong> Baffles of Vary<strong>in</strong>g Size used for Zone Isolation<br />

Placement is crucial s<strong>in</strong>ce <strong>the</strong> isolation of each stage dur<strong>in</strong>g <strong>the</strong> fractur<strong>in</strong>g process depends<br />

on <strong>the</strong> proper depth of <strong>the</strong> baffles. The cas<strong>in</strong>g is <strong>the</strong>n run to bottom <strong>and</strong> l<strong>and</strong>ed at <strong>the</strong><br />

planned depth. The cas<strong>in</strong>g must get to <strong>the</strong> planned depth for <strong>the</strong> baffles to be <strong>in</strong> <strong>the</strong> proper<br />

position. For a pilot project, a slightly different approach is recommended which is to cement<br />

140 mm (5 ½-<strong>in</strong>ch) cas<strong>in</strong>g <strong>in</strong> place <strong>and</strong> utilize <strong>the</strong> open <strong>and</strong>/or cased-hole logs to deter<strong>m<strong>in</strong>e</strong><br />

<strong>the</strong> depths of perforations <strong>and</strong> number of fractur<strong>in</strong>g stages. Composite or cast iron bridge<br />

plugs run on wire l<strong>in</strong>e are used as opposed to ball <strong>and</strong> baffles to isolate <strong>the</strong> fractur<strong>in</strong>g stages<br />

with<strong>in</strong> <strong>the</strong> cas<strong>in</strong>g.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-8


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

2.2.1.3 Geophysical Logg<strong>in</strong>g <strong>and</strong> Wire L<strong>in</strong>e Operations<br />

Open hole <strong>and</strong> cased hole logg<strong>in</strong>g, perforat<strong>in</strong>g, <strong>and</strong> <strong>the</strong> sett<strong>in</strong>g of bridge plugs, can all be<br />

performed us<strong>in</strong>g a comb<strong>in</strong>ation electric truck unit utilized by most of <strong>the</strong> major wire l<strong>in</strong>e<br />

service companies. The geophysical logg<strong>in</strong>g suite (open hole) should consist of a Gamma<br />

Ray, Differential Temperature, Compensated Neutron Density, Caliper <strong>and</strong> Array Induction<br />

log. Track #1 typically shows <strong>the</strong> gamma ray, differential temperature, density caliper, <strong>and</strong><br />

bit size. Track #2 records <strong>the</strong> shallow, medium <strong>and</strong> deep <strong>in</strong>duction logs. Track #3 has <strong>the</strong><br />

density correction <strong>and</strong> across tracks 2 <strong>and</strong> 3 runs <strong>the</strong> upper <strong>and</strong> lower gas detectors, <strong>the</strong><br />

borehole temperature, neutron porosity, compensated density, density porosity, <strong>and</strong> matrix<br />

density curves.<br />

Exhibit 2.6 Logg<strong>in</strong>g truck units<br />

Coal typically reads from 1.3-1.75 g/cc on a bulk density curve although variation can occur<br />

due to <strong>the</strong> quality of <strong>coal</strong>. Gas detectors can also be run, which are microphones that detect<br />

gas entry <strong>in</strong>to <strong>the</strong> open hole <strong>and</strong> can identify, along with <strong>the</strong> temperature log, <strong>in</strong>tervals of<br />

<strong>in</strong>terest. Neutron/density curve cross-over <strong>in</strong> zones conta<strong>in</strong><strong>in</strong>g gas are very useful <strong>in</strong><br />

determ<strong>in</strong><strong>in</strong>g gas productive <strong>in</strong>tervals. Logs <strong>in</strong> <strong>the</strong> U. S. oil <strong>and</strong> gas <strong>in</strong>dustry are typically run<br />

at 2-<strong>in</strong>ch (51 mm) <strong>and</strong> 5-<strong>in</strong>ch (127 mm) scales.<br />

Cement bond logs are run to <strong>in</strong>dicate areas of poor cement quality between <strong>the</strong> pipe <strong>and</strong><br />

reservoir. The bond between cement <strong>and</strong> pipe often <strong>in</strong>dicate <strong>the</strong> quality of <strong>the</strong> hydraulic seal<br />

<strong>in</strong> <strong>the</strong> well. This is vital where isolation is important between multiple seams of <strong>the</strong> reservoir<br />

dur<strong>in</strong>g stimulation <strong>and</strong> subsequent production. It also <strong>in</strong>dicates <strong>the</strong> degree of isolation of <strong>the</strong><br />

productive reservoir to shallow surface water (aquifers) <strong>and</strong> isolates <strong>the</strong> surface from down<br />

hole stimulation methods, i.e. hydraulic fractur<strong>in</strong>g.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-9


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Perforat<strong>in</strong>g is accomplished with disposable High Efficiency Guns (HEGs) or hollow carrier<br />

cas<strong>in</strong>g guns, which are reusable. St<strong>and</strong>ard perforation diameters are 9.5 mm (0.375-<strong>in</strong>ch)<br />

<strong>and</strong> 11.2 mm (0.44-<strong>in</strong>ch) with penetration rates from 610–914 mm (24-36 <strong>in</strong>ches) through<br />

steel <strong>and</strong> rock. It is recommended to use only premium jet charges when perforat<strong>in</strong>g.<br />

Wire l<strong>in</strong>e set bridge plugs should be used <strong>in</strong> 140mm (5 ½ -<strong>in</strong>ch) cas<strong>in</strong>g between fractur<strong>in</strong>g<br />

stages, for <strong>the</strong> pilot wells. A relatively new product, <strong>the</strong> composite bridge plug (CBP), has<br />

also proven effective at isolat<strong>in</strong>g zones <strong>in</strong> <strong>the</strong> well bore. The CBP reduces completion time<br />

because <strong>the</strong> body of <strong>the</strong> plug is made from carbon-graphite composite <strong>and</strong> is far easier to<br />

drill than traditional cast iron bridge plugs.<br />

2.2.1.4 General Cement<strong>in</strong>g Design<br />

In CBM zones, formation damage is caused by <strong>in</strong>vasion of <strong>the</strong> cement slurry or filtrate <strong>in</strong>to<br />

<strong>the</strong> <strong>coal</strong>-cleat <strong>and</strong> natural fracture system, or by un<strong>in</strong>tentional break down of <strong>the</strong> productive<br />

zone with cement. Damage caused by <strong>in</strong>vasion of <strong>the</strong> cement slurry or slurry filtrate can<br />

often be repaired or “bypassed” when <strong>the</strong> well is hydraulically fractured. Severe damage can<br />

occur when <strong>the</strong> hydrostatic pressure exerted by cement exceeds <strong>the</strong> fracture gradient of a<br />

<strong>coal</strong> seam, caus<strong>in</strong>g <strong>the</strong> formation to crack <strong>and</strong> cement <strong>in</strong>filtrat<strong>in</strong>g <strong>the</strong> reservoir. This type of<br />

damage is difficult to remedy <strong>and</strong> should be avoided by reduc<strong>in</strong>g <strong>the</strong> hydrostatic weight of<br />

<strong>the</strong> cement.<br />

The hydrostatic slurry weight should be designed to be less than <strong>the</strong> known fracture <strong>in</strong>itiation<br />

gradient. This will <strong>in</strong>sure that <strong>the</strong> <strong>coal</strong> seams are not fractured dur<strong>in</strong>g cement<strong>in</strong>g operations.<br />

Slurry weight is reduced by <strong>the</strong> addition of an extender or weight reduc<strong>in</strong>g materials such as<br />

perlite, diatomaceous earth, gilsonite, or alum<strong>in</strong>o-silicate spheres. Most CBM cement deigns<br />

<strong>in</strong>corporate a light weight cement slurry utiliz<strong>in</strong>g a 13.5 ppg Class A cement conta<strong>in</strong><strong>in</strong>g<br />

bentonite to improve <strong>the</strong> pump<strong>in</strong>g characteristics of <strong>the</strong> slurry <strong>and</strong> calcium chloride to speed<br />

<strong>the</strong> sett<strong>in</strong>g time.<br />

Advanced Resources recommends Enviro-spheres as an extender to lower <strong>the</strong> density <strong>and</strong><br />

prevent loss of cement to <strong>the</strong> reservoir. The cement formula should yield a slurry density of<br />

0.702 psi/ft <strong>and</strong> result <strong>in</strong> a good bond to pipe <strong>and</strong> sufficient compressive strength for isolation<br />

between zones. A generic cement<strong>in</strong>g program is presented below.<br />

A Class A neat slurry is adequate for cement<strong>in</strong>g <strong>the</strong> conductor <strong>and</strong> surface (<strong>in</strong>termediate)<br />

cas<strong>in</strong>g str<strong>in</strong>gs. For <strong>the</strong> production cas<strong>in</strong>g, <strong>the</strong> pump<strong>in</strong>g characteristics can be improved by<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-10


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

<strong>the</strong> addition of bentonite (1-2%) to <strong>the</strong> system <strong>and</strong> <strong>the</strong> sett<strong>in</strong>g time reduced with <strong>the</strong> addition<br />

of 2% calcium chloride. The cement slurry is preceded by a bentonite pill or o<strong>the</strong>r viscous<br />

material to clean <strong>and</strong> condition <strong>the</strong> hole. Pumped ahead of <strong>the</strong> cement slurry, <strong>the</strong> viscous<br />

slug will remove drill cutt<strong>in</strong>gs <strong>and</strong> “mud cake” on <strong>the</strong> well-bore. This practice is<br />

recommended to enhance <strong>the</strong> cement to pipe <strong>and</strong> pipe to reservoir bond.<br />

The follow<strong>in</strong>g procedure should be used to design <strong>the</strong> cement job:<br />

Deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> fracture gradient of <strong>the</strong> <strong>coal</strong> formation(s).<br />

Deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> depth for <strong>the</strong> top-of-cement. This may be def<strong>in</strong>ed by local regulations.<br />

Advanced Resources recommends that <strong>the</strong> cement be circulated to <strong>the</strong> surface if<br />

possible.<br />

1. Us<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g equation, calculate <strong>the</strong> maximum cement density that <strong>the</strong> <strong>coal</strong><br />

can support.<br />

Maximum height of cement: Hcmt = [(FG - 0.052*ρm) * Dc], (ft)<br />

0.052(ρcmt - ρm)<br />

Where: FG = fracture gradient of <strong>the</strong> <strong>coal</strong>, psi/ft<br />

ρm = density of drill<strong>in</strong>g mud <strong>in</strong> <strong>the</strong> hole, lbs/gal<br />

ρcmt = density of <strong>the</strong> cement, lbs/gal<br />

Dc = depth to <strong>the</strong> <strong>coal</strong> seam, ft<br />

2. Calculate <strong>the</strong> hydrostatic head of <strong>the</strong> tail cement to a height required to fill <strong>the</strong><br />

annular space to a m<strong>in</strong>imum 30 m (100 ft) <strong>in</strong>side <strong>the</strong> surface cas<strong>in</strong>g. A cement<br />

basket can be run over weak formations to prevent fall back if an <strong>in</strong>tervals fracture<br />

gradient is borderl<strong>in</strong>e <strong>and</strong> may be exceeded.<br />

3. Deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> height of <strong>the</strong> lead cement by subtract<strong>in</strong>g <strong>the</strong> head (Gcmt*Hcmt, psi) of<br />

<strong>the</strong> tail cement from <strong>the</strong> total amount of allowable hydrostatic head. This is <strong>the</strong><br />

rema<strong>in</strong><strong>in</strong>g hydrostatic column that can be supported for <strong>the</strong> lightweight lead cement.<br />

The appropriate density of <strong>the</strong> lead cement to support a column of desired height<br />

<strong>and</strong> prevent breakdown of <strong>the</strong> reservoir can <strong>the</strong>n be deter<strong>m<strong>in</strong>e</strong>d.<br />

Head is calculated by multiply<strong>in</strong>g:<br />

Gcmt = gradient of cement = 0.052 * ρcmt<br />

Hcmt = height of cement column, ft<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-11


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

It is important that st<strong>and</strong>ard cement<strong>in</strong>g equipment, such as guide shoes, wiper plugs, float<br />

shoes, float collars, <strong>and</strong> centralizers, be utilized <strong>in</strong> CBM cement<strong>in</strong>g operations. Failure to<br />

use <strong>the</strong>se simple <strong>and</strong> relatively <strong>in</strong>expensive pieces of equipment can lead to many problems<br />

dur<strong>in</strong>g <strong>and</strong> follow<strong>in</strong>g <strong>the</strong> execution of cement jobs, sometimes render<strong>in</strong>g <strong>the</strong> well unusable.<br />

A guide shoe (Exhibit 2.7) is a short, heavy-walled attachment with a round nose <strong>and</strong> a hole<br />

through <strong>the</strong> bottom. Guide shoes are used on <strong>the</strong> bottom of <strong>the</strong> cas<strong>in</strong>g to avoid hang<strong>in</strong>g on<br />

ledges while runn<strong>in</strong>g <strong>in</strong> <strong>the</strong> hole. A comb<strong>in</strong>ation of a guide shoe <strong>and</strong> a float collar can be run<br />

to provide redundant valves that prevent cement from U-tub<strong>in</strong>g back <strong>in</strong>to <strong>the</strong> cas<strong>in</strong>g.<br />

Exhibit 2.7 Guide Shoe<br />

Cas<strong>in</strong>g centralizers center <strong>the</strong> pipe <strong>in</strong> <strong>the</strong> well bore <strong>and</strong> allow a uniform cement sheath<br />

around <strong>the</strong> cas<strong>in</strong>g str<strong>in</strong>g. They also <strong>in</strong>sure that cement scours <strong>the</strong> entire annulus <strong>and</strong><br />

displaces <strong>the</strong> drill<strong>in</strong>g fluid to prevent channel<strong>in</strong>g of <strong>the</strong> cement. Centraliz<strong>in</strong>g <strong>the</strong> cas<strong>in</strong>g<br />

improves <strong>the</strong> probability of effective cement jobs <strong>and</strong> zonal isolation.<br />

A centralizer should be run on at least every o<strong>the</strong>r cas<strong>in</strong>g jo<strong>in</strong>t through <strong>the</strong> <strong>coal</strong> section. If<br />

<strong>in</strong>ternal pressure is left on <strong>the</strong> cas<strong>in</strong>g dur<strong>in</strong>g <strong>the</strong> sett<strong>in</strong>g period, <strong>the</strong> cas<strong>in</strong>g will balloon slightly<br />

dur<strong>in</strong>g this period. This means that when <strong>the</strong> cement is set <strong>and</strong> pressure is released, <strong>the</strong><br />

cas<strong>in</strong>g will contract slightly <strong>and</strong> leave a small gap <strong>in</strong> <strong>the</strong> cement (micro-annulus) over <strong>the</strong><br />

length of <strong>the</strong> cas<strong>in</strong>g. This can lead to problems when <strong>in</strong>terpret<strong>in</strong>g bond logs <strong>and</strong> <strong>in</strong> rare<br />

cases can compromise zonal isolation.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-12


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

A cement wiper plug (Exhibit 2.8) separates <strong>the</strong> cement slurry from <strong>the</strong> displacement fluid. A<br />

float shoe conta<strong>in</strong>s an <strong>in</strong>ternal valve which prevents backflow of cement up <strong>the</strong> cas<strong>in</strong>g str<strong>in</strong>g<br />

with cement<strong>in</strong>g operations. The float shoe also serves as a stop for <strong>the</strong> cement wiper plug so<br />

that all of <strong>the</strong> cement is not <strong>in</strong>advertently pumped out of <strong>the</strong> cas<strong>in</strong>g. A float collar can be<br />

added above <strong>the</strong> shoe as a redundant backup to prevent backflow. A cement wiper plug is<br />

launched from <strong>the</strong> cement head between <strong>the</strong> cement <strong>and</strong> <strong>the</strong> displacement fluid <strong>and</strong> is<br />

“bumped down” on <strong>the</strong> float shoe or float collar.<br />

Exhibit 2.8 Cement Wiper Plug<br />

The cement head usually consists of a cement valve above a plug carrier <strong>and</strong> a bypass on<br />

<strong>the</strong> manifold connected to <strong>the</strong> top of <strong>the</strong> cas<strong>in</strong>g. The cement is pumped through a valve<br />

below <strong>the</strong> plug (bypass) at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> job. Once <strong>the</strong> cement is away, <strong>the</strong> bypass is<br />

closed <strong>and</strong> <strong>the</strong> upper valve opened by push<strong>in</strong>g <strong>the</strong> cement plug <strong>in</strong> front of <strong>the</strong> displacement<br />

fluid.<br />

It is important to ensure <strong>the</strong> plug is not launched early prevent<strong>in</strong>g <strong>the</strong> cement from be<strong>in</strong>g fully<br />

displaced from <strong>the</strong> cas<strong>in</strong>g <strong>and</strong> leav<strong>in</strong>g cement <strong>in</strong> <strong>the</strong> cas<strong>in</strong>g that would need to be drilled out.<br />

One way to ensure that <strong>the</strong> plug is not released prematurely, is to have a small hole with a<br />

rubber bush<strong>in</strong>g at <strong>the</strong> top of <strong>the</strong> cement head. A wire is threaded through <strong>the</strong> top of <strong>the</strong> head<br />

<strong>and</strong> attached to <strong>the</strong> wiper plug <strong>and</strong> subsequently disappears when <strong>the</strong> plug is released. The<br />

amount of cement <strong>in</strong> <strong>the</strong> cas<strong>in</strong>g can be m<strong>in</strong>imized if <strong>the</strong> plug is released early by switch<strong>in</strong>g to<br />

water to displace <strong>the</strong> plug.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-13


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The follow<strong>in</strong>g section is an example of a typical CBM cement design us<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g<br />

assumptions: Hole size = 210 mm (8-3/8 <strong>in</strong>ches), cas<strong>in</strong>g size = 140 mm (5.5 <strong>in</strong>ch) OD.<br />

Annular volume factor = 12.2 liters/meter (0.9849 gal/ft). (Note: this will need to be reestimated<br />

based on actual well conditions us<strong>in</strong>g <strong>the</strong> open hole caliper log.) A 25% cement<br />

excess is commonly used to account for <strong>the</strong> fact that <strong>the</strong> open hole caliper log will usually<br />

read greater volume than bit size.<br />

Two blends will be required, <strong>the</strong> lead (above <strong>the</strong> upper most stimulated <strong>coal</strong> zone) should<br />

utilize an 8% bentonite by weight cement, <strong>and</strong> <strong>the</strong> tail (below <strong>the</strong> upper <strong>coal</strong> to be stimulated)<br />

should utilize a 4% bentonite by weight cement. A slug of 5% bentonite <strong>and</strong> water mixture<br />

should be pumped ahead of <strong>the</strong> cement slurry to condition <strong>the</strong> hole. Exhibit 2.9 <strong>in</strong>dicates <strong>the</strong><br />

quantities of materials required to cement 5 pilot project wells completed with 140 mm (5.5<br />

<strong>in</strong>ch) cas<strong>in</strong>g to a depth of 1,100 m (3600 ft).<br />

Bentonite<br />

Pill<br />

Lead<br />

Cement<br />

Tail<br />

Cement Total Total<br />

Surface Cas<strong>in</strong>g Class G Class G<br />

Slurry Volume 1100 2,310 3,410 gals 13 m 3<br />

Cement required 27,000 27,000 lbs 12,250 kgs<br />

CaCl - 2% 540 540 lbs 245 kgs<br />

Bentonite required 1594 1594 lbs 725 kgs<br />

Water Required 1028 1,379 2,407 gals 9 m 3<br />

Production Cas<strong>in</strong>g 8% Bent. 4% Bent.<br />

Slurry Volume 7560 10,200 12,600 30,360 gals 115 m 3<br />

Cement required ~ 52,700 64,440 117,120 lbs 53,125 kgs<br />

CaCl ~ 1,055 1,290 2,345 lbs 1,065 kgs<br />

Bentonite required 10,950 4,215 2,500 17,800 lbs 8,075 kgs<br />

Water required 7065 2,760 3,300 13,111 gals 50 m 3<br />

Exhibit 2.9 Donbass Bas<strong>in</strong> Cement Materials Required for <strong>the</strong> Five Well Pilot<br />

The calculated hydraulic gradient of <strong>the</strong> 8% bentonite cement blend is 14.7 kP/m (0.65 psi/ft),<br />

<strong>and</strong> <strong>the</strong> 4% cement blend is 14.25 kP/m (0.63 psi/ft).<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-14


2.2.2 Stimulation<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Drill<strong>in</strong>g <strong>and</strong> completion operations cause formation damage by expos<strong>in</strong>g <strong>the</strong> reservoir to<br />

fluids used <strong>in</strong> <strong>the</strong> drill<strong>in</strong>g process. Fluid leak-off while drill<strong>in</strong>g <strong>in</strong>filtrates <strong>the</strong> reservoir matrix,<br />

<strong>coal</strong>-cleats <strong>and</strong> natural fracture system. Formation damage is also caused by <strong>in</strong>vasion of <strong>the</strong><br />

cement slurry or filtrate when cas<strong>in</strong>g is cemented <strong>in</strong> <strong>the</strong> well. This damage can be repaired<br />

by a stimulation treatment of <strong>the</strong> well. Hydraulic fractur<strong>in</strong>g is <strong>the</strong> most widely used treatment<br />

for CBM wells today. Fracture stimulation creates a conductive path that extends orders of<br />

magnitude beyond <strong>the</strong> zone of <strong>in</strong>vasion of cement or drill fluid.<br />

One key to <strong>coal</strong> bed <strong>methane</strong> (CBM) well design is <strong>the</strong> pressure required to stimulate <strong>the</strong><br />

<strong>coal</strong> seams. The shallow nature of CBM reservoirs limits <strong>the</strong> cas<strong>in</strong>g stress due to tension<br />

<strong>and</strong> collapse <strong>and</strong> <strong>the</strong> <strong>in</strong>ternal yield pressure becomes <strong>the</strong> pro<strong>m<strong>in</strong>e</strong>nt design criteria. Fracture<br />

gradients <strong>in</strong> excess of 22.62 kP/m (1 psi/ft) are common <strong>in</strong> <strong>coal</strong> seams <strong>and</strong> can lead to pump<br />

pressures <strong>in</strong> excess of 20,700 kP (3,000 psi) dur<strong>in</strong>g hydraulic fracture stimulation. Near wellbore<br />

screen out can occur rapidly when pump rates exceed 3.2 cmm (20 bpm) <strong>and</strong> can burst<br />

cas<strong>in</strong>g or surface equipment. A pre-fracture step rate test (a m<strong>in</strong>i-frac) is a good practice to<br />

deter<strong>m<strong>in</strong>e</strong> near well-bore tortuosity, perforation restrictions, leak-off issues, etc. that may<br />

cause problems. The test data <strong>and</strong> <strong>in</strong>itial shut-<strong>in</strong> pressure (ISIP) provides <strong>in</strong>sight <strong>in</strong>to <strong>the</strong><br />

treatment profile of <strong>the</strong> stimulation. Only high quality API st<strong>and</strong>ard cas<strong>in</strong>g should be used <strong>in</strong><br />

<strong>the</strong>se applications.<br />

Reservoir simulation history match<strong>in</strong>g <strong>and</strong> type curve analysis techniques should be utilized<br />

after stimulation to deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> effective fracture half length of <strong>the</strong> hydraulic fracture<br />

treatment. Fur<strong>the</strong>r reservoir simulation can <strong>the</strong>n be used to beg<strong>in</strong> <strong>the</strong> hydraulic fracture<br />

treatment optimization process. The process of hydraulic fracture treatment optimization can<br />

be thought of as a “feedback loop”. This optimization process is illustrated <strong>in</strong> Exhibit 2.10.<br />

This optimization process will likely cont<strong>in</strong>ue for at least <strong>the</strong> first one or two years of <strong>the</strong><br />

<strong>development</strong> process.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-15


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 2.10 Fracture Optimization Process<br />

A generic completion recommendation follows based on available <strong>in</strong>formation. These<br />

recommendations may be modified for <strong>the</strong> zones of <strong>in</strong>terest as <strong>the</strong> perforation <strong>in</strong>tervals may<br />

change with better underst<strong>and</strong><strong>in</strong>g of <strong>the</strong> reservoir. The completion sheet reflects a 140mm<br />

(5 ½ -<strong>in</strong>ch) cased well bore drilled to 1,100 meters (Exhibit 2.11). Composite bridge plugs<br />

are recommended for zone isolation <strong>in</strong> <strong>the</strong> well bores envisaged for <strong>the</strong> pilot well program.<br />

The <strong>in</strong>terval of perforation should extend <strong>in</strong>to <strong>the</strong> s<strong>and</strong>stones associated with <strong>the</strong> <strong>coal</strong><br />

seams. The s<strong>and</strong>stones act as storage for gas <strong>in</strong> <strong>the</strong> reservoir <strong>and</strong> can <strong>in</strong>crease <strong>the</strong> <strong>in</strong>itial<br />

production dur<strong>in</strong>g <strong>the</strong> dewater<strong>in</strong>g period. This <strong>in</strong>itial boost <strong>in</strong> gas production from <strong>the</strong><br />

s<strong>and</strong>stones may enhance <strong>the</strong> economics dur<strong>in</strong>g <strong>the</strong> high cost phase of de-water<strong>in</strong>g/depressur<strong>in</strong>g<br />

<strong>the</strong> <strong>coal</strong> seams. Homogeneous, stratified s<strong>and</strong>stones tend to fracture more easily<br />

than <strong>coal</strong> seams due to <strong>the</strong>ir physical properties <strong>and</strong> modeled hydraulic fractures tend to<br />

grow <strong>in</strong> length along <strong>the</strong>se beds. The result can be easier fracture <strong>in</strong>itiation <strong>and</strong> longer,<br />

higher conductivity fractures with longitud<strong>in</strong>al contact along <strong>the</strong> <strong>coal</strong> seams. This can allow<br />

for quicker dewater<strong>in</strong>g <strong>and</strong> potentially less f<strong>in</strong>es due to <strong>the</strong> filter<strong>in</strong>g effect of <strong>the</strong> s<strong>and</strong> pack.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-16


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Start<strong>in</strong>g at <strong>the</strong> bottom of <strong>the</strong> well (Exhibit 2.11) <strong>the</strong> wire l<strong>in</strong>e truck will perforate <strong>the</strong> stage 1<br />

<strong>in</strong>terval followed by <strong>the</strong> hydraulic fractur<strong>in</strong>g job. The wire l<strong>in</strong>e truck would <strong>the</strong>n run a<br />

composite bridge plug <strong>and</strong> set it above <strong>the</strong> fractured <strong>in</strong>terval. The sett<strong>in</strong>g tool is <strong>the</strong>n run out<br />

of <strong>the</strong> hole <strong>and</strong> <strong>the</strong> perforat<strong>in</strong>g guns are rigged for <strong>the</strong> perforat<strong>in</strong>g run. The next stage<br />

fractur<strong>in</strong>g job follows <strong>and</strong> <strong>the</strong> jobs proceed <strong>in</strong> this manner until all hydraulic fractur<strong>in</strong>g stages<br />

are complete.<br />

If <strong>the</strong> slim-hole 144 mm (4 ½ -<strong>in</strong>ch) well bore design is used, <strong>the</strong> fractur<strong>in</strong>g will proceed<br />

followed by <strong>the</strong> 69.85 mm (2 ¾-<strong>in</strong>ch) frac ball <strong>and</strong> 1.6 m 3 (10 bbls) of 15% HCl displaced to<br />

<strong>the</strong> 68.26 mm (2 11 /16-<strong>in</strong>ch) baffle at 950 m (3120 ft). The acid is used to break down <strong>the</strong><br />

perforations before each stage <strong>and</strong> is very effective <strong>in</strong> clean<strong>in</strong>g perforation gun debris as well<br />

as calcium carbonate that may be <strong>in</strong> <strong>the</strong> reservoir. The stage 2 <strong>in</strong>terval is <strong>the</strong>n perforated<br />

followed by <strong>the</strong> fractur<strong>in</strong>g job, frac-ball, <strong>and</strong> acid. This process will cont<strong>in</strong>ue until <strong>the</strong> stages<br />

are completed. When f<strong>in</strong>ished, <strong>the</strong> rig will trip <strong>in</strong> <strong>the</strong> hole with a bit <strong>and</strong> drill <strong>and</strong> circulate out<br />

<strong>the</strong> balls <strong>and</strong> baffles <strong>and</strong> any s<strong>and</strong> left <strong>in</strong> <strong>the</strong> well bore, leav<strong>in</strong>g a clean well bore.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-17


DESCRIPT DEPTH<br />

Conductor: 16",<br />

CSG SHOE hole<br />

8 5/8", 32# @ 200 ft<br />

CMT 61.0 m<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Zone<br />

7 3/8 <strong>in</strong><br />

Zone 1 Stage<br />

2 jspf 521 - 547 m 7<br />

Zone<br />

2 jspf 570 - 619 m 6<br />

Zone 3<br />

notches (18) 684 - 696 m 5<br />

Zone<br />

notches (18) 737 - 755 m 4<br />

Zone<br />

notches (9) 780 - 809 m 3<br />

Zone<br />

notches (18) 841 - 851 m 2<br />

Zone<br />

2<br />

4<br />

5<br />

6<br />

7<br />

Cmt Top<br />

notches (18) 1050 - 1060 m 1<br />

CSG SHOE PBTD 3600 ft 1098 m<br />

5.5", 15.5# @ 3600 ft<br />

1097.6 m TD 3675 ft 1120 m<br />

Exhibit 2.11 Completion Zones with Hydraulic Fractur<strong>in</strong>g Stages<br />

for a Type Well <strong>in</strong> <strong>the</strong> Donbass Bas<strong>in</strong><br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-18


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The hydraulic fractur<strong>in</strong>g design assumes a fracture gradient of 20.4 kPa/m (0.90 psi/ft) <strong>and</strong><br />

0.1 md permeability. A 13.6 kg (30 lb) guar gel with surfactant, enzyme breakers, <strong>and</strong><br />

bactericide should be added to <strong>the</strong> fluid. A simplified l<strong>in</strong>ear gel is assumed for design<br />

purposes, if warranted a cross-l<strong>in</strong>ked gel can be designed. A cross-l<strong>in</strong>ked fluid uses a lower<br />

gel load<strong>in</strong>g 7-9 kg (15-20 lb), is highly viscous, <strong>and</strong> has better proppant transport capabilities.<br />

The recommended proppant is 20/40 Ottawa s<strong>and</strong>, but o<strong>the</strong>r s<strong>and</strong> with<strong>in</strong> <strong>the</strong> same size<br />

range, sphericity, roundness, <strong>and</strong> crush strength can be used if available. A desired fracture<br />

half length of 60 m (200 ft) <strong>and</strong> 114 kg (250 lbs) of s<strong>and</strong>/foot of <strong>in</strong>terval were <strong>in</strong>corporated<br />

<strong>in</strong>to <strong>the</strong> design. Pump<strong>in</strong>g equipment capable of deliver<strong>in</strong>g 4.8 cmm (30 bpm) at 20,700 kPa<br />

(3,000 psi) will require approximately 1715 kW (2,300 hydraulic horsepower) on location to<br />

complete <strong>the</strong> work.<br />

The stimulation program will require a s<strong>and</strong> dump, blender, acid <strong>and</strong> fractur<strong>in</strong>g pumps<br />

(Exhibit 2.12) on location. S<strong>and</strong> <strong>and</strong> acid transports will also be required. S<strong>and</strong> is fed to <strong>the</strong><br />

blender via a conveyor system <strong>and</strong> <strong>the</strong> gel <strong>and</strong> s<strong>and</strong> are mixed <strong>in</strong> a “blender” <strong>the</strong>n sent to <strong>the</strong><br />

<strong>in</strong>let of <strong>the</strong> high pressure triplex pumps <strong>and</strong> <strong>the</strong>n pumped down hole at high rate.<br />

Exhibit 2.12 S<strong>and</strong> Dump, Blender <strong>and</strong> Fractur<strong>in</strong>g Pumps<br />

O<strong>the</strong>r methods, <strong>in</strong>clud<strong>in</strong>g under-ream<strong>in</strong>g <strong>and</strong> cavitation are alternative options to hydraulic<br />

fractur<strong>in</strong>g, but have only been successful <strong>in</strong> a few geologic sett<strong>in</strong>gs.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-19


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 2.13 summarizes <strong>the</strong> 6 stages for <strong>the</strong> recommended hydraulic fractur<strong>in</strong>g procedure.<br />

Donbass Coal Bas<strong>in</strong><br />

WELL NUMBER LEASE NAME LEASE #<br />

DISTRICT QUAD<br />

DATE COUNTY API #<br />

TARGET 1,100 m 3600 ft. ELEVATION<br />

COMPLETION<br />

Descrip Program ISIP Pad % s<strong>and</strong>/perf Conc Rate Water vol S<strong>and</strong> # HHP Pipe<br />

kg kg/m<br />

lbs<br />

3 m3/m<strong>in</strong> m3 tonnes Hpm ppg bpm bbls<br />

lbs<br />

Hp<br />

Stage 1 1050 - 1060 27% 2,948 120 - 960 4.3 51.7 29.5 369 CSG<br />

shots 10 88 6,500 1 - 8 27 325 65,000 364<br />

Stage 2 841 - 851 28% 1,512 120 - 960 4.3 43.7 22.7 369 CSG<br />

shots 15 78 3,333 1 - 8 27 275 50,000 364<br />

Stage 3 780 - 809 28% 3,093 120 - 960 4.3 70 34.0 368 CSG<br />

shots 11 122 6,818 1 - 8 27 440 75,000 363<br />

Stage 4 737 - 755 29% 1,031 120 - 720 4.3 43.7 22.7 369 CSG<br />

shots 22 81 2,273 1 - 6 27 275 50,000 364<br />

Stage 5 684 - 696 26% 2,457 120 - 720 4.3 51.7 29.5 368 CSG<br />

shots 12 85 5,417 1 - 6 27 325 65,000 363<br />

Stage 6 570 - 619 27% 1,601 120 - 600 4.3 47.7 27.2 368 CSG<br />

shots 17 81 3,529 1 - 5 27 300 60,000 363<br />

Stage 7 521 - 547 27% 1,944 120 - 600 4.3 47.7 27.2 368 CSG<br />

shots 14 81 4,286 1 - 5 27 300 60,000 363<br />

Displacement Volumes not <strong>in</strong>cluded <strong>in</strong> totals<br />

TOTALS % pad<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-20<br />

lbs<br />

kg<br />

101 2,084 120 - 820 4.3 51.4 27.5 368.4 CSG<br />

AVGs<br />

CEMENT PROGRAM<br />

holes 28% 4,594 1 - 7 27 323 60,714 363<br />

Size Description ID Vol Vol Yield Column Volume # Sacks Bbls BBL CMT<br />

<strong>in</strong>ches <strong>in</strong>ches bbls/ft cu ft/ft cu ft/sk ft cu ft sk/ft xcess→ m 3<br />

25%<br />

Hole 10 5/8 10.625 0.10966 0.61572 1.43 10.0 6.157 0.43057 4.31 1.10 0.17<br />

Csg 8 5/8 32 #, K-55 7.92 0.03936 0.22101 200.0 44.201 7.87 1.25 m 3 / bbls<br />

An 8 5/8"x10 5/8" 0.2100 1.43 200.0 41.997 0.14684 29.37 7.48 1.19 1.70<br />

Hole 0 10.72<br />

Csg 0<br />

An 0<br />

Hole 7 3/8 7.375 0.05834 0.32759 1.95 75.0 24.569 0.16799 12.60 4.38 0.70 m 3 / bbls<br />

Csg 5 1/2 15.5 #, K-55 4.95 0.02380 0.13364 3,600.0 481.093 85.68 13.62 17.65<br />

An 5 1/2"x 7 3/8" 0.1317 1.95 3,600.0 474.000 0.06752 243.08 84.42 13.42 110.99<br />

kg/m 3<br />

ppg<br />

m3/m<strong>in</strong><br />

Exhibit 2.13 Hydraulic Fractur<strong>in</strong>g Program Design<br />

Advanced Resources recommends that fracture treatments should be designed such that a<br />

tip screen-out occurs as <strong>the</strong> fracture treatment ends. Pack<strong>in</strong>g <strong>the</strong> fracture by <strong>in</strong>duc<strong>in</strong>g a tip<br />

screen-out avoids problems related to proppant settl<strong>in</strong>g <strong>and</strong>/or convection because <strong>the</strong><br />

volume created by <strong>the</strong> fracture is completely filled with s<strong>and</strong> at <strong>the</strong> conclusion of pump<strong>in</strong>g.<br />

Because of <strong>coal</strong> seam fracture complexity, design<strong>in</strong>g for tip screen out is difficult. On one<br />

extreme, <strong>the</strong> fracture treatment may screen out before <strong>the</strong> entire s<strong>and</strong> volume is pumped.<br />

This is not necessarily a bad result <strong>and</strong> certa<strong>in</strong>ly not a “failure”. If, for example, 70% of <strong>the</strong><br />

bpm<br />

m3<br />

bbls<br />

tonnes<br />

lbs<br />

Hp m<br />

Hp


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

design s<strong>and</strong> volume is pumped when <strong>the</strong> screen out occurs, <strong>the</strong> result<strong>in</strong>g fracture half length<br />

will be shorter than designed, but <strong>the</strong> fracture should be highly conductive <strong>and</strong> filled with<br />

s<strong>and</strong>. On <strong>the</strong> o<strong>the</strong>r extreme, <strong>the</strong> design volume of s<strong>and</strong> could be pumped with no sign of<br />

impend<strong>in</strong>g screen-out.<br />

An example of a tip screenout is provided <strong>in</strong> Exhibit 2.14 show<strong>in</strong>g actual data from a <strong>coal</strong><br />

seam fracture treatment utiliz<strong>in</strong>g 13.6 kg (30 lb) gel. This graph <strong>in</strong>dicates <strong>the</strong> major<br />

components of a typical hydraulic fracture <strong>in</strong>clud<strong>in</strong>g pad, s<strong>and</strong> stages, displacement,<br />

<strong>in</strong>stantaneous shut <strong>in</strong> pressure (ISIP), slurry <strong>and</strong> clean rate, pressure, <strong>and</strong> <strong>the</strong> portion of <strong>the</strong><br />

data to analyze to deter<strong>m<strong>in</strong>e</strong> closure pressure. Note <strong>the</strong> slight <strong>in</strong>crease <strong>in</strong> pressure as <strong>the</strong><br />

0.72 kg/liter (6 pounds per gallon (ppg)) stage is enter<strong>in</strong>g <strong>the</strong> <strong>coal</strong> seam.<br />

Pressure (psig)<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

Pad: Establish breakdown of<br />

formation <strong>and</strong> <strong>in</strong>itiation of<br />

fracture<br />

Slurry Rate<br />

Stage 1:<br />

1 ppa<br />

Stage 2:<br />

3 ppa<br />

Stage 3:<br />

5 ppa<br />

07:37<br />

07:52<br />

08:06<br />

08:21<br />

08:36<br />

08:50<br />

09:04<br />

09:19<br />

09:34<br />

09:48<br />

10:03<br />

10:17<br />

10:33<br />

10:48<br />

11:02<br />

11:17<br />

11:32<br />

11:46<br />

12:01<br />

12:16<br />

12:30<br />

12:45<br />

13:00<br />

13:15<br />

13:29<br />

13:44<br />

13:59<br />

14:13<br />

14:28<br />

14:43<br />

14:57<br />

15:12<br />

Time (m<strong>in</strong>:sec)<br />

Clean or Gel Rate<br />

Pressure S<strong>and</strong> Concentration<br />

Stage 4: 6 ppa<br />

Pressure Discharge Rate Suction Rate S<strong>and</strong> Conc<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-21<br />

ISIP<br />

Exhibit 2.14 Schematic of a Typical U.S. Hydraulic Fractur<strong>in</strong>g Treatment<br />

32<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

for 18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Flush: Displace slurry <strong>in</strong><br />

Rate (BPM), S<strong>and</strong> Conc. (PPA)<br />

Analyze<br />

Closure<br />

Pressure<br />

pump, frac. Iron, <strong>and</strong> cas<strong>in</strong>g<br />

down to <strong>the</strong> perforations<br />

Exhibit 2.15 illustrates how closure pressure can be deter<strong>m<strong>in</strong>e</strong>d. After pump<strong>in</strong>g ends,<br />

pressure will fall as fluid cont<strong>in</strong>ues to leak off <strong>in</strong>to <strong>the</strong> formation. When <strong>the</strong> fracture closes,<br />

<strong>the</strong> slope of <strong>the</strong> pressure decl<strong>in</strong>e will change. By draw<strong>in</strong>g straight l<strong>in</strong>es <strong>and</strong> f<strong>in</strong>d<strong>in</strong>g <strong>the</strong><br />

<strong>in</strong>tersection, <strong>the</strong> closure pressure can be deter<strong>m<strong>in</strong>e</strong>d. Depend<strong>in</strong>g on several factors, <strong>the</strong><br />

closure pressure may be obvious, subtle, or not present at all.


Pressure (psig)<br />

450<br />

430<br />

410<br />

390<br />

370<br />

350<br />

330<br />

310<br />

290<br />

270<br />

250<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

59:36<br />

59:50<br />

00:05<br />

00:20<br />

00:34<br />

00:49<br />

01:03<br />

01:18<br />

01:33<br />

01:48<br />

02:02<br />

02:17<br />

02:32<br />

Time (m<strong>in</strong>:sec)<br />

Pressure<br />

Determ<strong>in</strong>ation of Closure Pressure<br />

02:47<br />

03:01<br />

03:16<br />

03:30<br />

03:45<br />

04:00<br />

04:14<br />

04:29<br />

04:44<br />

04:58<br />

05:13<br />

05:28<br />

05:42<br />

Exhibit 2.15 Graph of Pressure versus Time used to deter<strong>m<strong>in</strong>e</strong> Closure Pressure<br />

Exhibit 2.16 is an example of a true tip screen out <strong>and</strong> is considered a model treatment. The<br />

entire 0.96 kg/liter (8 ppg) stage was completed just as <strong>the</strong> treatment screened out (box 1 on<br />

graph).<br />

Pressure (psig)<br />

4000<br />

3500<br />

3000<br />

2500<br />

2000<br />

1500<br />

1000<br />

500<br />

0<br />

02:24<br />

00:00<br />

19:12<br />

26:24<br />

43:12<br />

36:00<br />

45:36<br />

28:48<br />

38:24<br />

16:48<br />

19:12<br />

00:00<br />

00:00<br />

21:36<br />

07:12<br />

19:12<br />

19:12<br />

Time (m<strong>in</strong>:sec)<br />

Pressure Discharge Rate Suction Rate S<strong>and</strong> Conc<br />

Exhibit 2.16 Example of a Tip Screenout<br />

40:48<br />

38:24<br />

28:48<br />

36:00<br />

43:12<br />

48:00<br />

48:00<br />

50:24<br />

33:36<br />

24:00<br />

33:36<br />

12:00<br />

55:12<br />

16:48<br />

31:12<br />

19:12<br />

26:24<br />

48:00<br />

55:12<br />

00:00<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-22<br />

1<br />

32<br />

30<br />

28<br />

26<br />

24<br />

22<br />

20<br />

18<br />

16<br />

14<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

Rate (BPM), S<strong>and</strong> Conc. (PPA)


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Occasionally, it is not possible to <strong>in</strong>itiate a fracture. One possible reason for this could be<br />

particles of formation formed dur<strong>in</strong>g fracture <strong>in</strong>itiation caus<strong>in</strong>g a tip screen out very early <strong>in</strong><br />

<strong>the</strong> fracture treatment. If this happens, possible solutions <strong>in</strong>clude allow<strong>in</strong>g <strong>the</strong> pressure to<br />

bleed off, <strong>and</strong> mak<strong>in</strong>g ano<strong>the</strong>r attempt to <strong>in</strong>itiate <strong>the</strong> fracture, or add<strong>in</strong>g additional<br />

perforations to <strong>the</strong> same <strong>in</strong>terval <strong>and</strong>/or <strong>in</strong> adjacent <strong>in</strong>tervals <strong>and</strong> attempt<strong>in</strong>g fracture <strong>in</strong>itiation<br />

aga<strong>in</strong>. When <strong>the</strong>se remedies do not result <strong>in</strong> <strong>the</strong> designed volume of s<strong>and</strong> be<strong>in</strong>g pumped,<br />

one should consider <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> density of <strong>the</strong> gel or cross-l<strong>in</strong>k<strong>in</strong>g <strong>the</strong> gel to <strong>in</strong>crease<br />

viscosity.<br />

It is often necessary to deviate from <strong>the</strong> design dur<strong>in</strong>g <strong>the</strong> fracture treatment. The follow<strong>in</strong>g<br />

are examples of operational changes that <strong>the</strong> operator may decide dur<strong>in</strong>g a fracture<br />

treatment:<br />

The operator may <strong>in</strong>crease <strong>the</strong> rate <strong>in</strong> order to <strong>in</strong>crease fracture width if a pressure<br />

<strong>in</strong>crease looks like <strong>the</strong> treatment may prematurely screen out.<br />

Increas<strong>in</strong>g <strong>the</strong> s<strong>and</strong> concentration dur<strong>in</strong>g <strong>the</strong> job may be delayed if <strong>the</strong> pressure<br />

appears to be a limitation on <strong>the</strong> job.<br />

The operator may call for a flush (cut s<strong>and</strong> <strong>and</strong> displace to perfs) if he believes that a<br />

screen-out is im<strong>m<strong>in</strong>e</strong>nt but a significant portion of <strong>the</strong> treatment design hasn’t been<br />

pumped.<br />

S<strong>and</strong> concentration may be <strong>in</strong>creased if pressure is not ris<strong>in</strong>g <strong>and</strong> <strong>the</strong> treatment is<br />

near<strong>in</strong>g <strong>the</strong> end.<br />

The f<strong>in</strong>al s<strong>and</strong> stage may be extended if <strong>the</strong> pressure <strong>in</strong>dicates a screen out is near but<br />

more time is needed to reach it.<br />

An on-site operator may also attempt to cause a near well-bore screen out <strong>in</strong> <strong>the</strong><br />

previous example by reduc<strong>in</strong>g <strong>the</strong> <strong>in</strong>jection rate or <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> s<strong>and</strong> concentration.<br />

In a situation that no tip screen out will occur one may attempt to force a near well bore<br />

screen out to “pack” <strong>the</strong> area beh<strong>in</strong>d <strong>the</strong> perforations <strong>and</strong> enhance <strong>the</strong> conductive path<br />

to <strong>the</strong> reservoir.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-23


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The follow<strong>in</strong>g assumptions were made <strong>in</strong> order to estimate <strong>the</strong> material requirements for <strong>the</strong><br />

hydraulic fractur<strong>in</strong>g of a 5 well program:<br />

Frac gradient – based on well test data<br />

Depth – per geophysical logs<br />

Gel – 3.6 kg/m 3 (30 lb/1000 gal) l<strong>in</strong>ear<br />

Straight gel base viscosity – 25 cP<br />

Slurry viscosity – per empirical relationship<br />

Pump rate = 4 cmm (25 bpm)<br />

Young’s modulus = 2.79 MPa (400,000 psi)<br />

Permeability = 0.1 md<br />

S<strong>and</strong> placement +/- 4470 kg s<strong>and</strong>/m of <strong>coal</strong> (3000 lb s<strong>and</strong>/ft <strong>coal</strong>) (= to or < 2.0 gm/cc)<br />

Fracture treatment will be designed for pad depletion at conclusion of pump<strong>in</strong>g. Pad<br />

volumes are approximately 25% of job volume.<br />

Ukra<strong>in</strong>e, Donbass Bas<strong>in</strong> - Hydraulic Fractur<strong>in</strong>g Materials<br />

5 - Well Summary<br />

Coal Seam Total Water S<strong>and</strong> Conc. Total S<strong>and</strong> Gel Breaker Surfactant Biocide<br />

meters<br />

m 3<br />

kg/m 3<br />

tm kg L L kg<br />

Frac Job bbls ppg lbs lbs qts gals lbs<br />

Stage 1 1050 - 1060 56 120 - 960 30 200 1.39 295.90 0.95<br />

Perfs 10 350 1 - 8 65,000 441 1.47 73.50 2.1<br />

Stage 2 841 - 851 56 120 - 960 30 200 1.39 295.90 0.95<br />

Perfs 15 350 1 - 8 65,000 441 1.47 73.50 2.1<br />

Stage 3 780 - 809 72 120 - 960 34 257 1.79 380.45 1.22<br />

Perfs 11 450 1 - 8 75,000 567 1.89 94.50 2.7<br />

Stage 4 737 - 755 50 120 - 720 23 172 1.19 264.20 0.85<br />

Perfs 22 300 1 - 6 50,000 378 1.26 63.00 1.8<br />

Stage 5 684 - 696 50 120 - 720 27 172 1.19 264.20 0.85<br />

Perfs 12 300 1 - 6 60,000 378 1.26 63.00 1.8<br />

Stage 6 570 - 619 50 120 - 600 27 172 1.19 264.20 0.85<br />

Perfs 17 300 1 - 5 60,000 378 1.26 63.00 1.8<br />

Stage 7 521 - 547 50 120 - 600 27 172 1.19 264.20 0.85<br />

Perfs 14 300 1 - 5 60,000 378 1.26 63.00 1.8<br />

384 197 1,344 9 2,029 7<br />

Well Totals 5 1,920 987 6,721 47 10,145 33<br />

Cont<strong>in</strong>gency m 3<br />

384 99 672 7 1,015 5<br />

Cont<strong>in</strong>gency % 20% 10% 10% 15% 10% 15%<br />

TOTALS 84<br />

holes<br />

2,304<br />

m<br />

1,086 7,394 54 11,160 38<br />

3<br />

tm kg L L kg<br />

Exhibit 2.17 Materials Required for Hydraulically Fractur<strong>in</strong>g 5 Wells<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-24


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

2.2.3 Post Hydraulic Fracture Injection Fall-off Test<strong>in</strong>g<br />

Cased-hole, post fracture well tests can be conducted <strong>in</strong> selected wells to deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> <strong>coal</strong><br />

cleat permeability <strong>and</strong> effectiveness of stimulation result<strong>in</strong>g from fractur<strong>in</strong>g operations.<br />

These results are used <strong>in</strong> <strong>the</strong> ongo<strong>in</strong>g reservoir simulation studies. These studies are <strong>in</strong> turn<br />

used to history match gas, water, <strong>and</strong> pressure data obta<strong>in</strong>ed dur<strong>in</strong>g production operations.<br />

The results of <strong>the</strong> reservoir simulation history match<strong>in</strong>g process can <strong>the</strong>n be used to make<br />

certa<strong>in</strong> critical determ<strong>in</strong>ations regard<strong>in</strong>g hydraulic fracture effectiveness <strong>and</strong> to perform future<br />

optimization studies. The methods, equipment, <strong>and</strong> procedures to be utilized <strong>in</strong> <strong>the</strong> well<br />

test<strong>in</strong>g operations can be presented as <strong>the</strong> need arises.<br />

Twenty acre (8 hectare) spac<strong>in</strong>g is recommended for drill<strong>in</strong>g a 5-spot pilot to deter<strong>m<strong>in</strong>e</strong> <strong>the</strong><br />

de-water<strong>in</strong>g requirements for full field <strong>development</strong>. Optimal well spac<strong>in</strong>g for commercial<br />

<strong>development</strong> will likely be <strong>in</strong> <strong>the</strong> range of 16 to 65 hectares (40 to 160 acres), depend<strong>in</strong>g on<br />

<strong>the</strong> local permeability. Water <strong>in</strong>tercept wells may be required <strong>in</strong> areas of high water <strong>in</strong>flux.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-25


2.3 CMM Dra<strong>in</strong>age Techniques<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

M<strong>in</strong>e operators perform degasification functions <strong>in</strong> three ways:<br />

by reduc<strong>in</strong>g <strong>the</strong> gas content of virg<strong>in</strong> <strong>coal</strong> seams <strong>and</strong> o<strong>the</strong>r gas bear<strong>in</strong>g strata prior to<br />

m<strong>in</strong><strong>in</strong>g – pre-m<strong>in</strong><strong>in</strong>g degasification (this would <strong>in</strong>clude <strong>the</strong> technology for drill<strong>in</strong>g <strong>and</strong><br />

complet<strong>in</strong>g CBM wells, as described <strong>in</strong> <strong>the</strong> previous section);<br />

by extract<strong>in</strong>g gas from gob regions formed subsequent to m<strong>in</strong><strong>in</strong>g – gob degasification,<br />

<strong>and</strong>;<br />

by extract<strong>in</strong>g <strong>methane</strong> from sealed areas isolated after m<strong>in</strong><strong>in</strong>g. CMM recovered from<br />

any degasification function applied underground is collected <strong>in</strong> a ga<strong>the</strong>r<strong>in</strong>g pipel<strong>in</strong>e <strong>and</strong><br />

transported safely to <strong>the</strong> surface for vent<strong>in</strong>g to <strong>the</strong> atmosphere or use (also may be<br />

routed underground for dilution <strong>in</strong> <strong>the</strong> exhaust ventilation air).<br />

The flow rates <strong>and</strong> gas quality can vary considerably between <strong>the</strong>se various degasification<br />

techniques. Pre-dra<strong>in</strong>age wells generally produce high quality <strong>methane</strong> gas (90%+) at low to<br />

moderate rates. Gob gas dra<strong>in</strong>age methods generally produce medium to high quality<br />

<strong>methane</strong> (50-80%) at relatively high rates <strong>in</strong>itially, but both <strong>the</strong> quantity <strong>and</strong> quality of<br />

<strong>methane</strong> produced decl<strong>in</strong>es after several months. The important aspect of all types of<br />

<strong>methane</strong> produced from degasification systems is that it represents a valuable energy<br />

resource that can be utilized <strong>in</strong> several ways. Exhibit 2.18 depicts <strong>the</strong> different <strong>methane</strong><br />

dra<strong>in</strong>age techniques <strong>and</strong> <strong>the</strong>ir end-use options.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-26


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 2.18 Coal Degasification: Production through Utilization<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-27


2.3.1 Pre-M<strong>in</strong><strong>in</strong>g Degasification<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Pre-m<strong>in</strong><strong>in</strong>g degasification targets regions of un-<strong>m<strong>in</strong>e</strong>d <strong>coal</strong> or o<strong>the</strong>r gas bear<strong>in</strong>g strata <strong>in</strong><br />

advance of m<strong>in</strong><strong>in</strong>g activity with <strong>the</strong> objective to greatly reduce <strong>the</strong> <strong>methane</strong> content of <strong>the</strong><br />

m<strong>in</strong><strong>in</strong>g seam, or of adjacent seams to reduce <strong>the</strong> potential for future generation of gob gas.<br />

Pre-m<strong>in</strong><strong>in</strong>g degasification is practiced from with<strong>in</strong> <strong>the</strong> <strong>m<strong>in</strong>e</strong> (underground), us<strong>in</strong>g horizontal<br />

boreholes, or from <strong>the</strong> surface with vertical wells (see previous section on CBM well drill<strong>in</strong>g).<br />

Where reservoir characteristics are favorable (e.g. where <strong>coal</strong>s have sufficient permeability<br />

<strong>and</strong> rapid diffusion rates), <strong>coal</strong> operators can dra<strong>in</strong> gas from large areas. With low<br />

permeability <strong>coal</strong> <strong>and</strong>/or <strong>coal</strong>s with slower diffusion rates, <strong>m<strong>in</strong>e</strong> operators normally beg<strong>in</strong><br />

dra<strong>in</strong>age far <strong>in</strong> advance of m<strong>in</strong><strong>in</strong>g (years). Incorporated with an underground gas ga<strong>the</strong>r<strong>in</strong>g<br />

system, underground pre-m<strong>in</strong><strong>in</strong>g degasification systems can recover pipel<strong>in</strong>e quality gas.<br />

The three methods commonly used for pre-m<strong>in</strong><strong>in</strong>g degasification are cross-panel boreholes,<br />

long <strong>in</strong>-seam directionally drilled boreholes, <strong>and</strong> hydraulically stimulated vertical wells drilled<br />

from <strong>the</strong> surface. The underground pre-<strong>m<strong>in</strong>e</strong> degasification techniques are illustrated <strong>in</strong><br />

Exhibit 2.19 <strong>and</strong> Exhibit 2.20.<br />

Exhibit 2.19 In-Seam Boreholes Drilled across Longwall Panels dur<strong>in</strong>g Gateroad Development to Reduce<br />

<strong>the</strong> Gas Content of <strong>the</strong> Longwall Panel Prior to M<strong>in</strong><strong>in</strong>g<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-28


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 2.20 Long In-Seam Boreholes Directionally Drilled along <strong>the</strong> Longitud<strong>in</strong>al Axis<br />

of <strong>the</strong> Longwall Panels <strong>in</strong> Advance of Gateroad Development<br />

Vertical wells drilled from surface through multiple <strong>coal</strong> seams <strong>and</strong> stimulated by hydraulic<br />

fractur<strong>in</strong>g are utilized for <strong>the</strong> recovery of CBM on a commercial scale. In some cases, <strong>m<strong>in</strong>e</strong><br />

operators implement <strong>the</strong>se wells to also reduce gas contents of seams that will be <strong>m<strong>in</strong>e</strong>d 5 to<br />

10 years <strong>in</strong> <strong>the</strong> future. With this technique, commercial operators work with <strong>the</strong> <strong>m<strong>in</strong>e</strong>s<br />

regard<strong>in</strong>g well locations, particularly as <strong>m<strong>in</strong>e</strong>s are concerned about stability issues when<br />

m<strong>in</strong><strong>in</strong>g near hydraulic fractures. Due to costs, this system of CMM dra<strong>in</strong>age is not<br />

implemented without consideration of <strong>the</strong> economic value of <strong>the</strong> recovered gas over <strong>the</strong><br />

productive life of <strong>the</strong> wells.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-29


2.3.2 Gob Degasification<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

There are three primary methods of longwall gob degasification techniques used world-wide,<br />

<strong>and</strong> <strong>m<strong>in</strong>e</strong> operators often adopt variations of <strong>the</strong>se: surface drilled vertical or angled gob<br />

wells, cross-measure boreholes, <strong>and</strong> superjacent techniques (overly<strong>in</strong>g galleries, or<br />

boreholes drilled from overly<strong>in</strong>g galleries, <strong>and</strong> overly<strong>in</strong>g or underly<strong>in</strong>g horizontal gob<br />

boreholes). Exhibit 3-17 generally illustrates <strong>the</strong>se practices.<br />

Degasification Gallery<br />

Direction of M<strong>in</strong><strong>in</strong>g<br />

Vertical Gob Wells<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-30<br />

Gob<br />

Longwall Panel<br />

Longwall Face<br />

Cross-Measure Boreholes<br />

Exhibit 2.21 General Description of Gob Gas Recovery Methods<br />

2.3.2.1 Surface Drilled Gob Wells.<br />

Surface drilled vertical gob wells, most predom<strong>in</strong>antly used <strong>in</strong> <strong>the</strong> U.S., are drilled <strong>in</strong> advance<br />

of m<strong>in</strong><strong>in</strong>g to diameters of up to 300 mm (12 <strong>in</strong>ches) <strong>and</strong> are placed vertically above <strong>the</strong><br />

m<strong>in</strong><strong>in</strong>g seam. Gob wells are typically cased <strong>and</strong> cemented to a po<strong>in</strong>t just above <strong>the</strong><br />

uppermost <strong>coal</strong> seam or gas bear<strong>in</strong>g strata believed capable of liberat<strong>in</strong>g gas result<strong>in</strong>g from<br />

<strong>the</strong> longwall m<strong>in</strong><strong>in</strong>g operation, <strong>and</strong> <strong>the</strong>n l<strong>in</strong>ed with slotted cas<strong>in</strong>g down to just above <strong>the</strong><br />

m<strong>in</strong><strong>in</strong>g seam (Exhibit 2.22). Because of surface access <strong>and</strong> drill site limitations, <strong>m<strong>in</strong>e</strong><br />

operators implement angled or directionally drill gob wells to reach specific target zones<br />

above <strong>the</strong> longwall panel.


