16.05.2013 Views

M"y, L974 - MSpace at the University of Manitoba

M"y, L974 - MSpace at the University of Manitoba

M"y, L974 - MSpace at the University of Manitoba

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

THE I]N]VERS]TY OF MANITOBA<br />

AN EVALUATION OF SEED YIELD, PROTEIN CONTENT,<br />

AND OTHER AGRONOMIC CHARACTERISTICS OF<br />

THE GENUS LUPINUS<br />

by<br />

JOSEPTì FREDERICK FI]RGAL<br />

A THESIS<br />

SUBMITTED TO THE FACULTY OF GRADUATE STUDIES<br />

IN PARTIAL I'IJLFILMENT OF TI{E REQUIRB,IENTS FOR THE DEGREE<br />

OF MASTER OF SCIENCE<br />

DEPARTMENT OF PLANT SCTENCE<br />

IdINNIPEG, MANITOBA<br />

M"y, <strong>L974</strong>


ACKNOI^ILEDGEMENTS<br />

The author is indebted: to Dr" L. E" Evans for guidance throughout<br />

<strong>the</strong> course <strong>of</strong> research and for his criticisms and suggestions for <strong>the</strong><br />

improvement <strong>of</strong> Ëhe manuscript; to Dr. B" R. stefansson and to Dr" R. J"<br />

Soper for reading <strong>the</strong> manuscript.; to <strong>the</strong> NaËional Research Council for<br />

províding financial assistance for <strong>the</strong> study; to J. Tsukamoto, Agrono-<br />

misË, <strong>Manitoba</strong> Department <strong>of</strong> Agriculture; Lcr l)r. trri. Bushrrk for <strong>the</strong> p::o-<br />

teín and o<strong>the</strong>r chemical seed analyses; to <strong>the</strong> Provincial Soils Testing<br />

Labor<strong>at</strong>ory for <strong>the</strong> soil analyses; and to my loving wife, Alys-Lynne for<br />

her countless hours <strong>of</strong> assisËance and unending moral support.


CONTENTS<br />

PART I: INTRODUCTTON - LITERATURE REVIEW - MATERIALS AND METITODS<br />

INTRODUCTION<br />

1.0 LITERATURE REVIEI^I<br />

1"1<br />

L.2<br />

1.3<br />

L"4<br />

BOTANICAL DESCRIPTION ..<br />

ORIGIN AND DISTRIBUTION<br />

CLIMATIC REQUIREMENTS<br />

1.31 General Requirements<br />

L.32 Specific Requirements<br />

SOIL AND FERTILITY REQUIREMENTS<br />

PAGE<br />

1.5 CIILTURAL PRACTICES<br />

13<br />

L"6<br />

1" 51 Inocul<strong>at</strong>ion . .<br />

L.52 Seeding<br />

L.52L DaËe <strong>of</strong> Seeding<br />

L"522 Depth <strong>of</strong> Seeding ...<br />

L"523 Seed R<strong>at</strong>e and Spacing ..<br />

1.53 I.tÏeed Control .<br />

1"531 Mechanical Control<br />

L"532 Chemical Control<br />

L"54 HarvesËing <strong>of</strong> Èhe Seed Crop<br />

L"54L Use <strong>of</strong> Defoliants ...<br />

1.542 Methods <strong>of</strong> Seed Harvest<br />

I"543 Drying<br />

INSECTS AND DISEASES<br />

L.6I InsecË Pests<br />

B<br />

9<br />

1I<br />

13<br />

L6<br />

L6<br />

L6<br />

L7<br />

L7<br />

L7<br />

1B<br />

r9<br />

L9<br />

22<br />

22<br />

¿5<br />

¿J


1".7<br />

L"62 Diseases<br />

L.627 Fungal Díseases<br />

L.622 Virus Diseases<br />

COMPOSITION AND FEEDING VALUE<br />

L.7L Conpositíon ..<br />

L.7LL Protein, Oí1 and Fíbre<br />

L"7L2 Amino Acíd<br />

L.7L3 Alkaloids - ToxiciLv .,.<br />

L"72 Feeding Value<br />

L.72L C<strong>at</strong>tle Feeding<br />

L.722 Poultry Feeding<br />

L.723 Hog Feeding ".<br />

L"73 Lupinosís - Lupin Poisoning<br />

1.8 AGRONOMIC CHARACTERISTICS<br />

1"81- Seed Yield .. "<br />

L.82 Alkaloid Content<br />

1.83 Flowering and Pollín<strong>at</strong>j-on<br />

1.831 Flowering<br />

L.832 Pollin<strong>at</strong>ion ..<br />

I"84 Pod Number and Distribution .<br />

1.85 Hard and S<strong>of</strong>t-Seededness<br />

1.86 Sh<strong>at</strong>terinC ". "<br />

1" 87 MaËuritv<br />

1.BB Thousand Seed tr{eight<br />

T.9 MARKET POSSIBIL]TIES<br />

PAGE<br />

t/,<br />

') /,<br />

30<br />

31<br />

31<br />

31<br />

JJ<br />

J+<br />

35<br />

37<br />

3B<br />

39<br />

40<br />

/,1<br />

4L<br />

44<br />

++<br />

45<br />

+T<br />

4B<br />

4B<br />

/,o<br />

49


2"0 MATERIALS AND METHODS<br />

2"L REPLICATED YIELD TRIALS<br />

2"2<br />

2.LL Seed Yield in L972<br />

2"I2 Seed Yield Trials in<br />

SINGLE ENTRY NURSERY TRTALS<br />

2"2L Nursery Trial Ln J-972<br />

2.22 Nurseries ín 7973<br />

2"3 CHLOROSIS TEST<br />

r97 3<br />

PART II: RESI]LTS AND DISCUSSION - CONCLUSIONS<br />

3"0 REPLICATED YIELD TRIALS<br />

3.1<br />

J"L<br />

3"3<br />

SEED YIELDS<br />

AGRONOMIC CHARACTERISTICS<br />

3"2L Emergence and Seedlíng Vigor<br />

3.22 Flowering and Pod Setting<br />

3"23 Lodging<br />

3"24 Days to l"l<strong>at</strong>urJ-ty 1..... âr...<br />

3"25 Pod Sh<strong>at</strong>terine<br />

3 "26 Frost Resistance " " .<br />

QUALITY CHARACTERISTICS<br />

3"31 Crude Protein Content<br />

3"32 Amino Acid Courposition<br />

3.33 Analyses <strong>of</strong> I,rrhole and Dehulled Seed<br />

3"34 Seed Color . " "<br />

PAGE<br />

51<br />

51<br />

52<br />

56<br />

56<br />

6L<br />

65<br />

bö<br />

75<br />

75<br />

78<br />

B3<br />

B5<br />

B6<br />

B7<br />

90<br />

90<br />

94<br />

96<br />

9B


5.0<br />

6"0<br />

?^<br />

3.35 Seed Shape and 1000 Kernel tr{eight<br />

3.36 TesË l^Ieisht " ".<br />

NURSERY APPRA]SAL 0F AGRONO¡,trC AND QUATTTY<br />

CHARACTERISTICS OF AGRICULTURAL ACCESSÏONS<br />

4.L LUPIN NURSERY IN 1972<br />

NURSERY TRIAIS IN 1973<br />

4"2L Seed Yields<br />

4"22 O<strong>the</strong>r Agronomic Characteristics<br />

4.22L Days to Flowering<br />

4.222 Days to M<strong>at</strong>urity<br />

4"223 Branching<br />

4.224 Plant Height and Lodgíng ..<br />

4"225 Pod Sh<strong>at</strong>Ëering<br />

4"23 Quality Characteristics<br />

4"23I Crude Protein ConËent<br />

4.232 Seed Color . ..<br />

4.233 Seed Shape and 1000 Kernel hleight<br />

4.234 Test trIeighË ..<br />

CHLOROSIS TEST<br />

DISEASES AND INSECT PESTS<br />

6 "7 DISEASES<br />

6.2 INSECT PESTS<br />

CONCLUSIONS<br />

APPENDTX<br />

BIBLIOGRAPIIY<br />

PAGE<br />

r01<br />

L02<br />

LO4<br />

105<br />

108<br />

113<br />

113<br />

114<br />

115<br />

116<br />

Lt7<br />

118<br />

118<br />

L22<br />

L22<br />

L25<br />

l-26<br />

L34<br />

L34<br />

138<br />

L42<br />

L46<br />

159


ABSTRACT<br />

A prelíminary invesËigaËion in 1971 indic<strong>at</strong>ed thaË lupins (Lupinus<br />

species) had some potential as a high protein seed crop in Manítoba.<br />

This prompted <strong>the</strong> present study ín 7972 and during <strong>the</strong> two year períod<br />

following numerous species and varieties were observed, but only tr. albus,<br />

L. angustifoLt'us" L" Luteus" L. rrutabilis and tr. cosentdniwere considered<br />

to have any potenÈial. The first three <strong>of</strong> <strong>the</strong> above species were tested<br />

in replic<strong>at</strong>ed trials <strong>at</strong> seven loc<strong>at</strong>ions in lvfanítoba for seed yield, pro-<br />

tein content and o<strong>the</strong>r agronomic characteristics. These specíes were<br />

found Ëo be adapted, but were extremely variable in <strong>the</strong>ir yÍelding abiliÈy.<br />

Generally" L" albus performed substanËial1y betËer ttran L. angusl;i.folius<br />

and L. Luteus" The average híghesË yield oÍ. L. albus (maxímum cultivar<br />

yield <strong>at</strong> each loc<strong>at</strong>ion) was 30.8 qu/ha. The average yield on <strong>the</strong> same<br />

basis f.or L. angustifoLíus and L" Luteus was rB "7<br />

qu/ha and 13. 6 qulha<br />

respectively, as compared to <strong>the</strong> fababean check whích yíelded an average<br />

<strong>of</strong> 24"2 qu/lna" The maximum yield obtained r¿as for Z. aLbuss cv. Reuscher,<br />

<strong>at</strong> 51.3 qu/ha (I^Tinnipeg " 1973) "<br />

In addition. to <strong>the</strong> replicaËed yield Ërials, eight single enËry nurs-<br />

ery yield trials consisting <strong>of</strong> <strong>the</strong> five lupín specíes were conducEed in<br />

ManiËoba, and were evalu<strong>at</strong>ed for seed yie1d" protein content and o<strong>the</strong>r<br />

agronomíc characterisËics" A trend siinílar to th<strong>at</strong> in rhe replic<strong>at</strong>ed<br />

Èrials was found to exist, namely- tr. albus ís higher yielding than<br />

L" angustt foLius and tr. Luteus and in th<strong>at</strong> order" Average seed yields<br />

(a11 cultivars, all loc<strong>at</strong>ions) obtained as a percent <strong>of</strong> <strong>the</strong> fababean check<br />

were 697", 557" and 39"/" for L. albus, L. angustifolius and L. Luteus res-<br />

pecËively" L" mutabiLis and tr. cosentiní did not seem to be adapted and


yielded less than I% <strong>of</strong> <strong>the</strong> fababean check. Differerlces between yíelds<br />

<strong>of</strong> fababeans and lupins <strong>at</strong> different locaËions r¡ere <strong>at</strong>tribuËed to lirnited<br />

soil moisËure, r¿here <strong>the</strong> l<strong>at</strong>ter proved to be more drought tolerant"<br />

The protein content vras found to be extremely variable between, and<br />

to a lesser exËent \"¡iühin species " L. Luteus was found Èo have <strong>the</strong> high-<br />

est average protein coritent (a11 cultivars, all loc<strong>at</strong>ions) <strong>of</strong>. 44.47.'<br />

followed by L" aLbus and L. dngustifolíus <strong>at</strong> 35"9"Á and 35.5% proteín res-<br />

pectively, as compared Ëo <strong>the</strong> fababean check which had an average <strong>of</strong><br />

28"2%. Therefore on a proËein yield basis <strong>the</strong> above specíes yielded 68%,<br />

L20"Á, Ä; 802 <strong>of</strong> <strong>the</strong> fababean check respecËively (average yields <strong>of</strong> all<br />

cultívars <strong>at</strong> all loc<strong>at</strong>ions ín replie<strong>at</strong>ed Ëría1s rnultiplied by <strong>the</strong> average<br />

proËein values).<br />

Lupin specíes were found to be consistent in <strong>the</strong>ir amino acid compo-<br />

sítion, having twice <strong>the</strong> lysíne content <strong>of</strong> whe<strong>at</strong> but somev¡h<strong>at</strong> less than<br />

fababeans. Methionine content \^ras found to be similar to fababeans, both<br />

havíng approxim<strong>at</strong>el-y half thaË found in wheaË.<br />

Lupíns were found to be extremely sensíËive Ëo lime-induced chloro-<br />

sís as follows, in diminishing order <strong>of</strong> susceptibility; L. Lutet'Ls, L"<br />

angust¿foL'Lus, L. mutabiLis anð, L. aLbus.<br />

Yield losses due to pod sh<strong>at</strong>Ëering were found to be variable betr¿een<br />

and within species. L" aLbus did not sh<strong>at</strong>Ëer on m<strong>at</strong>uTity, whereas <strong>the</strong><br />

o<strong>the</strong>r species dísplayed varying degrees <strong>of</strong> this characteristic. O<strong>the</strong>r<br />

agronomic characLeristics were found to be s<strong>at</strong>isfacËory, but extremely<br />

variable, although m<strong>at</strong>uïity could be a problem. However, variability for<br />

thís characteristic seems to exist also"<br />

Lupins v¡ere coÍmonly and severely infested with Caragana and Nuttall<br />

Blíster BeeËles Ln L973. I,{ilt and root rot caused by Fusa.t"Lum specíes<br />

was parËicular1y severe in I972o but less so in L973"


PART I<br />

INTRODUCTION<br />

LITERATURE REVIEI^I<br />

AND<br />

MATERIALS AND METHODS


INTRODUCTION<br />

Increasing enphasis can be expecËed throughout <strong>the</strong> world on Ëhe pro-<br />

ducËion <strong>of</strong> legumes for Ëheir seeds" This gre<strong>at</strong>er emphasis is due partly<br />

to íncreasíng demand for protein feedstuffs and also to various c<strong>at</strong>as-<br />

Ërophies ín many countries th<strong>at</strong> have creaÈed a paucity <strong>of</strong> both anímal<br />

and vegetable protein, such as failure in <strong>the</strong> Peruvian fish caËch and<br />

delays and damage to Ëhe U"S. soybean crop amountíng to an esËimaËed<br />

100 mí1líon bushels ín L972. These factors have recenËly culmín<strong>at</strong>ed with<br />

unprecedented price increases in <strong>the</strong> protein market.<br />

I^IesËern Canadían agriculture does not produce sufffcient quantit.ies<br />

<strong>of</strong> vegeËable protein to meet domestic demand" This deficíË may be aËtrÍ-<br />

buted Ëo various factors, but <strong>the</strong> mosË important is <strong>the</strong> lack <strong>of</strong> a well<br />

adapted, high-yielding crop plant th<strong>at</strong> contains a high pereentage <strong>of</strong> good<br />

quality protein. Until <strong>the</strong> recent introduction <strong>of</strong> fababeans (Vicia faba<br />

L.), production <strong>of</strong> grain legumes r¿as seriously restricted in <strong>the</strong> trnlest.<br />

Our short growing season prevents <strong>the</strong> cultÍvaËion <strong>of</strong> soybean, and field<br />

peas are r<strong>at</strong>her low yielding and have many uanagement and handling<br />

problems" Rapeseed, a cruciferous crop, is high in protein, but has many<br />

toxicity problens.<br />

The necessity <strong>of</strong> a protein crop for local use as well as foreign<br />

mnrkets has <strong>of</strong>fered <strong>the</strong> ímpetus for <strong>the</strong> search for ttner,rtt crops Ëh<strong>at</strong> may<br />

be suited to production in üIestern Canada. Lupins (Lupínus spp") are an<br />

example <strong>of</strong> such a ne\r crop th<strong>at</strong> may have potential in Ëhis area.<br />

Lupins are erect growing planËs th<strong>at</strong> belong to tlne Legumínosae fanily"


They are rel<strong>at</strong>ively high yielding and <strong>the</strong>ir seeds contain large amounts <strong>of</strong><br />

good quality protein. Al1 production procedures may be handled wiËh con-<br />

venËional cereal equipment" They are laËer in maËurity than whe<strong>at</strong>o but<br />

are very frost toleranL. They also possess <strong>the</strong> very desirable charac-<br />

teristic <strong>of</strong> being able to grow well on soils th<strong>at</strong> are exËremely 1ow in<br />

fertility. Hence <strong>the</strong> generic name Lupinus, "lupus, L<strong>at</strong>in for v¡olf, from<br />

some fancied ability to prey on Ëhe soil," (Bailey, 1963). Since lupins,<br />

like many oÈher legumes, fix <strong>at</strong>mospheric nitrogen via a bacterial syubio-<br />

siso little or no nítrogen fertilíz<strong>at</strong>Lort is required. In facË, such large<br />

amounts <strong>of</strong> nitrogen are fixed and left behínd in crop residues th<strong>at</strong> crop-<br />

ping with lupins increases soil fertility and <strong>the</strong>refore has a benefÍcial<br />

effecË on subsequent crops "<br />

Lupi-ns are possibly best known ín rhis country by Ëhe wild types<br />

th<strong>at</strong> are represented by well over 100 different species distributed<br />

across Canada and Alaska" Suall-seeded ornamental types may also be<br />

familiar, TepresenËed by such species as Lupinus poLyphyLus (Russel Lupin)<br />

and .L. hantaegii (Hartweg Lupin). Little or no cultivaËion <strong>of</strong> <strong>the</strong> large-<br />

seeded agricultural types has been <strong>at</strong>tempËed in trrlesËern Canada. Ïn many<br />

European countries, as well as Australia, New ZeaLand, Africa and south-<br />

eastern UniËed St<strong>at</strong>es, lupins are gror^rn for forage, green manuring and<br />

for <strong>the</strong>ir seed which ís fed to various classes <strong>of</strong> livestock. Thev also<br />

served ín a lesser role as human food.<br />

Prelíminary investig<strong>at</strong>ions with Lupins ín 1971 índíc<strong>at</strong>ed th<strong>at</strong> Ëhey<br />

may have some poËentíal as a high protein grain crop in ManiËoba" This<br />

led to <strong>the</strong> present study ÉhaË evaluaËes lupíns under <strong>Manitoba</strong> field con-<br />

ditions in terms <strong>of</strong> <strong>the</strong>ir adaptíbíliËy, seed yield, proÈein conËent and<br />

quality, and o<strong>the</strong>r agronomic characterisÈics.


Varieties belonging Ëo <strong>the</strong> many varied species <strong>of</strong> 1upins r¡rere ob-<br />

served and evalu<strong>at</strong>ed in L972. Subsequent testing focused upon Ëhe more<br />

important, established agricultural species, namely, Lupinus aLbus, L.<br />

angustifoLi.us, L. Luteus, L" mutabiLis and L. eosentini.<br />

A very compleËe revier,¡ on <strong>the</strong> subject <strong>of</strong> lupÍns as crop plants has<br />

been recenËly published by Gladstones (1970b). o<strong>the</strong>rs, such as wellso<br />

and Forbes have carried out much research on lupins in <strong>the</strong> U"S,A. Refer-<br />

ence to <strong>the</strong>se authors r¿il1 be exËensíve.