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 2.22 Illustration of Vertical Drilled Gob Well<br />

At some m<strong>in</strong><strong>in</strong>g operations where overly<strong>in</strong>g gas bear<strong>in</strong>g strata of high gas content are<br />

present <strong>and</strong> where gob permeabilities are very high, operators can obta<strong>in</strong> excellent gas<br />

production rates <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong> high gas qualities with surface drilled gob wells operated<br />

under vacuum (Exhibit 2.24). Surface drilled gob wells are not suitable for <strong>m<strong>in</strong>e</strong>s developed<br />

under urban areas <strong>and</strong> where surface access <strong>and</strong> right-of-way are restricted. Surface drilled<br />

gob wells are also difficult to implement with multiple seam operations.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-31


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

2.3.2.2 Cross-Measure Boreholes<br />

The cross-measure technique of longwall gob degasification is <strong>the</strong> dom<strong>in</strong>ant method used <strong>in</strong><br />

Europe (east <strong>and</strong> west) <strong>and</strong> <strong>in</strong> Russia where deep multiple <strong>coal</strong> seams are <strong>m<strong>in</strong>e</strong>d us<strong>in</strong>g <strong>the</strong><br />

longwall method. Cross-measure boreholes are small diameter boreholes (75 to 100 mm <strong>in</strong><br />

diameter) that are drilled at angles from gateroad entries up <strong>in</strong>to overly<strong>in</strong>g or down <strong>in</strong>to<br />

underly<strong>in</strong>g strata, <strong>in</strong> advance of <strong>the</strong> longwall face. In extremely gassy conditions, operators<br />

will place boreholes from both <strong>the</strong> headgate <strong>and</strong> tailgate entries, <strong>and</strong> surround <strong>the</strong> panel.<br />

Each cross-measure borehole collar is connected to an underground gas ga<strong>the</strong>r<strong>in</strong>g pipel<strong>in</strong>e<br />

that provides vacuum to <strong>the</strong> wellheads <strong>and</strong> routes <strong>the</strong> gas to <strong>the</strong> surface. The crossmeasure<br />

borehole system is particularly applicable where deep reserves are <strong>m<strong>in</strong>e</strong>d at<br />

multiple levels <strong>and</strong> where surface access or topography limits surface options (surface drilled<br />

gob wells).<br />

2.3.2.3 Superjacent Techniques<br />

Superjacent techniques, <strong>in</strong>volv<strong>in</strong>g <strong>the</strong> use of dra<strong>in</strong>age galleries developed <strong>in</strong> advance of<br />

m<strong>in</strong><strong>in</strong>g <strong>in</strong> overly<strong>in</strong>g or underly<strong>in</strong>g strata are used at some of <strong>the</strong> deeper <strong>and</strong> gassier m<strong>in</strong><strong>in</strong>g<br />

operations <strong>in</strong> Eastern Europe, Russia, <strong>and</strong> Ch<strong>in</strong>a. Small diameter, short boreholes, are<br />

drilled <strong>in</strong>to overly<strong>in</strong>g strata from <strong>the</strong> galleries, <strong>and</strong>/or <strong>the</strong> galleries are sealed <strong>and</strong> connected<br />

directly to a gas collection system operat<strong>in</strong>g under high vacuum. More recently, superjacent<br />

techniques <strong>in</strong>volv<strong>in</strong>g <strong>in</strong>-<strong>m<strong>in</strong>e</strong> directionally drilled boreholes placed over or under <strong>the</strong> m<strong>in</strong><strong>in</strong>g<br />

seam <strong>in</strong> advance of longwall operations have been applied <strong>in</strong> Japan, Ch<strong>in</strong>a, Australia,<br />

Germany, <strong>and</strong> <strong>in</strong> <strong>the</strong> U.S.<br />

2.3.2.4 In-M<strong>in</strong>e Directionally Drilled Gob Boreholes<br />

This technique applies state-of-<strong>the</strong>-art, <strong>in</strong>-<strong>m<strong>in</strong>e</strong> directional drill<strong>in</strong>g equipment normally used to<br />

develop long <strong>in</strong>-seam <strong>methane</strong> dra<strong>in</strong>age or exploration boreholes. In-<strong>m<strong>in</strong>e</strong> gob boreholes,<br />

75 to 150 mm <strong>in</strong> diameter, are drilled <strong>in</strong>to <strong>the</strong> strata overly<strong>in</strong>g or underly<strong>in</strong>g un-<strong>m<strong>in</strong>e</strong>d panels<br />

to lengths of up to 1,500 m as shown on Exhibit 2.23. Overly<strong>in</strong>g boreholes are strategically<br />

placed: (a) <strong>in</strong>to <strong>the</strong> lowest produc<strong>in</strong>g source seam (for pre-m<strong>in</strong><strong>in</strong>g dra<strong>in</strong>age) or below <strong>the</strong><br />

lowest produc<strong>in</strong>g source seam, depend<strong>in</strong>g on elevation above <strong>the</strong> m<strong>in</strong><strong>in</strong>g seam <strong>and</strong> <strong>the</strong><br />

geomechanical characteristics of <strong>the</strong> gob, (b) to <strong>in</strong>tersect <strong>the</strong> fracture zone above <strong>the</strong> rubble<br />

zone after <strong>the</strong> gob forms, (c) over <strong>the</strong> tension zones near <strong>the</strong> edges of <strong>the</strong> longwall panel, (d)<br />

over <strong>the</strong> low pressure (depends on <strong>m<strong>in</strong>e</strong> ventilation system) or high elevation side of <strong>the</strong> gob,<br />

<strong>and</strong> (e) to rema<strong>in</strong> <strong>in</strong>tact follow<strong>in</strong>g underm<strong>in</strong><strong>in</strong>g <strong>and</strong> produce gob gas over <strong>the</strong> entire length of<br />

<strong>the</strong> borehole.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-32


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 2.23 In-M<strong>in</strong>e Directionally Drilled Gob Boreholes placed <strong>in</strong> an<br />

Underly<strong>in</strong>g Coal Seam <strong>and</strong> above <strong>the</strong> M<strong>in</strong><strong>in</strong>g Seam.<br />

The advantages of this technique over <strong>the</strong> cross-measure method are: (a) <strong>the</strong> boreholes can<br />

be developed <strong>in</strong> advance of m<strong>in</strong><strong>in</strong>g, away from m<strong>in</strong><strong>in</strong>g activity for ei<strong>the</strong>r advanc<strong>in</strong>g or<br />

retreat<strong>in</strong>g longwall systems, (b) fewer, longer boreholes can produce an effective low<br />

pressure zone over <strong>the</strong> gob, relative to numerous cross-measure boreholes, (c) strategic<br />

placement may allow borehole collars to rema<strong>in</strong> <strong>in</strong>tact (protected from <strong>the</strong> effects of local<br />

stress redistribution) <strong>and</strong> allow boreholes to rema<strong>in</strong> productive after longwall m<strong>in</strong><strong>in</strong>g is<br />

completed, <strong>and</strong> (d) <strong>the</strong> system may be more effective <strong>and</strong> less costly to implement <strong>and</strong><br />

easier to operate than a system of cross-measure boreholes.<br />

Relative to a system employ<strong>in</strong>g dra<strong>in</strong>age galleries, horizontal gob boreholes are less costly<br />

to implement, particularly if <strong>the</strong> galleries are developed specifically for degasification <strong>and</strong><br />

<strong>m<strong>in</strong>e</strong>d <strong>in</strong> rock or <strong>in</strong> uneconomic <strong>coal</strong> seams.<br />

Recent work to optimize placement, performance, <strong>and</strong> <strong>in</strong>tegrity of <strong>the</strong>se directionally drilled<br />

overly<strong>in</strong>g gob boreholes has lead to <strong>the</strong> <strong>development</strong> of larger diameter holes, <strong>the</strong> <strong>in</strong>stallation<br />

of perforated steel cas<strong>in</strong>g, <strong>and</strong> careful monitor<strong>in</strong>g of wellhead vacuum as a function of m<strong>in</strong><strong>in</strong>g<br />

activity.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-33


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

2.4 Recovery of Gas from Sealed Areas<br />

Follow<strong>in</strong>g longwall m<strong>in</strong><strong>in</strong>g, districts comprised of a group of longwall panels, or <strong>in</strong>dividual<br />

longwall panels alone, are typically sealed from active <strong>m<strong>in</strong>e</strong> work<strong>in</strong>gs to m<strong>in</strong>imize leakage of<br />

<strong>m<strong>in</strong>e</strong> ventilation air to non-work<strong>in</strong>g areas, <strong>and</strong> for o<strong>the</strong>r <strong>m<strong>in</strong>e</strong> safety reasons (spontaneous<br />

combustion, etc.). M<strong>in</strong>e operators that employ an underground degasification system<br />

typically also collect gas from sealed areas to (a) reduce gas emissions from sealed areas<br />

<strong>in</strong>to <strong>the</strong> ventilation air course, (b) stabilize <strong>the</strong> concentration or flow of gas from <strong>the</strong><br />

underground to facilitate operation of gas movers, <strong>and</strong> (c) to <strong>in</strong>crease <strong>the</strong> volume of<br />

recovered CMM for commercial purposes.<br />

Ra<strong>the</strong>r than <strong>in</strong>stall<strong>in</strong>g a collection l<strong>in</strong>e through every seal, <strong>m<strong>in</strong>e</strong> operators will typically select<br />

a higher elevation seal, or a seal that is adjacent to a low pressure area of <strong>the</strong> <strong>m<strong>in</strong>e</strong><br />

ventilation system (alongside a return entry closest to <strong>the</strong> exhaust shaft or slope). M<strong>in</strong>e<br />

operators will <strong>in</strong>stall collection l<strong>in</strong>es <strong>in</strong>to <strong>the</strong> waste area (or use ab<strong>and</strong>oned pipel<strong>in</strong>es from<br />

underground pre-m<strong>in</strong><strong>in</strong>g or underground gob gas dra<strong>in</strong>age applications) <strong>and</strong> <strong>in</strong>tegrate<br />

<strong>in</strong>stallation <strong>in</strong>clud<strong>in</strong>g wellhead with construction of <strong>the</strong> seal. Although not as efficient,<br />

collection l<strong>in</strong>es may be <strong>in</strong>stalled after construction of seals.<br />

2.5 Gas Collection<br />

An <strong>in</strong>tegral component of a <strong>m<strong>in</strong>e</strong> degasification system is <strong>the</strong> gas collection <strong>and</strong> transport<br />

<strong>in</strong>frastructure. Underground, this <strong>in</strong>frastructure serves to move CMM collected from<br />

degasification boreholes up to <strong>the</strong> <strong>m<strong>in</strong>e</strong> surface, or to a dedicated underground dilution area.<br />

Underground gas collection systems are comprised of a network of pipes fitted with water<br />

separation <strong>and</strong> safety devices: (a) water separators that remove accumulations of water <strong>in</strong><br />

low elevation areas along <strong>the</strong> pipel<strong>in</strong>e or at <strong>the</strong> bottom of collection wells, (b) a pipel<strong>in</strong>e<br />

<strong>in</strong>tegrity system that can sectionalize <strong>the</strong> collection system <strong>and</strong> m<strong>in</strong>imize <strong>methane</strong> liberation<br />

<strong>in</strong>to <strong>the</strong> <strong>m<strong>in</strong>e</strong> ventilation system should a breech <strong>in</strong> <strong>the</strong> pipel<strong>in</strong>e occur, <strong>and</strong> (c) vacuum<br />

pumps (typically several) that can operate for a range of recovered gas quality <strong>and</strong> volume.<br />

See Exhibit 2.24 <strong>and</strong> Exhibit 2.25. On <strong>the</strong> surface, ga<strong>the</strong>r<strong>in</strong>g <strong>in</strong>frastructure extends from<br />

vertical <strong>in</strong>-seam gas collection wells <strong>and</strong> gob wells to compression <strong>and</strong> process<strong>in</strong>g facilities.<br />

With most gob wells <strong>in</strong> <strong>the</strong> U.S., however, <strong>the</strong>re is no transport or collection mechanism as<br />

<strong>the</strong> recovered gas commonly vents <strong>in</strong>to <strong>the</strong> atmosphere.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-34


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 2.24 Vacuum Pump - Vertical Gas Gob Well<br />

Exhibit 2.25 Gas H<strong>and</strong>l<strong>in</strong>g <strong>and</strong> Collection System<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-35


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

2.6 Methane Dra<strong>in</strong>age Practices In Ukra<strong>in</strong>e<br />

In <strong>the</strong> Ukra<strong>in</strong>e, <strong>m<strong>in</strong>e</strong> operators remove <strong>methane</strong> from gas-bear<strong>in</strong>g strata before, dur<strong>in</strong>g, <strong>and</strong><br />

after longwall m<strong>in</strong><strong>in</strong>g, us<strong>in</strong>g variations of <strong>the</strong> CMM dra<strong>in</strong>age techniques presented above,<br />

primarily cross measure boreholes. The system of <strong>methane</strong> dra<strong>in</strong>age selected depends on<br />

<strong>the</strong> magnitude <strong>and</strong> source of <strong>the</strong> <strong>methane</strong> emissions <strong>in</strong>to <strong>the</strong> <strong>m<strong>in</strong>e</strong>, <strong>the</strong> proximity of <strong>the</strong>se<br />

sources to active m<strong>in</strong><strong>in</strong>g, <strong>and</strong> <strong>the</strong> reservoir <strong>and</strong> geologic characteristics of <strong>the</strong> gas bear<strong>in</strong>g<br />

strata. Degasification allows <strong>m<strong>in</strong>e</strong>s to reduce ventilation costs, m<strong>in</strong>imize m<strong>in</strong><strong>in</strong>g delays, <strong>and</strong><br />

enhance <strong>m<strong>in</strong>e</strong> safety.<br />

2.6.1 Pre-M<strong>in</strong><strong>in</strong>g Degasification<br />

2.6.1.1 Vertical Wells<br />

Due to costs, equipment requirements, <strong>and</strong> <strong>the</strong> low permeability characteristics of <strong>the</strong><br />

<strong>m<strong>in</strong>e</strong>able <strong>coal</strong>s <strong>in</strong> <strong>the</strong> Ukra<strong>in</strong>e, a limited amount of vertical wells have been drilled to recover<br />

gas from <strong>coal</strong> seams or from adjacent gas bear<strong>in</strong>g strata <strong>in</strong> advance of longwall m<strong>in</strong><strong>in</strong>g.<br />

Although limited <strong>in</strong> <strong>the</strong>ir application, Ukra<strong>in</strong>ian <strong>m<strong>in</strong>e</strong>s implement this technique for dual<br />

purposes. By strategically plac<strong>in</strong>g vertical wells to reduce gas contents of active m<strong>in</strong><strong>in</strong>g<br />

areas, e.g. longwall panels, Ukra<strong>in</strong>ian <strong>m<strong>in</strong>e</strong> operators can convert <strong>the</strong> same wells for gob gas<br />

recovery follow<strong>in</strong>g under-m<strong>in</strong><strong>in</strong>g.<br />

2.6.1.2 Underground Boreholes<br />

Although <strong>the</strong> low permeability of most <strong>coal</strong> seams <strong>in</strong> <strong>the</strong> Ukra<strong>in</strong>e discourages <strong>the</strong> use of<br />

boreholes drilled <strong>in</strong>-seam for <strong>methane</strong> dra<strong>in</strong>age, some <strong>m<strong>in</strong>e</strong>s use this technique <strong>and</strong> dra<strong>in</strong><br />

gas from outl<strong>in</strong>ed longwall panels, <strong>and</strong> to target gas bear<strong>in</strong>g zones (<strong>in</strong>-seam <strong>and</strong> adjacent<br />

strata) immediately <strong>in</strong> advance of gate entry <strong>development</strong>s as shown on Exhibit 2.26. These<br />

boreholes are typically 30 to 50 meters <strong>in</strong> length due to <strong>the</strong> drill<strong>in</strong>g technique (cor<strong>in</strong>g or<br />

rotary), drill<strong>in</strong>g equipment, <strong>and</strong> drill<strong>in</strong>g conditions.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-36


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 2.26 Boreholes Drilled Immediately <strong>in</strong> Advance of M<strong>in</strong>e Developments to Target Gas<br />

2.6.2 Gob Degasification<br />

Ukra<strong>in</strong>ian <strong>m<strong>in</strong>e</strong>s also employ surface drilled vertical wells (drilled specifically for gob gas<br />

recovery) <strong>and</strong> cross-measure boreholes drilled from underground to recover gob gas<br />

generated by longwall m<strong>in</strong><strong>in</strong>g.<br />

2.6.2.1 Vertical Gob Wells<br />

In <strong>the</strong> Ukra<strong>in</strong>e, where depth, surface access, <strong>and</strong> multiple level m<strong>in</strong><strong>in</strong>g permits, vertical gob<br />

wells are drilled to a po<strong>in</strong>t 3 to 20 meters above <strong>the</strong> target m<strong>in</strong><strong>in</strong>g horizon. Gob wells often<br />

produce gas with <strong>methane</strong> concentrations of 20 to 80 percent by volume <strong>in</strong> air, depend<strong>in</strong>g on<br />

vertical placement, proximity to <strong>the</strong> <strong>m<strong>in</strong>e</strong> ventilation system, surface vacuum, <strong>and</strong> wellhead<br />

leakage. Suspended perforated cas<strong>in</strong>g is typically not used due to costs <strong>and</strong> availability.<br />

2.6.2.2 Cross-Measure Boreholes<br />

The cross-measure system is <strong>the</strong> most common method of gob degasification implemented<br />

by longwall <strong>m<strong>in</strong>e</strong>s <strong>in</strong> <strong>the</strong> Ukra<strong>in</strong>e. This system is preferred as it is applied at <strong>the</strong> m<strong>in</strong><strong>in</strong>g level<br />

<strong>and</strong> can be implemented with readily available underground drill<strong>in</strong>g equipment. These<br />

boreholes are drilled at various angles from <strong>the</strong> tailgate entry through <strong>the</strong> strata above <strong>and</strong><br />

below <strong>the</strong> <strong>coal</strong> seam, depend<strong>in</strong>g on <strong>the</strong> source of gob gas emissions, <strong>and</strong> at an acute angle<br />

toward <strong>the</strong> retreat<strong>in</strong>g longwall face as generally shown on Exhibit 2.27. With s<strong>in</strong>gle entry<br />

retreat m<strong>in</strong><strong>in</strong>g systems as used <strong>in</strong> <strong>the</strong> Ukra<strong>in</strong>e, cross-measure boreholes have a short<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-37


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

productive life <strong>and</strong> are not very efficient (recover<strong>in</strong>g about 20 percent of <strong>the</strong> total gas which<br />

would have been liberated by <strong>the</strong> gob <strong>in</strong>to <strong>the</strong> <strong>m<strong>in</strong>e</strong> ventilation system). Due to <strong>the</strong> large<br />

number of cross-measure boreholes, <strong>the</strong>ir proximity to <strong>the</strong> gateroads (part of <strong>the</strong> <strong>m<strong>in</strong>e</strong><br />

ventilation air circuit) <strong>and</strong> <strong>the</strong> complex system of connected pipel<strong>in</strong>es, a large amount of air<br />

dilution can occur. In <strong>the</strong> Ukra<strong>in</strong>ian <strong>m<strong>in</strong>e</strong>s <strong>the</strong> <strong>methane</strong> collected by <strong>the</strong> cross-measure<br />

boreholes can range from 30 to 80 percent <strong>methane</strong> <strong>in</strong> ventilation air by volume.<br />

Exhibit 2.27 Cross-Measure Boreholes applied from Tailgate Entry for S<strong>in</strong>gle Entry Retreat<br />

Longwall M<strong>in</strong><strong>in</strong>g as implemented <strong>in</strong> some Ukra<strong>in</strong>ian M<strong>in</strong>es.<br />

2.6.3 Gas Collection<br />

Underground degasification boreholes are l<strong>in</strong>ked by a system of connected steel pipel<strong>in</strong>es to<br />

a centralized vacuum station <strong>in</strong>stalled on <strong>the</strong> surface. Because <strong>m<strong>in</strong>e</strong>s operate at deep levels<br />

<strong>in</strong> <strong>the</strong> Ukra<strong>in</strong>e <strong>and</strong> have limited funds for supplies <strong>and</strong> equipment, <strong>the</strong> gas collection systems<br />

typically have numerous leakage po<strong>in</strong>ts; at wellheads, pipe connections, <strong>and</strong> at <strong>the</strong> vacuum<br />

station. This results <strong>in</strong> low <strong>methane</strong> concentrations of <strong>the</strong> recovered gas, reduced vacuum<br />

pressures at wellheads, lower <strong>methane</strong> recovery rates, <strong>and</strong> reduced <strong>methane</strong> dra<strong>in</strong>age<br />

efficiency.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-38


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

2.7 Proposed Methane Dra<strong>in</strong>age Technology for Ukra<strong>in</strong>e<br />

As <strong>the</strong> majority of <strong>the</strong> <strong>coal</strong> seams <strong>m<strong>in</strong>e</strong>d <strong>in</strong> <strong>the</strong> Donbass Bas<strong>in</strong> <strong>in</strong> <strong>the</strong> Ukra<strong>in</strong>e are<br />

permeability constra<strong>in</strong>ed, <strong>and</strong> as <strong>the</strong> primary source of <strong>methane</strong> emissions <strong>in</strong> Ukra<strong>in</strong>ian<br />

<strong>m<strong>in</strong>e</strong>s is adjacent gas-bear<strong>in</strong>g strata that is relaxed subsequent to longwall m<strong>in</strong><strong>in</strong>g, <strong>the</strong> focus<br />

of recent efforts to <strong>in</strong>troduce western <strong>methane</strong> dra<strong>in</strong>age technology to <strong>the</strong> <strong>coal</strong> <strong>in</strong>dustry has<br />

been on improv<strong>in</strong>g gob gas recovery. Because of multi-level m<strong>in</strong><strong>in</strong>g practices where upper<br />

seams are <strong>m<strong>in</strong>e</strong>d first <strong>and</strong> due to <strong>the</strong> depth of m<strong>in</strong><strong>in</strong>g (greater than 1,000 m <strong>in</strong> some cases),<br />

improvement efforts have emphasized underground gob gas recovery techniques ra<strong>the</strong>r than<br />

surface <strong>in</strong>itiated gob wells.<br />

Prior efforts by <strong>the</strong> U.S. EPA’s Coal M<strong>in</strong>e Methane Outreach Program, <strong>the</strong> World Bank<br />

Global Environmental Fund, <strong>and</strong> o<strong>the</strong>rs, to <strong>in</strong>troduce new technology to <strong>the</strong> <strong>coal</strong> m<strong>in</strong><strong>in</strong>g<br />

sector to improve <strong>methane</strong> dra<strong>in</strong>age efficiencies <strong>and</strong> <strong>in</strong>crease <strong>the</strong> utilization of <strong>the</strong> captured<br />

gas for <strong>methane</strong> emissions mitigation, produced technical analyses <strong>and</strong> lead to outside<br />

<strong>in</strong>vestment by parties <strong>in</strong>terested <strong>in</strong> greenhouse gas credits with limited drill<strong>in</strong>g technology<br />

transfer. Although some of <strong>the</strong> private <strong>m<strong>in</strong>e</strong>s <strong>in</strong> <strong>the</strong> Ukra<strong>in</strong>e are <strong>in</strong>vest<strong>in</strong>g <strong>in</strong> drill<strong>in</strong>g<br />

technology directly, <strong>the</strong> U.S. Department Labor committed to fund a technology transfer<br />

program <strong>in</strong> 2005 that <strong>in</strong>volved <strong>the</strong> <strong>in</strong>troduction of modern underground directional drill<strong>in</strong>g<br />

technology to provide alternatives for underground gob gas recovery.<br />

Under <strong>the</strong> over-sight of <strong>the</strong> Partnership for Energy <strong>and</strong> Environmental Reform (PEER), <strong>in</strong><br />

2006 an underground longhole drill was built by J.H. Fletcher Company <strong>and</strong> shipped to <strong>the</strong><br />

Ukra<strong>in</strong>e. Directional drill<strong>in</strong>g tra<strong>in</strong><strong>in</strong>g was <strong>in</strong>itiated by <strong>the</strong> U.S. based directional drill<strong>in</strong>g<br />

contractor, REI Drill<strong>in</strong>g, Inc. at <strong>the</strong> Belozerskaya M<strong>in</strong>e <strong>in</strong> early 2007.<br />

2.7.1 Application of Directional Drill<strong>in</strong>g for Gob Gas Recovery<br />

Directional drill<strong>in</strong>g provides <strong>the</strong> Ukra<strong>in</strong>ian <strong>coal</strong> sector <strong>the</strong> ability to implement gob gas<br />

recovery systems that have demonstrated benefits to conventional practices such as<br />

conventional cross-measure boreholes as presented above. In <strong>the</strong> Ukra<strong>in</strong>e, <strong>m<strong>in</strong>e</strong> operators<br />

can implement directionally drilled horizontal gob boreholes from <strong>the</strong> current m<strong>in</strong><strong>in</strong>g level as<br />

shown <strong>in</strong> Exhibit 2.26, or from overly<strong>in</strong>g or underly<strong>in</strong>g m<strong>in</strong><strong>in</strong>g levels. Directional drill<strong>in</strong>g<br />

technology provides <strong>the</strong> Ukra<strong>in</strong>ian operators <strong>the</strong> ability to reach out to distances greater than<br />

1,000 m <strong>and</strong> steer boreholes to access gob zones from entries that rema<strong>in</strong> <strong>in</strong>tact follow<strong>in</strong>g<br />

m<strong>in</strong><strong>in</strong>g (Exhibit 2.28). This provides for (a) longer gob gas production periods, (b) improved<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-39


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

<strong>methane</strong> dra<strong>in</strong>age efficiencies, (c) <strong>in</strong>creased gob gas recovery, <strong>and</strong> (d) improved recovered<br />

gas quality as fewer boreholes are required (connections to pipel<strong>in</strong>e, etc.).<br />

Exhibit 2.28 Long Hole Directional Drills<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-40


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

2.7.1.1 Considerations for <strong>the</strong> Application of Directionally Drilled Horizontal Gob<br />

Boreholes<br />

The objective of gob degasification us<strong>in</strong>g horizontal gob boreholes is to provide more<br />

immediate <strong>and</strong> <strong>in</strong>dependent access to overly<strong>in</strong>g strata that will fracture as a result of longwall<br />

m<strong>in</strong><strong>in</strong>g. The application enables <strong>the</strong> operator to place boreholes from non-production areas<br />

that are free of equipment <strong>and</strong> production related <strong>in</strong>conveniences. It also facilitates<br />

placement of boreholes <strong>in</strong> advance of <strong>the</strong> m<strong>in</strong><strong>in</strong>g face for both advanc<strong>in</strong>g <strong>and</strong> retreat<strong>in</strong>g<br />

longwall systems. With this system of degasification, dra<strong>in</strong>age efficiency <strong>and</strong> gas purity are<br />

impacted by geologic <strong>and</strong> reservoir conditions, orientation of <strong>the</strong> boreholes, size <strong>and</strong><br />

spac<strong>in</strong>g, borehole <strong>in</strong>tegrity, suction control, <strong>and</strong> <strong>m<strong>in</strong>e</strong> ventilation.<br />

Geologic <strong>and</strong> Reservoir Conditions: Operators must consider geologic <strong>and</strong> reservoir<br />

characteristics of <strong>the</strong> overly<strong>in</strong>g <strong>and</strong> underly<strong>in</strong>g strata when implement<strong>in</strong>g a program of gob<br />

degasification us<strong>in</strong>g directionally drilled gob boreholes. Specifically, <strong>the</strong> geomechanical<br />

characteristics of <strong>the</strong> strata, <strong>the</strong> fracture characteristics of <strong>the</strong> gob as it forms, <strong>the</strong> result<strong>in</strong>g<br />

gob permeability, <strong>and</strong> proximity of source seams to <strong>the</strong> <strong>m<strong>in</strong>e</strong>d horizon must be considered.<br />

Additional factors to consider <strong>in</strong>clude <strong>the</strong> <strong>in</strong>tegrity of <strong>the</strong> strata for drill<strong>in</strong>g considerations,<br />

collected water from upper strata <strong>and</strong> drill<strong>in</strong>g fluids which can <strong>in</strong>hibit gas production,<br />

particularly for boreholes developed to target underly<strong>in</strong>g sources. Underly<strong>in</strong>g directionally<br />

drilled gob boreholes may not produce gas until <strong>the</strong> water migrates through fractures that will<br />

develop dur<strong>in</strong>g m<strong>in</strong><strong>in</strong>g. Also with long directionally drilled gob boreholes, deviations <strong>in</strong><br />

borehole trajectory can produce water collection areas (“U” shaped low elevation zones), that<br />

impede gas flow.<br />

St<strong>and</strong>pipe Integrity: Directionally drilled horizontal gob boreholes are susceptible to <strong>in</strong>tegrity<br />

problems, however, <strong>the</strong>y are not plagued by fractures <strong>in</strong> <strong>the</strong> vic<strong>in</strong>ity of <strong>the</strong> st<strong>and</strong>pipe <strong>and</strong><br />

collar that typically affect cross-measure boreholes. Boreholes drilled from adjacent work<strong>in</strong>gs<br />

or long horizontal gob boreholes generally orig<strong>in</strong>ate from competent <strong>m<strong>in</strong>e</strong> work<strong>in</strong>gs <strong>and</strong><br />

stratigraphic horizons <strong>and</strong> as such, operators may recover higher quality gas with this<br />

technique.<br />

Vertical Borehole Placement: When implement<strong>in</strong>g overly<strong>in</strong>g horizontal gob boreholes,<br />

operators typically target <strong>the</strong> lowest contribut<strong>in</strong>g source seams <strong>and</strong> position <strong>the</strong> holes above<br />

<strong>the</strong> gob rubble zone to take advantage of <strong>the</strong> fracture network created by longwall m<strong>in</strong><strong>in</strong>g.<br />

Placement <strong>in</strong> <strong>the</strong> rubble zone will cause <strong>the</strong> borehole to shear <strong>and</strong> can limit its effectiveness<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-41


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

to a s<strong>in</strong>gle low pressure po<strong>in</strong>t source over <strong>the</strong> longwall face, <strong>and</strong> depend<strong>in</strong>g on longwall face<br />

activity, draw air from <strong>the</strong> <strong>m<strong>in</strong>e</strong> ventilation system. Placement too high above <strong>the</strong> m<strong>in</strong><strong>in</strong>g<br />

horizon may reduce gob gas recovery efficiency but will produce gob gas with higher<br />

<strong>methane</strong> concentrations. Borehole elevation placement is critical but operators may<br />

compensate by drill<strong>in</strong>g larger diameter boreholes which can be l<strong>in</strong>ed with perforated steel<br />

l<strong>in</strong>er to ensure that <strong>the</strong>y rema<strong>in</strong> <strong>in</strong>tact when under<strong>m<strong>in</strong>e</strong>d.<br />

Borehole Orientation: Longwall panel marg<strong>in</strong> zones, where <strong>the</strong> overly<strong>in</strong>g strata rema<strong>in</strong>s <strong>in</strong><br />

tension after underm<strong>in</strong><strong>in</strong>g, produce more gas than consolidated regions with<strong>in</strong> <strong>the</strong> center of<br />

<strong>the</strong> gob. Horizontal gob boreholes need to target <strong>the</strong>se high permeability zones to improve<br />

gas production rates.<br />

Borehole Size <strong>and</strong> Spac<strong>in</strong>g: To develop a cont<strong>in</strong>uous low pressure zone over <strong>the</strong> gob,<br />

horizontal gob boreholes are developed at appropriate sizes <strong>and</strong> spac<strong>in</strong>gs so that borehole<br />

<strong>in</strong>fluence zones overlap slightly. If boreholes are <strong>in</strong>sufficiently sized <strong>and</strong> spaced apart, gob<br />

gas will migrate to <strong>m<strong>in</strong>e</strong> entries. If boreholes are over-designed <strong>and</strong> too close toge<strong>the</strong>r, <strong>the</strong>y<br />

may promote migration of <strong>m<strong>in</strong>e</strong> ventilation air <strong>in</strong>to <strong>the</strong> gob.<br />

Vacuum System Control: Although gob gas may release without vacuum pressure from<br />

horizontal gob boreholes (depend<strong>in</strong>g on gob gas volumes, pressures, <strong>and</strong> <strong>the</strong> <strong>m<strong>in</strong>e</strong><br />

ventilation system), connect<strong>in</strong>g to gas collection l<strong>in</strong>es under vacuum pressure is necessary<br />

for effective production. In all applications, operators should carefully monitor gas collection<br />

system vacuum pressures <strong>and</strong> <strong>methane</strong> concentrations to optimize gob gas recovery <strong>and</strong><br />

quality by adjust<strong>in</strong>g vacuum pressure.<br />

M<strong>in</strong>e Ventilation System: Horizontal gob borehole placement needs to take advantage of <strong>the</strong><br />

gob ventilation system. Depend<strong>in</strong>g on <strong>the</strong> pressure difference between <strong>in</strong>take <strong>and</strong> return air<br />

routes, planners must consider <strong>the</strong> gas migration patterns <strong>in</strong> <strong>the</strong> gob so that boreholes<br />

target <strong>the</strong> most productive regions, <strong>and</strong> mitigate <strong>methane</strong> emissions <strong>in</strong>to <strong>the</strong> <strong>m<strong>in</strong>e</strong> ventilation<br />

system.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-42


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

2.7.1.2 Directional Drill<strong>in</strong>g Application at <strong>the</strong> Krasnolimonskaya M<strong>in</strong>e<br />

The Kranolimonskaya M<strong>in</strong>e was <strong>the</strong> <strong>in</strong>itial c<strong>and</strong>idate site for <strong>the</strong> directional drill<strong>in</strong>g technology<br />

transfer project managed by <strong>the</strong> Partnership for Energy <strong>and</strong> Environmental Reform (PEER.).<br />

As this <strong>m<strong>in</strong>e</strong> implements a system of cross-measure boreholes, a plan to demonstrate more<br />

efficient directionally drilled horizontal gob boreholes was derived for <strong>the</strong> 9 th Sou<strong>the</strong>rn Panel<br />

as shown on Exhibit 2.29.<br />

Three overly<strong>in</strong>g horizontal gob boreholes were planned for drill<strong>in</strong>g from a room constructed<br />

specifically for <strong>the</strong> project off of <strong>the</strong> haulageway at <strong>the</strong> end of <strong>the</strong> 9 th Sou<strong>the</strong>rn Panel at <strong>the</strong><br />

m<strong>in</strong><strong>in</strong>g horizon. Longwall m<strong>in</strong><strong>in</strong>g would be performed <strong>in</strong> retreat from s<strong>in</strong>gle entry gateroads<br />

toward <strong>the</strong> boreholes as shown on Exhibit 2.30. Directionally drilled boreholes were planned,<br />

<strong>in</strong>itiat<strong>in</strong>g at 28 degrees from horizontal <strong>and</strong> placed 10m to 20m from <strong>the</strong> tailgate entry, with<br />

two subsequent boreholes 50m apart as shown.<br />

For <strong>the</strong> 9 th Sou<strong>the</strong>rn Panel at <strong>the</strong> Krasnolimonskaya M<strong>in</strong>e, two overly<strong>in</strong>g <strong>coal</strong> seams of high<br />

gas content <strong>and</strong> limited permeability, approximately 37m <strong>and</strong> 70m, above <strong>the</strong> top of <strong>the</strong><br />

m<strong>in</strong><strong>in</strong>g seam, respectively, are <strong>the</strong> primary sources of gob gas. The horizontal gob<br />

boreholes were planned <strong>in</strong>to <strong>the</strong> lower overly<strong>in</strong>g <strong>coal</strong> seam for dual purposes (a) to reduce<br />

its gas content prior to m<strong>in</strong><strong>in</strong>g as much as possible (to reduce its potential to contribute to<br />

gob gas), <strong>and</strong> (b) to subsequently recover gob gas generated from this seam <strong>and</strong> <strong>the</strong> uppermost<br />

seam follow<strong>in</strong>g underm<strong>in</strong><strong>in</strong>g. Geomechanical experience <strong>in</strong>dicated that <strong>the</strong> <strong>in</strong>tegrity of<br />

boreholes directionally drilled <strong>in</strong>to <strong>the</strong> upper <strong>coal</strong> seam may be ma<strong>in</strong>ta<strong>in</strong>ed follow<strong>in</strong>g underm<strong>in</strong><strong>in</strong>g<br />

as <strong>the</strong> rubble zone would likely not extend above <strong>the</strong> base of <strong>the</strong> lower <strong>coal</strong> seam.<br />

Due to tim<strong>in</strong>g <strong>and</strong> o<strong>the</strong>r issues relat<strong>in</strong>g to <strong>the</strong> management of <strong>the</strong> Donbass <strong>coal</strong> sector,<br />

PEER elected to not implement <strong>the</strong> demonstration project at <strong>the</strong> Krasnolimonskaya M<strong>in</strong>e but<br />

to move it to <strong>the</strong> Belozerskaya M<strong>in</strong>e.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-43


Cage Shaft to 545m Level<br />

Haulage Way L<strong>and</strong><strong>in</strong>g<br />

Valve<br />

Diaphragm<br />

Fire Check Valve<br />

Air / Gas Discharge<br />

Water Sump<br />

Borehole Valve<br />

Pipel<strong>in</strong>e Valve<br />

Pipel<strong>in</strong>e Diaphragm<br />

Fire Check Valve<br />

Air Inlet<br />

Legend<br />

Degass <strong>in</strong>g Pipel<strong>in</strong>e<br />

Ventilation Shaft to 210m Level<br />

Empty Car Branch<br />

Bypass<br />

K-5 Slope<br />

Empty Car Branch<br />

Empty Car Branch<br />

Total Degass<strong>in</strong>g Pipel<strong>in</strong>e Length<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Nor<strong>the</strong>rn Haulage Way<br />

Skip Shaft to 545m Level<br />

Conv ey or Entry of K5 Sea m, Sou<strong>the</strong>rn Slope<br />

Seam<br />

K5<br />

L<strong>and</strong> <strong>in</strong> g of<br />

Haulage Way<br />

Sout hern Slo pe Haulage Way<br />

Sou <strong>the</strong> rn Slo pe of K5 Se am<br />

C onv e yor Entry of K5 Seam , Sou<strong>the</strong> rn Slo p e<br />

Haulag e Way 2n d Sta ge<br />

9th Sou<strong>the</strong>rn Panel<br />

No. 1 Sl ope "bis " of K5 Se am<br />

K5 Sou <strong>the</strong> rn Slo pe , 2n d Sta ge<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-44<br />

Ma nwa y<br />

Boreholes<br />

Manway<br />

Nor<strong>the</strong>rn Haulage of Level 545m<br />

M a nwa y<br />

Vacuum Pump Station<br />

Sou<strong>the</strong>rn Haulage of Level 545m<br />

Haulage Way<br />

Pump Type:<br />

Capacity:<br />

Pump Size:<br />

Exhibit 2.29 Demonstration of Directionally Drilled Horizontal Gob Borehole<br />

planned for <strong>the</strong> Krasnolimonskaya M<strong>in</strong>e<br />

Length:<br />

Width:<br />

Height:


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 2.30 Plan for <strong>the</strong> Dual Purpose Horizontal Boreholes at <strong>the</strong> Krasnolimonskaya M<strong>in</strong>e<br />

2.7.1.3 Directional Drill<strong>in</strong>g Application at <strong>the</strong> Belozyorskaya M<strong>in</strong>e<br />

Directional drill<strong>in</strong>g tra<strong>in</strong><strong>in</strong>g <strong>in</strong>itiated at <strong>the</strong> Belozorskaya M<strong>in</strong>e <strong>in</strong> early 2007. This <strong>m<strong>in</strong>e</strong> also<br />

implements a system of cross-measure boreholes <strong>and</strong> would benefit from more efficient<br />

directionally drilled horizontal gob boreholes.<br />

Plans were derived for three overly<strong>in</strong>g horizontal gob boreholes drilled from a room<br />

developed off of <strong>the</strong> 8 th Tailgate Entry (s<strong>in</strong>gle entry) located about mid-way along <strong>the</strong> length<br />

of <strong>the</strong> panel as shown on Exhibit 3-23. Plans were to place <strong>the</strong> boreholes 20m from <strong>the</strong><br />

tailgate entry, <strong>and</strong> 50m apart <strong>the</strong>reafter.<br />

Exhibit 2.31 Horizontal Gob Boreholes Planned for <strong>the</strong> 8th Sou<strong>the</strong>rn Longwall Panel<br />

at <strong>the</strong> Belozorskaya M<strong>in</strong>e<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-45


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Drill<strong>in</strong>g <strong>in</strong>itiated at <strong>the</strong> m<strong>in</strong><strong>in</strong>g horizon (<strong>the</strong> L3 <strong>coal</strong> seam) with <strong>the</strong> <strong>in</strong>itial target as <strong>the</strong><br />

overly<strong>in</strong>g upper L4 <strong>coal</strong> seam, approximately 17m above. Dur<strong>in</strong>g longwall m<strong>in</strong><strong>in</strong>g, three<br />

overly<strong>in</strong>g <strong>coal</strong> seams contribute to gob gas, <strong>the</strong> lower <strong>and</strong> upper L4 seams, <strong>and</strong> <strong>the</strong> L5<br />

seam, approximately 10m, 17m, <strong>and</strong> 37m above <strong>the</strong> m<strong>in</strong><strong>in</strong>g horizon, respectively. Ideally,<br />

horizontal gob boreholes placed <strong>in</strong> <strong>the</strong> upper L4 <strong>coal</strong> could reduce <strong>the</strong> gas content of this<br />

seam prior to under-m<strong>in</strong><strong>in</strong>g. By produc<strong>in</strong>g under a vacuum, <strong>the</strong> horizontal boreholes could<br />

draw gas up from <strong>the</strong> lower L4 seam <strong>and</strong> down from <strong>the</strong> overly<strong>in</strong>g L5 seam after<br />

underm<strong>in</strong><strong>in</strong>g, <strong>and</strong> reduce gob gas emissions <strong>in</strong>to <strong>the</strong> <strong>m<strong>in</strong>e</strong>.<br />

Because of <strong>the</strong> <strong>in</strong>tegrity of <strong>the</strong> strata dur<strong>in</strong>g drill<strong>in</strong>g, plans changed to target a zone<br />

approximately 30m above <strong>the</strong> L3 seam, or <strong>in</strong> <strong>the</strong> horizon below <strong>the</strong> contribut<strong>in</strong>g L5 <strong>coal</strong><br />

seam. The formation above <strong>the</strong> m<strong>in</strong><strong>in</strong>g seam (L3) is a mudstone of medium strength<br />

(uniaxial compressive strength), between <strong>the</strong> lower <strong>and</strong> upper L4 seams, a stronger siltstone,<br />

<strong>and</strong> between <strong>the</strong> upper L4 <strong>and</strong> L5 seams, about 7m of mudstone overla<strong>in</strong> by ano<strong>the</strong>r<br />

measure of siltstone.<br />

Initial drill<strong>in</strong>g started at a shallow angle of 5 degrees through <strong>the</strong> first measure of mudstone<br />

with <strong>the</strong> <strong>in</strong>tent to build angle. Directional drill<strong>in</strong>g was not feasible due to <strong>the</strong> water pressures<br />

<strong>and</strong> volumes required to drill, which eroded <strong>the</strong> formation <strong>and</strong> affected borehole stability.<br />

Subsequent core drill<strong>in</strong>g, ream<strong>in</strong>g, <strong>and</strong> <strong>in</strong>stallation of cas<strong>in</strong>g proved difficult <strong>and</strong> borehole<br />

stability could not be ma<strong>in</strong>ta<strong>in</strong>ed, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> pitch of <strong>the</strong> borehole. A second borehole was<br />

attempted at an <strong>in</strong>itial <strong>in</strong>cl<strong>in</strong>ation of approximately 25 degrees. This borehole was drilled<br />

us<strong>in</strong>g core drill<strong>in</strong>g techniques <strong>and</strong> identified <strong>the</strong> stable strata (<strong>and</strong> its elevation) suitable for<br />

directional drill<strong>in</strong>g; <strong>the</strong> 12m of siltstone just under <strong>the</strong> L5 <strong>coal</strong> seam.<br />

The drill<strong>in</strong>g approach for <strong>the</strong> horizontal gob boreholes for <strong>the</strong> Sou<strong>the</strong>rn 8 th longwall panel was<br />

established follow<strong>in</strong>g <strong>in</strong>itial drill<strong>in</strong>g trials <strong>and</strong> is as follows:<br />

Setup Angle - Established at 20 Degrees at <strong>the</strong> drill<strong>in</strong>g station <strong>and</strong> is limited by <strong>the</strong><br />

turn<strong>in</strong>g ability of <strong>the</strong> directional drill<strong>in</strong>g equipment <strong>and</strong> <strong>the</strong> 12m thick stable formation<br />

deter<strong>m<strong>in</strong>e</strong>d to be suitable for directional drill<strong>in</strong>g.<br />

Cas<strong>in</strong>g - Cas<strong>in</strong>g is required to stabilize <strong>the</strong> borehole through <strong>the</strong> <strong>in</strong>competent strata<br />

(overly<strong>in</strong>g 25 meters) <strong>and</strong> enable directional drill<strong>in</strong>g downhole.<br />

Pilot hole - Pilot hole drill<strong>in</strong>g to <strong>the</strong> competent strata at an <strong>in</strong>cl<strong>in</strong>ation of 20 Degrees<br />

requires us<strong>in</strong>g core drill<strong>in</strong>g techniques which m<strong>in</strong>imizes disturbance to unstable strata,<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-46


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

requires less water flow for cutt<strong>in</strong>gs removal <strong>and</strong> lubrication, <strong>and</strong> can be performed with<br />

m<strong>in</strong>imal loss of directional control (pitch).<br />

Ream<strong>in</strong>g - Ream<strong>in</strong>g is required to <strong>in</strong>stall collar cas<strong>in</strong>g <strong>and</strong> stabilization cas<strong>in</strong>g.<br />

Ream<strong>in</strong>g requires enlarg<strong>in</strong>g <strong>the</strong> 100 mm pilot hole to 185 mm <strong>in</strong> diameter us<strong>in</strong>g overcor<strong>in</strong>g<br />

techniques. This technique requires little water <strong>and</strong> can use <strong>the</strong> pilot hole as a<br />

guide to ma<strong>in</strong>ta<strong>in</strong> borehole trajectory.<br />

Dur<strong>in</strong>g <strong>the</strong> summer of 2008, m<strong>in</strong><strong>in</strong>g commenced on <strong>the</strong> 8 th sou<strong>the</strong>rn longwall panel at <strong>the</strong><br />

Belozerskya <strong>m<strong>in</strong>e</strong>, above which <strong>the</strong> three approximately 800m long directionally drilled holes<br />

were drilled. Prelim<strong>in</strong>ary results have been favorable, with <strong>the</strong> 3 boreholes captur<strong>in</strong>g<br />

7 m 3 /m<strong>in</strong> (350 Mcfd) of <strong>methane</strong> at a concentration of nearly 50% <strong>methane</strong>. There is a mud<br />

stone layer between <strong>the</strong> <strong>coal</strong> seam <strong>and</strong> <strong>the</strong> boreholes that is restrict<strong>in</strong>g <strong>methane</strong> flow <strong>in</strong>to <strong>the</strong><br />

boreholes. When m<strong>in</strong><strong>in</strong>g of <strong>the</strong> longwall is completed <strong>and</strong> <strong>the</strong> mudstone is completely<br />

under<strong>m<strong>in</strong>e</strong>d <strong>in</strong> October, <strong>methane</strong> quantity <strong>and</strong> quality should improve.<br />

It is recommended that <strong>the</strong> Bazhanov <strong>and</strong> South Donbass #3 <strong>m<strong>in</strong>e</strong>s implement a<br />

comb<strong>in</strong>ation of surface <strong>and</strong> <strong>in</strong>-<strong>m<strong>in</strong>e</strong> degasification techniques to improve gas dra<strong>in</strong>age. The<br />

optimum technique(s) will only be deter<strong>m<strong>in</strong>e</strong>d through experimentation with different<br />

methods. As a start<strong>in</strong>g po<strong>in</strong>t, Advanced Resources would recommend implement<strong>in</strong>g some<br />

longhole directional drill<strong>in</strong>g techniques similar to <strong>the</strong> project at <strong>the</strong> Belozorskaya M<strong>in</strong>e,<br />

described above, because of <strong>the</strong> similar geologic <strong>and</strong> m<strong>in</strong><strong>in</strong>g conditions between <strong>the</strong> <strong>m<strong>in</strong>e</strong>s.<br />

2.8 Directional Drill<strong>in</strong>g Applications at <strong>the</strong> Bazhanov <strong>and</strong> South<br />

Donbass #3 M<strong>in</strong>es<br />

Coal <strong>m<strong>in</strong>e</strong> operators <strong>in</strong> <strong>the</strong> Ukra<strong>in</strong>e are very <strong>in</strong>terested <strong>in</strong> utiliz<strong>in</strong>g directional drill<strong>in</strong>g<br />

technology to augment <strong>the</strong>ir current <strong>methane</strong> dra<strong>in</strong>age practices. O<strong>the</strong>r applications of this<br />

technology that are of <strong>in</strong>terest <strong>in</strong>clude <strong>the</strong> ability to explore <strong>and</strong> characterize geologic<br />

discont<strong>in</strong>uities significantly <strong>in</strong> advance of m<strong>in</strong><strong>in</strong>g, <strong>the</strong> <strong>development</strong> of steered boreholes for<br />

water transfer or de-water<strong>in</strong>g, <strong>and</strong> <strong>the</strong> <strong>development</strong> of directionally drilled boreholes for destress<strong>in</strong>g<br />

<strong>and</strong> de-pressurization.<br />

Most <strong>coal</strong> <strong>m<strong>in</strong>e</strong> operators <strong>in</strong> <strong>the</strong> Ukra<strong>in</strong>e do not own or operate drill<strong>in</strong>g equipment that would<br />

be suitable for adaptation to directional drill<strong>in</strong>g. Most of <strong>the</strong> underground drills are short<br />

stroke.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-47


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The follow<strong>in</strong>g are recommendations to consider when <strong>in</strong>troduc<strong>in</strong>g directional drill<strong>in</strong>g<br />

technology to <strong>the</strong> Ukra<strong>in</strong>ian <strong>coal</strong> <strong>m<strong>in</strong>e</strong>s to improve <strong>methane</strong> dra<strong>in</strong>age practices.<br />

Drill<strong>in</strong>g Equipment - Drill<strong>in</strong>g equipment should be suitable for multi-level, s<strong>in</strong>gle entry m<strong>in</strong><strong>in</strong>g<br />

conditions. M<strong>in</strong>e entries are typically narrow (4 m wide) <strong>and</strong> <strong>m<strong>in</strong>e</strong> levels are accessible by<br />

men <strong>and</strong> materials shafts with limited size capacity. Drill<strong>in</strong>g equipment should be modular so<br />

that it can be disassembled on surface <strong>and</strong> reassembled underground, <strong>and</strong> unit components<br />

should be modular. For example, a two component directional drill<strong>in</strong>g system with a<br />

separate drill<strong>in</strong>g unit <strong>and</strong> separate electrical <strong>and</strong> hydraulic power pack would be more<br />

suitable.<br />

Drill<strong>in</strong>g equipment should be flexible for multiple applications, <strong>in</strong>clud<strong>in</strong>g wirel<strong>in</strong>e cor<strong>in</strong>g.<br />

Equipment should have <strong>the</strong> ability to articulate above <strong>and</strong> below horizontal as much as<br />

possible. A drill<strong>in</strong>g stroke of 2 m is satisfactory, with high thrust <strong>and</strong> torque (simultaneous)<br />

capability. Equipment <strong>in</strong>troduced <strong>in</strong>to <strong>the</strong> Ukra<strong>in</strong>e should be represented by its manufacturer<br />

<strong>in</strong> eastern Europe <strong>and</strong> spare parts, <strong>in</strong>clud<strong>in</strong>g technical support must be available.<br />

Downhole Equipment - Provide downhole drill<strong>in</strong>g equipment suitable for wirel<strong>in</strong>e cor<strong>in</strong>g,<br />

directional drill<strong>in</strong>g, <strong>and</strong> rotary drill<strong>in</strong>g, <strong>in</strong>clud<strong>in</strong>g ream<strong>in</strong>g <strong>and</strong> over-cor<strong>in</strong>g. Any anticipated<br />

cas<strong>in</strong>g should be provided with <strong>the</strong> drill, <strong>in</strong>clud<strong>in</strong>g cross-over supplies to <strong>in</strong>stall cas<strong>in</strong>g with<br />

<strong>the</strong> drill, <strong>and</strong> to down-size to wellhead fitt<strong>in</strong>gs, etc. Exhibit 32 shows a list of required<br />

equipment for underground directional drill<strong>in</strong>g.<br />

Longhole Directional Drill Drill <strong>and</strong> Power Unit<br />

Drill Rods<br />

Downhole Motor<br />

Survey Tools<br />

Miscellaneous Items<br />

Non-Magnetic Drill Rods<br />

NQWL Drill Rods<br />

5/6 Stage “N” Motor<br />

Subs/Swivel, etc.<br />

Spare U-jo<strong>in</strong>ts <strong>and</strong> Bear<strong>in</strong>gs<br />

Fish<strong>in</strong>g Tools<br />

Downhole Survey Tool<br />

Ancillary Equipment <strong>and</strong> Spare Parts<br />

Drill Bits<br />

Hole Openers<br />

Miscellaneous Tools <strong>and</strong> Equipment<br />

Directional Drill<strong>in</strong>g Tra<strong>in</strong><strong>in</strong>g<br />

Exhibit 32 Equipment Requirements for Underground Directional Drill<strong>in</strong>g<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-48


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Downhole equipment suppliers <strong>in</strong> Europe need to be advised to stock directional drill<strong>in</strong>g <strong>and</strong><br />

cor<strong>in</strong>g materials <strong>in</strong> eastern Europe to support <strong>the</strong> <strong>in</strong>troduction of this technology.<br />

Methane Dra<strong>in</strong>age Approach - A <strong>methane</strong> dra<strong>in</strong>age approach <strong>in</strong>corporat<strong>in</strong>g new drill<strong>in</strong>g<br />

technology must be derived after an underground <strong>in</strong>spection of current <strong>methane</strong> dra<strong>in</strong>age<br />

practices, <strong>and</strong> follow<strong>in</strong>g detailed discussions with <strong>m<strong>in</strong>e</strong> eng<strong>in</strong>eer<strong>in</strong>g, <strong>methane</strong> dra<strong>in</strong>age,<br />

geology, <strong>and</strong> drill<strong>in</strong>g personnel. A suitable <strong>methane</strong> dra<strong>in</strong>age approach <strong>in</strong>volv<strong>in</strong>g new drill<strong>in</strong>g<br />

technology must consider:<br />

<strong>the</strong> source <strong>and</strong> magnitude of <strong>the</strong> <strong>methane</strong> emissions <strong>in</strong>to <strong>the</strong> <strong>m<strong>in</strong>e</strong>;<br />

<strong>the</strong> general reservoir properties of <strong>the</strong> <strong>m<strong>in</strong>e</strong>d <strong>and</strong> adjacent gas bear<strong>in</strong>g strata;<br />

<strong>the</strong> geomechanical characteristics of <strong>the</strong> <strong>coal</strong>, surround<strong>in</strong>g strata, <strong>and</strong> gob;<br />

past drill<strong>in</strong>g experience, surface <strong>and</strong> underground, <strong>in</strong>clud<strong>in</strong>g cor<strong>in</strong>g;<br />

current <strong>and</strong> future <strong>m<strong>in</strong>e</strong> plans (all m<strong>in</strong><strong>in</strong>g levels);<br />

<strong>the</strong> capacity <strong>and</strong> <strong>in</strong>tegrity of <strong>the</strong> current gas ga<strong>the</strong>r<strong>in</strong>g <strong>in</strong>frastructure.<br />

Discussions <strong>and</strong> <strong>in</strong>teraction with <strong>the</strong> <strong>m<strong>in</strong>e</strong> operators should <strong>in</strong>clude a local m<strong>in</strong><strong>in</strong>g eng<strong>in</strong>eer<br />

that is versed <strong>in</strong> <strong>methane</strong> dra<strong>in</strong>age <strong>and</strong> drill<strong>in</strong>g.<br />

Drill<strong>in</strong>g Approach - A drill<strong>in</strong>g approach for <strong>methane</strong> dra<strong>in</strong>age must consider <strong>the</strong> M<strong>in</strong>e’s<br />

experience with drill<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>coal</strong> seam <strong>and</strong> <strong>the</strong> surround<strong>in</strong>g strata. In-seam directional<br />

drill<strong>in</strong>g will be difficult <strong>in</strong> high stress conditions, <strong>in</strong> friable <strong>coal</strong>s, high ash seams <strong>in</strong>terbeded<br />

with clays <strong>and</strong> shales, <strong>and</strong> depend<strong>in</strong>g on <strong>the</strong> thickness of <strong>the</strong> <strong>coal</strong> seam, <strong>the</strong> characteristics<br />

of <strong>the</strong> immediate roof <strong>and</strong> floor. Although stratigraphy is generally known by <strong>the</strong> M<strong>in</strong>e,<br />

additional characterization at specific drill<strong>in</strong>g locations is recommended for any approach<br />

<strong>in</strong>volv<strong>in</strong>g directionally drilled horizontal gob boreholes <strong>in</strong> adjacent strata. This can be<br />

accomplished by drill<strong>in</strong>g an <strong>in</strong>itial surveyed core hole to verify <strong>the</strong> <strong>in</strong>tegrity <strong>and</strong> accurately<br />

identify <strong>the</strong> elevation of <strong>the</strong> different measures.<br />

Drill<strong>in</strong>g Support - The <strong>in</strong>troduction of new drill<strong>in</strong>g technology <strong>in</strong>to <strong>the</strong> Ukra<strong>in</strong>e will require<br />

technical support that can provide h<strong>and</strong>s-on assistance if required. With directional drill<strong>in</strong>g<br />

where high value directional <strong>in</strong>struments are used, drill<strong>in</strong>g support should <strong>in</strong>clude tool<br />

recovery services (fish<strong>in</strong>g). Technical services should <strong>in</strong>clude directional data <strong>in</strong>terpretation,<br />

geologic <strong>in</strong>terpretation, <strong>and</strong> steer<strong>in</strong>g tool trouble shoot<strong>in</strong>g, as required.<br />

Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation Design 2-49


Task 3<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Market Assessment for Produced Methane<br />

Market Assessment for Produced Methane 3-i


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

TASK 3 CONTENTS<br />

3.1 Introduction......................................................................................................................3-1<br />

3.2 Assess<strong>in</strong>g Market Options for CMM ..............................................................................3-4<br />

3.2.1 CMM Gas Compositions <strong>and</strong> Volumes....................................................................................3-4<br />

3.2.2 Power Generation based on CMM ..........................................................................................3-5<br />

3.3 Assess<strong>in</strong>g Market Options for CBM...............................................................................3-6<br />

3.3.1 Net Back Price Derivation........................................................................................................3-7<br />

3.3.2 CBM Gas Compositions <strong>and</strong> Volumes ....................................................................................3-7<br />

3.3.3 Moisture Removal ....................................................................................................................3-9<br />

3.3.4 Capital Cost Estimates for Compression, Process<strong>in</strong>g <strong>and</strong> Transmission .............................3-11<br />

3.3.4.1 Gas Compression ..........................................................................................................3-12<br />

3.3.4.2 Triethylene Glycol (TEG) Dehydration Unit ...................................................................3-13<br />

3.3.4.3 Transmission <strong>and</strong> Meter<strong>in</strong>g............................................................................................3-14<br />

3.3.4.4 Total Capital Cost for Process<strong>in</strong>g <strong>and</strong> Compress<strong>in</strong>g Gas for Pipel<strong>in</strong>e Injection............3-14<br />

3.3.5 Gas Sales to <strong>the</strong> European <strong>and</strong> Ukra<strong>in</strong>ian Markets ..............................................................3-15<br />

3.3.5.1 Europe............................................................................................................................3-15<br />

3.3.5.2 Ukra<strong>in</strong>e...........................................................................................................................3-15<br />

3.3.6 Electrical Generation..............................................................................................................3-15<br />

3.3.7 Transportation Market............................................................................................................3-16<br />

3.3.8 Petrochemical Market ............................................................................................................3-16<br />

3.3.8.1 Ammonia ........................................................................................................................3-17<br />

3.3.8.2 Methanol ........................................................................................................................3-17<br />

3.4 Summary of CBM & CMM Energy Equivalent Prices .................................................3-18<br />

Appendix 3.A GOST St<strong>and</strong>ard 5542-87 ...............................................................................3-19<br />

Appendix 3.B Caterpillar Statement of Supply .....................................................................3-26<br />

Appendix 3.C GE 10-2 Gas Turb<strong>in</strong>e Technical Bullet<strong>in</strong>........................................................3-31<br />

Appendix 3.D GE PCL Compressor Technical Bullet<strong>in</strong> ........................................................3-34<br />

Market Assessment for Produced Methane 3-ii


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

TASK 3 EXHIBITS<br />

Exhibit 3.1: Potential Markets for Produced Methane ..........................................................................3-2<br />

Exhibit 3.2: CBM/CMM Production to Utilization ..................................................................................3-3<br />

Exhibit 3.3: Coal M<strong>in</strong>e Methane Gas Compositions <strong>and</strong> Volumes.......................................................3-4<br />

Exhibit 3.4: Typical arrangement for 6 generator modules ..................................................................3-5<br />

Exhibit 3.5: Coal Bed Methane Gas Composition ................................................................................3-7<br />

Exhibit 3.6: 0.25 km 2 (60 acre) Type Curve Production Forecast ........................................................3-8<br />

Exhibit 3.7: Wobbe Number <strong>and</strong> Higher Heav<strong>in</strong>g Analysis ..................................................................3-8<br />

Exhibit 3.8: Donbass Development Map ..............................................................................................3-9<br />

Exhibit 3.9: Typical Flow Diagram – Glycol Dehydration Unit ............................................................3-10<br />

Exhibit 3.10: Flow Scheme - CBM to Injection <strong>in</strong>to Gas Transmission Grid ........................................3-11<br />

Exhibit 3.11: Capital Cost Estimate GE Gas Compression System.....................................................3-12<br />

Exhibit 3.12: Capital Cost Estimate – ALCO TEG Dehydration Unit....................................................3-13<br />

Exhibit 3.13: Capital Cost Estimate – Transmission <strong>and</strong> Meter<strong>in</strong>g Station ..........................................3-14<br />

Exhibit 3.14: Summary of Capital Cost Estimate – Compression, Process<strong>in</strong>g <strong>and</strong> Meter<strong>in</strong>g ..............3-14<br />

Market Assessment for Produced Methane 3-iii


3.1 Introduction<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Ukra<strong>in</strong>e is a significant energy consumer with nearly half of its energy consumption com<strong>in</strong>g<br />

from natural gas. It is <strong>the</strong> 6 th largest consumer of gas <strong>in</strong> <strong>the</strong> world <strong>and</strong> consumes more gas<br />

than Pol<strong>and</strong>, <strong>the</strong> Czech Republic, Hungary <strong>and</strong> Slovakia comb<strong>in</strong>ed 1 . Over 75 percent of<br />

Ukra<strong>in</strong>e’s gas supply is imported from Russia <strong>and</strong> Central Asia (Turkmenistan, Uzbekistan<br />

<strong>and</strong> Kazakhstan) mak<strong>in</strong>g <strong>the</strong> Ukra<strong>in</strong>ian economy very vulnerable to <strong>in</strong>creases <strong>in</strong> <strong>the</strong> price of<br />

imported gas. In 2007, Ukra<strong>in</strong>e imported 63 billion cubic meters (Bcm), 2.24 Tcf, from<br />

Russia.<br />

The current (2008) price that Ukra<strong>in</strong>e pays for imported gas, supplied by Gazprom, is<br />

US$180 per 1000 cubic meters (mcm). As of summer 2008, Russia <strong>and</strong> Ukra<strong>in</strong>e were<br />

hold<strong>in</strong>g <strong>in</strong>tense discussions to set prices for 2009 <strong>and</strong> future years. Russia believes<br />

Ukra<strong>in</strong>e’s import price should rise to a “European sales price”. The “European price” refers<br />

to <strong>the</strong> cost of Russian gas at Germany’s eastern border <strong>and</strong> <strong>the</strong> summer 2008 price quotes<br />

ranged from US$335/mcm (World Gas Institute) to US$370/mcm (US Energy Information<br />

Agency) 2 , with predictions of a rise to US$400-500/mcm <strong>in</strong> 2009. Ukra<strong>in</strong>e is hop<strong>in</strong>g to<br />

spread <strong>the</strong> price rise over <strong>the</strong> next 3 years, but gas prices for Ukra<strong>in</strong>ian domestic consumers<br />

(which are currently heavily subsidized) are already planned to rise by 35% <strong>in</strong> December<br />

2008. 3<br />

Given <strong>the</strong> lack of domestic gas production, <strong>the</strong> potential for <strong>coal</strong> <strong>m<strong>in</strong>e</strong> <strong>methane</strong> (CMM) <strong>and</strong><br />

<strong>coal</strong>bed <strong>methane</strong> (CBM) to replace exist<strong>in</strong>g imported fuels, as well as displace <strong>coal</strong>-fired<br />

power generation, is high. Exhibit 3.1 illustrates <strong>the</strong> diversity of CMM/CBM as a fuel <strong>and</strong><br />

feedstock <strong>in</strong> various sectors of <strong>the</strong> economy, all of which represent potential markets for<br />

produced <strong>methane</strong>.<br />

CBM, which is essentially natural gas, is <strong>the</strong> cleanest burn<strong>in</strong>g <strong>and</strong> most versatile<br />

hydrocarbon energy resource available. It can be used for power generation <strong>in</strong> ei<strong>the</strong>r base<br />

load power plants or <strong>in</strong> comb<strong>in</strong>ed cycle/co-generation power plants; as a transportation fuel;<br />

as a petrochemical <strong>and</strong> fertilizer feedstock; as fuel for energy/heat<strong>in</strong>g requirements <strong>in</strong><br />

<strong>in</strong>dustrial applications; <strong>and</strong> for domestic <strong>and</strong> commercial heat<strong>in</strong>g <strong>and</strong> cook<strong>in</strong>g.<br />

1 US Energy Information Agency<br />

2 July 2008, EIU Bus<strong>in</strong>ess Newsletters Eastern Europe, Economist Intelligence Unit Limited, New York, NY.<br />

3 Russian News <strong>and</strong> Information Agency, Oct 2008, http://en.rian.ru<br />

Market Assessment for Produced Methane 3-1


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Sector CMM/CBM Use<br />

Electricity Generation<br />

Fuel for base load power<br />

Comb<strong>in</strong>ed cycle / co-generation power plants<br />

Fertilizer Industry Feedstock <strong>in</strong> production of ammonia <strong>and</strong> urea<br />

Industrial<br />

Domestic & commercial<br />

Fuel for rais<strong>in</strong>g steam<br />

Fuel <strong>in</strong> furnaces <strong>and</strong> heat<strong>in</strong>g applications<br />

Heat<strong>in</strong>g (spaces & water)<br />

Cook<strong>in</strong>g<br />

Transportation Compressed natural gas vehicles<br />

Petrochemicals<br />

Feedstock for a variety of chemical products<br />

(e.g. methanol)<br />

Exhibit 3.1: Potential Markets for Produced Methane<br />

The follow<strong>in</strong>g sections characterize <strong>the</strong> most likely <strong>development</strong> scenarios for CMM <strong>and</strong><br />

CBM. The two production streams are discussed separately as <strong>the</strong> gas composition <strong>and</strong><br />

produc<strong>in</strong>g pressures for CBM <strong>and</strong> CMM are very different, which necessitates different gas<br />

treatment <strong>and</strong> production facilities for <strong>the</strong> two gas production streams.<br />

Market Assessment for Produced Methane 3-2


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 3.2: CBM/CMM Production to Utilization<br />

Market Assessment for Produced Methane 3-3


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

3.2 Assess<strong>in</strong>g Market Options for CMM<br />

3.2.1 CMM Gas Compositions <strong>and</strong> Volumes<br />

The gas composition <strong>and</strong> volumes for <strong>the</strong> two CMM cases are presented <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g<br />

table.<br />

Coal M<strong>in</strong>e Methane<br />

Gas Composition <strong>and</strong> Volumes<br />

Bazhanov M<strong>in</strong>e Donbass #3 M<strong>in</strong>e<br />

Coal M<strong>in</strong>e Gas Coal M<strong>in</strong>e Gas<br />

Vol % Vol %<br />

CH4 39.0 CH4 36.0<br />

O2 12.8 O2 13.4<br />

N2 48.2 N2 50.6<br />

Annual production,<br />

4.4 Million cubic meters<br />

Annual production,<br />

25 Million cubic meters<br />

Flow, scf/hr 17,731 Flow, scf/hr 100,740<br />

Flow, Nm 3 /h 502 Flow, Nm 3 /h 2854<br />

Temperature, °F 68 Temperature, °F 68<br />

Pressure, psia 14.7 Pressure, psia 14.7<br />

Ventilation Air Ventilation Air<br />

Vol% Vol%<br />

CH4 0.6 CH4 1.0<br />

O2 20.9 O2 20.8<br />

N2 78.5 N2 78.2<br />

Flow, scf/hr 38,134,000 Flow, scf/hr 59,320,800<br />

Flow, Nm 3 /h 1,079,977 Flow, Nm 3 /h 1,680,000<br />

Temperature, °F 68 Temperature, °F 68<br />

Pressure, psia 14.7 Pressure, psia 14.7<br />

Exhibit 3.3: Coal M<strong>in</strong>e Methane Gas Compositions <strong>and</strong> Volumes<br />

As can be seen, both gas compositions conta<strong>in</strong> a significant percentage of air. With <strong>the</strong> <strong>m<strong>in</strong>e</strong><br />

degass<strong>in</strong>g systems operat<strong>in</strong>g under vacuum, some air enters <strong>the</strong> system through pipe<br />

flanges that are not 100% sealed. Better ma<strong>in</strong>tenance or upgrad<strong>in</strong>g of <strong>the</strong>se systems could<br />

result <strong>in</strong> lower air <strong>in</strong>filtration with correspond<strong>in</strong>g higher <strong>methane</strong> concentrations.<br />

Market Assessment for Produced Methane 3-4


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The <strong>methane</strong> available from <strong>the</strong> Bazhanov <strong>m<strong>in</strong>e</strong> is net of <strong>the</strong> total gas produced less that<br />

used for boiler fuel. The <strong>m<strong>in</strong>e</strong> might consider divert<strong>in</strong>g more gas for use <strong>in</strong> electricity<br />

generation <strong>and</strong> less for steam generation. Never<strong>the</strong>less, <strong>the</strong> follow<strong>in</strong>g assessment is based<br />

on <strong>the</strong> quantities <strong>and</strong> qualities provided by <strong>the</strong> <strong>m<strong>in</strong>e</strong>s.<br />

3.2.2 Power Generation based on CMM<br />

Both <strong>m<strong>in</strong>e</strong>s have traditionally burned <strong>the</strong> CMM air / <strong>methane</strong> mixtures <strong>in</strong> boilers. As an<br />

alternative, power generation was considered us<strong>in</strong>g reciprocat<strong>in</strong>g eng<strong>in</strong>es like those<br />

described <strong>in</strong> a catalogue data sheets provided by Caterpillar <strong>and</strong> <strong>in</strong>cluded <strong>in</strong> Appendix 4B of<br />

<strong>the</strong> Production Operations & Surface Facilities section of this report.<br />

Quotations for <strong>the</strong> purchase <strong>and</strong> <strong>in</strong>stallation of <strong>the</strong> generators were requested from both<br />

Caterpillar <strong>and</strong> General Electric. Caterpillar responded with a quotation <strong>in</strong>cluded <strong>in</strong> Appendix<br />

3.B – p.3-26. This quote was based on CMM gas volumes capable of generat<strong>in</strong>g 24 MW of<br />

power <strong>and</strong> allowed Advanced Resources to accurately estimate costs for <strong>the</strong> purchase <strong>and</strong><br />

<strong>in</strong>stallation of 3.3MW <strong>and</strong> 1.7MW generators at <strong>the</strong> South Donbass No.3 <strong>and</strong> Bazhanov<br />

<strong>m<strong>in</strong>e</strong>s respectively.<br />

Caterpillar’s quote <strong>in</strong>cluded pric<strong>in</strong>g for:<br />

Exhibit 3.4: Typical arrangement for 6 generator modules<br />

Modular conta<strong>in</strong>erized Caterpillar G3520C TA gaseous fuel configured generator sets<br />

rated at 1500 rpm, 2,000 kWe, generator voltage 11 kV cont<strong>in</strong>uous service. Every unit<br />

is equipped with complete heat recovery system <strong>and</strong> balance radiators.<br />

Switchgear group for isl<strong>and</strong> <strong>and</strong> parallel operation of electrical generators.<br />

Market Assessment for Produced Methane 3-5


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Commission<strong>in</strong>g <strong>and</strong> test<strong>in</strong>g of all equipment specified <strong>in</strong> <strong>the</strong> items above as <strong>in</strong>dicated <strong>in</strong><br />

<strong>the</strong>ir proposal.<br />

Basic tra<strong>in</strong><strong>in</strong>g of equipment operations, <strong>and</strong> disassembly <strong>and</strong> assembly of major eng<strong>in</strong>e<br />

components for <strong>the</strong> power plant personnel.<br />

Prices are calculated <strong>in</strong> reference to Caterpillar pric<strong>in</strong>g policy <strong>in</strong> 2008 <strong>and</strong> are valid for<br />

products released from <strong>the</strong>ir factory before 31.12.2008.<br />

F<strong>in</strong>al estimated costs for power generation at <strong>the</strong> South Donbass No.3 <strong>and</strong> Bazhanov <strong>m<strong>in</strong>e</strong>s<br />

were used <strong>in</strong> <strong>the</strong> economic analyses shown <strong>in</strong> section 5.4 of <strong>the</strong> Project Costs <strong>and</strong><br />

Economics chapter of this report.<br />

The results of <strong>the</strong> economic analyses show that at a 15% IRR, power could be generated at<br />

<strong>the</strong> South Donbass No.3 <strong>m<strong>in</strong>e</strong> for US$0.044 per kWh <strong>and</strong> at <strong>the</strong> Bazhanov <strong>m<strong>in</strong>e</strong> for<br />

US$0.049 per kWh. This power would be used to offset electric power purchases made from<br />

<strong>the</strong> national grid. The current (2008) price of electric power utilized at <strong>the</strong> <strong>m<strong>in</strong>e</strong>s (supplied to<br />

ARI by a panel of local Ukra<strong>in</strong>ian experts) is US$0.056 per kWh.<br />

3.3 Assess<strong>in</strong>g Market Options for CBM<br />

Once <strong>coal</strong> bed <strong>methane</strong> (CBM) is processed for moisture removal, it is no longer “CBM” but<br />

can be considered “natural gas” <strong>in</strong> every respect <strong>and</strong> can be sold as such. The calculated<br />

average production volume at peak well productivity, for <strong>the</strong> comb<strong>in</strong>ed Donbass <strong>and</strong><br />

Grish<strong>in</strong>o-Andreyevskaya CBM lease areas, is almost 608 mNm 3 /d (21.45 MMcf/d), which is<br />

an <strong>in</strong>dustrially significant volume.<br />

Five possible markets for <strong>the</strong> natural gas from CBM production were researched <strong>and</strong><br />

assessed:<br />

1. Injection of <strong>the</strong> gas <strong>in</strong>to natural gas pipel<strong>in</strong>es for sale <strong>in</strong>to <strong>the</strong> Ukra<strong>in</strong>e market;<br />

2. Injection of <strong>the</strong> gas <strong>in</strong>to natural gas transmission pipel<strong>in</strong>es for sale <strong>in</strong>to European<br />

markets;<br />

3. Power generation us<strong>in</strong>g comb<strong>in</strong>ed cycle gas turb<strong>in</strong>es for sale of electricity to <strong>the</strong> local<br />

Ukra<strong>in</strong>e electric grid;<br />

4. Production of ammonia; <strong>and</strong><br />

5. Production of methanol<br />

Market Assessment for Produced Methane 3-6


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Markets are assessed by calculat<strong>in</strong>g a f<strong>in</strong>al cost of gas production (per mcm) for each<br />

scenario <strong>and</strong> compar<strong>in</strong>g that f<strong>in</strong>al cost to <strong>the</strong> current market price. The f<strong>in</strong>al cost is made up<br />

of a net-back price, plus a gas process<strong>in</strong>g, compression <strong>and</strong> transmission cost (same for all<br />

scenarios) <strong>and</strong> <strong>in</strong>cremental costs unique to each market.<br />

3.3.1 Net Back Price Derivation<br />

The “net-back” price is <strong>the</strong> price for <strong>the</strong> natural gas at <strong>the</strong> po<strong>in</strong>t at which <strong>the</strong> CBM leaves <strong>the</strong><br />

gas production field <strong>and</strong> enters <strong>the</strong> compression <strong>and</strong> process<strong>in</strong>g system. The “net-back”<br />

price is <strong>the</strong> price payable to <strong>the</strong> producer of <strong>the</strong> gas after <strong>the</strong> product is sold <strong>in</strong> <strong>the</strong> market.<br />

The price is net of <strong>the</strong> costs of compression, gas condition<strong>in</strong>g, transportation, <strong>and</strong> o<strong>the</strong>r<br />

related costs. For example:<br />

If natural gas were to be sold to a Ukra<strong>in</strong>ian pipel<strong>in</strong>e operation, <strong>the</strong> net-back price would be<br />

developed as follows:<br />

Sales price of natural gas to <strong>the</strong> pipel<strong>in</strong>e operator or consumer<br />

m<strong>in</strong>us transportation cost to <strong>the</strong> transmission pipel<strong>in</strong>e entry po<strong>in</strong>t<br />

m<strong>in</strong>us gas condition<strong>in</strong>g cost<br />

m<strong>in</strong>us gas compression cost<br />

result<strong>in</strong>g <strong>in</strong> net-back price at <strong>the</strong> CBM production field<br />

In order to deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> most economically attractive market for utiliz<strong>in</strong>g <strong>the</strong> natural gas<br />

from CBM production, a net back price at 25% IRR for <strong>the</strong> gas was derived from <strong>the</strong><br />

sensitivity analyses carried out on <strong>the</strong> economic results <strong>in</strong> Section 5. The net back price at<br />

25% IRR is US$350 per thous<strong>and</strong> cubic meters (mcm).<br />

3.3.2 CBM Gas Compositions <strong>and</strong> Volumes<br />

The gas composition <strong>and</strong> volumes for <strong>the</strong> CBM case are presented <strong>in</strong> Exhibit 3.5:<br />

Coal Bed Methane Gas Composition<br />

Volume %<br />

CH4 95.7<br />

C2H6 1.0<br />

C3H8 1.0<br />

N2<strong>and</strong> o<strong>the</strong>r <strong>in</strong>erts 2.3<br />

Max. Flow rate (mNm 3 /d) 607.6<br />

Max. Flow rate (Mmscf/d) 21.45<br />

Exhibit 3.5: Coal Bed Methane Gas Composition<br />

Market Assessment for Produced Methane 3-7


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The volumes estimates were based on <strong>the</strong> reservoir model forecast of gas production from<br />

1040 wells drilled on 0.25 km 2 (60 acre) spac<strong>in</strong>g (see Section 2 – Reservoir Simulation).<br />

mmcfd<br />

25<br />

20<br />

15<br />

10<br />

5<br />

-<br />

Ukra<strong>in</strong>e CBM Production Profile - 1040 w ells drilled<br />

2009 2011 2013 2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035 2037<br />

Exhibit 3.6: 0.25 km 2 (60 acre) Type Curve Production Forecast<br />

Gas Water<br />

As can be seen from <strong>the</strong> gas composition assessment <strong>in</strong> Exhibit 3.7, <strong>the</strong> gas does not<br />

conta<strong>in</strong> H2S or o<strong>the</strong>r sulfur compounds. In addition, nitrogen <strong>and</strong> <strong>in</strong>erts are anticipated to be<br />

<strong>in</strong> <strong>the</strong> range of 2.3%. With a Wobbe number of 48.77 Mj/m 3 <strong>the</strong> gas heat content is well<br />

with<strong>in</strong> GOST St<strong>and</strong>ard 5542-87 – Natural Fuel Gases for Industrial <strong>and</strong> Domestic Use (See<br />

Appendix 3.A, p.3-19). The gas is of satisfactory quality for pipel<strong>in</strong>e transmission, power<br />

generation or <strong>in</strong>dustrial uses without fur<strong>the</strong>r process<strong>in</strong>g beyond moisture removal.<br />

Exhibit 3.7: Wobbe Number <strong>and</strong> Higher Heav<strong>in</strong>g Analysis<br />

Market Assessment for Produced Methane 3-8<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

-<br />

mbpd


3.3.3 Moisture Removal<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Produced gas will be collected at each <strong>in</strong>dividual well <strong>and</strong> transported to a central gas<br />

process<strong>in</strong>g plant by a series of pipel<strong>in</strong>es. (Donbass example - see Exhibit 3.8)<br />

Exhibit 3.8: Donbass Development Map<br />

Market Assessment for Produced Methane 3-9


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

As discussed <strong>in</strong> Section 4.3.8, triethylene glycol (TEG) will be used to remove water from<br />

<strong>coal</strong> bed <strong>methane</strong> gas before it is compressed for use <strong>in</strong> o<strong>the</strong>r processes or <strong>in</strong>jected <strong>in</strong><br />

transmission pipel<strong>in</strong>es. Water can cause hydrate formation which can plug pipel<strong>in</strong>es, <strong>and</strong><br />

cause corrosion. The TEG stream, conta<strong>in</strong><strong>in</strong>g about 1.1 wt % water, counter-currently<br />

contacts <strong>the</strong> gas <strong>in</strong> a short (three <strong>the</strong>oretical stage) contactor tower. The water which is<br />

absorbed dilutes <strong>the</strong> TEG somewhat, <strong>and</strong> <strong>the</strong> diluted solution must be re-concentrated<br />

before it can be reused <strong>in</strong> <strong>the</strong> absorber.<br />

Exhibit 3.9: Typical Flow Diagram – Glycol Dehydration Unit<br />

The diluted TEG is preheated by exchange with hot regenerator bottoms <strong>in</strong> <strong>the</strong> first lean/rich<br />

exchanger <strong>and</strong> <strong>the</strong>n flashed <strong>in</strong> <strong>the</strong> flash tank to expel water <strong>and</strong> hydrocarbons. The solution<br />

is fur<strong>the</strong>r heated by exchange with hot regenerator bottoms <strong>in</strong> <strong>the</strong> second lean/rich<br />

exchanger before enter<strong>in</strong>g <strong>the</strong> regenerator.<br />

The re-concentration is accomplished by distill<strong>in</strong>g water out of <strong>the</strong> TEG <strong>in</strong> <strong>the</strong> regenerator. A<br />

sharp separation can be accomplished with a relatively short column due to <strong>the</strong> extreme<br />

difference <strong>in</strong> boil<strong>in</strong>g po<strong>in</strong>ts of water <strong>and</strong> TEG. TEG boils at 207 o C (404 o F). The reconcentrated<br />

TEG after exchange with rich TEG <strong>in</strong> <strong>the</strong> lean /rich exchangers is pumped to<br />

<strong>the</strong> top of <strong>the</strong> contactor thus complet<strong>in</strong>g <strong>the</strong> cycle.<br />

The reboiler which supplies stripp<strong>in</strong>g steam to <strong>the</strong> regenerator is direct fired with <strong>coal</strong> bed<br />

gas. Also, <strong>the</strong> TEG is filtered with cartridge <strong>and</strong> char<strong>coal</strong> filters to ma<strong>in</strong>ta<strong>in</strong> high solution<br />

Market Assessment for Produced Methane 3-10


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

purity <strong>and</strong> to avoid foam<strong>in</strong>g. Once <strong>the</strong> gas stream is dehydrated, it can be compressed <strong>and</strong><br />

transported to downstream consumers. The TEG process is well established <strong>and</strong> can be<br />

purchased as a packaged system <strong>and</strong> transported to Ukra<strong>in</strong>e for assembly at <strong>the</strong> gas<br />

process<strong>in</strong>g site.<br />

3.3.4 Capital Cost Estimates for Compression, Process<strong>in</strong>g <strong>and</strong> Transmission<br />

All of <strong>the</strong> market scenarios listed <strong>in</strong> section 3.3 require that <strong>the</strong> natural gas be at or near<br />

transmission pressure which for purposes of this assessment is assumed to be 1,000 pounds<br />

per square <strong>in</strong>ch gauge (psig) (70.3 kg/cm 2 ). Gas will be collected as described <strong>in</strong> section<br />

3.3.3, compressed to 1,000 psig <strong>and</strong> dehydrated <strong>in</strong> <strong>the</strong> TEG unit. The compressed <strong>and</strong><br />

treated gas will <strong>the</strong>n be <strong>in</strong>jected <strong>in</strong>to a transmission system, <strong>and</strong> subsequently sold to <strong>the</strong><br />

local or European gas market, used to generate power, or used to produce petrochemicals<br />

such as ammonia or methanol. The basic flow scheme for <strong>the</strong> scenario of CBM be<strong>in</strong>g<br />

<strong>in</strong>jected <strong>in</strong>to natural gas transmission pipel<strong>in</strong>es follows:<br />

Coal Bed<br />

Methane from<br />

Field Collection<br />

System<br />

Coal Bed<br />

Compression<br />

System<br />

De-hydration<br />

Triethylene<br />

Glycol (TEG)<br />

Gas<br />

Transmission<br />

<strong>and</strong> Meter<strong>in</strong>g<br />

Exhibit 3.10: Flow Scheme - CBM to Injection <strong>in</strong>to Gas Transmission Grid<br />

Gas Injection <strong>in</strong><br />

Transmission<br />

System<br />

In order to deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> capital cost of each component of <strong>the</strong> flow scheme, requests for<br />

verbal pric<strong>in</strong>g were sent to specialized suppliers such as General Electric for <strong>the</strong><br />

compression system <strong>and</strong> ALCO, a major provider of packaged TEG units. Each provided<br />

valuable capital <strong>and</strong> operat<strong>in</strong>g costs for <strong>the</strong>ir systems. In order to arrive at a total <strong>in</strong>stalled<br />

cost for each component of <strong>the</strong> flow scheme, estimates were prepared by <strong>the</strong> consultant for<br />

<strong>the</strong> costs to <strong>in</strong>stall <strong>the</strong> equipment <strong>and</strong> provide “balance of plant” systems such as build<strong>in</strong>gs,<br />

utilities <strong>and</strong> support facilities.<br />

Market Assessment for Produced Methane 3-11


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

3.3.4.1 Gas Compression<br />

The raw gas compression system will boost <strong>the</strong> pressure of <strong>the</strong> raw CBM gas from a few<br />

psig to 1,000 psig. The system will <strong>in</strong>clude:<br />

GE10-2 Gas Turb<strong>in</strong>e Driver (See Technical Description - Appendix 3.C, p.3-31) <strong>and</strong><br />

GE PCL Pipel<strong>in</strong>e Compressor with 3 to 4 stages of <strong>in</strong>ter-cool<strong>in</strong>g (See Technical<br />

Description Appendix 3.D, p.3-34).<br />

GE estimates about 15,000 total horsepower <strong>in</strong> 3 or 4 compressor cas<strong>in</strong>gs required<br />

(depend<strong>in</strong>g on whe<strong>the</strong>r 3 or 4 <strong>in</strong>ter-cool<strong>in</strong>g stages are <strong>in</strong>volved). Based on this, GE could<br />

provide a 15,000 HP (ISO rat<strong>in</strong>g at 60 deg. F) GE 10 gas turb<strong>in</strong>e compressor tra<strong>in</strong> (or more<br />

tra<strong>in</strong>s if more power is required due to de-rat<strong>in</strong>g at higher ambient temperatures) at an<br />

approximate cost of $7.3 MM USD. F<strong>in</strong>al equipment configurations <strong>and</strong> cost would be based<br />

on eng<strong>in</strong>eer<strong>in</strong>g approvals of tra<strong>in</strong> torsional studies required on <strong>the</strong> configuration, <strong>in</strong>tercool<strong>in</strong>g<br />

efficiencies, <strong>and</strong> gas turb<strong>in</strong>e considerations at site conditions (altitude, temperature<br />

corrections). Exhibit 3.11 summarizes <strong>the</strong> total capital cost of <strong>the</strong> compressor <strong>in</strong>stalled with<br />

all offsite <strong>and</strong> support facilities.<br />

Capital Cost Estimate – GE Gas Compression System<br />

Technical Description of Facility<br />

GE PCL Pipel<strong>in</strong>e Compressor 3 to 4 compressor cas<strong>in</strong>gs<br />

GE10-2 Gas Turb<strong>in</strong>e Driver 14,000 Horse Power<br />

Gas consumption at full power 110 MM Btu/hr<br />

Emission per turb<strong>in</strong>e 362,200 lbs/hr<br />

25 ppm Nox Max<br />

25 ppm CO Max<br />

Cost Estimate $MM<br />

Equipment Cost 7.30<br />

Transportation 0.4<br />

Import Duties <strong>and</strong> Taxes 1.56<br />

Total Cost of Equipment Delivered to Donetsk 9.26<br />

Installation for turnkey solution 2.77<br />

Offsite <strong>and</strong> support facilities 6.02<br />

Total Installed Cost of Compression Plant $US18.05 MM<br />

Exhibit 3.11: Capital Cost Estimate GE Gas Compression System<br />

Market Assessment for Produced Methane 3-12


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

3.3.4.2 Triethylene Glycol (TEG) Dehydration Unit<br />

The capital cost estimate for <strong>the</strong> TEG was based on a verbal quote from ALCO for a<br />

packaged TEG unit as described <strong>in</strong> Section 4.3.8. For gas volumes of 607.6 mNm 3 /d (21.45<br />

MM scfd) at 1000 psig, <strong>the</strong> approximate siz<strong>in</strong>g of <strong>the</strong> unit (provid<strong>in</strong>g maximum<br />

turndown/flexibility of operation etc.) would be:<br />

60" I.D. trayed contactor (75,000 lbs) or 36" O.D. contactor w/ structured pack<strong>in</strong>g<br />

(25,000 lbs).<br />

1,500,000 Btu/hr glycol re-concentrator w/ glycol/glycol exchanger 10 US gallons per<br />

m<strong>in</strong>ute circulation rate.<br />

The follow<strong>in</strong>g table summarizes <strong>the</strong> Total Capital Cost TEG unit <strong>in</strong>stalled with all offsites <strong>and</strong><br />

support facilities.<br />

Capital Cost Estimate – ALCO TEG Dehydration Unit<br />

Technical Description of Facility<br />

608 mNm 3 /d (21.45 MM scfd) Unit with 60” packed Tower Package<br />

Cost Estimate $MM<br />

Equipment Cost 1.52<br />

Transportation 0.08<br />

Import Duties <strong>and</strong> Taxes 0.32<br />

Total Cost of Equipment Delivered to Donetsk 1.92<br />

Installation for turnkey solution 0.58<br />

Offsite <strong>and</strong> support facilities 1.25<br />

Total Installed Cost of TEG Plant $US3.75 MM<br />

Exhibit 3.12: Capital Cost Estimate – ALCO TEG Dehydration Unit<br />

Market Assessment for Produced Methane 3-13


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

3.3.4.3 Transmission <strong>and</strong> Meter<strong>in</strong>g<br />

The capital cost estimate for <strong>the</strong> transmission <strong>and</strong> meter<strong>in</strong>g was based on an <strong>in</strong>-house<br />

estimate of <strong>the</strong> cost of a transmission l<strong>in</strong>e to connect to <strong>the</strong> regional grid. It was assumed<br />

that <strong>the</strong> national grid is with<strong>in</strong> 20 kilometers.<br />

Capital Cost Estimate – Transmission <strong>and</strong> Meter<strong>in</strong>g Station<br />

Technical Description of Facility<br />

20 kilometers of buried pipe<br />

Cost Estimate $MM<br />

Equipment Cost 0.25<br />

Transportation 0.01<br />

Import Duties <strong>and</strong> Taxes 0.05<br />

Total Cost of Equipment Delivered to Donetsk 0.31<br />

Installation for turnkey solution 0.09<br />

L<strong>in</strong>e Pipe – <strong>in</strong>stalled <strong>in</strong>clud<strong>in</strong>g taxes 5.00<br />

Total Installed Cost of Transmission <strong>and</strong> Meter<strong>in</strong>g $US5.40 MM<br />

Exhibit 3.13: Capital Cost Estimate – Transmission <strong>and</strong> Meter<strong>in</strong>g Station<br />

3.3.4.4 Total Capital Cost for Process<strong>in</strong>g <strong>and</strong> Compress<strong>in</strong>g Gas for Pipel<strong>in</strong>e Injection<br />

The total capital cost for compression, process<strong>in</strong>g <strong>and</strong> meter<strong>in</strong>g <strong>the</strong> gas for pipel<strong>in</strong>e <strong>in</strong>jection<br />

is as follows:<br />

Summary of Capital Cost Estimate<br />

CBM Compression, Process<strong>in</strong>g, Meter<strong>in</strong>g for Injection to Pipel<strong>in</strong>e<br />

Technical Description of Facility<br />

Gas Compression $US18.05 MM<br />

GE PCL Pipel<strong>in</strong>e Compressor<br />

GE 10-2 Gas Turb<strong>in</strong>e Driverr<br />

TEG Gas Dehydration System $US3.75 MM<br />

608 mNm 3 /d (21.45 MM scfd) Unit with 60” packed Tower Package<br />

Transmission <strong>and</strong> Meter<strong>in</strong>g $US5.40 MM<br />

20 kilometers of buried pipe<br />

Total Installed Cost of Compression, Process<strong>in</strong>g,<br />

Transmission <strong>and</strong> Meter<strong>in</strong>g<br />

$US27.20 MM<br />

Exhibit 3.14: Summary of Capital Cost Estimate – Compression, Process<strong>in</strong>g <strong>and</strong> Meter<strong>in</strong>g<br />

Market Assessment for Produced Methane 3-14


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

3.3.5 Gas Sales to <strong>the</strong> European <strong>and</strong> Ukra<strong>in</strong>ian Markets<br />

Once <strong>the</strong> CBM has been compressed <strong>and</strong> dehydrated it can be <strong>in</strong>jected <strong>in</strong>to transmission<br />

l<strong>in</strong>es for sale <strong>in</strong>to ei<strong>the</strong>r <strong>the</strong> Ukra<strong>in</strong>ian or European markets<br />

3.3.5.1 Europe<br />

Added to <strong>the</strong> net back price are <strong>the</strong> costs for compression, process<strong>in</strong>g <strong>and</strong> meter<strong>in</strong>g, along<br />

with <strong>the</strong> transmission fees for <strong>the</strong> gas to travel approximately 1600 km to a European market<br />

hub. ARI estimates this total cost to be US$387/mcm. Current European market prices are<br />

around US$450/mcm which would result <strong>in</strong> a marg<strong>in</strong> of 16% for project gas sold to <strong>the</strong><br />

European market. Future European prices are projected to rise to US$500/mcm <strong>and</strong> above<br />

which provides good upside for this market.<br />

3.3.5.2 Ukra<strong>in</strong>e<br />

Gas sold <strong>in</strong>to <strong>the</strong> Ukra<strong>in</strong>e market only has <strong>in</strong>cremental costs of <strong>the</strong> compression, process<strong>in</strong>g<br />

<strong>and</strong> transmission to <strong>the</strong> local grid. These costs are estimated to be US$10/mcm <strong>and</strong> result <strong>in</strong><br />

a total cost of $US360/mcm for sale <strong>in</strong>to <strong>the</strong> Ukra<strong>in</strong>ian market. As mentioned <strong>in</strong> section 3.1,<br />

<strong>the</strong> price Ukra<strong>in</strong>e pays for imported gas from Russia <strong>and</strong> Central Asia is likely to rise towards<br />

a European price with<strong>in</strong> <strong>the</strong> next few years. At a market price of US$400/mcm, <strong>the</strong> marg<strong>in</strong><br />

for project gas sold to <strong>the</strong> Ukra<strong>in</strong>ian market would be 11%.<br />

3.3.6 Electrical Generation<br />

To be used as a fuel source for a comb<strong>in</strong>ed cycle gas turb<strong>in</strong>e, CBM can be collected,<br />

compressed, <strong>and</strong> dehydrated <strong>in</strong> a TEG (triethylene glycol) unit. The compressed <strong>and</strong> treated<br />

gas can <strong>the</strong>n be used to <strong>in</strong>ject <strong>in</strong>to a local system connect<strong>in</strong>g <strong>the</strong> field with a power<br />

generation facility. The heat from <strong>the</strong> turb<strong>in</strong>e generators is recovered <strong>in</strong> a Heat Recovery<br />

Steam Generator <strong>and</strong> used to drive steam turb<strong>in</strong>es, operat<strong>in</strong>g <strong>in</strong> a comb<strong>in</strong>ed cycle<br />

configuration.<br />

For this market assessment, <strong>the</strong> net back price of <strong>the</strong> gas was converted to an equivalent<br />

“net back” power price of US$0.033/kWh. Incremental costs for <strong>the</strong> estimated capital <strong>and</strong><br />

operat<strong>in</strong>g costs of a new power station, along with wheel<strong>in</strong>g fees across <strong>the</strong> Ukra<strong>in</strong>e national<br />

electrical grid, are estimated to be a fur<strong>the</strong>r US$0.03/kWh for a total sales price of<br />

US$0.063/kWh. This is greater than <strong>the</strong> current power price of US$0.057/kW, so at this time<br />

us<strong>in</strong>g project gas for electrical generation does not appear to be economic.<br />

Market Assessment for Produced Methane 3-15


3.3.7 Transportation Market<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Accord<strong>in</strong>g to <strong>the</strong> International Association for Natural Gas Vehicles (IANGV), Ukra<strong>in</strong>e ranks<br />

10 th <strong>in</strong> <strong>the</strong> world <strong>and</strong> 2 nd <strong>in</strong> Europe with 100,000 natural gas powered vehicles (<strong>in</strong> addition to<br />

147 refuel<strong>in</strong>g stations). 4<br />

Use of <strong>methane</strong> <strong>in</strong> <strong>the</strong> transportation sector is a grow<strong>in</strong>g market segment. The advantages<br />

of us<strong>in</strong>g CNG for <strong>the</strong> power<strong>in</strong>g of vehicles are as follows:<br />

Increase energy security by reduc<strong>in</strong>g imported petrol fuel. Cars would still operate on<br />

petrol but would also have <strong>the</strong> option of us<strong>in</strong>g cheaper CNG around <strong>the</strong> major centers<br />

until such time as <strong>the</strong> CNG is available everywhere.<br />

Cleaner fuel burn <strong>and</strong> lower emission <strong>the</strong>reby improv<strong>in</strong>g <strong>the</strong> environment.<br />

Employment <strong>and</strong> <strong>in</strong>vestment opportunities would arise from this new <strong>in</strong>dustry.<br />

An export market would be created for <strong>the</strong> gas <strong>and</strong> <strong>the</strong> car kits.<br />

The conversion of vehicles may be eligible for carbon tax credits, fur<strong>the</strong>r enhanc<strong>in</strong>g <strong>the</strong><br />

value of this new <strong>in</strong>dustry.<br />

One possible disadvantage is:<br />

Opposition by <strong>the</strong> exist<strong>in</strong>g fuel companies who may view this gas as a threat to <strong>the</strong>ir<br />

monopolies on petroleum. The sale of petroleum will be substantially reduced by<br />

vehicles us<strong>in</strong>g CNG.<br />

When assess<strong>in</strong>g <strong>the</strong> use of <strong>the</strong> CBM from <strong>the</strong> Donbass <strong>and</strong> Grish<strong>in</strong>o-Andreyevskaya lease<br />

areas <strong>in</strong> <strong>the</strong> production of CNG, <strong>in</strong>cremental costs for transmission, <strong>and</strong> compressor capital<br />

<strong>and</strong> operat<strong>in</strong>g costs, are added to <strong>the</strong> CBM net-back price. ARI estimates a f<strong>in</strong>al cost price of<br />

US$420/mcm. With a current (2008) equivalent pump price of $620/mcm, <strong>the</strong> CNG market<br />

appears to be a profitable potential market.<br />

3.3.8 Petrochemical Market<br />

Methane is an important feedstock for <strong>the</strong> production of a variety of chemicals <strong>in</strong> addition to<br />

be<strong>in</strong>g a fuel source to meet onsite power <strong>and</strong>/or process heat/steam requirements for a<br />

number of <strong>in</strong>dustrial applications. Natural gas is <strong>the</strong> most economic <strong>and</strong> widely used<br />

feedstock for <strong>the</strong> production of ammonia <strong>and</strong> methanol.<br />

4 IANGV < http://www.iangv.org/ngv-statistics.html ><br />

Market Assessment for Produced Methane 3-16


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

3.3.8.1 Ammonia<br />

Worldwide, <strong>the</strong> majority of ammonia production is consumed <strong>in</strong> fertilizer production while <strong>the</strong><br />

rema<strong>in</strong>der is used <strong>in</strong> <strong>the</strong> production of plastics, syn<strong>the</strong>tic fibers <strong>and</strong> res<strong>in</strong>s, explosives,<br />

pharmaceuticals, <strong>and</strong> numerous o<strong>the</strong>r chemical compounds. In 2007, worldwide ammonia<br />

production was estimated at 125 million metric tons. Ukra<strong>in</strong>e was seventh <strong>in</strong> production,<br />

represent<strong>in</strong>g about 3.4% of world ammonia production (USGS, 2008). 5 Ammonia production<br />

is very energy <strong>in</strong>tensive <strong>and</strong> is estimated to consume more than 1% of all man-made power.<br />

Approximately 33 MMBtu (0.9 mcm) of natural gas are needed to produce 1 ton of ammonia<br />

<strong>in</strong> a modern production plant 6,7 . For older production plants, anywhere from 37 to 61 MMBtu<br />

(1-1.7 mcm) are needed. At <strong>the</strong> calculated CBM field gate price of US$350/mcm, along with<br />

process<strong>in</strong>g <strong>and</strong> transmission costs, <strong>the</strong> base cost of <strong>the</strong> gas delivered to an ammonia<br />

production plant to produce 1 ton of ammonia would range between US$325-600 per ton.<br />

This cost does not <strong>in</strong>clude <strong>the</strong> actual production of <strong>the</strong> ammonia.<br />

The market price for ammonia produced <strong>in</strong> Ukra<strong>in</strong>e has risen sharply <strong>in</strong> 2008 from an<br />

average of about $250 per ton <strong>in</strong> 2007 to over US$500 per ton <strong>in</strong> early 2008, before settl<strong>in</strong>g<br />

back to US$400-450 per ton <strong>in</strong> <strong>the</strong> summer 8 . Even at US$450 per ton, <strong>the</strong> marg<strong>in</strong> on us<strong>in</strong>g<br />

project gas for ammonia production is likely to be small <strong>and</strong> if <strong>the</strong> ammonia production plant<br />

tak<strong>in</strong>g <strong>the</strong> gas is not utiliz<strong>in</strong>g <strong>the</strong> most modern technology, <strong>the</strong>n us<strong>in</strong>g project gas for<br />

ammonia production would likely be uneconomic.<br />

3.3.8.2 Methanol<br />

Methane is also an ideal feedstock for methanol, a common solvent used <strong>in</strong> antifreeze,<br />

w<strong>in</strong>dshield washer fluid, <strong>and</strong> as a denaturant for ethanol. Methanol itself is also a feedstock<br />

for biodiesel <strong>and</strong> o<strong>the</strong>r chemicals such as formaldehyde, plastics, pa<strong>in</strong>ts, <strong>and</strong> explosives.<br />

Current (2008) prices for methanol are about US$370 per ton 9 . Us<strong>in</strong>g an equivalent Btu<br />

conversion, this is equivalent to a gas price of $710/mcm. As with <strong>the</strong> ammonia case, close<br />

to 1 mcm of natural gas is used to produce a ton of methanol. Therefore <strong>the</strong> base cost of <strong>the</strong><br />

project gas delivered to a methanol production plant would be about US$360/mcm. This<br />

price does not <strong>in</strong>clude <strong>the</strong> production cost of <strong>the</strong> methanol, but if <strong>the</strong>re is capacity at exist<strong>in</strong>g<br />

5 U.S. Geological Survey (USGS), M<strong>in</strong>eral Commodity Summaries 2008, January 2008, Nitrogen (Fixed) – Ammonia.<br />

6 Economic Research Service/USDA “Impact of Ris<strong>in</strong>g Natural Gas Prices on U.S. Ammonia Supply” WRS-0702<br />

7 International Food Policy Research Institute<br />

8 University of Nebraska-L<strong>in</strong>coln Extension, Institute of Agriculture <strong>and</strong> Natural Resources, Crop Watch News<br />

Service<br />

9 Methanex regional prices Oct-Dec 2008 http://www.<strong>methane</strong>x.com/products/methanolprice.html<br />

Market Assessment for Produced Methane 3-17


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

methanol plants to take new gas, <strong>the</strong>n us<strong>in</strong>g project gas to produce methanol appears to be<br />

economic. In <strong>the</strong> likely event that a new methanol production plant would have to be built,<br />

<strong>the</strong> additional base price to cover capital <strong>and</strong> operat<strong>in</strong>g costs would make <strong>the</strong> economics of<br />

methanol production more marg<strong>in</strong>al.<br />

3.4 Summary of CBM & CMM Energy Equivalent Prices<br />

Power<br />

Market IRR Base Rate Incremental 1<br />

CMM – Generators<br />

Total Market Price Marg<strong>in</strong><br />

South Donbass No. 3 15% $0.044/kW $0.044/kW $0.056/kW 27%<br />

Bazhanov 15% $0.05/kW $0.05/kW $0.056/kW 12%<br />

CBM - Comb<strong>in</strong>ed Cycle<br />

Gas Turb<strong>in</strong>es 2<br />

Pipel<strong>in</strong>e Sales<br />

25% $0.033/kW 3<br />

Europe 25% $350/mcm $37/mcm 5<br />

$0.03/kW 4 $0.063/kW $0.056/kW -11%<br />

$387/mcm $450.00/mcm 16%<br />

Ukra<strong>in</strong>e 25% $350/mcm $10/mcm $360/mcm $400.00/mcm 11%<br />

Alternative Fuel<br />

CNG 25% $350/mcm $70/mcm 6<br />

Chemical<br />

Ammonia 25%<br />

$420/mcm $620.00/mcm 5 48%<br />

$350/mcm See explanation 3.3.8.1 $400-450/ton<br />

Methanol 25% $350/mcm $10/mcm $360/mcm 8<br />

$710/mcm 9<br />

very small to<br />

uneconomic<br />

see 3.3.8.2<br />

1<br />

All <strong>in</strong>cremental costs for CBM <strong>in</strong>clude a price for <strong>the</strong> compression, process<strong>in</strong>g <strong>and</strong> transmission cost.<br />

2<br />

Evaluated on net-back price of gas at field gate.<br />

3<br />

Equivalent price based on $350/mcm<br />

4<br />

Includes estimated capital <strong>and</strong> operat<strong>in</strong>g costs of power plant <strong>and</strong> wheel<strong>in</strong>g fees.<br />

5<br />

Assumes a transmission fee of $1.70 per MCM per 100 km for 1600 km<br />

6<br />

Includes transmission fees to station, compressor capital <strong>and</strong> operat<strong>in</strong>g costs<br />

7<br />

Based on a price at <strong>the</strong> pump of UAH 3.60 per liter<br />

8<br />

Delivery cost to methanol plant – does not <strong>in</strong>clude <strong>the</strong> cost of production.<br />

9 Equivalent to $370/ton<br />

Exhibit 5-20: Energy-Equivalent Fuel Prices for CBM <strong>and</strong> CMM Prospects<br />

It is evident that natural gas can be an economic fuel substitute / alternative <strong>in</strong> many sectors.<br />

When <strong>the</strong> environmental benefits of <strong>the</strong> fuel are factored <strong>in</strong>, <strong>the</strong> value proposition is even<br />

greater.<br />

Market Assessment for Produced Methane 3-18


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Appendix 3.A GOST St<strong>and</strong>ard 5542-87<br />

Market Assessment for Produced Methane 3-19


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Market Assessment for Produced Methane 3-20


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Market Assessment for Produced Methane 3-21


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Market Assessment for Produced Methane 3-22


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Market Assessment for Produced Methane 3-23


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Market Assessment for Produced Methane 3-24


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Market Assessment for Produced Methane 3-25


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Appendix 3.B Caterpillar Statement of Supply<br />

Market Assessment for Produced Methane 3-26


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Market Assessment for Produced Methane 3-27


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Market Assessment for Produced Methane 3-28


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Market Assessment for Produced Methane 3-29


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Market Assessment for Produced Methane 3-30


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Appendix 3.C GE 10-2 Gas Turb<strong>in</strong>e Technical Bullet<strong>in</strong><br />

Market Assessment for Produced Methane 3-31


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Market Assessment for Produced Methane 3-32


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Market Assessment for Produced Methane 3-33


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Appendix 3.D GE PCL Compressor Technical Bullet<strong>in</strong><br />

Market Assessment for Produced Methane 3-34


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Market Assessment for Produced Methane 3-35


Task 4<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Prelim<strong>in</strong>ary Design for CMM, CBM <strong>and</strong> Gas<br />

Utilization Infrastructure<br />

CMM, CBM & Gas Utilzation Infrastructure 4-i


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

TASK 4 CONTENTS<br />

4.1 Introduction......................................................................................................................4-1<br />

4.2 CBM Production Operations <strong>and</strong> Surface Facilities.....................................................4-1<br />

4.2.1 Production Operations .............................................................................................................4-2<br />

4.2.2 Artificial Lift – Downhole Equipment ........................................................................................4-4<br />

4.2.3 Artificial Lift - Surface Equipment.............................................................................................4-9<br />

4.2.4 Alternative Lift Systems .........................................................................................................4-15<br />

4.3 CBM Surface Facilities, Pip<strong>in</strong>g <strong>and</strong> Treat<strong>in</strong>g ..............................................................4-17<br />

4.3.1 Surface Facilities – Pip<strong>in</strong>g .....................................................................................................4-17<br />

4.3.2 Gas Meter<strong>in</strong>g .........................................................................................................................4-20<br />

4.3.3 Water Meter<strong>in</strong>g ......................................................................................................................4-21<br />

4.3.4 Separator Vessels..................................................................................................................4-22<br />

4.3.5 Gas Pipel<strong>in</strong>e System Design .................................................................................................4-23<br />

4.3.6 Water Pipel<strong>in</strong>e System Design ..............................................................................................4-24<br />

4.3.7 Compression..........................................................................................................................4-25<br />

4.3.8 Dehydration............................................................................................................................4-27<br />

4.3.9 Power Generation..................................................................................................................4-28<br />

4.3.9.1 Comb<strong>in</strong>ed Cycle Gas Turb<strong>in</strong>es ......................................................................................4-28<br />

4.3.10 Ammonia Production..............................................................................................................4-31<br />

4.4 CMM Surface Facilities..................................................................................................4-33<br />

4.4.1 Flar<strong>in</strong>g ....................................................................................................................................4-33<br />

4.4.1.1 Benefits of flar<strong>in</strong>g ...........................................................................................................4-33<br />

4.4.1.2 Flare design ...................................................................................................................4-34<br />

4.4.2 Power Generation from Coal M<strong>in</strong>e Methane (CMM) .............................................................4-35<br />

4.4.3 Surface Facilities for CMM Power Project .............................................................................4-36<br />

4.4.3.1 Gas Process<strong>in</strong>g..............................................................................................................4-37<br />

4.4.3.2 Gas Eng<strong>in</strong>e / Generator .................................................................................................4-37<br />

4.4.3.3 Transformer....................................................................................................................4-38<br />

4.4.4 Upgrad<strong>in</strong>g CMM to Pipel<strong>in</strong>e Quality.......................................................................................4-38<br />

4.5 U.S. Suppliers of Equipment, Technology, <strong>and</strong> Services ..........................................4-44<br />

4.5.1 Drill<strong>in</strong>g Companies <strong>and</strong> Equipment .......................................................................................4-44<br />

4.5.2 Production Equipment............................................................................................................4-46<br />

4.5.3 Tubulars .................................................................................................................................4-48<br />

4.5.4 Logg<strong>in</strong>g, Completion & Stimulation........................................................................................4-49<br />

Appendix 4.A GE Comb<strong>in</strong>ed Cycle Gas Turb<strong>in</strong>e Technical Bullet<strong>in</strong>..................................................4-50<br />

Appendix 4.B Caterpillar 2500 kVA Coal Seam Power Module G3520.............................................4-55<br />

CMM, CBM & Gas Utilzation Infrastructure 4-ii


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

TASK 4 EXHIBITS<br />

Exhibit 4.1 Typical CBM Iso<strong>the</strong>rm .......................................................................................................4-2<br />

Exhibit 4.2 Simulated Production Profile of a Donbass Bas<strong>in</strong> CBM/Tight Gas S<strong>and</strong> Well..................4-3<br />

Exhibit 4.3 Rod Pump <strong>in</strong> a Well...........................................................................................................4-5<br />

Exhibit 4.4 Three-tube Down-hole Pump ............................................................................................4-7<br />

Exhibit 4.5 Gas Anchor Assembly .......................................................................................................4-8<br />

Exhibit 4.6 Proposed Well Head Configuration ...................................................................................4-9<br />

Exhibit 4.7 Soap Box .........................................................................................................................4-10<br />

Exhibit 4.8 Tub<strong>in</strong>g <strong>and</strong> Well-head Equipment for Five Well Pilot ......................................................4-11<br />

Exhibit 4.9 Pump<strong>in</strong>g Unit ...................................................................................................................4-12<br />

Exhibit 4.10 Sucker Rod Pump Design ...............................................................................................4-13<br />

Exhibit 4.11 Required Pump<strong>in</strong>g Unit Parts <strong>and</strong> Equipment.................................................................4-14<br />

Exhibit 4.12 Cutaway of an R&M Energy Systems Moyno progressive cavity pump .........................4-15<br />

Exhibit 4.13 Motor Driven Progressive Cavity Pump...........................................................................4-16<br />

Exhibit 4.14 3-<strong>in</strong>ch HDPE Pipe............................................................................................................4-17<br />

Exhibit 4.15 102mm (4-<strong>in</strong>ch) Plastic Pipe Flanged Adapter................................................................4-18<br />

Exhibit 4.16 Schematic Layout of Surface Equipment ........................................................................4-19<br />

Exhibit 4.17 Barton Meter Run <strong>and</strong> Chart ...........................................................................................4-20<br />

Exhibit 4.18 Halliburton Flow Meter.....................................................................................................4-21<br />

Exhibit 4.19 Surface Facilities List<strong>in</strong>g..................................................................................................4-22<br />

Exhibit 4.20 2-Phase Vertical Separator .............................................................................................4-22<br />

Exhibit 4.21 3-Phase Horizontal Separator, Sivalls Inc.......................................................................4-23<br />

Exhibit 4.22 Turb<strong>in</strong>e Compressor........................................................................................................4-26<br />

Exhibit 4.23 Typical Flow Diagram – Glycol Dehydration Unit ............................................................4-27<br />

Exhibit 4.24 Flow scheme for CBM to a Comb<strong>in</strong>ed Cycle Gas Turb<strong>in</strong>e for Electric<br />

Power Generation............................................................................................................4-28<br />

Exhibit 4.25 GE Comb<strong>in</strong>ed Cycle Gas Turb<strong>in</strong>e Plant Layout ..............................................................4-30<br />

Exhibit 4.26 Flow scheme for CBM to Ammonia Syn<strong>the</strong>sis ................................................................4-31<br />

Exhibit 4.27 Enclosed <strong>and</strong> open flare designs ....................................................................................4-34<br />

Exhibit 4.28 Generalized Surface Facilities Configuration for CMM Power Project............................4-37<br />

Exhibit 4.29 Field Station Separators ..................................................................................................4-40<br />

Exhibit 4.30 Field Station Compressor ................................................................................................4-40<br />

Exhibit 4.31 Block Process Diagram of CMM Upgrade Facility ..........................................................4-41<br />

Exhibit 4.32 SulfaTreat Vessels...........................................................................................................4-41<br />

Exhibit 4.33 Deoxygenation Unit .........................................................................................................4-42<br />

Exhibit 4.34 CO2 unit, Nitrogen Rejection Unit <strong>and</strong> Compressor ........................................................4-43<br />

Exhibit 4.35 Sales Gas Compression Units.........................................................................................4-43<br />

CMM, CBM & Gas Utilzation Infrastructure 4-iii


4.1 Introduction<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The follow<strong>in</strong>g section reviews <strong>the</strong> requirements for start-up operations <strong>and</strong> surface facilities<br />

for both CBM <strong>and</strong> CMM operations. The two areas are discussed separately as <strong>the</strong> gas<br />

composition <strong>and</strong> produc<strong>in</strong>g pressures for CBM <strong>and</strong> CMM are very different, which<br />

necessitates different gas treatment <strong>and</strong> production facilities for <strong>the</strong> two gas production<br />

streams.<br />

4.2 CBM Production Operations <strong>and</strong> Surface Facilities<br />

One of <strong>the</strong> most challeng<strong>in</strong>g aspects of develop<strong>in</strong>g a CBM project is <strong>the</strong> <strong>in</strong>itiation of<br />

production operations, especially dur<strong>in</strong>g <strong>the</strong> early stages of <strong>development</strong>. Start up<br />

production <strong>in</strong> CBM projects can present challenges with equipment, economics, <strong>and</strong> <strong>the</strong><br />

patience of <strong>the</strong> operator. Up front operat<strong>in</strong>g costs are high because of <strong>the</strong> large volumes of<br />

produced water, <strong>the</strong> frequent servic<strong>in</strong>g wells <strong>and</strong> replac<strong>in</strong>g of pumps, or chang<strong>in</strong>g out of<br />

artificial lift equipment as needed, with little or no gas production to offset costs. It is<br />

important to apply experience to <strong>the</strong> types of equipment purchased to ensure <strong>the</strong>ir<br />

compatibility with CBM operations. Coal f<strong>in</strong>es <strong>and</strong> s<strong>and</strong> production are normal dur<strong>in</strong>g well<br />

startup <strong>and</strong> equipment should be designed to h<strong>and</strong>le <strong>the</strong>se solids on <strong>the</strong> surface as well as<br />

down hole.<br />

Reservoir drawdown is a critical aspect for CBM production <strong>and</strong> <strong>in</strong>terruptions to dewater<strong>in</strong>g<br />

will delay <strong>the</strong> production of natural gas. Water <strong>in</strong>flux from <strong>the</strong> reservoir surround<strong>in</strong>g <strong>the</strong> wells<br />

will re-charge <strong>the</strong> matrix of <strong>the</strong> <strong>coal</strong> seams <strong>in</strong>terrupt<strong>in</strong>g <strong>the</strong> desorption process of <strong>the</strong> gas.<br />

The artificial lift system must <strong>the</strong>n remove this water from <strong>the</strong> <strong>coal</strong> matrix to re-establish gas<br />

flow <strong>and</strong> flow to <strong>the</strong> wellbore. Cont<strong>in</strong>ued down time can severely impact <strong>the</strong> economics of a<br />

CBM project <strong>and</strong> solutions to <strong>the</strong> production problems should be resolved dur<strong>in</strong>g <strong>the</strong> pilot<br />

project before full field <strong>development</strong> proceeds. The follow<strong>in</strong>g section provides guidel<strong>in</strong>es for<br />

<strong>the</strong> start-up of production operations <strong>and</strong> <strong>the</strong> <strong>in</strong>stallation of surface facilities for CBM<br />

process<strong>in</strong>g, compression, <strong>and</strong> transportation.<br />

CMM, CBM & Gas Utilzation Infrastructure 4-1


4.2.1 Production Operations<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Poor production practices <strong>in</strong> <strong>coal</strong>bed <strong>methane</strong> operations can hamper well performance <strong>and</strong><br />

can affect <strong>the</strong> outlook for project economics. If bottom hole production pressures are too<br />

high, <strong>the</strong> desorption process can be severely hampered. Exhibit 4.1 illustrates this po<strong>in</strong>t.<br />

Note that <strong>the</strong> slope of <strong>the</strong> iso<strong>the</strong>rm is much higher at lower pressure than it is at higher<br />

pressure. The amount of gas desorbed “per psi of pressure drop” is much higher at low<br />

pressure than at high pressure. In this example, if <strong>the</strong> reservoir pressure is depleted by 50%,<br />

only 22% of <strong>the</strong> gas is desorbed, but if reservoir pressure is depleted by 90%, 72% of <strong>the</strong><br />

gas is desorbed. In o<strong>the</strong>r words, ultimate gas recovery is <strong>in</strong>creased more than 3 fold with<br />

less than double <strong>the</strong> pressure depletion.<br />

Exhibit 4.1 Typical CBM Iso<strong>the</strong>rm<br />

The rate at which <strong>the</strong> well bore is dewatered is an important consideration for CBM<br />

operations. Produced <strong>coal</strong> f<strong>in</strong>es are a problem that is common <strong>in</strong> <strong>coal</strong> bed <strong>methane</strong><br />

<strong>development</strong> projects <strong>in</strong> <strong>the</strong> United States <strong>and</strong> throughout <strong>the</strong> world. Once f<strong>in</strong>es are<br />

produced with<strong>in</strong> <strong>the</strong> <strong>coal</strong> seam, water <strong>and</strong> gas can carry <strong>the</strong> f<strong>in</strong>es to <strong>the</strong> well-bore, where<br />

specialty pumps are required to h<strong>and</strong>le <strong>the</strong>m. Mobilized f<strong>in</strong>es can also collect <strong>in</strong> <strong>the</strong> flow<br />

paths with<strong>in</strong> <strong>the</strong> reservoir (<strong>coal</strong> seam cleat system), caus<strong>in</strong>g flow restrictions or damage.<br />

CMM, CBM & Gas Utilzation Infrastructure 4-2


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

It is thought that <strong>coal</strong> f<strong>in</strong>e production is sensitive to <strong>the</strong> amount or degree of pressure<br />

drawdown through <strong>the</strong> cleat system with respect to <strong>the</strong> gas with<strong>in</strong> <strong>the</strong> <strong>coal</strong> matrix. Rapid<br />

dewater<strong>in</strong>g can cause a large pressure differential with<strong>in</strong> <strong>the</strong> reservoir <strong>and</strong> <strong>in</strong>crease <strong>the</strong><br />

amount of damage. A gradual drawdown is required to m<strong>in</strong>imize <strong>the</strong> pressure differential at<br />

any particular location <strong>in</strong> <strong>the</strong> reservoir. It has been found through empirical methods that <strong>the</strong><br />

<strong>in</strong>itial dewater<strong>in</strong>g of <strong>the</strong> well bore should be done slowly to m<strong>in</strong>imize <strong>the</strong> <strong>in</strong>cremental<br />

pressure drawdown <strong>and</strong> <strong>the</strong> result<strong>in</strong>g mobilization of f<strong>in</strong>es. In <strong>the</strong> U.S., operators generally<br />

deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> optimum dewater<strong>in</strong>g rate through experience. Advanced Resources<br />

recommends a plan to dewater well-bores over a period of up to 8 months, depend<strong>in</strong>g on <strong>the</strong><br />

drawdown rate. Eventually, <strong>the</strong> bottom hole pump<strong>in</strong>g pressure should be ma<strong>in</strong>ta<strong>in</strong>ed at 30<br />

psi or less.<br />

The water production profile for <strong>the</strong> type well <strong>in</strong> <strong>the</strong> Donetsk Region is presented <strong>in</strong><br />

Exhibit 4-2. This profile <strong>in</strong>dicates that <strong>in</strong>itial water production rates are 1.4 m 3 /day<br />

(9 bbls/day). Production from <strong>the</strong> well should be monitored to gradually draw <strong>the</strong> water level<br />

<strong>in</strong> <strong>the</strong> well down.<br />

(Gas (m3/hour), Water (m3/hour X 100)<br />

1,000<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

-<br />

Donetsk Bas<strong>in</strong> Simulation Results<br />

Coal Permeability = 0.1 md, 60 Acre Spac<strong>in</strong>g, Coal & S<strong>and</strong>stone<br />

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30<br />

Years<br />

Gas Water<br />

Exhibit 4.2 Simulated Production Profile of a Donbass Bas<strong>in</strong> CBM/Tight Gas S<strong>and</strong> Well<br />

CMM, CBM & Gas Utilzation Infrastructure 4-3


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Ano<strong>the</strong>r operational consideration is down-hole pump failure. The “cost” of a pump failure is<br />

not just <strong>the</strong> down time associated with pump replacement. Water saturation of <strong>the</strong> <strong>coal</strong>-cleat<br />

system is replenished to some degree dur<strong>in</strong>g this downtime. As a result, <strong>the</strong> dewater<strong>in</strong>g<br />

process can be set back by several days or even weeks for each period of downtime. The<br />

reliability of <strong>the</strong> pump<strong>in</strong>g system is critical to <strong>the</strong> success of <strong>the</strong> pilot project.<br />

4.2.2 Artificial Lift – Downhole Equipment<br />

Three forms of artificial lift are commonly used for CBM <strong>in</strong> <strong>the</strong> United States: Electric<br />

Submersible Pumps (ESP), Progress<strong>in</strong>g Cavity Pumps (PCP), <strong>and</strong> Sucker Rod Pumps<br />

(SRP). The recommended artificial lift mechanism for <strong>the</strong> Donetsk Project, at least <strong>in</strong>itially, is<br />

a SRP with surface pump<strong>in</strong>g unit <strong>and</strong> electric motor or gas powered eng<strong>in</strong>e. The pump<br />

designs that lift adequate amounts of water <strong>and</strong> fit with<strong>in</strong> recommended 60 mm (2 3 /8 <strong>in</strong>ch)<br />

tub<strong>in</strong>g are available from U.S. manufacturers. A tub<strong>in</strong>g pump, where <strong>the</strong> pump barrel screws<br />

<strong>in</strong>to <strong>the</strong> bottom of <strong>the</strong> tub<strong>in</strong>g, is an option for high water output where a larger pump<strong>in</strong>g unit is<br />

employed.<br />

The SRP recommended for <strong>the</strong> program is sized to h<strong>and</strong>le 8 cmd (50 bwpd), a rate that<br />

exceeds <strong>the</strong> calculated average produc<strong>in</strong>g rate dur<strong>in</strong>g <strong>the</strong> first 12 months of production. This<br />

will allow time to draw <strong>the</strong> water level <strong>in</strong> <strong>the</strong> well down gradually <strong>and</strong> m<strong>in</strong>imize <strong>coal</strong> f<strong>in</strong>e<br />

production that can damage <strong>the</strong> reservoir permeability <strong>and</strong> cause operational problems. A<br />

tub<strong>in</strong>g anchor is an optional piece of equipment that prevents <strong>the</strong> tub<strong>in</strong>g from exp<strong>and</strong><strong>in</strong>g <strong>and</strong><br />

contract<strong>in</strong>g, shorten<strong>in</strong>g <strong>the</strong> effective stroke length of <strong>the</strong> pump. The design <strong>in</strong>dicates a<br />

motion for <strong>the</strong> pump<strong>in</strong>g equipment of 1.37 (54) / 32 (1.25) / 8, which is sufficient to produce 8<br />

cmd (50 bwpd) <strong>and</strong> draw down <strong>the</strong> reservoir pressure. The motion of a SRP design<br />

<strong>in</strong>dicates <strong>the</strong> stroke length <strong>in</strong> meters (<strong>in</strong>ches), <strong>the</strong> plunger diameter <strong>in</strong> millimeters (<strong>in</strong>ches),<br />

<strong>and</strong> <strong>the</strong> strokes per m<strong>in</strong>ute <strong>the</strong> unit will be mov<strong>in</strong>g. The slow speed <strong>in</strong>dicated by this design<br />

m<strong>in</strong>imizes stra<strong>in</strong> on <strong>the</strong> tub<strong>in</strong>g <strong>and</strong> <strong>the</strong> need to anchor it.<br />

SRP systems are simple to operate over a wide range of operat<strong>in</strong>g parameters, <strong>and</strong> are<br />

mechanically durable <strong>and</strong> reliable. The disadvantage of a SRP system is that <strong>the</strong>y are not<br />

considered ideal when large amounts of s<strong>and</strong> or <strong>coal</strong> f<strong>in</strong>es are encountered, but <strong>the</strong>se<br />

problems are m<strong>in</strong>imized <strong>in</strong> U.S. CBM operations by lower<strong>in</strong>g <strong>the</strong> fluid level gradually,<br />

monitor<strong>in</strong>g <strong>the</strong> pump speed <strong>and</strong> adjust<strong>in</strong>g <strong>the</strong> pump level <strong>in</strong> <strong>the</strong> well bore. The down-hole<br />

pump should be placed well below (approximately 10 to 20 meters) <strong>the</strong> lowest perforation <strong>in</strong><br />

<strong>the</strong> well once <strong>the</strong> <strong>in</strong>itial frac s<strong>and</strong> production has settled. This down-hole pump placement will<br />

allow primary separation of <strong>the</strong> gas <strong>and</strong> water production <strong>in</strong> <strong>the</strong> well-bore, as <strong>the</strong> water will<br />

CMM, CBM & Gas Utilzation Infrastructure 4-4


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

tend to flow down to <strong>the</strong> pump by gravity, where it will be produced up <strong>the</strong> tub<strong>in</strong>g, <strong>and</strong> <strong>the</strong><br />

gas will flow up <strong>the</strong> cas<strong>in</strong>g/tub<strong>in</strong>g annulus. This primary separation will also prevent gas<br />

lock<strong>in</strong>g of <strong>the</strong> pump.<br />

A rod pump design consists of a down hole pump, rods <strong>and</strong> tub<strong>in</strong>g <strong>in</strong> <strong>the</strong> well. Exhibit 4.3<br />

illustrates a typical down hole pump <strong>and</strong> well bore configuration.<br />

Exhibit 4.3 Rod Pump <strong>in</strong> a Well<br />

CMM, CBM & Gas Utilzation Infrastructure 4-5


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Many new wells go through a clean up period that precludes runn<strong>in</strong>g pumps below <strong>the</strong><br />

perforations due to <strong>the</strong> amount of frac s<strong>and</strong>, <strong>coal</strong> f<strong>in</strong>es, <strong>and</strong> debris left over from drill<strong>in</strong>g <strong>and</strong><br />

completion operations. The pump should <strong>the</strong>n <strong>in</strong>itially be run above <strong>the</strong> perforations when<br />

excess proppant or f<strong>in</strong>es are detected dur<strong>in</strong>g completion clean up or multiple failures occur <strong>in</strong><br />

<strong>the</strong> pump of a new well due to proppant <strong>and</strong> f<strong>in</strong>es. A SRP run above perforations is<br />

susceptible to gas lock<strong>in</strong>g; consequently gas anchors <strong>and</strong> mud anchors can be run <strong>in</strong><br />

conjunction with <strong>the</strong> pump. The <strong>in</strong>itial clean-up time usually takes 2 to 6 months, depend<strong>in</strong>g<br />

on <strong>the</strong> type of completion <strong>and</strong> <strong>the</strong> reservoir.<br />

Gas <strong>and</strong> mud anchors are somewhat effective, but some dissolved gas can bypass <strong>the</strong>se<br />

measures. Progressive cavity (PC) pumps can be effective <strong>in</strong> wells that cont<strong>in</strong>ue to severely<br />

gas lock rod pumps over long periods of time, especially where significant solids production<br />

is a problem. PC pumps do not have valves, <strong>the</strong> rotor turns with<strong>in</strong> a stator push<strong>in</strong>g fluids<br />

through <strong>the</strong> pump, <strong>and</strong> are not subject to gas lock<strong>in</strong>g. There are advantages to rod pumped<br />

CBM wells however, due to <strong>the</strong> versatility of pump<strong>in</strong>g units <strong>and</strong> <strong>the</strong> variety of rod pumps<br />

available. A rod pump can produce <strong>in</strong> a pumped off condition which is important <strong>in</strong> <strong>the</strong><br />

mature stage of a CBM field when <strong>the</strong> reservoir is drawn down to m<strong>in</strong>imum pressures.<br />

Under <strong>the</strong> right conditions, a rod pump can produce as much as 150% of its capacity with<br />

gas lift<strong>in</strong>g water through <strong>the</strong> pump <strong>and</strong> lighten<strong>in</strong>g <strong>the</strong> fluid column <strong>in</strong> <strong>the</strong> tub<strong>in</strong>g. Ano<strong>the</strong>r<br />

problem that frequently occurs <strong>in</strong> new wells or virg<strong>in</strong> reservoirs is gas associated with<strong>in</strong> <strong>the</strong><br />

water production. Gas lock<strong>in</strong>g will occur as dissolved gas is liberated from <strong>the</strong> water by <strong>the</strong><br />

suction at <strong>the</strong> pump <strong>in</strong>take <strong>and</strong> fills <strong>the</strong> pump barrel with free gas. The free gas exp<strong>and</strong>s <strong>and</strong><br />

contracts as <strong>the</strong> travel<strong>in</strong>g valve moves up <strong>and</strong> down <strong>the</strong> barrel prevent<strong>in</strong>g water from<br />

enter<strong>in</strong>g <strong>the</strong> pump suction.<br />

Advanced Resources International recommends utiliz<strong>in</strong>g sucker rod pump<strong>in</strong>g units <strong>and</strong> “3tube”<br />

down-hole <strong>in</strong>sert pumps for a new project. Exhibit 4-4 illustrates <strong>the</strong> mechanics a of<br />

three-tube down-hole pump.<br />

Three-tube pumps are sometimes referred to as “trash” pumps, s<strong>in</strong>ce <strong>the</strong>y produce abrasive<br />

s<strong>and</strong> <strong>and</strong> <strong>coal</strong> particles with less wear. The 3-tube pump works because it uses three loosely<br />

fitt<strong>in</strong>g, telescop<strong>in</strong>g tubes <strong>in</strong> place of <strong>the</strong> tight tolerance barrel <strong>and</strong> plunger used <strong>in</strong> o<strong>the</strong>r<br />

pumps. Particles can pass through <strong>the</strong> barrel tubes due to <strong>the</strong> loose tolerance of <strong>the</strong> fit. A<br />

st<strong>and</strong>ard assembly, 7.62 m (25 ft), or extended stroke assembly add<strong>in</strong>g 4.6 m (15 ft) of<br />

length is required. The recommended pump bore is 32 mm (1¼ <strong>in</strong>ches) <strong>in</strong> diameter.<br />

CMM, CBM & Gas Utilzation Infrastructure 4-6


Upper Travel<strong>in</strong>g<br />

Valve<br />

Pull Tube #1<br />

(<strong>in</strong>ner)<br />

Pump barrel #3<br />

(outside)<br />

Plunger<br />

Lower Travel<strong>in</strong>g<br />

Valve<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 4.4 Three-tube Down-hole Pump<br />

Pump barrel #2<br />

(middle)<br />

Gas Anchor Dip Tube<br />

Barrel Stop (no-go)<br />

St<strong>and</strong><strong>in</strong>g Valve<br />

Cup Type Hold Down<br />

A gas anchor assembly for <strong>the</strong> cas<strong>in</strong>g can be used to improve <strong>the</strong> effectiveness of a SRP if<br />

problems with gas lock<strong>in</strong>g are encountered. A gas anchor, Exhibit 4.5, is compromised of a<br />

2 piece mud anchor, dip tube, <strong>and</strong> bull plug. Fluid enters <strong>the</strong> mud anchor through <strong>the</strong><br />

CMM, CBM & Gas Utilzation Infrastructure 4-7


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

perforations of <strong>the</strong> top 73 mm (2 7 /8-<strong>in</strong>ch) section <strong>and</strong> travels down <strong>the</strong> annulus of <strong>the</strong><br />

assembly <strong>in</strong>to <strong>the</strong> 89 mm (3 ½-<strong>in</strong>ch) section where it is drawn <strong>in</strong>to <strong>the</strong> 25 mm (1-<strong>in</strong>ch) dip<br />

tube <strong>and</strong> <strong>in</strong>to <strong>the</strong> pump suction. The larger 89 mm (3 ½-<strong>in</strong>ch) section creates more annular<br />

area <strong>in</strong> <strong>the</strong> assembly <strong>and</strong> <strong>the</strong>refore a lower flow velocity down <strong>the</strong> gas anchor <strong>and</strong> <strong>in</strong>to <strong>the</strong><br />

pump. The lower velocity allows more gas break out, creat<strong>in</strong>g bubbles that group toge<strong>the</strong>r<br />

<strong>and</strong> rise up <strong>and</strong> out of <strong>the</strong> anchor.<br />

Exhibit 4.5 Gas Anchor Assembly<br />

CMM, CBM & Gas Utilzation Infrastructure 4-8


4.2.3 Artificial Lift - Surface Equipment<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

In this section <strong>the</strong> surface equipment necessary to produce CBM wells is described. The<br />

surface facilities require a well head equipped with a stuff<strong>in</strong>g box, a polish rod, pump<strong>in</strong>g unit,<br />

<strong>and</strong> a prime mover. It is recommended that a simple wellhead configuration be used. Exhibit<br />

4.6 illustrates <strong>the</strong> type of wellhead configuration used <strong>in</strong> <strong>the</strong> Appalachian Bas<strong>in</strong> which will be<br />

suitable for use <strong>in</strong> Ukra<strong>in</strong>e. The use of this type of simple wellhead design will be a low cost<br />

capital <strong>and</strong> operat<strong>in</strong>g alternative relative to more complex designs. Gas flows through <strong>the</strong><br />

lower pip<strong>in</strong>g w<strong>in</strong>g valve (12) to <strong>the</strong> well separator where water vapor is knocked out of <strong>the</strong><br />

gas stream before proceed<strong>in</strong>g to <strong>the</strong> orifice meter. Water is pumped through <strong>the</strong> upper w<strong>in</strong>g<br />

valve (8) down <strong>the</strong> flow l<strong>in</strong>e to <strong>the</strong> ga<strong>the</strong>r<strong>in</strong>g system <strong>and</strong> on to disposal. A bypass can be<br />

added to <strong>the</strong>se w<strong>in</strong>g valves to allow <strong>the</strong> water leg to be produced through <strong>the</strong> separator so<br />

gas from <strong>the</strong> tub<strong>in</strong>g can be measured.<br />

1. Polish Rod<br />

2. Rod Clamp<br />

3. Stuff<strong>in</strong>g Box<br />

4. Flow Tee<br />

5. W<strong>in</strong>g Valve<br />

6. Cas<strong>in</strong>g Head<br />

7. Intermediate Cas<strong>in</strong>g Head<br />

5<br />

6<br />

7<br />

3<br />

2<br />

4<br />

1<br />

11<br />

Exhibit 4.6 Proposed Well Head Configuration<br />

CMM, CBM & Gas Utilzation Infrastructure 4-9<br />

9<br />

10<br />

8<br />

12<br />

8. Water Production<br />

9. Tub<strong>in</strong>g<br />

10. Hammer Nut<br />

11. Production Cas<strong>in</strong>g Head<br />

12. Gas Production


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

A soap box should also be considered s<strong>in</strong>ce water does not lubricate <strong>the</strong> stuff<strong>in</strong>g box <strong>and</strong><br />

heat generated by <strong>the</strong> polish rod erodes <strong>the</strong> rubbers, result<strong>in</strong>g <strong>in</strong> leakage at <strong>the</strong> wellhead (<strong>the</strong><br />

stuff<strong>in</strong>g box must be greased regularly). The soap box clamps around <strong>the</strong> polish rod <strong>and</strong><br />

conta<strong>in</strong>s a wick that rides aga<strong>in</strong>st <strong>the</strong> polish rod. Motor oil or surfactant is added to <strong>the</strong> box<br />

regularly to lubricate <strong>the</strong> polish rod. Exhibit 4.7 illustrates a soap box <strong>and</strong> <strong>the</strong> <strong>in</strong>ternal parts.<br />

Exhibit 4.7 Soap Box<br />

The tub<strong>in</strong>g <strong>and</strong> wellhead equipment are designed to be compatible with <strong>the</strong> cas<strong>in</strong>g <strong>and</strong><br />

polish rod. The wellhead consists of st<strong>and</strong>ard equipment beg<strong>in</strong>n<strong>in</strong>g at <strong>the</strong> top with a stuff<strong>in</strong>g<br />

box threaded to a 51 mm (2-<strong>in</strong>ch) l<strong>in</strong>e pipe connection to <strong>the</strong> flow tee. Water <strong>and</strong> gas<br />

produced up <strong>the</strong> tub<strong>in</strong>g is sent through <strong>the</strong> ball valve to surface production equipment.<br />

In <strong>the</strong> case of <strong>the</strong> pilot well program, <strong>the</strong> bottom of <strong>the</strong> flow tee is a 60 mm (2 3 /8 <strong>in</strong>ch) EUE<br />

thread which connects to <strong>the</strong> tub<strong>in</strong>g str<strong>in</strong>g <strong>and</strong> is packed off at <strong>the</strong> 140 mm (5½ <strong>in</strong>ch) cas<strong>in</strong>g<br />

head <strong>and</strong> held with <strong>the</strong> tub<strong>in</strong>g hanger/pack off. The pip<strong>in</strong>g from <strong>the</strong> annulus of <strong>the</strong> 140 mm<br />

(5 ½ -<strong>in</strong>ch) cas<strong>in</strong>g head has a 51 mm (2-<strong>in</strong>ch) w<strong>in</strong>g valve which will control <strong>the</strong> annular gas<br />

production sent to <strong>the</strong> separator <strong>and</strong> gas meter run. The 140 mm (5½ <strong>in</strong>ch) cas<strong>in</strong>g is l<strong>and</strong>ed<br />

with<strong>in</strong> <strong>the</strong> 220 mm (8 5/8 –<strong>in</strong>ch) <strong>in</strong>termediate cas<strong>in</strong>g head.<br />

CMM, CBM & Gas Utilzation Infrastructure 4-10


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Advanced Resources recommends that 60 mm (2 3 /8 <strong>in</strong>ch) tub<strong>in</strong>g be run <strong>in</strong> <strong>the</strong> wells to allow<br />

adequate annular space <strong>in</strong> <strong>the</strong> well bore. The required tub<strong>in</strong>g <strong>and</strong> well-head assembly<br />

components for an <strong>in</strong>itial five-well pilot are shown <strong>in</strong> Exhibit 4.8.<br />

Tub<strong>in</strong>g Units Per Well 5-Wells<br />

60 mm (2 3 /8<strong>in</strong>)., J-55, 4.6 lb /ft ERW R2 T&C Meters 1100 5500<br />

Well-head<br />

220x114 mm (8 5 /8<strong>in</strong> X 4 1 /2<strong>in</strong>) cas<strong>in</strong>g head Unit 1 5<br />

114x60 mm (4 1 /2<strong>in</strong> X 2 3 /8<strong>in</strong>) tub<strong>in</strong>g head Unit 1 5<br />

60 mm (2 3 /8<strong>in</strong>) 8rnd nipple Unit 1 5<br />

60x33 mm (2 3 /8<strong>in</strong> X 1 5 /16<strong>in</strong>) dbl pack stuff<strong>in</strong>g box Unit 1 5<br />

114x60 mm (4 1 /2<strong>in</strong> X 2 3 /8<strong>in</strong>) tub<strong>in</strong>g anchor Unit 1 5<br />

Misc: tees, elbows nipples, unions, ball valves Set 1 5<br />

Exhibit 4.8 Tub<strong>in</strong>g <strong>and</strong> Well-head Equipment for Five Well Pilot<br />

Initially, <strong>the</strong> pump<strong>in</strong>g units will require 10 hp motors, however, after 12 to 18 months some<br />

wells will no longer require this much horsepower. These motors should be transferred to<br />

new wells <strong>and</strong> replaced with smaller ones. The motors will be sized based on <strong>the</strong> amount of<br />

water production from <strong>the</strong> <strong>in</strong>dividual wells at <strong>the</strong> time. A good average estimate is that 5-10<br />

hp motors will be required. The economics assume <strong>the</strong> use of 10 hp motors for <strong>the</strong> life of <strong>the</strong><br />

wells. Exhibit 4.9 shows a small type pump<strong>in</strong>g unit typical to <strong>the</strong> Appalachian Bas<strong>in</strong>.<br />

CMM, CBM & Gas Utilzation Infrastructure 4-11


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 4.9 Pump<strong>in</strong>g Unit<br />

Advanced Resources recommends <strong>the</strong> use of <strong>the</strong> follow<strong>in</strong>g pump jack, rods, <strong>and</strong> down hole<br />

pump per API nomenclature based on <strong>the</strong> rod pump design presented <strong>in</strong> Exhibit 4-10. The<br />

design is based on <strong>the</strong> follow<strong>in</strong>g criteria:<br />

• Pump Jack: C-80D-119-64<br />

• Rods: 16mm ( 5 /8-<strong>in</strong>ch), grade D<br />

• 3-Tube Insert, 32 mm (1.25 <strong>in</strong>) Bore, 7.62m (25 ft) St<strong>and</strong>ard Assembly<br />

• 11.2 meter long mud anchor with 4 columns x 17 rows of 9.5 mm (3/8-<strong>in</strong>ch) holes at top<br />

• 5 meter long dip tube with 4 columns x 20 rows of 9.5 mm (3/8-<strong>in</strong>ch) holes at bottom<br />

• A tub<strong>in</strong>g anchor is not recommended at 8 cmd (50 bpd)<br />

• A 10 hp nema D type limited slip motor (<strong>in</strong>itially)<br />

• Unit motion: 1.37 m stroke length / 32 mm plunger / 8 strokes per m<strong>in</strong>ute (54 <strong>in</strong>ch stroke<br />

length / 1.25 <strong>in</strong>ch plunger / 8 SPM)<br />

CMM, CBM & Gas Utilzation Infrastructure 4-12


QRod Application<br />

Results<br />

Rate (100 % Pump Eff.) 73 bbl/day<br />

Rate (95 Pump Eff.) 70 bbl/day<br />

Rod Taper, % 26.3, 73.7<br />

Top Rod Load<strong>in</strong>g 34.9 %<br />

M<strong>in</strong> API Unit Rat<strong>in</strong>g 80-95-54<br />

M<strong>in</strong> Motor Size 4.2 hp<br />

Polished Rod Power 2.2 hp<br />

TVLoad 7,700 lbs<br />

SVLoad<br />

Design Inputs<br />

6,200 lbs<br />

Unit Type CWConv<br />

Pump Depth 3600 ft<br />

Target Rate 70 bbl/day<br />

Stroke Rate 8.0 SPM<br />

Surface Stroke<br />

Length<br />

54 <strong>in</strong><br />

Pump diameter 1.25 <strong>in</strong><br />

Tub<strong>in</strong>g Size<br />

Anchored Tub<strong>in</strong>g No<br />

2.375" (4.7 lb/ft)<br />

1.995" ID <strong>in</strong><br />

Rod Type Steel Rods<br />

Rod Number 87<br />

Rod Grade D<br />

Default Sett<strong>in</strong>gs<br />

Total S<strong>in</strong>ker Bar Weight 0 lb<br />

Fluid Specific Gravity 1<br />

Tub<strong>in</strong>g Pressure 30 psi<br />

Cas<strong>in</strong>g Pressure 10 psi<br />

Damp<strong>in</strong>g Factor 0.1<br />

Unit Efficiency 95<br />

Pump Efficiency 95<br />

Pump Intake Pressure 10 psi<br />

Echometer Company<br />

5001 Ditto Lane<br />

Wichita Falls, Texas 76302<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Plots<br />

PPRL 8,900 lbs MPRL 5,200 lbs<br />

Pump Stroke Length 50.3 <strong>in</strong> Fo 1,600 lbs<br />

Fo/Skr 0.051 Kr 566 lb/<strong>in</strong> Kt 1,109 lb/<strong>in</strong><br />

Peak GearBox Torque 67 K<strong>in</strong>-lbs<br />

Counter Balance Moment 208 K<strong>in</strong>-lbs<br />

Counter Balance Effect 8,200 lbs<br />

QRod Version 2.0<br />

Copyright 2004 Echometer Company. All<br />

Rights Reserved.<br />

Conditions of Use <strong>and</strong> Legal Notices<br />

Exhibit 4.10 Sucker Rod Pump Design<br />

Phone: (940) 767-4334<br />

Fax: (940) 723-7507<br />

E-Mail: <strong>in</strong>fo@echometer.com<br />

CMM, CBM & Gas Utilzation Infrastructure 4-13


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 4.11 presents a list of materials for a 5-well pilot project that will be required for <strong>the</strong><br />

pump<strong>in</strong>g unit design discussed above.<br />

Pump<strong>in</strong>g Unit Units Per Well 5-spot<br />

60 mm (2 3 /8-<strong>in</strong>) (32mm - 1 1 /4 <strong>in</strong> bore) 3-tube pump Unit 1 5<br />