1.1 BOTANICAL DESCRIPTION<br />

1.0 LITERATURE REVIEI,d<br />

Lupíns belong to <strong>the</strong> Leguminosae famíLy" The genus Lupinus j-s com-<br />

prÍsed <strong>of</strong> many species with extensive geneËic and morphological vari<strong>at</strong>íon.<br />

Linnaeus (1753) listed only six specíes <strong>of</strong> lupins, namely, tr. albus, L"<br />

angustl:foL'ùus" L" Lutanso L" uarius" L" perennis anð, L" ht-y,sustus. up-<br />

r¿ards <strong>of</strong> 300 species have now been descrÍbed, with more than 2OO species<br />

occurri-ng wíId ín North America (Bailey, 1963; Turner" lg5g).<br />

There are basically two groups <strong>of</strong> lupins - Ëhe large-seeded agricul-<br />

tural Ëypes whích are mainly annuals, and <strong>the</strong> perennial small-seeded<br />

ornamentals "<br />

The laËer group is represented by species such as L" poLA-<br />

phyLLus (Russel Lupin) and L. hartuegii (Harr!üeg Lupín) "<br />

The large-seeded crop varieÈies are <strong>of</strong> <strong>the</strong> following specíes: L"<br />

aLbus" L. arqustt,folius, L" Luteus, L. mutabiLi.s anð. L. cosenti.ni. The<br />

present study focuses on Èhe evaluaËion <strong>of</strong> <strong>the</strong>se large-seeded types th<strong>at</strong><br />

are presenËly culÈiv<strong>at</strong>ed in various areas <strong>of</strong> <strong>the</strong> world"<br />

In general' both large and sma11-seeded Ëypes have dígit<strong>at</strong>e leaves<br />

<strong>of</strong> 5 to 15 leaflets. The flowers are showy, in termínal racemes or some-<br />

Èimes whorled and can be r,rhíte, yellow, b1ue, purplish or papilionaceous.<br />

The fruit (pods) are fl<strong>at</strong>tened and are mostly constricËed or grooved<br />

beËç¡een <strong>the</strong> seeds (Bailey, 1963). The overall taxonomy <strong>of</strong> <strong>the</strong> genus is<br />

somer¿h<strong>at</strong> confusing, even for <strong>the</strong> ímportant agricultural types as indi-<br />

c<strong>at</strong>ed in Table 1 (Gladsrones, f970b) "<br />

The genus has chromosome numbers ranging from 2n = 32 to zn = 96<br />

(Gustafsson and Gadd, 1965). The large-seeded species have a widely<br />

differing chromosome number, and inËerspecific crossing ís impossible or


very rare (Kazimierski, 1960, L96L" L964a). This genetíc diversity<br />

forces independent breeding <strong>of</strong> <strong>the</strong> different species. Along with Ëhe<br />

geneËic diversity <strong>the</strong>re exists a faLrLy wide morphological separ<strong>at</strong>íon<br />

in <strong>the</strong> genus, which will be dísplayed in a following sectíori" Inter-<br />

specific crossíng does occur in many <strong>of</strong> <strong>the</strong> wild, small-seeded species<br />

(Kazimierski, L964b) "<br />

Table l. Conrnon nâmes, synonyms and chromosome nr¡nber <strong>of</strong> <strong>the</strong> agricultural<br />

specíes <strong>of</strong> lupins<br />

Specíes Cormnon names Synonyms 2n<br />

L. aLbus White lupin L. tevmis<br />

L" angustifoLius Blue lupin<br />

L"<br />

L.<br />

T<br />

Luteus<br />

mutabilis<br />

cosentíni<br />

narrow-leafed<br />

Yellow lupin<br />

Sandplain lupín<br />

tr{" Australian<br />

Blue lupin<br />

L" graecus<br />

L" jugosLauicus<br />

L" udvi.us<br />

L" LinifoLius<br />

L. r,iticul<strong>at</strong>us<br />

L" DayLus ssp" Dar"Lus<br />

I.,IHITE LUPINS G'" albus) are erect growing annuals th<strong>at</strong> branch con-<br />

siderably and <strong>at</strong>tain a height <strong>of</strong> 0"4 to 1,4 meters. The oblong leaflets<br />

are 3"5 to 5 cm 1ong. The flowerso whiËe with tinges <strong>of</strong> blue th<strong>at</strong> vary<br />

ín intensity, are borne in terminal racemes. The pods are 6 to 10 cm<br />

50<br />

40<br />

52<br />

4ö<br />

J¿


long and L to 2 cm broad, each conËaíning 4 to 6 seeds. The seeds are<br />

pinkish or whítish, compressed and obicular, approxim<strong>at</strong>ely 0"8 cm v¡ide<br />

(Bailey, 1963).<br />

BLUE LUPINS (L. angustífoLius) are erect growing annuals r,¡hich have<br />

fine, pr<strong>of</strong>use, l<strong>at</strong>eral branching and grow from 0"4 to 1.5 meters tall"<br />

The terminal flornrers may be blue, pínk, purple or whiËe. The pods range<br />

from 5 to 6 cm long and 1.5 to 1.6 cmwide and usually contain 5 to 6<br />

seeds, which may be sl<strong>at</strong>e-grey with brown rnarbling and r^rhitish spots, or<br />

rarely white, black, brown, or intermedi<strong>at</strong>e colors" They are smooth and<br />

spheroidal, 6 to B rm long and 5 ro 6 mm wide (Bailey, 1963).<br />

YELLOIÀI LUPINS @. Luteus) are less erect, spreading annuals th<strong>at</strong><br />

branch strongly from <strong>the</strong> base and groÉr to heights ranging from 0.2 to<br />

1.0 meËer. The leaflets are intermedi<strong>at</strong>e between those <strong>of</strong> <strong>the</strong> above two<br />

species and may be 2"5 to 3 cm long" The flowers are always yellow and<br />

seL raËher hairy pods th<strong>at</strong> are 5 to 6 cm long and 1.5 to 1"6 cm wide,<br />

and conËain 4 to 7 seeds. The seeds are smooËh and compressed and 6 to<br />

B mm long and 5 to 7 mn wíde. They may be whitish with brown to black<br />

mottling or whíte in <strong>the</strong> improved cultivars (Gladstones, 1958).<br />

only a few cultivars <strong>of</strong> L" mul;abiLis and L. eosentini were observed<br />

and none Ì¡rere tesLed in replic<strong>at</strong>ed yield Ërials, <strong>the</strong>refore a full descrip-<br />

Ëion is omitËed.<br />

7"2 ORIGIN AND DTSTR]BUTION<br />

The three main agricultural species <strong>of</strong> lupins, z. aLbus, L" angust-<br />

folius and L' Luteus, are aLL <strong>of</strong> Mediterranean origin. L. albus was


gror¡/n in antiquity, whereas <strong>the</strong> o<strong>the</strong>r Ëwo species have been taken into<br />

culËivaËion only recently" In spite <strong>of</strong> being cultiv<strong>at</strong>ed by man, <strong>the</strong><br />

above species still have many characterístics <strong>of</strong> rel<strong>at</strong>ed wíld species"<br />

The main difference betq¡een <strong>the</strong> r¿ild and <strong>the</strong> cultiv<strong>at</strong>.ed ís th<strong>at</strong> gigan-<br />

Ëism <strong>of</strong> both seed size and plant size has developed (Schwanítz, L967).<br />

Various non-agricultural types have had Ëheir origins in North and South<br />

America (Gladstones, f958) "<br />

Assuming a monophyletic origin <strong>of</strong> all lupin species, iË follows<br />

th<strong>at</strong> American and Mediterranean popul<strong>at</strong>ions r¡rere once uníted. Separ<strong>at</strong>ion<br />

took place in <strong>the</strong> l<strong>at</strong>e CreËaceous or early Tertíary era resulting ín <strong>the</strong><br />

independent specÍ<strong>at</strong>íon thaË gave rise to <strong>the</strong> two different popul<strong>at</strong>íons<br />

<strong>of</strong> relaËed specíes (Dunn and Gillett, 1966).<br />

TI{E WHITE LIIPIN (¿. albus) was cultiv<strong>at</strong>ed by <strong>the</strong> ancient Greeks and<br />

Romans as a green manuree for caËtle feed and for human food. ïts antiq-<br />

uíty in Spaín is sho¡^rn by <strong>the</strong> exisËence <strong>of</strong> four different common names<br />

according to <strong>the</strong> province (DeCandolle, 1959) " This species is widely<br />

distributed in a wíld form in countries bordering <strong>the</strong> Medj-terranean and<br />

ín EËhiopia. It is cultiv<strong>at</strong>ed in <strong>the</strong>se areas as well as in Argentina,<br />

Central Europe and parËs <strong>of</strong> Ëhe sou<strong>the</strong>rn U"S.S.R" as a grain legrme<br />

(Gladstones, 1958).<br />

TT{E BLUE LUPIN (¿" angustifolius) has been taken into cultiv<strong>at</strong>ion<br />

only recently when compared to L" albus " It was sparingly used ín <strong>the</strong><br />

Mediterranean region, where it is n<strong>at</strong>ive, rnrithout havíng become domesti-<br />

c<strong>at</strong>ed" It has been rvidely used as a c<strong>of</strong>fee substitute and as human food<br />

in times <strong>of</strong> gre<strong>at</strong> need. It is widely cultiv<strong>at</strong>ed in ËIolland, Sweden,<br />

Germany, Poland and <strong>the</strong> U.S.S"R., and finds uses in South Africa and Ner,¡


zeaLand, mainly for soil improvement. rt is used as a forage and a grain<br />

crop for caLtle or sheep feed ín Florida and Inlestern Australia (Gladstones,<br />

19sB) .<br />

TIIE YELLOW LUPIN (¿" Luteus) has had minimal use as a cïop planË ín<br />

comparison Èo <strong>the</strong> o<strong>the</strong>r Ëwo species. Cultiv<strong>at</strong>ion has been established<br />

f.or a long period <strong>of</strong> tíme in <strong>the</strong> l¡Iestern parts <strong>of</strong> <strong>the</strong> Iberian Peninsula"<br />

North Africa and Maderia (GladsËones, 1970b). rt occurs n<strong>at</strong>urally on<br />

<strong>the</strong> sandy soils in <strong>the</strong> WesËern Mediterranean including Tunísia, Algeria,<br />

spain, Portugal, corsiea, sardinia, sicily and rta1y" The culËivaÈion<br />

has spread and increased throughout Nor<strong>the</strong>rn Europe, Holland, sweden"<br />

Germany, Poland and <strong>the</strong> U"S"S.R. It is also cultivaËed in South Africa.<br />

Nev¡ Zealand and Florida for soil improvement and seed for animal feed"<br />

and for forage (GladsÈones, r95B)" The acreage in <strong>the</strong>se areas has de-<br />

creased sÈeadily however, but some sporadic cultiv<strong>at</strong>ion still occurs"<br />

Many o<strong>the</strong>r species <strong>of</strong> lupins have had limiËed use as ornamentals,<br />

or crop plants (L. mutahiLis, L" pilosus, L" cosentini) and are <strong>the</strong>refore<br />

omitted from this secËíon" However, Í/e should make some mentíon <strong>of</strong> Ëhe<br />

early use <strong>of</strong> L" pi.Losus in canada. cornut (1635) writing <strong>of</strong> canadian<br />

plants, st<strong>at</strong>es th<strong>at</strong> this specíes was used for making flour aË Lh<strong>at</strong> tíme.<br />

1" 3 CLIMATIC REOUIREI'IENTS<br />

1.31 General RequiremenËs<br />

All <strong>the</strong> important agricultural species, have a long day photoperiod<br />

requirement and a variable response Ëo vernaliz<strong>at</strong>ion" The dístribuËion<br />

<strong>of</strong> lupÍns clearly displays <strong>the</strong>ír ability to grorrü over a wide range <strong>of</strong>


l<strong>at</strong>iËudes. The main factor in <strong>the</strong>ir distTíbution seems to be temper<strong>at</strong>ure"<br />

They are groT/ùrr as sr:rrmer annuals in cool temper<strong>at</strong>e clim<strong>at</strong>es and as winter<br />

annuals in subËropical clim<strong>at</strong>es (Gladstones, L97Oa) "<br />

The "ecologícal optimr:mt' concept as developed by Klages (1930, L934)<br />

would be met for lupins if Ëhe following condítions prevailed; <strong>at</strong> least<br />

five ¡nonths <strong>of</strong> adequ<strong>at</strong>e moisture, during r¿hích <strong>the</strong> mean teinperaËure is<br />

between 15 and 25 degrees Centígrade (Gladstones, 1958) " In areas where<br />

<strong>the</strong>y are gror.rn as wínËer annuals a lower temper<strong>at</strong>ure is toleraËed for<br />

short periods, províding <strong>the</strong> Ëemper<strong>at</strong>ures before and after this period<br />

compens<strong>at</strong>e for <strong>the</strong>se lower temper<strong>at</strong>ures "<br />

1.32 Specific Requirernents<br />

Although clim<strong>at</strong>ic requirenents are similar for all <strong>the</strong> agricultural<br />

species, uinor, distinct dífferences exist"<br />

The primitive Balkan progenitor <strong>of</strong> L. albu.s can wíËhsËand periodÍc<br />

cold temper<strong>at</strong>ures ín a winter cropping regime" Itlinter cropping in <strong>the</strong><br />

Nor<strong>the</strong>rn U.S.A. also suggests th<strong>at</strong> this species is quite frost Ëolerant<br />

(Henson and stephens, 1958) " <strong>of</strong>fuÈr (1961) found rhar in Arkansas tr.<br />

albus is more frost hardy tinan L. angustífolius" However, Hackbarth and<br />

Troll (1960) found t]n<strong>at</strong> L" aLbus occupied a range far<strong>the</strong>r south than<br />

oËher specíes under a suutrer cropping regime, and growth was somewhaË<br />

better under warmer and dryer condítions" This varied disËribuËíon <strong>of</strong><br />

cultiv<strong>at</strong>.ed types <strong>of</strong>. L. albus suggests th<strong>at</strong> Turessont s (L922) "ecotype<br />

conceptrr is oper<strong>at</strong>ive for this species, th<strong>at</strong> isu in a taxonomic Linnean<br />

specíes, a nunber <strong>of</strong> races exíst which exhibit inherent differences in<br />

boËh morphology and physiology, however, Ëhese differences are noL gre<strong>at</strong><br />

enough Ëo r¡Tarrant taxonomíc distinction. Gladstones (L969a) summarized


its clim<strong>at</strong>ic requiremenËs as follows; cool to moderaËely vTarm growing<br />

season temperaËures, being fairly resistant to frost.<br />

Hackbarth and Tro1l (1960) suggested th<strong>at</strong> L. angusttfoLius is adapted<br />

to relaÈively cool growíng seasons. Forbes and l{ells (1966) reported<br />

th<strong>at</strong> Ëhis specí.es can toler<strong>at</strong>e frosts dor^¡n to -6 degrees Centigrade and.<br />

th<strong>at</strong> some <strong>of</strong> <strong>the</strong> wild types can withstand frosts in Èhe magnitude <strong>of</strong> -16<br />

degrees CentÍgrade or lower. Excessively high temper<strong>at</strong>ures aË flowering<br />

tÍme results in a large percenËage <strong>of</strong> flower abortion in L. angustifoLius<br />

and to a lesser degree in L. aLbus and tr. Luteus (Hackbarth, 1955).<br />

Gladstones' suurnary <strong>of</strong> clímaËic requirements is very similar to th<strong>at</strong> for<br />

L" aLbus.<br />

Henson and Stephens (1958) suggested th<strong>at</strong> tr. Luteus requíres a rn-Llder<br />

growing season and is less Ëolerant to frosts than tr. albus and tr. angus-<br />

ti,foLius. Kubok (1965) and Laczynska (1954) considered borh ËennperaËure<br />

(vernalíz<strong>at</strong>ion) and photoperíod imporËanL in floral ini<strong>at</strong>ion, buË <strong>the</strong><br />

rel<strong>at</strong>ive ímporËânce <strong>of</strong> each is not kno¡vn. Gladstones (1969a) sunmarized.<br />

iÈs requirements as follows; mild growing season tenper<strong>at</strong>ures and only<br />

light frosts are Ëoler<strong>at</strong>ed"<br />

Barbacki (1960), on <strong>the</strong> basis <strong>of</strong> greenhouse w<strong>at</strong>er r<strong>at</strong>ioning trials<br />

suggested th<strong>at</strong> a difference in drought tolerance exists among <strong>the</strong> three<br />

species <strong>of</strong> lupins' r,7ith ¿. Luteus more tolerant Ëhan L" aLbus or L. q.Wus-<br />

tdfolious. Gladstones (L969a) suggested th<strong>at</strong> an opposite rel<strong>at</strong>ionship<br />

exists between tr" Luteus ar'd L" angustifoL'íous under I^Iestern Australian<br />

conditions. Regardless, differences in drought resistance exist and are<br />

<strong>at</strong>tríbuted to <strong>the</strong> branching tap ïootrs ability to penetr<strong>at</strong>e to a gre<strong>at</strong>er<br />

depth more quickly on light soils r<strong>at</strong>her than o<strong>the</strong>r forms <strong>of</strong> physiological<br />

resistance (Ozanne eÈ al_" 1965) "<br />

r0


Excessive moisture also effects <strong>the</strong> three species differently.<br />

GladsËones (L969a) reported th<strong>at</strong> ¿. Luteus is <strong>the</strong> most tolerant ro rü<strong>at</strong>er<br />

logging, and Vuuren (L964) suggested th<strong>at</strong> tr. aLbus is <strong>the</strong> mosË sensitive.<br />

T.4 SOIL AND FERTILITY REOUIREMENTS<br />

The various species <strong>of</strong> lupins are well known for <strong>the</strong>ir ability to<br />

grord on sub-marginal soils th<strong>at</strong> are 1ow in fertility, such as sands and<br />

gravels" Heawy soils should be avoided since <strong>the</strong>y delay Ëhe m<strong>at</strong>urity <strong>of</strong><br />

thÍs already l<strong>at</strong>e maËuring crop.<br />

"Lupins characteristically gïohr on coarse-Ëextured, well drained<br />

soíls <strong>of</strong> acíd to neutral reactionr" (Gladstones, LgTob) " However, <strong>the</strong>y<br />

are very susceptible Ëo alkaliníty and do not grow well in soils th<strong>at</strong><br />

contain even small amounLs <strong>of</strong> lime. High levels <strong>of</strong> lime in <strong>the</strong> soíl r^¡ill<br />

evenËually result in líme induced chlorosis <strong>at</strong> some stage in <strong>the</strong> develop-<br />

ment <strong>of</strong> <strong>the</strong> plant" This type <strong>of</strong> chlorosis is usually associ<strong>at</strong>ed with an<br />

iron deficiency, buË may also reflect a mânganese defíciency in some<br />

instances (Scholz, 1933, L934).<br />

Lupins, like o<strong>the</strong>r legumes, fix <strong>at</strong>mospheric nitrogen via <strong>the</strong> root<br />

nodules, <strong>the</strong>refore litËle or no nitrogen fertílizer is required. Glad-<br />

sËones et al" (1964) suggested rh<strong>at</strong> all lupins require umch phosph<strong>at</strong>e<br />

f.ertiliz<strong>at</strong>ion on new 1and, buË are more efficient than many plants in<br />

utilizing phosphorous th<strong>at</strong> is less readily available. LitË1e is knovm<br />

about <strong>the</strong> sulphur nutrition <strong>of</strong> lupins, but many o<strong>the</strong>r legrrnes are sensi-<br />

tive Ëo sulphur deficiencies "<br />

Just as <strong>the</strong> different agricultural species have dístinct differences<br />

in clim<strong>at</strong>ic requirements, <strong>the</strong>y also have different reguirements for soil<br />