16 mm ( 5 /8-<strong>in</strong>) Grade D sucker rods w/ coupl<strong>in</strong>gs Meters 1050 5250<br />

Ft. 3450 17250<br />

Pony Rods, 0.5-3 m (1 1 /3, 2, 4, 6, 8 & 10 ft) lengths Set 1 5<br />

29mm x 3.35m (1 1 /8-<strong>in</strong> x 11ft) polish rod Unit 1 5<br />

33mm x 1.8m (1 5 /16-<strong>in</strong> x 6 ft) polish rod l<strong>in</strong>er Unit 1 5<br />

Sucker rod guides Unit 280 1400<br />

29mm (1 1 /8-<strong>in</strong>) rod clamp Unit 1 5<br />

Pump jack CCW 80D-119-64 Unit 1 5<br />

10 hp 1ph 1800 rpm electric motor Unit 1 5<br />

10 hp electric wea<strong>the</strong>rized electric control box Unit 1 5<br />

Belts, sheaves, electric cable <strong>and</strong> o<strong>the</strong>r misc. Unit 1 5<br />

Exhibit 4.11 Required Pump<strong>in</strong>g Unit Parts <strong>and</strong> Equipment<br />

The pump<strong>in</strong>g units specified can operate on ei<strong>the</strong>r electricity or natural gas. Electricity is <strong>the</strong><br />

most practical method for large block <strong>development</strong>s <strong>and</strong> can be tied to <strong>the</strong> <strong>in</strong>stallation of a<br />

gas-fired electrical generator. The generator can be fired us<strong>in</strong>g <strong>the</strong> production from <strong>the</strong> wells<br />

as <strong>the</strong>y reach <strong>the</strong> required volumes <strong>and</strong> operat<strong>in</strong>g reliability. Until <strong>the</strong>n, electricity can be<br />

purchased from a local power grid, or diesel powered generators could be utilized. A flare<br />

stack will be needed to burn excess gas until <strong>the</strong> reservoir is de-pressured <strong>and</strong> gas<br />

production is consistent.<br />

In a typical CBM <strong>in</strong>stallation, gas is produced from <strong>the</strong> cas<strong>in</strong>g/tub<strong>in</strong>g annulus, <strong>and</strong> water is<br />

produced from <strong>the</strong> tub<strong>in</strong>g. It is necessary to measure both <strong>the</strong> gas <strong>and</strong> water production<br />

streams, <strong>in</strong> addition to <strong>the</strong> well-head volumes. Gas <strong>and</strong> water meters should be <strong>in</strong>stalled at<br />

<strong>the</strong> outlets of each separator on <strong>the</strong> gas <strong>and</strong> water legs.<br />

CMM, CBM & Gas Utilzation Infrastructure 4-14


4.2.4 Alternative Lift Systems<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

A typical CBM <strong>development</strong> requires a variety of production capabilities from <strong>the</strong> artificial lift<br />

equipment. Some wells may have high permeability <strong>and</strong> high water producers which will<br />

require larger pump<strong>in</strong>g units, PCPs or even ESPs to de-water <strong>the</strong> reservoir. O<strong>the</strong>r wells may<br />

have fewer <strong>in</strong>tervals completed or lower permeability <strong>in</strong> <strong>the</strong> reservoir <strong>and</strong> can be pumped off<br />

with <strong>in</strong>sert SRPs <strong>and</strong> smaller pump<strong>in</strong>g units. Solids production is a significant <strong>in</strong>fluence on<br />

<strong>the</strong> type of artificial lift deployed. When hydraulic fractur<strong>in</strong>g is used to<br />

stimulate <strong>the</strong> wells, frac s<strong>and</strong> <strong>and</strong> <strong>coal</strong> f<strong>in</strong>es will be a problem until <strong>the</strong><br />

well cleans up <strong>and</strong> <strong>the</strong> solids production moderates. Coal f<strong>in</strong>es will<br />

cont<strong>in</strong>ue to migrate to <strong>the</strong> wellbore even after <strong>the</strong> <strong>in</strong>itial well<br />

completion is cleaned up, but with <strong>the</strong> proper equipment <strong>and</strong> h<strong>and</strong>l<strong>in</strong>g,<br />

f<strong>in</strong>es can be produced to surface <strong>and</strong> managed. Specially designed<br />

PCPs <strong>and</strong> SRPs h<strong>and</strong>le solids production better than ESPs, but each<br />

has drawbacks <strong>and</strong> advantages <strong>and</strong> <strong>in</strong>dividual wells must be analyzed<br />

to deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> best method of production.<br />

PCPs are an acceptable alternative, but <strong>the</strong>ir operations are more<br />

complex, <strong>and</strong> require a greater degree of tra<strong>in</strong><strong>in</strong>g for operat<strong>in</strong>g<br />

personnel (Exhibit 4.12). The pumps must be monitored closely as<br />

<strong>the</strong>y will fail if pumped dry. Control panels used with PCPs can shut<br />

<strong>the</strong> pump down based on <strong>the</strong> torque of <strong>the</strong> rod str<strong>in</strong>g <strong>and</strong> will prevent<br />

<strong>the</strong> pumps from operat<strong>in</strong>g dry. A down-hole pressure transducer can<br />

also be <strong>in</strong>stalled <strong>in</strong> <strong>the</strong> event that rod torque is not adequate to<br />

monitor fluid level <strong>in</strong> <strong>the</strong> well. It is critical that this type of pump not run<br />

dry s<strong>in</strong>ce <strong>the</strong> fluid, <strong>in</strong> this case water, acts to lubricate <strong>and</strong> cool <strong>the</strong><br />

pump. Without fluid mov<strong>in</strong>g through <strong>the</strong> pump, friction causes heat<br />

build up quickly <strong>and</strong> destroys <strong>the</strong> material <strong>in</strong> <strong>the</strong> stator.<br />

Exhibit 4.12 Cutaway of an R&M Energy Systems Moyno progressive cavity<br />

pump<br />

CMM, CBM & Gas Utilzation Infrastructure 4-15


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 4.13 illustrates an <strong>in</strong>stalled PCP drive-head. The compact size of <strong>the</strong> drive-head can<br />

be an advantage where space is at a premium. Progressive cavity pumps are also very<br />

good at transport<strong>in</strong>g large amounts of s<strong>and</strong> <strong>and</strong> <strong>coal</strong> f<strong>in</strong>es <strong>in</strong> <strong>the</strong> produced stream <strong>and</strong> may<br />

be used <strong>in</strong> wells where SRPs cannot h<strong>and</strong>le <strong>the</strong> solids. Control panels with variable<br />

frequency drives <strong>and</strong> torque sens<strong>in</strong>g controls are available to manage <strong>the</strong> operation of <strong>the</strong><br />

pumps <strong>and</strong> prevent premature failure. The drive head is attached directly to <strong>the</strong> well head<br />

<strong>and</strong> usually have feet that brace <strong>the</strong> weight of <strong>the</strong> unit. The prime mover (electric motor) is<br />

mounted directly to <strong>the</strong> drive head. Where gas fired eng<strong>in</strong>es are used, a belt <strong>and</strong> pulley<br />

system is employed.<br />

Exhibit 4.13 Motor Driven Progressive Cavity Pump<br />

Ano<strong>the</strong>r artificial lift alternative, electric submersible pumps (ESPs), are used where <strong>the</strong>re is<br />

a need to move large amounts of water from <strong>the</strong> reservoir over long periods of time. They<br />

require adequate monitor<strong>in</strong>g of <strong>the</strong> fluid levels with little solids production <strong>and</strong> will fail <strong>in</strong> a<br />

very short time if pumped off. ESPs can be applied on <strong>the</strong> down dip side of <strong>the</strong> reservoir, <strong>in</strong><br />

highly productive areas to <strong>in</strong>tercept water <strong>in</strong>flux <strong>and</strong> de-water <strong>the</strong> reservoir more efficiently.<br />

CMM, CBM & Gas Utilzation Infrastructure 4-16


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

4.3 CBM Surface Facilities, Pip<strong>in</strong>g <strong>and</strong> Treat<strong>in</strong>g<br />

In this section, a prelim<strong>in</strong>ary design of <strong>the</strong> surface facilities required to collect, treat, <strong>and</strong><br />

market <strong>the</strong> produced CBM is presented, <strong>in</strong>clud<strong>in</strong>g dehydration, compression, <strong>and</strong><br />

transportation. Also provided <strong>in</strong> this section are conceptual designs of <strong>the</strong> required surface<br />

facilities to h<strong>and</strong>le, treat, <strong>and</strong> dispose of <strong>the</strong> water produced dur<strong>in</strong>g <strong>the</strong> dewater<strong>in</strong>g phase,<br />

<strong>in</strong>clud<strong>in</strong>g flow-l<strong>in</strong>e requirements <strong>and</strong> treatment plant specifications. The siz<strong>in</strong>g of <strong>the</strong> surface<br />

facilities is based on <strong>the</strong> modeled gas <strong>and</strong> water production streams derived from <strong>the</strong><br />

reservoir simulation study.<br />

4.3.1 Surface Facilities – Pip<strong>in</strong>g<br />

CBM ga<strong>the</strong>r<strong>in</strong>g systems generally utilize high density polyethylene (HDPE) pip<strong>in</strong>g because of<br />

<strong>the</strong> low operat<strong>in</strong>g pressures. Pip<strong>in</strong>g up to 150 mm (6-<strong>in</strong>ch) <strong>and</strong> 2070 kPa (300 psi) is readily<br />

available <strong>and</strong> higher pressure pipe can be found. Black or orange HDPE pipe is transported<br />

<strong>in</strong> rolls from <strong>the</strong> manufacturer <strong>and</strong> can be ordered <strong>in</strong> specific lengths (Exhibit 4.14).<br />

Connections are made us<strong>in</strong>g a ceramic fus<strong>in</strong>g tool which is heated with a propane torch or <strong>in</strong><br />

larger <strong>in</strong>stallations a mobile fus<strong>in</strong>g mach<strong>in</strong>e mounted on wheels or tracks is also available.<br />

Exhibit 4.14 3-<strong>in</strong>ch HDPE Pipe<br />

CMM, CBM & Gas Utilzation Infrastructure 4-17


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Each end of <strong>the</strong> pipe is squared <strong>and</strong> heated <strong>in</strong> <strong>the</strong> h<strong>and</strong> tool to a prescribed temperature<br />

<strong>the</strong>n fitted toge<strong>the</strong>r <strong>and</strong> allowed to cool. Properly fused, <strong>the</strong> strength of <strong>the</strong> connection is<br />

equal to that of <strong>the</strong> body of <strong>the</strong> pipe. Straight jo<strong>in</strong>t lengths of plastic pipe can be utilized for<br />

low pressure header sites where many wells are connected to a central separator. Flanged<br />

connections are also available for plastic pipe (Exhibit 4.15) <strong>and</strong> are used for convenience or<br />

higher pressure applications.<br />

Exhibit 4.15 102mm (4-<strong>in</strong>ch) Plastic Pipe Flanged Adapter<br />

HDPE is particularly effective for water h<strong>and</strong>l<strong>in</strong>g s<strong>in</strong>ce it does not corrode <strong>and</strong> is not affected<br />

by H2S or CO2. Care must be taken when buried though, s<strong>in</strong>ce stones <strong>and</strong> sharp objects can<br />

cut <strong>the</strong> plastic. Gas is usually produced up <strong>the</strong> cas<strong>in</strong>g/tub<strong>in</strong>g annulus, <strong>and</strong> <strong>the</strong> water pumped<br />

through <strong>the</strong> tub<strong>in</strong>g. The annular gas is separated <strong>in</strong> order to remove any additional free<br />

water, <strong>and</strong> likewise, <strong>the</strong> water leg is separated <strong>in</strong> order to remove any entra<strong>in</strong>ed gas. It is<br />

necessary to measure <strong>the</strong> separated gas <strong>and</strong> water volumes <strong>in</strong> addition to <strong>the</strong> well-head<br />

volumes. Gas meters are necessary on <strong>the</strong> gas outlet of each separator, <strong>and</strong> water meters<br />

should be placed on <strong>the</strong> water outlet of each separator.<br />

Water disposal will likely be required, but <strong>the</strong> disposal method will depend <strong>in</strong> large part on <strong>the</strong><br />

water quality <strong>and</strong> environmental considerations. There are numerous options for <strong>the</strong><br />

treatment of produced water to br<strong>in</strong>g <strong>the</strong> quality to a st<strong>and</strong>ard suitable for local agricultural<br />

use or surface discharge. If <strong>the</strong>re is an agricultural need <strong>in</strong> <strong>the</strong> project area, beneficial use for<br />

<strong>the</strong> water may <strong>in</strong>clude crop irrigation or animal water<strong>in</strong>g. One method to raise <strong>the</strong> water<br />

quality is to <strong>in</strong>stall a reverse osmosis unit, <strong>and</strong> construct a large l<strong>in</strong>ed pit for storage<br />

purposes. Water produced from <strong>the</strong> project might require treatment before it could be<br />

CMM, CBM & Gas Utilzation Infrastructure 4-18


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

discharged <strong>in</strong>to <strong>the</strong> local watershed. The capital <strong>and</strong> operational costs for surface discharge<br />

may need to <strong>in</strong>clude active treatment costs for reverse osmosis <strong>and</strong> <strong>the</strong> drill<strong>in</strong>g of a disposal<br />

well with correspond<strong>in</strong>g <strong>in</strong>stallation of <strong>in</strong>jection facilities to dispose of <strong>the</strong> highly sal<strong>in</strong>e<br />

effluent. A complete discussion of water treatment options is presented <strong>in</strong> Section 9,<br />

Environmental Assessment.<br />

The most efficient water disposal method will be deter<strong>m<strong>in</strong>e</strong>d by <strong>the</strong> quality <strong>and</strong> quantity of<br />

water to be h<strong>and</strong>led <strong>and</strong> local <strong>and</strong> government regulations. Local environmental factors<br />

should be evaluated as field <strong>development</strong> proceeds. Exhibit 4.16 is a schematic layout of <strong>the</strong><br />

surface facilities proposed for an <strong>in</strong>itial 5-well pilot project.<br />

Exhibit 4.16 Schematic Layout of Surface Equipment<br />

CMM, CBM & Gas Utilzation Infrastructure 4-19


4.3.2 Gas Meter<strong>in</strong>g<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Advanced Resources recommends us<strong>in</strong>g an ITT Barton Model 202E flow recorder as <strong>the</strong>y<br />

are reliable <strong>and</strong> used extensively <strong>in</strong> <strong>the</strong> United States natural gas <strong>in</strong>dustry. The <strong>in</strong>itial project<br />

will require gas meter<strong>in</strong>g stations consist<strong>in</strong>g of <strong>the</strong> follow<strong>in</strong>g items:<br />

Barton Mechanical Orifice Meter Recorder - 5m-690kPa-65°C (200"-100 psig-150 °F)<br />

3-Valve 9.5mm (3/8") SS Tub<strong>in</strong>g Manifold-<br />

2-Tap Valves for Daniels Orifice Fitt<strong>in</strong>g-<br />

Level<strong>in</strong>g Saddle for L<strong>in</strong>e Size-51mm (2")<br />

Galvanized Pipe Meter Mount for Saddle<br />

Set(2) 9.5mm x 1.5m (3/8<strong>in</strong>ch x 5ft) SS Tub<strong>in</strong>g w/Fitt<strong>in</strong>g for Gage L<strong>in</strong>es<br />

Orifice Plates <strong>and</strong> Orifice Plate Seal R<strong>in</strong>gs<br />

Orifice Meter Tubes<br />

Ancillary parts required for <strong>the</strong> meter runs <strong>in</strong>clude charts, a Sony orifice computer <strong>and</strong> <strong>in</strong>k<br />

pens. Exhibit 4.17 is a photograph of a Barton meter run below <strong>the</strong> chart recorder hous<strong>in</strong>g.<br />

The chart recorder is shown with an active chart.<br />

Exhibit 4.17 Barton Meter Run <strong>and</strong> Chart<br />

Electronic style meter<strong>in</strong>g is also available <strong>and</strong> should be considered when full field<br />

<strong>development</strong> goes forward.<br />

CMM, CBM & Gas Utilzation Infrastructure 4-20


4.3.3 Water Meter<strong>in</strong>g<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Water meters for use <strong>in</strong> meter<strong>in</strong>g <strong>in</strong>jected water dur<strong>in</strong>g <strong>in</strong>jection-falloff test<strong>in</strong>g can also be<br />

used to meter water production from <strong>the</strong> project. In <strong>the</strong> Appalachian Bas<strong>in</strong>, water tanks are<br />

generally located on each well site, <strong>and</strong> water volumes are measured by tank gauge.<br />

Measur<strong>in</strong>g produced water is an essential part of any CBM program as <strong>the</strong> data are required<br />

for history match<strong>in</strong>g <strong>and</strong> to diagnose down hole problems with pumps.<br />

Several br<strong>and</strong>s of turb<strong>in</strong>e flow meters are available on <strong>the</strong> market, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> flow meter<br />

shown <strong>in</strong> Exhibit 4.18, manufactured by Halliburton. The unit consists of two parts: a turb<strong>in</strong>e<br />

flow meter, <strong>and</strong> a flow analyzer. The flow analyzer is designated as <strong>the</strong> Model MC-II Flow<br />

Analyzer, <strong>and</strong> has <strong>the</strong> capability to display <strong>in</strong>stantaneous rate <strong>and</strong> display <strong>and</strong> record<br />

cumulative flow. The flow meter has 32mm (1¼ <strong>in</strong>ch) npt p<strong>in</strong>s on both sides. Careful<br />

attention should be paid to enter<strong>in</strong>g <strong>the</strong> correct flow meter calibration factors <strong>in</strong>to <strong>the</strong> flow<br />

analyzer.<br />

These flow meters are suitable for rugged field usage <strong>and</strong> are equipped with batteries that<br />

last for five years. Extra batteries <strong>and</strong> turb<strong>in</strong>e meter redress kits should also be ordered. Full<br />

<strong>in</strong>structions are <strong>in</strong>cluded <strong>in</strong> each kit. Turb<strong>in</strong>es Inc. is ano<strong>the</strong>r manufacturer that provides<br />

reliable equipment with various record<strong>in</strong>g <strong>and</strong> data transmitt<strong>in</strong>g capabilities <strong>in</strong>clud<strong>in</strong>g RTUs<br />

that report data via radio or phone modem.<br />

Exhibit 4.18 Halliburton Flow Meter<br />

CMM, CBM & Gas Utilzation Infrastructure 4-21


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 4.19 is a list<strong>in</strong>g of surface facilities materials required for <strong>the</strong> 5-well pilot project.<br />

Surface Facilities Units Per Well 5-spot<br />

610mm OD x 2.13 m (24<strong>in</strong>ch x 7ft) separator w/ 51mm<br />

(2<strong>in</strong>) trim <strong>and</strong> base plate<br />

915mm OD x 3.05 m (36<strong>in</strong>ch x 10ft) separator w/ 76mm<br />

ea n/a 1<br />

(3<strong>in</strong>) trim <strong>and</strong> base plate<br />

HDPE 3408 114mm (4.5<strong>in</strong>) OD x 80mm (3.16<strong>in</strong>) SDR-7,<br />

ea n/a 1<br />

54.2 kg/m 3 (3.384 lb/ft) meter 400 2000<br />

Flare stack ea n/a 1<br />

Industrial reverse osmosis system ea n/a 2<br />

Gas meter run ea n/a 8<br />

Water meter run ea n/a 7<br />

Pressure regulators ea n/a 10<br />

Plastic l<strong>in</strong>er for evaporation/storage pits m 2<br />

n/a 3600<br />

Gas fired electric generator ea n/a 1<br />

Power l<strong>in</strong>es, ancillary equipment meter 400 2000<br />

4.3.4 Separator Vessels<br />

Exhibit 4.19 Surface Facilities List<strong>in</strong>g<br />

In order to save on cost, it is recommended that separators, flare stacks <strong>and</strong> water pits be<br />

located at a central facility. Gas can be metered from <strong>the</strong> <strong>in</strong>dividual well pip<strong>in</strong>g at <strong>the</strong> central<br />

facility, but read<strong>in</strong>gs will be upstream of <strong>the</strong> separators <strong>and</strong> may conta<strong>in</strong> water vapor. Two<br />

separate systems are required to move <strong>the</strong> gas <strong>and</strong> water to a central facility where each can<br />

be processed. Exhibit 4.20 is a two phase vertical separator common to U. S. CBM<br />

operations.<br />

Exhibit 4.20 2-Phase Vertical Separator<br />

CMM, CBM & Gas Utilzation Infrastructure 4-22


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

In low water volume sett<strong>in</strong>gs vertical separators are commonly used, whereas <strong>in</strong> <strong>the</strong> Western<br />

U. S. a horizontal orientation is <strong>the</strong> most common due to higher water production (Exhibit<br />

4.21). As long as <strong>the</strong> separator is efficient <strong>in</strong> separat<strong>in</strong>g water <strong>and</strong> gas, orientation is not<br />

critical <strong>in</strong> this application.<br />

Exhibit 4.21 3-Phase Horizontal Separator, Sivalls Inc.<br />

4.3.5 Gas Pipel<strong>in</strong>e System Design<br />

The <strong>in</strong>-field pipel<strong>in</strong>e ga<strong>the</strong>r<strong>in</strong>g system requires various diameters of pipe at different <strong>in</strong>tervals<br />

to be efficient. The first component is a series of relatively large diameter pipel<strong>in</strong>es designed<br />

to move gas or water from <strong>the</strong> field to <strong>the</strong> central treatment facility. These large diameter<br />

pipel<strong>in</strong>es are referred to as “trunkl<strong>in</strong>es”. The second component is a series of relatively small<br />

diameter pipel<strong>in</strong>es designed to move gas or water from <strong>the</strong> wellhead to <strong>the</strong> trunkl<strong>in</strong>e, referred<br />

to as “flowl<strong>in</strong>es”. Intermediate l<strong>in</strong>es between <strong>the</strong> trunk <strong>and</strong> flowl<strong>in</strong>es are sometimes referred<br />

to as “ga<strong>the</strong>r<strong>in</strong>g l<strong>in</strong>es” <strong>and</strong> are necessary as <strong>the</strong> system grows with field <strong>development</strong>. The<br />

large, high-pressure gas pipe l<strong>in</strong>e that would move <strong>the</strong> gas from <strong>the</strong> project area to a market<br />

is referred to as a transmission pipel<strong>in</strong>e.<br />

In order to optimize <strong>coal</strong>bed <strong>methane</strong> production, it is necessary to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> lowest<br />

possible pressure at <strong>the</strong> wellhead. Ideally, wellhead pressure would be ma<strong>in</strong>ta<strong>in</strong>ed at zero<br />

CMM, CBM & Gas Utilzation Infrastructure 4-23


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

psi, but, because of economic <strong>and</strong> practical constra<strong>in</strong>ts, this is not possible. An Excel-based<br />

program written by Advanced Resources based on <strong>the</strong> Weymouth equation for flow of<br />

natural gas through pipel<strong>in</strong>es can be used to deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> appropriate pipel<strong>in</strong>e diameters,<br />

based on <strong>the</strong> length of each pipel<strong>in</strong>e segment <strong>and</strong> <strong>the</strong> amount of gas flow<strong>in</strong>g through each<br />

segment. Similarly, <strong>the</strong> optimum diameter <strong>and</strong> configuration of <strong>the</strong> ga<strong>the</strong>r<strong>in</strong>g system can be<br />

deter<strong>m<strong>in</strong>e</strong>d us<strong>in</strong>g Advanced Resources’ Weymouth Equation Program. The result of <strong>the</strong><br />

ga<strong>the</strong>r<strong>in</strong>g system analysis for <strong>the</strong> <strong>in</strong>itial wells can be extrapolated to future <strong>development</strong> as<br />

<strong>the</strong> field exp<strong>and</strong>s.<br />

The pipel<strong>in</strong>e diameters <strong>and</strong> lengths are used to estimate <strong>the</strong> capital cost of <strong>the</strong> pipel<strong>in</strong>es <strong>and</strong><br />

to deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> material used such as <strong>the</strong> high-density polyethylene (HDPE) pipe. The use<br />

of plastic pipe is considered ideal for CBM applications for two reasons: 1) CBM production<br />

only requires pressure well below <strong>the</strong> maximum operat<strong>in</strong>g pressure of plastic pipe, <strong>and</strong> 2)<br />

CBM wells tend to be long lived, <strong>and</strong> buried plastic pipe will last a long time with little or no<br />

ma<strong>in</strong>tenance. Plastic pipe may be purchased for approximately $1.65/kg, plus shipp<strong>in</strong>g,<br />

trench<strong>in</strong>g, lay<strong>in</strong>g <strong>and</strong> jo<strong>in</strong>t<strong>in</strong>g costs.<br />

Assum<strong>in</strong>g a field pipel<strong>in</strong>e pressure of 0.7 kg/cm 2 (10 psig) at <strong>the</strong> central facility (future<br />

compression site with field <strong>development</strong>), <strong>the</strong> pressure will <strong>in</strong>crease <strong>in</strong> <strong>the</strong> trunkl<strong>in</strong>es at<br />

greater distances from <strong>the</strong> central facility <strong>and</strong> as more gas accumulates <strong>in</strong> <strong>the</strong> pipe. In <strong>the</strong><br />

U.S., CBM operators attempt to ma<strong>in</strong>ta<strong>in</strong> wellhead pressures of 2.8 kg/cm 2 (40 psig) or less.<br />

Based on this, it was deter<strong>m<strong>in</strong>e</strong>d that pressures <strong>in</strong> <strong>the</strong> trunkl<strong>in</strong>e system should not be<br />

allowed to build up more than 2.1 kg/cm 2 (30 psig) at <strong>the</strong> po<strong>in</strong>t of maximum field production.<br />

This will allow for a maximum pressure of 2.8 kg/cm 2 (40 psig) at <strong>the</strong> most distant well site by<br />

us<strong>in</strong>g <strong>the</strong> appropriate pipel<strong>in</strong>e diameters. It should be noted that this maximum pipel<strong>in</strong>e<br />

pressure will exist at <strong>the</strong> most distant well sites, <strong>and</strong> only dur<strong>in</strong>g peak field production. It<br />

should also be noted that <strong>the</strong> pressures <strong>in</strong> <strong>the</strong> water pipel<strong>in</strong>e system are completely<br />

<strong>in</strong>dependent of <strong>the</strong> gas pipel<strong>in</strong>e system.<br />

4.3.6 Water Pipel<strong>in</strong>e System Design<br />

Because of <strong>the</strong> amount of water predicted by <strong>the</strong> simulation study, Advanced Resources<br />

recommends construct<strong>in</strong>g a system of pipel<strong>in</strong>es to transport <strong>the</strong> water to a central facility<br />

where it will be processed <strong>and</strong> disposed. The sucker rod pump<strong>in</strong>g system (SRP) described<br />

above was designed to deliver water to <strong>the</strong> surface at a well-head pressure of 3.52 kg/cm 2<br />

(50 psi). The ga<strong>the</strong>r<strong>in</strong>g system is designed to h<strong>and</strong>le this pressure <strong>and</strong> <strong>the</strong>re is enough<br />

pressure from <strong>the</strong> downhole pump to transport <strong>the</strong> water to a central facility. Topography or<br />

CMM, CBM & Gas Utilzation Infrastructure 4-24


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

o<strong>the</strong>r localized factors deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> need for localized transfer pumps with<strong>in</strong> a pipel<strong>in</strong>e<br />

system <strong>and</strong> it may be necessary to <strong>in</strong>stall some m<strong>in</strong>or pump capacity <strong>in</strong> <strong>the</strong> ga<strong>the</strong>r<strong>in</strong>g system<br />

as field <strong>development</strong> progresses.<br />

The ga<strong>the</strong>r<strong>in</strong>g <strong>and</strong> trunk water pipel<strong>in</strong>es can be laid <strong>in</strong> <strong>the</strong> same right of way as <strong>the</strong> gas<br />

pipel<strong>in</strong>es, result<strong>in</strong>g <strong>in</strong> considerable sav<strong>in</strong>gs. The water pipel<strong>in</strong>es will be constructed from <strong>the</strong><br />

same HDPE pipe used for <strong>the</strong> gas l<strong>in</strong>es. Exhibit 4.16 shows a schematic representation of<br />

<strong>the</strong> gas <strong>and</strong> water pip<strong>in</strong>g system for <strong>the</strong> 5-well pilot project.<br />

An Excel based program developed by Advanced Resources that calculates frictional<br />

pressure drop for fluid flow through pipel<strong>in</strong>es can be used to deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> appropriate<br />

pipel<strong>in</strong>e diameters based on <strong>the</strong> length of each pipel<strong>in</strong>e segment <strong>and</strong> <strong>the</strong> amount of water<br />

flow<strong>in</strong>g through each segment. Ga<strong>the</strong>r<strong>in</strong>g pipel<strong>in</strong>e diameters are deter<strong>m<strong>in</strong>e</strong>d <strong>in</strong> a manner<br />

similar to <strong>the</strong> one utilized to deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> gas ga<strong>the</strong>r<strong>in</strong>g pipel<strong>in</strong>e diameters detailed above.<br />

4.3.7 Compression<br />

Because of <strong>the</strong> relatively long time period required to fully develop a CBM field, design<strong>in</strong>g an<br />

optimal gas compression system represents a significant challenge. If an operator <strong>in</strong>stalls<br />

one large compression facility at <strong>the</strong> beg<strong>in</strong>n<strong>in</strong>g of <strong>the</strong> project capable of h<strong>and</strong>l<strong>in</strong>g total<br />

anticipated gas volumes, too much capacity would go unused for too long a period of time.<br />

Alternatively, an operator also should not <strong>in</strong>stall compression on a well-by-well basis,<br />

because operat<strong>in</strong>g <strong>and</strong> ma<strong>in</strong>tenance costs for so many units would quickly become<br />

logistically difficult <strong>and</strong> operationally expensive. Therefore, compression must be <strong>in</strong>stalled <strong>in</strong><br />

a way that will both make efficient use of total capacity, <strong>and</strong> provide for economy of scale.<br />

The pilot project will not require compression, but should <strong>the</strong> pilot project prove successful<br />

<strong>and</strong> additional wells drilled, <strong>the</strong> capacity of <strong>the</strong> gas pipel<strong>in</strong>e will be exceeded. Compression<br />

is required to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong> ga<strong>the</strong>r<strong>in</strong>g system at a recommended suction pressure of about 0.7<br />

kg/cm 2 (10 psi) at <strong>the</strong> central ga<strong>the</strong>r<strong>in</strong>g, which would result <strong>in</strong> a backpressure at <strong>the</strong> wellhead<br />

of about 2.1 kg/cm 2 (30 psi).<br />

Advanced Resources recommends siz<strong>in</strong>g <strong>the</strong> compression to a capacity of gas represent<strong>in</strong>g<br />

1.5 years of drill<strong>in</strong>g. Ultimately <strong>the</strong> number of compressors will be deter<strong>m<strong>in</strong>e</strong>d by <strong>the</strong> volume<br />

of gas per well, <strong>the</strong> number of wells drilled, <strong>and</strong> <strong>the</strong> tim<strong>in</strong>g of <strong>the</strong> drill<strong>in</strong>g program. Phas<strong>in</strong>g <strong>in</strong><br />

<strong>the</strong> compressor capacity is <strong>the</strong> most economical way to ma<strong>in</strong>ta<strong>in</strong> an adequate volume at <strong>the</strong><br />

lowest pipel<strong>in</strong>e pressures <strong>and</strong> efficiently add compression.<br />

CMM, CBM & Gas Utilzation Infrastructure 4-25


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The older wells <strong>in</strong> <strong>the</strong> field will decl<strong>in</strong>e to a stable gas production rate as drill<strong>in</strong>g <strong>in</strong>creases <strong>the</strong><br />

number of wells <strong>and</strong> gas volumes produced <strong>in</strong>to <strong>the</strong> pipel<strong>in</strong>e system. Compression is sized<br />

to move <strong>the</strong> maximum produced volume at a reasonable pipel<strong>in</strong>e pressure. Once a new gas<br />

field is established it is important to ma<strong>in</strong>ta<strong>in</strong> a stable gas production rate <strong>in</strong>to <strong>the</strong> pipel<strong>in</strong>e<br />

system <strong>in</strong> order to efficiently operate <strong>the</strong> compression capacity.<br />

Gardner-Denver, Caterpillar, <strong>and</strong> Ariel are lead<strong>in</strong>g manufacturers of drivers <strong>and</strong> compression<br />

units <strong>in</strong> <strong>the</strong> United States. The unit(s) should ma<strong>in</strong>ta<strong>in</strong> a low suction pressure with<strong>in</strong> <strong>the</strong> field,<br />

on <strong>the</strong> order of 0.7-2.1 kg/cm 2 (10-30 psig), <strong>and</strong> <strong>the</strong> output required to enter <strong>the</strong><br />

transmission/fuel l<strong>in</strong>e system. The number of stages needed for <strong>the</strong> compression will<br />

depend on <strong>the</strong> suction <strong>and</strong> discharge pressures required to produce <strong>the</strong> wells <strong>and</strong> compress<br />

<strong>the</strong> gas <strong>in</strong>to <strong>the</strong> transmission l<strong>in</strong>e <strong>and</strong> <strong>the</strong> compression ratios of <strong>the</strong> equipment. Three <strong>and</strong><br />

four stage compression is common <strong>in</strong> CBM projects <strong>in</strong> <strong>the</strong> United States due to <strong>the</strong> low<br />

suction pressures required to ma<strong>in</strong>ta<strong>in</strong> CBM production <strong>and</strong> <strong>the</strong> high required pressures for<br />

<strong>the</strong> <strong>in</strong>terstate transmission l<strong>in</strong>es. Reciprocat<strong>in</strong>g <strong>and</strong> turb<strong>in</strong>e type compression units are<br />

available. The gas volumes predicted with full field <strong>development</strong> make turb<strong>in</strong>e compression<br />

attractive to <strong>the</strong> Donbass project due to its efficiency.<br />

Exhibit 4.22 Turb<strong>in</strong>e Compressor<br />

CMM, CBM & Gas Utilzation Infrastructure 4-26


4.3.8 Dehydration<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Coalbed <strong>methane</strong> produced from <strong>the</strong> Donbass project will require dehydration once full field<br />

<strong>development</strong> is established. A dehydration unit comprises a major part of <strong>the</strong> compression<br />

<strong>and</strong> treat<strong>in</strong>g system, <strong>and</strong> must be designed <strong>in</strong> a manner consistent with <strong>the</strong> phased<br />

<strong>in</strong>stallation of compression. As a result, <strong>the</strong> <strong>in</strong>stallation of dehydration units should be<br />

coord<strong>in</strong>ated with <strong>the</strong> compression. Dehydration units range from small units for <strong>in</strong>dividual<br />

wells to units capable of h<strong>and</strong>l<strong>in</strong>g 283 Mcmd (10 MMcfd) of water saturated gas <strong>and</strong><br />

deliver<strong>in</strong>g outlet water equal to or less than imperial 112 kg/MMcm <strong>and</strong> larger.<br />

Various types of dehydration systems are available <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> glycol dehydrators, i.e.,<br />

triethylene glycol (TEG), <strong>the</strong> most popular, <strong>and</strong> diethylene glycol (DEG) as well as desiccant<br />

types. Some dehydrators use a mix of solvents <strong>in</strong> various concentrations of TEG <strong>and</strong> DEG.<br />

The glycol dehydrators are <strong>the</strong> most effective <strong>in</strong> remov<strong>in</strong>g water from gas, however <strong>the</strong>y do<br />

allow some emissions of <strong>methane</strong> <strong>and</strong> volatile organic compounds (VOCs). Glycol<br />

dehydrators vary <strong>in</strong> size from 75 mcfd (2 MCMD) units to several mmcfd units. Desiccant<br />

type dehydrators are less efficient, but release less emissions <strong>in</strong> <strong>the</strong>ir process. A glycol<br />

dehydrator consists of a wet gas <strong>in</strong>let, contact<strong>in</strong>g tower, rich glycol pump, a heat exchanger,<br />

glycol reboiler/regenerator, <strong>and</strong> a lean glycol pump. Desiccant type dehydrators are similar<br />

<strong>in</strong> nature with <strong>the</strong> exception of glycol regeneration equipment.<br />

Exhibit 4.23 Typical Flow Diagram – Glycol Dehydration Unit<br />

CMM, CBM & Gas Utilzation Infrastructure 4-27


4.3.9 Power Generation<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

As discussed <strong>in</strong> <strong>the</strong> artificial lift section above, <strong>the</strong> largest power requirement of <strong>the</strong> CBM<br />

project will be <strong>the</strong> electric motors that drive <strong>the</strong> sucker rod pumps. CBM projects are most<br />

successful when operations are cont<strong>in</strong>uous, <strong>and</strong> this implies that a reliable electrical power<br />

source should be available. Relative to <strong>the</strong> size of power generation units required, ei<strong>the</strong>r<br />

reciprocat<strong>in</strong>g or turb<strong>in</strong>e driven generators are appropriate for <strong>the</strong> Donbass CBM Project<br />

application.<br />

The critical parameters to exa<strong>m<strong>in</strong>e</strong> between reciprocat<strong>in</strong>g or turb<strong>in</strong>e drive generator sets are<br />

capital cost, operat<strong>in</strong>g cost, <strong>and</strong> fuel efficiency. One significant factor is <strong>the</strong> capital cost <strong>and</strong><br />

fuel cost of <strong>the</strong> turb<strong>in</strong>e type of eng<strong>in</strong>e which is approximately 3.4 times <strong>and</strong> 1.14 times that of<br />

<strong>the</strong> reciprocat<strong>in</strong>g eng<strong>in</strong>e respectively. However, <strong>the</strong> operat<strong>in</strong>g cost (exclud<strong>in</strong>g fuel) of <strong>the</strong><br />

turb<strong>in</strong>e is only 22% of <strong>the</strong> reciprocat<strong>in</strong>g eng<strong>in</strong>e.<br />

4.3.9.1 Comb<strong>in</strong>ed Cycle Gas Turb<strong>in</strong>es<br />

To be used as a fuel source for a comb<strong>in</strong>ed cycle gas turb<strong>in</strong>e, CBM can be collected,<br />

compressed, <strong>and</strong> dehydrated <strong>in</strong> a TEG (triethylene glycol) unit. The compressed <strong>and</strong> treated<br />

gas can <strong>the</strong>n be used to <strong>in</strong>ject <strong>in</strong>to a local system connect<strong>in</strong>g <strong>the</strong> field with a power<br />

generation facility. The heat from <strong>the</strong> turb<strong>in</strong>e generators is recovered <strong>in</strong> a Heat Recovery<br />

Steam Generator <strong>and</strong> used to drive steam turb<strong>in</strong>es, operat<strong>in</strong>g <strong>in</strong> a comb<strong>in</strong>ed cycle<br />

configuration.<br />

Exhibit 4.24 Flow scheme for CBM to a Comb<strong>in</strong>ed Cycle Gas Turb<strong>in</strong>e for Electric Power Generation<br />

Specialized suppliers for <strong>the</strong> above components <strong>in</strong>clude General Electric for <strong>the</strong> compression<br />

system, ALCO, a major provider of packaged TEG units <strong>and</strong> General Electric for <strong>the</strong> aero<br />

derived turb<strong>in</strong>e generators. GE provided <strong>the</strong> follow<strong>in</strong>g description of <strong>the</strong>ir recommended<br />

Comb<strong>in</strong>ed Cycle Gas Turb<strong>in</strong>e unit model MS9001E (9E):<br />

CMM, CBM & Gas Utilzation Infrastructure 4-28


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

“The MS9001E (9E) gas turb<strong>in</strong>e is GE's 50 Hz workhorse. With more than 350 units, it has<br />

accumulated over eight million hours of utility <strong>and</strong> <strong>in</strong>dustrial service, many <strong>in</strong> arduous<br />

climates rang<strong>in</strong>g from desert heat <strong>and</strong> tropical humidity to arctic cold.<br />

Orig<strong>in</strong>ally <strong>in</strong>troduced <strong>in</strong> 1978 at 105 MW, <strong>the</strong> 9E has <strong>in</strong>corporated numerous component<br />

improvements. The latest model boasts an output of 126 MW <strong>and</strong> is capable of achiev<strong>in</strong>g<br />

more than 52 percent efficiency <strong>in</strong> comb<strong>in</strong>ed cycle.<br />

Whe<strong>the</strong>r for simple cycle or comb<strong>in</strong>ed cycle application, base load or peak<strong>in</strong>g duty, 9E<br />

packages are comprehensively eng<strong>in</strong>eered with <strong>in</strong>tegrated systems that <strong>in</strong>clude controls,<br />

auxiliaries, ducts <strong>and</strong> silenc<strong>in</strong>g. They are designed for reliable operation <strong>and</strong> m<strong>in</strong>imal<br />

ma<strong>in</strong>tenance at a competitively low <strong>in</strong>stalled cost. Like o<strong>the</strong>r GE E-class technology units,<br />

<strong>the</strong> Dry Low NOx combustion system is available on 9E, which can achieve NOx emissions<br />

under 15 ppm when burn<strong>in</strong>g natural gas.<br />

With its state-of-<strong>the</strong>-art fuel h<strong>and</strong>l<strong>in</strong>g capabilities, <strong>the</strong> 9E accommodates a wide range of<br />

fuels <strong>in</strong>clud<strong>in</strong>g natural gas, light <strong>and</strong> heavy distillate oil, naphtha, crude oil <strong>and</strong> residual oil.<br />

Designed for dual-fuel operation, it can switch from one fuel to ano<strong>the</strong>r while runn<strong>in</strong>g under<br />

load. This flexibility, along with its extensive experience <strong>and</strong> reliability record, makes <strong>the</strong> 9E<br />

well-suited for Integrated Gasification Comb<strong>in</strong>ed Cycle (IGCC) projects.<br />

In simple cycle, <strong>the</strong> MS9001E is a reliable, low first-cost mach<strong>in</strong>e for peak<strong>in</strong>g service, while<br />

its high comb<strong>in</strong>ed cycle efficiency gives excellent fuel sav<strong>in</strong>gs <strong>in</strong> base load operations. Its<br />

compact design provides flexibility <strong>in</strong> plant layout as well as <strong>the</strong> easy addition of <strong>in</strong>crements<br />

of power when a phased capacity expansion is required.”<br />

A GE technical bullet<strong>in</strong> for <strong>the</strong> Comb<strong>in</strong>ed Cycle Gas Turb<strong>in</strong>e (CCGT) is shown <strong>in</strong> Appendix<br />

4.A. <strong>and</strong> an example layout of a turb<strong>in</strong>e plant is shown <strong>in</strong> Exhibit 4.25.<br />

CMM, CBM & Gas Utilzation Infrastructure 4-29


1<br />

2<br />

FOR QUALITATIVE INDICATION ONLY<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

16<br />

Area 10 acre<br />

Lx 717 ft<br />

A Ly 622 ft<br />

A<br />

16<br />

1 - Gas Turb<strong>in</strong>e Package<br />

7<br />

2 - Heat Recovery Steam Generator<br />

3 - Steam Turb<strong>in</strong>e Package<br />

5 - Cool<strong>in</strong>g Tower<br />

B<br />

2<br />

1<br />

6 - Switchyard<br />

7 - Adm<strong>in</strong>istration, Shop & Warehouse<br />

10 - De<strong>m<strong>in</strong>e</strong>ralized Water Tank<br />

11 - Raw Water Tank<br />

12 - Neutralized Water Tank<br />

B<br />

2 1<br />

15 - Road<br />

16 - Park<strong>in</strong>g<br />

2 1<br />

6<br />

Ly<br />

18 - Feed Pumps<br />

21 - Fire Protection Tank<br />

C C<br />

1<br />

10<br />

2<br />

12<br />

3 3<br />

D<br />

21 21<br />

D<br />

15<br />

5<br />

E E<br />

Lx<br />

Thermoflow, Inc. Company: GE<br />

User: GE Energy<br />

F<br />

D a te : 04/27/07<br />

Draw<strong>in</strong>g No:<br />

F<br />

1<br />

11<br />

18<br />

2<br />

3<br />

3<br />

4<br />

4<br />

Exhibit 4.25 GE Comb<strong>in</strong>ed Cycle Gas Turb<strong>in</strong>e Plant Layout<br />

C :\Tflow16\M YFILES\English Ukra<strong>in</strong>e<br />

PEA C E/G T PR O 16.0<br />

CMM, CBM & Gas Utilzation Infrastructure 4-30<br />

5<br />

5<br />

6<br />

6<br />

7<br />

SITE PLA N<br />

7<br />

8<br />

8


4.3.10 Ammonia Production<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

CBM from <strong>the</strong> Donbass project could be used <strong>in</strong> <strong>the</strong> production of ammonia. Ammonia is<br />

widely used <strong>in</strong> <strong>the</strong> production of fertilizers <strong>and</strong> <strong>in</strong> <strong>the</strong> pharmaceutical <strong>in</strong>dustry. After<br />

compression <strong>and</strong> treatment, CBM can be utilized <strong>in</strong> an ammonia syn<strong>the</strong>sis plant.<br />

Exhibit 4.26 Flow scheme for CBM to Ammonia Syn<strong>the</strong>sis<br />

In <strong>the</strong> production plant, <strong>the</strong> <strong>methane</strong> is reacted with steam to form hydrogen. Water <strong>and</strong><br />

carbon dioxide are removed from <strong>the</strong> gas stream, while nitrogen is supplied from <strong>the</strong> air. The<br />

nitrogen <strong>and</strong> hydrogen react <strong>in</strong> <strong>the</strong> presence of an iron catalyst, at high temperature <strong>and</strong><br />

pressure to form ammonia (<strong>the</strong> Haber process).<br />

Kellog Brown & Root (KBR) is a major manufacturer of ammonia production plants <strong>and</strong><br />

provided <strong>in</strong>formation about <strong>the</strong>ir proprietary ammonia production process.<br />

“KAAPplus (KBR Advanced Ammonia Process plus) is KBR's preferred offer<strong>in</strong>g for new<br />

plants. KAAPplus comb<strong>in</strong>es three major features of KBR's ammonia technology: KRES,<br />

Purifier, <strong>and</strong> KAAP.<br />

The KRES (KBR Reform<strong>in</strong>g Exchanger System) replaces <strong>the</strong> traditional<br />

primary reformer with much simpler equipment. The auto<strong>the</strong>rmal reformer <strong>in</strong><br />

<strong>the</strong> KRES system can be operated with pla<strong>in</strong> air <strong>in</strong>stead of oxygen, because<br />

<strong>the</strong> downstream Purifier requires excess nitrogen. Therefore, an air separation<br />

unit is not needed for <strong>the</strong> KRES system.<br />

The cryogenic syngas Purifier removes <strong>the</strong> excess nitrogen, all <strong>methane</strong>, <strong>and</strong> most of <strong>the</strong><br />

argon from <strong>the</strong> syngas. This provides a very clean makeup gas to <strong>the</strong> syn<strong>the</strong>sis loop.<br />

Therefore, <strong>the</strong> required synloop purge is very small, <strong>and</strong> <strong>the</strong> synloop pressure can be<br />

CMM, CBM & Gas Utilzation Infrastructure 4-31


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

reduced. The synloop purge is recycled to <strong>the</strong> Purifier, so a separate purge gas recovery<br />

unit is not needed.<br />

KAAP syn<strong>the</strong>sis catalyst uses ru<strong>the</strong>nium as <strong>the</strong> active <strong>in</strong>gredient. KAAP<br />

catalyst is 10-20 times more active than traditional magnetite catalyst. KAAP<br />

catalyst allows lower syn<strong>the</strong>sis loop pressure than is practical with magnetite<br />

catalyst. The low syn<strong>the</strong>sis pressure allows use of a s<strong>in</strong>gle-barrel syngas<br />

compressor.<br />

The KAAPplus Ammonia Process offers lower capital costs, more<br />

competitive energy consumption, <strong>in</strong>creased reliability, <strong>and</strong> lower ma<strong>in</strong>tenance<br />

costs. KBR has elim<strong>in</strong>ated <strong>the</strong> primary reformer <strong>and</strong> simplified <strong>the</strong> syn<strong>the</strong>sis<br />

gas compressor. These are <strong>the</strong> two pieces of equipment <strong>in</strong> an ammonia plant,<br />

which traditionally require <strong>the</strong> most ma<strong>in</strong>tenance.<br />

The KRES, Purifier <strong>and</strong> KAAP systems can be used <strong>in</strong> any comb<strong>in</strong>ation, depend<strong>in</strong>g<br />

on <strong>the</strong> circumstances of a particular project.”<br />

CMM, CBM & Gas Utilzation Infrastructure 4-32


4.4 CMM Surface Facilities<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

CMM surface facilities are similar to CBM facilities as presented <strong>in</strong> section 4.3, Surface<br />

Facilities, Pip<strong>in</strong>g <strong>and</strong> Treat<strong>in</strong>g. However, <strong>in</strong> CMM operations, degasification wells can also<br />

be drilled from with<strong>in</strong> <strong>the</strong> <strong>m<strong>in</strong>e</strong>, <strong>in</strong> addition to vertical pre-<strong>m<strong>in</strong>e</strong> <strong>and</strong> gob wells. The<br />

underground degasification boreholes are l<strong>in</strong>ked by a system of connected steel pipel<strong>in</strong>es to<br />

a centralized vacuum station <strong>in</strong>stalled on <strong>the</strong> surface. The gas collection systems <strong>in</strong> Ukra<strong>in</strong>e<br />

typically have numerous leakage po<strong>in</strong>ts; at wellheads, pipe connections, <strong>and</strong> at <strong>the</strong> vacuum<br />

station. This results <strong>in</strong> low <strong>methane</strong> concentrations of <strong>the</strong> recovered gas, reduced vacuum<br />

pressures at wellheads, lower <strong>methane</strong> recovery rates, <strong>and</strong> reduced <strong>methane</strong> dra<strong>in</strong>age<br />

efficiency.<br />

The ability to utilize <strong>methane</strong> produced from degasification systems has cont<strong>in</strong>ued to grow<br />

due to advances <strong>in</strong> gas process<strong>in</strong>g <strong>and</strong> power generation technologies. These advances<br />

now allow for <strong>methane</strong> <strong>in</strong> concentrations as low as 30% to 40% to be commercially utilized,<br />

<strong>and</strong> methods for utiliz<strong>in</strong>g <strong>methane</strong> <strong>in</strong> concentrations of 1% or less are currently under<br />

<strong>development</strong>. Once at <strong>the</strong> surface, <strong>coal</strong> <strong>m<strong>in</strong>e</strong> <strong>methane</strong> can be utilized <strong>in</strong> various ways. In<br />

this section, methods of flar<strong>in</strong>g, power generation, <strong>and</strong> clean<strong>in</strong>g-up to pipel<strong>in</strong>e quality are<br />

discussed.<br />

4.4.1 Flar<strong>in</strong>g<br />

Ideally, all CMM collected at <strong>the</strong> surface, from <strong>the</strong> <strong>m<strong>in</strong>e</strong> dra<strong>in</strong>age system or gob wells, would<br />

be utilized. In many cases though, this is not technically or economically viable <strong>and</strong> <strong>the</strong> gas<br />

is vented directly to <strong>the</strong> atmosphere. This constitutes a safety hazard (potential build-up of<br />

flammable gas), a health hazard <strong>and</strong> an environmental hazard (<strong>methane</strong> is over 20 times<br />

more potent than carbon dioxide as a green house gas). Flar<strong>in</strong>g CMM through a controlled<br />

flare system with redundant safety features can significantly reduce <strong>the</strong>se hazards. 1<br />

4.4.1.1 Benefits of flar<strong>in</strong>g<br />

Gas flar<strong>in</strong>g is a st<strong>and</strong>ard safety practice <strong>in</strong> many <strong>in</strong>dustries. For example, <strong>methane</strong> <strong>and</strong> o<strong>the</strong>r<br />

associated gases are rout<strong>in</strong>ely flared dur<strong>in</strong>g process<strong>in</strong>g <strong>and</strong> production of oil <strong>and</strong> gas, <strong>and</strong><br />

are cont<strong>in</strong>uously flared from l<strong>and</strong>fill collection systems. Coal <strong>m<strong>in</strong>e</strong>s <strong>in</strong>corporat<strong>in</strong>g a controlled<br />

flare system can m<strong>in</strong>imize <strong>the</strong> potential of an unconf<strong>in</strong>ed deflagration occurr<strong>in</strong>g on surface at<br />

1 This section excerpted from EPA onl<strong>in</strong>e documentation: EPA, 1999. “Conceptual design for a <strong>coal</strong> <strong>m<strong>in</strong>e</strong> gob well flare”; EPA,<br />

2000. “Benefits of an enclosed gob well flare design for underground <strong>coal</strong> <strong>m<strong>in</strong>e</strong>s”.<br />

CMM, CBM & Gas Utilzation Infrastructure 4-33


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

<strong>the</strong> gob well discharge location, brought about by natural (lighten<strong>in</strong>g strikes) or man-made<br />

sources. This would mitigate risk to <strong>the</strong> public as well as <strong>the</strong> underground <strong>m<strong>in</strong>e</strong>.<br />

Cont<strong>in</strong>uous monitor<strong>in</strong>g provisions, necessary with a gob well flare, can provide un<strong>in</strong>terrupted<br />

records of gob well performance. These can be valuable <strong>in</strong> compar<strong>in</strong>g gob well production<br />

with underground conditions, <strong>and</strong> <strong>in</strong>vestigation of <strong>m<strong>in</strong>e</strong> <strong>in</strong>cidents such as <strong>m<strong>in</strong>e</strong> fan failures,<br />

changes to <strong>the</strong> ventilation system, or accidents. Currently most active gob wellhead<br />

<strong>in</strong>stallations do not use cont<strong>in</strong>uous monitor<strong>in</strong>g equipment. An <strong>in</strong>stalled active flare system<br />

can also m<strong>in</strong>imize <strong>the</strong> risk of reversed flow, where <strong>in</strong>take air is supplied to <strong>the</strong> gob, which has<br />

occurred with some passive gob wells.<br />

The destruction of <strong>methane</strong> through <strong>the</strong> flar<strong>in</strong>g of CMM results <strong>in</strong> a considerable<br />

environmental benefit, compared to vent<strong>in</strong>g <strong>the</strong> CMM to <strong>the</strong> atmosphere. There is also a<br />

potential f<strong>in</strong>ancial benefit to <strong>coal</strong> <strong>m<strong>in</strong>e</strong> <strong>and</strong> CMM operators from revenues derived from <strong>the</strong><br />

sale of carbon credits generated by <strong>the</strong> <strong>methane</strong> destruction.<br />

4.4.1.2 Flare design<br />

Enclosed flare<br />

Open flare<br />

Exhibit 4.27 Enclosed <strong>and</strong> open flare designs<br />

Flare designs are divided between open <strong>and</strong> enclosed designs. Open flares are widely used<br />

at l<strong>and</strong>fills, chemical plants, <strong>and</strong> ref<strong>in</strong>eries around <strong>the</strong> world. They have an advantage over<br />

enclosed flares <strong>in</strong> be<strong>in</strong>g simpler to design <strong>and</strong> <strong>in</strong>stall <strong>and</strong> requir<strong>in</strong>g lower ma<strong>in</strong>tenance,<br />

CMM, CBM & Gas Utilzation Infrastructure 4-34


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

<strong>the</strong>refore be<strong>in</strong>g lower cost. Some designs can be portable. But <strong>the</strong> visible flame associated<br />

with an open flare can cause local public objections, flameouts are possible <strong>in</strong> w<strong>in</strong>dy<br />

conditions <strong>and</strong> high <strong>methane</strong> destruction is not guaranteed or easily verified.<br />

Enclosed flares consist of a vertical, refractory l<strong>in</strong>ed, combustion chamber which obscures<br />

<strong>the</strong> flame from public view. Enclos<strong>in</strong>g <strong>the</strong> flame reduces <strong>the</strong>rmal radiation from <strong>the</strong> flare at<br />

ground level mak<strong>in</strong>g it safe to work around. The enclosed design also reduces noise<br />

associated with <strong>the</strong> combustion process. Enclosed flare designs have reported <strong>methane</strong><br />

destruction efficiencies of over 99% <strong>and</strong> can <strong>in</strong>corporate monitor<strong>in</strong>g equipment to verify <strong>the</strong><br />

destruction. To sell <strong>the</strong> generated carbon credits, a carbon credit purchaser may require this<br />

extra level of verification, which is much more difficult to obta<strong>in</strong> with an open flare.<br />

Both open <strong>and</strong> enclosed flares are designed with multiple redundant safety features.<br />

Protection is provided from all potential sources of ignition <strong>and</strong> from flashback or detonation<br />

occurr<strong>in</strong>g <strong>in</strong> <strong>the</strong> flare stack via an <strong>in</strong>tegrated passive safety system (flame arrestors, fluidic<br />

<strong>and</strong> liquid seals), an active positive pressure system (blower/exhauster) <strong>and</strong> a monitor<strong>in</strong>g<br />

<strong>and</strong> control system with valve <strong>and</strong> equipment activation.<br />

4.4.2 Power Generation from Coal M<strong>in</strong>e Methane (CMM)<br />

When used for power generation, CMM is collected <strong>and</strong> transported via a pipel<strong>in</strong>e ga<strong>the</strong>r<strong>in</strong>g<br />

system to a gas process<strong>in</strong>g plant where it is typically filtered / separated, compressed, <strong>and</strong><br />

dehydrated before be<strong>in</strong>g fed <strong>in</strong>to <strong>the</strong> eng<strong>in</strong>e / generator plant. As such, many of <strong>the</strong> surface<br />

facilities will be similar to <strong>the</strong> CBM surface facilities discussed <strong>in</strong> Section 4.3. Separation,<br />

compression, <strong>and</strong> dehydration are discussed <strong>in</strong> more detail <strong>in</strong> sections 4.3.4, 4.3.7, <strong>and</strong><br />

4.3.8, respectively.<br />

As discussed <strong>in</strong> <strong>the</strong> Market Assessment section, <strong>the</strong> most likely use of CMM is power<br />

generation for onsite use. Generat<strong>in</strong>g electricity is an attractive option because most <strong>coal</strong><br />

<strong>m<strong>in</strong>e</strong>s have significant electricity loads. Electricity is required to run nearly every piece of<br />

equipment <strong>in</strong>clud<strong>in</strong>g m<strong>in</strong><strong>in</strong>g mach<strong>in</strong>es, conveyor belts, desal<strong>in</strong>ation plants, <strong>coal</strong> preparation<br />

plants, <strong>and</strong> ventilation fans. Ventilation systems <strong>in</strong> particular require large amounts of<br />

electricity because <strong>the</strong>y run 24 hours a day, every day of <strong>the</strong> year.<br />

There are many technologies that can be used for stationary power generation by directly<br />

us<strong>in</strong>g pre-<strong>and</strong> post dra<strong>in</strong>age gas. Based on <strong>the</strong> project parameters, it was deter<strong>m<strong>in</strong>e</strong>d that<br />

an eng<strong>in</strong>e-based system is <strong>the</strong> most attractive solution based on both capital <strong>and</strong> long-term<br />

CMM, CBM & Gas Utilzation Infrastructure 4-35


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

operat<strong>in</strong>g costs. The Bazhanov Coal M<strong>in</strong>e produces 9.9 million m 3 of <strong>methane</strong> per year, <strong>and</strong><br />

utilizes 5.5 million m 3 per year, leav<strong>in</strong>g a net production of 4.4 million m 3 available for power<br />

generation. Likewise, <strong>the</strong> South Donbass No. 3 Coal M<strong>in</strong>e produces 8.8 million m 3 of<br />

<strong>methane</strong> per year (25 million m 3 at 35% concentration), all of which is available for power<br />

generation.<br />

The gas will be utilized <strong>in</strong> small power generators located at each <strong>m<strong>in</strong>e</strong> <strong>and</strong> can be used to<br />

offset electric power purchases made by <strong>the</strong> <strong>m<strong>in</strong>e</strong>s. Toge<strong>the</strong>r, <strong>the</strong> two <strong>m<strong>in</strong>e</strong>s will produce<br />

13.2 million m 3 per year (0.466 bcf/yr) of <strong>methane</strong> that is available for power generation.<br />

This is enough fuel to power a 1.7 MW facility at <strong>the</strong> Bazhanov <strong>m<strong>in</strong>e</strong> <strong>and</strong> a 3.3 MW facility at<br />

<strong>the</strong> South Donbass No.3 <strong>m<strong>in</strong>e</strong>.<br />

4.4.3 Surface Facilities for CMM Power Project<br />

Each power station consists of a gas transfer system to ga<strong>the</strong>r <strong>methane</strong> from gas well heads<br />

on <strong>the</strong> surface above underground m<strong>in</strong><strong>in</strong>g operations. This system pipes gas to <strong>the</strong> suction<br />

pumps <strong>and</strong> gas process<strong>in</strong>g plant, which are located with<strong>in</strong> <strong>the</strong> power station site area. The<br />

gas is filtered, compressed, dehydrated, <strong>and</strong> cooled before it is fed <strong>in</strong>to a manifold system<br />

supply<strong>in</strong>g each of <strong>the</strong> gas eng<strong>in</strong>e units. The eng<strong>in</strong>e units consist of <strong>the</strong> eng<strong>in</strong>e, generator,<br />

<strong>and</strong> related equipment (e.g., circuit breaker, control system, fire fight<strong>in</strong>g system, eng<strong>in</strong>e<br />

cool<strong>in</strong>g heat exchangers, exhaust system, <strong>and</strong> sound attenuation baffl<strong>in</strong>g).<br />

Exhibit 4.28 illustrates a generalized setup for a CMM power project. The f<strong>in</strong>al, optimal<br />

configuration of <strong>the</strong> power station <strong>and</strong> <strong>the</strong> gas field, <strong>in</strong> terms of well locations <strong>and</strong> gas, water,<br />

<strong>and</strong> power reticulations will be deter<strong>m<strong>in</strong>e</strong>d <strong>in</strong> <strong>the</strong> detailed design stages of <strong>the</strong> project.<br />

CMM, CBM & Gas Utilzation Infrastructure 4-36


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Gas Process<strong>in</strong>g Plant<br />

Filter / Separation<br />

Compression station<br />

Dehydration unit<br />

Exhaust gas<br />

Power Station<br />

Exhibit 4.28 Generalized Surface Facilities Configuration for CMM Power Project<br />

Heat<br />

consumer<br />

Electrical<br />

energy<br />

4.4.3.1 Gas Process<strong>in</strong>g<br />

Filter / Separator: Gas / water separation is discussed <strong>in</strong> section 0. In addition, filters clean<br />

<strong>the</strong> <strong>in</strong>com<strong>in</strong>g gas from m<strong>in</strong>ute particles of dust down to 5 microns <strong>in</strong> diameter which can<br />

impede <strong>the</strong> gas eng<strong>in</strong>e efficiency.<br />

Compression Station: The ambient pressure <strong>coal</strong><strong>m<strong>in</strong>e</strong> <strong>methane</strong> from <strong>the</strong> vent needs to be<br />

compressed for use <strong>in</strong> <strong>the</strong> gas eng<strong>in</strong>e. The gas compressor specified <strong>and</strong> recommended by<br />

Caterpillar is shown <strong>in</strong> <strong>the</strong> appendices at <strong>the</strong> end of this section.<br />

Dehydration Unit: Coal<strong>m<strong>in</strong>e</strong> <strong>methane</strong> comes out of <strong>the</strong> ground saturated with water.<br />

Dehydration is discussed <strong>in</strong> detail <strong>in</strong> section 4.3.8.<br />

4.4.3.2 Gas Eng<strong>in</strong>e / Generator<br />

The Project will utilize <strong>the</strong> recovered <strong>methane</strong> as fuel to power Caterpillar co-generation<br />

units, generat<strong>in</strong>g 1.7 megawatts (MW) of electricity at <strong>the</strong> Bazhanov M<strong>in</strong>e <strong>and</strong> 3.3 MW at<br />

South Donbass No. 3. These generator sets were designed by Caterpillar for <strong>coal</strong> seam<br />

<strong>methane</strong> energy projects <strong>and</strong> o<strong>the</strong>r low-energy fuel applications. Sixty of <strong>the</strong>se units have<br />

been successfully <strong>in</strong>stalled <strong>in</strong> a 120 MW <strong>coal</strong> <strong>m<strong>in</strong>e</strong> <strong>methane</strong> cogeneration plant <strong>in</strong> <strong>the</strong> Shanxi<br />

region of Ch<strong>in</strong>a.<br />

The G3520 generator sets are driven by 20-cyl<strong>in</strong>der, lean-burn eng<strong>in</strong>es operat<strong>in</strong>g at 1,500<br />

rpm <strong>and</strong> rated to produce 2,000 kW of cont<strong>in</strong>uous power. The eng<strong>in</strong>es’ lean fuel mixture is<br />

CMM, CBM & Gas Utilzation Infrastructure 4-37


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

controlled by an electronic system designed by EDL that regulates <strong>the</strong> air/fuel ratio for<br />

maximum performance <strong>and</strong> m<strong>in</strong>imum emissions under vary<strong>in</strong>g load, fuel <strong>and</strong> temperature<br />

conditions.<br />

The units are also equipped with a Caterpillar® Electronic Ignition System (EIS) that allows<br />

<strong>the</strong> eng<strong>in</strong>es to run at high load near <strong>the</strong> detonation limit. Sensors <strong>in</strong> <strong>the</strong> cyl<strong>in</strong>der banks detect<br />

<strong>the</strong> onset of detonation <strong>and</strong> signal a microprocessor based control module that retards<br />

ignition tim<strong>in</strong>g until <strong>the</strong> detonation is corrected. If <strong>the</strong> detonation persists, <strong>the</strong> system shuts<br />

<strong>the</strong> eng<strong>in</strong>e down. The EIS also <strong>in</strong>cludes a built-<strong>in</strong> self-diagnostic system that can alert <strong>the</strong><br />

operator to potential problems <strong>in</strong>volv<strong>in</strong>g eng<strong>in</strong>e components, facilitate troubleshoot<strong>in</strong>g, <strong>and</strong><br />

provide an eng<strong>in</strong>e operat<strong>in</strong>g record for trend analysis.<br />

An Electronic Control System monitors <strong>the</strong> amount of <strong>coal</strong> seam gas enter<strong>in</strong>g <strong>the</strong> system <strong>and</strong><br />

communicates with an EDL designed Programmable Logic Controller (PLC). The PLC<br />

regulates <strong>the</strong> volume of <strong>coal</strong> seam <strong>and</strong> pipel<strong>in</strong>e gas fuel<strong>in</strong>g <strong>the</strong> generator sets dur<strong>in</strong>g peakdem<strong>and</strong><br />

hours. Dur<strong>in</strong>g off-peak hours, <strong>the</strong> PLC monitors <strong>the</strong> entire system <strong>and</strong> deter<strong>m<strong>in</strong>e</strong>s<br />

<strong>the</strong> number of generator sets needed to use <strong>the</strong> available seam gas. Full details of <strong>the</strong><br />

G3520 generator set can be found <strong>in</strong> Appendix 4.B.<br />

4.4.3.3 Transformer<br />

The electrical output of each of <strong>the</strong> units is fed to step up transformers which steps <strong>the</strong><br />

generat<strong>in</strong>g voltage up to <strong>the</strong> higher distribution system voltage. It is <strong>the</strong>n fed to a common<br />

high voltage busbar with<strong>in</strong> <strong>the</strong> power station which connects to <strong>the</strong> local high voltage<br />

network. The power station <strong>and</strong> associated gas process<strong>in</strong>g plant are wholly located on <strong>the</strong><br />

m<strong>in</strong><strong>in</strong>g lease area, occupy<strong>in</strong>g approximately only 20 x 50 meters.<br />

The electrical energy generated can be used <strong>in</strong> <strong>the</strong> <strong>coal</strong> <strong>m<strong>in</strong>e</strong> to meet electricity<br />

requirements, while <strong>the</strong> <strong>the</strong>rmal energy can be used for heat<strong>in</strong>g purposes on site or fed <strong>in</strong>to a<br />

district heat<strong>in</strong>g system.<br />

4.4.4 Upgrad<strong>in</strong>g CMM to Pipel<strong>in</strong>e Quality<br />

Whereas CBM is often of high enough quality to <strong>in</strong>ject <strong>in</strong>to transmission pipel<strong>in</strong>es with<br />

m<strong>in</strong>imal process<strong>in</strong>g, CMM does not typically meet natural gas pipel<strong>in</strong>e specifications<br />

because it conta<strong>in</strong>s excess contam<strong>in</strong>ants <strong>in</strong> <strong>the</strong> form of nitrogen, oxygen, carbon dioxide <strong>and</strong><br />

CMM, CBM & Gas Utilzation Infrastructure 4-38


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

water <strong>and</strong> does not have a high enough <strong>methane</strong> content. In <strong>the</strong> U.S., pipel<strong>in</strong>e quality gas<br />

must conta<strong>in</strong> less than 0.2% oxygen, less than 3% nitrogen, less than 2% carbon dioxide <strong>and</strong><br />

less than 7lbs/Mmscf of water vapor, while hav<strong>in</strong>g a heat<strong>in</strong>g value of greater than 967<br />

Btu/scf. 2 Methane concentrations <strong>in</strong> CMM vary greatly from site to site, but typically range<br />

between 30-80 percent.<br />

Recent advances <strong>in</strong> technology have given rise to commercially available systems for<br />

remov<strong>in</strong>g <strong>the</strong> major CMM contam<strong>in</strong>ants mentioned above. These systems can st<strong>and</strong> alone,<br />

but typically, an <strong>in</strong>tegrated enrichment facility is <strong>in</strong>stalled to remove all contam<strong>in</strong>ants with a<br />

series of connected processes at one location. When a facility consists of components from<br />

more than one vendor, a s<strong>in</strong>gle company usually takes responsibility for <strong>the</strong> design <strong>and</strong><br />

performance of <strong>the</strong> entire upgrade facility. Such a “turn-key” arrangement protects <strong>the</strong><br />

system owner from potential disputes over <strong>the</strong> failure of one system component.<br />

A good example of a CMM upgrade plant can be found at DTE Methane Resources’ Cor<strong>in</strong>th<br />

plant <strong>in</strong> Ill<strong>in</strong>ois, U.S.A3 . Twenty-three (23) produc<strong>in</strong>g gob wells, drilled across 335 km 2<br />

(83,000 acres) of ab<strong>and</strong>oned <strong>m<strong>in</strong>e</strong> properties produce 110-170 mcmd (4-6 MMscfd) of CMM<br />

for process<strong>in</strong>g.<br />

Wells are connected to <strong>in</strong>dividual field stations (six <strong>in</strong> total) via HDPE pipel<strong>in</strong>es with <strong>the</strong> field<br />

stations <strong>in</strong>clud<strong>in</strong>g st<strong>and</strong>ard <strong>in</strong>frastructure of a suction scrubber, discharge scrubber, meter<strong>in</strong>g<br />

<strong>and</strong> a compressor driven by gas eng<strong>in</strong>es operat<strong>in</strong>g on CMM.<br />

2<br />

EPA, 2008. F.P.Caro<strong>the</strong>rs, H.L.Schultz. “Upgrad<strong>in</strong>g Coal M<strong>in</strong>e Methane to Pipel<strong>in</strong>e Quality: A Report on <strong>the</strong> Commercial Status of<br />

System Suppliers”.<br />

3<br />

Pena, JR. DTE Energy “Coal M<strong>in</strong>e Methane Operations: DTE Methane Resources’ Cor<strong>in</strong>th Plant”, U.S. Coal M<strong>in</strong>e Methane<br />

Conference, Sept 2007, St.Louis, Missouri, USA<br />

CMM, CBM & Gas Utilzation Infrastructure 4-39


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 4.29 Field Station Separators<br />

Exhibit 4.30 Field Station Compressor<br />

The gas is transported to <strong>the</strong> central process<strong>in</strong>g facility by a ga<strong>the</strong>r<strong>in</strong>g system compris<strong>in</strong>g of<br />

47 km (29 miles) of 20 cm (8 <strong>in</strong>ch) diameter carbon steel, <strong>in</strong>ternally coated pipel<strong>in</strong>e. The<br />

CMM is processed accord<strong>in</strong>g to <strong>the</strong> block process diagram shown <strong>in</strong> Exhibit 4.31.<br />

CMM, CBM & Gas Utilzation Infrastructure 4-40


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 4.31 Block Process Diagram of CMM Upgrade Facility<br />

The CMM at <strong>the</strong> Cor<strong>in</strong>th plant conta<strong>in</strong>s traces of hydrogen sulfide <strong>and</strong> <strong>the</strong> sulfur is removed<br />

<strong>in</strong> a SulfaTreat unit to prevent corrosion of downstream equipment. The CMM is <strong>the</strong>n<br />

compressed from pipel<strong>in</strong>e to plant operat<strong>in</strong>g pressures us<strong>in</strong>g a two-stage reciprocat<strong>in</strong>g<br />

compressor.<br />

Exhibit 4.32 SulfaTreat Vessels<br />

Deoxygenation is often <strong>the</strong> first ma<strong>in</strong> step <strong>in</strong> <strong>the</strong> CMM upgrad<strong>in</strong>g process, as <strong>the</strong> CO2<br />

removal process is tolerant of only low levels <strong>in</strong> oxygen <strong>and</strong> too much oxygen <strong>in</strong> <strong>the</strong> nitrogen<br />

CMM, CBM & Gas Utilzation Infrastructure 4-41


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

removal process is an explosive danger. Most gas transmission pipel<strong>in</strong>es have very strict<br />

oxygen limits (typically less than 0.1 per cent or 1,000 parts per million). At <strong>the</strong> Cor<strong>in</strong>th plant,<br />

<strong>the</strong> deoxygenation plant is a catalytic oxidation reactor us<strong>in</strong>g a plat<strong>in</strong>um coated alum<strong>in</strong>a. The<br />

reaction takes place at 340-370 degrees C (650-700 degrees F) <strong>and</strong> by-products are carbon<br />

dioxide <strong>and</strong> water.<br />

Exhibit 4.33 Deoxygenation Unit<br />

Several technologies are available commercially for carbon dioxide removal, <strong>in</strong>clud<strong>in</strong>g a<strong>m<strong>in</strong>e</strong><br />

units, membrane technology <strong>and</strong> selective adsorption. The Cor<strong>in</strong>th plant uses an a<strong>m<strong>in</strong>e</strong> unit<br />

which reduces <strong>the</strong> CO2 content of its CMM stream from 8% to 0.005%.<br />

Dehydration of CMM is <strong>the</strong> simplest part of any <strong>in</strong>tegrated CMM upgrad<strong>in</strong>g plant, but is very<br />

important as <strong>in</strong>adequate water removal can result <strong>in</strong> serious corrosion to delivery pipes.<br />

Molecular sieves (conta<strong>in</strong><strong>in</strong>g alum<strong>in</strong>a) have a proven record <strong>and</strong> are economical to operate<br />

<strong>and</strong> is <strong>the</strong> technology utilized as <strong>the</strong> moisture removal unit at <strong>the</strong> Cor<strong>in</strong>th plant. The unit also<br />

conta<strong>in</strong>s a layer of activated carbon to adsorb non-<strong>methane</strong> hydrocarbons.<br />

Nitrogen removal from <strong>the</strong> CMM is <strong>the</strong> most technically difficult process <strong>and</strong> <strong>the</strong> most<br />

expensive. Nitrogen rejection technologies <strong>in</strong>clude cryogenic technology; pressure sw<strong>in</strong>g<br />

adsorption; solvent absorption; molecular gate <strong>and</strong> membrane technologies. Cryogenic<br />

plants have <strong>the</strong> highest <strong>methane</strong> recovery rate (approximately 98%) of any of <strong>the</strong><br />

technologies <strong>and</strong> <strong>the</strong>ir use has become st<strong>and</strong>ard practice for large-scale projects where <strong>the</strong>y<br />

achieve economies of scale. A cryogenic nitrogen rejection unit (NRU) is used at <strong>the</strong> Cor<strong>in</strong>th<br />

CMM, CBM & Gas Utilzation Infrastructure 4-42


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

plant. (Cryogenic units tend to be less cost-effective at capacities below 140 mcmd (5<br />

Mmscfd) which are more typical of CMM dra<strong>in</strong>age projects.)<br />

Exhibit 4.34 CO2 unit, Nitrogen Rejection Unit <strong>and</strong> Compressor<br />

The f<strong>in</strong>al stage <strong>in</strong> <strong>the</strong> CMM upgrade process is to compress <strong>the</strong> sales gas from <strong>the</strong> NRU. At<br />

<strong>the</strong> Cor<strong>in</strong>th plant, this is achieved us<strong>in</strong>g five stages of reciprocat<strong>in</strong>g compressors that<br />

compress <strong>the</strong> gas from 4 psig to 200 psig <strong>and</strong> f<strong>in</strong>ally to 850 psig for <strong>in</strong>jection <strong>in</strong>to <strong>the</strong> sales<br />

gas pipel<strong>in</strong>e.<br />

Exhibit 4.35 Sales Gas Compression Units<br />

CMM, CBM & Gas Utilzation Infrastructure 4-43


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

4.5 U.S. Suppliers of Equipment, Technology, <strong>and</strong> Services<br />

4.5.1 Drill<strong>in</strong>g Companies <strong>and</strong> Equipment<br />

Major Drill<strong>in</strong>g Inc.<br />

Rob Newburn<br />

VP North American Operations<br />

2200 South 4000 West<br />

Salt Lake City, Utah 84120<br />

Tel: (801) 974-0645<br />

Fax: (801) 973-2994<br />

www.majordrill<strong>in</strong>g.com<br />

REI Drill<strong>in</strong>g<br />

Daniel Brunner<br />

President<br />

250 W Berger Lane<br />

Salt Lake City, Utah 84107<br />

Tel: 801-270-2141<br />

Fax: 801-281-2880<br />

www.reidrill<strong>in</strong>g.com<br />

Schramm, Inc.<br />

Frank Gabriel<br />

VP / Sales<br />

800 E. Virg<strong>in</strong>ia Avenue<br />

West Chester, PA 19380 USA<br />

Tel: 610-344-3130<br />

Fax: 610-696-6950<br />

www.schramm<strong>in</strong>c.com<br />

Union Drill<strong>in</strong>g, Inc.<br />

Christopher Strong<br />

President <strong>and</strong> CEO<br />

4055 International Plaza<br />

Suite 610<br />

Fort Worth, Texas 76109<br />

Tel: 817-735-8793<br />

Fax: 817-546-4368<br />

www.uniondrill<strong>in</strong>g.com<br />

Layne Christensen – Vibration<br />

Technology, Inc<br />

Henry Bernat, P.E.<br />

General Manager<br />

122 Dalton Street<br />

Shreveport, Louisiana 71106<br />

Tel: 318-686-0001<br />

Fax: 318-686-4001<br />

Layne Christensen - Corporate<br />

Headquarters<br />

1900 Shawnee Mission Parkway<br />

Mission Woods, KS 66205<br />

Tel: (913) 362-0510<br />

Fax: (913) 362-0133<br />

www.laynechristensen.com<br />

Ingersoll R<strong>and</strong><br />

CMM, CBM & Gas Utilzation Infrastructure 4-44


IRES HOUSTON<br />

Shawn R. Sweet<br />

Regional V.P. & Branch Manager<br />

2210 McAllister Rd<br />

Houston, TX 77092<br />

Tel: 713-681-9221<br />

Parker Drill<strong>in</strong>g<br />

Contact Sales Manager<br />

1401 Enclave Parkway, Suite 600<br />

Houston, Texas 77077<br />

Tel: 281-406-2000<br />

Fax: 281-406-2001<br />

www.parkerdrill<strong>in</strong>g.com<br />

Gardner Denver, Inc.<br />

Contact Sales Manager<br />

Pump Division Headquarters<br />

4747 South 83rd East Ave.<br />

Tulsa, OK 74145<br />

Tel: 918-664-1151<br />

www.gardnerdenver.com<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Boart Longyear - Sub-Saharan Africa<br />

144 Ma<strong>in</strong> Reef Road<br />

Manufacta, Roodepoort<br />

Gauteng, South Africa<br />

Tel: +27 011 761-2200<br />

Fax: +27 011 763-1901<br />

Technicoil Corporation<br />

John Horton<br />

Drill<strong>in</strong>g Manager<br />

1510, 555 - 4th Avenue SW<br />

Calgary, AB T2P 3E7<br />

Tel: 403-509-0700<br />

Fax: 403-509-0701<br />

www.technicoilcorp.com<br />

Savanna Energy Services Corp.<br />

1800, 311 - 6th Avenue SW<br />

Calgary, AB T2P 3H2<br />

Tel: 403-503-9990<br />

Fax: 403-267-6749<br />

www.savannaenergy.com<br />

CMM, CBM & Gas Utilzation Infrastructure 4-45


4.5.2 Production Equipment<br />

Echometer Company<br />

Mr. Jim McCoy<br />

5001 Ditto Lane,<br />

Wichita Falls, Texas 76302 USA<br />

Tel: 940 767-4334<br />

Fax: 940-723-7507<br />

www.echometer.com<br />

Premier Sea & L<strong>and</strong> PTE LTD (also<br />

echometer sales rep)<br />

Mr.Rob Schott.<br />

Manager Sales <strong>and</strong> Market<strong>in</strong>g<br />

1 Scotts Road # 19 –12, Shaw Centre,<br />

S<strong>in</strong>gapore 228 208<br />

Tel: (65) 67347177<br />

www.ipsadvantage.com/<strong>in</strong>t_services/pre<br />

mier_sea_l<strong>and</strong>.htm<br />

Moyno (Pump<strong>in</strong>g Systems)<br />

R&M Energy Systems<br />

10586 U.S. Highway 75 North<br />

Willis, TX 77378<br />

Tel: 281 765-4700<br />

Fax: 281 445-7491<br />

www.rmenergy.com<br />

Exterran<br />

US & International Operations<br />

11000 Corporate Centre Drive<br />

Houston, TX 77041<br />

tel: 281-854-3000<br />

www.exterran.com<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Lufk<strong>in</strong> Industries, Inc. – Oilfield<br />

Division<br />

P.O. Box 849<br />

Lufk<strong>in</strong>, Texas 75902-0849<br />

Tel: 936-637-5363<br />

Fax: 936-633-3563<br />

www.lufk<strong>in</strong>.com<br />

Wea<strong>the</strong>rford Artificial Lift Systems<br />

John La<strong>in</strong>e<br />

515 Post Oak Blvd., Suite 600<br />

Houston, Texas 77027<br />

Tel: 713-693-4112<br />

www.wea<strong>the</strong>rford.com<br />

Gas Tech Eng<strong>in</strong>eer<strong>in</strong>g Corp.<br />

Roy Simmons<br />

1007 E. Admiral Blvd.<br />

Tulsa, Oklahoma 74120<br />

Tel: 918-663-8383<br />

Fax: 918-663-8460<br />

McJunk<strong>in</strong> Appalachian Oilfield Supply<br />

Inc.<br />

David Fox, III<br />

Executive Vice President<br />

P. O. Box 513, 835 Hillcrest Dr.<br />

Charleston, WV 25311<br />

Tel: 304-348-5211<br />

Fax: 304-348-4922<br />

www.mcjunk<strong>in</strong>redman.com<br />

CMM, CBM & Gas Utilzation Infrastructure 4-46


EDI<br />

Scott Baker<br />

Production Manager / Sales<br />

100 Ayers Blvd<br />

Belpre, OH 45714<br />

Phone: (740) 401-4000<br />

Fax: (740) 401-4005<br />

www.ediplungerlift.com<br />

Cameron International<br />

Drill<strong>in</strong>g & Production Systems<br />

Contact Sales Manager<br />

4646 W Sam Houston Parkway North<br />

PO Box 1212 (77251-1212)<br />

Houston, TX 77041<br />

Phone: 713-939-2211<br />

Fax: 713-939-2753<br />

www.c-a-m.com<br />

Harbison Fischer Mfg. Co.<br />

Contact Sales Manager<br />

901 North Crowley Rd.<br />

Crowley, Texas 76036-3798<br />

Tel: 817-297-2211<br />

Fax: 817-297-4248<br />

www.hfpumps.com<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Ariel Corporation<br />

Contact Sales Manager<br />

35 Blackjack Road<br />

Mount Vernon, OH 43050<br />

Tel: 740-397-0311<br />

Fax: 740-397-3856<br />

www.arielcorp.com<br />

National Oilwell<br />

Sam Pelphrey<br />

Rt. 321 S. Hwy 1107<br />

Pa<strong>in</strong>tsville, Kentucky 41240<br />

Tel: 606-789-3791<br />

Fax: 606-789-3128<br />

www.nov.com<br />

Dear<strong>in</strong>g Compressor & Pump Co.<br />

3974 Simon Rd.<br />

P.O. Box 6044<br />

Youngstown, OH 44501<br />

Tel: 330-783-2258<br />

Fax: 330-783-0762<br />

www.dear<strong>in</strong>gcomp.com<br />

CMM, CBM & Gas Utilzation Infrastructure 4-47


4.5.3 Tubulars<br />

Aztec Tubular Products<br />

Rip Mart<strong>in</strong><br />

General Manager<br />

400 North Tarrant<br />

Crowley, Texas 76036<br />

Tel: 817-297-0110<br />

Fax: 817-297-1621<br />

www.aztectub<strong>in</strong>g.com<br />

U.S. Steel Tubular Products, Inc.<br />

Steve Tate<br />

15660 N. Dallas Parkway<br />

Suite 500<br />

Dallas, TX 75248<br />

Tel: 972.386.3981<br />

Fax: 972.770.6444<br />

www.lonestarsteel.com<br />

Tenaris Oilfield Services<br />

Houston Office Sales Manager<br />

Gabriel Podskubka<br />

Tel: 713 767 4400<br />

Fax: 713 767 4444<br />

www.tenaris.com<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Kelly Pipe Co.<br />

Oil Country Tubular Division<br />

11680 Bloomfield Ave.,<br />

P.O. Box 2827 Santa Fe Spr<strong>in</strong>gs, CA<br />

90670<br />

Tel: 562 868-0456<br />

Fax: 562 863-4695<br />

www.kellypipe.com<br />

McJunk<strong>in</strong> Appalachian Oilfield Supply<br />

Inc.<br />

David Fox, III<br />

Executive Vice President<br />

P. O. Box 513, 835 Hillcrest Dr.<br />

Charleston, WV 25311<br />

Tel: 304-348-5211<br />

Fax: 304-348-4922<br />

www.mcjunk<strong>in</strong>redman.com<br />

CMM, CBM & Gas Utilzation Infrastructure 4-48


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

4.5.4 Logg<strong>in</strong>g, Completion & Stimulation<br />

Rolligon Corporation<br />

Mike Dear<strong>in</strong>g<br />

President<br />

6740 Hwy 30<br />

Anderson, Texas 77830<br />

Tel: 936-873-2600<br />

Fax: 936-873-9994<br />

www.rolligon.com<br />

Wea<strong>the</strong>rford Wirel<strong>in</strong>e Services<br />

Contact Sales Manager<br />

515 Post Oak Blvd., Suite 600<br />

Houston, Texas 77027<br />

Tel: 713-693-4112<br />

www.wea<strong>the</strong>rford.com<br />

Schlumberger Oilfield Services<br />

Contact Sales Manager<br />

300 Schlumberger Drive<br />

Sugar L<strong>and</strong>, TX 77478<br />

Tel: 281 285 8500<br />

Fax: 281 285 8548<br />

www.slb.com<br />

Haliburton Energy Services<br />

Contact Sales Manager<br />

Halliburton Energy Services Group<br />

10200 Bellaire Blvd.<br />

Houston, TX 77072-5206<br />

Tel: 281-575-3000<br />

www.halliburton.com<br />

BJ Services Company<br />

Contact Sales Manager<br />

Corporate Office<br />

4601 Westway Park Blvd.<br />

Houston, Texas 77041<br />

Tel: 713-462-4239<br />

Fax: 713-895-5420<br />

www.bjservices.com<br />

Century Geophysical Corp.<br />

1223 S. 71st E. Ave<br />

Tulsa, Oklahoma, U.S.A. 74112<br />

Tel: 918-838-9811<br />

Fax: 918-838-153<br />

www.century-geo.com<br />

CMM, CBM & Gas Utilzation Infrastructure 4-49


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Appendix 4.A GE Comb<strong>in</strong>ed Cycle Gas Turb<strong>in</strong>e Technical Bullet<strong>in</strong><br />

CMM, CBM & Gas Utilzation Infrastructure 4-50


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

CMM, CBM & Gas Utilzation Infrastructure 4-51


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

GE Comb<strong>in</strong>ed Cycle Gas Turb<strong>in</strong>e Configuration<br />

CMM, CBM & Gas Utilzation Infrastructure 4-52


GT PRO 16.0 GE Energy<br />

14.43 p<br />

59 T<br />

60 %RH<br />

3196 m<br />

500 ft elev.<br />

215 T<br />

13021 M<br />

17.62 ft^3/lb<br />

63719 ft^3/s<br />

105 T<br />

1876.4 M<br />

200 T 17.19 p<br />

220 T<br />

LTE<br />

17.19 p<br />

200 T<br />

1876.4 M<br />

1521.1 M<br />

38.24 M<br />

393.5 M<br />

269<br />

LPE<br />

14.29 p<br />

59 T<br />

3196 m<br />

IPE1<br />

282 T<br />

282 T<br />

305<br />

LPB<br />

55 p<br />

287 T<br />

389.7 M<br />

Coal Bed Gas 59.76 m<br />

LHV 1232742 kBTU/h<br />

68 T<br />

460 T<br />

414<br />

p[psia], T[F], M[kpph], Steam Properties: Thermoflow - STQUIK<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

232 04-26-2007 14:08:46 file=C:\Tflow16\MYFILES\English Ukra<strong>in</strong>e Coal Gas Bed 9E CC Plant.gtp<br />

IPE2<br />

495<br />

1X GE 9171E 3255 m<br />

4 X GT<br />

177.4 p<br />

681 T<br />

IPB<br />

568<br />

HPE2<br />

612<br />

170.3 p<br />

2067 T<br />

IPS1<br />

462.9 p 462.9 p 1928.8 p 454 p<br />

449 T 459 T 562 T 560 T<br />

1521.1 M315.7<br />

M 1202.3 M 315.7 M<br />

619<br />

LPS<br />

52.38 p<br />

560 T<br />

351.4 M<br />

123043 kW<br />

Net Power 723907 kW<br />

LHV Heat Rate 6812 BTU/kWh<br />

CMM, CBM & Gas Utilzation Infrastructure 4-53<br />

633<br />

HPE3<br />

IPS2<br />

HPB1<br />

GE Comb<strong>in</strong>ed Cycle Gas Turb<strong>in</strong>e Cycle Schematic<br />

14.95 p<br />

1017 T<br />

13021 M<br />

1800 p<br />

940 T<br />

1190.4 M<br />

HPS0<br />

RH1<br />

HPS1<br />

1471.1 M 400 p 940 T<br />

1155.4 M 462.9 p 601 T<br />

RH3<br />

74.9 %N2<br />

13.84 %O2<br />

3.173 %CO2<br />

7.19 %H2O<br />

0.9012 %Ar<br />

351.4 M 48.5 p 557 T<br />

HPS3<br />

0.8572 M<br />

1900.3 p 445.1 p 1900.3 p 1878.8 p 430.6 p 1857.4 p 416 p 1836 p<br />

619 T 610 T 629 T 764 T 835 T 872 T 943 T 944 T<br />

1202.3 M 315.7 M 1190.4 M1190.4<br />

M 1471.1 M1190.4<br />

M 1471.1 M1190.4<br />

M<br />

662 665 837 894 948 976 999 1015<br />

1836 p 944 T<br />

2 X ST =<br />

272069 kW<br />

1.116 p<br />

105 T<br />

1855.6 M<br />

105 T<br />

FW<br />

1015 T<br />

13021 M<br />

37.19 ft^3/lb<br />

134519 ft^3/s


Ambient air <strong>in</strong><br />

14.43 p<br />

59 T<br />

3196 m<br />

60 %RH<br />

500 ft elev.<br />

4 <strong>in</strong> H2O<br />

14.29 p<br />

59 T<br />

3196 m<br />

59.4 RH<br />

FUEL = Coal Bed Gas<br />

14.7 p<br />

68 T<br />

59.76 m<br />

20623 LHV<br />

5895 kWe<br />

893.5 Qrej<br />

459.8 T<br />

12.41 PR<br />

143002 kW<br />

14.29 p<br />

59 T<br />

3196 m<br />

59.4 RH<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

p[psia], T[F], M[kpph], Q[BTU/s], Steam Properties: Thermoflow - STQUIK<br />

GT generator power = 123043 kW<br />

GT Heat Rate @ gen term = 10019 BTU/kWh<br />

GT efficiency @ gen term = 30.72% HHV = 34.06% LHV<br />

GT @ 100 % rat<strong>in</strong>g, <strong>in</strong>ferred TIT control model, CC limit<br />

177.4 p<br />

681.3 T<br />

2991.9 m<br />

GE 9171E (ID # 311)<br />

7.095 dp<br />

4 dp %<br />

273.3 p<br />

459.8 T<br />

59.76 m<br />

20856 LHV<br />

GT PRO 16.0 GE Energy<br />

232 04-26-2007 14:08:46 file=C:\Tflow16\MYFILES\English Ukra<strong>in</strong>e Coal Gas Bed 9E CCPlant.gtp<br />

GE Comb<strong>in</strong>ed Cycle Gas Turb<strong>in</strong>e 9E GT<br />

170.3 p<br />

2066.6 T<br />

3052 m<br />

11.39 PR<br />

268573 kW<br />

203.7 m<br />

6.374 % airflow<br />

123043 kW<br />

10019 BTU/kWh LHV<br />

34.06 % LHV eff.<br />

100 % load<br />

98.6 % eff.<br />

14.95 p<br />

1017.4 T<br />

3255 m<br />

N2= 74.9 %<br />

O2= 13.84 %<br />

CO2= 3.173 %<br />

H2O= 7.19 %<br />

AR= 0.9012 %<br />

1653 Qrej<br />

CMM, CBM & Gas Utilzation Infrastructure 4-54


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Appendix 4.B Caterpillar 2500 kVA Coal Seam Power Module G3520<br />

CMM, CBM & Gas Utilzation Infrastructure 4-55


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

CMM, CBM & Gas Utilzation Infrastructure 4-56


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

CMM, CBM & Gas Utilzation Infrastructure 4-57


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

CMM, CBM & Gas Utilzation Infrastructure 4-58


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

CMM, CBM & Gas Utilzation Infrastructure 4-59


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

CMM, CBM & Gas Utilzation Infrastructure 4-60


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

CMM, CBM & Gas Utilzation Infrastructure 4-61


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

CMM, CBM & Gas Utilzation Infrastructure 4-62


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

CMM, CBM & Gas Utilzation Infrastructure 4-63


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

CMM, CBM & Gas Utilzation Infrastructure 4-64


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

CMM, CBM & Gas Utilzation Infrastructure 4-65


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

CMM, CBM & Gas Utilzation Infrastructure 4-66


Task 5<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Prelim<strong>in</strong>ary Environmental Assessment<br />

<strong>and</strong> Socioeconomic Impacts<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-i


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

TASK 5 CONTENTS<br />

5.1 Introduction..........................................................................................................5-1<br />

5.2 Regulatory Framework ........................................................................................5-2<br />

5.3 Potential Environmental Impacts .........................................................................5-6<br />

5.3.1 Construction Impacts. .............................................................................................5-6<br />

5.3.1.1 Aes<strong>the</strong>tics. 5-6<br />

5.3.1.2 Surface Disturbance. 5-7<br />

5.3.1.3 Water 5-8<br />

5.3.1.4 Noise 5-9<br />

5.3.1.5 Air quality. 5-9<br />

5.3.1.6 Disposal. 5-11<br />

5.3.2 Operation Impacts.................................................................................................5-11<br />

5.3.2.1 Production <strong>and</strong> Disposal of Water 5-11<br />

5.3.2.2 Additional Water Impacts 5-21<br />

5.3.2.3 Aes<strong>the</strong>tics 5-21<br />

5.3.2.4 Air quality 5-21<br />

5.3.2.5 Noise 5-26<br />

5.3.3 Closure impacts ....................................................................................................5-27<br />

5.4 Socioeconomic Impacts.....................................................................................5-28<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-ii


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

TASK 5 EXHIBITS<br />

Exhibit 5.1 The Environmental Impact Assessment (EIA) Process (from “Guidance on EIA<br />

Screen<strong>in</strong>g”, June 2001, European Commission) ................................................. 5-5<br />

Exhibit 5.2 Schematic of a Typical Well Site Layout.............................................................. 5-7<br />

Exhibit 5.3 EPA Nonroad Diesel Eng<strong>in</strong>e Emission St<strong>and</strong>ards, g/kW x h (g/bhp x h)........... 5-10<br />

Exhibit 5.4 Maximum Allowable Discharge limits set by <strong>the</strong> World Health Organization..... 5-13<br />

Exhibit 5.5 WHO Specifications for Dr<strong>in</strong>k<strong>in</strong>g Water Quality................................................. 5-14<br />

Exhibit 5.6 Water Disposal Costs <strong>in</strong> <strong>the</strong> Powder River Bas<strong>in</strong>.............................................. 5-16<br />

Exhibit 5.7 DOE/Phillips Reverse Osmosis Plant for De-Ionization of Produced Water...... 5-17<br />

Exhibit 5.8 Well Completion Schematic of Disposal Well <strong>in</strong> <strong>the</strong> San Juan Bas<strong>in</strong> ................ 5-18<br />

Exhibit 5.9 Well Completion Configuration for Downhole Gas/Water Separation................ 5-20<br />

Exhibit 5.10 EPA, E.U., <strong>and</strong> WHO Air Quality St<strong>and</strong>ards <strong>and</strong> Guidel<strong>in</strong>es (USEPA, 2007; EU,<br />

2007; WHO, 2006)............................................................................................. 5-22<br />

Exhibit 5.11 Estimated Uncontrolled Internal Combustion Eng<strong>in</strong>e Emissions associated with<br />

Generat<strong>in</strong>g Electricity from Coal M<strong>in</strong>e Methane (CMM) .................................... 5-24<br />

Exhibit 5.12 Tier II UK Regulations........................................................................................ 5-25<br />

Exhibit 5.13 Noise Levels Associated with Oil <strong>and</strong> Gas Activity (BLM, 2000) ....................... 5-26<br />

Exhibit 5.14 WHO Noise Level Guidel<strong>in</strong>es (WHO, 1999) ...................................................... 5-27<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-iii


5.1 Introduction<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Intensive <strong>development</strong> of <strong>coal</strong>bed <strong>methane</strong> (CBM) reservoirs <strong>in</strong> <strong>the</strong> U.S.—<strong>in</strong>volv<strong>in</strong>g<br />

thous<strong>and</strong>s of CBM wells—<strong>in</strong>itially raised environmental concerns that threatened to seriously<br />

constra<strong>in</strong> operations. However, <strong>the</strong> <strong>development</strong> <strong>and</strong> application of new cost-effective<br />

technologies <strong>and</strong> environmentally sound plann<strong>in</strong>g, enabled operators to mitigate <strong>the</strong>se<br />

concerns <strong>in</strong> most bas<strong>in</strong>s. Environmental conflicts—primarily <strong>the</strong> disposal of large volumes of<br />

produced water or <strong>the</strong> <strong>development</strong> of projects on environmentally sensitive l<strong>and</strong>s—have<br />

occasionally slowed <strong>the</strong> pace, but not <strong>the</strong> overall extent of CBM <strong>development</strong>.<br />

Coalbed <strong>methane</strong> <strong>development</strong> can create a tangible environmental benefit by reduc<strong>in</strong>g <strong>the</strong><br />

potential for global warm<strong>in</strong>g caused by emissions of <strong>methane</strong> from <strong>the</strong> Bazhanov <strong>and</strong> South<br />

Donbass #3 <strong>coal</strong> <strong>m<strong>in</strong>e</strong>s, while provid<strong>in</strong>g an additional revenue stream through carbon<br />

credits. With<strong>in</strong> Ukra<strong>in</strong>e, <strong>the</strong> production <strong>and</strong> utilization of natural gas will have significant local<br />

environmental benefits. Coalbed <strong>methane</strong> (which is basically natural gas) is <strong>the</strong> cleanest<br />

burn<strong>in</strong>g <strong>and</strong> most versatile hydrocarbon energy resource available. It can be used for power<br />

generation, as a transportation fuel, as a chemical feedstock, or for residential heat<strong>in</strong>g <strong>and</strong><br />

cook<strong>in</strong>g.<br />

Potential environmental impacts for <strong>the</strong> <strong>development</strong> of CBM <strong>and</strong> <strong>coal</strong><strong>m<strong>in</strong>e</strong> <strong>methane</strong> (CMM)<br />

<strong>in</strong> <strong>the</strong> Donbass Bas<strong>in</strong> <strong>in</strong>clude air <strong>and</strong> water quality impacts, as well as water quantity <strong>and</strong><br />

noise issues. The Bazhanov <strong>and</strong> South Donbass #3 <strong>m<strong>in</strong>e</strong>s currently burn <strong>coal</strong> <strong>m<strong>in</strong>e</strong><br />

<strong>methane</strong> (CMM) gas streams <strong>in</strong> exist<strong>in</strong>g boilers. Alternative scenarios, such as <strong>the</strong> use of<br />

CMM to produce electricity <strong>and</strong> <strong>the</strong> pipel<strong>in</strong>e <strong>in</strong>jection of CBM, are evaluated. A prelim<strong>in</strong>ary<br />

environmental assessment of air, water, <strong>and</strong> noise impacts for CBM <strong>and</strong> CMM <strong>development</strong><br />

is presented <strong>in</strong> this section.<br />

The CMM/CBM <strong>development</strong> projects will be well with<strong>in</strong> compliance st<strong>and</strong>ards under<br />

applicable environmental regulations. The pr<strong>in</strong>cipal environmental issue for <strong>the</strong> proposed<br />

project will be <strong>the</strong> large volume of water produced by <strong>the</strong> wells, especially <strong>in</strong> <strong>the</strong>ir early<br />

stages as <strong>the</strong>y are dewater<strong>in</strong>g. Depend<strong>in</strong>g on <strong>the</strong> quality of <strong>the</strong> produced water, without<br />

proper control or treatment, it could impact local vegetation, soil quality, as well as <strong>the</strong> local<br />

population’s dr<strong>in</strong>k<strong>in</strong>g water supply. Additional environmental concerns from CBM drill<strong>in</strong>g<br />

<strong>in</strong>clude change <strong>in</strong> air quality, groundwater level, noise disturbances, <strong>and</strong> even aes<strong>the</strong>tics.<br />

The CMM projects are less likely to create as many environmental concerns as <strong>the</strong> CBM<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-1


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

projects because <strong>the</strong> CMM operations to capture <strong>the</strong> gas are already <strong>in</strong> place at <strong>the</strong> two<br />

<strong>m<strong>in</strong>e</strong>s. Any additional CMM capture or end use will create a positive environmental benefit<br />

through <strong>the</strong> mitigation of <strong>methane</strong> emissions.<br />

The follow<strong>in</strong>g section discusses <strong>the</strong> exist<strong>in</strong>g regulatory framework <strong>and</strong> exa<strong>m<strong>in</strong>e</strong>s <strong>the</strong> major<br />

environmental issues aris<strong>in</strong>g from CBM <strong>development</strong>. Three aspects of CBM <strong>development</strong><br />

have been <strong>the</strong> particular focus of environmental conflict, <strong>in</strong> places caus<strong>in</strong>g ei<strong>the</strong>r actual<br />

demonstrable degradation of <strong>the</strong> environment or (sometimes equally damag<strong>in</strong>g) mere public<br />

perception of environmental harm. CBM <strong>development</strong> <strong>in</strong> sensitive regions also causes l<strong>and</strong><br />

use conflicts common to conventional oil <strong>and</strong> gas <strong>development</strong>.<br />

The primary environmental issues raised by CBM <strong>development</strong> <strong>in</strong>clude:<br />

The establishment of well sites, production facilities, <strong>and</strong> related <strong>in</strong>frastructure dur<strong>in</strong>g<br />

<strong>the</strong> construction phase of CBM <strong>development</strong> project;<br />

H<strong>and</strong>l<strong>in</strong>g <strong>and</strong> treatment of drill<strong>in</strong>g fluids/muds; <strong>and</strong><br />

Disposal of large volumes of brackish or sal<strong>in</strong>e produced formation water, particularly<br />

dur<strong>in</strong>g <strong>the</strong> early phases of reservoir depressurization.<br />

5.2 Regulatory Framework<br />

S<strong>in</strong>ce Ukra<strong>in</strong>e became a sovereign state, environmental protection has been a matter of<br />

public policy. The Parliament, <strong>and</strong> M<strong>in</strong>istry of Environmental Protection of Ukra<strong>in</strong>e, were<br />

established <strong>in</strong> 1991 <strong>and</strong> have been heavily <strong>in</strong>volved <strong>in</strong> <strong>the</strong> creation of legislation focused on<br />

environmental protection. The Parliament has adopted several key environmental laws,<br />

<strong>in</strong>clud<strong>in</strong>g a Law on Protection of <strong>the</strong> Natural Environment (1991), a L<strong>and</strong> Code (1992), a Law<br />

on <strong>the</strong> Protection of Atmospheric Air (1992), a Water Code (1995), <strong>and</strong> several o<strong>the</strong>r<br />

environmental laws <strong>and</strong> regulations. The Law on Protection of <strong>the</strong> Natural Environment was<br />

<strong>the</strong> first <strong>and</strong> key environmental act, address<strong>in</strong>g environmental protection <strong>and</strong> rational use of<br />

natural resources as <strong>in</strong>tegral parts of <strong>the</strong> susta<strong>in</strong>able economic <strong>and</strong> social <strong>development</strong> of<br />

Ukra<strong>in</strong>e.<br />

While Ukra<strong>in</strong>e is not presently part of <strong>the</strong> European Union (EU), it is considered a priority<br />

partner county as def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> European Neighborhood Policy (ENP). Relations between<br />

<strong>the</strong> EU <strong>and</strong> Ukra<strong>in</strong>e are based on a Partnership <strong>and</strong> Cooperation Agreement (PCA) entered<br />

<strong>in</strong>to by <strong>the</strong> EU <strong>and</strong> Ukra<strong>in</strong>e <strong>in</strong> 1998, for a ten year period. The agreement has been<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-2


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

extended to <strong>the</strong> countries that have jo<strong>in</strong>ed <strong>the</strong> EU s<strong>in</strong>ce 1998. Among o<strong>the</strong>r th<strong>in</strong>gs, <strong>the</strong> PCA<br />

established a Subcommittee on Energy, Transport, Information Society, Nuclear Safety, <strong>and</strong><br />

Environment with <strong>the</strong> responsibility of <strong>in</strong>tegrat<strong>in</strong>g energy markets, energy <strong>in</strong>frastructure,<br />

energy efficiency, energy production, transport, nuclear safety, Project Galileo, maritime<br />

safety, telecommunications, <strong>and</strong> <strong>the</strong> environment.<br />

In February 2005, a jo<strong>in</strong>t EU-Ukra<strong>in</strong>e Neighborhood Action Plan was developed by <strong>the</strong> EU-<br />

Ukra<strong>in</strong>e Cooperation Council. The Action Plan is based on <strong>the</strong> PCA, <strong>and</strong> calls for <strong>the</strong><br />

<strong>development</strong> of a legislative framework <strong>and</strong> plann<strong>in</strong>g for key environmental sub-sectors;<br />

enhancement of adm<strong>in</strong>istrative capabilities for permitt<strong>in</strong>g, enforcement, <strong>and</strong> <strong>in</strong>spections;<br />

implementation of <strong>the</strong> Kyoto Protocol; participation <strong>in</strong> <strong>the</strong> Jo<strong>in</strong>t Ukra<strong>in</strong>e—EU Work<strong>in</strong>g Group<br />

on Climate Change; <strong>and</strong> active participation <strong>in</strong> trans-boundary water issues <strong>and</strong> o<strong>the</strong>r<br />

impacts, among o<strong>the</strong>rs.<br />

A Memor<strong>and</strong>um of Underst<strong>and</strong><strong>in</strong>g on Energy (MOU) was signed at <strong>the</strong> EU-Ukra<strong>in</strong>e Summit<br />

<strong>in</strong> December 2005, establish<strong>in</strong>g a jo<strong>in</strong>t strategy to <strong>in</strong>tegrate <strong>the</strong> Ukra<strong>in</strong>ian energy market with<br />

<strong>the</strong> EU market. The MOU <strong>in</strong>cluded a strategy for improv<strong>in</strong>g <strong>the</strong> effectiveness of safety <strong>and</strong><br />

environmental st<strong>and</strong>ards <strong>in</strong> <strong>the</strong> <strong>coal</strong> energy sector.<br />

The portion of <strong>the</strong> EU-Ukra<strong>in</strong>e Action Plan address<strong>in</strong>g environmental issues covers<br />

measures focused on prevent<strong>in</strong>g deterioration of <strong>the</strong> environment, as well as enhanc<strong>in</strong>g<br />

<strong>in</strong>ternational <strong>and</strong> regional cooperation on trans-boundary environmental issues. S<strong>in</strong>ce <strong>the</strong>n,<br />

Ukra<strong>in</strong>e has participated <strong>in</strong> meet<strong>in</strong>gs address<strong>in</strong>g Danube—Black Sea water management<br />

issues, participated <strong>in</strong> a sem<strong>in</strong>ar address<strong>in</strong>g waste management issues, <strong>and</strong> resumed work<br />

with <strong>the</strong> Jo<strong>in</strong>t Ukra<strong>in</strong>e—EU Work<strong>in</strong>g Group on Climate Change. The latter group is a global<br />

climate change work<strong>in</strong>g group, focus<strong>in</strong>g on implementation of <strong>the</strong> Kyoto Protocol. Ukra<strong>in</strong>e is<br />

progress<strong>in</strong>g on prepar<strong>in</strong>g a national <strong>in</strong>ventory of greenhouse gas emissions.<br />

Given <strong>the</strong> close l<strong>in</strong>kage between current Ukra<strong>in</strong>ian environmental policy direction <strong>and</strong> EU<br />

environmental directives, as addressed <strong>in</strong> <strong>the</strong> EU—Ukra<strong>in</strong>e Action Plan, it appears likely that<br />

Ukra<strong>in</strong>e will, at some po<strong>in</strong>t <strong>in</strong> <strong>the</strong> future, adopt EU environmental directives by policy <strong>and</strong>/or<br />

regulation. Therefore, EU st<strong>and</strong>ards have been <strong>in</strong>corporated <strong>in</strong>to this review <strong>and</strong><br />

assessment of potential environmental impacts.<br />

Analysis of World Bank <strong>and</strong> Ukra<strong>in</strong>ian requirements for Environmental Assessments shows<br />

<strong>the</strong>y are similar. As Ukra<strong>in</strong>e cont<strong>in</strong>ues to move towards a European system of<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-3


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

environmental st<strong>and</strong>ards it is proposed that <strong>the</strong> project developers follow <strong>the</strong> EU EIA process<br />

if <strong>and</strong> when <strong>the</strong> proposed project moves forward. The three ma<strong>in</strong> stages <strong>in</strong> <strong>the</strong> EIA process<br />

are as follows:<br />

Screen<strong>in</strong>g – Process to deter<strong>m<strong>in</strong>e</strong> whe<strong>the</strong>r or not an EIA is required.<br />

Scop<strong>in</strong>g – Process to identify matters to be covered by <strong>the</strong> EIA, if required.<br />

EIS Review – Process to deter<strong>m<strong>in</strong>e</strong> is <strong>in</strong>formation submitted <strong>in</strong> environmental studies is<br />

adequate to <strong>in</strong>form decision.<br />

Exhibit 5.1 illustrates <strong>the</strong> general stages of an EIA, although details <strong>and</strong> requirements for<br />

<strong>in</strong>dividual Member States (MS) may vary considerably.<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-4


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 5.1 The Environmental Impact Assessment (EIA) Process<br />

(from “Guidance on EIA Screen<strong>in</strong>g”, June 2001, European Commission)<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-5


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

5.3 Potential Environmental Impacts<br />

Probably <strong>the</strong> most visible aspect of oil <strong>and</strong> gas <strong>development</strong> is <strong>the</strong> drill<strong>in</strong>g of <strong>the</strong> well. The<br />

media often associates <strong>the</strong> sight of a drill<strong>in</strong>g rig with uncontrolled oil well blowouts which<br />

creates concern over any type of drill<strong>in</strong>g activities. These fears, however, are unfounded<br />

with regard to CBM well drill<strong>in</strong>g for several reasons. First, a “blowout” <strong>in</strong> a natural gas well<br />

(<strong>coal</strong>bed <strong>methane</strong> is generally 95%+ <strong>methane</strong>) does not create <strong>the</strong> surface pollution that an<br />

oil well would create -- <strong>the</strong> <strong>methane</strong> <strong>and</strong> associated gases simply dissipate <strong>in</strong>to <strong>the</strong><br />

atmosphere (or are flared) until <strong>the</strong> well is brought under control.<br />

Second, <strong>coal</strong>bed <strong>methane</strong> wells very rarely blowout because of <strong>the</strong> mechanism by which <strong>the</strong><br />

gas is stored <strong>in</strong> <strong>the</strong> <strong>coal</strong>. In conventional gas reservoirs, free gas is held <strong>in</strong> <strong>the</strong> pore spaces<br />

under pressure. When a wellbore taps <strong>the</strong> reservoir, <strong>the</strong> gas flows <strong>in</strong>stantaneously under its<br />

own pressure. In <strong>coal</strong>bed <strong>methane</strong> reservoirs, however, <strong>the</strong> gas is stored <strong>in</strong> an adsorbed<br />

state <strong>in</strong> <strong>the</strong> <strong>coal</strong> macerals under hydrostatic pressure. Gas production is <strong>in</strong>itiated by lower<strong>in</strong>g<br />

<strong>the</strong> hydrostatic pressure by plac<strong>in</strong>g <strong>the</strong> well on pump. Under <strong>the</strong>se conditions, little, if any,<br />

gas is produced dur<strong>in</strong>g drill<strong>in</strong>g, as <strong>the</strong> wellbore is generally filled with drill<strong>in</strong>g fluids <strong>and</strong>/or<br />

formation waters dur<strong>in</strong>g this operation.<br />

In addition to <strong>the</strong> perceived impacts, o<strong>the</strong>r potential impacts to <strong>the</strong> environment do exist <strong>and</strong><br />

can be categorized based on impacts dur<strong>in</strong>g construction <strong>and</strong> operations. A discussion of<br />

<strong>the</strong> impacts dur<strong>in</strong>g each of <strong>the</strong>se phases is presented <strong>in</strong> <strong>the</strong> rema<strong>in</strong>der of this section, along<br />

with potential mitigation actions.<br />

5.3.1 Construction Impacts.<br />

Clearly, <strong>the</strong> construction phase of <strong>the</strong> project will generate <strong>the</strong> most obvious <strong>and</strong> potentially<br />

<strong>the</strong> most serious impacts on <strong>the</strong> environment. This <strong>in</strong>cludes <strong>the</strong> eng<strong>in</strong>eer<strong>in</strong>g work that will be<br />

undertaken dur<strong>in</strong>g <strong>the</strong> <strong>in</strong>stallation of <strong>the</strong> surface facilities <strong>and</strong> related <strong>in</strong>frastructure. This<br />

<strong>in</strong>cludes <strong>the</strong> CH4 production wells, gas ga<strong>the</strong>r<strong>in</strong>g/process<strong>in</strong>g/compression system, CH4<br />

pipel<strong>in</strong>e, water ga<strong>the</strong>r<strong>in</strong>g <strong>and</strong> treatment facilities, roads, powerl<strong>in</strong>es, camps, <strong>and</strong> generators.<br />

5.3.1.1 Aes<strong>the</strong>tics.<br />

Each of <strong>the</strong> well sites will be approximately 1 ha (2 acres) <strong>in</strong> size <strong>and</strong> must house <strong>the</strong> drill<strong>in</strong>g<br />

rig <strong>and</strong> associated equipment (e.g., drill pipes, cas<strong>in</strong>g), hydraulic fractur<strong>in</strong>g equipment, <strong>and</strong><br />

mud pits/settl<strong>in</strong>g ponds. After drill<strong>in</strong>g, complet<strong>in</strong>g, <strong>and</strong> equipp<strong>in</strong>g <strong>the</strong> well, <strong>the</strong> size of <strong>the</strong><br />

footpr<strong>in</strong>t can be reduced from 1 ha down to an area of approximately 50 m 2 . This reduced<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-6


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

area would support <strong>the</strong> wellhead, pump jack, <strong>and</strong> separation/meter<strong>in</strong>g facilities. The<br />

compact <strong>and</strong> relatively unobtrusive nature of surface facilities is attested to by <strong>the</strong> fact that<br />

some oil <strong>and</strong> gas surface facilities are located <strong>in</strong> <strong>the</strong> center of major cities (for example, Los<br />

Angeles) virtually unnoticed. In <strong>the</strong> case of Los Angeles, small build<strong>in</strong>g facades are put<br />

around <strong>the</strong> facilities to disguise <strong>the</strong>m. For <strong>the</strong> proposed project, <strong>the</strong> surface facilities could<br />

be ei<strong>the</strong>r fenced-off or pa<strong>in</strong>ted to help blend <strong>in</strong> with <strong>the</strong> surround<strong>in</strong>g environment.<br />

Exhibit 5.2 Schematic of a Typical Well Site Layout<br />

Construction waste (construction material, packag<strong>in</strong>g, etc.) <strong>and</strong> miscellaneous waste<br />

(general rubbish from contractor’s camp, used oil, etc.) if not properly disposed of will create<br />

concerns.<br />

Mitigation:<br />

M<strong>in</strong>imize <strong>the</strong> ecological footpr<strong>in</strong>t of drill<strong>in</strong>g rigs <strong>and</strong> associated equipment (e.g., drill<br />

pipes, cas<strong>in</strong>g, hydraulic fractur<strong>in</strong>g equipment, <strong>and</strong> mud pits/settl<strong>in</strong>g ponds) as well as<br />

<strong>the</strong> wellhead, pump<strong>in</strong>g equipment, <strong>and</strong> separation/meter<strong>in</strong>g facilities.<br />

All waste generated to be disposed of at designated waste disposal sites <strong>in</strong> <strong>the</strong> locality.<br />

5.3.1.2 Surface Disturbance.<br />

The establishment of <strong>the</strong> well sites, surface facilities, <strong>and</strong> related <strong>in</strong>frastructure (especially<br />

roads), toge<strong>the</strong>r with <strong>the</strong> h<strong>and</strong>l<strong>in</strong>g <strong>and</strong> treatment of drill<strong>in</strong>g fluids/muds represent <strong>the</strong> ma<strong>in</strong><br />

environmental impacts at <strong>the</strong> construction stage <strong>and</strong> are detailed below.<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-7


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The clearance of <strong>and</strong>/or disturbance to exist<strong>in</strong>g vegetation creates opportunities for<br />

<strong>in</strong>creased soil erosion by w<strong>in</strong>ds <strong>and</strong> flash floods.<br />

The pipel<strong>in</strong>e system used to move <strong>the</strong> <strong>methane</strong> from <strong>the</strong> field to <strong>the</strong> end-user will necessitate<br />

<strong>the</strong> clearance of some vegetation. The use of <strong>the</strong> exist<strong>in</strong>g right-of-ways (ROWs) as a route<br />

for <strong>the</strong> pipel<strong>in</strong>es would m<strong>in</strong>imize <strong>the</strong> vegetation clearance <strong>and</strong> soil erosion potential. Field<br />

<strong>development</strong> also entails <strong>the</strong> <strong>in</strong>stallation of separate pipel<strong>in</strong>e systems for <strong>the</strong> low pressure<br />

gas ga<strong>the</strong>r<strong>in</strong>g <strong>and</strong> water ga<strong>the</strong>r<strong>in</strong>g. These pipel<strong>in</strong>es can be buried <strong>in</strong> shallow trenches,<br />

keep<strong>in</strong>g <strong>the</strong>m out of sight.<br />

Mitigation:<br />

Pipel<strong>in</strong>e route should make use of exist<strong>in</strong>g ROWs, to <strong>the</strong> extent possible.<br />

The pipel<strong>in</strong>e system should be buried <strong>in</strong> shallow trenches, keep<strong>in</strong>g <strong>the</strong>m out of sight.<br />

Topsoil <strong>and</strong> vegetation should be removed carefully <strong>and</strong> restored after backfill<strong>in</strong>g.<br />

Erosion impact due to clear<strong>in</strong>g can be m<strong>in</strong>imized by clear<strong>in</strong>g only <strong>the</strong> areas required for<br />

<strong>development</strong>.<br />

Cleared areas should be l<strong>and</strong>scaped with shortened slopes so as to guard aga<strong>in</strong>st<br />

erosion.<br />

5.3.1.3 Water<br />

All eng<strong>in</strong>eer<strong>in</strong>g work (drill<strong>in</strong>g, pipe lay<strong>in</strong>g, evaporation ponds, etc.) generates fluids that need<br />

to be managed properly to protect <strong>the</strong> groundwater. Such potential pollution sources may<br />

<strong>in</strong>clude oil <strong>and</strong> fuel spillages, septic tanks, solid waste disposal facilities, <strong>and</strong> storage areas<br />

for materials (especially any chemicals used <strong>in</strong> drill<strong>in</strong>g, hydrofractur<strong>in</strong>g, or gas process<strong>in</strong>g).<br />

In <strong>the</strong> U.S., drill<strong>in</strong>g fluid, mud, fracc<strong>in</strong>g fluid, <strong>and</strong> cutt<strong>in</strong>gs are disposed of <strong>in</strong> a large plastic<br />

l<strong>in</strong>ed pit next to <strong>the</strong> well. After drill<strong>in</strong>g is complete, <strong>the</strong> pit is allowed to settle, dur<strong>in</strong>g which<br />

time most of <strong>the</strong> water evaporates. Any excess st<strong>and</strong><strong>in</strong>g water is carefully removed by a<br />

water truck <strong>and</strong> added to exist<strong>in</strong>g water disposal <strong>and</strong>/or treatment facilities. The rema<strong>in</strong><strong>in</strong>g<br />

mud <strong>in</strong> <strong>the</strong> pit is encapsulated with <strong>the</strong> dirt orig<strong>in</strong>ally excavated from <strong>the</strong> pit. For <strong>the</strong><br />

proposed project, a similar disposal procedure is recommended.<br />

Mitigation:<br />

Proper ma<strong>in</strong>tenance of <strong>the</strong> vehicles/mach<strong>in</strong>ery to avoid oil leaks on site.<br />

Particular care when work<strong>in</strong>g near water-courses <strong>and</strong> dra<strong>in</strong>age l<strong>in</strong>es.<br />

M<strong>in</strong>imal clearance of vegetation especially tall trees.<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-8


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Disposal of drill<strong>in</strong>g fluid, mud, fracc<strong>in</strong>g fluid, <strong>and</strong> cutt<strong>in</strong>gs <strong>in</strong> a large plastic l<strong>in</strong>ed pit next<br />

to <strong>the</strong> well.<br />

Avoid block<strong>in</strong>g natural waterways with construction-related debris (e.g. soil heaps,<br />

concrete, gravel, etc.) <strong>and</strong> so alter<strong>in</strong>g <strong>the</strong> natural path of overl<strong>and</strong> flow.<br />

5.3.1.4 Noise<br />

The provision of surface facilities <strong>and</strong> <strong>in</strong>frastructure will require heavy mach<strong>in</strong>ery operat<strong>in</strong>g<br />

on <strong>the</strong> site <strong>and</strong> heavy goods vehicles mov<strong>in</strong>g between <strong>the</strong> site <strong>and</strong> supply centers. Noise<br />

impact can be reduced by restrict<strong>in</strong>g movements to daytime, as far as is possible, <strong>and</strong><br />

ensur<strong>in</strong>g that all equipment is well ma<strong>in</strong>ta<strong>in</strong>ed <strong>and</strong> exhausts fitted with mufflers. Noise<br />

impacts are discussed fur<strong>the</strong>r <strong>in</strong> <strong>the</strong> section on impacts <strong>in</strong> <strong>the</strong> operational phase.<br />

Mitigation:<br />

Restrict heavy mach<strong>in</strong>ery movements to daytime, as far as is possible.<br />

Ensure mach<strong>in</strong>ery is well ma<strong>in</strong>ta<strong>in</strong>ed <strong>and</strong> all vehicles fitted with mufflers.<br />

5.3.1.5 Air quality.<br />

Dust dur<strong>in</strong>g construction may be a potential nuisance, depend<strong>in</strong>g upon <strong>the</strong> w<strong>in</strong>d direction.<br />

However, this is expected to be only a temporary nuisance, which can be managed if<br />

vegetation clear<strong>in</strong>g is restricted to cover <strong>the</strong> area required for construction. The use of<br />

construction mach<strong>in</strong>ery may lead to some emissions from <strong>the</strong> fumes. Though <strong>the</strong> fumes<br />

might be m<strong>in</strong>imal, to manage <strong>the</strong> situation <strong>the</strong> contractors should ensure mach<strong>in</strong>ery <strong>and</strong><br />

vehicles used are regularly serviced <strong>and</strong> well ma<strong>in</strong>ta<strong>in</strong>ed.<br />

Drill<strong>in</strong>g operations consist<strong>in</strong>g of hundreds to thous<strong>and</strong>s of wells can contribute to air pollution<br />

if <strong>the</strong> appropriate st<strong>and</strong>ards are not met. In <strong>the</strong> U.S., air pollutants most regulated by<br />

national st<strong>and</strong>ards are known as <strong>the</strong> “Criteria Pollutants”, <strong>and</strong> <strong>in</strong>clude NOx, CO, HC<br />

(hydrocarbons), SOx, PM10 (particulate matter 10 microns <strong>and</strong> smaller), <strong>and</strong> PM2.5<br />

(particulate matter 2.5 microns <strong>and</strong> smaller).<br />

For <strong>the</strong> drill<strong>in</strong>g rigs, regulations govern<strong>in</strong>g <strong>the</strong> allowable quantity of pollutants that a diesel<br />

eng<strong>in</strong>e can produce vary depend<strong>in</strong>g on local air emission st<strong>and</strong>ards as well as <strong>the</strong> size of <strong>the</strong><br />

eng<strong>in</strong>e. Listed <strong>in</strong> Exhibit 5.3 are <strong>the</strong> EPA air emission st<strong>and</strong>ards for Nonroad Diesel Eng<strong>in</strong>es<br />

(EPA, 2003), broken down by eng<strong>in</strong>e size <strong>and</strong> pollutant. Tier 1 st<strong>and</strong>ards were adopted <strong>in</strong><br />

1994 to be phased <strong>in</strong> from 1996 to 2000. The EPA has s<strong>in</strong>ce adopted more str<strong>in</strong>gent<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-9


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

emissions st<strong>and</strong>ards for NOx, HC, <strong>and</strong> PM, represented by Tier 2, to be phased <strong>in</strong> from 2001<br />

to 2006 <strong>and</strong> Tier 3 from 2006 to 2008 (EPA, 2003).<br />

Mitigation:<br />

The impact can be m<strong>in</strong>imized by restrict<strong>in</strong>g vegetation clearance to construction<br />

areas only.<br />

Wett<strong>in</strong>g of surface roads to reduce dust.<br />

Ma<strong>in</strong>tenance <strong>and</strong> operation of heavy vehicles to be regulated.<br />

Eng<strong>in</strong>e Power Tier<br />

Model<br />

Year<br />

NOx HC<br />

NMHC +<br />

NOx<br />

CO PM<br />

kW < 8 Tier 1 2000 - - 10.5 (7.8) 8.0 (6.0) 1.0 (0.75)<br />

(hp < 11) Tier 2 2005 - - 7.5 (5.6) 8.0 (6.0) 0.80 (0.60)<br />

8 = kW < 19 Tier 1 2000 - - 9.5 (7.1) 6.6 (4.9) 0.80 (0.60)<br />

(11 = hp < 25) Tier 2 2005 - - 7.5 (5.6) 6.6 (4.9) 0.80 (0.60)<br />

19= kW < 37 Tier 1 1999 - - 9.5 (7.1) 5.5 (4.1) 0.80 (0.60)<br />

(25 = hp < 50) Tier 2 2004 - - 7.5 (5.6) 5.5 (4.1) 0.60 (0.45)<br />

37 = kW < 75<br />

(50 = hp < 100)<br />

Tier 1<br />

Tier 2<br />

Tier 3<br />

1998<br />

2004<br />

2008<br />

9.2 (6.9)<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

7.5 (5.6)<br />

4.7 (3.5)<br />

-<br />

5.0 (3.7)<br />

5.0 (3.7)<br />

-<br />

0.40 (0.30)<br />

-*<br />

75 = kW < 130<br />

(100 = hp < 175)<br />

Tier 1<br />

Tier 2<br />

Tier 3<br />

1997<br />

2003<br />

2007<br />

9.2 (6.9)<br />

-<br />

-<br />

-<br />

-<br />

-<br />

-<br />

6.6 (4.9)<br />

4.0 (3.0)<br />

-<br />

5.0 (3.7)<br />

5.0 (3.7)<br />

-<br />

0.30 (0.22)<br />

-*<br />

130 = kW < 225<br />

(175 = hp < 300)<br />

Tier 1<br />

Tier 2<br />

Tier 3<br />

1996<br />

2003<br />

2006<br />

9.2 (6.9)<br />

-<br />

-<br />

1.3 (1.0)<br />

-<br />

-<br />

-<br />

6.6 (4.9)<br />

4.0 (3.0)<br />

11.4 (8.5)<br />

3.5 (2.6)<br />

3.5 (2.6)<br />

0.54 (0.40)<br />

0.20 (0.15)<br />

-*<br />

225 = kW < 450<br />

(300 = hp < 600)<br />

Tier 1<br />

Tier 2<br />

Tier 3<br />

1996<br />

2001<br />

2006<br />

9.2 (6.9)<br />

-<br />

-<br />

1.3 (1.0)<br />

-<br />

-<br />

-<br />

6.4 (4.8)<br />

4.0 (3.0)<br />

11.4 (8.5)<br />

3.5 (2.6)<br />

3.5 (2.6)<br />

0.54 (0.40)<br />

0.20 (0.15)<br />

-*<br />

450 = kW < 560<br />

(600 = hp < 750)<br />

Tier 1<br />

Tier 2<br />

Tier 3<br />

1996<br />

2002<br />

2006<br />

9.2 (6.9)<br />

-<br />

-<br />

1.3 (1.0)<br />

-<br />

-<br />

-<br />

6.4 (4.8)<br />

4.0 (3.0)<br />

11.4 (8.5)<br />

3.5 (2.6)<br />

3.5 (2.6)<br />

0.54 (0.40)<br />

0.20 (0.15)<br />

-*<br />

kW = 560 Tier 1 2000 9.2 (6.9) 1.3 (1.0) - 11.4 (8.5) 0.54 (0.40)<br />

(hp = 750) Tier 2 2006 - - 6.4 (4.8) 3.5 (2.6) 0.20 (0.15)<br />

* - Tier 3 PM st<strong>and</strong>ard to be proposed <strong>and</strong> adopted <strong>in</strong> <strong>the</strong> 2001 review<br />

Exhibit 5.3 EPA Nonroad Diesel Eng<strong>in</strong>e Emission St<strong>and</strong>ards, g/kW x h (g/bhp x h)<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-10


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

5.3.1.6 Disposal.<br />

Construction waste must be dealt with quickly <strong>and</strong> responsibly <strong>in</strong> order to m<strong>in</strong>imize <strong>the</strong><br />

ecological footpr<strong>in</strong>t of <strong>the</strong> project. The bury<strong>in</strong>g of biodegradable <strong>and</strong> burn<strong>in</strong>g of packag<strong>in</strong>g<br />

(boxes <strong>and</strong> paper) is permitted, while everyth<strong>in</strong>g else must be removed to a recognized<br />

waste disposal facility at an urban center. Batteries, waste oil <strong>and</strong> diesel, <strong>and</strong> any o<strong>the</strong>r<br />

waste fluids or lubricants have <strong>the</strong> potential to contam<strong>in</strong>ate both surface <strong>and</strong> ground water<br />

supplies <strong>and</strong> should not be dumped on site.<br />

Mitigation:<br />

All waste generated, apart from biodegradable material, to be disposed of at<br />

designated waste disposal sites <strong>in</strong> <strong>the</strong> locality.<br />

All heavy plant mach<strong>in</strong>ery <strong>and</strong> project related equipment to be stored at designated<br />

sites.<br />

5.3.2 Operation Impacts.<br />

Dur<strong>in</strong>g <strong>the</strong> operational phase of <strong>the</strong> project potential environmental impacts result<strong>in</strong>g from<br />

<strong>the</strong> operation of generators, <strong>in</strong>ternal combustion eng<strong>in</strong>es, <strong>and</strong> compressors are of concern.<br />

However, <strong>the</strong> ma<strong>in</strong> environmental concerns relate to potential impacts to <strong>the</strong> quantity <strong>and</strong><br />

quality of shallow groundwater resources <strong>in</strong> <strong>the</strong> region, <strong>and</strong> impacts from <strong>the</strong> management<br />

<strong>and</strong> disposal of <strong>the</strong> relatively large quantities of potentially poor quality production water.<br />

These impacts are potentially <strong>the</strong> most significant <strong>and</strong> are dealt with <strong>in</strong>dependently as <strong>the</strong>y<br />

bisect a wide spectrum of impacts <strong>and</strong> present a number of disposal options.<br />

5.3.2.1 Production <strong>and</strong> Disposal of Water<br />

Quantity <strong>and</strong> Quality. Coalbed <strong>methane</strong> production relies on <strong>the</strong> concurrent production of<br />

large volumes of <strong>coal</strong> seam formation water to reduce <strong>in</strong>itial reservoir pressure <strong>and</strong> <strong>in</strong>itiate<br />

<strong>the</strong> desorption of gas from <strong>the</strong> <strong>coal</strong> reservoir. The rate of water production from a CBM well<br />

varies widely, depend<strong>in</strong>g primarily on reservoir thickness, porosity, permeability, well<br />

spac<strong>in</strong>g, pump rates, <strong>and</strong> proximity to aquiferous s<strong>and</strong>stones or <strong>in</strong>trusions <strong>and</strong> meteoric<br />

recharge. CBM wells <strong>in</strong> U.S. CBM Bas<strong>in</strong>s can produce from 1 to 60 m 3 /day of formation<br />

water dur<strong>in</strong>g <strong>the</strong> first 6 months or so, depend<strong>in</strong>g on permeability, pump rates, <strong>and</strong> well<br />

spac<strong>in</strong>g.<br />

The water production rate for a s<strong>in</strong>gle well <strong>in</strong> <strong>the</strong> project area, based on <strong>the</strong> simulation study,<br />

is estimated to average 1-2 m 3 /day/well (6-10 bbl/day/well) for <strong>the</strong> first two years of<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-11


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

production. Total production from a typical CBM project <strong>in</strong>volv<strong>in</strong>g hundreds of wells can be<br />

considerable <strong>and</strong> must be carefully managed to meet local environmental requirements.<br />

Coal seam formation water varies widely <strong>in</strong> composition. Produced water from permeable,<br />

shallow <strong>coal</strong> reservoirs close to meteoric recharge is often quite fresh, such as <strong>in</strong> <strong>the</strong> Powder<br />

River Bas<strong>in</strong> or <strong>in</strong> <strong>the</strong> nor<strong>the</strong>rnmost San Juan Bas<strong>in</strong>. More commonly, however, <strong>coal</strong> seam<br />

formation water conta<strong>in</strong>s significant levels of total dissolved solids (TDS), typically 5,000 to<br />

20,000 ppm (or more), <strong>and</strong> requires special treatment <strong>and</strong>/or disposal under most<br />

environmental regulatory regimes. Based on <strong>the</strong> experience of Ecometan’s CBM drill<strong>in</strong>g<br />

efforts, as well as data ga<strong>the</strong>red from <strong>the</strong> <strong>m<strong>in</strong>e</strong>s, <strong>the</strong> formation water <strong>in</strong> <strong>the</strong> study area is<br />

highly sal<strong>in</strong>e, <strong>in</strong> excess of 40,000 mg/L. The TDS of <strong>the</strong> water is dependent upon <strong>the</strong>:<br />

depth of <strong>the</strong> <strong>coal</strong> beds,<br />

composition of <strong>the</strong> rocks surround<strong>in</strong>g <strong>the</strong> <strong>coal</strong> beds,<br />

amount of time <strong>the</strong> rock <strong>and</strong> water react, <strong>and</strong><br />

orig<strong>in</strong> of <strong>the</strong> water enter<strong>in</strong>g <strong>the</strong> <strong>coal</strong> beds.<br />

Trace-element concentrations <strong>in</strong> CBM water are commonly low (


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The TDS of CBM water ranges from fresh (200 mg/L or ppm) to sal<strong>in</strong>e (170,000 mg/L) <strong>and</strong><br />

varies among <strong>and</strong> with<strong>in</strong> bas<strong>in</strong>s. It should be noted that <strong>the</strong> TDS of potable water is 500<br />

mg/L, stock ponds for irrigation have a TDS limit of 1,000–2,000 mg/L, <strong>and</strong> that of <strong>the</strong><br />

average seawater is 35,000 mg/L.<br />

Water St<strong>and</strong>ards. The quality of <strong>the</strong> produced water dictates how it is h<strong>and</strong>led. High quality<br />

water can be used for beneficial purposes such as irrigation, <strong>in</strong>dustrial use, or dr<strong>in</strong>k<strong>in</strong>g water.<br />

Poor quality water must be disposed of or treated before an applicable use is found. The<br />

follow<strong>in</strong>g tables show World Health Organization (WHO) discharge st<strong>and</strong>ards (Exhibit 5.4)<br />

<strong>and</strong> WHO dr<strong>in</strong>k<strong>in</strong>g water specifications (Exhibit 5.5).<br />