11


and fertility.<br />

L. aLbus is besË adapted to mildly acid to slíghtly basic sandy<br />

loams <strong>of</strong> intermedi<strong>at</strong>e fertilíty and suffers less readily from lime ín-<br />

duced chlorosis (Suranyi, 1935, Sengbush, L9373 Henson and Stephens, 1958;<br />

Hackbarth " L953; Gladstones, 1959). IË has Ëhe highesË fertility require-<br />

ment <strong>of</strong> <strong>the</strong> agricultural specíes. Lastora (J,964) found th<strong>at</strong> low phos-<br />

phorous levels resulted in decreased yields. LiËËle else is known about<br />

<strong>the</strong> nutrition <strong>of</strong> this species.<br />

L" angustifoLius ís best adapted to moder<strong>at</strong>ely acid to neutral sandy<br />

loams" Its fertiliËy requírement is lower Ëhan tr. aLbus and may be grown<br />

on poor soils if properly fertilízed" It is less Ëolerant <strong>of</strong> soil line<br />

tlnan L" a.Lbus but suffers less readily from nutritíonal defíciencies -<br />

It has a lower requirement for P and K than L. albus" buË gre<strong>at</strong>er than<br />

f.or L" Luteus (Hackbarth, 1960; Gladstones et al. L964). Gladstones<br />

(L962, 1970b) reporËed th<strong>at</strong> this species ís susceptible to Cu defícÍency,<br />

but to a lesser degree Ëhan tr. Luteus. He also suggested th<strong>at</strong> it is<br />

hígh1y susceptible to Co deficíency but not to Mo deficiency.<br />

L" Luteus is noted for its ability to grow r¿ell on very acid soils<br />

which are extremely low in fertilíty (Suranyi" 1935; Oldershaw, 1951;<br />

Gladstones, 1959; Hackbarth and Tro11, 1960) " It is extremely suscept-<br />

ible to lime induced chlorosís which results even if only trace amouÍrts<br />

<strong>of</strong> líme are present in <strong>the</strong> soil" Studies by numerous aulhors suggest<br />

Èh<strong>at</strong> thís specíes rarely suffers from míneral deficiencies o<strong>the</strong>r than Fe<br />

or Mn on high lime soils (Gladstonese L962i Gladstones and Drover, L962;<br />

Gladstones et al. L964; GladsËones and Loneragan, L967).<br />

T2


1" 5 CIILTURAI, PRACTICES<br />

1.51 Inocul<strong>at</strong>ion<br />

Lupins, like o<strong>the</strong>r legumes, store large amounts <strong>of</strong> proÈein in <strong>the</strong>ir<br />

veget<strong>at</strong>ive parts and seeds" ProËein syn<strong>the</strong>sis is dependent upon organíc<br />

nítrogen, which is obtained from <strong>the</strong> symbíosis bett¡een <strong>the</strong> root system<br />

and <strong>the</strong> bacteritur Rhizobiwn Lupini. Thís particular bacËerium is classi-<br />

fied into <strong>the</strong> lupín inocul<strong>at</strong>ion group and will not function with o<strong>the</strong>r<br />

legurne species (Erdman, 1953).<br />

Norris (1956) and Graharn (1964) found th<strong>at</strong> <strong>the</strong> 1upín nodule bacterium<br />

differs in many respects from <strong>the</strong> Rhizobit¡n classific<strong>at</strong>ion" They are re-<br />

1<strong>at</strong>ívely slow growing and can survive 1ow soíl ferËility and pH, <strong>the</strong>refore<br />

Graham suggests th<strong>at</strong> this inoculaËion group be transferred Ëo Ëhe genus<br />

Phytomyæa"<br />

Ne1 (1960) found th<strong>at</strong> ínocul<strong>at</strong>ion is not always necessary" Yield<br />

decreased when uninocul<strong>at</strong>ed seed was groÍrn on land th<strong>at</strong> had not carried<br />

lupins for seven years, however no yield decreases resulted when uninocu-<br />

l<strong>at</strong>ed seed rrras groltn on land Ëh<strong>at</strong> was cropped with lupins Ëwo years pre-<br />

víous. McKee and Ritchey (L947) suggested th<strong>at</strong> inocul<strong>at</strong>ion should be<br />

caxried out every year, even on land prevíously cropped with lupins"<br />

Schinidt (L967) found ËhaË some indigenous strains <strong>of</strong> lupin inoculum<br />

are parasític" Ilowever, if an active straín was placed on <strong>the</strong> seed prior<br />

to plantingo it prevenÈed infection by <strong>the</strong> inactive parasitic strain"<br />

Differences in strain effíciency exíst. Kretovich et a1. (L972) found<br />

a correl<strong>at</strong>ion between intensity <strong>of</strong> respir<strong>at</strong>ion, cyÈochrom. P450 "td<br />

effeetiveness <strong>of</strong> t1ne Rhizobiun strain" Ineffective strains had onLy 257"<br />

<strong>of</strong> <strong>the</strong> respir<strong>at</strong>ion <strong>of</strong> effective strains and conËained no cytochrom. P450"<br />

13


cheremísov et a1. (1969) also found strain differences using Nitragen<br />

inocul-r:m"<br />

Inlhen ínocul<strong>at</strong>íon ís not successful or if fix<strong>at</strong>ion is not efficient<br />

niËrogen starv<strong>at</strong>ion results with its usual syrtrPtoms and seed yields will<br />

seríously decrease if soil N is also low. Prevíous Ëo such s)rmptoms '<br />

inefficient fix<strong>at</strong>ion may be determíned by exposing <strong>the</strong> inside <strong>of</strong> a root<br />

nodule to air" A blood red color<strong>at</strong>ion indic<strong>at</strong>es effective fix<strong>at</strong>íon. If<br />

nodul<strong>at</strong>ion is not successful a top dressíng <strong>of</strong> 9 to LB kg/ha <strong>of</strong> N or<br />

inoculum míxed with a carrier may reetify <strong>the</strong> situ<strong>at</strong>ion (Wells et al'<br />

19s6) .<br />

Zakharchenko and Pirozhenko (1970), with pot trials, found th<strong>at</strong> <strong>the</strong><br />

percenËage <strong>of</strong> Ëhe total N in <strong>the</strong> plant th<strong>at</strong> was derived from fix<strong>at</strong>ion <strong>of</strong><br />

<strong>at</strong>mospheric N was 82"27. and N uptake from <strong>the</strong> soil was approxim<strong>at</strong>eLy 5O%<br />

<strong>of</strong> <strong>the</strong> amount applied" Gukova eË al. (1971) found Ëh<strong>at</strong> nitrogen applica-<br />

tions reduced Ëhe amount <strong>of</strong> N fixed from <strong>the</strong> <strong>at</strong>mosphere and th<strong>at</strong> yíelds<br />

<strong>of</strong> dry m<strong>at</strong>teï and seed increased with increased r<strong>at</strong>es <strong>of</strong> N applied. hrhen<br />

<strong>the</strong> nitrogen applied T¡las íncreased from 28 kglha to 280 kg/ha seed yield<br />

increased from 1.4T/ha to 2.7 T/ha" Dorosinskíi (1969) found th<strong>at</strong> inocu-<br />

l<strong>at</strong>ion had no effect on yíeld <strong>at</strong> high N levels" These studies suggesË<br />

Ëhar seed yield may be limited by <strong>at</strong>mospheríc N fixaËion or Ëh<strong>at</strong> bacËeria1<br />

strains used r.uere inefficíenË. Gukova (1968), using pot experiments,<br />

found th<strong>at</strong> increasing K ferLility increased nodule number and total<br />

nodule weight, and th<strong>at</strong> K deficiencies suppressed N fix<strong>at</strong>ion. Elev<strong>at</strong>ed<br />

levels <strong>of</strong> N also depressed nodule form<strong>at</strong>íon and Ëhe r<strong>at</strong>io <strong>of</strong> N fíxed to<br />

N absorbed decreased (Posypanov' T972) "<br />

L4


Poor nodul<strong>at</strong>ion accompanied by low soil N is a major factor in<br />

reducing lupin seed yields " Poor nodul<strong>at</strong>ion can be a result <strong>of</strong> many<br />

facÈors:<br />

1) InefficÍenË Rhizobial strain or lor,rr conceritraÈions <strong>of</strong> víab1e<br />

?\<br />

?)<br />

4)<br />

s)<br />

bacteria in conrnercial ínoculun prepar<strong>at</strong>ions<br />

Seeds are carefully inocul<strong>at</strong>edo but planted into dry soi1,<br />

which resulËs in dessic<strong>at</strong>íon <strong>of</strong> Ínoculum<br />

Dessic<strong>at</strong>ion <strong>of</strong> inocuk¡n during <strong>the</strong> seedíng oper<strong>at</strong>ions indic<strong>at</strong>ed<br />

by decreased nodul<strong>at</strong>ion in successive drill widths<br />

ToxiciËy <strong>of</strong> ferËilizers th<strong>at</strong> come into contacË with <strong>the</strong><br />

inocuhm<br />

Use <strong>of</strong> chemical seed tre<strong>at</strong>rnents which are harmful to <strong>the</strong><br />

Rhízobia<br />

To prevent nodulaÈíon failure commercial inoculum should be kept<br />

refrígeraËed and seedíng should be done iumediaËely after inocuh-u¡ is<br />

applied to Ëhe seed. The use <strong>of</strong> a stickíng agenË wí1l facilit<strong>at</strong>e adher-<br />

ence <strong>of</strong> <strong>the</strong> inoculum to <strong>the</strong> seed coaË and íncrease <strong>the</strong> survival r<strong>at</strong>e <strong>of</strong><br />

<strong>the</strong> bacteria" This can be a corunercial prepar<strong>at</strong>ions or blackstrap<br />

molasses <strong>at</strong> 14 cup per 100 pounds <strong>of</strong> seed (I,Iells et al . L956; Gladstones,<br />

r969b) "<br />

Shipton and Parker (L966), and Parker and Oakley (1965) found th<strong>at</strong><br />

<strong>the</strong> practice <strong>of</strong> lime-pelletíng commonly used for many legumes decreased<br />

nodul<strong>at</strong>íon <strong>of</strong> lupins when inocuk¡n was obtained from agar culËures. How-<br />

ever, pe<strong>at</strong> cultures th<strong>at</strong> were pelleted did not shoÌ^l decreased nodul<strong>at</strong>ion<br />

even afËer storage for 61 days <strong>at</strong> 75 degrees F. This techníque may be<br />

15


useful íf <strong>the</strong> inoculum is to come into contact r^¡ith substances th<strong>at</strong> may<br />

be toxic to ít, such as fertilízers or chemícal and seed tre<strong>at</strong>ments.<br />

1.52 Seeding<br />

Poor seed bed prepar<strong>at</strong>ion will cause uneven stands <strong>of</strong> lupins. since<br />

uneveness or trash will cause <strong>the</strong> seed to be placed on or too near <strong>the</strong><br />

soil surface instead <strong>of</strong> <strong>the</strong> recornmended depth <strong>of</strong> 1 inch. Dessíc<strong>at</strong>ion <strong>of</strong><br />

both <strong>the</strong> germin<strong>at</strong>ing seed and inoculum will result (I^Iells et al. L956) "<br />

L.52L D<strong>at</strong>e <strong>of</strong> Seeding<br />

Many reports reconmend th<strong>at</strong> lupins should be seeded as early as<br />

possible (if grown as suûner annuals) Lo insure maximum vernaliz<strong>at</strong>ion<br />

and early floweríng. Since lupins are very frost tolerant ín <strong>the</strong>ir vege-<br />

t<strong>at</strong>ive stages, (see 1"3) early plantings are not adversely affecËed.<br />

E<strong>at</strong>Ly seeding promotes rapid initial growth which increases competitive<br />

ability against r¿eeds and increases seed yields. LaËe seeding will<br />

seriously de1-ay harvesting operaËions, decrease seed yields and decrease<br />

seed quality due to p<strong>at</strong>hogenic <strong>at</strong>tack. However, Hackbarth (1955) ín<br />

Germany found Ëh<strong>at</strong> \,rith some varieties <strong>of</strong> L" aLbus, seed yields íncreased<br />

with delayed planting but <strong>the</strong>re seemed Ëo be a year x variety or locaËion<br />

inËeraction.<br />

1.522 Depth <strong>of</strong> Seedíng<br />

All three agricultural specíes <strong>of</strong> lupins should be seeded to a depth<br />

<strong>of</strong> 1 inch and a maxímum <strong>of</strong> 2 inches. Deeper seeding may result in poor<br />

emergerrce due to íncreased p<strong>at</strong>hogeníc <strong>at</strong>tack by such organisms as Rhizoc-<br />

tonia (Decker, L943; Forbes et a1" 1961). Average germin<strong>at</strong>ion time for<br />

L. aLbus" L, qngust¿foLíus and L" Luteus Ls 7,10, and 2L days respecËively<br />

L6


(Huges and Henson, 1965) "<br />

L"523 Sèed R<strong>at</strong>es and Spacing<br />

Recorunended seed r<strong>at</strong>es Íor L. albus, L. angustifoLius and L" Luteus<br />

are LZO Èo 160 Lb/a, 70 ro 9O Lb/a and 45 ro 60 1b/a respecríve1y (Huges<br />

and Henson, 1965). Thís r¡¡i11 result in popul<strong>at</strong>ion densities <strong>of</strong> 180,000<br />

to 360,000 plants/a" Van der Kamp and Riepma (1959) found rhar rhe opri-<br />

mum plant densíty for L. Luteus was 35 to 40 pLar¡ts/mz or a seed r<strong>at</strong>e <strong>of</strong><br />

approxiur,<strong>at</strong>ely 75 to 85 ke/na" They also found ËhaË seed raÈe had a<br />

gre<strong>at</strong>er influence on seed yield than did row spacing. Lamberts (1955b)<br />

suggests th<strong>at</strong> a seed r<strong>at</strong>e <strong>of</strong> B0 kg/tta aË a spacing <strong>of</strong> 35 cm betr,reen rows<br />

is adequ<strong>at</strong>e providing germin<strong>at</strong>ion is <strong>at</strong> least B0%,<br />

Shultz (1958) found th<strong>at</strong> seed síze <strong>of</strong> L. aLbus influenced plant<br />

growth and seed yields. Those grovün from seed <strong>of</strong> 1000 kernel weight <strong>of</strong><br />

425 xo 625 grams had better emergencee greaËer plant vigor, earlier flower-<br />

ing, and gre<strong>at</strong>er seed yields than those gro\¡rn from seed T¡rith a 1000 kernel<br />

weight <strong>of</strong> L75 to 375 grams.<br />

1.53 l{eed Control<br />

Many observ<strong>at</strong>ions suggest th<strong>at</strong> lupins compete<br />

growing, broad leafed weeds" However, grass weeds<br />

ín th<strong>at</strong> <strong>the</strong>y very effectively compete for moísture<br />

and pod filling stages (Gladstones, 1969b) "<br />

1"531 Mechanícal Control<br />

well with prostr<strong>at</strong>e<br />

are a serious problem<br />

duríng <strong>the</strong> seed settíng<br />

Traditional cultiv<strong>at</strong>íon procedures, as practiced for cereals, are<br />

used for weed control in lupins" Pre and post emergence harrowíng, int.er-<br />

rov¡ cultiv<strong>at</strong>ion, and hand howing are practiced" Inter-rov¡ cultiv<strong>at</strong>ion<br />

can be used during <strong>the</strong> gror,øing season, but only if row spacing is <strong>at</strong> least<br />

L7


90 crn" However this spacing is noË conducive for maximum yields.<br />

These practices are time consuming and inefficient. Cultiv<strong>at</strong>ion for<br />

weed control may delay seedíng unËil well after <strong>the</strong> optimrm d<strong>at</strong>e and fínal<br />

yields and quality will be reduced. trrlíde spacing does not uaximíze yields<br />

and seríously delays maËurity by promoting branching" Therefore optímum<br />

plant popul<strong>at</strong>ions along with chemical weed contTol should be used.<br />

L"532 Cheuical Control<br />

The following d<strong>at</strong>a on herbicide control<br />

cable to Western Canada due to <strong>the</strong> dísparity<br />

lupíns may not be appli-<br />

clim<strong>at</strong>ological conditíons.<br />

In European, as well as o<strong>the</strong>r countriesr sima2lne is exËensively<br />

used for r.reed control in lupins. Nr¡merous reporÈs have been published<br />

concerning its use (Vossen, 1961; Taylor, L962; Lange and Kunkel, 1963;<br />

MonstvilaiÈe and Puzinaite, 1-966; Mordashev, L967; Monstvílaite, 1968;<br />

Berezhnaya" L968; Kolstov" L969). Sinazine can be used as a pre planË,<br />

or pre emergence herbicide and less conmonly as a post emergence herbi-<br />

cide. It is absorbed only by <strong>the</strong> root system so particular <strong>at</strong>.Ëention<br />

musË be paid to depth <strong>of</strong> planting"<br />

Results in <strong>the</strong> effectiveness <strong>of</strong> simazine vary. Vossen (1961) ob-<br />

Ëained good weed control with up to 2 kg <strong>of</strong> símazíne per hectare but<br />

found iL much less efficient during a dry growing season" MonsËvílaíËe<br />

and Puzinaíte (1966) obtained up to 96% control <strong>of</strong> couch grass (Agropyz,on<br />

repens) with 6 kg/ha applíed early in Ëhe spring. Kolsrov (L969) and<br />

Lange and Kunkef (1963) both obtained yield increases using símazine as<br />

a pre plant or early pre emergence herbicide" At Ëhe raËe <strong>of</strong> L kg/ha<br />

in 600 liÈres <strong>of</strong> vr<strong>at</strong>er, yields were 14 "L% hígher than mechanically con-<br />

Ërolled check ploËs. Mordashev (1967) reported good control <strong>of</strong> Yellow<br />

Rocket (Baybarea uuLgayLs) and I,rrild Radish (Raphantæ z'aphnnisttwn) ax<br />

l_n<br />

in<br />

18


0.75 kg/ha <strong>of</strong> simazine applied pre emergence. Howeveïj peïennials were<br />

not efficiently controlled" O<strong>the</strong>r annual weed species were reduced by a<br />

factor <strong>of</strong> L4 times.<br />

Berezhnaya (1968) usíng 7 kg/lna, obËained onty 20% r¡¡eed contïol.<br />

fn Ëhís sËudy Randox and EPTC <strong>at</strong> 8 kg/ha proved more effective.<br />