Property<br />

Maximum allowable<br />

Discharge<br />

(ppm or as specified)<br />

Property<br />

Maximum allowable<br />

Discharge<br />

(ppm or as specified)<br />

Temperature (oC) - Cyanide 0.1<br />

pH 6.5-8.5 Chromium 0.05<br />

Dissolved Oxygen - Cadmium 0.005<br />

Biological Oxygen<br />

Dem<strong>and</strong><br />

Chlor<strong>in</strong>e Oxygen<br />

Dem<strong>and</strong><br />

Free & Sal<strong>in</strong>e Ammonia<br />

(as N)<br />

- Mercury 0.001<br />

- Selenium 0.01<br />

- Iron 0.3<br />

Nitrate (as N) 10 Manganese 0.1<br />

Total Phosphorus (as P) - Nickel -<br />

Color (TCU) 15 Sodium 200<br />

Total Coliform (n/100ml) 10 Sulfate 400<br />

Fecal Coliform<br />

(n/100ml)<br />

0 Chloride 600<br />

Arsenic 0.05 Fluoride 1.5<br />

Boron -<br />

Total Dissolved<br />

Solids<br />

Z<strong>in</strong>c 5 Oil & scum -<br />

Copper 1 1<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-13<br />

1000<br />

Phenols 0.001 0.001<br />

Lead 0.05 0.05<br />

Exhibit 5.4 Maximum Allowable Discharge limits set by <strong>the</strong> World Health Organization


Variables<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Guidel<strong>in</strong>e Values<br />

(<strong>in</strong> mg/L where applicable)<br />

Variables<br />

Physical Requirements Toxic Substances<br />

Guidel<strong>in</strong>e Values<br />

(<strong>in</strong> mg/L where applicable)<br />

Turbidity, NTU 5 Nitrate, NO3 45<br />

Color, TCU 15 Fluoride, F 0.7 – 1.5<br />

Taste & Odor Unobjectionable Lead, Pb 0.05<br />

Chemical Requirements Cadmium, Cd 0.05<br />

Chlor<strong>in</strong>e Residual, CL2 0.6 Cyanide, CN 0.01<br />

pH value 6.0 - 9.0 Microbiological Variables<br />

Total Dissolved Solids,<br />

TDS<br />

Total Hardness, as<br />

CaCO3<br />

500<br />

20 – 200<br />

Fecal Coliforms / 100 ml<br />

Total Coliforms / 100 ml<br />

Sulfate, SO4 250 Organic Constituents<br />

Calcium, Ca 75 Phenols 0.01<br />

Nitrite, NO2<br />

3<br />

Total Organic Carbon,<br />

TOC<br />

Phosphorous, PO4 0.3 Trihalo<strong>methane</strong>s, THM 100<br />

Chloride, CL 250 Total Pesticides 0.0005<br />

Sodium, Na<br />

200<br />

Poly Aromatic<br />

Hydrocarbons<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-14<br />

0<br />

0<br />

8<br />

0.001<br />

Magnesium, Mg 100 Dis<strong>in</strong>fection by-products 0.6 – 1<br />

Iron, Fe 0.3 Toluene 0.02 – 0.2<br />

Manganese, Mn 0.1 Chlorophyll A 0 – 5<br />

Ammonium, NH4 1.5<br />

Alum<strong>in</strong>um, Al 0.2<br />

Copper, Cu 1<br />

Z<strong>in</strong>c, Zn 5<br />

Exhibit 5.5 WHO Specifications for Dr<strong>in</strong>k<strong>in</strong>g Water Quality


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Water Disposal Options. Formation water TDS generally <strong>in</strong>creases with longer residence<br />

time with<strong>in</strong> <strong>the</strong> <strong>coal</strong> reservoir; low permeability <strong>and</strong> or location far from meteoric discharge<br />

<strong>in</strong>crease residence time, <strong>the</strong>reby <strong>in</strong>creas<strong>in</strong>g <strong>the</strong> dissolution of even relatively <strong>in</strong>soluble solids.<br />

For example, <strong>coal</strong> seams far from recharge <strong>in</strong> <strong>the</strong> Central Appalachian Bas<strong>in</strong> of <strong>the</strong> U.S. are<br />

highly sal<strong>in</strong>e, typically conta<strong>in</strong><strong>in</strong>g over 50,000 ppm of dissolved NaCl, yet water production<br />

rates are very low at several m 3 /day/well or less.<br />

In contrast, produced water <strong>in</strong> <strong>the</strong> western Raton bas<strong>in</strong>, close to recharge along <strong>the</strong> outcrop<br />

of Vermejo from <strong>coal</strong> seams <strong>in</strong> <strong>the</strong> Sangre de Cristo Mounta<strong>in</strong>s, has a very low level of TDS,<br />

typically under 1,000 ppm, but production averages 180 m 3 /d per well with no apparent<br />

decl<strong>in</strong>e. Because of <strong>the</strong> <strong>in</strong>terrelationship between <strong>coal</strong> seam hydrology, permeability, <strong>and</strong><br />

water chemistry, TDS commonly is <strong>in</strong>versely related to water production rate.<br />

There is no established technology for reduc<strong>in</strong>g water production without adversely affect<strong>in</strong>g<br />

gas production rates. Consequently, mitigation technologies have focused ei<strong>the</strong>r on<br />

dispos<strong>in</strong>g produced water us<strong>in</strong>g underground <strong>in</strong>jection or surface evaporation, or by surface<br />

treatment of produced water for disposal or utilization.<br />

In <strong>the</strong> U.S., produced water from CBM operations is disposed of us<strong>in</strong>g several different<br />

approaches. The most appropriate method depends on many variables, <strong>in</strong>clud<strong>in</strong>g water<br />

volume, TDS levels <strong>and</strong> composition, as well as on non-reservoir factors such as local<br />

climate, surface dra<strong>in</strong>age, <strong>and</strong> environmental regulations. Water disposal technology is<br />

highly site specific <strong>and</strong> must be deter<strong>m<strong>in</strong>e</strong>d for each <strong>in</strong>dividual application. In <strong>the</strong> Powder<br />

River Bas<strong>in</strong> of Montana <strong>and</strong> Wyom<strong>in</strong>g, <strong>the</strong> most commonly used disposal options for water<br />

produced dur<strong>in</strong>g CBM production <strong>in</strong>clude:<br />

Surface Discharge<br />

Infiltration Impoundment (or evaporation pits)<br />

Shallow Re-Injection<br />

Active Treatment Us<strong>in</strong>g Reverse Osmosis (RO)<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-15


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 5.6 shows a cost analysis for each of <strong>the</strong> water disposal options <strong>in</strong> <strong>the</strong> Powder River<br />

Bas<strong>in</strong>. Operat<strong>in</strong>g costs are assumed on a per barrel basis for a “typical” CBM well produc<strong>in</strong>g<br />

38 m 3 /day (average) dur<strong>in</strong>g <strong>the</strong> first two years. Capital costs are based on an average s<strong>in</strong>gle<br />

seam produc<strong>in</strong>g well <strong>in</strong> <strong>the</strong> Powder River.<br />

Water Disposal<br />

Water Disposal Costs<br />

Capital Costs/Well O&M Costs/Bbl.<br />

A. Surface Discharge (16 well unit) $1,400 $0.02<br />

B. Infiltration Impoundment (16 well unit) $10,300 $0.06<br />

C. Shallow Re-Injection (96 well unit) $8,100 $0.06<br />

D. Active Treatment w/ Disposal of<br />

Residual Concentrate (96 well unit)<br />

-Truck<strong>in</strong>g $19,600 $0.24<br />

-Deep Re-Injection $35,200 $0.14<br />

Exhibit 5.6 Water Disposal Costs <strong>in</strong> <strong>the</strong> Powder River Bas<strong>in</strong><br />

For comparison, <strong>the</strong> simulation study performed for <strong>the</strong> Project Area estimates an average of<br />

1-4 m 3 /well (6-25 bbl/day) for <strong>the</strong> first two years; however, this average will decl<strong>in</strong>e for<br />

subsequent wells as <strong>the</strong> fixed water volume <strong>in</strong> <strong>the</strong> Project Area cont<strong>in</strong>ually drops. The<br />

highest water production will be <strong>in</strong> <strong>the</strong> first two years, <strong>the</strong>refore water treatment costs will be<br />

reduced over time, as water production rates decl<strong>in</strong>e.<br />

Reverse Osmosis. Water produced from <strong>the</strong> CBM <strong>and</strong> CMM projects will likely require<br />

treatment before it could be discharged <strong>in</strong>to <strong>the</strong> local watershed. Treatment costs us<strong>in</strong>g<br />

reverse osmosis vary <strong>in</strong> <strong>the</strong> Powder River Bas<strong>in</strong>, depend<strong>in</strong>g on <strong>the</strong> type of residual<br />

concentrate removal, whe<strong>the</strong>r by truck or deep re-<strong>in</strong>jection. In addition to capital <strong>and</strong><br />

operational costs for surface discharge, <strong>the</strong> Project Area would also <strong>in</strong>cur active treatment<br />

costs for reverse osmosis similar to those listed above for <strong>the</strong> Powder River Bas<strong>in</strong>.<br />

Reverse osmosis (RO) of brackish produced water <strong>in</strong>volves <strong>the</strong> use of a permeable<br />

membrane to separate fresh product water <strong>and</strong> waste br<strong>in</strong>e streams (Exhibit 5.7). Each pass<br />

through <strong>the</strong> membrane can half <strong>the</strong> TDS of <strong>the</strong> product water, thus <strong>the</strong> performance of an<br />

RO system depends on <strong>the</strong> requirements for product water chemistry. A typical CBM RO<br />

system <strong>in</strong> <strong>the</strong> San Juan Bas<strong>in</strong> <strong>in</strong>volves process<strong>in</strong>g 7,000 ppm TDS sodium bicarbonate water<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-16


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

to generate 400 ppm TDS product water, which could <strong>the</strong>n be used for agriculture, <strong>and</strong> a<br />

small waste stream consist<strong>in</strong>g of 100,000 ppm TDS water that would be <strong>in</strong>jected <strong>in</strong> a<br />

conventional underground disposal well. RO systems are typically constructed from<br />

commercial 300m 3 /day units <strong>and</strong> are skid-mounted for portability. The pr<strong>in</strong>cipal capital costs<br />

for RO <strong>in</strong>clude <strong>the</strong> RO unit <strong>and</strong> control system <strong>and</strong> pre-treatment systems to reduce foul<strong>in</strong>g<br />

of <strong>the</strong> membranes, which is a common operat<strong>in</strong>g problem. Operat<strong>in</strong>g costs <strong>in</strong>clude electricity<br />

to pump <strong>the</strong> water stream at high pressure across <strong>the</strong> membrane, <strong>and</strong> membrane<br />

ma<strong>in</strong>tenance to remove scale <strong>and</strong> o<strong>the</strong>r foul<strong>in</strong>g problems.<br />

Exhibit 5.7 DOE/Phillips Reverse Osmosis Plant for De-Ionization of Produced Water<br />

Putt<strong>in</strong>g <strong>the</strong> water to beneficial use through reverse osmosis represents a good option. The<br />

cost of reverse osmosis treatment <strong>in</strong> <strong>the</strong> Project Area is estimated to be $0.82/CMw<br />

($0.16/Bbl).<br />

Underground Re-Injection. Re-<strong>in</strong>jection capital costs <strong>in</strong> <strong>the</strong> Powder River Bas<strong>in</strong> are<br />

estimated at approximately $8,100/well, based on s<strong>in</strong>gle seam produc<strong>in</strong>g wells <strong>in</strong> a 96 well<br />

unit, with an <strong>in</strong>jection rate of 238 m 3 /d, requir<strong>in</strong>g 15 shallow wells. CBM produced water <strong>in</strong><br />

<strong>the</strong> Powder River is fairly fresh, so shallow re-<strong>in</strong>jection wells are typically only 90-300 meters<br />

<strong>in</strong> depth. The EPA requires that water must be re-<strong>in</strong>jected to a depth at which <strong>the</strong> re-<strong>in</strong>jected<br />

water’s sal<strong>in</strong>ity matches that of <strong>the</strong> aquifer <strong>in</strong>to which it will be pumped. Exhibit 5.8 shows a<br />

typical disposal well <strong>in</strong> <strong>the</strong> San Juan Bas<strong>in</strong>. ARI believes that <strong>the</strong> treatment of <strong>the</strong> produced<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-17


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

water us<strong>in</strong>g reverse osmosis <strong>and</strong> re-<strong>in</strong>jection of <strong>the</strong> high TDS stream represents a good<br />

water disposal option for Ukra<strong>in</strong>ian CBM <strong>development</strong> projects, provided a good reservoir is<br />

available to <strong>in</strong>sert <strong>in</strong>to. Absent a good disposal zone, <strong>the</strong> water could be treated at a<br />

municipal waste facility.<br />

Exhibit 5.8 Well Completion Schematic of Disposal Well <strong>in</strong> <strong>the</strong> San Juan Bas<strong>in</strong><br />

Prelim<strong>in</strong>ary Environmental Assessment 5-18


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Infiltration Impoundment. Water disposal by <strong>in</strong>filtration impoundment <strong>in</strong> <strong>the</strong> Powder River<br />

Bas<strong>in</strong> has capital costs of $10,300/well. Surface evaporation, different than <strong>in</strong>filtration<br />

impoundments, is used <strong>in</strong> ponds to dispose a small fraction of CBM produced water <strong>in</strong> <strong>the</strong><br />

San Juan <strong>and</strong> U<strong>in</strong>ta bas<strong>in</strong>s. Disposal of produced water <strong>in</strong> evaporation ponds is a simple<br />

process, <strong>in</strong>volv<strong>in</strong>g construct<strong>in</strong>g <strong>and</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a shallow closed pond with a large surface<br />

area, <strong>in</strong>troduc<strong>in</strong>g produced water <strong>in</strong>to <strong>the</strong> pond, <strong>and</strong> allow<strong>in</strong>g <strong>the</strong> water to evaporate (Zimpfer<br />

et al., 1988). For <strong>in</strong>filtration impoundments, water is collected from production wells via lowcost<br />

PVC pipel<strong>in</strong>es. The pond must be constructed us<strong>in</strong>g impermeable soils or l<strong>in</strong>ed with<br />

clay or an impermeable l<strong>in</strong>er to preclude percolation, <strong>and</strong> sufficiently large to h<strong>and</strong>le<br />

produced water dur<strong>in</strong>g cold seasons when evaporation rates are low. Produced water must<br />

be free of oil, which can significantly reduce evaporation rates by form<strong>in</strong>g a coat<strong>in</strong>g on <strong>the</strong><br />

surface of <strong>the</strong> br<strong>in</strong>e. Depend<strong>in</strong>g on br<strong>in</strong>e concentration <strong>and</strong> evaporation rates, <strong>the</strong><br />

accumulated salt deposits with<strong>in</strong> <strong>the</strong> pond must be removed. In <strong>the</strong> San Juan Bas<strong>in</strong>, this<br />

accumulation amounts to approximately 5 cm per 20 years of cont<strong>in</strong>uous operation.<br />

Evaporation rates can be significantly enhanced <strong>in</strong> active evaporation ponds through <strong>the</strong> use<br />

of a pump-<strong>and</strong>-spray system, reduc<strong>in</strong>g <strong>the</strong> required surface area to dispose a given volume<br />

of water, although at higher operat<strong>in</strong>g cost.<br />

Operat<strong>in</strong>g costs for both shallow re-<strong>in</strong>jection <strong>and</strong> <strong>in</strong>filtration impoundment <strong>in</strong> <strong>the</strong> Powder<br />

River are $0.06/bbl. The costs listed above are estimations, used here only as a general<br />

comparison between water disposal options for <strong>the</strong> proposed project. One disadvantage of<br />

evaporation ponds is that <strong>the</strong>y are highly visible <strong>and</strong> require large l<strong>and</strong> areas, usually several<br />

acres <strong>in</strong> extent, which frequently generates local public concern. Environmental agencies <strong>in</strong><br />

<strong>the</strong> San Juan bas<strong>in</strong> <strong>and</strong> many o<strong>the</strong>r areas <strong>in</strong> <strong>the</strong> U.S. have effectively banned construction of<br />

additional evaporation facilities. Given <strong>the</strong> temperate climate of <strong>the</strong> Donetsk region, surface<br />

impoundment is not a viable option for Ukra<strong>in</strong>.<br />

Downhole Gas/Water Separation. Ano<strong>the</strong>r water disposal option is downhole gas/water<br />

separation. Although it is a relatively new method of water disposal, downhole water<br />

separation may be economically viable under certa<strong>in</strong> conditions, actually <strong>in</strong>creas<strong>in</strong>g gas flow<br />

rates <strong>and</strong> almost completely elim<strong>in</strong>at<strong>in</strong>g water transportation costs. Downhole gas/water<br />

separation would require well boreholes to be drilled deeper than orig<strong>in</strong>ally designed <strong>in</strong> order<br />

to <strong>in</strong>ject water <strong>in</strong>to a permeable horizon below <strong>the</strong> <strong>coal</strong> seams. A pump below <strong>the</strong> <strong>coal</strong><br />

seams draws water down, while allow<strong>in</strong>g gas to flow to <strong>the</strong> surface; shown <strong>in</strong> Exhibit 5.9.<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-19


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 5.9 Well Completion Configuration for Downhole Gas/Water Separation<br />

Downhole gas/water separation works us<strong>in</strong>g a “bypass tool” with a conventional <strong>in</strong>sert pump<br />

<strong>and</strong> a gas-powered beam pump<strong>in</strong>g unit that allows liquid to be lifted up <strong>the</strong> tub<strong>in</strong>g, where<br />

small dra<strong>in</strong> holes let <strong>the</strong> liquid pass down past <strong>the</strong> pump to a po<strong>in</strong>t below <strong>the</strong> pump <strong>in</strong>take.<br />

When <strong>the</strong> liquid is high enough, it will flow <strong>in</strong>to <strong>the</strong> disposal zone. Costs are relatively low, as<br />

downhole gas/water separation uses mostly conventional equipment. This technique,<br />

however, requires an adequately permeable zone located below <strong>the</strong> <strong>coal</strong> that can take<br />

substantial volumes of fluid. At <strong>the</strong> present time, it is unknown whe<strong>the</strong>r such a zone exists <strong>in</strong><br />

<strong>the</strong> Project Area. This aspect should be explored thoroughly dur<strong>in</strong>g <strong>the</strong> pilot project as <strong>the</strong><br />

ability to <strong>in</strong>ject water directly downhole will represent a considerable capital cost sav<strong>in</strong>gs for<br />

<strong>the</strong> surface facilities.<br />

Surface Discharge. Surface discharge is <strong>the</strong> least expensive of <strong>the</strong> water disposal options. .<br />

Uses for surface discharged water may <strong>in</strong>clude crop irrigation or animal water<strong>in</strong>g, depend<strong>in</strong>g<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-20


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

on water quality. However, <strong>the</strong>se options will most likely be secondary to any beneficial use<br />

at <strong>the</strong> <strong>m<strong>in</strong>e</strong> or <strong>in</strong> o<strong>the</strong>r <strong>in</strong>dustrial applications where potable water is not required. These<br />

applications <strong>in</strong>clude ore wash<strong>in</strong>g, power plant cool<strong>in</strong>g, drill<strong>in</strong>g/fractur<strong>in</strong>g fluid, <strong>and</strong> dust<br />

suppression. Depend<strong>in</strong>g on <strong>the</strong> end-use, some degree of clean-up of <strong>the</strong> water may be<br />

required.<br />

5.3.2.2 Additional Water Impacts<br />

Cool<strong>in</strong>g water is typically used to reduce <strong>the</strong> heat from IC eng<strong>in</strong>es <strong>and</strong> <strong>in</strong>crease operat<strong>in</strong>g<br />

efficiency. These cool<strong>in</strong>g water systems are typically closed loop systems <strong>and</strong> generate<br />

water only dur<strong>in</strong>g change out. Cool<strong>in</strong>g water blowdown would conta<strong>in</strong> some particulate<br />

contam<strong>in</strong>ation; however, particulate contam<strong>in</strong>ation will be m<strong>in</strong>imized if <strong>the</strong> best management<br />

practices cited <strong>in</strong> EU guidance are followed.<br />

This cool<strong>in</strong>g water blowdown stream should be h<strong>and</strong>led to m<strong>in</strong>imize <strong>the</strong> discharge of<br />

suspended <strong>and</strong> dissolved solids to local receiv<strong>in</strong>g waters, by settl<strong>in</strong>g <strong>the</strong> solids <strong>and</strong> dispos<strong>in</strong>g<br />

of <strong>the</strong> settled solids separately by l<strong>and</strong>fill<strong>in</strong>g. No water discharges are anticipated from <strong>the</strong><br />

gas turb<strong>in</strong>es.<br />

5.3.2.3 Aes<strong>the</strong>tics<br />

Dur<strong>in</strong>g <strong>the</strong> pilot project <strong>and</strong> non-rout<strong>in</strong>e operations (i.e. start-up <strong>and</strong> shut-down) <strong>the</strong> <strong>methane</strong><br />

will be flared off. This will generate heat <strong>and</strong>, at night, a clearly visible flare, which may attract<br />

people from <strong>the</strong> surround<strong>in</strong>g area.<br />

Mitigation:<br />

Securely fence off <strong>the</strong> area that houses <strong>the</strong> gas flare.<br />

Post warn<strong>in</strong>g signs around <strong>the</strong> gas flare site <strong>and</strong> also <strong>in</strong>formation about <strong>the</strong> project<br />

itself.<br />

5.3.2.4 Air quality<br />

Surface facilities, namely generators <strong>and</strong> eng<strong>in</strong>es, can affect ambient air quality <strong>in</strong> <strong>the</strong> project<br />

area. S<strong>in</strong>ce <strong>the</strong> generators <strong>in</strong> <strong>the</strong> field will be natural gas fired, <strong>the</strong>y will burn much cleaner<br />

than a conventional diesel eng<strong>in</strong>e. In addition, <strong>the</strong> compressors used to compress <strong>the</strong><br />

<strong>methane</strong> at <strong>the</strong> project site will also affect air quality. U.S. EPA <strong>and</strong> E.U. st<strong>and</strong>ards, <strong>and</strong><br />

WHO air quality guidel<strong>in</strong>es, as shown <strong>in</strong> Exhibit 5.10, will be used as references <strong>in</strong> this<br />

report.<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-21


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Emission USEPA E.U. WHO<br />

Nitrogen<br />

Dioxide<br />

Particles<br />

as PM10<br />

Particles<br />

as PM2.5<br />

Averag<strong>in</strong>g<br />

Period<br />

Annual<br />

(Arithmetic<br />

mean)<br />

Annual<br />

(Arithmetic<br />

mean)<br />

24-hour<br />

Annual<br />

(Arithmetic<br />

mean)<br />

24-hour<br />

Ozone 8-hour<br />

Sulfur<br />

Oxides<br />

Carbon<br />

Monoxide<br />

1-hour<br />

Annual<br />

(Arithmetic<br />

mean)<br />

24-hour<br />

8-hour<br />

1-hour<br />

Lead Quarterly<br />

Average<br />

St<strong>and</strong>ards Averag<strong>in</strong>g<br />

Period<br />

0.053 ppm<br />

(100<br />

µg/m 3 )<br />

Revoked<br />

150 µg/m 3<br />

15.0 µg/m 3<br />

35 µg/m 3<br />

0.08 ppm<br />

0.12 ppm<br />

0.03 ppm<br />

0.14 ppm<br />

9 ppm<br />

(10<br />

mg/m 3 )<br />

35 ppm<br />

(40<br />

mg/m 3 )<br />

1-hour<br />

24-hour<br />

24-hour<br />

1-year<br />

St<strong>and</strong>ards Averag<strong>in</strong>g<br />

Period<br />

200 µg/m 3<br />

40 µg/m 3<br />

50 µg/m 3<br />

40 µg/m 3<br />

- -<br />

Maximum<br />

daily 8hour<br />

mean<br />

1-hour<br />

24-hour<br />

Maximum<br />

daily 8hour<br />

mean<br />

Annual<br />

mean<br />

1-hour<br />

mean<br />

Annual<br />

mean<br />

24-hour<br />

mean<br />

Annual<br />

mean<br />

24-hour<br />

mean<br />

120 µg/m 3 8-hour<br />

mean<br />

350 µg/m 3<br />

125 µg/m 3<br />

10 mg/m 3<br />

1.5 µg/m 3 1-year 0.5 µg/m 3<br />

24-hour<br />

mean<br />

10-m<strong>in</strong>ute<br />

mean<br />

Guidel<strong>in</strong>es<br />

40 µg/m 3<br />

200 µg/m 3<br />

20 µg/m 3<br />

50 µg/m 3<br />

10 µg/m 3<br />

25 µg/m 3<br />

100 µg/m 3<br />

20 µg/m 3<br />

500 µg/m 3<br />

- -<br />

- -<br />

Exhibit 5.10 EPA, E.U., <strong>and</strong> WHO Air Quality St<strong>and</strong>ards <strong>and</strong> Guidel<strong>in</strong>es<br />

(USEPA, 2007; EU, 2007; WHO, 2006)<br />

Both <strong>the</strong> use of Coal M<strong>in</strong>e Methane (CMM) for a natural gas stream, <strong>and</strong> <strong>the</strong> use of Coal Bed<br />

Methane (CBM) to produce electricity, will create air emissions. Air emissions have been<br />

evaluated for both alternative scenarios at each <strong>m<strong>in</strong>e</strong>. As part of <strong>the</strong> analysis, it has been<br />

assumed that <strong>the</strong> <strong>methane</strong> available is <strong>the</strong> total gas produced less that used for <strong>the</strong> boiler.<br />

Only emissions from <strong>the</strong> new sources have been quantified, <strong>and</strong> emissions from <strong>the</strong> exist<strong>in</strong>g<br />

boilers have not been addressed.<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-22


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Emissions Associated with <strong>the</strong> Use of Coalbed Methane (CBM) for a Natural Gas Stream.<br />

For <strong>the</strong> production of natural gas for pipel<strong>in</strong>e delivery, <strong>in</strong>dustrial turb<strong>in</strong>e eng<strong>in</strong>es will be used<br />

to compress natural gas from <strong>the</strong> CBM production, after first dehydrat<strong>in</strong>g <strong>the</strong> <strong>methane</strong> gas<br />

mixture us<strong>in</strong>g Triethylene Glycol (TEG). The gas turb<strong>in</strong>e drives a rotat<strong>in</strong>g compressor which<br />

pressurizes <strong>the</strong> air <strong>and</strong> mixes with <strong>the</strong> gas from <strong>the</strong> TEG unit <strong>in</strong> a compression chamber.<br />

The three General Electric Compression Gas Turb<strong>in</strong>es proposed for this scenario are<br />

designed to maximize <strong>the</strong> efficiency of <strong>the</strong> turb<strong>in</strong>es while reduc<strong>in</strong>g emissions.<br />

Emissions from <strong>the</strong> gas turb<strong>in</strong>e units can be calculated us<strong>in</strong>g published emission factors <strong>and</strong><br />

assum<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g:<br />

Only gas turb<strong>in</strong>e emissions are significant <strong>and</strong> <strong>the</strong>re is no leakage along <strong>the</strong> pipes,<br />

valves, or flanges;<br />

Emissions from <strong>the</strong> dehydration process via <strong>the</strong> Triethylene Glycol Unit (TEG) are<br />

negligible;<br />

There are no additional control devices associated with <strong>the</strong> gas turb<strong>in</strong>es;<br />

The <strong>methane</strong>-air stream does not conta<strong>in</strong> appreciable sulfur<br />

The most significant pollutants generated by <strong>the</strong> gas turb<strong>in</strong>es are <strong>the</strong>rmal nitrogen oxides<br />

(NOx) <strong>and</strong> carbon (TOC). Lesser amounts or carbon monoxide (CO) <strong>and</strong> volatile organic<br />

compounds (VOC) are generated along with small quantities of particulates (PM10) <strong>and</strong><br />

<strong>methane</strong>. Insignificant air emissions are also anticipated from <strong>the</strong> TEG dehydration process.<br />

Emissions Associated with <strong>the</strong> Use of Coal M<strong>in</strong>e Methane (CMM) to Generate Electricity. To<br />

generate electricity, it is assumed that an <strong>in</strong>ternal combustion (IC) eng<strong>in</strong>e will be used to<br />

drive a generator. Emissions are based on <strong>the</strong> design specifications for a Caterpillar<br />

G3520C low energy, 4-stroke <strong>in</strong>ternal combustion gas eng<strong>in</strong>e. Fluctuation <strong>in</strong> pressure <strong>and</strong><br />

temperature dur<strong>in</strong>g operation affect <strong>the</strong> eng<strong>in</strong>e efficiency. Emissions estimates for this<br />

eng<strong>in</strong>e are based on similar sources <strong>and</strong> published emission factors reported <strong>in</strong> US EPA AP-<br />

42, Section 3.2, Natural Gas-fired Reciprocat<strong>in</strong>g Eng<strong>in</strong>es 1 <strong>and</strong> United K<strong>in</strong>gdom (UK) National<br />

Emissions Inventory Factors (NAEI) for Natural Gas Process<strong>in</strong>g 2 .<br />

1 AP-42 Emissions Factors, Volume 1, Fifth edition, 1/96<br />

2 http://www.naei.org.uk/emissions/selection.php, Oct 1, 2007<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-23


As part of <strong>the</strong> analysis, it was assumed that:<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Only <strong>the</strong> Caterpillar G3520C gas eng<strong>in</strong>e emissions are significant <strong>and</strong> <strong>the</strong>re are no<br />

leaks along <strong>the</strong> pipes, valves, or flanges;<br />

The Caterpillar G3520C gas eng<strong>in</strong>e will run 8,400 hours/yr;<br />

There are no additional control devices associated with <strong>the</strong> Caterpillar G3520C gas<br />

eng<strong>in</strong>e; <strong>and</strong><br />

The <strong>methane</strong>-air stream does not conta<strong>in</strong> appreciable sulfur.<br />

Total uncontrolled air emissions from electricity production from CMM from <strong>the</strong> two <strong>m<strong>in</strong>e</strong>s are<br />

listed below:<br />

South Donbass<br />

#3 <strong>and</strong> Bazhanov<br />

M<strong>in</strong>es<br />

CO NOx PM10 SO24 VOC TOC Methane<br />

(ton/yr) (ton/yr) (ton/yr) (ton/yr) (ton/yr) (ton/yr) (ton/yr)<br />

23.41 91.36 0.19 NA 0.60 3.14 2.46<br />

Exhibit 5.11 Estimated Uncontrolled Internal Combustion Eng<strong>in</strong>e Emissions<br />

associated with Generat<strong>in</strong>g Electricity from Coal M<strong>in</strong>e Methane (CMM)<br />

As shown <strong>in</strong> <strong>the</strong> table, <strong>the</strong> most significant emissions are for <strong>the</strong>rmal NOx, which is produced<br />

as <strong>the</strong> combustion eng<strong>in</strong>e combusts fuel <strong>in</strong> <strong>the</strong> eng<strong>in</strong>e cyl<strong>in</strong>ders dur<strong>in</strong>g <strong>the</strong> conversion of<br />

chemical to mechanical energy. Carbon monoxide is emitted at less than one-third <strong>the</strong> rate<br />

of NOx. VOCs, TOC, <strong>methane</strong>, <strong>and</strong> particulate matter are emitted <strong>in</strong> significantly less<br />

quantities.<br />

Emission St<strong>and</strong>ards. EU emissions st<strong>and</strong>ards for large turb<strong>in</strong>es <strong>and</strong> IC eng<strong>in</strong>es with net<br />

rated <strong>the</strong>rmal <strong>in</strong>puts of 50 MW or higher are set by <strong>the</strong> EU Large Combustion Plant Directive<br />

(LCPD). The LCPD is implemented <strong>in</strong> member states under <strong>the</strong> Pollution Prevention <strong>and</strong><br />

Control (PPC) Regulations with operators required to apply Best Available Techniques (BAT)<br />

to all aspects of <strong>the</strong> operation of <strong>the</strong> process. In addition, operators are required to establish<br />

an Environmental Management System (EMS) based on ISO14001 st<strong>and</strong>ards for<br />

compliance <strong>and</strong> annual source test<strong>in</strong>g, compliance monitor<strong>in</strong>g <strong>and</strong> recordkeep<strong>in</strong>g to meet <strong>the</strong><br />

BAT.<br />

For smaller combustion processes with less than 50MW <strong>the</strong>rmal <strong>in</strong>put, EU member states<br />

may establish a second tier of regulations that are subject to control under <strong>the</strong> EU PPC<br />

Regulations. Based on <strong>the</strong> vendor specifications of <strong>the</strong> equipment to be used for both CMM<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-24


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

<strong>and</strong> CBM, each of <strong>the</strong> 12 IC eng<strong>in</strong>es are rated at 10 MW <strong>the</strong>rmal <strong>in</strong>put <strong>and</strong> each of <strong>the</strong> 3<br />

turb<strong>in</strong>es are rated at 32 MW <strong>the</strong>rmal <strong>in</strong>puts. Accord<strong>in</strong>gly, <strong>the</strong>se pieces of equipment at both<br />

<strong>m<strong>in</strong>e</strong>s <strong>and</strong> under both operat<strong>in</strong>g scenarios are considered smaller combustion sources.<br />

There are currently no requirement for certification or accreditation with <strong>the</strong>se member state<br />

second tier st<strong>and</strong>ards by <strong>the</strong> EU. However, it is up to each member state to set <strong>the</strong> st<strong>and</strong>ard<br />

for its own country, with <strong>the</strong> Directive Limits be<strong>in</strong>g <strong>the</strong> m<strong>in</strong>imum st<strong>and</strong>ard that has to be met.<br />

If a member state chooses to set a more str<strong>in</strong>gent set of st<strong>and</strong>ards <strong>the</strong>n it is at will to do so.<br />

It is likely that at some time <strong>in</strong> <strong>the</strong> future Ukra<strong>in</strong>e will need to develop EU Tier II regulations<br />

(Exhibit 5.12) to address emissions from smaller combustion sources. While it is unknown<br />

how <strong>the</strong>se future regulations will look, <strong>the</strong>y may be similar to o<strong>the</strong>r similar regulations from<br />

current member states. As a comparison, small combustion source regulations from <strong>the</strong> UK<br />

Department of Environment’s Guidance Document for Gas turb<strong>in</strong>es (PG-04) <strong>and</strong> IC Eng<strong>in</strong>es<br />

(PG-05) rated between 20 <strong>and</strong> 50 MW establishes <strong>the</strong> limits presented <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g table.<br />

Note that <strong>the</strong>se regulations apply to <strong>in</strong>dividual pieces of equipment, whereas <strong>the</strong> emission<br />

calculations presented previously were aggregate emissions for multiple turb<strong>in</strong>es <strong>and</strong> gas<br />

eng<strong>in</strong>es.<br />

CO NOx PM10 SO2 VOC<br />

Source (ton/yr) (ton/yr) (ton/yr) (ton/yr) (ton/yr)<br />

New Natural Gas Turb<strong>in</strong>es run ><br />

100 hrs/yr<br />

NA 20-50 NA NA NA<br />

New Natural SI Lean Burn 450.00 500.00 50.00 NA 200.00<br />

Exhibit 5.12 Tier II UK Regulations<br />

Similar to <strong>the</strong> requirements for larger combustion sources, <strong>the</strong> Tier II st<strong>and</strong>ards establish<br />

Environmental Management System (EMS) st<strong>and</strong>ards for compliance <strong>and</strong> annual source<br />

test<strong>in</strong>g, compliance monitor<strong>in</strong>g <strong>and</strong> recordkeep<strong>in</strong>g have been established <strong>in</strong> <strong>the</strong> to meet <strong>the</strong><br />

BAT.<br />

When <strong>the</strong>se regulations are compared to <strong>the</strong> <strong>in</strong>dividual equipment emissions, <strong>the</strong> only<br />

emission st<strong>and</strong>ard that may be exceeded would be <strong>the</strong> NOx emissions from <strong>the</strong> gas turb<strong>in</strong>es.<br />

All o<strong>the</strong>r projected emissions are below <strong>the</strong> comparative regulations <strong>and</strong> are <strong>the</strong>refore<br />

presumed to present <strong>in</strong>significant environmental impacts.<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-25


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Emission Control Requirements. To m<strong>in</strong>imize NOx emissions from <strong>in</strong>ternal combustion<br />

eng<strong>in</strong>es <strong>and</strong> gas turb<strong>in</strong>es, <strong>the</strong>re are a variety of control techniques such as <strong>the</strong> use of dry<br />

NOx premix burners (DNL) <strong>and</strong> Selected Catalytic Reduction (SCR). Both <strong>the</strong> <strong>in</strong>ternal<br />

combustion <strong>and</strong> gas turb<strong>in</strong>e equipment vendors have <strong>in</strong>dicated that <strong>the</strong> use of <strong>the</strong> former,<br />

DNL, will satisfy <strong>the</strong> concentration limits directed by LCPD.<br />

In <strong>the</strong> DNL method, <strong>the</strong> air-fuel mixture is mixed before combustion occurs creat<strong>in</strong>g a<br />

homogenous temperature <strong>and</strong> a low burner flame which results <strong>in</strong> reduced NOx. Typically,<br />

as NOx is reduced, CO <strong>and</strong> VOC emissions become elevated. Operators can mitigate <strong>the</strong>se<br />

effects effect through <strong>the</strong> use of good operational practices of <strong>the</strong> fuel <strong>and</strong> air combustion<br />

system. Additional technology, such as a catalytic converter, can be <strong>in</strong>stalled if fur<strong>the</strong>r<br />

reductions are required to meet <strong>the</strong> emission limits.<br />

The use of NOx control technology for <strong>the</strong> <strong>in</strong>ternal combustion eng<strong>in</strong>es <strong>and</strong> gas turb<strong>in</strong>es will<br />

br<strong>in</strong>g emissions with<strong>in</strong> assumed limits, based on <strong>the</strong> Tier II limits of a current EU member<br />

state (<strong>the</strong> UK). Therefore nei<strong>the</strong>r <strong>the</strong> use of CMM to generate a natural gas stream or CBM<br />

to generate electricity should present significant adverse environmental impacts due to <strong>the</strong><br />

result<strong>in</strong>g air emissions.<br />

5.3.2.5 Noise<br />

When surface facilities are operational it is likely that noise from operations will exceed <strong>the</strong><br />

public protection level of 55 decibel (dB). The compressor station operations will be <strong>the</strong><br />

noise source of greatest concern. A summary of measured sound levels at oil <strong>and</strong> gas<br />

facilities is presented <strong>in</strong> Exhibit 5.13.<br />

Noise Source<br />

Sound Level at 50 feet<br />

(15 meters)<br />

Well Drill<strong>in</strong>g 83 dBA<br />

Pump Jack Operation 82 dBA<br />

Produced Water Injection<br />

Facilities<br />

71 dBA<br />

Gas Compression Facilities 89 dBA<br />

Exhibit 5.13 Noise Levels Associated with Oil <strong>and</strong> Gas Activity (BLM, 2000)<br />

Exhibit 5.14 presents noise level guidel<strong>in</strong>es from <strong>the</strong> World Health Organization (WHO).<br />

Noise impact can be reduced by us<strong>in</strong>g build<strong>in</strong>g <strong>in</strong>sulation, <strong>in</strong>stall<strong>in</strong>g <strong>in</strong>let <strong>and</strong> exhaust<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-26


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

silencers, or us<strong>in</strong>g special oil coolers. The amount of silenc<strong>in</strong>g required would depend on <strong>the</strong><br />

size of <strong>the</strong> equipment <strong>and</strong> proximity to noise sensitive areas.<br />

Receptor<br />

Residential; <strong>in</strong>stitutional;<br />

educational<br />

One Hour LAeq (dBA)<br />

Daytime<br />

07:00-22:00<br />

Nighttime<br />

22:00-07:00<br />

55 45<br />

Industrial; commercial 70 70<br />

Exhibit 5.14 WHO Noise Level Guidel<strong>in</strong>es (WHO, 1999)<br />

In addition, both <strong>the</strong> gas turb<strong>in</strong>es used to generate a natural gas stream <strong>and</strong> <strong>the</strong> IC eng<strong>in</strong>es<br />

used to generate electricity will create noise as a normal part of operations. However, <strong>the</strong><br />

gas turb<strong>in</strong>es <strong>and</strong> IC eng<strong>in</strong>es are both designed with control features to attenuate noise<br />

levels, <strong>and</strong> should not create noise levels of significance.<br />

Mitigation:<br />

Insulate <strong>the</strong> generator(s) <strong>and</strong> fence <strong>the</strong>m off from <strong>the</strong> outside.<br />

Provide hazard <strong>and</strong> <strong>in</strong>formation signs on <strong>the</strong> fence.<br />

5.3.3 Closure impacts<br />

The ideal objective for <strong>the</strong> closure of any natural resource utilization project should be <strong>the</strong><br />

return of l<strong>and</strong> to its pre-project state. This is not always practical s<strong>in</strong>ce <strong>the</strong> costs <strong>in</strong>volved<br />

could render <strong>the</strong> entire project unfeasible. It is also possible that <strong>the</strong> <strong>development</strong> could have<br />

some post project value.<br />

It is recommended that <strong>the</strong> closure plan <strong>in</strong>clude <strong>the</strong> removal of all <strong>in</strong>frastructure <strong>and</strong> <strong>the</strong><br />

capp<strong>in</strong>g of all boreholes. Infrastructure <strong>in</strong>cludes, pipel<strong>in</strong>es, ga<strong>the</strong>r<strong>in</strong>g/distribution l<strong>in</strong>es,<br />

powerl<strong>in</strong>es, fences <strong>and</strong> all related equipment, <strong>in</strong>clud<strong>in</strong>g any obsolete or broken down<br />

mach<strong>in</strong>ery. Boreholes, <strong>in</strong> particular should be capped us<strong>in</strong>g proven ab<strong>and</strong>onment<br />

procedures. If alternate uses are ever identified for some of <strong>the</strong> <strong>in</strong>frastructure <strong>the</strong>n <strong>the</strong><br />

closure objectives could be modified at a later stage. The formulation of <strong>the</strong> closure plan<br />

should be <strong>in</strong>tegrated <strong>in</strong>to <strong>the</strong> project design process. In this respect, <strong>the</strong> f<strong>in</strong>al closure plan<br />

should be re-visited five years prior to project end.<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-27


5.4 Socioeconomic Impacts<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The Donbass Consortium’s M<strong>in</strong>e Degasification <strong>and</strong> Utilization Project will have a positive<br />

impact on many aspects of <strong>the</strong> Ukra<strong>in</strong>ian economy – from stimulat<strong>in</strong>g economic activity both<br />

locally <strong>and</strong> regionally, to <strong>in</strong>creas<strong>in</strong>g governmental tax revenues; from yield<strong>in</strong>g improvements<br />

<strong>in</strong> <strong>the</strong> condition of <strong>the</strong> local <strong>in</strong>frastructure by improv<strong>in</strong>g highway, street <strong>and</strong> railway<br />

conditions, to mak<strong>in</strong>g available an environmentally sound, strategic fuel product.<br />

Increased employment <strong>and</strong> employment stability. Many of <strong>the</strong> <strong>coal</strong> <strong>m<strong>in</strong>e</strong>s <strong>in</strong> <strong>the</strong><br />

Donets’k region are at or near <strong>the</strong> end of <strong>the</strong>ir economic life. The immediate closure<br />

of under-perform<strong>in</strong>g <strong>m<strong>in</strong>e</strong>s without <strong>the</strong> creation of new jobs would cause serious<br />

economic hardships <strong>and</strong> political turmoil <strong>in</strong> <strong>the</strong> region. A large-scale <strong>m<strong>in</strong>e</strong><br />

degasification <strong>and</strong> <strong>methane</strong> utilization project as planned by <strong>the</strong> Donbass<br />

Consortium would help foster <strong>the</strong> <strong>development</strong> of new, gas-based <strong>in</strong>dustries.<br />

Improved <strong>m<strong>in</strong>e</strong> economics. Accord<strong>in</strong>g to a study by <strong>the</strong> U.S. EPA (White Paper;<br />

Guidebook on Coalbed Methane Dra<strong>in</strong>age for Underground Coal M<strong>in</strong>es, April 1999)<br />

<strong>the</strong> <strong>in</strong>stallation of <strong>methane</strong> degasification systems at gassy <strong>coal</strong><strong>m<strong>in</strong>e</strong>s can improve<br />

overall <strong>m<strong>in</strong>e</strong> economics through <strong>the</strong> follow<strong>in</strong>g:<br />

Enhance <strong>coal</strong> productivity because of less frequent downtime or production<br />

slowdowns caused by gas at <strong>the</strong> face;<br />

Decrease fan operat<strong>in</strong>g costs because of reduced air requirements for<br />

<strong>methane</strong> dilution;<br />

Reduction of shaft size <strong>and</strong> <strong>the</strong> number of entries required <strong>in</strong> <strong>the</strong> <strong>m<strong>in</strong>e</strong>s;<br />

Increase tonnage extracted from a fixed-size reserve as a result of shifts of<br />

tonnage from <strong>development</strong> sections to production sections;<br />

Reduce water problems.<br />

Increased tax revenues to local <strong>and</strong> national government. The commercial<br />

utilization of <strong>methane</strong> creates <strong>in</strong>creased tax revenues <strong>in</strong> <strong>the</strong> areas of Property Tax to<br />

Employment Taxes for Social Benefits, <strong>and</strong> from enhanced Profit Taxes to Retail<br />

Sales Tax. Many local <strong>and</strong> national government programs will be direct <strong>and</strong> <strong>in</strong>direct<br />

beneficiaries of <strong>the</strong> fully operational Project, receiv<strong>in</strong>g significant tax revenues that<br />

are created up- <strong>and</strong> down-stream from this Project.<br />

Improvements to roadways <strong>and</strong> utilities <strong>in</strong>frastructure. The Donbass Project has<br />

already had a positive impact on <strong>the</strong> local <strong>in</strong>frastructure, as access roads <strong>and</strong><br />

Prelim<strong>in</strong>ary Environmental Assessment 5-28


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

utilities, particularly <strong>the</strong> electric power transmission l<strong>in</strong>es, have been upgraded by <strong>the</strong><br />

<strong>m<strong>in</strong>e</strong>s as needed for <strong>the</strong> <strong>in</strong>stallation <strong>and</strong> operation of <strong>the</strong> test wells. Cont<strong>in</strong>ued direct<br />

<strong>in</strong>vestment by <strong>the</strong> Consortium <strong>in</strong> <strong>the</strong> local <strong>in</strong>frastructure as required by <strong>the</strong> Project,<br />

will provide similar improvements, especially to roadways. In addition, <strong>the</strong> Project<br />

creates <strong>in</strong>direct benefits derived from <strong>in</strong>creased tax revenues, which enhance<br />

government budgets, <strong>and</strong>, thus, <strong>the</strong> means to improve <strong>the</strong> conditions of<br />

transportation systems <strong>and</strong> o<strong>the</strong>r municipal <strong>in</strong>frastructure.<br />

Improved supply of quality-controlled fuel products. The Project anticipates<br />

some utilization of <strong>methane</strong> gas for process<strong>in</strong>g <strong>in</strong>to CNG <strong>and</strong> similar products for use<br />

<strong>in</strong> exist<strong>in</strong>g systems, <strong>in</strong>clud<strong>in</strong>g motor freight transport <strong>and</strong> public buses. These<br />

current vehicular uses could be exp<strong>and</strong>ed with<strong>in</strong> <strong>the</strong> local communities <strong>in</strong>to o<strong>the</strong>r<br />

uses for such products, <strong>in</strong>clud<strong>in</strong>g heat<strong>in</strong>g systems for greenhouse agriculture, as a<br />

fuel for ovens at modern commercial bakeries, <strong>and</strong> many o<strong>the</strong>r local, small <strong>and</strong><br />

medium enterprise <strong>development</strong>.<br />

Prelim<strong>in</strong>ary Environmental Assessment 5-29


Task 6<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

F<strong>in</strong>al Cost Estimates <strong>and</strong> Economic<br />

Assessments<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-i


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

TASK 6 CONTENTS<br />

6.1 CBM Capital <strong>and</strong> Operat<strong>in</strong>g Cost Estimates ................................................................6-1<br />

6.1.1 Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation .......................................................................6-2<br />

6.1.1.1 Drill<strong>in</strong>g <strong>and</strong> Completion...............................................................................................6-2<br />

6.1.1.2 Well Stimulation ..........................................................................................................6-2<br />

6.1.1.3 Artificial Lift Equipment <strong>and</strong> Well Site Equipment.......................................................6-2<br />

6.1.1.4 Shipp<strong>in</strong>g of Materials, Supplies, <strong>and</strong> Equipment........................................................6-4<br />

6.1.1.5 Geological, Geophysical <strong>and</strong> Location Costs .............................................................6-4<br />

6.1.2 Surface Facilities.....................................................................................................6-4<br />

6.1.2.1 Gas Ga<strong>the</strong>r<strong>in</strong>g System ...............................................................................................6-4<br />

6.1.2.2 Compression...............................................................................................................6-5<br />

6.1.2.3 Site Power Generation <strong>and</strong> Distribution .....................................................................6-5<br />

6.1.2.4 Water Ga<strong>the</strong>r<strong>in</strong>g <strong>and</strong> Disposal....................................................................................6-5<br />

6.1.2.5 Infrastructure...............................................................................................................6-5<br />

6.1.3 Operat<strong>in</strong>g Cost Estimates .......................................................................................6-6<br />

6.1.3.1 Well Tend<strong>in</strong>g...............................................................................................................6-6<br />

6.1.3.2 Gas Compression <strong>and</strong> Ga<strong>the</strong>r<strong>in</strong>g ...............................................................................6-6<br />

6.1.3.3 Power Generation.......................................................................................................6-7<br />

6.1.3.4 Water Treatment <strong>and</strong> Disposal...................................................................................6-7<br />

6.2 Benchmark<strong>in</strong>g Analysis of Ukra<strong>in</strong>e CBM Costs versus Major U.S. CBM Projects...6-8<br />

6.3 CBM Project Economics ..............................................................................................6-10<br />

6.3.1 CBM Production Analysis......................................................................................6-10<br />

6.3.2 CBM F<strong>in</strong>ancial Assumptions .................................................................................6-12<br />

6.3.3 CBM Economic Results ........................................................................................6-12<br />

6.3.4 CBM Sensitivity Analyses .....................................................................................6-14<br />

6.4 CMM Power Project Economics..................................................................................6-16<br />

6.4.1 CMM Production Analysis .....................................................................................6-16<br />

6.4.2 CMM Economic Assumptions ...............................................................................6-16<br />

6.4.3 CMM Economic Results........................................................................................6-18<br />

6.4.4 CMM Sensitivity Analyses.....................................................................................6-22<br />

6.4.5 Carbon Credit Calculation .....................................................................................6-27<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-ii


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

TASK 6 EXHIBITS<br />

Exhibit 6.1: Average Per Well Estimated Capital Cost for Donetsk region CBM Projects ...................6-1<br />

Exhibit 6.2: Detailed Drill<strong>in</strong>g Cost Estimate ..........................................................................................6-3<br />

Exhibit 6.3: Operat<strong>in</strong>g Cost Assumptions.............................................................................................6-6<br />

Exhibit 6.4: Comparative Analysis of CBM Well Costs.........................................................................6-9<br />

Exhibit 6.5: CBM Production Profile ...................................................................................................6-11<br />

Exhibit 6.6: CBM Physical <strong>and</strong> F<strong>in</strong>ancial Assumptions ......................................................................6-12<br />

Exhibit 6.7: CBM Cash Flow...............................................................................................................6-13<br />

Exhibit 6.8: Gas Price, Operat<strong>in</strong>g Expenditure & Capital Expenditure Sensitivities...........................6-14<br />

Exhibit 6.9: CBM - Rate of Return Sensitivities ..................................................................................6-15<br />

Exhibit 6.10: CBM - NPV Sensitivities ..................................................................................................6-15<br />

Exhibit 6.11: CMM Project Estimated Costs.........................................................................................6-17<br />

Exhibit 6.12: CMM Power Plant Economic Models - Input Assumptions .............................................6-18<br />

Exhibit 6.13: South Donbass No.3 CMM Power Plant Results - Cashflow ..........................................6-19<br />

Exhibit 6.14: Bazhanov CMM Power Plant Results - Cashflow ...........................................................6-20<br />

Exhibit 6.15: Comb<strong>in</strong>ed CMM Power Plant Results - Cashflow ...........................................................6-21<br />

Exhibit 6.16: South Donbass No.3 Power Plant Results – Sensitivity Analysis ...................................6-22<br />

Exhibit 6.17: South Donbass No.3 Power Plant - Variance <strong>in</strong> Parameter v Rate of Return ................6-23<br />

Exhibit 6.18: South Donbass No.3 Power Plant - Variance <strong>in</strong> Parameter v NPV (10%)......................6-23<br />

Exhibit 6.19: Bazhanov CMM Power Plant Results – Sensitivity Analysis...........................................6-24<br />

Exhibit 6.20: Bazhanov CMM Power Plant - Variance <strong>in</strong> Parameter v Rate of Return........................6-24<br />

Exhibit 6.21: Bazhanov CMM Power Plant - Variance <strong>in</strong> Parameter v NPV (10%) .............................6-25<br />

Exhibit 6.22: Comb<strong>in</strong>ed CMM Power Plant Results – Sensitivity Analysis ..........................................6-25<br />

Exhibit 6.23: Comb<strong>in</strong>ed CMM Power Plant - Variance <strong>in</strong> Parameter v Rate of Return........................6-26<br />

Exhibit 6.24: Comb<strong>in</strong>ed CMM Power Plant - Variance <strong>in</strong> Parameter v NPV (10%) .............................6-26<br />

Exhibit 6.25: Carbon Credit Calculation – Credits Generated..............................................................6-28<br />

Exhibit 6.26: CMM Fired Power Generation with Carbon Credits @ $10/tonne ..................................6-29<br />

Exhibit 6.27: CMM Fired Power Generation with Carbon Credits @ $15/tonne ..................................6-30<br />

Exhibit 6.28: CMM Power Plant Economic Model Results Summary ..................................................6-31<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-iii


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

6.1 CBM Capital <strong>and</strong> Operat<strong>in</strong>g Cost Estimates<br />

Advanced Resources has developed cost estimates for <strong>the</strong> goods <strong>and</strong> services required for<br />

<strong>the</strong> <strong>development</strong> of <strong>the</strong> South Donbass <strong>and</strong> Grish<strong>in</strong>o-Andreyevskaya CBM license areas.<br />

These cost estimates are based on a comb<strong>in</strong>ation of known local costs provided by a panel<br />

of Ukra<strong>in</strong>ian experts <strong>and</strong> known average <strong>development</strong> costs of analogous projects <strong>in</strong> <strong>the</strong><br />

U.S, with budgetary quotes provided by various suppliers, contractors <strong>and</strong> service<br />

companies.<br />

Down-hole equipment such as cas<strong>in</strong>g, tub<strong>in</strong>g, packers, artificial lift equipment <strong>and</strong><br />

specialized laboratory work will be sourced from outside Ukra<strong>in</strong>e, but o<strong>the</strong>r items such as<br />

cementation <strong>and</strong> hydraulic fractur<strong>in</strong>g services will be sourced from equipment <strong>and</strong> service<br />

companies exist<strong>in</strong>g <strong>in</strong> Ukra<strong>in</strong>e <strong>and</strong> <strong>the</strong> eastern European region, <strong>and</strong> supplemented by new<br />

equipment purchases. Appropriate cost estimates for <strong>the</strong>se items have been <strong>in</strong>cluded <strong>in</strong> <strong>the</strong><br />

economics presented <strong>in</strong> this section of <strong>the</strong> report.<br />

The capital cost envisaged for <strong>the</strong> <strong>development</strong> of a CBM prospect, assumes <strong>the</strong> drill<strong>in</strong>g <strong>and</strong><br />

completion of 1,040 wells, <strong>and</strong> will total approximately US$642 million.<br />

ARI estimates that approximately 50% of <strong>the</strong> goods <strong>and</strong> services that will be required to<br />

develop <strong>the</strong> projects can be sourced from Ukra<strong>in</strong>e <strong>and</strong> <strong>the</strong> eastern European region. To <strong>the</strong><br />

extent possible, <strong>in</strong>dustry st<strong>and</strong>ard best practices of U.S. operators will be adapted for <strong>the</strong><br />

design, implementation, <strong>and</strong> operation of <strong>the</strong> <strong>development</strong> of <strong>the</strong> CBM projects, <strong>and</strong> this is<br />

reflected <strong>in</strong> <strong>the</strong> cost estimates <strong>and</strong> economics presented <strong>in</strong> this report.<br />

Average Per Well Capital Cost ($,000)<br />

Drill<strong>in</strong>g, Completion, & Stimulation 483.51<br />

Compression 10.76<br />

Site Power Generation & Distribution 10.49<br />

Gas Ga<strong>the</strong>r<strong>in</strong>g System 35.64<br />

Water Ga<strong>the</strong>r<strong>in</strong>g & Disposal 16.27<br />

Infrastructure 60.50<br />

Total Capital Cost 617.17<br />

Exhibit 6.1: Average Per Well Estimated Capital Cost for Donetsk region CBM Projects<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-1


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

6.1.1 Drill<strong>in</strong>g, Completion <strong>and</strong> Stimulation<br />

The well design for <strong>the</strong> <strong>development</strong> of <strong>the</strong> CBM leases was presented <strong>in</strong> Section 3.2. The<br />

detailed cost estimate for this design is presented <strong>in</strong> Exhibit 6.2. The drill<strong>in</strong>g, completion, <strong>and</strong><br />

stimulation costs are broken <strong>in</strong>to two ma<strong>in</strong> categories which <strong>in</strong>clude “<strong>in</strong>tangible” <strong>and</strong><br />

“tangible” cost estimates. Intangible costs <strong>in</strong>clude estimates for build<strong>in</strong>g drill<strong>in</strong>g locations <strong>and</strong><br />

roads, drill<strong>in</strong>g, cement<strong>in</strong>g, logg<strong>in</strong>g, cor<strong>in</strong>g <strong>and</strong> test<strong>in</strong>g, hydraulic fractur<strong>in</strong>g, <strong>and</strong> use of a<br />

completion rig. Tangible costs <strong>in</strong>clude tub<strong>in</strong>g, cas<strong>in</strong>g, artificial lift equipment, well head<br />

equipment, <strong>and</strong> surface facilities such as separators <strong>and</strong> measurement equipment.<br />

6.1.1.1 Drill<strong>in</strong>g <strong>and</strong> Completion<br />

The cost to drill <strong>and</strong> complete a CBM well <strong>in</strong>cludes <strong>the</strong> drill<strong>in</strong>g rig rental <strong>in</strong>clud<strong>in</strong>g mobilization<br />

<strong>and</strong> contract drill<strong>in</strong>g rates (charged as ei<strong>the</strong>r footage rate or daily rate), bits, reamers,<br />

cementation, completion rig rental, materials such as cement <strong>and</strong> associated additives,<br />

cas<strong>in</strong>g <strong>and</strong> accessories (such as baffles, centralizers, floats <strong>and</strong> float shoes, cement baskets,<br />

etc.) <strong>and</strong> hydraulic fractur<strong>in</strong>g <strong>and</strong> associated materials (such as s<strong>and</strong>, gel <strong>and</strong> chemical<br />

additives).<br />

The average well cost, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> items listed above, is estimated to be $483,513 for <strong>the</strong><br />

CBM leases. These numbers should be taken as averages, as <strong>the</strong> well cost will be adjusted<br />

accord<strong>in</strong>gly, for shallower or deeper well depths. Completions consider multiple <strong>coal</strong> seams<br />

<strong>and</strong> multiple completion <strong>in</strong>tervals. Up to 7 <strong>in</strong>tervals will be completed <strong>in</strong> each well.<br />

6.1.1.2 Well Stimulation<br />

A total cost of $150,000 (<strong>in</strong>cluded <strong>in</strong> <strong>the</strong> drill<strong>in</strong>g <strong>and</strong> completion estimate of $483,513 from<br />

Exhibit 6.1) has been estimated for <strong>the</strong> hydraulic fracture treatments per well for <strong>the</strong> Donetsk<br />

project. This estimate was supplied by Ukra<strong>in</strong>ian experts familiar with costs <strong>in</strong> <strong>the</strong> region <strong>and</strong><br />

compares well with stimulation costs <strong>in</strong> <strong>the</strong> United States which average about $125,000 <strong>and</strong><br />

go as high as $200,000 for thicker <strong>and</strong> deeper San Juan Bas<strong>in</strong> <strong>coal</strong> seams.<br />

6.1.1.3 Artificial Lift Equipment <strong>and</strong> Well Site Equipment<br />

Artificial lift equipment <strong>in</strong>cludes tub<strong>in</strong>g, down hole pump, rods, surface pump<strong>in</strong>g unit, etc.<br />

Cost estimates are based on designs presented earlier <strong>in</strong> this report. Surface facilities<br />

<strong>in</strong>clude water separator, gas separator, measurement equipment, <strong>and</strong> certa<strong>in</strong> fitt<strong>in</strong>gs <strong>and</strong><br />

ancillary equipment. Costs have been <strong>in</strong>cluded to equip each well site with this equipment.<br />

The artificial lift equipment <strong>and</strong> surface facilities are most likely to be sourced <strong>in</strong> <strong>the</strong> United<br />

States at a cost of $105,831 per well.<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-2


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

ADVANCED RESOURCES INTERNATIONAL, INC.<br />

DATE September 2008 PROJECT NAME: Ukra<strong>in</strong>e Donbass Bas<strong>in</strong><br />

WELL NO. One<br />

AFE NO: NA<br />

DRILLING COST ESTIMATE<br />

DESCRIPTION: Estimate for Average Well COUNTRY: Ukra<strong>in</strong>e<br />

STATE Donetsk OPERATOR IUD<br />

PROJECT Donbass Bas<strong>in</strong> PREPARED BY: Advanced Resources Intn'l, Inc.<br />

EXPLORATION DEVELOPMENT X RESULTS: Oil Gas X Dry ___ Exch. Rate TD 3,600 feet<br />

5.06 1,100 meters<br />

DRILLING INTANGIBLES: Quantity Units Rate Ukra<strong>in</strong>e rph USD<br />

LOCATION, ROADS, PITS, DAMAGES: 1 per well 20,238<br />

102,403 грн. $20,238<br />

DRILLING 3600 feet 16<br />

294,921 грн. $58,285<br />

CEMENT AND CEMENTING: 127 bbl 130<br />

83,364 грн. $16,475<br />

LOGGING/MUD LOGGING: 3600 feet 8<br />

147,461 грн. $29,142<br />

CORING AND TESTING 1 Well 13,492<br />

68,269 грн. $13,492<br />

COMPLETION SERVICES (RIG) 1 Well 17,135<br />

86,701 грн. $17,135<br />

HYDRAULIC FRACTURING<br />

DRILLING TANGIBLES:<br />

CASING<br />

6 Treatment 25,000<br />

759,000 грн. $150,000<br />

CASING: 8 5/8 <strong>in</strong> J55 24 ppf R2 151 feet 22.26<br />

16,996 грн. $3,359<br />

CASING: 4 1/2 <strong>in</strong> M60 10.5 ppf R2 3600 feet 8.77<br />

159,749 грн. $31,571<br />

MISC CASING 1 UNIT 884<br />

4,472 грн. $884<br />

TUBING: 2 3/8 IN J55 4.6 PPF 3600 feet 4.25<br />

77,417 грн. $15,300<br />

SUCKER RODS 5/8 IN DIA 25 FT 3600 feet 3.37<br />

61,442 грн. $12,143<br />

MISC ARTIFICIAL LIFT 1 UNIT 1,686<br />

8,534 грн. $1,686<br />

PUMPING UNIT: CH80-119-64 BB w/ 4236# EC 1 UNIT 47,222<br />

238,941 грн. $47,222<br />

DOWNHOLE PUMP AND RELATED 1 UNIT 4,722<br />

23,894 грн. $4,722<br />

WELL HEAD 1 UNIT 1,012<br />

5,120 грн. $1,012<br />

GAS SEPARATOR 1 UNIT 2,361<br />

11,947 грн. $2,361<br />

WATER SEPARATOR 1 UNIT 8,567<br />

43,351 грн. $8,567<br />

DRIP 1 UNIT 3,778<br />

19,115 грн. $3,778<br />

MEASUREMENT 1 UNIT 7,421<br />

37,548 грн. $7,421<br />

MISCELANEOUS 1 UNIT 1,619<br />

8,192 грн. $1,619<br />

CRATING AND SHIPPING 1 UNIT 37,103<br />

187,739 грн. $37,103<br />

TOTAL WELL COST 2,446,576 грн. $483,513<br />

Exhibit 6.2: Detailed Drill<strong>in</strong>g Cost Estimate<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-3


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

6.1.1.4 Shipp<strong>in</strong>g of Materials, Supplies, <strong>and</strong> Equipment<br />

Many of <strong>the</strong> supplies <strong>and</strong> equipment necessary for drill<strong>in</strong>g, completion, stimulation, <strong>and</strong><br />

operat<strong>in</strong>g <strong>the</strong> Donetsk region wells may need to be imported. For <strong>the</strong> purposes of <strong>the</strong>se<br />

economics, shipp<strong>in</strong>g costs for <strong>the</strong>se supplies <strong>and</strong> equipment from <strong>the</strong> United States is<br />

estimated to cost an average of $37,103 per well.<br />

6.1.1.5 Geological, Geophysical <strong>and</strong> Location Costs<br />

Costs for <strong>the</strong> build<strong>in</strong>g of locations, pits <strong>and</strong> roads along with well logg<strong>in</strong>g services <strong>and</strong> any<br />

cor<strong>in</strong>g or test<strong>in</strong>g services needed are estimated to average $49,380 per well.<br />

6.1.2 Surface Facilities<br />

Advanced Resources has estimated an average cost per well for surface facilities of<br />

US$133,660. This cost <strong>in</strong>cludes estimates for surface facilities <strong>and</strong> equipment <strong>in</strong>clud<strong>in</strong>g <strong>in</strong>field<br />

satellite compression, onsite power generation <strong>and</strong> distribution, <strong>the</strong> gas ga<strong>the</strong>r<strong>in</strong>g<br />

system, <strong>the</strong> water ga<strong>the</strong>r<strong>in</strong>g <strong>and</strong> disposal system, <strong>and</strong> basic <strong>in</strong>frastructure. Infrastructure cost<br />

<strong>in</strong>cludes cost estimates for offices, stores, materials storage, workshops, <strong>in</strong>formation<br />

technology, vehicles <strong>and</strong> equipment. The economics presented <strong>in</strong> this report are considered<br />

“field gate” economics, i.e., <strong>the</strong> price of gas delivered to ei<strong>the</strong>r a pipel<strong>in</strong>e or power plant at<br />

<strong>the</strong> field site.<br />

6.1.2.1 Gas Ga<strong>the</strong>r<strong>in</strong>g System<br />

The eng<strong>in</strong>eer<strong>in</strong>g design of <strong>the</strong> gas (CBM) ga<strong>the</strong>r<strong>in</strong>g system for <strong>the</strong> Donetsk project<br />

considered both high density polyethylene (HDPE) <strong>and</strong> normal carbon steel. The gas<br />

ga<strong>the</strong>r<strong>in</strong>g system consists of two components that are called <strong>the</strong> trunk pipel<strong>in</strong>e system <strong>and</strong><br />

<strong>the</strong> lateral pipel<strong>in</strong>e system. The f<strong>in</strong>al gas ga<strong>the</strong>r<strong>in</strong>g system design assumes <strong>the</strong> use of HDPE<br />

pipe for <strong>the</strong> low pressure lateral system that will ga<strong>the</strong>r <strong>the</strong> gas from <strong>the</strong> well head <strong>and</strong><br />

deliver it to <strong>the</strong> trunk pipel<strong>in</strong>e system.<br />

The trunk pipel<strong>in</strong>e system will be constructed from steel. It was deter<strong>m<strong>in</strong>e</strong>d that <strong>the</strong><br />

comb<strong>in</strong>ation of compression <strong>and</strong> high pressure steel would yield better economics than<br />

attempt<strong>in</strong>g to construct <strong>the</strong> trunk system from HDPE. The average per well cost of <strong>the</strong> gas<br />

ga<strong>the</strong>r<strong>in</strong>g system is estimated to be $35,640.<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-4


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

6.1.2.2 Compression<br />

In-field satellite compression will be utilized <strong>and</strong> will have two ma<strong>in</strong> advantages: First, <strong>in</strong>-field<br />

satellite compression will <strong>in</strong>sure low well head pressure, a necessity for optimiz<strong>in</strong>g CBM<br />

recovery; Second, <strong>in</strong>-field compression will allow <strong>the</strong> cost sav<strong>in</strong>gs afforded by us<strong>in</strong>g smaller<br />

diameter high pressure steel as opposed to very large diameter low pressure HDPE. The<br />

average per well cost of <strong>the</strong> <strong>in</strong>-field satellite compression is estimated to be $10,760.<br />

6.1.2.3 Site Power Generation <strong>and</strong> Distribution<br />

CBM operations require significant energy for operations <strong>and</strong> <strong>in</strong>frastructure. Artificial lift <strong>and</strong><br />

<strong>in</strong>-field satellite compression represent <strong>the</strong> largest energy requirements, but light<strong>in</strong>g <strong>and</strong><br />

electrical power is also necessary for offices, workshops, <strong>and</strong> <strong>in</strong>formation technology, etc.<br />

The average allocated per well cost of site power generation <strong>and</strong> distribution is estimated to<br />

be $10,490.<br />

6.1.2.4 Water Ga<strong>the</strong>r<strong>in</strong>g <strong>and</strong> Disposal<br />

The water will be ga<strong>the</strong>red by a steel pipel<strong>in</strong>e system. The power required to transport <strong>the</strong><br />

water will be provided by <strong>the</strong> down-hole artificial lift systems. The water will be transported to<br />

centrally located facilities, where it can be treated <strong>and</strong> discharged. The estimated per well<br />

cost for water ga<strong>the</strong>r<strong>in</strong>g <strong>and</strong> disposal is $16,270.<br />