Símazine has a residual effect which contribuËes to its high degree<br />

<strong>of</strong> success ín weed cont.rol for lupins as well as o<strong>the</strong>r crops. This per-<br />

sistence rnay delay plantíng <strong>of</strong> successive crops" MonsËvilaite (1966)<br />

found Ëh<strong>at</strong> yíelds <strong>of</strong> fa11 rye thaË followed lupins tïe<strong>at</strong>ed r,rith 6 kg<br />

símazine per hectare TÄrere depressed up to 4L% "<br />

DNOC (2-methyL-|,6-diníËrophenol), pre emeïgencen is also exten-<br />

sively used but íts effectiveness seems to be dependenÈ upon adequaËe<br />

rainfall (Lamzin, 1966). Lange and Kunker (1963) reporred a 15.87" yíeLð,<br />

íncrease vrÍth DNOC <strong>at</strong> 3 kg/ha in 600 litres <strong>of</strong> vracer pre emergence when<br />

compared to cultiv<strong>at</strong>ed p1ots.<br />

Most, well known post emergence herbicides seríously damage <strong>the</strong> lupín<br />

planËs. De<strong>at</strong>h <strong>of</strong> Ëhe plant or aÈ best depressed yields resulted" These<br />

includei 2,4,5-T, 2,4-D, 2,h-DB, MCPA, MCPB, mecoprop " 2,3,6-T8A, fenac,<br />

sMAn dalapon, amitrole, diqu<strong>at</strong>n dínoseb, and pcp (Taylor, L962). varíous<br />

o<strong>the</strong>r herbicides th<strong>at</strong> have been tried are listed in Table 2.<br />

1.54 Harvesting <strong>of</strong> <strong>the</strong> Seed Crop<br />

1".54L Use <strong>of</strong> Defolianrs<br />

Uneven ripening, accentuaËed by l<strong>at</strong>e planting and moist clim<strong>at</strong>ic<br />

conditions has led to Ëhe use <strong>of</strong> defoliants to facilit<strong>at</strong>e harvesËing.<br />

Mordashev and Rogov (L970) found rh<strong>at</strong> ïipening could be hastened by 13<br />

T9


Table 2" Herbicides used for weed control in lupins, along with raËes, type <strong>of</strong> applic<strong>at</strong>ion, results, and<br />

references<br />

Reference<br />

Results<br />

R<strong>at</strong>e<br />

ke/b^<br />

Type<br />

Herbícide name(s)<br />

and LusËig, 1960<br />

Idinkler<br />

efficíent control; tolerant.<br />

6 Llha<br />

pre em.<br />

Premin<br />

illtrr<br />

ll<br />

; leaf burn<br />

B l/ha<br />

il<br />

Premin<br />

tt<br />

tt rt<br />

serious crop damage;<br />

6 Llha<br />

post em"<br />

Premín<br />

Monstvilaite and Puzinaite,<br />

L966<br />

Kolrstov, L969<br />

effect.ive f.or AgropAron rlepens<br />

next best t.o simazine<br />

effective control<br />

8 kgltt"<br />

pre en.<br />

Dalapon<br />

2"5<br />

pre plant<br />

Prometryne<br />

3.0<br />

?l<br />

Diphenamide<br />

good for wíld o<strong>at</strong> control<br />

1.5<br />

il<br />

Linuron<br />

effective weed control<br />

3"0<br />

il<br />

Troporox (MCPB-Na)<br />

Chesalin and Spivak, L968<br />

reduced weed pop. by 827.<br />

0 .8-3 .0<br />

pre en.<br />

Aersin (monolinuron)<br />

ilttlttl<br />

effective control<br />

1-1.5<br />

It<br />

Herban (noruron)<br />

Lange and Kunkel, L963<br />

gre<strong>at</strong>er lupin yíelds than<br />

cultiv<strong>at</strong>ed plots<br />

u"ïse; poor weed control<br />

"r:n<br />

3.0<br />

tl<br />

DNOC (2-urethyl-4,6dínitrophenol)<br />

Taylor, L962<br />

tl<br />

Prometon<br />

lt ft<br />

Û<br />

Simeton<br />

control <strong>of</strong> Lanb?s Quarters<br />

various degrees <strong>of</strong> tolerance<br />

¡0<br />

Amiben<br />

t!


Table 2 - Continued<br />

Reference<br />

Results<br />

R<strong>at</strong>e<br />

kg/ha<br />

Type<br />

Herbicide name(s)<br />

Mordashev, L967<br />

6.0<br />

pre em.<br />

Dinoseb<br />

Berezhnayar 1968<br />

control <strong>of</strong> annuals but not<br />

perennials<br />

various degrees <strong>of</strong> control<br />

4-8. 0<br />

pre plant<br />

Randox<br />

Monstvilaite and Puzinaite,<br />

ttuu<br />

,, rt ?r<br />

variable effects on A" T,epens<br />

30<br />

pre em.<br />

TCA<br />

30<br />

Pre em.<br />

pïe en"<br />

DCU<br />

Monstvilaíte, 1968<br />

some control<br />

5<br />

PCP<br />

Berezhnaya, L96B<br />

variable degrees <strong>of</strong> control<br />

B<br />

pre seed<br />

EPTC<br />

Taylor , tn:,,<br />

some control, lupíns Ëolerant<br />

L.5-2.0<br />

pre em.<br />

Chloropropham<br />

crop injuries result<br />

4"5<br />

pre em.<br />

Chloropropham<br />

Monstvilaíte, 1968<br />

some control<br />

1<br />

pre em"<br />

Dikonirt<br />

t\)<br />

ts


Ëo 16 days if lupins aË a seed moisture content <strong>of</strong>. 65"/" r^rere sprayed løíth<br />

one <strong>of</strong> <strong>the</strong> following ehemieals: 0.52 DNOC" 0"25% diquaË, 0"257" paraqu<strong>at</strong><br />

or 2"0% magnesium chloraËe. O<strong>the</strong>r authors suggest spraying r,¡ith defo-<br />

liants <strong>at</strong> a stage when <strong>the</strong> pods on <strong>the</strong> main stem have turned somewh<strong>at</strong><br />

brown, or 15 days before n<strong>at</strong>ural m<strong>at</strong>urity. They found Ëh<strong>at</strong> use <strong>of</strong> defo*<br />

liants such as 5% NaCl, !l ¿rrmoniútr nitr<strong>at</strong>e, L% dessican hastened m<strong>at</strong>uriËy<br />

with no effect on 1000 seed weight or subsequent germin<strong>at</strong>ion (Kawam<strong>at</strong>a and<br />

Tsukijima, 1957; Brr-unmund, L962; Buzmakov, 1966; Japel " L967) "<br />

1,.542 MeËhods <strong>of</strong> Seed Harvest<br />

Three methods have been used to harvest luoins" In New Zealand<br />

Ehey are cut with a side<br />

Ëhreshed (Hudson, L934) "<br />

delivery or reaper and binder, staeked and <strong>the</strong>n<br />

They may be cut with a mower, and after dry, picked up with a<br />

header-harvester wíth a pick up aËËachment" Altern<strong>at</strong>ely <strong>the</strong>y may be<br />

straíght combined (McKee, T946; Gladstones, 1969b).<br />

Straight combining is <strong>the</strong> most common practice since <strong>the</strong> introduc-<br />

tion <strong>of</strong> reduced or non-sh<strong>at</strong>tering cultivars" Sh<strong>at</strong>tering cultívars require<br />

cutting before m<strong>at</strong>urityr drying and Ëhreshing. GladsËones (1969b) sug-<br />

gesËed <strong>the</strong> use <strong>of</strong> a header Ëype harvester, with every second tooth removed<br />

from <strong>the</strong> comb, with o<strong>the</strong>r necessary adjustments to handle large seeds,<br />

namely, wide concave clearance and a very slow cylinder speed.<br />

I"543 Drying <strong>of</strong> <strong>the</strong> Harvested Seed<br />

Large amounts <strong>of</strong> green trash and imm<strong>at</strong>ure seeds may be presenË and<br />

should be removed or he<strong>at</strong>ing injury nay occur" The seed should <strong>the</strong>n be<br />

quíckly dried with forced air aË a temperaËure <strong>of</strong> 110 to 12OoF to a<br />

moisËure content <strong>of</strong> 13" 57" for two year deterior<strong>at</strong>ion-free storage, and<br />

to L2% or lower for longer sËorage periods (Forbes et al. 1961).<br />

22


L"6 INSECTS AND DISEASES OF CULTIVATED LI]PINS<br />

1" 61 Insect Pests<br />

Lupins are visired by nany types <strong>of</strong> insects (Leuck et al. 196g) "<br />

Many are not harmful and are usually agents <strong>of</strong> low levels <strong>of</strong> cross-<br />

pollin<strong>at</strong>ion ín Ëhis o<strong>the</strong>rwise self-pollin<strong>at</strong>ed. crop (Forbes et a:-. I97L).<br />

o<strong>the</strong>r insect visiËors may cause severe damage. These pests have been<br />

reviewed by nany authors (Henson and Stephens, 1958; Silva and. Oliveira.<br />

I959a, 1959b; HackbarËh and Tro11, 1960; Gladstones, 1969b).<br />

APHIDS (Aphds spp. ) are a serious pest <strong>of</strong> lupins in many countries.<br />

They <strong>at</strong>tack <strong>the</strong> sÞreeÈ (low alkaloid) cultivars only, with <strong>the</strong> bitter<br />

(high alkaloid) cultÍvars being irnmune. They tend to feed on <strong>the</strong> active<br />

gror,ring poínts which affects flowering and reduces seed seË. They also<br />

play a major role in <strong>the</strong> transrn-issíon <strong>of</strong> certain viral d.iseases" such as<br />

bean yellor¿ mosaic and Ëo a lesser extent. cucumber mosaic. Control r¡ith<br />

a systeuic ínsecticide ís effective but re-infesË<strong>at</strong>íon may occur (Glad-<br />

stones, L969b) "<br />

BUDWORMS (HeliotLñs spp.), also known as climbing cutr¡rorms, aËtack<br />

lupins as well as o<strong>the</strong>r crops in East Africa, Australia and <strong>the</strong> u.s.A.<br />

The larvae appear in <strong>the</strong> early spring from its overwíntering period ín<br />

<strong>the</strong> soíl" They may e<strong>at</strong> <strong>the</strong> foliage, or burrow into Ëhe ir¡n<strong>at</strong>ure pods<br />

and feed on <strong>the</strong> forrning seeds " Both high and lov¡ alkaloid cultivars may<br />

be aËtacked. L. arryustifolius is <strong>the</strong> most resistant and L" Luteus <strong>the</strong><br />

most susceptible" Resistance increases as Ëhe pods m<strong>at</strong>ure and toughen,<br />

Èherefore <strong>the</strong> degree <strong>of</strong> damage depends upon <strong>the</strong> stage <strong>of</strong> infest<strong>at</strong>ion.<br />

If heavy infestaËíons are expected, timed planting may afford some degree<br />

LJ


<strong>of</strong> conËrol or altern<strong>at</strong>ely <strong>the</strong> crop may<br />

cídes such as Dípterex or Seven (Henson<br />

and Corbetr, 1959).<br />

be sprayed wiËh foliar insecti-<br />

and Stephenso l95B; Edwardson<br />

PEA AND BEAN I^IEEVTLS (sítorn spp") mainry arrack culrivars ot L.<br />

angustifoLius. The larvae feed on <strong>the</strong> roots and nodules, whereas <strong>the</strong><br />

adults e<strong>at</strong> a characteristic u-shaped notch in <strong>the</strong> folíage; damage re_<br />

porLed is not usually severe (Henson and stephens, l95B; Hackbarth and<br />

Tro11, 1960).<br />

Thrips are reported Ëo cause damage to Èhe florn¡ers <strong>of</strong> low alkaloid<br />

cultivars" but <strong>the</strong> level <strong>of</strong> damage and infest<strong>at</strong>ion does not usuarry<br />

I¡rarrant chemlcal control (Edwardson, Llells and Forbes, Lg63). Gladstones<br />

(1969b) reported th<strong>at</strong> red-legged earth mites (Halotydus d.estz,uctoy,) and<br />

Lucerne fleas (snynûnu,us uiridis) are capable <strong>of</strong> causing seríous damage<br />

in Australia. Grasshoppers may also cause serious d.amage if infest<strong>at</strong>ion<br />

ís severe"<br />

1.62 Díseases<br />

Many p<strong>at</strong>hogens can infect Lupi,rrus spp. The rnajority are fungal but<br />

virus infection can also cause severe damage. The following diseases<br />

can vary in severity depending upon prevailing clim<strong>at</strong>ic conditions and.<br />

<strong>the</strong> magniËude <strong>of</strong> inoculun present.<br />

1,"62L Fungal Diseases<br />

ANTTIRACNOSE (Glomev'elLa cingul<strong>at</strong>a) can be very destructive, espe-<br />

cially in warm, moist r¡e<strong>at</strong>her. The source <strong>of</strong> infection may be o<strong>the</strong>r crop<br />

plants, soil, or it may be carried in or on <strong>the</strong> lupin seed. Decker (1948)<br />

found th<strong>at</strong> seed treaEnents ürere unsuccessful. This p<strong>at</strong>hogen can <strong>at</strong>tack<br />

24


Ëhe stems, pods and seeds and to a lesser extent <strong>the</strong> folíage. sJ¡mptoms<br />

range from small bror¿n circular lesions on <strong>the</strong> cotyledons to cankers with<br />

concentric rings on <strong>the</strong> stemso to large black lesions on <strong>the</strong> pods with<br />

<strong>the</strong> seeds bene<strong>at</strong>h displaying various types <strong>of</strong> lesions " Änthracnose ca'<br />

<strong>at</strong>tack a1-1 agricultural species and is reported to be a serious problem<br />

<strong>of</strong> L" angustdfolius Ln <strong>the</strong> U.S.A., however genes for resistance have been<br />

isol<strong>at</strong>ed from some wild types (I,Ieímer, Lg43" L952a; Forbes and I,Iellso<br />

1961) .<br />

FUSARTITM RooT Ror AND I,trLT (Fusaríwn spp.) can be d.esËrucríve ín<br />

rdarm, moíst we<strong>at</strong>her" Transmission may be by seed but more commonly via<br />

<strong>the</strong> soil since many o<strong>the</strong>r crops are susceptible to this p<strong>at</strong>hogen. csuti<br />

(L962) found Èh<strong>at</strong> three species <strong>of</strong> Fusarium could be distinguished ín<br />

<strong>the</strong> r¿ilt dísease <strong>of</strong> lupins, namely, .p" oæasporLÍtr, F. ansena,ce?Ìns and F.<br />

t'edolens' plus oËhers th<strong>at</strong> were not identified. He suggests th<strong>at</strong> E.<br />

oæasporwn is usually <strong>the</strong> first invader followed by <strong>the</strong> o<strong>the</strong>r species.<br />

tr'Ieimer (1941) reported th<strong>at</strong> this disease is mainly a problem on L. Luteus.<br />

However Armstrong and Armstrong (1964) found various races <strong>of</strong> F. oæAsporwn<br />

th<strong>at</strong> could arrack ¿. albus and L. angustifolius.<br />

The p<strong>at</strong>hogen, whe<strong>the</strong>r seed or soil borne, <strong>at</strong>tacks <strong>the</strong> underground<br />

portion <strong>of</strong> <strong>the</strong> plant whích prod.uces <strong>the</strong> characteristic wilt sympËoms <strong>of</strong><br />

<strong>the</strong> above ground portions. These include dwarfing, yellowíng, wilting<br />

and evenËual de<strong>at</strong>h. The symptoms on <strong>the</strong> root sysÈen includ.e a dry roË,<br />

with lesions th<strong>at</strong> range from w<strong>at</strong>er-soaked to a mahogany red to dark brown,<br />

dependíng on <strong>the</strong> stage <strong>of</strong> development, tissue moisture conËerit and which<br />

partieular species <strong>of</strong> Fusari-um is parasitizing <strong>the</strong> plant (lrreirner , Lgs1b) .<br />

ResisËant rines <strong>of</strong> L" Luteus have been isor<strong>at</strong>ed (Larnberts, r955a;<br />

Tro11, L964). Crop rot<strong>at</strong>íon is an important conLrol measure because <strong>of</strong><br />

25


<strong>the</strong> soil borne n<strong>at</strong>ure <strong>of</strong> Ëhe disease, however seed treahent wiËh Ceresen<br />

may also be benefieial (Csuci" L962).<br />

BROI^IN SPOT (Cer<strong>at</strong>ophorttn setosum = PleiocVneta setosø) can <strong>at</strong>tack<br />

mosË lupln specÍes" with tr. albus being particularly susceptible" In<br />

Èhe United St<strong>at</strong>es it ranges far<strong>the</strong>r norÊh than o<strong>the</strong>r diseases and seems<br />

to be more prevalenË under cool, damp conditions" Gladstones (L969b;<br />

1970b) suggests th<strong>at</strong> thís is <strong>the</strong> most universally destructive disease <strong>of</strong><br />

lupins and is consídered <strong>the</strong> most important. in I,I" Australia. Trans-<br />

mission rnay be by seed or from crop residues. This disease is most abun-<br />

dant on <strong>the</strong> leaflets <strong>of</strong> ¿. angustltfolius wi_tln <strong>the</strong> lesions being variable<br />

in shape, size and color. It may also <strong>at</strong>tack Ëhe petíoles" sterns,<br />

flo*rers, pods and seeds. On <strong>the</strong> petioles Ëhe lesions resemble Ëhe cir-<br />

cular lesions th<strong>at</strong> are found on <strong>the</strong> leafletsu but as Ëhe disease pro-<br />

gresses <strong>the</strong>lesionsmay cover <strong>the</strong> ent.ire circt¡mference. The lesions on<br />

<strong>the</strong> stem may be large bro¡.¿nish-black cankers with lighter borders th<strong>at</strong>.<br />

can cover <strong>the</strong> r,¡hole sËen. Blossom lesions are brownísh to black and <strong>the</strong><br />

pod lesíons resemble those on <strong>the</strong> leaflers and may be small or cover a<br />

Large portion <strong>of</strong> <strong>the</strong> pod. The p<strong>at</strong>hogen can grow through <strong>the</strong> pod and<br />

cause reddish-brown lesions on <strong>the</strong> seed th<strong>at</strong> appear sirullar to <strong>the</strong><br />

lesions produceil by <strong>the</strong> anthracnose fungus. Gross symptoms usually in-<br />

volve complete defoli<strong>at</strong>ion and results in Ëhe de<strong>at</strong>h <strong>of</strong> <strong>the</strong> plant (trnleímer,<br />

L9s2b) .<br />

Various seed treaËnenËs and spraying Èhe infect.ed crop has had only<br />

slight success and no genetic source <strong>of</strong> resistance has been reporËed<br />

(GladsËones, L969b" L970b) "


GREY LEAFSPOT (StanphyLium solani and ,9. bol;tgosum) is a major<br />

disease in <strong>the</strong> lupin growing areas <strong>of</strong> <strong>the</strong> United St<strong>at</strong>es. It can seri-<br />

ously decrease yíe1ds by defoliaËing <strong>the</strong> plants, (Edwardson et al. 1963).<br />

The two species <strong>of</strong> S1;emphyLiun r{ere once described as tl¡ro separ<strong>at</strong>e dis-<br />

eases th<strong>at</strong> produced separ<strong>at</strong>e syndromes. They T¡/ere named LitËle Leafspot<br />

(5. botryosum) and Grey Leafspot (,9. soLani) (Wells et al. 7956). How-<br />

ever, upon fur<strong>the</strong>r investig<strong>at</strong>íon I^Ie11s et al. (1961) found th<strong>at</strong> both 5"<br />

soLaní and ^9. botryosum caused identical symptoms as described by Grey<br />

Leafspot. Therefore <strong>the</strong>y suggested th<strong>at</strong> <strong>the</strong> name Grey Leafspot be rede-<br />

fined to include <strong>the</strong> identical symptoms produced by both species.<br />