6.1.2.5 Infrastructure<br />

Infrastructure <strong>in</strong>cludes estimates for offices, stores, materials storage, workshops,<br />

<strong>in</strong>formation technology, vehicles <strong>and</strong> equipment. The estimated per well <strong>in</strong>frastructure cost is<br />

$60,500.<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-5


6.1.3 Operat<strong>in</strong>g Cost Estimates<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The operat<strong>in</strong>g costs <strong>in</strong>clude well tend<strong>in</strong>g (pump<strong>in</strong>g etc.), <strong>in</strong>-field compression, gas (CBM)<br />

ga<strong>the</strong>r<strong>in</strong>g, on site power generation, <strong>and</strong> water ga<strong>the</strong>r<strong>in</strong>g <strong>and</strong> disposal. The operat<strong>in</strong>g costs<br />

presented here<strong>in</strong> represent <strong>the</strong> best estimate available at this time, for use <strong>in</strong> <strong>the</strong> economic<br />

analysis. The major operat<strong>in</strong>g cost assumptions used are shown <strong>in</strong> Exhibit 6.3.<br />

Operat<strong>in</strong>g Cost Imperial<br />

Well Tend<strong>in</strong>g & Pump<strong>in</strong>g $/Well/Month 1,056 $/Well/Month 1,056<br />

Field Compression<br />

$/1000m 3<br />

4.25 $/mcf 0.120<br />

Field Ga<strong>the</strong>r<strong>in</strong>g Pipel<strong>in</strong>e System $/1000m 3<br />

12.98 $/mcf 0.368<br />

Site Power Generation $/kWhr 0.009 $/kWhr 0.009<br />

Water Treatment & Disposal $/m 3<br />

Metric<br />

1.89 $/BBL 0.30<br />

Field Fuel (gas) Usage 2.93% 2.93%<br />

Exhibit 6.3: Operat<strong>in</strong>g Cost Assumptions<br />

6.1.3.1 Well Tend<strong>in</strong>g<br />

Well tend<strong>in</strong>g (sometimes referred to as well pump<strong>in</strong>g) <strong>in</strong>cludes <strong>the</strong> normal well operation <strong>and</strong><br />

ma<strong>in</strong>tenance costs, as well as workover operations cost. In general, <strong>the</strong> operat<strong>in</strong>g <strong>and</strong><br />

ma<strong>in</strong>tenance costs associated with CBM wells are higher than conventional wells as frequent<br />

workovers, pump repairs <strong>and</strong> o<strong>the</strong>r ma<strong>in</strong>tenance are required <strong>in</strong> <strong>the</strong> <strong>in</strong>itial stages of well<br />

operations. Power is also a large expense item which is covered under site power generation<br />

below. The well tend<strong>in</strong>g cost for a typical Donetsk region CBM well is estimated to be<br />

US$1,056 per well per month.<br />

6.1.3.2 Gas Compression <strong>and</strong> Ga<strong>the</strong>r<strong>in</strong>g<br />

As discussed previously, it is necessary to optimize <strong>the</strong> recovery of CBM by ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g a<br />

very low well head pressure at each well. S<strong>in</strong>ce <strong>the</strong> gas be<strong>in</strong>g produced is at a very low<br />

pressure of approximately 20 to 30 psig at <strong>the</strong> wellhead, compression will be required <strong>in</strong><br />

order to transport <strong>the</strong> gas from satellite locations <strong>in</strong> <strong>the</strong> field through <strong>the</strong> field trunk pipel<strong>in</strong>es<br />

to <strong>the</strong> field gate. It is estimated that gas will need to be compressed to <strong>the</strong> range of 350 to<br />

450 psig. Advanced Resources has estimated that 2.93% of <strong>the</strong> total gas stream will be<br />

required for compression fuel <strong>and</strong> power generation fuel. Operat<strong>in</strong>g cost to ma<strong>in</strong>ta<strong>in</strong> <strong>the</strong><br />

compressors is estimated to be $0.12/mcf ($4.25/Mm 3 ), <strong>and</strong> <strong>the</strong> operat<strong>in</strong>g cost to operate <strong>the</strong><br />

gas ga<strong>the</strong>r<strong>in</strong>g system is estimated to be $0.37/mcf ($12.98/Mm 3 ).<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-6


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

6.1.3.3 Power Generation<br />

The operat<strong>in</strong>g cost to operate <strong>the</strong> comb<strong>in</strong>ed cycle power generation station is estimated to<br />

be $0.009/kWhr. This operat<strong>in</strong>g cost estimate is <strong>in</strong> l<strong>in</strong>e with published values <strong>and</strong> operat<strong>in</strong>g<br />

experience.<br />

6.1.3.4 Water Treatment <strong>and</strong> Disposal<br />

This category <strong>in</strong>cludes <strong>the</strong> cost of ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g <strong>the</strong> water ga<strong>the</strong>r<strong>in</strong>g pipel<strong>in</strong>e system, <strong>and</strong> <strong>the</strong><br />

treatment <strong>and</strong> disposal of produced water. The cost to operate <strong>the</strong> water ga<strong>the</strong>r<strong>in</strong>g <strong>and</strong><br />

disposal system is estimated to be $0.30/bbl ($1.89/m 3 ).<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-7


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

6.2 Benchmark<strong>in</strong>g Analysis of Ukra<strong>in</strong>e CBM Costs versus Major U.S.<br />

CBM Projects<br />

Proper plann<strong>in</strong>g <strong>and</strong> control of field <strong>development</strong> <strong>and</strong> operat<strong>in</strong>g costs are essential for any oil<br />

<strong>and</strong> gas venture <strong>and</strong> are particularly important <strong>in</strong> <strong>coal</strong>bed <strong>methane</strong>. First, <strong>coal</strong>bed <strong>methane</strong><br />

production entails additional field facilities <strong>and</strong> costs generally not required by conventional<br />

gas production, such as down hole pumps, separators, <strong>and</strong> water disposal (Schraufnagel,<br />

1991). Second, <strong>in</strong> certa<strong>in</strong> sett<strong>in</strong>gs <strong>the</strong> <strong>coal</strong>s may only support a moderate rate of gas<br />

production <strong>and</strong> so strict cost controls will be required to produce an economic project.<br />

Because of shallower depths, <strong>the</strong> capital <strong>in</strong>vestment costs for <strong>coal</strong>bed <strong>methane</strong> will likely be<br />

lower; however, <strong>the</strong> production operations <strong>and</strong> ma<strong>in</strong>tenance costs may be higher than for<br />

produc<strong>in</strong>g conventional gas (Kuuskraa et al., 1989).<br />

To provide benchmarks for <strong>the</strong> Donetsk region <strong>coal</strong>bed <strong>methane</strong> project, this section reviews<br />

<strong>the</strong> capital <strong>in</strong>vestment costs of several well-established <strong>coal</strong>bed <strong>methane</strong> bas<strong>in</strong>s <strong>in</strong> <strong>the</strong> U.S.<br />

<strong>and</strong> compares <strong>the</strong>se costs to <strong>the</strong> Donetsk region project. The five U.S. bas<strong>in</strong>s analyzed<br />

<strong>in</strong>clude <strong>the</strong> Central Appalachian bas<strong>in</strong> (Consol Energy, Equitable Resources; 3,000+ wells),<br />

<strong>the</strong> U<strong>in</strong>ta bas<strong>in</strong> (Anadarko, ConocoPhilips; 1,000+ wells), <strong>the</strong> San Juan bas<strong>in</strong> (BP, Red<br />

Willow, ConocoPhilips; 3,000+ wells), <strong>the</strong> Raton bas<strong>in</strong> (Pioneer/Evergreen; 1,500+ wells),<br />

<strong>and</strong> <strong>the</strong> Warrior bas<strong>in</strong> (Energen, BP; 4,000+).<br />

The large number of wells <strong>in</strong> each bas<strong>in</strong> allows one to derive statistically significant numbers<br />

for <strong>the</strong> capital costs. The data sources for <strong>the</strong> benchmark<strong>in</strong>g analysis <strong>in</strong>clude current <strong>and</strong><br />

recent AFEs that Advanced Resources has generated for clients <strong>in</strong> each of <strong>the</strong>se bas<strong>in</strong>s,<br />

discussions with operators who were will<strong>in</strong>g to provide updated capital cost numbers,<br />

f<strong>in</strong>ancial disclosures from various companies (e.g.; Annual Reports, quarterly 10K reports,<br />

etc.), <strong>and</strong> databases from <strong>the</strong> Energy Information Agency <strong>and</strong> <strong>the</strong> American Petroleum<br />

Institute.<br />

The primary capital <strong>in</strong>vestment costs for a CBM project <strong>in</strong>clude geological, geophysical, <strong>and</strong><br />

lease acquisition outlays; well drill<strong>in</strong>g, completion, <strong>and</strong> stimulation; <strong>in</strong>stallation of gas<br />

production <strong>and</strong> collection facilities; <strong>and</strong> construction of a water disposal system. Each of<br />

<strong>the</strong>se major areas is discussed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g subsections. Exhibit 6.4 is a tabular<br />

presentation of a comparative cost analysis of U.S. <strong>and</strong> Donetsk Region project costs.<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-8


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Bas<strong>in</strong><br />

Central San U. S. Donetsk Percent<br />

Bas<strong>in</strong> Appalachian U<strong>in</strong>ta Juan Raton Warrior Average CBM Project Difference<br />

Depth (ft.) 1,900<br />

Geological/Geophysical 14,350<br />

Drill<strong>in</strong>g <strong>and</strong> Completion 144,000<br />

Lease Equipment 1<br />

69,100<br />

Water Disposal 16,300<br />

Stimulation 60,000<br />

Total 2<br />

303,750<br />

3,000<br />

22,500<br />

462,000<br />

101,600<br />

20,900<br />

145,000<br />

752,000<br />

Notes:<br />

1. Includes compression, power generation, <strong>and</strong> gas ga<strong>the</strong>r<strong>in</strong>g.<br />

2. Does not <strong>in</strong>clude <strong>in</strong>frastructure cost such as offices, warehouses, etc.<br />

COMPARATIVE ANALYSIS OF CBM WELL COSTS<br />

Selected U. S. Bas<strong>in</strong>s Compared to Donetsk Region CBM Project<br />

3,250<br />

24,300<br />

478,500<br />

96,700<br />

25,800<br />

200,000<br />

825,300<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-9<br />

2,500<br />

21,700<br />

330,000<br />

66,600<br />

18,800<br />

65,000<br />

502,100<br />

1,900<br />

15,500<br />

280,800<br />

48,200<br />

9,220<br />

153,500<br />

507,220<br />

Exhibit 6.4: Comparative Analysis of CBM Well Costs<br />

2,510<br />

19,670<br />

339,060<br />

76,400<br />

18,200<br />

124,700<br />

578,030<br />

3,600<br />

29,142<br />

304,371<br />

56,890<br />

16,270<br />

150,000<br />

556,673<br />

43%<br />

48%<br />

-10%<br />

-26%<br />

-11%<br />

20%<br />

-4%


6.3 CBM Project Economics<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Separate economic analyses were run for CBM production <strong>and</strong> CMM production scenarios.<br />

For <strong>the</strong> CBM production, on <strong>the</strong> South Donbass <strong>and</strong> Grish<strong>in</strong>o-Andreyevskaya lease areas,<br />

ARI carried out an economic <strong>and</strong> f<strong>in</strong>ancial analysis to deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> project viability. This<br />

analysis utilized <strong>the</strong> operat<strong>in</strong>g <strong>and</strong> capital cost estimates developed previously <strong>in</strong> this section<br />

to deter<strong>m<strong>in</strong>e</strong> <strong>the</strong> economics of <strong>the</strong> gas at <strong>the</strong> field gate. The CMM production from <strong>the</strong> South<br />

Donbass #3 <strong>and</strong> Bazhanov <strong>m<strong>in</strong>e</strong>s is assumed to be utilized <strong>in</strong> small power generators<br />

located at each <strong>m<strong>in</strong>e</strong> to offset electric power purchases made by <strong>the</strong> <strong>m<strong>in</strong>e</strong>s.<br />

Each scenario has been subjected to sensitivities of capital cost, operat<strong>in</strong>g cost, <strong>and</strong> gas<br />

price. The economic assumptions, results, <strong>and</strong> sensitivity analysis are discussed below. The<br />

economics are presented on a pretax project basis. This is because each f<strong>in</strong>ancial <strong>in</strong>stitution<br />

has its own <strong>in</strong>ternal hurdle rates for debt/equity ratios, rates of return, project risk factors, etc.<br />

6.3.1 CBM Production Analysis<br />

The field production profile for gas <strong>and</strong> water <strong>in</strong> <strong>the</strong> CBM lease areas was generated us<strong>in</strong>g<br />

<strong>the</strong> s<strong>in</strong>gle well production profile generated from reservoir simulation studies as discussed<br />

earlier <strong>in</strong> Section 2. The production profile assumes that drill<strong>in</strong>g will rema<strong>in</strong> constant at 40<br />

wells per year, <strong>and</strong> that all result<strong>in</strong>g gas will be sold as it is produced, with no market<br />

constra<strong>in</strong>ts. This drill<strong>in</strong>g schedule was selected because it is felt that it would be a<br />

reasonably achievable pace given <strong>the</strong> <strong>in</strong>frastructure <strong>and</strong> manpower availability <strong>in</strong> <strong>the</strong> area.<br />

The production profile for this scenario is shown <strong>in</strong> Exhibit 6.5.<br />

The modeled production profile peaks <strong>in</strong> year 31 at just over 22 MMcfd with a total of 1040<br />

wells (drilled on 0.25 km 2 spac<strong>in</strong>g) produc<strong>in</strong>g 186 Bcf (5.3 billion m 3 ) over a period of 35<br />

years.<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-10


mmcfd<br />

-<br />

25<br />

20<br />

15<br />

10<br />

5<br />

-<br />

50<br />

40<br />

30<br />

20<br />

10<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Ukra<strong>in</strong>e CBM Production Profile<br />

2009 2011 2013 2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035 2037<br />

Drill<strong>in</strong>g Schedule - # of Wells<br />

40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40 40<br />

Gas Water<br />

- - - - - - - - -<br />

2009 2011 2013 2015 2017 2019 2021 2023 2025 2027 2029 2031 2033 2035 2037 2039 2041 2043<br />

Exhibit 6.5: CBM Production Profile<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-11<br />

2.5<br />

2.0<br />

1.5<br />

1.0<br />

0.5<br />

-<br />

mbpd


6.3.2 CBM F<strong>in</strong>ancial Assumptions<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 6.6 is a table present<strong>in</strong>g <strong>the</strong> physical <strong>and</strong> f<strong>in</strong>ancial assumptions used <strong>in</strong> <strong>the</strong> economic<br />

analysis.<br />

Physical & F<strong>in</strong>ancial Factors Imperial<br />

Calorific Value of Gas GJ/1000m 3<br />

36.46 Btu/Cu.Ft. 980<br />

Gas Price $/1000m 3<br />

Metric<br />

400 $/MMBtu 11.56<br />

Royalty Rate 3%<br />

Cost Inflation 3%<br />

Price Inflation 3%<br />

Inflation Start Year 2009<br />

Discount<strong>in</strong>g Year 2009<br />

Exhibit 6.6: CBM Physical <strong>and</strong> F<strong>in</strong>ancial Assumptions<br />

The price that Ukra<strong>in</strong>e currently pays for gas is between $300 <strong>and</strong> $500 per 1000 m 3<br />

(2008 figures based on <strong>in</strong>put from a panel of Ukra<strong>in</strong>ian experts)<br />

The base case assumes $400/1000 m3 <strong>and</strong> is sensitized +/- 30% to capture a gas price<br />

range from $280 to $520/1000 m3<br />

Us<strong>in</strong>g <strong>the</strong> prices above ($300 to $500 per 1000 m3) <strong>and</strong> a conversion factor of 35.3<br />

ft 3 /m 3 <strong>and</strong> 980 btu/ft 3 , this gas price equates to a price of $8.67 to $14.45/mmbtu.<br />

6.3.3 CBM Economic Results<br />

The net present value discounted at 10% is $239.2 million with an <strong>in</strong>ternal rate of return of<br />

33%.<br />

A cash flow for CBM production is presented <strong>in</strong> Exhibit 6.7.<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-12


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 6.7: CBM Cash Flow<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-13


6.3.4 CBM Sensitivity Analyses<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Because of <strong>the</strong> uncerta<strong>in</strong>ties <strong>in</strong>volved <strong>in</strong> <strong>the</strong> estimate of certa<strong>in</strong> parameters used <strong>in</strong> <strong>the</strong><br />

economic analysis, a set of sensitivity analyses were run to exa<strong>m<strong>in</strong>e</strong> <strong>the</strong> impact of higher or<br />

lower gas price, capital cost, <strong>and</strong> operat<strong>in</strong>g cost. Exhibit 6.8 shows <strong>the</strong> net present value<br />

discounted at 10% <strong>and</strong> <strong>in</strong>ternal rate of return for <strong>the</strong> project when gas prices, capital cost,<br />

<strong>and</strong> operat<strong>in</strong>g costs are varied from m<strong>in</strong>us 30% to plus 30% from <strong>the</strong> base case described<br />

above.<br />

Gas Price Sensitivity ($/mmbtu)<br />

Gas<br />

Price<br />

NPV10 (USD-million) Internal Rate of Return<br />

$ 280 89.3<br />

18.24%<br />

$ 320 108.8<br />

20.08%<br />

$ 360 174.0<br />

26.41%<br />

$ 400 239.2<br />

33.03%<br />

$ 440 304.3<br />

39.87%<br />

$ 480 369.4<br />

46.90%<br />

$ 520 434.6<br />

54.07%<br />

Percent<br />

Variance<br />

-30% 272.0<br />

-20% 261.0<br />

-10% 250.1<br />

0% 239.2<br />

10% 228.2<br />

20% 217.3<br />

30% 206.3<br />

Operat<strong>in</strong>g Expense Sensitivity<br />

NPV10 (USD-million) Internal Rate of Return<br />

35.58%<br />

34.73%<br />

33.88%<br />

33.03%<br />

32.17%<br />

31.31%<br />

30.44%<br />

Capital Expenditure Sensitivity<br />

Percent<br />

Variance<br />

NPV10 (USD-million) Internal Rate of Return<br />

-30% 330.0<br />

59.67%<br />

-20% 299.7<br />

48.30%<br />

-10% 269.5<br />

39.69%<br />

0% 239.2<br />

33.03%<br />

10% 208.9<br />

27.78%<br />

20% 178.6<br />

23.59%<br />

30% 148.3<br />

20.19%<br />

Exhibit 6.8: Gas Price, Operat<strong>in</strong>g Expenditure & Capital Expenditure Sensitivities<br />

The sensitivity analyses reveal that <strong>the</strong> project is most sensitive to gas price <strong>and</strong> capital<br />

expenditures <strong>and</strong> is least sensitive to operat<strong>in</strong>g cost. This is typical of most oil <strong>and</strong> gas<br />

projects. When gas price is varied from $280/1000m 3 to $520/1000m 3 (-30% to +30%) <strong>the</strong><br />

IRR ranges from 18.24% to 54.07%. Operat<strong>in</strong>g expense variance from m<strong>in</strong>us 30% to plus<br />

30% yields an IRR range from 33.58% to 30.44%. Capital expenditure variance from m<strong>in</strong>us<br />

30% to plus 30% yields an IRR range from 59.67% to 20.19%. These sensitivity results are<br />

presented graphically <strong>in</strong> Exhibit 6.9 <strong>and</strong> Exhibit 6.10.<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-14


Rate of Return<br />

Net Present Value @ 10%<br />

60%<br />

55%<br />

50%<br />

45%<br />

40%<br />

35%<br />

30%<br />

25%<br />

20%<br />

450<br />

400<br />

350<br />

300<br />

250<br />

200<br />

150<br />

100<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Ukra<strong>in</strong>e Economic Sensitivity Analysis<br />

Variance <strong>in</strong> Parameter vs. Rate of Return<br />

15%<br />

-30% -20% -10% 0% 10% 20% 30%<br />

Variance <strong>in</strong> Parameter<br />

Capex Opex Gas Price<br />

Exhibit 6.9: CBM - Rate of Return Sensitivities<br />

Ukra<strong>in</strong>e Economic Sensitivity Analysis<br />

Variance <strong>in</strong> Parameter vs. Net Present Value Discounted @ 10%<br />

50<br />

-30% -20% -10% 0% 10% 20% 30%<br />

Variance <strong>in</strong> Parameter<br />

Capex Opex Gas Price<br />

Exhibit 6.10: CBM - NPV Sensitivities<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-15


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

6.4 CMM Power Project Economics<br />

The CMM production from <strong>the</strong> Bazhanov M<strong>in</strong>e <strong>and</strong> <strong>the</strong> South Donbass No.3 M<strong>in</strong>e will be<br />

utilized <strong>in</strong> small power generators located at each <strong>m<strong>in</strong>e</strong> <strong>and</strong> can be used to offset electric<br />

power purchases made by <strong>the</strong>se <strong>m<strong>in</strong>e</strong>s. Power production at <strong>the</strong> <strong>m<strong>in</strong>e</strong> sites was deter<strong>m<strong>in</strong>e</strong>d<br />

to be <strong>the</strong> most economic utilization option <strong>in</strong> terms of capital costs, time value of money, <strong>and</strong><br />

ability to realize carbon credits. The Bazhanov Coal M<strong>in</strong>e requires 8,600 kWhr while <strong>the</strong><br />

South Donbass No.3 Coal M<strong>in</strong>e requires 12,300 kWhr. CMM power project economics have<br />

been estimated <strong>in</strong>dividually for <strong>the</strong> Bazhanov <strong>and</strong> South Donbass No.3 <strong>m<strong>in</strong>e</strong>s <strong>and</strong> have also<br />

been estimated as a comb<strong>in</strong>ed total project.<br />

6.4.1 CMM Production Analysis<br />

The Bazhanov Coal M<strong>in</strong>e produces 9.9 million m 3 of <strong>methane</strong> per year, <strong>and</strong> utilizes 5.5<br />

million m 3 per year, leav<strong>in</strong>g a net production of 4.4 million m 3 available for power generation.<br />

The South Donbass No.3 Coal M<strong>in</strong>e produces 8.8 million m 3 (25 million m 3 @ 35%<br />

concentration) of <strong>methane</strong> per year, all of which is available for power generation. This is<br />

enough fuel to power a 1.7 MW facility at <strong>the</strong> Bazhanov M<strong>in</strong>e <strong>and</strong> 3.3 MW facility at <strong>the</strong><br />

South Donbass #3 <strong>m<strong>in</strong>e</strong>.<br />

The two <strong>m<strong>in</strong>e</strong>s comb<strong>in</strong>ed will produce 13.2 million m 3 /year (0.466 bcf/yr) of <strong>methane</strong> that is<br />

available for power generation (5 MW for <strong>the</strong> purpose of <strong>the</strong> comb<strong>in</strong>ed economics).<br />

Individual economics for <strong>the</strong> 1.7 MW <strong>and</strong> 3.3 MW generators – with <strong>and</strong> without carbon<br />

credits - are presented <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g pages, along with <strong>the</strong> economics for comb<strong>in</strong>ed<br />

generation of 5 MW of power capacity. Carbon credits calculations are run us<strong>in</strong>g values of<br />

$10/tonne <strong>and</strong> $15/tonne.<br />

6.4.2 CMM Economic Assumptions<br />

Capital project costs are summarized <strong>in</strong> Exhibit 6.11. Included are costs for upgrad<strong>in</strong>g <strong>and</strong><br />

exp<strong>and</strong><strong>in</strong>g <strong>the</strong> <strong>in</strong>-<strong>m<strong>in</strong>e</strong> gas dra<strong>in</strong>age <strong>and</strong> ventilation systems; purchases of <strong>the</strong> power<br />

generators; <strong>and</strong> project <strong>development</strong> costs. Total capital project costs for <strong>the</strong> South<br />

Donbass <strong>m<strong>in</strong>e</strong> are estimated to be just under $6 million; for <strong>the</strong> Bazhanov <strong>m<strong>in</strong>e</strong>, $3.3 million;<br />

<strong>and</strong> for <strong>the</strong> comb<strong>in</strong>ed project, $9.3 million.<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-16


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Ukra<strong>in</strong>e CMM Capital Cost Summary (USD-thous<strong>and</strong>s)<br />

South<br />

Donbass Bazhanov Total<br />

CMM Dra<strong>in</strong>age Methane Production (million m 3 ) 8.75 4.4 13.15<br />

Site Power Generation (MW) 3.3<br />

1.7<br />

5.0<br />

In-<strong>m<strong>in</strong>e</strong> Drill<strong>in</strong>g <strong>and</strong> Dra<strong>in</strong>age System Upgrade<br />

Equipment Mobilization/Set-up:<br />

Integration: 39<br />

Tra<strong>in</strong><strong>in</strong>g: 16<br />

Delivery: 8<br />

Collection System: 22<br />

Site Preparation: 7<br />

Construction / Installation: 14<br />

Set-up/Commission<strong>in</strong>g: 15<br />

Subtotal $ 121 $ 67<br />

188<br />

Implementation/Site Establishment (Drill<strong>in</strong>g)/Equipment Acquisition:<br />

Geological <strong>and</strong> Geophysical: 11<br />

Site Establishment: 7<br />

Drill<strong>in</strong>g Equipment: 752<br />

Drill<strong>in</strong>g Expenses: 78<br />

Cas<strong>in</strong>g <strong>and</strong> Cement<strong>in</strong>g: 89<br />

Gas Dra<strong>in</strong>age System Rehabilitation: 200<br />

Ventilation System Rehabilitation: 120<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-17<br />

22<br />

9<br />

4<br />

12<br />

4<br />

8<br />

8<br />

6<br />

4<br />

378<br />

43<br />

49<br />

110<br />

66<br />

61<br />

25<br />

12<br />

34<br />

10<br />

21<br />

23<br />

17<br />

10<br />

1,130<br />

121<br />

138<br />

310<br />

186<br />

Subtotal $ 1,255 $ 657<br />

1,709<br />

Eng<strong>in</strong>eer<strong>in</strong>g Design <strong>and</strong> Supervision: 131<br />

Operations <strong>and</strong> General / Adm<strong>in</strong>istrative: 69<br />

Cont<strong>in</strong>gency: 108<br />

In-<strong>m<strong>in</strong>e</strong> Drill<strong>in</strong>g & Dra<strong>in</strong>age System Upgrade Subtotal $ 1,684 $ 894<br />

2,578<br />

Power Generation <strong>and</strong> Heat Utilization (USD-thous<strong>and</strong>s)<br />

Generators Purchase/Delivery/Set-up<br />

South<br />

Donbass Bazhanov Total<br />

Heat <strong>and</strong> Power Plants: 2,070 1,145<br />

3,215<br />

Compression <strong>and</strong> Filtration 699<br />

387<br />

1,085<br />

Eng<strong>in</strong>eer<strong>in</strong>g Design <strong>and</strong> Supervision: 310<br />

172<br />

482<br />

Cont<strong>in</strong>gency: 238<br />

132<br />

370<br />

Operat<strong>in</strong>g Reserve: 238<br />

132<br />

370<br />

Tra<strong>in</strong><strong>in</strong>g: 83<br />

46<br />

129<br />

Subtotal $ 3,638 $ 2,012<br />

5,650<br />

Emissions Reduction Units (ERU's) Programme<br />

Programme Design <strong>and</strong> Basel<strong>in</strong>e Assessment: 18<br />

Pre-Validation/Set-up: 4<br />

Evaluation/Monitor<strong>in</strong>g/Validation/OH: 24<br />

Subtotal $ 46 $ 26<br />

72<br />

Flar<strong>in</strong>g Unit<br />

Complete System: 120<br />

Installation/Commission<strong>in</strong>g: 30<br />

Eng<strong>in</strong>eer<strong>in</strong>g Design <strong>and</strong> Supervision: 23<br />

73<br />

38<br />

59<br />

10<br />

2<br />

13<br />

120<br />

30<br />

23<br />

204<br />

107<br />

167<br />

28<br />

7<br />

37<br />

240<br />

60<br />

45<br />

$ 173 $ 173<br />

345<br />

Power Generation & Heat Utilization Subtotal $ 3,857 $ 2,210<br />

5,995<br />

Project Development (USD-thous<strong>and</strong>s)<br />

Leases, Licenses, Operat<strong>in</strong>g/Production Rights<br />

South<br />

Donbass Bazhanov Total<br />

Acquisition: 263<br />

145<br />

408<br />

Accrued Fees: 85<br />

47<br />

132<br />

Set-up Office/Management Systems: 34<br />

F<strong>in</strong>anc<strong>in</strong>g Charges: 44<br />

$ 348 $ 192<br />

540<br />

Project Development Subtotal $ 426 $ 235<br />

661<br />

Comb<strong>in</strong>ed Total Project Cost $ 5,966 $ 3,339 $ 9,306<br />

Exhibit 6.11: CMM Project Estimated Costs<br />

19<br />

24<br />

52<br />

69


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Power plant operat<strong>in</strong>g costs have been figured at 8% of <strong>the</strong> capital cost annually. The<br />

operat<strong>in</strong>g cost for <strong>the</strong> degasification systems (<strong>and</strong> drill<strong>in</strong>g <strong>and</strong> ventilation, etc.) was also<br />

figured at 8% of capital cost annually. The power price is based on <strong>the</strong> cost of <strong>m<strong>in</strong>e</strong> power<br />

consumption that is to be offset by <strong>the</strong> generated power. Per eng<strong>in</strong>e manufacturer<br />

specifications, a generator efficiency of 36% was used <strong>and</strong> a load factor slightly less than<br />

96% was used. It has been assumed that <strong>the</strong> projects would start <strong>in</strong> January of 2009. These<br />

figures are summarized <strong>in</strong> Exhibit 6.12.<br />

Ukra<strong>in</strong>e CMM Economic Model<br />

Case: Power Plant Economics South Bazhanov Comb<strong>in</strong>ed<br />

Date: 39702 Donbass M<strong>in</strong>e Generation<br />

Economic Input Assumptions M<strong>in</strong>e<br />

Capital Cost<br />

Drill<strong>in</strong>g & Dra<strong>in</strong>age System Upgrade $,000 1,684 894 2,578<br />

Generation, Heat, <strong>and</strong> Flar<strong>in</strong>g $,000 3,857 2,210 5,995<br />

Project Development $,000 426 235 661<br />

Operat<strong>in</strong>g Cost<br />

Power Plant % 8.0<br />

Degassification System % 8.0<br />

Physical & F<strong>in</strong>ancial Factors<br />

Power Sales Price $/kW 0.0559<br />

Generator Size MW 3.4 1.7 5.1<br />

Generator Efficiency - 100% Load 36%<br />

Run Time 96%<br />

Project Start Year 2009<br />

Project Start Month 1<br />

Carbon Credit Parameters<br />

Carbon Credit Value $/tonne 10<br />

Certification Fee (per <strong>m<strong>in</strong>e</strong>) $,000 55<br />

Certification Frequency /yr 2<br />

Kyoto Ends <strong>in</strong> Project Year 4<br />

Exhibit 6.12: CMM Power Plant Economic Models - Input Assumptions<br />

6.4.3 CMM Economic Results<br />

The 35 year cash flows for <strong>the</strong> CMM power projects of <strong>the</strong> South Donbass No.3 <strong>m<strong>in</strong>e</strong>,<br />

Bazhanov <strong>m<strong>in</strong>e</strong> <strong>and</strong> comb<strong>in</strong>ed economics are presented <strong>in</strong> Exhibit 6.13, Exhibit 6.14 <strong>and</strong><br />

Exhibit 6.15. These cash flows show <strong>the</strong> escalated power price <strong>and</strong> escalated power plant<br />

<strong>and</strong> degasification operat<strong>in</strong>g costs. A discounted cash flow analysis us<strong>in</strong>g various discount<br />

rates is also presented along with <strong>the</strong> calculated <strong>in</strong>ternal rate of return.<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-18


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 6.13: South Donbass No.3 CMM Power Plant Results - Cashflow<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-19


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 6.14: Bazhanov CMM Power Plant Results - Cashflow<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-20


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 6.15: Comb<strong>in</strong>ed CMM Power Plant Results - Cashflow<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-21


6.4.4 CMM Sensitivity Analyses<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Because of <strong>the</strong> <strong>in</strong>herent uncerta<strong>in</strong>ties <strong>in</strong> estimat<strong>in</strong>g <strong>the</strong> operat<strong>in</strong>g <strong>and</strong> capital costs of <strong>the</strong><br />

power projects, <strong>and</strong> <strong>the</strong> potential price at which power could be sold, analyses were<br />

performed for each project to exa<strong>m<strong>in</strong>e</strong> <strong>the</strong> sensitivity of <strong>the</strong> economics to <strong>the</strong>se parameters.<br />

The capital <strong>and</strong> operat<strong>in</strong>g costs, <strong>and</strong> <strong>the</strong> power sales price, were each subjected to<br />

variations from m<strong>in</strong>us 30% to plus 30% <strong>in</strong> 10% <strong>in</strong>crements.<br />

Exhibit 6.16, Exhibit 6.19 <strong>and</strong> Exhibit 6.22 are tabular presentations of <strong>the</strong> sensitivity<br />

analyses carried out. The variation <strong>in</strong> <strong>the</strong> parameter is shown <strong>in</strong> <strong>the</strong> left column, <strong>and</strong> <strong>the</strong><br />

result<strong>in</strong>g net present value discounted at 10% <strong>and</strong> rate of return are presented <strong>in</strong> <strong>the</strong> middle<br />

<strong>and</strong> right columns respectively.<br />

South Donbass M<strong>in</strong>e<br />

Power Price Sensitivity ($/kW)<br />

Power NPV10 NPV10 (USD-million) Internal Rate of Return<br />

Price (USD thous<strong>and</strong>s)<br />

$ 0.0392 1,917<br />

12.8%<br />

$ 0.0448 3,766<br />

15.2%<br />

$ 0.0503 5,615<br />

17.5%<br />

$ 0.0559 7,463<br />

19.7%<br />

$ 0.0615 9,312<br />

21.8%<br />

$ 0.0671 11,160<br />

23.8%<br />

$ 0.0727 13,009<br />

25.8%<br />

Operat<strong>in</strong>g Expense Sensitivity<br />

Prercent NPV10 NPV10 (USD-million) Internal Rate of Return<br />

Variance (USD thous<strong>and</strong>s)<br />

70% 9,085<br />

21.6%<br />

80% 8,544<br />

21.0%<br />

90% 8,004<br />

20.3%<br />

100% 7,463<br />

19.7%<br />

110% 6,922<br />

19.0%<br />

120% 6,382<br />

18.3%<br />

130% 5,841<br />

17.7%<br />

Capital Expenditure Sensitivity<br />

Prercent NPV10 NPV10 (USD-million) Internal Rate of Return<br />

Variance (USD thous<strong>and</strong>s)<br />

70% 9,148<br />

25.6%<br />

80% 8,586<br />

23.2%<br />

90% 8,025<br />

21.3%<br />

100% 7,463<br />

19.7%<br />

110% 6,902<br />

18.3%<br />

120% 6,340<br />

17.1%<br />

130% 5,778<br />

16.1%<br />

Exhibit 6.16: South Donbass No.3 Power Plant Results – Sensitivity Analysis<br />

The sensitivity analyses reveal that <strong>the</strong> power projects are most sensitive to power price<br />

variability <strong>and</strong> capital expenditures <strong>and</strong> less sensitive to changes <strong>in</strong> operat<strong>in</strong>g cost. This is<br />

consistent with most oil <strong>and</strong> gas project economics. The sensitivity results are presented<br />

graphically <strong>in</strong> Exhibits 5.17, 5.18, 5.20, 5.21, 5.23 <strong>and</strong> 5.24.<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-22


Rate of Return<br />

Net Present Value @ 10%<br />

26%<br />

24%<br />

22%<br />

20%<br />

18%<br />

16%<br />

14%<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

South Donbass Ukra<strong>in</strong>e #3 M<strong>in</strong>e - Power Plant Economics<br />

Variance <strong>in</strong> Parameter vs. Rate of Return<br />

12%<br />

-30% -20% -10% 0% 10% 20% 30%<br />

Variance <strong>in</strong> Parameter<br />

Capex Opex Power Price<br />

Exhibit 6.17: South Donbass No.3 Power Plant - Variance <strong>in</strong> Parameter v Rate of Return<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

South Donbass Ukra<strong>in</strong>e #3 M<strong>in</strong>e - Power Plant Economics<br />

Variance <strong>in</strong> Parameter vs. Net Present Value Discounted @ 10%<br />

0<br />

-30% -20% -10% 0% 10% 20% 30%<br />

Variance <strong>in</strong> Parameter<br />

Capex Opex Power Price<br />

Exhibit 6.18: South Donbass No.3 Power Plant - Variance <strong>in</strong> Parameter v NPV (10%)<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-23


Rate of Return<br />

24%<br />

22%<br />

20%<br />

18%<br />

16%<br />

14%<br />

12%<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Bazhanov M<strong>in</strong>e<br />

Power Price Sensitivity ($/kW )<br />

Power NPV10 NPV10 (USD-million) Internal Rate of Return<br />

Price (USD thous<strong>and</strong>s)<br />

$ 0.0392 342<br />

10.9%<br />

$ 0.0448 1,272<br />

13.2%<br />

$ 0.0503 2,201<br />

15.4%<br />

$ 0.0559 3,131<br />

17.5%<br />

$ 0.0615 4,060<br />

19.4%<br />

$ 0.0671 4,990<br />

21.3%<br />

$ 0.0727 5,919<br />

23.2%<br />

Operat<strong>in</strong>g Expense Sensitivity<br />

Prercent NPV10 NPV10 (USD-million) Internal Rate of Return<br />

Variance (USD thous<strong>and</strong>s)<br />

70% 4,037<br />

19.5%<br />

80% 3,735<br />

18.8%<br />

90% 3,433<br />

18.1%<br />

100% 3,131<br />

17.5%<br />

110% 2,828<br />

16.8%<br />

120% 2,526<br />

16.1%<br />

130% 2,224<br />

15.4%<br />

Capital Expenditure Sensitivity<br />

Prercent NPV10 NPV10 (USD-million) Internal Rate of Return<br />

Variance (USD thous<strong>and</strong>s)<br />

70% 4,074<br />

22.8%<br />

80% 3,759<br />

20.7%<br />

90% 3,445<br />

18.9%<br />

100% 3,131<br />

17.5%<br />

110% 2,816<br />

16.2%<br />

120% 2,502<br />

15.2%<br />

130% 2,188<br />

14.3%<br />

Exhibit 6.19: Bazhanov CMM Power Plant Results – Sensitivity Analysis<br />

Bazhanov Ukra<strong>in</strong>e M<strong>in</strong>e - Power Plant Economics<br />

Variance <strong>in</strong> Parameter vs. Rate of Return<br />

10%<br />

-30% -20% -10% 0% 10% 20% 30%<br />

Variance <strong>in</strong> Parameter<br />

Capex Opex Power Price<br />

Exhibit 6.20: Bazhanov CMM Power Plant - Variance <strong>in</strong> Parameter v Rate of Return<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-24


Net Present Value @ 10%<br />

6000<br />

5000<br />

4000<br />

3000<br />

2000<br />

1000<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Bazhanov Ukra<strong>in</strong>e M<strong>in</strong>e - Power Plant Economics<br />

Variance <strong>in</strong> Parameter vs. Net Present Value Discounted @ 10%<br />

0<br />

-30% -20% -10% 0% 10% 20% 30%<br />

Variance <strong>in</strong> Parameter Capex Opex Power Price<br />

Exhibit 6.21: Bazhanov CMM Power Plant - Variance <strong>in</strong> Parameter v NPV (10%)<br />

Total Two M <strong>in</strong>es<br />

P ow er Price Se ns it iv ity ( $/kW )<br />

Power NP V1 0 NPV10 (USD-million ) Inte rna l Ra te of Retu rn<br />

Price (USD thous<strong>and</strong>s)<br />

$ 0.0392 2,393<br />

12.3%<br />

$ 0.0448 5,172<br />

14.7%<br />

$ 0.0503 7,950<br />

16.9%<br />

$ 0.0559 10,728<br />

19.0%<br />

$ 0.0615 13,506<br />

21.1%<br />

$ 0.0671 16,284<br />

23.1%<br />

$ 0.0727 19,062<br />

25.1%<br />

Operat<strong>in</strong>g Expense Sensitivity<br />

Prercent NP V1 0 NPV10 (USD-million ) Inte rna l Ra te of Retu rn<br />

Variance (USD thous<strong>and</strong>s)<br />

70% 13,236<br />

21.0%<br />

80% 12,400<br />

20.4%<br />

90% 11,564<br />

19.7%<br />

100% 10,728<br />

19.0%<br />

110% 9,892<br />

18.4%<br />

120% 9,056<br />

17.7%<br />

130% 8,219<br />

17.0%<br />

Capital Expenditure Sensitivity<br />

Prercent NPV10 NPV10 ( USD-million ) Internal Rate of Return<br />

Variance (USD thous<strong>and</strong>s)<br />

70% 13,336<br />

24.8%<br />

80% 12,466<br />

22.5%<br />

90% 11,597<br />

20.6%<br />

100% 10,728<br />

19.0%<br />

110% 9,859<br />

17.7%<br />

120% 8,989<br />

16.6%<br />

130% 8,120<br />

15.6%<br />

Exhibit 6.22: Comb<strong>in</strong>ed CMM Power Plant Results – Sensitivity Analysis<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-25


Rate of Return<br />

Net Present Value @ 10%<br />

26%<br />

24%<br />

22%<br />

20%<br />

18%<br />

16%<br />

14%<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Ukra<strong>in</strong>e Comb<strong>in</strong>ed M<strong>in</strong>e - Power Plant Economics<br />

Variance <strong>in</strong> Parameter vs. Rate of Return<br />

12%<br />

-30% -20% -10% 0% 10% 20% 30%<br />

Variance <strong>in</strong> Parameter<br />

Capex Opex Power Price<br />

Exhibit 6.23: Comb<strong>in</strong>ed CMM Power Plant - Variance <strong>in</strong> Parameter v Rate of Return<br />

20000<br />

18000<br />

16000<br />

14000<br />

12000<br />

10000<br />

8000<br />

6000<br />

4000<br />

2000<br />

Ukra<strong>in</strong>e Comb<strong>in</strong>ed M<strong>in</strong>e - Power Plant Economics<br />

Variance <strong>in</strong> Parameter vs. Net Present Value Discounted @ 10%<br />

0<br />

-30% -20% -10% 0% 10% 20% 30%<br />

Variance <strong>in</strong> Parameter<br />

Capex Opex Power Price<br />

Exhibit 6.24: Comb<strong>in</strong>ed CMM Power Plant - Variance <strong>in</strong> Parameter v NPV (10%)<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-26


6.4.5 Carbon Credit Calculation<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Basel<strong>in</strong>e emissions consist of 0.464 Bcf of <strong>methane</strong>, (187,000 tonnes CO2 equivalent), <strong>and</strong><br />

<strong>the</strong> CO2 that would be generated by 5 MW of <strong>coal</strong> fired generation capacity displaced once<br />

<strong>the</strong> CMM fired reciprocat<strong>in</strong>g eng<strong>in</strong>e generators beg<strong>in</strong> produc<strong>in</strong>g electricity. These base l<strong>in</strong>e<br />

emissions will be offset by <strong>the</strong> CO2 that will be produced by flar<strong>in</strong>g <strong>the</strong> gas or burn<strong>in</strong>g <strong>the</strong> gas<br />

as fuel <strong>in</strong> <strong>the</strong> reciprocat<strong>in</strong>g eng<strong>in</strong>es.<br />

When <strong>the</strong> power generators are not runn<strong>in</strong>g, <strong>the</strong> gas will be flared. Exhibit 6.25 shows that <strong>in</strong><br />

<strong>the</strong> first two project years, 162,514 tonnes of CO2 credit are generated, <strong>and</strong> after that,<br />

206,224 tonnes are generated annually. After project year 4, no credits are generated as <strong>the</strong><br />

first commitment period of <strong>the</strong> Kyoto Protocol ends after 2012.<br />

Cash flow analyses for CMM power production with carbon credits at $10/tonne <strong>and</strong><br />

$15/tonne are shown <strong>in</strong> Exhibit 6.26 <strong>and</strong> Exhibit 6.27.<br />

A summary of <strong>the</strong> cash flow analyses for CMM power production, with <strong>and</strong> without carbon,<br />

credits ($10/tonne) is shown <strong>in</strong> Exhibit 6.28. With carbon credits ($10/tonne), <strong>the</strong> comb<strong>in</strong>ed<br />

CMM power project has a net present value of $10 million <strong>and</strong> an <strong>in</strong>ternal rate of return (at<br />

10%) of 28.9%.<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-27


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 6.25: Carbon Credit Calculation – Credits Generated<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-28


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 6.26: CMM Fired Power Generation with Carbon Credits @ $10/tonne<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-29


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Exhibit 6.27: CMM Fired Power Generation with Carbon Credits @ $15/tonne<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-30


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Economic Results<br />

South Donbass Bazhanov Comb<strong>in</strong>ed<br />

M<strong>in</strong>e M<strong>in</strong>e Generation<br />

(USD, thous<strong>and</strong>s)<br />

Power Generation without Carbon Credits<br />

Discounted Net Present Value @ 10% 7,463 3,131 10,728<br />

Discounted Net Present Value @ 15% 2,309 667 3,082<br />

Discounted Net Present Value @ 20% (118) (487) (514)<br />

Discounted Net Present Value @ 30% (2,192) (1,461) (3,578)<br />

Discounted Net Present Value @ 40% (2,991) (1,825) (4,749)<br />

Discounted Net Present Value @ 50% (3,344) (1,978) (5,260)<br />

Internal Rate of Return 19.7% 17.5% 19.0%<br />

Power Generation with Carbon Credits ($10/tonne)<br />

Discounted Net Present Value @ 10% 6,934 2,698 10,028<br />

Discounted Net Present Value @ 15% 3,832 1,249 5,429<br />

Discounted Net Present Value @ 20% 1,967 385 2,665<br />

Discounted Net Present Value @ 30% (28) (527) (295)<br />

Discounted Net Present Value @ 40% (1,002) (960) (1,739)<br />

Discounted Net Present Value @ 50% (1,540) (1,191) (2,535)<br />

Internal Rate of Return 30.1% 23.9% 28.9%<br />

Power Generation with Carbon Credits ($15 tonne)<br />

Discounted Net Present Value @ 10% 9,043 3,759 13,198<br />

Discounted Net Present Value @ 15% 5,760 2,219 8,328<br />

Discounted Net Present Value @ 20% 3,742 1,277 5,332<br />

Discounted Net Present Value @ 30% 1,499 241 2,000<br />

Discounted Net Present Value @ 40% 336 (287) 272<br />

Discounted Net Present Value @ 50% (349) (592) (747)<br />

Internal Rate of Return 44.4% 34.0% 42.3%<br />

Exhibit 6.28: CMM Power Plant Economic Model Results Summary<br />

Project Cost Estimates <strong>and</strong> Economic Assessments 6-31


Task 7<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-i


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

TASK 7 CONTENTS<br />

7.1 Introduction........................................................................................................7-4<br />

7.2 Project F<strong>in</strong>ance..................................................................................................7-4<br />

7.3 Carbon F<strong>in</strong>ance..................................................................................................7-5<br />

7.4 General Background – Kyoto Protocol............................................................7-7<br />

7.4.1 Objectives <strong>and</strong> Pr<strong>in</strong>ciples of <strong>the</strong> UNFCCC. .............................................................. 7-8<br />

7.4.2 Kyoto Emission Reduction Targets .......................................................................... 7-9<br />

7.4.3 When Did <strong>the</strong> Kyoto Protocol Come <strong>in</strong>to Force?.................................................... 7-10<br />

7.4.4 The European Union (EU) <strong>and</strong> <strong>the</strong> Kyoto Protocol................................................. 7-11<br />

7.4.5 International Emissions Trad<strong>in</strong>g ............................................................................. 7-11<br />

7.4.6 Jo<strong>in</strong>t Implementation <strong>and</strong> <strong>the</strong> Clean Development Mechanism ............................. 7-12<br />

7.4.7 General Fundamentals for JI Projects .................................................................... 7-12<br />

7.4.7.1 Project Identification......................................................................................7-12<br />

7.4.7.2 Project Design <strong>and</strong> Assessment ...................................................................7-13<br />

7.4.8 Implications for Ukra<strong>in</strong>e.......................................................................................... 7-15<br />

7.5 Validation/Determ<strong>in</strong>ation <strong>and</strong> Verification Methodology .............................7-16<br />

7.5.1 ACM0008 Methodology.......................................................................................... 7-16<br />

7.6 Consideration of Prices of Carbon Credit Units ...........................................7-17<br />

7.7 Project Risk Reduction Support.....................................................................7-19<br />

7.8 Examples of Integrated Project F<strong>in</strong>anc<strong>in</strong>g ....................................................7-20<br />

7.8.1 Sample Project ....................................................................................................... 7-20<br />

7.8.1.1 Capital Expenditure.......................................................................................7-20<br />

7.8.1.2 Project F<strong>in</strong>ance .............................................................................................7-22<br />

7.8.1.3 Example OPIC Loan Terms ..........................................................................7-22<br />

7.8.1.4 Carbon F<strong>in</strong>ance.............................................................................................7-22<br />

7.9 Project Implementation <strong>and</strong> Management.....................................................7-23<br />

7.9.1 Management Structure........................................................................................... 7-24<br />

7.10 References .......................................................................................................7-26<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-ii


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

TASK 7 EXHIBITS<br />

Exhibit 7.1: Carbon Market at a Glance, Volumes <strong>and</strong> Values <strong>in</strong> 2005-06.............................7-6<br />

Exhibit 7.2: Countries <strong>in</strong>cluded <strong>in</strong> Annex B to <strong>the</strong> Kyoto Protocol <strong>and</strong> <strong>the</strong>ir emissions<br />

targets................................................................................................................7-10<br />

Exhibit 7.3: Observed Prices for Project-based Transactions <strong>in</strong> 2005 & 2006<br />

(Carpoor <strong>and</strong> Ambrosi, 2007) ............................................................................7-18<br />

Exhibit 7.4 Project Costs– Consolidation of Sources <strong>and</strong> Uses ..........................................7-21<br />

Exhibit 7.5: Senior Management Chart.................................................................................7-25<br />

Exhibit 7.6: Production Management Chart..........................................................................7-25<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-iii


7.1 Introduction<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

To secure project f<strong>in</strong>anc<strong>in</strong>g for CMM/CBM projects <strong>in</strong> emerg<strong>in</strong>g market countries such as<br />

Ukra<strong>in</strong>e, a project developer or <strong>in</strong>vestor (Project Sponsor) must demonstrate <strong>the</strong> potential<br />

project's technical <strong>and</strong> f<strong>in</strong>ancial viability, usually through <strong>the</strong> comb<strong>in</strong>ation of pre-feasibility<br />

studies, full feasibility studies, technology assessments, <strong>and</strong> pilot <strong>in</strong>stallations. These<br />

analyses can be f<strong>in</strong>anced by <strong>the</strong> project developer or <strong>in</strong>vestors, although some f<strong>in</strong>ancial<br />

support may be available. Project f<strong>in</strong>anc<strong>in</strong>g options <strong>in</strong>clude direct project <strong>in</strong>vestment <strong>in</strong> <strong>the</strong><br />

form of capital <strong>and</strong> <strong>in</strong>-k<strong>in</strong>d contributions (equity <strong>and</strong> equity f<strong>in</strong>anc<strong>in</strong>g) <strong>and</strong> loans (debt); <strong>and</strong> a<br />

type of structured trade f<strong>in</strong>anc<strong>in</strong>g (carbon f<strong>in</strong>ance), which may provide a revenue stream<br />

based on mitigated carbon emissions. Many fund<strong>in</strong>g <strong>and</strong> <strong>in</strong>vestment sources, particularly<br />

Multilateral Development Banks (MDBs) <strong>and</strong> International Development Funds, emphasize<br />

susta<strong>in</strong>able <strong>development</strong>, environmental protection, <strong>and</strong> climate change mitigation as<br />

important components of projects <strong>the</strong>y will f<strong>in</strong>ance. Ano<strong>the</strong>r critical component of project<br />

f<strong>in</strong>anc<strong>in</strong>g is reduc<strong>in</strong>g <strong>the</strong> project or f<strong>in</strong>ancial risk through completion guarantees <strong>and</strong> risk<br />

<strong>in</strong>surance. CMM/CBM projects are attractive because <strong>the</strong>y can support all of <strong>the</strong>se aspects<br />

of f<strong>in</strong>anc<strong>in</strong>g, while meet<strong>in</strong>g <strong>the</strong> <strong>development</strong> <strong>and</strong> <strong>in</strong>vestment objectives of <strong>the</strong> sponsors.<br />

7.2 Project F<strong>in</strong>ance<br />

Project F<strong>in</strong>ance is <strong>the</strong> f<strong>in</strong>anc<strong>in</strong>g of ‘Greenfield’ <strong>and</strong> expansion projects based upon a nonrecourse<br />

or limited recourse f<strong>in</strong>ancial structure, where project debt <strong>and</strong> equity used to<br />

f<strong>in</strong>ance <strong>the</strong> project are paid back from <strong>the</strong> cash-flow generated by <strong>the</strong> project. Project<br />

f<strong>in</strong>ance for emerg<strong>in</strong>g market countries usually <strong>in</strong>cludes medium-term (8- to 10-year) debt<br />

facilities that rely primarily on <strong>the</strong> project's cash flow for repayment, with <strong>the</strong> project's assets,<br />

rights, <strong>and</strong> <strong>in</strong>terests held as secondary security or collateral.<br />

CMM/CBM projects are ideally suited for structured Project F<strong>in</strong>ance, whereby specific<br />

revenue streams are anticipated from <strong>the</strong> sale of electricity <strong>and</strong> heat or <strong>the</strong> sale of gas for<br />

market distribution. Such Project F<strong>in</strong>ance contemplates an aggregate total project costs,<br />

which when fully <strong>in</strong>vested <strong>the</strong> project will operate <strong>and</strong> generate <strong>in</strong>come for <strong>the</strong> sale of a<br />

specific product or commodity, such as electricity or gas. The loan <strong>and</strong> <strong>in</strong>terest are repaid<br />

from <strong>the</strong> cash flow after operat<strong>in</strong>g expenses <strong>and</strong> before any equity distributions to <strong>the</strong> Project<br />

Sponsors; <strong>and</strong> <strong>the</strong> net <strong>in</strong>come dividends are distributed to <strong>the</strong> Sponsors to repay <strong>the</strong> equity<br />

contributions <strong>and</strong> to provide a return-on-<strong>in</strong>vestment.<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-4


7.3 Carbon F<strong>in</strong>ance<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Certa<strong>in</strong> CMM utilization projects are capable of offer<strong>in</strong>g economic returns that are sufficient<br />

to attract <strong>in</strong>vestors <strong>and</strong> lenders. However, many CMM projects generate only marg<strong>in</strong>al<br />

dividends from <strong>the</strong> usual sources of primary revenue, <strong>and</strong> often need supplemental<br />

<strong>in</strong>centives to enhance <strong>the</strong> projects as attractive <strong>in</strong>vestment opportunities. Carbon F<strong>in</strong>ance, or<br />

<strong>the</strong> so-called Carbon Credits derived from such f<strong>in</strong>anc<strong>in</strong>g, may be particularly useful for<br />

improv<strong>in</strong>g <strong>the</strong> cash flow of projects that are o<strong>the</strong>rwise economically marg<strong>in</strong>al <strong>and</strong> unattractive<br />

to <strong>in</strong>vestors. Thus, with world Carbon Credit pric<strong>in</strong>g now rang<strong>in</strong>g from $3 to $25 per ton of<br />

CO2 equivalent (CO2eq) or more, <strong>in</strong>come from <strong>the</strong> sale of Carbon Credits can add<br />

substantially to a project's balance sheet.<br />

The sale of Emission Reduction Units (ERUs) generated by Jo<strong>in</strong>t Implementation (JI)<br />

projects or Certified Emission Reductions (CERs) generated by Clean Development<br />

Mechanism (CDM) projects can offer project developers an attractive supplemental revenue<br />

stream; where nei<strong>the</strong>r <strong>the</strong> primary revenue stream nor <strong>the</strong> Carbon Credit revenues,<br />

<strong>in</strong>dividually, are adequate to provide <strong>the</strong> level of fund<strong>in</strong>g necessary for project <strong>development</strong><br />

<strong>and</strong> implementation. However, <strong>the</strong> comb<strong>in</strong>ed revenues will provide acceptable <strong>in</strong>vestment<br />

returns <strong>and</strong>, thus, <strong>the</strong> <strong>in</strong>tegrated project f<strong>in</strong>anc<strong>in</strong>g allows <strong>the</strong> project to occur<br />

The role <strong>and</strong> value of Carbon F<strong>in</strong>ance, or <strong>the</strong> production <strong>and</strong> sell<strong>in</strong>g of emission reductions,<br />

<strong>in</strong> energy <strong>development</strong> projects have <strong>in</strong>creased significantly dur<strong>in</strong>g <strong>the</strong> last several years.<br />

European governments have been purchas<strong>in</strong>g Carbon Credits <strong>in</strong> develop<strong>in</strong>g countries, <strong>and</strong><br />

this practice has exp<strong>and</strong>ed with full ratification of <strong>the</strong> Kyoto protocol. The ma<strong>in</strong> buyers of<br />

Carbon Credits are:<br />

(i) European private buyers with <strong>in</strong>terest <strong>in</strong> <strong>the</strong> European Union (EU) Emissions Trad<strong>in</strong>g<br />

Scheme (ETS);<br />

(ii) government buyers with Kyoto compliance commitments;<br />

(iii) Japanese <strong>and</strong> U.S. companies with voluntary commitments;<br />

(iv) U.S. mult<strong>in</strong>ational corporations with operations <strong>in</strong> Japan or Europe; <strong>and</strong><br />

(v) power retailers <strong>and</strong> large consumers <strong>in</strong> Australia.<br />

The <strong>development</strong> of <strong>the</strong> <strong>m<strong>in</strong>e</strong> degasification <strong>and</strong> <strong>methane</strong> utilization project for <strong>the</strong> Donetsk<br />

Region of Ukra<strong>in</strong>e (<strong>the</strong> “Project”) has <strong>the</strong> potential to earn Carbon Credits for verified capture<br />

of CMM that is presently not utilized, <strong>and</strong> from Coal Bed Methane (CBM) from <strong>coal</strong> seams<br />

that may eventually be <strong>m<strong>in</strong>e</strong>d; additional Carbon Credits might be earned where <strong>the</strong> CMM<br />

utilization <strong>in</strong>volves a clean energy source that will displace o<strong>the</strong>r fuels such as <strong>coal</strong>.<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-5


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

A considerable number of organizations have been <strong>in</strong>volved <strong>in</strong> creat<strong>in</strong>g <strong>and</strong> def<strong>in</strong><strong>in</strong>g <strong>the</strong><br />

various markets for carbon trad<strong>in</strong>g, <strong>and</strong> new carbon funds cont<strong>in</strong>ue to emerge;<br />

demonstrat<strong>in</strong>g <strong>the</strong> vitality of <strong>the</strong> current global carbon market. Markets have been created by<br />

governments, o<strong>the</strong>rs by multilateral <strong>in</strong>stitutions, <strong>and</strong> still o<strong>the</strong>rs by private-sector bus<strong>in</strong>esses.<br />

As shown <strong>in</strong> Exhibit 7.1, <strong>the</strong> overall volumes <strong>and</strong> f<strong>in</strong>ancial values transacted on <strong>the</strong> carbon<br />

markets are grow<strong>in</strong>g, with both volume <strong>and</strong> value experienc<strong>in</strong>g significant <strong>in</strong>creases from<br />

2005 to 2006. The overall value of <strong>the</strong> carbon market <strong>in</strong> 2006 was an estimated US$ 30<br />

billion, represent<strong>in</strong>g a three-fold <strong>in</strong>crease over <strong>the</strong> previous year.<br />

Sellers of emission reductions already have many potential buyers. As activity <strong>in</strong> <strong>the</strong> carbon<br />

market cont<strong>in</strong>ues to <strong>in</strong>crease, so should liquidity, as additional buyers such as London-based<br />

f<strong>in</strong>ancial <strong>in</strong>stitutions <strong>and</strong> o<strong>the</strong>r private (e.g., banks <strong>and</strong> carbon funds) <strong>and</strong> public sector<br />

buyers look to <strong>in</strong>vest <strong>in</strong> <strong>the</strong> carbon market.<br />

Exhibit 7.1: Carbon Market at a Glance, Volumes <strong>and</strong> Values <strong>in</strong> 2005-06<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-6


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

7.4 General Background – Kyoto Protocol<br />

The official <strong>and</strong> most accurate <strong>in</strong>formation concern<strong>in</strong>g <strong>the</strong> comprehensive description of <strong>the</strong><br />

Kyoto Protocol is described at <strong>the</strong> United Nations Framework Convention on Climate Change<br />

website (http://unfccc.<strong>in</strong>t), which is cont<strong>in</strong>ually updated, <strong>in</strong>dicat<strong>in</strong>g <strong>the</strong> current <strong>and</strong> most<br />

recent approval issued by <strong>the</strong> various units of <strong>the</strong> United Nations Organization. This section<br />

<strong>in</strong>tends to summarize some of <strong>the</strong>se key aspects; <strong>and</strong>, at <strong>the</strong> risk that some important data<br />

may be omitted, it is recommended to review <strong>the</strong> full depth of <strong>in</strong>formation from <strong>the</strong> official<br />

sources at <strong>the</strong> relevant websites of <strong>the</strong> United Nations.<br />

In 1992, more than 180 countries participat<strong>in</strong>g <strong>in</strong> <strong>the</strong> "Earth Summit", <strong>in</strong> Rio de Janeiro,<br />

adopted <strong>the</strong> United Nations Framework Convention on Climate Change (UNFCCC). The<br />

UNFCCC is a legal framework that enables Parties to <strong>the</strong> Convention to start <strong>the</strong> process of<br />

stabiliz<strong>in</strong>g greenhouse gases (GHG) <strong>in</strong> <strong>the</strong> atmosphere. Parties to <strong>the</strong> UNFCCC have been<br />

meet<strong>in</strong>g every year s<strong>in</strong>ce 1994 to implement <strong>and</strong> def<strong>in</strong>e this framework. At <strong>the</strong> third meet<strong>in</strong>g<br />

of <strong>the</strong> Parties, COP 3, <strong>the</strong> Kyoto Protocol was adopted <strong>and</strong> set legally b<strong>in</strong>d<strong>in</strong>g GHG<br />

reductions for <strong>in</strong>dustrialized countries, or so called Annex I Parties.<br />

The Kyoto Protocol entered <strong>in</strong>to force on 16 February 2005, <strong>the</strong> 19 th day after at least 55<br />

countries ratified <strong>the</strong> treaty, represent<strong>in</strong>g <strong>the</strong> m<strong>in</strong>imum required 55% of <strong>the</strong> Annex I countries'<br />

1990 emissions levels.. In time for <strong>the</strong> first compliance period (2008- 2012), Annex I Parties<br />

will have to encourage or regulate private companies <strong>and</strong> <strong>in</strong>dividuals to reduce GHG<br />

emissions. Most of <strong>the</strong>se reductions will occur with<strong>in</strong> <strong>the</strong> borders of each Annex I country,<br />

but <strong>the</strong> Kyoto Protocol identifies mechanisms by which credit can be received for GHG<br />

reduction projects <strong>in</strong> non-Annex I countries.<br />

The United Nations Convention on Climate Change (UNFCCC) sets an overall framework for<br />

<strong>in</strong>tergovernmental efforts to tackle <strong>the</strong> challenge posed by climate change. It recognizes that<br />

<strong>the</strong> climate system is a shared resource whose stability can be affected by <strong>in</strong>dustrial <strong>and</strong><br />

o<strong>the</strong>r emissions of carbon dioxide <strong>and</strong> o<strong>the</strong>r heat-trapp<strong>in</strong>g gases. The UNFCCC was <strong>the</strong> first<br />

<strong>in</strong>ternational measure to address <strong>the</strong> problem; adopted <strong>in</strong> May 1992, <strong>and</strong> came <strong>in</strong>to force <strong>in</strong><br />

March 1994. It obliges all its signatories to establish national programs for reduc<strong>in</strong>g<br />

greenhouse gas emissions <strong>and</strong> to submit regular reports, <strong>and</strong> dem<strong>and</strong>s that <strong>the</strong><br />

<strong>in</strong>dustrialized signatory countries, as opposed to develop<strong>in</strong>g countries, stabilize <strong>the</strong>ir<br />

greenhouse gas emissions at 1990 levels by <strong>the</strong> year 2000. This goal, however, is nonb<strong>in</strong>d<strong>in</strong>g.<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-7


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

By differentiat<strong>in</strong>g between <strong>in</strong>dustrialized (Annex I countries) <strong>and</strong> countries with Economies <strong>in</strong><br />

Transition (EIT), <strong>and</strong> develop<strong>in</strong>g countries (non-Annex I countries), <strong>the</strong> UNFCCC recognizes<br />

that <strong>in</strong>dustrialized countries are responsible for most of <strong>the</strong> global greenhouse gas<br />

emissions, <strong>and</strong> have <strong>the</strong> <strong>in</strong>stitutional <strong>and</strong> f<strong>in</strong>ancial capacities for reduc<strong>in</strong>g <strong>the</strong>m. The Parties<br />

meet annually to review progress <strong>and</strong> discuss fur<strong>the</strong>r measures, <strong>and</strong> a number of global<br />

monitor<strong>in</strong>g <strong>and</strong> report<strong>in</strong>g mechanisms are <strong>in</strong> place to keep track of greenhouse gas<br />

emissions.<br />

From around <strong>the</strong> world, 191 countries have jo<strong>in</strong>ed <strong>the</strong> <strong>in</strong>ternational treaty that sets general<br />

goals <strong>and</strong> rules for confront<strong>in</strong>g climate change. Under <strong>the</strong> Convention, governments:<br />

Ga<strong>the</strong>r <strong>and</strong> share <strong>in</strong>formation on greenhouse gas emissions, national policies, <strong>and</strong> best<br />

practices;<br />

Launch national strategies for address<strong>in</strong>g greenhouse emissions <strong>and</strong> adapt<strong>in</strong>g to<br />

expected impacts, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> provision of f<strong>in</strong>ancial <strong>and</strong> technological support to<br />

develop<strong>in</strong>g countries; <strong>and</strong><br />

Cooperate <strong>in</strong> prepar<strong>in</strong>g for adaptation to <strong>the</strong> impacts of climate change.<br />

7.4.1 Objectives <strong>and</strong> Pr<strong>in</strong>ciples of <strong>the</strong> UNFCCC.<br />

It was already recognized <strong>in</strong> 1994 that <strong>the</strong> <strong>in</strong>itial UNFCCC commitments would not be<br />

enough to halt <strong>the</strong> global <strong>in</strong>crease <strong>in</strong> greenhouse gas emissions. On 11 December 1997,<br />

governments took a fur<strong>the</strong>r step <strong>and</strong> adopted a protocol to <strong>the</strong> UNFCCC <strong>in</strong> <strong>the</strong> Japanese<br />

town of Kyoto. Build<strong>in</strong>g on <strong>the</strong> UNFCCC framework, <strong>the</strong> Kyoto Protocol sets legally b<strong>in</strong>d<strong>in</strong>g<br />

limits on greenhouse gas emissions <strong>in</strong> <strong>in</strong>dustrialized countries, <strong>and</strong> envisages <strong>in</strong>novative<br />

market-based implementation mechanisms aimed at keep<strong>in</strong>g <strong>the</strong> cost of curb<strong>in</strong>g emissions<br />

low.<br />

The Protocol's major feature is that it has m<strong>and</strong>atory targets on greenhouse-gas emissions<br />

for <strong>the</strong> world's lead<strong>in</strong>g economies, which have accepted it. These targets range from -8<br />

percent (-8%) to +10 percent (+10%) of <strong>the</strong> countries' <strong>in</strong>dividual 1990 emissions levels "with<br />

a view to reduc<strong>in</strong>g <strong>the</strong>ir overall emissions of such gases by at least 5.2 percent (5.2%) below<br />

exist<strong>in</strong>g 1990 levels <strong>in</strong> <strong>the</strong> commitment period of 2008 to 2012". In almost all cases, even<br />

those set at +10% of 1990 levels, <strong>the</strong> limits call for significant reductions <strong>in</strong> currently<br />

projected emissions. (Exhibit 7.2) Future m<strong>and</strong>atory targets are expected to be established<br />

for "commitment periods" subsequent to 2012. These are to be negotiated well <strong>in</strong> advance of<br />

<strong>the</strong> periods concerned.<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-8


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The targets cover emissions of <strong>the</strong> six ma<strong>in</strong> greenhouse gases, namely:<br />

Carbon dioxide (CO2);<br />

Methane (CH4);<br />

Nitrous oxide (N2O);<br />

Hydrofluorocarbons (HFCs);<br />

Perfluorocarbons (PFCs); <strong>and</strong><br />

Sulphur hexafluoride (SF6).<br />

7.4.2 Kyoto Emission Reduction Targets<br />

Under <strong>the</strong> Kyoto Protocol, <strong>in</strong>dustrialized countries are required to reduce <strong>the</strong> emissions of six<br />

greenhouse gases (CO2, which is <strong>the</strong> most important one) on average by 5.2 % below <strong>the</strong><br />

1990 levels dur<strong>in</strong>g <strong>the</strong> first "commitment period" from 2008 to 2012. There are no emission<br />

targets for develop<strong>in</strong>g countries.<br />

A five-year commitment period was chosen, ra<strong>the</strong>r than a s<strong>in</strong>gle target year, to smooth-out<br />

annual fluctuations <strong>in</strong> emissions due to uncontrollable factors such as wea<strong>the</strong>r. International<br />

negotiations on a second commitment period under <strong>the</strong> Kyoto Protocol, subsequent to 2012<br />

began <strong>in</strong> 2005. The six gases are to be comb<strong>in</strong>ed <strong>in</strong> a "basket", with reductions <strong>in</strong> <strong>in</strong>dividual<br />

gases translated <strong>in</strong>to "CO2 equivalents" that are <strong>the</strong>n added up to produce a s<strong>in</strong>gle figure.<br />

Each country’s emissions target must be achieved by <strong>the</strong> period 2008-2012. It will be<br />

calculated as an average over <strong>the</strong> five years. Cuts <strong>in</strong> <strong>the</strong> three most important gases: carbon<br />

dioxide (CO2), <strong>methane</strong> (CH4), <strong>and</strong> nitrous oxide (N2O) - will be measured aga<strong>in</strong>st a base<br />

year of 1990 (with exceptions for some countries with economies <strong>in</strong> transition). Cuts <strong>in</strong> three<br />

long-lived <strong>in</strong>dustrial gases: hydro fluorocarbons (HFCs), perfluorocarbons (PFCs), <strong>and</strong><br />

sulphur hexafluoride (SF6), can be measured aga<strong>in</strong>st ei<strong>the</strong>r a 1990 or a 1995 basel<strong>in</strong>e. (A<br />

major group of <strong>in</strong>dustrial gases, chlorofluorocarbons, or CFCs, are dealt with under <strong>the</strong> 1987<br />

Montreal Protocol on Substances that Deplete <strong>the</strong> Ozone Layer).<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-9


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Target (1990* - 2008/2012)<br />

EU-15** Bulgaria, Czech Republic, Estonia, Latvia, Liechtenste<strong>in</strong>, Lithuania,<br />

Monaco, Romania,Slovakia,Slovenia, Switzerl<strong>and</strong><br />

US***<br />

Canada, Hungary, Japan, Pol<strong>and</strong><br />

Croatia<br />

New Zeal<strong>and</strong>, Russian Federation, Ukra<strong>in</strong>e<br />

Norway<br />

Australia<br />

Icel<strong>and</strong><br />

* Some EITs have a basel<strong>in</strong>e o<strong>the</strong>r than 1990.<br />

** The EU’s 15 member States will redistribute <strong>the</strong>ir targets among <strong>the</strong>mselves, tak<strong>in</strong>g<br />

advantage of a scheme under <strong>the</strong> Protocol known as a “bubble”. The EU has already<br />

reached agreement on how its targets will be redistributed.<br />

*** The US has <strong>in</strong>dicated its <strong>in</strong>tention not to ratify <strong>the</strong> Kyoto Protocol.<br />

Note: Although <strong>the</strong>y are listed <strong>in</strong> <strong>the</strong> Convention’s Annex I, Belarus <strong>and</strong> Turkey are not<br />

<strong>in</strong>cluded <strong>in</strong> <strong>the</strong> Protocol’s Annex B as <strong>the</strong>y were not Parties to <strong>the</strong> Convention when <strong>the</strong><br />

Protocol was adopted.<br />

Upon entry <strong>in</strong>to force, Kazakhstan, which has declared that it wishes to be bound by <strong>the</strong><br />

commitments of Annex I Parties under <strong>the</strong> Convention, will become an Annex I Party<br />

under <strong>the</strong> Protocol. As it had not made this declaration when <strong>the</strong> Protocol was adopted,<br />

Kazakhstan does not have an emissions target listed for it <strong>in</strong> Annex B.<br />

Exhibit 7.2: Countries <strong>in</strong>cluded <strong>in</strong> Annex B to <strong>the</strong> Kyoto Protocol <strong>and</strong> <strong>the</strong>ir emissions targets<br />

7.4.3 When Did <strong>the</strong> Kyoto Protocol Come <strong>in</strong>to Force?<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-10<br />

-8%<br />

-7%<br />

-6%<br />

-5%<br />

0%<br />

+1%<br />

+8%<br />

+10%<br />

The commitment became legally b<strong>in</strong>d<strong>in</strong>g once <strong>the</strong> Kyoto Protocol entered <strong>in</strong>to force. The<br />

rules for entry <strong>in</strong>to force dem<strong>and</strong>ed that a m<strong>in</strong>imum of 55 Parties to <strong>the</strong> UNFCCC ratify <strong>the</strong><br />

Protocol, <strong>and</strong> that those <strong>in</strong>clude <strong>in</strong>dustrialized countries (Annex I countries) account<strong>in</strong>g for at<br />

least 55% of <strong>the</strong> CO2 emissions <strong>in</strong> 1990.<br />

Thus far, more than 174 countries have ratified <strong>the</strong> Kyoto Protocol, so <strong>the</strong> first threshold has<br />

been atta<strong>in</strong>ed. The Annex I countries among <strong>the</strong>m represent nearly 62% of <strong>the</strong> CO2<br />

emissions, so <strong>the</strong> second threshold has also been atta<strong>in</strong>ed <strong>and</strong> <strong>the</strong> Kyoto Protocol entered<br />

<strong>in</strong>to force <strong>in</strong> February 2005. The ratification by Russia, which is responsible for 17.4% of <strong>the</strong><br />

global 1990 CO2 emissions, made it possible for <strong>the</strong> Protocol's entry <strong>in</strong>to force. The United<br />

States, which is responsible for 36.1%, <strong>and</strong> thus is <strong>the</strong> world’s largest CO2 polluter, withdrew<br />

from <strong>the</strong> Kyoto Protocol <strong>in</strong> early 2001.