The Stemphylium Leaf Spot complex <strong>at</strong>tacks only varieties oÍ. L"<br />

angustifoLius, with tr. albus and tr" Luteus being inmune. Wells et al.<br />

(1956) described <strong>the</strong> symptoms as follows; infections on <strong>the</strong> leaflets are<br />

circular to oblong,2 to 6 rmr in diarneter, and during <strong>the</strong> early stages<br />

are brown" 01der lesions have a rose-grey center with a brown margin"<br />

The p<strong>at</strong>hogen causes tissue collapse and lesíons are Ëherefore sunken.<br />

Very few lesions wíll cause <strong>the</strong> leaflets to abscise, <strong>the</strong>refore rapid<br />

defoli<strong>at</strong>ion afËer initial infection may occur. Lesions can also occur<br />

on <strong>the</strong> sËem and pods. They are small and circular, or up to 5 cm long<br />

and may encompass <strong>the</strong> stem or cover Ehe entire pod"<br />

Iniells et al" (L962) found ano<strong>the</strong>r species <strong>of</strong> thís p<strong>at</strong>hogen thaË can<br />

parastize L. angustifolius" ^9" Loti can <strong>at</strong>Ëack lines th<strong>at</strong> are resistant<br />

to ,9" solani and .9" botz'yosum, but does not seem to be prevalent in <strong>the</strong><br />

South Eastern UniËed SË<strong>at</strong>es. ResisËance to Grey Leafspot has been found<br />

in <strong>the</strong> form <strong>of</strong> two independenË genes isol<strong>at</strong>ed from a n<strong>at</strong>urally occurrÍng<br />

mutant and from wild forms occurring in PorËugal (Forbes eË al. 1957,<br />

L964" L965) "<br />

)7


POIüDERY MILDEW (Erysiphe poLygoni, DC.) is usually found in rhe<br />

sou<strong>the</strong>rn part <strong>of</strong> <strong>the</strong> Lupin Belt in <strong>the</strong> United St<strong>at</strong>es" The lower leaves<br />

are infected first and irregular white blotches which may vary in síze<br />

are produced. If <strong>the</strong> disease is severe most leaflets wíll become in-<br />

fected and will eventually abscise (Weiner, L952b). A resistance gene<br />

has been Ísol<strong>at</strong>ed in L. Luteus from wild maËerial (Lamberts, L952) "<br />

RIIIZOCTONIA ROOT ROT (Rhr,zoctonia solani,) is wídely distributed and<br />

<strong>the</strong> most destrucËive root rot <strong>of</strong> lupins and causes both pre and post<br />

êmergence damping <strong>of</strong>f <strong>of</strong> seedlings" The inËensiËy and severiËy <strong>of</strong> thís<br />

disease was found to be associ<strong>at</strong>ed r¿ith <strong>the</strong> depth <strong>of</strong> planting, with<br />

deeper plantings havÍng a gre<strong>at</strong>er percentage <strong>of</strong> infected plants (Deeker,<br />

L943) "<br />

PlanÈs <strong>at</strong> <strong>the</strong> floweri-ng stage can also be <strong>at</strong>tacked which resulËs<br />

Ín a dry rot <strong>of</strong> <strong>the</strong> root systsrl" They nay show líttle or no symptoms <strong>of</strong><br />

<strong>the</strong> disease in <strong>the</strong> top porËion <strong>of</strong> <strong>the</strong> plant, or may be stunted, and even-<br />

tually díe (I{eimer, L952b). Again .L. arryustifolius ís most seríously<br />

affecËed.<br />

SOUTTIERN BLIGHT (Sclerol;i-un y,olfsii) ís ano<strong>the</strong>r serious disease<br />

prevalent in <strong>the</strong> Lupin Belt in SouËhern United SË<strong>at</strong>es (Edwardson et al.<br />

1"963). It <strong>at</strong>tacks both <strong>the</strong> root and top portions <strong>of</strong> lupins as well as<br />

many oËher plants. It can infect all <strong>the</strong> agrícultural specíes <strong>of</strong> lupins<br />

in Ëhe seedlíng or l<strong>at</strong>er sËages <strong>of</strong> growth"<br />

Infection is usually near <strong>the</strong> surface <strong>of</strong> Ëhe soil, r¿hich results in<br />

<strong>the</strong> formaËion <strong>of</strong> a canker which may girdle <strong>the</strong> entire stem. trtlhite myce-<br />

liurn growíng on Ëhe soil surface may be assocí<strong>at</strong>ed r¿ith Lhe infected<br />

plant, This type <strong>of</strong> infecËion will initíaLLy cause sËunËing <strong>of</strong> <strong>the</strong> plant,<br />

28


uË r¿í11 eventually lead to de<strong>at</strong>h.<br />

Inlhite mycelíum containing whiÈe to brown sclerotía is usually asso-<br />

ci<strong>at</strong>ed rrrith root lesions "<br />

The p<strong>at</strong>hogen may spread by this mycelial<br />

growth to adjacent plants ín a row. Control for this as well as o<strong>the</strong>r<br />

soil borne p<strong>at</strong>hogens is difficult and seed tre<strong>at</strong>ments have had lirnited<br />

success (Inleimer, L952b; Edwardson et al. 1963).<br />

BOTRYTIS STB{ CANKER (Bottytis cdneriø) usually infects plants<br />

following freezing injury, hornrever, iË can also <strong>at</strong>tack healthy planËs <strong>of</strong><br />

L" albus, L. angustl:foLius and L. Luteus" It produces large brown<br />

cankers which may be covered with mycelÍum and fruiting bodies. These<br />

sympËoms are most evident on <strong>the</strong> stem and Laxget branches, but pods may<br />

also become infected (Inleimer, L952b) "<br />

SCLEROTINIA STEM ROT (Sclez,otinia scLerotiorun) ís most comnonly<br />

found on L. artgustifoLius in <strong>the</strong> Sou<strong>the</strong>rn U.S.A", where it usually<strong>at</strong>tacks<br />

<strong>the</strong> stem. The region above <strong>the</strong> infected area will eventually wilt and<br />

die. This dísease is similar to B. cíneria but can be distinguished by<br />

<strong>the</strong> irregular black sclerotia th<strong>at</strong> are found in <strong>the</strong> pith raËher Ëhan on<br />

Ëhe surface <strong>of</strong> <strong>the</strong> plant" It rarely <strong>at</strong>tacks <strong>the</strong> pod, where <strong>the</strong> seeds will<br />

be replaced by scleroËÍa (Weimer, L952b) "<br />

O<strong>the</strong>r fungal díseases <strong>of</strong> lesser importance include; Ascochyta Stern<br />

Canker (Ascoc/tyta gossypü ) , which causes cankers siuilar Ëo Anthracnose<br />

on young plants; FooÈ Rot or damping-<strong>of</strong>f caused by PLtytVtLum spp" which<br />

usually <strong>at</strong>tacks seedlings, and Stem Bligtrt (PVtomopsis Leptostromiformís)<br />

which can <strong>at</strong>tack tr" aLbus and L. Luteus but noË tr. angustifolius (Weímer,<br />

1952b; Kockman, L957; Ostazeski and l^Iells, 1960).<br />

29


L.622<br />

Several<br />

Ye11ow Mosaic<br />

Virus (?MV).<br />

Virus Diseases<br />

viruses are reporËed to occur in lupins, íncluding Bean<br />

Virus (BYMV), Cucumber Mosaic Virus (CMV), and Pea Mosaic<br />

BMYV is <strong>the</strong> most destructive <strong>of</strong> <strong>the</strong> lupin viruses. It can <strong>at</strong>tack<br />

all <strong>the</strong> agrícultural species <strong>of</strong> lupins as well as a wide varieËy <strong>of</strong> o<strong>the</strong>r<br />

legumes such as peas, beans, clovers, and varíous n<strong>at</strong>ive species (Glad-<br />

stones , L969b). These may serve as sources <strong>of</strong> <strong>the</strong> inoculum r¿hich is<br />

aphid transmitted. The vírus is not persísËant in Ëhe aphid vector,<br />

<strong>the</strong>refore, límitíng <strong>the</strong> spread to low alkaloid cultivars th<strong>at</strong> can support<br />

a breeding popul<strong>at</strong>íon <strong>of</strong> aphids (Corbett, 1958). Seed transmission ís<br />

reported to occur Ln L" Luteus. He<strong>at</strong> tre<strong>at</strong>lnent. or prolonged periods <strong>of</strong><br />

storage do noÈ seem to be effecÈive in controllíng <strong>the</strong> virus infected<br />

seed (Corbett, 1958; BLaszak, L963a, 1963b) "<br />

Symptoms <strong>of</strong> BMYV ínfection vary depending upon which species is<br />

viewed. Gladst,ones (1970b) describes <strong>the</strong> various synpËoÐs as follows;<br />

in L" Luteus <strong>the</strong> characteristic synpËoms are mosaic mott.ling, with a<br />

narrowing and disËorËion <strong>of</strong> Ëhe leafleLs, cornbíned r^rith dwarfed, bunchy,<br />

top growth. The symptoms in tr. aLbus are similar, but much less severe.<br />

L. angustifoLius shows <strong>the</strong> gre<strong>at</strong>est severity <strong>of</strong> symptoms, which include<br />

brown sËreaks on one side <strong>of</strong> <strong>the</strong> growing poinË r,,¡hich results in a<br />

ttshepherd ts crooktt.<br />

In a1l species infecËion before flowering will gre<strong>at</strong>.ly reduce seed<br />

seË and planËs will fail Ëo m<strong>at</strong>ure normally, however, in <strong>the</strong> case <strong>of</strong> tr.<br />

angust'i-folius, infecËion <strong>at</strong> Ëhis stage usually results in de<strong>at</strong>h. Infec-<br />

tion afüer flowering in L. albus and L. Luteus will result in smaller,<br />

mis-shapen seeds, however infecËion <strong>at</strong> this tj-rne in tr. angustl:folius<br />

30


will result ín <strong>the</strong> blackening <strong>of</strong> <strong>the</strong> pods<br />

Inlells, Leuck et al. (7962) proposed a<br />

virus in L" Luteus. which include <strong>the</strong> use<br />

<strong>at</strong> least 100 yards away from any source <strong>of</strong><br />

a systenic insecËicide such as Phor<strong>at</strong>e to<br />

a cïop.<br />

L.7 COMPOSITION AND FEEDING VA]-UE<br />

1"71 Composition<br />

7.71"L Protein. 0í1 and Fibre<br />

which will not fi1l"<br />

system for controlling this<br />

<strong>of</strong> virus-free seed, planËing<br />

aphid vectors, and Ëhe use <strong>of</strong><br />

control aphid vectors v¡ithin<br />

All agriculËural specíes <strong>of</strong> lupins contain large amounts <strong>of</strong> crude<br />

protein in <strong>the</strong>ír seeds, apprecíable oil, and rel<strong>at</strong>ively large amounËs <strong>of</strong><br />

fibre. Table 3 (Gladstones, L970a) gíves <strong>the</strong> average composition <strong>of</strong><br />

lupin seed compared to o<strong>the</strong>r plant sources <strong>of</strong> proteín. Also listed are<br />

Ëhe compositions <strong>of</strong> lupín germ mea1, based on <strong>the</strong> removal <strong>of</strong> B0 xo 907"<br />

<strong>of</strong> Ëhe seed co<strong>at</strong>, which is readily <strong>at</strong>tained by conrmercial milling <strong>of</strong> <strong>the</strong><br />

whole seed,<br />

L" Luteus and L. albus are partícu1ar1y rích in crude protein with<br />

42 and 407" respectively on a moisture free basis. The proËein conËenËs<br />

are hígher than most grain legumes, but lower than oil seed meals conrnonly<br />

used in livestock r<strong>at</strong>ions" However, dehulled lupin seed has a gre<strong>at</strong>er<br />

percentage protein than <strong>the</strong>se, with <strong>the</strong> excepËion <strong>of</strong> peanuË and soybean<br />

meals.<br />

All species <strong>of</strong> lupins contaín considerable amounts <strong>of</strong> oil, which<br />

raises <strong>the</strong> energy value <strong>of</strong> lupin seed. Oil content ranges from 5% for<br />

L. Luteus to L0% f.or L. aLbus (Gladstones, 1970a).<br />

31


Table 3. Composition <strong>of</strong> lupin seed and germ meal, compared to o<strong>the</strong>r plant proteín sources (Gladstones,<br />

1970a)<br />

Average composiËion<br />

(percentage, moísËure-free basis)<br />

Form<br />

Species or foodstuffs<br />

Ash<br />

N-free<br />

extract<br />

oil<br />

Crude (e<strong>the</strong>r Crude<br />

protein extract) fibre<br />

Inlhole seeds<br />

Germ meal*<br />

L" Lu.teus<br />

5<br />

32<br />

34<br />

L7<br />

3<br />

5<br />

6<br />

/,,<br />

52<br />

J<br />

4<br />

45<br />

46<br />

15<br />

J<br />

5<br />

6<br />

34<br />

4T<br />

hrhole seeds<br />

Germ meal<br />

u. qrLguÐuuJ vuuuÐ<br />

J<br />

4<br />

JO<br />

38<br />

11<br />

9<br />

10<br />

40<br />

46<br />

Iühole seeds<br />

Germ meal<br />

lJ. A.LþUS<br />

J<br />

4<br />

6<br />

6<br />

6 a<br />

2<br />

2<br />

2<br />

1<br />

7<br />

9<br />

B<br />

1<br />

I<br />

7<br />

B<br />

62<br />

57<br />

36<br />

29<br />

JU<br />

40<br />

31<br />

37<br />

6<br />

9<br />

9<br />

10<br />

1B<br />

10<br />

J<br />

¿o<br />

JU<br />

50<br />

55<br />

46<br />

35<br />

/.')<br />

4L<br />

I{hole seeds<br />

trrlhole seeds<br />

SolvenË extracted<br />

DecorËic<strong>at</strong>ed, extracted<br />

Decortic<strong>at</strong>.ed, expressed<br />

Expressed<br />

Decortic<strong>at</strong>ed, extracted<br />

Extracted<br />

O<strong>the</strong>r feeds<br />

Peas<br />

Vetches<br />

Soybean meal<br />

Peanut meal<br />

Cottonseed cake<br />

Linseed cake<br />

Sunflower seed meal<br />

Rapeseed meal<br />

Calcul<strong>at</strong>ed on <strong>the</strong> basis <strong>of</strong> approxim<strong>at</strong>ely 85 per cent separ<strong>at</strong>íon <strong>of</strong> <strong>the</strong> seed co<strong>at</strong>s.<br />

LÐ<br />

¡\)


Crude fibre coritents <strong>of</strong> <strong>the</strong> seeds are quite high but are variable.<br />

L. aLbus has <strong>the</strong> lowest contenÈ <strong>of</strong>. L2%. In Èhe dehulled seed fibre con-<br />

tents drop to approxim<strong>at</strong>eLy 3% indic<strong>at</strong>íng th<strong>at</strong> <strong>the</strong> majoriËy <strong>of</strong> <strong>the</strong> fibre<br />

is ín this fr:action. Since Ëhe rel<strong>at</strong>ive amounts <strong>of</strong> proteÍn increase<br />

afËer this proeedure suggests ËhaË very srnall amounts <strong>of</strong> protein are<br />

situ<strong>at</strong>ed in <strong>the</strong> seed co<strong>at</strong>.<br />

The vari<strong>at</strong>ion experienced in proteín and fibre content among <strong>the</strong><br />

species Ís partially a funcÈÍon <strong>of</strong> <strong>the</strong> rel<strong>at</strong>ive proportion <strong>of</strong> seed co<strong>at</strong>,<br />

which ranges Í.rom L5% for L. albus to 25% for L" Luteus (Gladstones,<br />

1970a) "<br />

The N-free extract (carbohydr<strong>at</strong>e o<strong>the</strong>r than in <strong>the</strong> crude fibre)<br />

also varíes from 327" f.or L. Luteus to 44% for L" dngustl:folíus"<br />

L.7L2 Amino Acids<br />

The qualiËy <strong>of</strong> any protein depends upon its compliment <strong>of</strong> amino<br />

acids. fn <strong>the</strong> case <strong>of</strong> man, hogs and o<strong>the</strong>r non-ruminants, quality is<br />

dependent upon <strong>the</strong> sulphur containing arníno acids, cystine and<br />

methionine.<br />

Table 4 (Gladstones, I970a) presents <strong>the</strong> estim<strong>at</strong>ed amino acid com-<br />

posiËion <strong>of</strong> lupins as compared Ëo oËher sources <strong>of</strong> plant protein and to<br />

F"4"0. sÈandards"<br />

All species <strong>of</strong> lupins are uniformly 1ow in methíonine, a characËer-<br />

istíc shared with most o<strong>the</strong>r legumes. A high level <strong>of</strong> cystine partially<br />

compensaËes for <strong>the</strong> low methionine ín L" Luteus, but not ín <strong>the</strong> o<strong>the</strong>r<br />

species" However, this 1ow meËhionine content is complimenËed easily<br />

r,rith cereal grain, or cheaply with syn<strong>the</strong>Ëic meLhionine supplemerits"


Table 4" Estím<strong>at</strong>ed liniting amino acid content <strong>of</strong> lupin seed, compared<br />

to o<strong>the</strong>r plant sources <strong>of</strong> protein<br />

Species, etc"<br />

F.A. O" standard<br />

L. Luteus<br />

u. etr<strong>at</strong>4ùuuJUUuuð<br />

L. albus<br />

Soybean<br />

Peanut<br />

Cottonseed<br />

Linseed<br />

Sunflower seed<br />

trühe<strong>at</strong><br />

Barley<br />

O<strong>at</strong>s<br />

Maize<br />

Amíno acid as percentage <strong>of</strong> <strong>the</strong> crude protein<br />

Cystine and<br />

Lysine Methionine CysËine methionine Tryptophan<br />

/, ,)<br />

qn<br />

qô<br />

5"2<br />

s.9<br />

<strong>at</strong><br />

/,)<br />

3"6<br />

4.r<br />

3.5<br />

J"O<br />

4.L<br />

¿"ó<br />

2"2<br />

0"5<br />

0.8<br />

1"0<br />

r"4<br />

1.1<br />

1.5<br />

L"7<br />

2"9<br />

1'<br />

'lR<br />

L"7<br />

2^<br />

3.6<br />

L.2<br />

l.B<br />

L.7<br />

1?<br />

2"2<br />

rìq<br />

L.7<br />

3"5<br />

2"6<br />

2"6<br />

L.9<br />

4.L<br />

2.0<br />

ta<br />

3.1<br />

3"7<br />

4"6<br />

4.7<br />

4"0<br />

?o<br />

There seems to be little vari<strong>at</strong>ion in <strong>the</strong> lysine content <strong>of</strong> Ëhe<br />

7.4<br />

1"0<br />

1.3<br />

L.2<br />

L.2<br />

0.9<br />

1A<br />

1.8<br />

L"4<br />

r"0<br />

L"4<br />

1.3<br />

different lupin specíes, whích ranges from 5.0 to 5.2/.. These values<br />

are somewh<strong>at</strong> gre<strong>at</strong>er Ëhan F.A.o. standards, cereals, and all o<strong>the</strong>r planË<br />

sources <strong>of</strong> proteín except soybean which has a value <strong>of</strong> 5"97""<br />

Levels <strong>of</strong> tryptophan are also uníform, but belov¡ <strong>the</strong> value set by<br />

F.A.O., however, <strong>the</strong>y are similar to oËher protein sources.<br />

L"713 Alkaloids and Toxícity<br />

During tr^Iorld I^Iar I, tr. Luteus r^Ias commonly used as a substitute ín<br />

different foodstuffs, however it never became popular for nutritive pur-<br />

poses because <strong>of</strong> íts high alkaloid conËenÈ. sengbush (1930, 1931) iso-<br />

l<strong>at</strong>ed 1ow alkaloid lines <strong>of</strong> L. Luteus in <strong>the</strong> lare 1920¡s, Thís led to<br />

34


Ëhe eventual developmenÈ <strong>of</strong> low or alkaloid free varietíes <strong>of</strong> <strong>the</strong> major<br />

agricultural species <strong>of</strong> lupins (Barbacki et al. L962).<br />

The isol<strong>at</strong>ion <strong>of</strong> 1ow alkaloid types led Ëo <strong>the</strong> broad, two parË<br />

classific<strong>at</strong>ion <strong>of</strong> lupins j-nto bíÈter and sr^ieeË types on <strong>the</strong> basis <strong>of</strong><br />

<strong>the</strong>ir alkaloid content. Bitter types may contain up to 27. alkaloids,<br />

whereas <strong>the</strong> contemporary snTeet types have alkaloid contents Ëh<strong>at</strong> are 50<br />

to 997á lor,rer than <strong>the</strong>ir bitter rel<strong>at</strong>íves (Gustafsson and Gadd, L965;<br />

Barbackí et al" L962).<br />

The bitter straíns contain different amounts and types <strong>of</strong> alkaloids<br />

which can differ ín marmnalian Ëoxicity (Marsh, Clauson and Marsh, 1916;<br />

Gorden and Henderson, 1951). The dÍfferent species also vary in this<br />

respect (Schwarze and Hackbarth, L957). Toxicity <strong>of</strong> lupin alkaloids vary<br />

with <strong>the</strong> amount consumed and <strong>the</strong> animal being tested" Generally, Ëhey<br />

may cause severe íntoxíc<strong>at</strong>ion, which can be f<strong>at</strong>al or transienË, or perna-<br />

nent damage Ëo Ëhe nervous system (Bennets, 1957; Marsh, Clauson and<br />

Marsh, 1916) "<br />

The sweet varieties have never been reported to cause toxiciËy when<br />

fed to livestock (Gladstones, 1970b). The seed <strong>of</strong> sweet lupins can be<br />

fed dírectly without special tre<strong>at</strong>ment and many tests have failed to<br />

reveal anti-trypsin or o<strong>the</strong>r anti-metabolÍc factors.<br />

1.72 Feeding Value<br />

Gladstones (1970a) has surnnarized <strong>the</strong> v¡ork <strong>of</strong> Hackbarth and Husfield<br />

(1939) and o<strong>the</strong>r authors on <strong>the</strong> digestibiliËy <strong>of</strong> <strong>the</strong> seed constituents <strong>of</strong><br />

L. Luteus and L" dqust¿folius" This is presented in Table 5.<br />

35


Table 5. Percentage digestíbílity <strong>of</strong> lupin seed constituents<br />

L. angusl;i,foLi.us (narrow-leafed lupin)<br />

L" Luteus (yellow lupin)<br />

oil<br />

oil<br />

N-free<br />

exËracE<br />

Test anímal<br />

Crude<br />

fíbre<br />

(e<strong>the</strong>r<br />

extract)<br />

Crude<br />

protein<br />

N-free<br />

extract<br />

Crude<br />

fibre<br />

(e<strong>the</strong>r<br />

exËract)<br />

Crude<br />

proteín<br />

B6<br />

B3<br />

93<br />

BB<br />

79<br />

/o<br />

B5<br />

92<br />

Runinants<br />

77<br />

qR<br />

81<br />

89<br />

to<br />

9L<br />

B4<br />

90<br />

Ruminants*<br />

69<br />

B4<br />

94<br />

Horse<br />

9r<br />

55<br />

)¿<br />

B8<br />

B4<br />

26<br />

54<br />

93<br />

Pio '-Þ<br />

85<br />

B2<br />

10<br />

2<br />

9B<br />

89<br />

Chicken<br />

1<br />

J<br />

a/,<br />

94<br />

Pigeon<br />

90<br />

98<br />

83<br />

95<br />

Fish (carp)*'t<br />

88<br />

51<br />

BB<br />

Man<br />

After L. E. Evans (1960).<br />

Afrer Hackbart-h and Trol1 (1960) "<br />

o\


These authors have found th<strong>at</strong> <strong>the</strong> digestíbility <strong>of</strong> <strong>the</strong> crude protein<br />

ís high for all animals. The oÍ1 <strong>of</strong> both tr. angustifoLíus arrd L. Luteus<br />

is also highly digestible with Ëhe lower values for man and hogs being<br />

colrìmon to Bost vegetable oi1s" The digestibility <strong>of</strong> <strong>the</strong> fibre by hogs<br />

and birds is quite low, ranging from 2 to 55%, However, Florence (1965)<br />

reported digestíbilities exceeding BO% for hogs" Digestibilíty <strong>of</strong> carbo-<br />

hydr<strong>at</strong>e (N-free extract) is símilar to o<strong>the</strong>r planË sources <strong>of</strong> proËein,<br />

with Ëhe exception <strong>of</strong> <strong>the</strong> digestibilíty by birds which is extremely low<br />

and may be due to complex carbohydr<strong>at</strong>e structure whích is difficult for<br />

birds to dígest (Bolton, L967).<br />

The high fibre digestibí1íty conbined with <strong>the</strong> rel<strong>at</strong>ively high oil<br />

content make lupins an excellent source <strong>of</strong> energy (Gladstones, L970a) "<br />

Their metabolisable energy has been determined by Payne (1971) as beíng<br />

1800 Kcal/kg tor Ëhe whole seeds <strong>of</strong>. L. angust¿foLi,us, cv. Uníwhite"<br />

SweeË lupin seed is very pal<strong>at</strong>able and is readily accepted by all classes<br />

<strong>of</strong> lívestock"<br />

I"72L CaLtle Feeding<br />

SweeË lupins, alËhough highly digestiblen cannoL coulpet,e with o<strong>the</strong>r<br />

forms <strong>of</strong> foodsËuffs such as cereals as a source <strong>of</strong> dieËary energy" Ilor,r-<br />

evere <strong>the</strong>y may be very useful as a source <strong>of</strong> protein in <strong>the</strong> r<strong>at</strong>ions <strong>of</strong><br />

cerËain classes <strong>of</strong> c<strong>at</strong>tle (Barker' 1971) '<br />

The r<strong>at</strong>her unbalanced amíno acid composíËion <strong>of</strong> lupins ís <strong>of</strong> little<br />

importance in <strong>the</strong> nutrition <strong>of</strong> ruminants since <strong>the</strong> micro-organisms in<br />

<strong>the</strong> rumen are able to synÈhesize Èhe amino acíds required from most feed<br />

and make <strong>the</strong>m available to Ëhe animal. However, <strong>the</strong> amino acid balance<br />

may be iuportant in <strong>the</strong> nutritíon <strong>of</strong> Èhe young calf which has noË devel-<br />

ooed a functional rr¡men.<br />

37


As shown in Table 5, <strong>the</strong> digestibility <strong>of</strong> all seed components is<br />

quiÈe high for rr¡minants and Ëherefore could be quite s<strong>at</strong>isfactorily<br />

used for c<strong>at</strong>tle f<strong>at</strong>teníng" The protein conÈenË required in f<strong>at</strong>Ë.eníng<br />

r<strong>at</strong>ions depends mainly upon <strong>the</strong> condition <strong>of</strong> <strong>the</strong> anímals to be fed. \trhen<br />

<strong>the</strong> main tissue being produced is muscle, proteín requirement is <strong>the</strong> high-<br />

esË, and when it is f<strong>at</strong> tissue <strong>the</strong> protein requirenenÈ lessens" Barker<br />

(1971) suggested th<strong>at</strong> a mixture <strong>of</strong>. 5% lbs <strong>of</strong> ssreet lupin seed to every<br />

94% Lbs <strong>of</strong> a graín-roughage mixËure will raise Ëhe digestible proËein Ëo<br />

a level required in a raËion for f<strong>at</strong>tening yearlíngs. In very young<br />

anímals th<strong>at</strong> are buildíng mostly muscle, <strong>the</strong> same author suggests th<strong>at</strong> a<br />

ruixture <strong>of</strong> 15 1bs <strong>of</strong> lupin seed to 85 lbs <strong>of</strong> grain-roughage will provide<br />

a raËion <strong>of</strong>. L2"57" digestible protein which is required for an animal <strong>at</strong><br />

+L-i^ ^*^^^<br />

Lrrrù ù L4ËE "<br />

L"722 Poultry Feeding<br />

Lupin seed has widespread used in poultry raËions in i{estern AusË-<br />

raLLa, for both layers and broílers. Approxim<strong>at</strong>ely 10 million broilers<br />

were raised using 102 lupin seed meal in <strong>the</strong> r<strong>at</strong>ions (Smetana, L97L) "<br />

The same author from 3 years <strong>of</strong> experimental work on lupin seed in<br />

broiler raËíons has drar¡n <strong>the</strong> following conclusions; <strong>the</strong> lupin seed <strong>of</strong><br />

sr^reeË varieties <strong>of</strong> L" Luteus and tr. angusti,foLius were comparable in<br />

value as a protein source, with <strong>the</strong> former being superior due to a higher<br />

proteín content; cooking Ëhe lupin seed instead <strong>of</strong> rar¡/, coarsely ground<br />

seed elicited no response; T2% L" Luteus (cv" I^Ieiko III) or 13% L" aytgus-<br />

tifolius (cv. Uniwhite) ín starter diets and 9 and LO% in finishing<br />

raËions yielded s<strong>at</strong>isfactory gror¡rth and conversion; lupín seed meal could<br />

compleËely replace soybean meal up to a similar protein content, if an<br />

38


extra pound <strong>of</strong> syn<strong>the</strong>tic rnethionine per ton <strong>of</strong> feed was added"<br />

Payne (L97L) suggested th<strong>at</strong> lupins could be used for layer r<strong>at</strong>íons,<br />

only if <strong>the</strong>re r,lere no undesÍrable side effects on egg quality. In <strong>the</strong>se<br />

r<strong>at</strong>ions de-hu1ling would not be necessary and up Xo L5% r^rhole seed may<br />

be used.<br />

L.723 Hog Feeding<br />

McNamara (L97L) ín preliminary Ëria1s üiith lupín seed in hog r<strong>at</strong>ions<br />

obtained favourable results when Z" Luteus. cv. Weiko III was fed to<br />

Berkshire X Landrace <strong>at</strong> 60 lb starting weight.<br />

whe<strong>at</strong><br />

lupins<br />

me<strong>at</strong> meal<br />

components<br />

Gror¿ing Finishing<br />

60 to lo0 1b 100 lb to slaughter<br />

/o<br />

78 "5<br />

15 .0<br />

5.0<br />

Q? q<br />

15. 0<br />

Chrísphos (calcium phosph<strong>at</strong>e) 1"0 1.0<br />

salL 0.5 0"5<br />

Supplemented with vitarnins and trace minerals.<br />

The above lupin raËion gave a sËart. Ëo slaughter coriversíon <strong>of</strong> 3.7:1<br />

t¿hich was beËter than <strong>the</strong> control <strong>at</strong> 4:1" In ano<strong>the</strong>r experiment <strong>the</strong> me<strong>at</strong><br />

meal was completely replaced and a conversion <strong>of</strong> 4:1 result.ed from <strong>the</strong><br />

followíng r<strong>at</strong>ion: 65 "5% whe<strong>at</strong>, 15.0% o<strong>at</strong>s, 20% 1upín seede 1% Chrisphos,<br />

0.5"/" sa]-t * vitamíns and Ërace elements.<br />

39


In view <strong>of</strong> his resulÈs, McNamara suggests th<strong>at</strong> lupin seed can be<br />

subsËitrrted for a major parÈ <strong>of</strong> <strong>the</strong> conventional me<strong>at</strong> meal with no nega-<br />

tive effects on growth r<strong>at</strong>e or feed conversion.<br />

1.73 Lupinosis - Lupin Poisoning<br />

Sheep, and to a lesser extent horses and c<strong>at</strong>ËIe are subject to<br />

lupinosis. Lupinosis may assume an acute or a chronic course. In both<br />

cases <strong>the</strong> syrnptoms are similar, however, Lhe l<strong>at</strong>er results in chronic<br />

interstít.íal inflamm<strong>at</strong>ion <strong>of</strong> <strong>the</strong> liver ËhaË leads to <strong>at</strong>rophy, accompanied<br />

nephritis and enlargenent <strong>of</strong> <strong>the</strong> spleen. In studies by Gardiner (L964"<br />

1965, L967; Gardiner and Nottle, 1960), <strong>the</strong> chronic development r¡ras<br />

characterized by shrínkage and cirrhosis <strong>of</strong> <strong>the</strong> liver, increased parasi-<br />

tíc \,rorm burden, cobalt deficiencies and toxic copper levels in <strong>the</strong> liver<br />

which causes haemolytic jaundice; visible s]4nptoms include malnutrition<br />

and jaundice <strong>of</strong> <strong>the</strong> vísible mucous membranes.<br />

Acute lupinosis is characterized by inflanrnaËion, enlargement and<br />

f<strong>at</strong>ty infiltr<strong>at</strong>ion <strong>of</strong> <strong>the</strong> líver, and can result ín rapid de<strong>at</strong>h (Glad-<br />

stones, f970b) "<br />

Early in <strong>the</strong> cultiv<strong>at</strong>ed use <strong>of</strong> lupíns it was recognized th<strong>at</strong> <strong>the</strong><br />

poisoning in lupinosis rvas noË due to <strong>the</strong> alkaloids <strong>of</strong> <strong>the</strong> plante since<br />

lupinosis manífested symptoms disËinctly different from those produced<br />

by alkaloid poisoning. Kuhn (1BBO) found th<strong>at</strong> lupinosis could not be<br />

produced by alcoholíc extracts <strong>of</strong> <strong>the</strong> lupins, buÈ was produced by <strong>the</strong><br />

marc <strong>of</strong> Ëhe seeds (resídues left after seeds are pressed) " He suggested<br />

th<strong>at</strong> if this was alkaloid poisoníng <strong>the</strong> reverse vrould be true. Dammann<br />

(7902) substanti<strong>at</strong>ed <strong>the</strong> above findings when he reported th<strong>at</strong> <strong>the</strong> sub-<br />

sËance causing lupinosis r¿as insoluble in solvents cormnonly used for<br />

40


alkaloíd exÈraction and was not readily destroyed by he<strong>at</strong>" He proposed<br />

th<strong>at</strong> <strong>the</strong> substance thaÈ caused lupinosis r¡¡as noË preformed in lupins,<br />

but was a by product <strong>of</strong> <strong>the</strong> growth <strong>of</strong> a micro-organism. Thís <strong>the</strong>ory<br />

gained <strong>the</strong> support <strong>of</strong> Gardiner (1966) and l^Iarmelo eË al. (1970) who found<br />

th<strong>at</strong> lupinosis was not associ<strong>at</strong>ed wíth alkaloid conterlt buË with <strong>the</strong><br />

growÈh <strong>of</strong> Ëhe fungus Phomops'Ls Leptostrom|foz,m.Ls on <strong>the</strong> lupin plant an¿<br />

seed" They proposed th<strong>at</strong> lupinosis r¡ras caused by nycotoxicosis caused<br />

by this fungus. This relaËionshíp can explain why lupinosis also occurs<br />

when srnreet lupins are fed to livestock"<br />

1.8 AGRONOMIC CHARACTERISTICS<br />

1"Bl Seed Yield<br />

Seed yields ín most countries tend to be err<strong>at</strong>ic or in some cases<br />

not adequ<strong>at</strong>e as compared to o<strong>the</strong>r land uses, however, thís is common to<br />

all papilionaceous plants. They are all extremely sensitive to Eempera-<br />

ture' moisture and o<strong>the</strong>r environmental factors which results in yield<br />

fluctuaËions. Due to unreliable seed yields, lupins are most cormnonly<br />

used as forage or for green-manuring.<br />

Seed production seems to be favoured in countries such as South<br />

Africa and Australia r<strong>at</strong>her Ëhan in cool temper<strong>at</strong>e clim<strong>at</strong>es, as is shown<br />

by <strong>the</strong> expansíon ín production <strong>of</strong> lupin seed in <strong>the</strong> l<strong>at</strong>ter whic.h has<br />

doubled annually sínce 1-967 from L222 ha to 56,700 ha in 1972 (Founrain,<br />

L973).<br />

Recent yield d<strong>at</strong>a does not seem to be available, <strong>the</strong>refore<br />

reference r¡í11 be uade to <strong>the</strong> time when lupín cultiv<strong>at</strong>ion was <strong>at</strong><br />

in many counËries " HackbarËh (1955) sr:mmarized yíe1ds <strong>of</strong> lupins<br />

límited<br />

a peak<br />

ín<br />

+I


Germany and presented <strong>the</strong>m as long term averages.<br />

Table 6.<br />

These are listed l_n<br />

Table 6. Average seed yields <strong>of</strong> sweet lupins in Germany<br />

Species (many cvs. represented) Seed yíeld (qulha)<br />

Iühite Lupin<br />

Blue Lupin<br />

Ye1low Lupin<br />

Q,.<br />

(n"<br />

Q,"<br />

aLbus)<br />

angust¿foLius)<br />

Luteus)<br />

22.85 + 0.59<br />

L5 .29 + 0.56<br />

L7.70 + 0.67<br />

The differerrces in <strong>the</strong> yielding abílity is clearly displayed in <strong>the</strong><br />

above d<strong>at</strong>a. Table 7 illustr<strong>at</strong>es <strong>the</strong> differences between <strong>the</strong> Lhree differ-<br />

ent species, as well as <strong>the</strong> major fluctu<strong>at</strong>ions thaË occurred from year t.o<br />

year in Poland (Barbacki and Kapsa, 1960) "<br />

TabLe 7 "<br />

Average yields <strong>of</strong> sweet cultivars <strong>of</strong> lupins gror¡¡rt <strong>at</strong>. many<br />

loc<strong>at</strong>ions ín Poland from L949 to L957<br />

Species, seed yietd, qu/ha<br />

Year L. aLbus u. qtL9uÐuuJvuuØÐ L" Luteus<br />

t949<br />

1950<br />

1951<br />

L9s2<br />

1953<br />

L954<br />

L9s6<br />

L957<br />

33. 50<br />

28 "70<br />

2I.82<br />

20 "Lt+<br />

17 "26<br />

32"63<br />

17"18<br />

18"90<br />

9 "40<br />

L2 "70<br />

L4 "20<br />

12. B0<br />

18. 30<br />

6. s0<br />

15"35<br />

14"80<br />

13"00<br />

8"10<br />

13.80<br />

18"40<br />

5.10<br />

42


Forbes and Inlells (f963) reported th<strong>at</strong> yields <strong>of</strong> tr. angustífolius<br />

v¡ere as high as L452 ke/ha in Florida" Offutt (L969) ín field Ërials in<br />

Arkansas from 1965 to L967 reported seed yield <strong>of</strong>. L. aLbus Ëh<strong>at</strong> ranged<br />

from 1670 to 3300 lrce/h^"<br />

Since Ëhe majority <strong>of</strong> <strong>the</strong> breeding in lupins has been aímed <strong>at</strong> re-<br />

ducing alkaloid conËent, early m<strong>at</strong>urity, hard seededness or sh<strong>at</strong>tering<br />

and not <strong>at</strong> obtaining high yielding combin<strong>at</strong>ions, breeding for yíeld inay<br />

substantía11y increase <strong>the</strong> yields <strong>of</strong> all three species.<br />