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

7.4.4 The European Union (EU) <strong>and</strong> <strong>the</strong> Kyoto Protocol<br />

On 31 May 2002, <strong>the</strong> European Union (EU) <strong>and</strong> all its Member States ratified <strong>the</strong> Kyoto<br />

Protocol. Under <strong>the</strong> Kyoto Protocol, <strong>the</strong> EU committed itself to reduc<strong>in</strong>g its greenhouse<br />

gases emissions by 8% dur<strong>in</strong>g <strong>the</strong> first commitment period from 2008 to 2012. This target is<br />

shared between <strong>the</strong> Member States under a legally b<strong>in</strong>d<strong>in</strong>g burden-shar<strong>in</strong>g agreement,<br />

which sets <strong>in</strong>dividual emissions targets for each Member State.<br />

Ten new member states jo<strong>in</strong>ed <strong>the</strong> EU <strong>in</strong> May 2004, all of which have ratified <strong>the</strong> Kyoto<br />

Protocol, <strong>and</strong> have <strong>the</strong>ir own Kyoto targets of between 6% <strong>and</strong> 8%. Cyprus <strong>and</strong> Malta are<br />

treated as develop<strong>in</strong>g countries <strong>in</strong> <strong>the</strong> Kyoto Protocol <strong>and</strong> so do not have emission targets.<br />

The EU's 8% target only refers to <strong>the</strong> previous 15 Member States, <strong>and</strong> this did not change<br />

after enlargement. The EU is at <strong>the</strong> forefront of <strong>in</strong>ternational efforts to combat climate<br />

change; <strong>and</strong> played a key role <strong>in</strong> <strong>the</strong> <strong>development</strong> of <strong>the</strong> two major treaties address<strong>in</strong>g <strong>the</strong><br />

issue – <strong>the</strong> United Nations Framework Convention on Climate Change (UNFCCC), <strong>and</strong> <strong>the</strong><br />

result<strong>in</strong>g Kyoto Protocol.<br />

The Kyoto Protocol envisages three market-based "flexible mechanisms": International<br />

Emissions Trad<strong>in</strong>g, Jo<strong>in</strong>t Implementation (JI), <strong>and</strong> <strong>the</strong> Clean Development Mechanism<br />

(CDM). These are to allow <strong>in</strong>dustrialized countries to meet <strong>the</strong>ir targets through trad<strong>in</strong>g<br />

emission allowances between <strong>the</strong>mselves <strong>and</strong> by ga<strong>in</strong><strong>in</strong>g credits for emission-curb<strong>in</strong>g<br />

projects abroad.<br />

Jo<strong>in</strong>t Implementation refers to projects <strong>in</strong> countries that also have emission targets, <strong>and</strong> <strong>the</strong><br />

Clean Development Mechanism refers to projects <strong>in</strong> develop<strong>in</strong>g countries with no targets.<br />

The rationale beh<strong>in</strong>d <strong>the</strong>se three mechanisms is that greenhouse gas emissions are a global<br />

problem <strong>and</strong> that <strong>the</strong> place where reductions are achieved is of less importance. In this way,<br />

reductions can be made where costs are lowest, at least <strong>in</strong> <strong>the</strong> <strong>in</strong>itial phase of combat<strong>in</strong>g<br />

climate change. Detailed rules <strong>and</strong> supervisory structures have been set up to ensure that<br />

<strong>the</strong>se mechanisms are not abused.<br />

7.4.5 International Emissions Trad<strong>in</strong>g<br />

The Kyoto Protocol sets a limit on total emissions by <strong>the</strong> world's major economies, <strong>the</strong> Annex<br />

I countries. These <strong>in</strong>dustrialized countries have emissions targets <strong>the</strong>y must meet. The<br />

Protocol allows countries that have spare emissions units (emissions permitted, but not<br />

"used") to sell this excess capacity to countries that have exceeded <strong>the</strong>ir targets. Countries<br />

not meet<strong>in</strong>g <strong>the</strong>ir commitments will be able to "buy" compliance. The limits on GHG<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-11


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

emissions set by <strong>the</strong> Kyoto Protocol are a method of assign<strong>in</strong>g commercially tradable value<br />

to <strong>the</strong> earth's shared atmosphere.<br />

7.4.6 Jo<strong>in</strong>t Implementation <strong>and</strong> <strong>the</strong> Clean Development Mechanism<br />

Under <strong>the</strong> Kyoto Protocol, Jo<strong>in</strong>t Implementation (JI) <strong>and</strong> Clean Development Mechanism<br />

(CDM) will allow <strong>in</strong>dustrialized countries to achieve part of <strong>the</strong>ir emission reduction<br />

commitments by conduct<strong>in</strong>g emission-reduc<strong>in</strong>g projects abroad <strong>and</strong> count<strong>in</strong>g <strong>the</strong> reductions<br />

achieved toward <strong>the</strong>ir own commitments. A condition for <strong>the</strong> issue of credits <strong>in</strong> respect of <strong>the</strong><br />

reductions achieved is that <strong>the</strong> projects result <strong>in</strong> real, measurable, <strong>and</strong> long-term climate<br />

change benefits.<br />

Under Jo<strong>in</strong>t Implementation, <strong>in</strong>dustrialized countries (Annex I countries) may implement a<br />

project that reduces emissions (e.g., an energy efficiency scheme) <strong>in</strong> <strong>the</strong> territory of ano<strong>the</strong>r<br />

Annex I country, <strong>and</strong> count <strong>the</strong> result<strong>in</strong>g Emission Reduction Units (ERUs) aga<strong>in</strong>st its own<br />

target.<br />

Under <strong>the</strong> Clean Development Mechanism, Annex I countries may implement projects <strong>in</strong><br />

develop<strong>in</strong>g countries (non-Annex I countries) that reduce emissions <strong>and</strong> use <strong>the</strong> result<strong>in</strong>g<br />

Certified Emission Reductions (CERs) to help meet <strong>the</strong>ir own targets. The CDM also aims to<br />

help non-Annex I countries achieve susta<strong>in</strong>able <strong>development</strong> <strong>and</strong> contribute to <strong>the</strong> ultimate<br />

objective of <strong>the</strong> Convention.<br />

7.4.7 General Fundamentals for JI Projects<br />

The project cycle for a JI project commences with <strong>the</strong> idea of develop<strong>in</strong>g <strong>the</strong> project as a JI<br />

project <strong>and</strong> with a first rough assessment of <strong>the</strong> amount of GHG emission reductions that <strong>the</strong><br />

proposed project could generate. If <strong>the</strong> first screen<strong>in</strong>g of <strong>the</strong> GHG emission reductions of <strong>the</strong><br />

project is positive, <strong>the</strong> next step is a feasibility assessment. Dur<strong>in</strong>g this stage, <strong>the</strong> project<br />

proponent will establish contact with <strong>the</strong> national Designated Focal Po<strong>in</strong>t for JI or if this has<br />

not been appo<strong>in</strong>ted, <strong>the</strong> M<strong>in</strong>istry with responsibility for JI, <strong>and</strong> discuss <strong>the</strong> idea of develop<strong>in</strong>g<br />

<strong>the</strong> proposed project as a JI project. This <strong>in</strong>cludes an assessment of <strong>the</strong> applicable <strong>and</strong><br />

relevant <strong>in</strong>ternational <strong>and</strong> national regulations <strong>and</strong> policies.<br />

7.4.7.1 Project Identification<br />

A project developer identifies a project that is located <strong>in</strong> an Annex I country; <strong>and</strong> a Project<br />

Idea Note (PIN) is completed. The project developer approaches <strong>the</strong> relevant JI Focal Po<strong>in</strong>t<br />

<strong>and</strong>/or promotion agency from both <strong>the</strong> <strong>in</strong>vestor <strong>and</strong> host counties to confirm eligibility to take<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-12


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

part <strong>in</strong> JI <strong>and</strong> to request support for <strong>the</strong> project. At this po<strong>in</strong>t, it is suggested that a request is<br />

made to <strong>the</strong> relevant agency of <strong>the</strong> host government for a Letter of Endorsement (LoE) for<br />

<strong>the</strong> project. Although this is not a requirement, buyers often require a LoE from <strong>the</strong> host<br />

country authorities before <strong>the</strong>y will consider enter<strong>in</strong>g <strong>in</strong>to contractual negotiations.<br />

7.4.7.2 Project Design <strong>and</strong> Assessment<br />

The project cycle for Second Track JI projects can analytically be split <strong>in</strong>to two phases. The<br />

first one is <strong>the</strong> Project Design Phase, which refers to all activities prior to <strong>the</strong> construction or<br />

start of any of <strong>the</strong> project activities. The second phase is <strong>the</strong> Project Operation Phase, which<br />

refers to <strong>the</strong> phase dur<strong>in</strong>g which <strong>the</strong> project starts operations. The latter is <strong>the</strong> po<strong>in</strong>t <strong>in</strong> time<br />

from which emission reductions can be generated.<br />

The ma<strong>in</strong> task of <strong>the</strong> project developer dur<strong>in</strong>g <strong>the</strong> project design phase is to prepare all <strong>the</strong><br />

required documentation for develop<strong>in</strong>g a JI project, which is also referred to as <strong>the</strong> Project<br />

Design Document (PDD). The next step will be to hire an Independent Entity for <strong>the</strong><br />

determ<strong>in</strong>ation of <strong>the</strong> proposed JI project. Once <strong>the</strong> project is operational, <strong>the</strong> ma<strong>in</strong> task of<br />

<strong>the</strong> project proponent is to monitor project performance <strong>and</strong> to report <strong>the</strong> results to an<br />

Independent Entity. The Independent Entity is responsible for:<br />

mak<strong>in</strong>g <strong>the</strong> PDD publicly available,<br />

determ<strong>in</strong><strong>in</strong>g whe<strong>the</strong>r <strong>the</strong> PDD meets JI requirements, <strong>and</strong><br />

summariz<strong>in</strong>g stakeholder comments <strong>and</strong> tak<strong>in</strong>g <strong>in</strong>to account stakeholder comments.<br />

The Independent Entity is <strong>the</strong>n responsible for mak<strong>in</strong>g <strong>the</strong> determ<strong>in</strong>ation report, <strong>the</strong><br />

stakeholder comment summary, <strong>and</strong> <strong>the</strong> report on how <strong>the</strong> stakeholder comments were<br />

taken <strong>in</strong>to account, publicly available.<br />

Project Design Phase:<br />

Project Formulation <strong>and</strong> Design. Full project documentation needs to be prepared,<br />

<strong>in</strong>clud<strong>in</strong>g a Project Design Document (PDD). The PDD conta<strong>in</strong>s a description of <strong>the</strong><br />

project; <strong>the</strong> basis for determ<strong>in</strong><strong>in</strong>g <strong>the</strong> emissions that would occur without <strong>the</strong> project (<strong>the</strong><br />

basel<strong>in</strong>e), hence identify<strong>in</strong>g <strong>the</strong> additionality case; <strong>and</strong> plans for monitor<strong>in</strong>g <strong>the</strong><br />

reductions. JI Second Track projects may follow <strong>the</strong> same process as CDM projects<br />

with regard to methodologies to assess <strong>the</strong> additionality <strong>and</strong> basel<strong>in</strong>e. Fur<strong>the</strong>rmore<br />

documentation on analysis of environmental impacts of <strong>the</strong> project activity must be<br />

provided, <strong>and</strong> if necessary, an environmental impact assessment undertaken <strong>in</strong><br />

accordance with procedures as required by <strong>the</strong> host Country.<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-13


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

National Approval. Approval is confirmed through <strong>the</strong> host country issu<strong>in</strong>g a Letter of<br />

Approval (LoA). This confirms <strong>the</strong> country’s approval for <strong>the</strong> transfer of carbon credits<br />

called Emission Reduction Units (ERUs). A LoA will need to be issued by <strong>the</strong> <strong>in</strong>vestor<br />

nation government to authorize <strong>the</strong> project as a JI project.<br />

Determ<strong>in</strong>ation. The PDD, <strong>in</strong> particular <strong>the</strong> approach to basel<strong>in</strong>e sett<strong>in</strong>g <strong>and</strong> <strong>the</strong><br />

calculations, needs to be submitted to a third party, termed an Accredited Independent<br />

Entity (AIE), for determ<strong>in</strong>ation. The Accredited Independent Entity makes <strong>the</strong> PDD<br />

publicly available through <strong>the</strong> Secretariat for 30 days, <strong>and</strong> receives comments. Based<br />

on <strong>the</strong> comments provided by <strong>the</strong> stakeholders, <strong>the</strong> Accredited Independent Entity will<br />

deter<strong>m<strong>in</strong>e</strong> whe<strong>the</strong>r <strong>the</strong> project is eligible under JI.<br />

Project Operations Phase:<br />

Implementation. The project is implemented <strong>in</strong> <strong>the</strong> host country accord<strong>in</strong>g to <strong>the</strong><br />

specifications outl<strong>in</strong>ed <strong>in</strong> <strong>the</strong> PDD.<br />

Monitor<strong>in</strong>g. The project developer monitors <strong>the</strong> project to identify <strong>the</strong> emission<br />

reductions. Based on <strong>the</strong> monitor<strong>in</strong>g results, <strong>the</strong> GHG emission reductions result<strong>in</strong>g<br />

from <strong>the</strong> JI project activity can be calculated. Monitor<strong>in</strong>g reports are issued to <strong>the</strong> AIE.<br />

Ex-post determ<strong>in</strong>ation. Project developer submits <strong>the</strong> monitor<strong>in</strong>g results to Accredited<br />

Independent Entity. The project developer has to contract an Accredited Independent<br />

Entity for ex-post determ<strong>in</strong>ation of <strong>the</strong> monitor<strong>in</strong>g results <strong>and</strong> <strong>the</strong> subsequent Emission<br />

Reductions Units as a result of <strong>the</strong> operation of <strong>the</strong> JI project.<br />

Possible review by <strong>the</strong> JI Supervisory Committee. Once <strong>the</strong> Accredited Independent<br />

Entity has submitted <strong>the</strong> verification report to <strong>the</strong> JI Supervisory Committee (JISC),<br />

<strong>the</strong>re is a possibility that a review of <strong>the</strong> determ<strong>in</strong>ation report by JISC may be<br />

requested. This can only happen when a Party or three members of <strong>the</strong> JISC request<br />

such review. In case <strong>the</strong>re is a request for review of <strong>the</strong> verification report, <strong>the</strong> follow<strong>in</strong>g<br />

will occur:<br />

• The JISC will decide at its next meet<strong>in</strong>g or with<strong>in</strong> 30 days of <strong>the</strong> request be<strong>in</strong>g<br />

made, whe<strong>the</strong>r a request has merit <strong>and</strong> whe<strong>the</strong>r to proceed with <strong>the</strong> review.<br />

• If a review is deemed necessary, <strong>the</strong> JISC will review <strong>the</strong> decision of <strong>the</strong><br />

Independent Entity.<br />

• JISC <strong>in</strong>forms <strong>the</strong> project proponent of <strong>the</strong> outcome of <strong>the</strong> review <strong>and</strong> makes it<br />

decision <strong>and</strong> reason<strong>in</strong>g publicly available.<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-14


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Issuance of ERUs. For JI projects, ERUs will be issued by <strong>the</strong> host country. Under <strong>the</strong><br />

present rules of <strong>the</strong> JI mechanism, emission reductions can be claimed only for <strong>the</strong> first<br />

commitment period 2008-2012.<br />

7.4.8 Implications for Ukra<strong>in</strong>e<br />

Ukra<strong>in</strong>e is an Annex I party to <strong>the</strong> Kyoto Protocol, <strong>and</strong> projects have <strong>the</strong> potential to earn<br />

ERUs (carbon credits) under <strong>the</strong> JI mechanism. There is an approved procedure by <strong>the</strong><br />

Government of Ukra<strong>in</strong>e as <strong>in</strong>dicated <strong>in</strong> <strong>the</strong> resolutions for Consideration, Approval, <strong>and</strong><br />

Implementation of Projects aimed at Anthropogenic Emissions reduction or Greenhouse Gas<br />

Absorption Increase pursuant to <strong>the</strong> Kyoto Protocol to <strong>the</strong> United Nations Framework<br />

Convention on Climate Change (995_001). The key resolutions applicable to <strong>the</strong> proposed<br />

project are <strong>the</strong> follow<strong>in</strong>g;<br />

Order № 341 dated 17 th of July 2006 by <strong>the</strong> M<strong>in</strong>istry of Environmental Protection of<br />

Ukra<strong>in</strong>e, <strong>and</strong><br />

Order № 342 dated 17 th of July 2006 by <strong>the</strong> M<strong>in</strong>istry of Environmental Protection of<br />

Ukra<strong>in</strong>e.<br />

The Government of Ukra<strong>in</strong>e demonstrates a significant experience <strong>in</strong> <strong>the</strong> h<strong>and</strong>l<strong>in</strong>g of JI<br />

projects consider<strong>in</strong>g <strong>the</strong> short period of existence of <strong>the</strong> JI process <strong>in</strong> Europe, <strong>and</strong> has<br />

received a rat<strong>in</strong>g of B- by Po<strong>in</strong>t Carbon, a carbon markets consultancy, based on a relative<br />

scale of CDM <strong>and</strong> JI countries for CDM/JI project participants. Ukra<strong>in</strong>e has already filed a<br />

PDD with a similar project for ano<strong>the</strong>r <strong>coal</strong> <strong>m<strong>in</strong>e</strong> located <strong>in</strong> <strong>the</strong> same region of Donetsk– <strong>the</strong><br />

Zasyadko M<strong>in</strong>e.<br />

There are several JI projects underway <strong>in</strong> Ukra<strong>in</strong>e. As a producer of carbon credits, Ukra<strong>in</strong>e<br />

accounted for 21% of <strong>the</strong> ERU supply traded through 2003-2006; closely followed by Russia<br />

<strong>and</strong> Bulgaria, which account for 19% <strong>and</strong> 18% of volumes supplied, respectively (Carpoor<br />

<strong>and</strong> Ambrosi, 2007). Ukra<strong>in</strong>e is second only to Russia <strong>in</strong> terms of <strong>the</strong> number of expected<br />

ERUs <strong>in</strong> <strong>the</strong> JI pipel<strong>in</strong>e to be delivered over 2008-2012.<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-15


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

7.5 Validation/Determ<strong>in</strong>ation <strong>and</strong> Verification Methodology<br />

Jo<strong>in</strong>t Implementation projects can be validated <strong>and</strong> verified us<strong>in</strong>g an exist<strong>in</strong>g methodology<br />

approved for CDM projects. These methodologies cover a wide variety of sectors from<br />

renewable energy <strong>and</strong> energy efficiency, to animal waste <strong>and</strong> biofuels. The methodology<br />

that is most relevant to <strong>the</strong> Project is ACM0008, which is presented below along with <strong>the</strong><br />

general applicability criteria, as found <strong>in</strong> <strong>the</strong> appropriate UNFCCC methodology<br />

documentation.<br />

7.5.1 ACM0008 Methodology<br />

“Consolidated basel<strong>in</strong>e methodology for <strong>coal</strong> bed <strong>methane</strong> <strong>and</strong> <strong>coal</strong> <strong>m<strong>in</strong>e</strong> <strong>methane</strong> capture<br />

<strong>and</strong> use for power (electrical or motive) <strong>and</strong> heat <strong>and</strong>/or destruction by flar<strong>in</strong>g.” This<br />

methodology applies to project activities that <strong>in</strong>volve <strong>the</strong> use of any of <strong>the</strong> follow<strong>in</strong>g extraction<br />

activities:<br />

Surface dra<strong>in</strong>age wells to capture CBM associated with m<strong>in</strong><strong>in</strong>g activities;<br />

Underground boreholes <strong>in</strong> <strong>the</strong> <strong>m<strong>in</strong>e</strong> to capture pre m<strong>in</strong><strong>in</strong>g CMM;<br />

Surface goaf (gob) wells, underground boreholes, gas dra<strong>in</strong>age galleries or o<strong>the</strong>r goaf<br />

(gob) gas capture techniques, <strong>in</strong>clud<strong>in</strong>g gas from sealed areas, to capture post m<strong>in</strong><strong>in</strong>g<br />

CMM; <strong>and</strong><br />

Ventilation CMM that would normally be vented.<br />

This methodology applies to CMM capture, utilization, <strong>and</strong> destruction project activities at a<br />

work<strong>in</strong>g <strong>coal</strong> <strong>m<strong>in</strong>e</strong>, where <strong>the</strong> basel<strong>in</strong>e is <strong>the</strong> partial or total atmospheric release of <strong>the</strong><br />

<strong>methane</strong> <strong>and</strong> <strong>the</strong> project activities <strong>in</strong>clude <strong>the</strong> follow<strong>in</strong>g method to treat <strong>the</strong> gas captured:<br />

The <strong>methane</strong> is captured <strong>and</strong> destroyed through flar<strong>in</strong>g; <strong>and</strong>/or<br />

The <strong>methane</strong> is captured <strong>and</strong> destroyed through utilization to produce electricity, motive<br />

power, <strong>and</strong>/or <strong>the</strong>rmal energy; emission reductions may or may not be claimed for<br />

displac<strong>in</strong>g or avoid<strong>in</strong>g energy from o<strong>the</strong>r sources;<br />

The rema<strong>in</strong><strong>in</strong>g share of <strong>the</strong> <strong>methane</strong>, to be diluted for safety reasons, may still be<br />

vented; <strong>and</strong>/or<br />

All <strong>the</strong> CBM or CMM captured by <strong>the</strong> project should ei<strong>the</strong>r be used or destroyed, <strong>and</strong><br />

cannot be vented.<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-16


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The methodology applies to both new <strong>and</strong> exist<strong>in</strong>g m<strong>in</strong><strong>in</strong>g activities. The methodology does<br />

not apply to project activities with any of <strong>the</strong> follow<strong>in</strong>g features:<br />

Operate <strong>in</strong> open cast <strong>m<strong>in</strong>e</strong>s;<br />

Capture <strong>methane</strong> from ab<strong>and</strong>oned/decommissioned <strong>coal</strong><strong>m<strong>in</strong>e</strong>s;<br />

Capture/use of virg<strong>in</strong> <strong>coal</strong>-bed <strong>methane</strong>, e.g. <strong>methane</strong> of high quality extracted from<br />

<strong>coal</strong> seams <strong>in</strong>dependently of any m<strong>in</strong><strong>in</strong>g activities; or<br />

Use CO2 or any o<strong>the</strong>r fluid/gas to enhance CBM dra<strong>in</strong>age before m<strong>in</strong><strong>in</strong>g takes place.<br />

7.6 Consideration of Prices of Carbon Credit Units<br />

The Project Developer must decide when <strong>and</strong> how to sell <strong>the</strong> projected ERUs from <strong>the</strong><br />

proposed project. There are various terms <strong>and</strong> conditions that may be considered <strong>in</strong><br />

Emission Reductions Purchase Agreements (ERPA), which address <strong>the</strong> pric<strong>in</strong>g of current<br />

issuances of ERUs, as well as <strong>the</strong> forward pric<strong>in</strong>g for “to be delivered” ERUs. These<br />

modalities <strong>in</strong>clude negotiated fixed prices, <strong>and</strong> <strong>the</strong> use of sophisticated <strong>in</strong>dexed prices based<br />

on certa<strong>in</strong> events related to <strong>the</strong> actual production of <strong>the</strong> carbon credit <strong>and</strong> <strong>the</strong> quality that can<br />

be demonstrated to cont<strong>in</strong>ue to ma<strong>in</strong>ta<strong>in</strong> a certa<strong>in</strong> level of ERUs from <strong>the</strong> project.<br />

Generally, ERUs have been discounted compared to Certified Emission Reductions (CERs)<br />

due to sovereign risks associated with rules <strong>and</strong> procedures for project approval by host<br />

country governments, which are necessary but are yet to be enacted; <strong>and</strong> many JI<br />

transactions have been structured with up-front f<strong>in</strong>anc<strong>in</strong>g of up to 25% of <strong>the</strong> ERPA value.<br />

Like any o<strong>the</strong>r commodity, <strong>the</strong>re are many factors to be considered for assess<strong>in</strong>g market<br />

prices for Carbon Credits; with policy <strong>and</strong> regulatory issues, <strong>and</strong> market fundamentals<br />

play<strong>in</strong>g key roles. Therefore, to analyze <strong>and</strong> forecast market <strong>and</strong> price <strong>development</strong>s, one<br />

must have an underst<strong>and</strong><strong>in</strong>g of <strong>the</strong> role <strong>and</strong> potential impact of policy choices. This means<br />

that Carbon Market participants need to monitor <strong>and</strong> assess relevant issues, such as <strong>the</strong><br />

National Allocation Plans (NAPs), <strong>and</strong> <strong>the</strong> future status of <strong>the</strong> Kyoto Protocol.<br />

There are several prediction models for future carbon units that are proprietary to various<br />

<strong>in</strong>ternational banks <strong>and</strong> traders, such as JP Morgan, World Bank, Societé Generale, <strong>and</strong><br />

o<strong>the</strong>rs. Estimat<strong>in</strong>g <strong>the</strong> value of future revenue streams from Carbon Credits will undoubtedly<br />

be an important step <strong>in</strong> evaluat<strong>in</strong>g alternative project <strong>development</strong> scenarios.<br />

While predict<strong>in</strong>g <strong>the</strong> future of <strong>the</strong> Carbon Market is outside <strong>the</strong> scope of <strong>the</strong> present study,<br />

<strong>the</strong> <strong>in</strong>formation <strong>in</strong>ferred from <strong>the</strong>se predictive models, as well as reputable resources should<br />

be taken <strong>in</strong>to consideration when mak<strong>in</strong>g future project-related decisions. At this stage <strong>in</strong> <strong>the</strong><br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-17


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

project <strong>development</strong> scheme it is perhaps most appropriate to look at current market prices<br />

as a benchmark for what <strong>the</strong> project might generate from ERU sales.<br />

The World Bank reports <strong>the</strong> ranges of prices for carbon commodities for 2005 <strong>and</strong> 2006<br />

(Exhibit 7.3), differentiated by types of carbon credits currently offered <strong>in</strong> <strong>the</strong> emerg<strong>in</strong>g global<br />

carbon markets: pre-CERs (i.e., credits verified but not issued); CERs (i.e., credits issued);<br />

Emission Reduction Units (ERUs, from Jo<strong>in</strong>t Implementation projects); <strong>and</strong> secondary CERs<br />

(i.e., transactions where <strong>the</strong> seller is not <strong>the</strong> orig<strong>in</strong>al owner or issuer of <strong>the</strong> credits). While<br />

prices for all carbon commodities have <strong>in</strong>creased year-over-year, so, too, is <strong>the</strong> volatility of<br />

<strong>the</strong> Carbon Market. In 2006, <strong>the</strong> weighted average price for ERUs was $8.70, which is a<br />

45% <strong>in</strong>crease over 2005 levels.<br />

Exhibit 7.3: Observed Prices for Project-based Transactions <strong>in</strong> 2005 & 2006<br />

(Carpoor <strong>and</strong> Ambrosi, 2007)<br />

Based on <strong>in</strong>terviews with companies who specialize <strong>in</strong> <strong>the</strong> trad<strong>in</strong>g of carbon credits on <strong>the</strong><br />

relevant European markets, <strong>the</strong> pric<strong>in</strong>g for ERUs can be estimated <strong>in</strong> relation to <strong>the</strong><br />

European Emission Trad<strong>in</strong>g Scheme (EU ETS) <strong>and</strong> <strong>the</strong> reputable market quotes for prices of<br />

an ERU-type of carbon credit, known as a EUA. The trad<strong>in</strong>g companies <strong>in</strong>dicate that <strong>the</strong><br />

range of ERU pric<strong>in</strong>g will be approximately €8 to €12 below <strong>the</strong> market EUA prices.<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-18


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

One such daily quotation, <strong>the</strong> Po<strong>in</strong>t Carbon “EUA OTC Assessment” tracks forward<br />

deliveries of EUR/t (European Union Reduction per ton), <strong>and</strong> is considered a reliable <strong>in</strong>dex<br />

on which to base pric<strong>in</strong>g for ERUs produced <strong>in</strong> Ukra<strong>in</strong>e under appropriate Jo<strong>in</strong>t<br />

Implementation projects.<br />

Accord<strong>in</strong>g to <strong>the</strong> Po<strong>in</strong>t Carbon EUA OTC Assessment for December 2008 deliveries, <strong>the</strong><br />

EUR/t price is approximately €25.00; <strong>and</strong>, thus, an ERU price based on <strong>the</strong> relationship to<br />

<strong>the</strong> EUA <strong>in</strong>dex, would be <strong>in</strong> <strong>the</strong> range of approximately €13 to €17 per ERU.<br />

For purposes of this analysis, additional reduction was made to <strong>the</strong> <strong>in</strong>dexed price for ERUs,<br />

to allow for fees to be paid to market traders for negotiation of transactions with end<br />

users/purchasers of <strong>the</strong> ERUs. A price of €10 (approximately $15) was used to calculate <strong>the</strong><br />

potential revenue from <strong>the</strong> sale of ERU s from <strong>the</strong> proposed project.<br />

Depend<strong>in</strong>g on <strong>the</strong> structure of <strong>the</strong> Emissions Reduction Purchase Agreement (ERPA) <strong>the</strong><br />

actual price received by <strong>the</strong> Project Developer might vary substantially; <strong>and</strong> <strong>the</strong> Project<br />

Developers can expect to obta<strong>in</strong> purchase agreements for <strong>the</strong>ir ERUs rang<strong>in</strong>g anywhere<br />

between $15 <strong>and</strong> $25 depend<strong>in</strong>g on <strong>the</strong> level of risk that needs to be taken by <strong>the</strong> buyer.<br />

The range <strong>in</strong> prices can be attributed to competition for large-scale JI projects.<br />

To make rational sell<strong>in</strong>g decisions for production of <strong>the</strong> Project ERUs, <strong>the</strong> Project Developers<br />

<strong>and</strong> <strong>the</strong>ir due–diligence team should cont<strong>in</strong>ue to ga<strong>the</strong>r more <strong>in</strong>formation from entities like<br />

<strong>the</strong> World Bank <strong>and</strong> o<strong>the</strong>r key <strong>in</strong>stitutions, <strong>and</strong> more importantly, from large emitters <strong>and</strong><br />

o<strong>the</strong>rs, <strong>in</strong>clud<strong>in</strong>g carbon market trad<strong>in</strong>g companies.<br />

7.7 Project Risk Reduction Support<br />

Certa<strong>in</strong> U.S. <strong>in</strong>stitutions offer assistance to reduce <strong>the</strong> risks that domestic companies may<br />

face when export<strong>in</strong>g <strong>the</strong>ir products or services abroad. For example, <strong>in</strong> addition to structured<br />

trade f<strong>in</strong>ance mechanisms, <strong>the</strong> Export Import Bank of <strong>the</strong> United States (Eximbank) can<br />

provide work<strong>in</strong>g capital guarantees <strong>and</strong> credit <strong>in</strong>surance. It also offers certa<strong>in</strong> specialty<br />

f<strong>in</strong>ancial products to companies that export environmental goods to foreign companies that<br />

are unable to obta<strong>in</strong> traditional f<strong>in</strong>ancial support. Similarly, <strong>the</strong> Overseas Private Investment<br />

Corporation (OPIC) helps U.S. bus<strong>in</strong>esses mitigate risks <strong>in</strong>herent <strong>in</strong> do<strong>in</strong>g bus<strong>in</strong>ess<br />

overseas. As highlighted previously, OPIC provides a range of f<strong>in</strong>ance resources, such as<br />

loans <strong>and</strong> loan guarantees. In addition, it offers f<strong>in</strong>ancial products specifically designed to<br />

reduce export risk, such as Political Risk Insurance <strong>in</strong> emerg<strong>in</strong>g markets where political<br />

drivers are develop<strong>in</strong>g or uncerta<strong>in</strong>.<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-19


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

7.8 Examples of Integrated Project F<strong>in</strong>anc<strong>in</strong>g<br />

A varied selection of f<strong>in</strong>ance <strong>and</strong> revenue sources are available to CMM/CBM project<br />

developers <strong>in</strong> develop<strong>in</strong>g countries <strong>and</strong> countries of transition. Through engagement of<br />

different sources at appropriate stages, fund<strong>in</strong>g can be secured for all phases of <strong>the</strong> project<br />

<strong>development</strong> cycle, from pre-feasibility studies to technical specification <strong>development</strong> to<br />

pilot/demonstration activities <strong>and</strong> full to implementation. International f<strong>in</strong>ancial organizations,<br />

such as those named above, can contribute to <strong>the</strong> project <strong>development</strong> process <strong>in</strong> several<br />

ways: some f<strong>in</strong>anc<strong>in</strong>g sources may provide risk-reduction products to mitigate a technology<br />

or a service provider's concerns about enter<strong>in</strong>g foreign markets; o<strong>the</strong>rs provide loans <strong>and</strong><br />

similar f<strong>in</strong>ancial assistance for projects that offer environmental benefits <strong>and</strong> contribute to<br />

susta<strong>in</strong>able <strong>development</strong> <strong>and</strong> poverty alleviation; <strong>and</strong> some specialized fund<strong>in</strong>g sources will<br />

purchase carbon credits <strong>and</strong> <strong>the</strong>reby supplement a project's cash flow.<br />

Thus, by comb<strong>in</strong><strong>in</strong>g equity <strong>in</strong>vestment, support-grant fund<strong>in</strong>g, <strong>and</strong> debt f<strong>in</strong>anc<strong>in</strong>g, all of which<br />

are available from a variety of sources, project developers can support CMM/CBM recovery<br />

<strong>and</strong> utilization projects, even large-scale <strong>in</strong>itiatives, cover<strong>in</strong>g every stage of <strong>development</strong> <strong>and</strong><br />

implementation.<br />

7.8.1 Sample Project<br />

The f<strong>in</strong>anc<strong>in</strong>g strategy for <strong>the</strong> CMM Project is based on o<strong>the</strong>r successfully f<strong>in</strong>anced CMM<br />

projects, us<strong>in</strong>g a similar Project F<strong>in</strong>ance structure. For <strong>the</strong> proposed Ukra<strong>in</strong>e CMM project,<br />

we outl<strong>in</strong>e a f<strong>in</strong>anc<strong>in</strong>g strategy us<strong>in</strong>g a direct loan from OPIC, private equity contributions<br />

from <strong>the</strong> Project Sponsors, <strong>and</strong> carbon f<strong>in</strong>ance through <strong>the</strong> sale of ERUs. The equity/equityf<strong>in</strong>anc<strong>in</strong>g<br />

from <strong>the</strong> Project Sponsors will be <strong>in</strong> <strong>the</strong> form of direct capital contributions, as well<br />

as contributions of equipment <strong>and</strong> services.<br />

7.8.1.1 Capital Expenditure<br />

The total costs for <strong>the</strong> CMM-I Project, which <strong>in</strong>cludes significant amounts of equipment <strong>and</strong><br />

services from U.S. companies, is just over US$ 9 million. The U.S. portion will ma<strong>in</strong>ly cover<br />

eng<strong>in</strong>eer<strong>in</strong>g <strong>and</strong> technical services, equipment purchases, <strong>and</strong> technology transfers.<br />

Of <strong>the</strong> total costs, approximately US$ 6.5 million (nearly 70%) may be for goods <strong>and</strong> services<br />

supplied from U.S. companies. An 8-year loan of 6 million USD will be requested from OPIC,<br />

represent<strong>in</strong>g approximately 65% of <strong>the</strong> total project costs. The breakdown of <strong>the</strong> project<br />

costs, <strong>in</strong>clusive of <strong>the</strong> <strong>in</strong>-country costs, is shown <strong>in</strong> Exhibit 7.4.<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-20


USES<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Uses Statement (Capitalized Costs <strong>in</strong> U.S. Dollars) (000s)<br />

Pre-<br />

Implementation<br />

Year 1 Year 2<br />

Eng<strong>in</strong>eer<strong>in</strong>g & Design 220 511 0 731<br />

Construction 0 41 0 41<br />

Equipment 0 3770 2030 5800<br />

Development; Acquisition; Operat<strong>in</strong>g Rights; 420 120 0 540<br />

Work<strong>in</strong>g Capital / Operat<strong>in</strong>g Reserve 0 370 0 370<br />

Project Cont<strong>in</strong>gency Costs 0 167 0 167<br />

F<strong>in</strong>anc<strong>in</strong>g Fees 10 59 0 69<br />

Set-up Office/Management Systems 6 46 0 52<br />

Tra<strong>in</strong><strong>in</strong>g 0 134 20 154<br />

ERU-PDD/Validation 5 67 0 72<br />

Geological-Technical Services 17 0 0 17<br />

Drill<strong>in</strong>g, Dra<strong>in</strong>age Systems Rehabilitation 0 970 323 1293<br />

SOURCES<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-21<br />

Year<br />

N<br />

Total<br />

TOTAL 678 6255 2373 0 9306<br />

Sources Statement (Project Fund<strong>in</strong>g <strong>in</strong> U.S. Dollars) (000s)<br />

Pre-<br />

Implementation<br />

Year 1 Year 2 Year N Total<br />

Debt<br />

OPIC Loan 0 4800 1200 6000<br />

Equity 3306<br />

U.S. Cash 208 1365 1133 2706<br />

U.S. Non-Cash 270 0 0 270<br />

Non-U.S. Cash 100 50 0 150<br />

Non-U.S. Non-Cash 100 40 40 180<br />

TOTAL 678 6255 2373 9306<br />

Exhibit 7.4 Project Costs– Consolidation of Sources <strong>and</strong> Uses


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

7.8.1.2 Project F<strong>in</strong>ance<br />

Approximately US$ 6 million <strong>in</strong> senior OPIC debt f<strong>in</strong>anc<strong>in</strong>g will be placed, by means of a<br />

direct loan, or loan guarantee, or a comb<strong>in</strong>ed direct/guaranteed loan. The OPIC f<strong>in</strong>anc<strong>in</strong>g<br />

will be used to acquire equipment, components, systems, technology transfers, <strong>and</strong> services,<br />

plus <strong>the</strong> construction, power plant <strong>in</strong>stallations, commission<strong>in</strong>g, <strong>and</strong> certification. In addition,<br />

<strong>the</strong> Project Sponsors will have a comb<strong>in</strong>ed <strong>in</strong>vestment <strong>in</strong> <strong>the</strong> Project of US$ 3.3 million.<br />

All account<strong>in</strong>g <strong>and</strong> related fiscal operations associated with <strong>the</strong> Project will be accord<strong>in</strong>g to<br />

International Account<strong>in</strong>g st<strong>and</strong>ards, <strong>and</strong> management record keep<strong>in</strong>g <strong>and</strong> report<strong>in</strong>g will be<br />

executed us<strong>in</strong>g modern systems <strong>and</strong> accepted best practices.<br />

7.8.1.3 Example OPIC Loan Terms<br />

The OPIC-supported loan will most-likely be structured for an 8-year term total term, with a 1year<br />

grace period. The loan will most-likely propose an <strong>in</strong>terest rate that comb<strong>in</strong>es a<br />

guaranty fee <strong>and</strong> base <strong>in</strong>terest charge for a total rate of approximately 8.5% (to be fixed at<br />

<strong>the</strong> time of commitment), with a pr<strong>in</strong>cipal <strong>and</strong> <strong>in</strong>terest amortization over a 7-year schedule.<br />

7.8.1.4 Carbon F<strong>in</strong>ance<br />

Over <strong>the</strong> lifetime of <strong>the</strong> project (35 years), <strong>the</strong> Project would recover 0.462 Billion cubic<br />

meters (Bcm) of gas, which would be used to generate electricity. The Project is likely to<br />

receive a favorable Letter of Approval from <strong>the</strong> Government of Ukra<strong>in</strong>e; subject to <strong>the</strong> Project<br />

Developer fil<strong>in</strong>g <strong>the</strong> proper documentation <strong>and</strong> validation required by <strong>the</strong> Jo<strong>in</strong>t<br />

Implementation Supervisory Committee (JISC), utiliz<strong>in</strong>g an exist<strong>in</strong>g <strong>and</strong> approved<br />

methodology. In this case, <strong>the</strong> most appropriate methodology, which is already approved for<br />

Clean Development Mechanism (CDM) is <strong>the</strong> ACM0008, <strong>and</strong> is directly applicable to Jo<strong>in</strong>t<br />

Implementation (JI) countries such as Ukra<strong>in</strong>e.<br />

It is estimated that <strong>the</strong> project will produce approximately 737,476 Emission Reduction Units<br />

(ERUs) annually; <strong>and</strong> it can be estimated reasonably that such ERUs may be traded<br />

between $10 to $15 per unit, depend<strong>in</strong>g on <strong>the</strong> risk-tolerance/risk-reward that <strong>the</strong> Project<br />

Sponsor may decide to choose each year from 2008 through 2012, <strong>and</strong> for <strong>the</strong> life of <strong>the</strong><br />

project. It is possible, although unlikely, that certa<strong>in</strong> operational risk factors may reduce <strong>the</strong><br />

aggregated monitor<strong>in</strong>g of <strong>the</strong> gas to below <strong>the</strong> level <strong>in</strong>dicated above; however, given <strong>the</strong><br />

proven technology <strong>and</strong> best practices that are planned to be used <strong>in</strong> <strong>the</strong> Project, <strong>the</strong>re is a<br />

high level of confidence that <strong>the</strong> down time on this operation can be reduced to a m<strong>in</strong>imum.<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-22


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The current Kyoto Protocol only permits generation of revenues from <strong>the</strong> ERUs produced by<br />

<strong>the</strong> Project through 2012; however, <strong>the</strong>re are solid arguments <strong>and</strong> forward-th<strong>in</strong>k<strong>in</strong>g political<br />

will by <strong>the</strong> <strong>in</strong>dustrialized countries to extend <strong>the</strong> Kyoto Protocol well beyond 2012.<br />

Assum<strong>in</strong>g carbon credits at $10.00/ERU – which is consistent with <strong>the</strong> weighted average<br />

price received for project-based ERUs <strong>in</strong> 2006 – over <strong>the</strong> first 5-year commitment period of<br />

<strong>the</strong> Kyoto Protocol about US$7.4 million from <strong>methane</strong> capture is potentially available to<br />

enhance project economics. There is considerable variability of observed prices for projectbased<br />

transactions as discussed earlier <strong>in</strong> this section. In 2006, <strong>the</strong> price of ERUs that were<br />

issued ranged between $6.60 <strong>and</strong> $12.40 per tonne CO2e.<br />

7.9 Project Implementation <strong>and</strong> Management<br />

The <strong>m<strong>in</strong>e</strong> degasification <strong>and</strong> <strong>methane</strong> utilization project for <strong>the</strong> Donets’k Region of Ukra<strong>in</strong>e<br />

was conceived based on utiliz<strong>in</strong>g modern <strong>and</strong> appropriate technology, which is available<br />

from a variety of sources, especially U.S. manufacturers <strong>and</strong> suppliers. There are significant<br />

reasons for choos<strong>in</strong>g equipment, technology transfers, <strong>and</strong> related services from <strong>the</strong> United<br />

States:<br />

(i) <strong>the</strong> available ‘state-of-art’ technology;<br />

(ii) <strong>the</strong> sensitivity to conditions <strong>in</strong> Ukra<strong>in</strong>e <strong>and</strong> <strong>the</strong> flexibility toward problem solv<strong>in</strong>g that<br />

has been exhibited by <strong>the</strong> eng<strong>in</strong>eers <strong>and</strong> o<strong>the</strong>r professionals from <strong>the</strong> U.S.;<br />

(iii) <strong>the</strong> probability of available major components of second-h<strong>and</strong> equipment for <strong>the</strong><br />

project;<br />

(iv) <strong>the</strong> availability of favorable, U.S. government-supported f<strong>in</strong>anc<strong>in</strong>g.<br />

Any Contract of Sale between <strong>the</strong> equipment suppliers <strong>and</strong> <strong>the</strong> Project Sponsor is subject to<br />

f<strong>in</strong>al acceptable terms <strong>and</strong> conditions <strong>and</strong> approved f<strong>in</strong>anc<strong>in</strong>g; <strong>and</strong> will be based upon<br />

delivery of new-equipment, plus related technology transfers <strong>and</strong> services, with <strong>the</strong> option for<br />

<strong>in</strong>clud<strong>in</strong>g suitable used equipment, subject to availability.<br />

The aggregate value of U.S. equipment, technology transfers, <strong>and</strong> services for <strong>the</strong> proposed<br />

Project is estimated to be approximately US $6.5 million, with a comb<strong>in</strong>ation of new <strong>and</strong> used<br />

equipment <strong>and</strong> system components, <strong>in</strong>clud<strong>in</strong>g shipp<strong>in</strong>g <strong>and</strong> related costs. A partial list of<br />

targeted U.S. suppliers is <strong>in</strong>cluded <strong>in</strong> Section 9.<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-23


7.9.1 Management Structure<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The operations for <strong>methane</strong> recovery/extraction <strong>and</strong> for gas utilization (heat/electricity<br />

production) will be managed by Project Sponsor stakeholders, consist<strong>in</strong>g of a team of<br />

technical experts <strong>and</strong> senior managers from <strong>the</strong> Ukra<strong>in</strong>ian <strong>and</strong> American participants. The<br />

Project Management Team will be supported by a cadre of professionals, all with particular<br />

expertise <strong>in</strong> <strong>the</strong>ir fields, most of whom have experience work<strong>in</strong>g on similar projects <strong>in</strong> Ukra<strong>in</strong>e<br />

or o<strong>the</strong>r countries of <strong>the</strong> region. Exhibit 7.5 <strong>and</strong> Exhibit 7.6 illustrate proposed organizational<br />

charts for senior management <strong>and</strong> production management, respectively.<br />

At each <strong>m<strong>in</strong>e</strong>, it is proposed that a full-time Operations Manager <strong>and</strong> a Senior Eng<strong>in</strong>eer be<br />

responsible for supervis<strong>in</strong>g <strong>the</strong> Crew Leaders, Equipment Operators, Equipment<br />

Technicians, <strong>and</strong> related support personnel.<br />

The Manager <strong>and</strong> Eng<strong>in</strong>eer will be assisted by junior petroleum <strong>and</strong> process eng<strong>in</strong>eers on an<br />

as-needed basis, particularly as crews prepare <strong>the</strong> drill<strong>in</strong>g areas <strong>and</strong> for <strong>the</strong> <strong>in</strong>stallation of<br />

degasification pip<strong>in</strong>g <strong>and</strong> equipment.<br />

The Power Generation plant at each <strong>m<strong>in</strong>e</strong> will be managed by <strong>the</strong> Plant Supervisor who<br />

oversees <strong>the</strong> various production managers, <strong>and</strong> who will be responsible for coord<strong>in</strong>at<strong>in</strong>g <strong>the</strong><br />

eng<strong>in</strong>eers with <strong>the</strong> equipment operators <strong>and</strong> mechanics. The general production personnel<br />

will be under <strong>the</strong> immediate direction of <strong>the</strong> shift/crew leaders, with <strong>the</strong> latter report<strong>in</strong>g to <strong>the</strong><br />

correspond<strong>in</strong>g production manager.<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-24


Gas Production<br />

Manager<br />

Shift Manager<br />

Emission<br />

Reduction Units<br />

Manager<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Project Sponsor<br />

Manag<strong>in</strong>g Director<br />

General Manager<br />

Gas Production / Utilization Manager<br />

Methane Recovery / Heat <strong>and</strong> Power<br />

Generat<strong>in</strong>g<br />

Exhibit 7.5: Senior Management Chart<br />

General Manager<br />

Technical Supervisor<br />

Safety Manager<br />

Facilities<br />

Manager<br />

Exhibit 7.6: Production Management Chart<br />

Chief F<strong>in</strong>ancial<br />

Officer<br />

Shift Manager<br />

Heat/Power<br />

Production<br />

Manager<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-25


7.10 References<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Carpoor, K. <strong>and</strong> P. Ambrosi (2007). State <strong>and</strong> Trends of <strong>the</strong> Carbon Market 2007. Funded<br />

by <strong>the</strong> World Bank Institute – CF Assist, <strong>in</strong> cooperation with <strong>the</strong> International Emissions<br />

Trad<strong>in</strong>g Association, May.<br />

Project F<strong>in</strong>ance <strong>and</strong> Carbon Credits 7-26


Task 8<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Developmental Impact<br />

Developmental Impact 8-i


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

TASK 8 CONTENTS<br />

8.1 Introduction........................................................................................................8-1<br />

8.2 Infrastructure Improvements............................................................................8-1<br />

8.3 Technology Transfer .........................................................................................8-2<br />

8.4 Productivity Enhancement ...............................................................................8-2<br />

8.5 Employment Benefits ........................................................................................8-4<br />

Developmental Impact 8-ii


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

TASK 8 EXHIBITS<br />

Exhibit 8.1: Methane downtime versus <strong>coal</strong> production on a longwall panel<br />

(Mutmansky <strong>and</strong> Wang 1998)..............................................................................8-3<br />

Developmental Impact 8-iii


8.1 Introduction<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Coal <strong>m<strong>in</strong>e</strong> <strong>methane</strong> <strong>and</strong> <strong>coal</strong> bed <strong>methane</strong> <strong>development</strong> <strong>in</strong> <strong>the</strong> Donetsk region has <strong>the</strong><br />

potential to have a positive impact on many aspects of <strong>the</strong> regional <strong>and</strong> national economy.<br />

The most important impact at this time, would be to <strong>in</strong>crease Ukra<strong>in</strong>ian energy security by<br />

reduc<strong>in</strong>g <strong>the</strong> reliance on imported foreign gas. CBM/CMM <strong>in</strong>vestment could also stimulate<br />

economic activity across a broad range of sectors, <strong>in</strong>crease local <strong>and</strong> regional government<br />

tax revenues, generate revenues from carbon credits, lead to improvements <strong>in</strong> local<br />

<strong>in</strong>frastructure <strong>and</strong> <strong>in</strong>crease direct, <strong>and</strong> <strong>in</strong>direct, employment opportunities.<br />

Potential impacts can be split <strong>in</strong>to three ma<strong>in</strong> categories – direct, <strong>in</strong>direct <strong>and</strong> <strong>in</strong>duced.<br />

Direct impacts consist of employment <strong>and</strong> purchases of goods <strong>and</strong> services <strong>in</strong> <strong>the</strong> region<br />

result<strong>in</strong>g directly from:<br />

CBM drill<strong>in</strong>g <strong>and</strong> associated activities such as leas<strong>in</strong>g, road <strong>and</strong> drill<strong>in</strong>g site preparation,<br />

surface facilities construction <strong>and</strong> pipel<strong>in</strong>e construction.<br />

CMM dra<strong>in</strong>age upgrades <strong>in</strong> <strong>m<strong>in</strong>e</strong> <strong>and</strong> at surface, power station construction<br />

Indirect (<strong>in</strong>ter-<strong>in</strong>dustry) impacts consist of goods <strong>and</strong> services purchased by <strong>the</strong> firms<br />

supply<strong>in</strong>g <strong>in</strong>puts consumed <strong>in</strong> <strong>the</strong> direct activity. For example, raw materials bought by <strong>the</strong><br />

companies who produce drill pipe, vehicles purchased by survey<strong>in</strong>g crews or legal services<br />

reta<strong>in</strong>ed by leas<strong>in</strong>g companies. Induced impacts consist of household purchases of goods<br />

<strong>and</strong> services <strong>in</strong> <strong>the</strong> region by employees of <strong>the</strong> direct <strong>and</strong> <strong>in</strong>direct employers.<br />

8.2 Infrastructure Improvements<br />

Construction of new access roads to well sites, with associated upgrad<strong>in</strong>g of exist<strong>in</strong>g<br />

roadways, has <strong>the</strong> potential to improve communications <strong>in</strong> <strong>the</strong> ma<strong>in</strong>ly rural areas of <strong>the</strong><br />

Project. In addition, <strong>the</strong> Project creates <strong>in</strong>direct benefits, derived from <strong>in</strong>creased tax<br />

revenues, which enhance local government budgets, <strong>and</strong> thus, <strong>the</strong> means to improve <strong>the</strong><br />

conditions of local transportation systems <strong>and</strong> o<strong>the</strong>r municipal <strong>in</strong>frastructure.<br />

Electricity generation from <strong>the</strong> proposed CMM projects at <strong>the</strong> South Donbass No.3 <strong>and</strong><br />

Bazhanov <strong>m<strong>in</strong>e</strong>s, could, <strong>in</strong> <strong>the</strong> future lead to sales <strong>in</strong>to <strong>the</strong> local grid <strong>and</strong> subsequent<br />

upgrad<strong>in</strong>g of <strong>the</strong> electrical power transmission l<strong>in</strong>es.<br />

Developmental Impact 8-1


8.3 Technology Transfer<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Prior efforts by <strong>the</strong> U.S. EPA’s Coal M<strong>in</strong>e Methane Outreach Program, <strong>the</strong> World Bank<br />

Global Environmental Fund, <strong>and</strong> o<strong>the</strong>rs, to <strong>in</strong>troduce new technology to <strong>the</strong> Ukra<strong>in</strong>ian <strong>coal</strong><br />

m<strong>in</strong><strong>in</strong>g sector to improve <strong>methane</strong> dra<strong>in</strong>age efficiencies <strong>and</strong> <strong>in</strong>crease <strong>the</strong> utilization of <strong>the</strong><br />

captured gas for <strong>methane</strong> emissions mitigation, produced technical analyses <strong>and</strong> lead to<br />

outside <strong>in</strong>vestment by parties <strong>in</strong>terested <strong>in</strong> greenhouse gas credits with limited drill<strong>in</strong>g<br />

technology transfer. Although some of <strong>the</strong> private <strong>m<strong>in</strong>e</strong>s <strong>in</strong> <strong>the</strong> Ukra<strong>in</strong>e are <strong>in</strong>vest<strong>in</strong>g <strong>in</strong><br />

drill<strong>in</strong>g technology directly, <strong>the</strong> U.S. Department Labor committed to fund a technology<br />

transfer program <strong>in</strong> 2005 that <strong>in</strong>volved <strong>the</strong> <strong>in</strong>troduction of modern underground directional<br />

drill<strong>in</strong>g technology to provide alternatives for underground gob gas recovery.<br />

With <strong>the</strong> over-sight of <strong>the</strong> Partnership for Energy <strong>and</strong> Environmental Reform (PEER), <strong>in</strong> 2006<br />

an underground longhole drill was built by J.H. Fletcher Company <strong>and</strong> shipped to <strong>the</strong><br />

Ukra<strong>in</strong>e. Directional drill<strong>in</strong>g tra<strong>in</strong><strong>in</strong>g was <strong>in</strong>itiated by <strong>the</strong> U.S. based directional drill<strong>in</strong>g<br />

contractor, REI Drill<strong>in</strong>g, Inc. at <strong>the</strong> Belozerskaya M<strong>in</strong>e <strong>in</strong> early 2007.<br />

Similar <strong>in</strong>-<strong>m<strong>in</strong>e</strong> degasification improvements are envisioned for use <strong>in</strong> <strong>the</strong> South Donbass<br />

No.3 <strong>and</strong> Bazhanov <strong>m<strong>in</strong>e</strong>s to enhance current CMM flow rates. The <strong>in</strong>troduction of new<br />

drill<strong>in</strong>g technology <strong>in</strong>to <strong>the</strong> Ukra<strong>in</strong>e will require technical support that can provide h<strong>and</strong>s-on<br />

assistance if required. With directional drill<strong>in</strong>g, where high value directional <strong>in</strong>struments are<br />

used, drill<strong>in</strong>g support should <strong>in</strong>clude tool recovery services (fish<strong>in</strong>g). Technical services<br />

should <strong>in</strong>clude directional data <strong>in</strong>terpretation, geologic <strong>in</strong>terpretation, <strong>and</strong> steer<strong>in</strong>g tool<br />

trouble shoot<strong>in</strong>g, as required.<br />

8.4 Productivity Enhancement<br />

Enhanced CMM recovery from <strong>the</strong> South Donbass No.3 <strong>and</strong> Bazhanov <strong>m<strong>in</strong>e</strong>s through new<br />

directional drill<strong>in</strong>g techniques or gob gas recovery methods could lead to a number of <strong>m<strong>in</strong>e</strong><br />

productivity enhancements. Pre-dra<strong>in</strong>ed <strong>coal</strong> seams would result <strong>in</strong> lower <strong>methane</strong><br />

concentrations at <strong>the</strong> <strong>coal</strong> face <strong>and</strong> throughout <strong>the</strong> <strong>m<strong>in</strong>e</strong>s, lead<strong>in</strong>g to safer work<strong>in</strong>g conditions<br />

for <strong>m<strong>in</strong>e</strong>rs with less chance of “gas outs” or <strong>m<strong>in</strong>e</strong> explosions. Ukra<strong>in</strong>e has one of <strong>the</strong> highest<br />

<strong>coal</strong> <strong>m<strong>in</strong>e</strong>r death rates <strong>in</strong> <strong>the</strong> world (7 per million tones <strong>m<strong>in</strong>e</strong>d 1 ) <strong>and</strong> s<strong>in</strong>ce <strong>in</strong>dependence <strong>in</strong><br />

1991, approximately 4,700 <strong>m<strong>in</strong>e</strong>rs have died, at an average of over 200 a year. 2<br />

1 www.world-nuclear.org. 2008. Appendix 1 The Hazards of Us<strong>in</strong>g Energy.<br />

2 www.bus<strong>in</strong>essukra<strong>in</strong>e.com.ua (Nov 26, 2007)<br />

Developmental Impact 8-2


Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

Lower <strong>methane</strong> concentrations at <strong>the</strong> <strong>coal</strong> face also mean that sav<strong>in</strong>gs can be made <strong>in</strong> <strong>the</strong><br />

ventilation system. The volume of air drawn <strong>in</strong>to <strong>the</strong> <strong>m<strong>in</strong>e</strong> to dilute <strong>methane</strong> could be<br />

reduced, lead<strong>in</strong>g to energy <strong>and</strong> operat<strong>in</strong>g cost sav<strong>in</strong>gs when runn<strong>in</strong>g <strong>the</strong> ventilation fans. Air<br />

velocities across <strong>the</strong> <strong>coal</strong> face would also be lower, reduc<strong>in</strong>g dust problems <strong>and</strong> improv<strong>in</strong>g<br />

<strong>m<strong>in</strong>e</strong>r’s work<strong>in</strong>g conditions. It is also possible that as ventilation air volumes decrease, so<br />

could <strong>the</strong> size <strong>and</strong> number of <strong>the</strong> <strong>development</strong> entries that transport those volumes, giv<strong>in</strong>g<br />

up-front <strong>development</strong> cost sav<strong>in</strong>gs <strong>and</strong> <strong>in</strong>creas<strong>in</strong>g production reserve sizes.<br />

When <strong>methane</strong> levels <strong>in</strong> <strong>the</strong> <strong>m<strong>in</strong>e</strong> go over a specified safety limit, <strong>the</strong> production process<br />

must stop. These downtimes can be reduced by lower<strong>in</strong>g <strong>coal</strong> face <strong>methane</strong> concentrations,<br />

through pre-m<strong>in</strong><strong>in</strong>g <strong>methane</strong> dra<strong>in</strong>age <strong>and</strong> gob dra<strong>in</strong>age. Exhibit 8.1 shows an example of<br />

<strong>the</strong> correlation between downtime, caused by high <strong>methane</strong> concentrations at <strong>the</strong> <strong>coal</strong> face,<br />

<strong>and</strong> its effect on <strong>coal</strong> production rates.<br />

Exhibit 8.1: Methane downtime versus <strong>coal</strong> production on<br />

a longwall panel (Mutmansky <strong>and</strong> Wang 3 1998)<br />

While lower<strong>in</strong>g <strong>methane</strong> concentrations, pre-m<strong>in</strong><strong>in</strong>g dra<strong>in</strong>age also lowers <strong>the</strong> water content<br />

of <strong>the</strong> <strong>coal</strong>, fur<strong>the</strong>r reduc<strong>in</strong>g <strong>the</strong> downtime of a <strong>m<strong>in</strong>e</strong> <strong>and</strong> <strong>in</strong>creas<strong>in</strong>g its productivity.<br />

3 US EPA. 1999. “White Paper: Guidebook on Coalbed Methane Dra<strong>in</strong>age for Underground Coal M<strong>in</strong>es”<br />

Developmental Impact 8-3


8.5 Employment Benefits<br />

Coal M<strong>in</strong>e Methane And Coalbed Methane<br />

Development In The Donetsk Region, Ukra<strong>in</strong>e<br />

The ma<strong>in</strong> source of employment <strong>in</strong> <strong>the</strong> Project area is <strong>the</strong> <strong>coal</strong> <strong>in</strong>dustry. Many of <strong>the</strong> <strong>m<strong>in</strong>e</strong>s<br />

<strong>in</strong> <strong>the</strong> region have been <strong>in</strong> operation for over 50 years <strong>and</strong> are at or near to <strong>the</strong> end of <strong>the</strong>ir<br />

economic life. The <strong>in</strong>troduction of CBM/CMM <strong>and</strong> associated <strong>in</strong>dustries <strong>in</strong>to <strong>the</strong> local<br />

economies would provide a needed diversification of <strong>the</strong> employment base <strong>in</strong> <strong>the</strong> region.<br />

As well as direct employment <strong>in</strong> <strong>the</strong> drill<strong>in</strong>g <strong>and</strong> operat<strong>in</strong>g companies, jobs are created by<br />

firms <strong>in</strong>volved <strong>in</strong>: leas<strong>in</strong>g; survey<strong>in</strong>g; road build<strong>in</strong>g; site preparation <strong>and</strong> construction; logg<strong>in</strong>g;<br />

f<strong>in</strong>ancial services; legal services; vehicle supply; cater<strong>in</strong>g, retail <strong>and</strong> hotels.<br />

A study by <strong>the</strong> University of Alabama Center for Bus<strong>in</strong>ess <strong>and</strong> Economic Research on <strong>the</strong><br />

impact of <strong>the</strong> CBM <strong>in</strong>dustry <strong>in</strong> <strong>the</strong> Black Warrior <strong>coal</strong> fields of <strong>the</strong> Black Warrior Bas<strong>in</strong>,<br />

Alabama, estimated that at <strong>the</strong> height of <strong>the</strong> drill<strong>in</strong>g boom <strong>in</strong> 1991, 13,000 people were<br />

employed, directly <strong>and</strong> <strong>in</strong>directly, <strong>in</strong> CBM related activities. After drill<strong>in</strong>g activity had peaked,<br />

6,700 jobs were estimated to be associated with <strong>the</strong> production of 109 Bcf of <strong>coal</strong>bed<br />

<strong>methane</strong>. A 1991 study by <strong>the</strong> New Mexico Energy Department estimated additional direct<br />

employment of 1,000 people <strong>in</strong> one county, associated with <strong>the</strong> production of 131 Bcf of<br />

CBM. 4<br />

A fur<strong>the</strong>r study by <strong>the</strong> Sam Walton College of Bus<strong>in</strong>ess at <strong>the</strong> University of Arkansas (2006)<br />

on <strong>the</strong> economic impact of a new gas play <strong>in</strong> <strong>the</strong> Arkoma Bas<strong>in</strong>, Arkansas, estimated that<br />

over four years, 9,700 (full time equivalent) jobs would be created <strong>in</strong> 10 counties, with $3.8<br />

billion direct expenditures from <strong>the</strong> gas <strong>in</strong>dustry <strong>and</strong> $358 million <strong>in</strong> state <strong>and</strong> local taxes<br />

generated.<br />

4 U.S. EPA “The Environmental <strong>and</strong> Economic Benefits of Coalbed Methane Development <strong>in</strong> <strong>the</strong> Appalachian<br />

Region” April 1994<br />

Developmental Impact 8-4

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!