1.82 Alkaloid Content<br />

Sweet varíeties (low alkaloid) are norü <strong>the</strong> type predomínant.ly cultí-<br />

v<strong>at</strong>ed for seed and forage producËiono however, biËter varíetíes (high<br />

alkaloid) stil1 find use as a green manure crop, presumably because <strong>of</strong><br />

<strong>the</strong>ir gre<strong>at</strong>er vigor and green mass yield (Barbacki et al" L962) "<br />

The first low alkaloid plants were isolaËed by Sengbush (1930). He<br />

found <strong>the</strong>se Èypes for both tr" Luteus and L. angustifol'Lus by mass testíng<br />

for alkaloíd content using <strong>the</strong> iodine-potassium-iodide method (IKI) which<br />

he developed. Thís nethod was l<strong>at</strong>er used by Forbes et al. (1962) f.or<br />

selection <strong>of</strong> low alkaloid straíns. In connection with screening for alka-<br />

loid contenË, Forbes and Beck (1954) found th<strong>at</strong> thrips (FnankLinelLa spp.)<br />

r,¡ould preferentially feed on sr¡reet Ëypes in a mixed popul<strong>at</strong>ion <strong>of</strong> biLter<br />

and sweet and <strong>the</strong>y could be used with 1002 accuracy for 1ow alkaloíd<br />

selection" QuanËaËive meËhods include L<strong>at</strong>awiects (1958) fluorescent and<br />

elecËrophotometric methods "<br />

Tn L" Luteus, four recessive genes have been isol<strong>at</strong>ed which segre-<br />

g<strong>at</strong>e independently ín a 3:1 r<strong>at</strong>io for alkaloid content. Three genes have<br />

been isol<strong>at</strong>ed in L. anpustifoLius and four for L" aLbus which behave<br />

43


simí1ar1y (GusËafsson and Gadd, 1965).<br />

MainËenance <strong>of</strong> varíetal puríty ís <strong>of</strong> utmost importance ín lupins<br />

because <strong>of</strong> <strong>the</strong>ir alkaloid characteristic. It is for this reason ËhaË<br />

high alkaloid cultivars should never be grown in proximity to low alkaloid<br />

cultivars. Newer varíeties have taken ínto accounË t}:e hazard <strong>of</strong> conËam-<br />

in<strong>at</strong>ion and so have been developed with phenotypic markers th<strong>at</strong> allo\^I one<br />

to distinguish between Ëhe 1ow and high alkaloid Ëypes" Markers comuonly<br />

used are white seed and flower color and ín tr. angustifoLíus tlne absence<br />

<strong>of</strong> purple pÍgment<strong>at</strong>ion in Ëhe sËems and leaves.<br />

1"83 Flowering and Pollin<strong>at</strong>ion<br />

1.831 Flowering<br />

Copious flov¿ers are generally produced by lupins, however a majority<br />

<strong>of</strong> Ëhem normally abscise" The degree <strong>of</strong> abscision is influenced by vr<strong>at</strong>er<br />

and nutrient deficiencies. Under fabourable growing conditions <strong>the</strong> amounË<br />

<strong>of</strong> flower drop can be 757" and under less optimr¡m conditions can be as hígh<br />

as 9O7" (Barbacki and Kapsa, 1960). Hackbarth (1955) found th<strong>at</strong> high temp-<br />

er<strong>at</strong>ures <strong>at</strong> flowering tended to íncrease abscision.<br />

Kubok (1965) reporËed th<strong>at</strong> white lupins (L" aLbus) were day neutral,<br />

blue lupins (tr" arryust¿foLius) were long day plants and yellow lupins<br />

(L" Luteus) required Í.airLy long days, Flowering is "L. Luteus is con-<br />

trolled to some degree by boËh photoperiod and vernaliz<strong>at</strong>ion. L" aLbus<br />

also responds to vernaliz<strong>at</strong>ion and to a lesser extenË photoperiod<br />

(Laczynska-HuleniczoÍñae L954) " Gladstones and Hill (L969) found Ëh<strong>at</strong><br />

vernalíz<strong>at</strong>ion was <strong>the</strong> main flowering contTol ín L. ætgustifoL'Lus and was<br />

condiËioned by a síngle dominant earlíness gene. Incorpor<strong>at</strong>íon <strong>of</strong> this<br />

44


gene effectively removed <strong>the</strong> vernaLiz<strong>at</strong>ion requirement.<br />

Tn L" aLbus flowering conmences immedí<strong>at</strong>ely after <strong>the</strong> growth <strong>of</strong> <strong>the</strong><br />

firsÈ l<strong>at</strong>eral branches " L" angust¿folius branches much earlier but<br />

flowers up to one month l<strong>at</strong>er " L. Luteus from <strong>the</strong> time <strong>of</strong> branching<br />

requires a longer tirne ti1l flowering than tr. albus but not as long as L"<br />

artgustifoLius" Therefore <strong>the</strong> species in order <strong>of</strong> flowering are: L. albus,<br />

L. angustifoLius" L. Luteus, (Barbacki and Kapsa, 1960) "<br />

L"832 Po1lín<strong>at</strong>ion<br />

Under European siËu<strong>at</strong>ions tr. angustifoLius is completely self-<br />

comp<strong>at</strong>ible and self-pollin<strong>at</strong>ed, however Forbes eË al" (Ig7L) found Ëh<strong>at</strong><br />

l<strong>at</strong>e flowering cultivars displayed a gre<strong>at</strong>et degree <strong>of</strong> cross-pollinaËion<br />

Ëhan early floweríng types due Ëo Ëhe l<strong>at</strong>terrs ability to wiËhstand trip-<br />

píng by honeybees. They found Ëh<strong>at</strong> r<strong>at</strong>es <strong>of</strong> cross-pollin<strong>at</strong>íon were posí-<br />

tively correl<strong>at</strong>ed to honey bee popul<strong>at</strong>íons, but rioË to brrnble bees, thrips<br />

or wild bees "<br />

L" Luteus has a strong tendency to cross-pollinaËe from 2 to 3OT"<br />

depending on culËivar. L" albus is self-fertile and self-pollin<strong>at</strong>ed.<br />

Ïhe high degree <strong>of</strong> self fertiLíz<strong>at</strong>ion has led to homozygosity for rrany<br />

genes, however <strong>the</strong> low leve1 <strong>of</strong> cross-pollin<strong>at</strong>íon preserves a moder<strong>at</strong>e<br />

level <strong>of</strong> heterozygosity in <strong>the</strong> gene pool (Gustafsson and Gadd, 1965).<br />

O<strong>the</strong>r North American species range from oblig<strong>at</strong>e self-pollinaËers<br />

Eo complete self-steriles (Dunn, L959) "<br />

1. 84 Pod Number and DistribuËion<br />

These <strong>at</strong>tributes deline<strong>at</strong>e <strong>the</strong> seed producing<br />

or sink-capacity. L<strong>at</strong>eral branches bearing fruit<br />

characterisËic since Èhis fruit ripens uuch laËer<br />

capacity <strong>of</strong> <strong>the</strong> plant,<br />

is not a desirable<br />

than Èhe pods on Èhe


main stem causing harvesting difficulties or if harvesËíng is postponed<br />

unËí1 all <strong>the</strong> pods are ripe yíeld wíll decrease due to sh<strong>at</strong>tering losses.<br />

This delay will reduce gerrnin<strong>at</strong>ion and a greaËer amount <strong>of</strong> seed will be<br />

infected wiËh p<strong>at</strong>hogens "<br />

Pod msrber is gre<strong>at</strong>esË in -t" Luteus, Ëhen tr" angusti-foLius, follor.¡ed<br />

by L. aLhts" However, this is not in iËself indic<strong>at</strong>íve <strong>of</strong> yield due to<br />

<strong>the</strong> disparity in seed síze <strong>of</strong> <strong>the</strong>se three species (r. albus has seeds<br />

twice as large as <strong>the</strong> o<strong>the</strong>r two), (Barbacki and Kapsa, 1960).<br />

There also exists much varíability in <strong>the</strong> distríbuËion <strong>of</strong> pods be-<br />

tr,reen and wiËhin species. DistribuËion is largely dependent on both<br />

clim<strong>at</strong>ic factors and genoËype. Cool, damp weaËher during flowering re-<br />

sults in more pods on <strong>the</strong> l<strong>at</strong>eral branches and less on <strong>the</strong> main stem.<br />

Laczynska-Hulewiczowa (1954) found thaË early planting and vernalizaLion<br />

resulted in earlier and more pr<strong>of</strong>use branching wiËh <strong>the</strong> majority <strong>of</strong> Èhe<br />

pods formed on <strong>the</strong> l<strong>at</strong>eral branches.<br />

Genotypic effecËs are also displayed- tr" angustifoLius forms Ëhe<br />

majority <strong>of</strong> iËs pods on <strong>the</strong> l<strong>at</strong>eral branches in conditions <strong>of</strong> rnride row<br />

spacíng, however, this characËeristic in -[" Luteus is dependenË on clima-<br />

tÍc conditions" Pods on <strong>the</strong> main stem are characteristíc <strong>of</strong>. L" aLbus<br />

which is posítively correl<strong>at</strong>ed to seed yield (Barbacki and Kapsa, 1960).<br />

Ano<strong>the</strong>r variable ín terms <strong>of</strong> seed production is seeds per pod"<br />

Mordashev and Mordasheva (1971) found th<strong>at</strong> seed abortion in lupíns was<br />

dependent upon loc<strong>at</strong>ion <strong>of</strong> <strong>the</strong> pod on <strong>the</strong> plant and Ëhe loc<strong>at</strong>íon <strong>of</strong> Ëhe<br />

ovule in <strong>the</strong> pod. Usable soil area also seemed to have some bearing on<br />

this characterisËic"<br />

46


1.85 Hard and S<strong>of</strong>t-Seededness (permeabilÍty)<br />

Lupin seed may be ínherently impermeable or develop this character-<br />

istic under certain circumstances. I^Ii1d progeniËors <strong>of</strong> culËiv<strong>at</strong>ed lupins<br />

were all hardseeded and impermeable which had a selective advantage in<br />

n<strong>at</strong>ure, however, in an agrícultural crop this characterisÈíc results in<br />

err<strong>at</strong>íc germin<strong>at</strong>j-on, poor stands, and decreased yíelds"<br />

Sengbush selected <strong>the</strong> firsË s<strong>of</strong>t-seeded, permeable types <strong>of</strong> -t. Luteus<br />

and L- angustifoLius" He found thaË ít r¡ras controlled by a single reces-<br />

síve gene thaË segreg<strong>at</strong>ed in a 3 to 1 r<strong>at</strong>io (Gustafsson and Gadd, Lg65).<br />

Forbes and üIells (1968) found th<strong>at</strong> s<strong>of</strong>t-seededness in L" angustifoL.Lus<br />

Ìnras controlled by an allelic paír <strong>of</strong> recessíve genes. tr. albus has been<br />

s<strong>of</strong>t-seeded for countless yearso probably due to selection under primitive<br />

cultiv<strong>at</strong>ion.<br />

Forbes and l{ells (1968) found th<strong>at</strong> Ímpermeabiliry ín L. arryusti_<br />

foLius was due to <strong>the</strong> moisture impermeable testa. The hilar fissure opens<br />

when <strong>the</strong> external hrnnidíty is lower than <strong>the</strong> internal with a resultant<br />

loss <strong>of</strong> moisture from <strong>the</strong> seed. This fissure closes r¿hen <strong>the</strong> external- humÍd.-<br />

íty is gre<strong>at</strong>er than <strong>the</strong> internal and. <strong>the</strong>refore moisture cannot be regained<br />

(Burns, 1959).<br />

There is a direct rel<strong>at</strong>ionship between seed moisture conËent and <strong>the</strong><br />

T<strong>at</strong>e <strong>of</strong> hardeníng and s<strong>of</strong>tening, and subsequent gerninaËion. If <strong>the</strong> moís-<br />

ture content is decreased from 15 to 9% ín genetically hard. seeds, ímper-<br />

meabilíty will increase. If <strong>the</strong> moisture content falls below 9% t:ne<br />

impermeability ís irreversible, however, in genetically s<strong>of</strong>t seeds Ëhere<br />

is not a compleËe barrier formed when <strong>the</strong> seeds are dryed to 9%, although<br />

impermeability increases slightly upon drying (Brewer and Butt, 1950;<br />

Quinlivin, 1970) "<br />

47


1"86 Sh<strong>at</strong>tering<br />

This is ano<strong>the</strong>r typically wild characterisËic th<strong>at</strong> ís possessed by<br />

lupins in general" It ís noË desirable in a cultiv<strong>at</strong>ed crop since it<br />

results in serious seed losses " Since o<strong>the</strong>r legumes have non-sh<strong>at</strong>teríng<br />

pods and by <strong>the</strong> law <strong>of</strong> parallel vari<strong>at</strong>ion lupins should also. This<br />

assumptÍon led Ëo <strong>the</strong> initial selecËion <strong>of</strong> reduced or non-shaËterÍng<br />

mutants by sengbush and Zimmerman (L937) for L. Luteus and L. a.Wust¿-<br />

folíus" L" aLbus has had non-sh<strong>at</strong>tering pods for counËless years due Ëo<br />

early selection during prin-itive cultiv<strong>at</strong>ion"<br />

Non-sh<strong>at</strong>tering is due to a single recessive gene in L" aLbus<br />

(Kazimerski, I964a) and L" Luteus (Sengbush and Zinrnermane L937). Sh<strong>at</strong>-<br />

Ëering in tr" arryustífoLius Ls conditioned by four genes th<strong>at</strong> are non-<br />

a11elic and unlinked. Double homozygotes r,rere fully non-shedding (Glad-<br />

stones, L967) "<br />

Pod drop can also pose serious problems, however genes<br />

for this character have also been isol<strong>at</strong>ed (Schwanixz, 1967) "<br />

The an<strong>at</strong>omÍcal basis <strong>of</strong> sh<strong>at</strong>tering has been fully covered by various<br />

authors (Zinmerman, L942; Atabekova, 1958; Hanelt, 1960). There are<br />

basically two types <strong>of</strong> an<strong>at</strong>omical fe<strong>at</strong>ures conditioned by genes for non-<br />

shaLtering. one is <strong>the</strong> fusion <strong>of</strong> <strong>the</strong> opposing halves <strong>of</strong> sclerenchyma<br />

strips ín <strong>the</strong> pod seams to a degree where forces set up within <strong>the</strong> pod<br />

wal1s is insufficienË to separ<strong>at</strong>e <strong>the</strong>m. The o<strong>the</strong>r is a weakening <strong>of</strong> <strong>the</strong><br />

sclerified inner layer (endocarp) <strong>of</strong> Ëhe pod walls (Gladstones, L967)"<br />

1.87 M<strong>at</strong>uriËy<br />

SËepanova (1971) observed many línes <strong>of</strong> lupins, and found th<strong>at</strong> <strong>the</strong>re<br />

exísts a considerable amount <strong>of</strong> variaËion for this characteristÍc. Some<br />

<strong>of</strong> <strong>the</strong> vari<strong>at</strong>ion was due to a cultívar X vear inËeracËion but a substantial<br />

4B


amounË f^Ias genetr-c.<br />

The sequence <strong>of</strong> m<strong>at</strong>urity in most countries is as followsz L. artgus-<br />

tifolius is always Ëhe earliesË, <strong>the</strong>n tr. Luteus, followed by L. aLbus"<br />

Observ<strong>at</strong>ions in Poland from L954 to L957 yielded <strong>the</strong> followíng d<strong>at</strong>a on<br />

days to m<strong>at</strong>urity. Three forms <strong>of</strong>. L. albus exist on <strong>the</strong> basis <strong>of</strong> <strong>the</strong>ir<br />

Ëime to m<strong>at</strong>urity - early types wit]n l-42 days to m<strong>at</strong>urity, medium types <strong>at</strong><br />

154 days to m<strong>at</strong>urity and l<strong>at</strong>e types ax L7 3 days to m<strong>at</strong>urity; average time<br />

to m<strong>at</strong>urity f.or L" Luteus and L. arqustifoldus is I2B and 121 respecËively<br />

(Barbacki and Kapsa, 1960).<br />

I{ide row spacing, heavy soil, excessive nítrogen fertílizer, as well<br />

as o<strong>the</strong>r factors, wíll delay m<strong>at</strong>urity (Hackbarth, 1955) "<br />

Degree <strong>of</strong> branch-<br />

íng is rel<strong>at</strong>ed to tíme to ü<strong>at</strong>urity (Barbacki and Kapsa, 1960), <strong>the</strong>refore<br />

a mono-culrn type uúght have certain advanËages sínce <strong>the</strong> contribution to<br />

yield <strong>of</strong> l<strong>at</strong>eral branching is not very greaË due Ëo small pods and seed "<br />

1"BB 1000 Seed i^IeighË<br />

This characÈeristic is positively correlaËed wíth seed yield in tr.<br />

aLbus" however, Ëhis may noË be a desírable characterístic as far as seed-<br />

ing oper<strong>at</strong>ions are concerned. There is considerable variabílity for this<br />

characteristic in L" albus and Èo a lesser exËent in <strong>the</strong> o<strong>the</strong>r Ër,¡o snecies<br />

(Barbacki and Kapsa, 1960). Large seed size is also desirable since wiËh<br />

increasing seed size <strong>the</strong>re is an increase in seed quality due Ëo a rela-<br />

tive decrease in <strong>the</strong> proportíon <strong>of</strong> seed co<strong>at</strong> to germ"<br />

L.9 MARKET POSSIBILITIES<br />

Soybeans<br />

keË, with Ëhe<br />

presently domin<strong>at</strong>e <strong>the</strong> intern<strong>at</strong>ional vegetable protein mar-<br />

majority being produced by Ëhe United St<strong>at</strong>es. Increases ín<br />

ha


outpuË in <strong>the</strong> U"S"A. as r,¡ell as in o<strong>the</strong>r soybean producing countries is<br />

stil1 possible, <strong>the</strong>refore entry <strong>of</strong> a nev¡ crop such as lupins is dependent<br />

on Ëheír being economícally competítive with <strong>the</strong> widely accepted soybean<br />

mea1. Besides price factors, one must Ëake into accounË <strong>the</strong> differences<br />

in quality between <strong>the</strong> tr^ro. Lupins are not quíte as valuable a feed since<br />

<strong>the</strong>y have a slightly lower feedíng value for some classes <strong>of</strong> livestock<br />

than soybean meal, however processing lupin seed ínto a meal might make<br />

it somewh<strong>at</strong> more competitive (Gladstones, 1970c) "<br />

I^Iidespread usage <strong>of</strong> proËein meals in Ëhe lívestock índustry, com-<br />

bined with <strong>the</strong> various c<strong>at</strong>astrophies th<strong>at</strong> have led to protein shortages<br />

has led Ëo <strong>at</strong>ypical market conditíons, such th<strong>at</strong> even lupins are gaining<br />

recognition in <strong>the</strong> world markets. This was mainly due to <strong>the</strong> promotion<br />

work carrÍed out by The Grain Pool <strong>of</strong> l¡Iestern Australia (FounËain" L973).<br />

The fírst export <strong>of</strong> lupins from AusËraTta resulted from this promoËion<br />

when in L97L-72 approxim<strong>at</strong>ely 1100 metric Lons were sold and shipped to<br />

Europe. This has led to o<strong>the</strong>r firm buyer interesËs, however, Australia<br />

v¡as unable to fill <strong>the</strong> demand for <strong>the</strong>se overseas markets which amounted<br />

to approxim<strong>at</strong>ely 255"000 metric tons <strong>at</strong> this time and <strong>the</strong> same amount<br />

annually in <strong>the</strong> future" Little else ís known abouË o<strong>the</strong>r markets for this<br />

commodity.


2.0 MATERIALS AND METHODS<br />

2.L REPLICATED YIELD TRIALS<br />

2.11 Seed Yield Trials ín 1972<br />

Trials were planted <strong>at</strong> three loc<strong>at</strong>ions in <strong>Manitoba</strong>, namely Winnipeg,<br />

Glenlea, and Morden"<br />

Trials <strong>at</strong> all sites consísted <strong>of</strong> 13 cultívars <strong>of</strong>. L" albus, 7 cuLti-<br />

vars <strong>of</strong> L. angustifoLius and B cultiva'rs <strong>of</strong>. L" Luteus, accompanied by<br />

fababeans (cv. Ackerperle) and wheaË (cv. Glenlea) for comparison. The<br />

trials \¡rere treaËed as a randornized block design with three replic<strong>at</strong>ions.<br />

Each cult.Ívar was represented in a four row p1ot, 5"6 rn long (rod row),<br />

r^rith 30.5 cm between rows and 61 cm beËween plots"<br />

Seeding v¡as done with cereal plot planters adjusted to obtaín a seed-<br />

ing depth <strong>of</strong> 3 * 2 cm" Seeding d<strong>at</strong>es are lísted in Appendix A.<br />

A seeding r<strong>at</strong>e <strong>of</strong> B0 seeds per rol.i was used for all lupins. Assum-<br />

ing an average 1000 kernel weight <strong>of</strong> 385, 200 and 140 grams f.or L" aLbus,<br />

L" angustifoLius and L" Luteus respectively results in a seeding r<strong>at</strong>e <strong>of</strong><br />

145" 75, and 50 kg/ha for <strong>the</strong>se three species. R<strong>at</strong>es for Ëhe fababean<br />

and whe<strong>at</strong> comparisons r,rere 135 and 7O kg/ha respectively"<br />

The seed was inoculared with a commercial lupin rhizobÍa culture<br />

using <strong>the</strong> following meÈhod; The pe<strong>at</strong> cultures <strong>of</strong> ínoculum r,{ere inixed with<br />

cracked rrhe<strong>at</strong> and w<strong>at</strong>er added until <strong>the</strong> mixture r^ias someruh<strong>at</strong> tacky. This<br />

míxture was applied <strong>at</strong> <strong>the</strong> r<strong>at</strong>e <strong>of</strong> one Ëeaspoon per 5.6 m row írrnedi<strong>at</strong>ely<br />

prior to seeding operaËions" This resulted in a r<strong>at</strong>e far greaËer than<br />

reconrnended. Seed was also tre<strong>at</strong>ed with <strong>the</strong> fungicíde Captan, 502 weÈ-<br />

table powder.


The varieties tested were noË chosen on <strong>the</strong> basis <strong>of</strong> a priori d<strong>at</strong>a<br />

rel<strong>at</strong>ed to yield, adaptibílity, etc", buË exclusively on <strong>the</strong> basis <strong>of</strong><br />

seed availabiliËy. These culLivars are listed in Table B, along with<br />

<strong>the</strong>ir cultivar identific<strong>at</strong>íon number and source.<br />

Fertilizer rüas not applied <strong>at</strong> any <strong>of</strong> <strong>the</strong> locaÈions, since n<strong>at</strong>ural<br />

fertility levels were adequ<strong>at</strong>e, soil analyses are given in Appendix B.<br />

Hand howing vras <strong>the</strong> prínciple method <strong>of</strong> weed control used in all tests<br />

both in L972 and 1973.<br />

The follor,líng aËtríbutes <strong>of</strong> <strong>the</strong> enËries were observed and noted<br />

during Ëhe growing season; days to emergence, taken when 75"A <strong>of</strong> <strong>the</strong><br />

seedlings were vísible; flowering, taken wlnen 757" <strong>of</strong> Ëhe plot showed<br />

blooms; plant height and m<strong>at</strong>urity ruhen gre<strong>at</strong>er rlnan 90% <strong>of</strong> Ëhe pods had<br />

Ëurned brov¡n. Lodging, sh<strong>at</strong>Ëering and several oËher characteristícs<br />

were also noted"<br />

Harvestíng \,¡as done by hand" The centre tvro ror¡rs r{ere cut with a<br />

sickle, bagged and dried in forced aír <strong>at</strong> 90 degrees F for approxim<strong>at</strong>ely<br />

tr¿o weeks. They were <strong>the</strong>n threshed wíth a Hege plot combine adjusted to<br />

a wíde concave clearance and a slow cylÍnder speed "<br />

Thousand kernel weighË was determined on a composite sample <strong>of</strong> 200<br />

seeds for each entry. A sírnílar sample Tras used to determine test weighË<br />

and proËein content. Some cultívars r.vere anal-yzed for amino acíd composi*<br />

tíon and o<strong>the</strong>r chemical- seed constítuents.<br />

2"L2 Seed Yield Trials Ln L973<br />

Trials were planËed <strong>at</strong> four<br />

üIinnipeg, Carman, Steinbach, and<br />

sisted <strong>of</strong> 31 cultivars <strong>of</strong> lupins"<br />

locaËions in Manítoba. which included<br />

Carberry. The trial <strong>at</strong> irlinnipeg con-<br />

The trials aË <strong>the</strong> o<strong>the</strong>r three loc<strong>at</strong>.ions<br />

52


Table 8. Species and cultivars <strong>of</strong> lupins evalu<strong>at</strong>ed in yíeld trials in<br />

L972 and L973, along liith <strong>the</strong>ir source and cultivar number*<br />

Species /cu1Ëivar Year Ëested Cult"<br />

no.<br />

.L¡<br />

Þource<br />

Iapinus albus<br />

Sa<strong>at</strong>gut<br />

Russian cv"<br />

Kierskijskoe.<br />

Baily I<br />

It.alian cv"<br />

L972, 1-973<br />

rr rr<br />

L972<br />

L972, 1973<br />

'<br />

rr<br />

la R.G" Robinson, U.S.A"<br />

2a Georgia, U"S "4.<br />

3a U"S. S "R.<br />

5a Dr" Hackbarth, Germany<br />

6a rr rr rr<br />

Reuscher L972" 1,973 7a Dr. Hackbarth, Germany<br />

S" Africa lf 255 L972 Ba South Africa<br />

Kali L972, 7973 9a Poland<br />

Neuland - L973 10a RiËterhaus, W. Germany<br />

Zagrebska L972, L973 13a Hackbarth, Germany<br />

Blanca L972, L973 15a Centmaier, W" Germany<br />

S. Africa lt 244 L972 - L6a South Africa<br />

MSU-3, 46-10 L972 - Lla Elliorr, ltich. Srare, U.S.A.<br />

MSU-2 L972 - l8a " rr rr tr<br />

Lupínus angustd foL'ius<br />

S. Africa 11277 LAS<br />

Gíepie<br />

S " Africa 7002 VAAL<br />

rt<br />

' ll 60 /206<br />

'!r ' ll L23<br />

L972" L973<br />

rr rr<br />

rt tr<br />

tr<br />

'<br />

Lg72<br />

9b South Africa<br />

f 0b rr rr<br />

tt<br />

llb 'r<br />

13b rr rl<br />

Lîb ?r ',<br />

Elita L972 - 1Bb Poland<br />

S. Africa /l 104 LAS L972, L973 20b South Afríca<br />

Uniharvest - L973 28b Gladstoneso W" Australia<br />

Unicrop - L97 3 29b rr rr rr<br />

Lupinus Luteus<br />

Weíko III<br />

Ekspress<br />

Sam<br />

Lima<br />

Bas<br />

Gorzoviskí<br />

Pomorski<br />

AS<br />

Popular<br />

- 1973 lc Hackbarth & Troll, Germany<br />

1-972, 1973 L2c Poland<br />

il rr<br />

tr tf<br />

It tt<br />

f t tt<br />

tf rr<br />

rr It<br />

13c<br />

L4C<br />

15C<br />

It<br />

rl<br />

il<br />

16c Poland<br />

tt<br />

L7C<br />

tgC il<br />

rr n lgc rr<br />

* Cultirzar m¡nbers correspond with those in Appendix C, for nursery trials.,<br />

Breeder listed where inform<strong>at</strong>ion available,.


consisted <strong>of</strong>.27 culti\¡ars <strong>of</strong> lupins" Those tested. in 1973 are lisËed in<br />

Table B, with any deletíons or additions from those tested in I9l2 made<br />

purely on <strong>the</strong> basÍs <strong>of</strong> seed avaílabilitv.<br />

Test desígn hras changed from th<strong>at</strong> used in L972 to a split-pIot de-<br />

sign. The tests consisted <strong>of</strong> three replic<strong>at</strong>es, where specíes vrere as-<br />

signed to Lhe main plots. The three maÍn plots \¡rere arranged in random-<br />

ized cornplete blocks. Cultivars r,rithin a species were assigned randomly<br />

to <strong>the</strong> sub-plots" This change in desígn was utilized. to esËim<strong>at</strong>e more<br />

precisely <strong>the</strong> differences in cultivar performance within a species than<br />

specíes performance, since yield capabilitíes <strong>of</strong> <strong>the</strong> three species were<br />

established as beíng decidedly different in L972.<br />

PloË size was decreased from <strong>the</strong> four rows used ín L972 to three<br />

roI^rs. LengËh, row spacing and plot spacing remained. unchanged., as was<br />

general seeding oper<strong>at</strong>íons.<br />

Seeding r<strong>at</strong>e T^ias íncreased to 105 seeds per roÌ¡r, due to poor stands<br />

obtained in L972 as a result <strong>of</strong> pooï germín<strong>at</strong>ion. This resulted ín a<br />

seeding r<strong>at</strong>e <strong>of</strong> 175, 90 and 65 kC/ha f.or L. albus, L. angustifolius, and<br />

L" Luteus respectively. Fababeansy cV. Ackerperle, \¡/ere agaín preserit<br />

for comparison" rts seeding r<strong>at</strong>e was increased. to 90 seeds per row,<br />

Glenlea whe<strong>at</strong> v¡as deleted since it was thought th<strong>at</strong> lupins would be in<br />

direct competition with fababeans, which \^rere novr established as beins<br />

well adapted and high yielding in Maniroba.<br />

Soybean (GLyei-ne man) was included in this year's trials as rn¡ell as<br />

in <strong>the</strong> 1973 Nursery trials. The strain used was pr-54619-5-1, which is<br />

a sensitive indic<strong>at</strong>or <strong>of</strong> <strong>the</strong> potential <strong>of</strong> a soil to induce lime chlorosis<br />

(LaCroix and Lens, L967), Thís was used. sínce seveïe chlorosís r¿as<br />

experienced in 7972 for all species and was thought Ëo be due to high<br />


levels <strong>of</strong> soil lime in <strong>the</strong> test areas" If chlorosis was experienced in<br />

a certain cultivar or specíes, such an indic<strong>at</strong>or would serve to elucid<strong>at</strong>e<br />

possíble causes. The degree <strong>of</strong> chlorosis <strong>of</strong> both <strong>the</strong> soybean and lupins<br />

r^ras to be r<strong>at</strong>ed on a 1to 5 scalee vrhere l wou1d indic<strong>at</strong>e green leaves<br />

and 5 severe yellowing.<br />

A single row <strong>of</strong> soybean, l,rith a row <strong>of</strong> lupins on ei<strong>the</strong>r side com-<br />

prised a three row indic<strong>at</strong>or plot. which Þras tre<strong>at</strong>ed as a sub-ploË \{íthin<br />

each main plot for all replic<strong>at</strong>es and randomlzed accordingly. Row length,<br />

spacing and plot spacing was Ëhe same as <strong>the</strong> o<strong>the</strong>r entríes"<br />

Nodul<strong>at</strong>íon in L972 T¡ras very poor, and part <strong>of</strong> this failure was<br />

<strong>at</strong>tributed Ëo <strong>the</strong> inoculaËion method used" The method was <strong>the</strong>refore<br />

changed Ln 1973 tests" The source <strong>of</strong> ínoculum üras changed from a German<br />

company to The NiËragin Company, Milwaukee. The pe<strong>at</strong> based inoculum r¿as<br />

tested for viability using standard procedures " From <strong>the</strong>se tests a r<strong>at</strong>e<br />

T^ras extrapul<strong>at</strong>ed th<strong>at</strong> would give a rhizobLal popul<strong>at</strong>ion <strong>of</strong> 10,000 viable<br />

bacËeria per seed. The actual procedure used consisted <strong>of</strong> bulk ínocula-<br />

Èion <strong>of</strong> <strong>the</strong> seed before individual packagÍng <strong>of</strong> <strong>the</strong> seed <strong>of</strong> different<br />

cultivars for different sub-plots. The inoculrrn used was a míxture<br />

(slury) <strong>of</strong> coÍmercial ínocuh-nn, Þr<strong>at</strong>er and a conrnercial sticking agent"<br />

The seed was mixed with thisslurryand Ëhen laid out to dry. It was Ëhen<br />

packaged and stored in a cool, humid room for approxímaLeLy 24 hours<br />

prior to planting. Seed was tre<strong>at</strong>ed wiËh Captan. These procedures \¡/ere<br />

also carried out for <strong>the</strong> sovbeans.<br />

Fertilizer $/as applied Ëo three <strong>of</strong> <strong>the</strong> test sites, <strong>at</strong> r<strong>at</strong>es lísted<br />

in Appendix B. All o<strong>the</strong>r detaÍls were sirn-ilar Ëo tl:e 1-972 tests, wiËh<br />

<strong>the</strong> exception th<strong>at</strong> all three ror,{s <strong>of</strong> each ploË rn¡ere harvested for yield.<br />

55


2"2 SINGLE ENTRY NURSERY TRIALS<br />

2.21 Nursery Trials in 1972<br />

A1l accessions received up to Apri1, L972 were planted in a single<br />

nursery <strong>at</strong> l^Iinnipeg on l{ay L7. This consisted <strong>of</strong> 449 lines <strong>of</strong> 40 differ-<br />

ent lupin species r¿hich are lísËed in Table 9, along with synon¡rmse com-<br />

non names, chromosome number and some pertinent charact.eristics (Kelsey<br />

and Dayton, L942; Darlíngton and trIhyle, 1955; Gladstones, 1958; Dunn and<br />

Gillett, 1,966). The number <strong>of</strong> lines observed for each species and <strong>the</strong><br />

number <strong>of</strong> 1ínes selected from each species is also listed.<br />

The lines were planted in single ror¡rse 2.5 meÈers 1ong, r,¡ith 61 cm<br />

beEween ror.rs. Seed r<strong>at</strong>e was 50 seeds Der ror{ for all species. T.l:ris<br />

arrangemenË r¡ras used purely to faciliË<strong>at</strong>e <strong>the</strong> increase <strong>of</strong> seed" Faba-<br />

beans, cv. Ackerperlee lrere planted for comparison. The seed was inocu-<br />

l<strong>at</strong>ed, tre<strong>at</strong>ed, pl-ant.ed and maintained as in t'Jne L972 replic<strong>at</strong>ed yield<br />

Ërials. IË was found necessary to apply iron chel<strong>at</strong>e as a top dressing<br />

during <strong>the</strong> growing season for reasons to be discussed in a following<br />

section "<br />

Agrononric characteristics were observed through <strong>the</strong> growing season<br />

and selectíon for furËher testíng was based prinarily on <strong>the</strong> following<br />

criteria: seed size, previous use in agriculture as a field crop, and<br />

quanËiËies <strong>of</strong> seed Ëh<strong>at</strong> resulted from thís nursery test" O<strong>the</strong>r considera-<br />

tions ín selection <strong>of</strong> sÞecies and cultivars to be fur<strong>the</strong>r tested r¡/ere<br />

habít, actual yield potential and purity <strong>of</strong> <strong>the</strong> parËicular inÈroduction.<br />

Many species and lines were discontinued from fur<strong>the</strong>r tesÈingbecause <strong>of</strong><br />

Ëheir failure Ëo produce seed due to germin<strong>at</strong>ion failure, diseases,<br />

56


Tab1e 9" Species observed in <strong>the</strong> L972 nursery, along v¡íËh conmon names<br />

synonyms, chromosome numbex (2n) and some gross characterístics<br />

Species Nrsrber <strong>of</strong> cultívars<br />

Synonyms and cormnon names 2n characters* obseived in tesËed in<br />

1972 L973<br />

L" aLbus L.<br />

L" termís Forsk.<br />

L. gra.ecus Boiss &<br />

Spun.<br />

L" jugoslauieus Kazím &<br />

Now.<br />

WhiÈe or tr^Iolf Lupin<br />

L" angustifoLus L"<br />

L" uaz,ius L"<br />

L. Lini.foLius Roth<br />

L. z,etì,euL<strong>at</strong>us Desv.<br />

Narrov¡-leafed or Blue Lupin<br />

L" arboreus<br />

Tree Lupin<br />

L. az'idus<br />

lr " LODD7.<br />

L" ayticus<br />

L" bentha¡ni<br />

Spíder Lupin<br />

L. bifLorus<br />

L" mierophyLLus<br />

L" pipensmdthi<br />

L. tetz'aspez,rm,Ls<br />

L" tz.ident<strong>at</strong>uts<br />

L" tri-fidus<br />

L. umbell<strong>at</strong>us<br />

Bícolor Lupin<br />

L" cosentin'L Guss.<br />

L" uar"Lus L" ssp"<br />

uaz,ius Franco & Silva<br />

I¡i. Australian Blue or<br />

Sandplain Lupin<br />

L. douglassi<br />

50 LS, C, G, F 49<br />

40 LS, C, G, F 75<br />

48 ss, c, H 15<br />

48 ss, NC<br />

38 SS, NC<br />

SS, NC<br />

48 ss,c,H 2<br />

32 LS,C,G 2<br />

48 SS, NC<br />

LS = large-seeded, SS = small-seeded, C = cultiv<strong>at</strong>ed,<br />

NC = not cultiv<strong>at</strong>ed, G = as a grain crop, T = for forageu<br />

H = horticultural use"<br />

27<br />

35<br />

57


Table 9 - Continued<br />

Species<br />

Synonyns and Common names 2n CharacËers*<br />

L. densiflonus<br />

L" Lacteus<br />

L" menzíesi<br />

Gul1y Lupin<br />

L" digit<strong>at</strong>us Forsk"<br />

L" taseíLicus<br />

L. eLegans<br />

L. Vnz,h'tegíi f "<br />

L. biLine<strong>at</strong>us Benth.<br />

Hartweg Lupin<br />

L" htz.sutissòmus<br />

lr" 4LTSUDUS L"<br />

L. miey,anthus Guss.<br />

European Blue Lupin<br />

L. hispani-cus Boiss " & Reut<br />

L" L<strong>at</strong>ifoLius<br />

L" columbianus<br />

L" Longipes<br />

Broadleaf Lupin<br />

Columbia B. L.<br />

Longstalk B. L.<br />

L" Lepidus<br />

Pacific Lupín<br />

L. LeucopVtyllus<br />

L" canescens<br />

Velvet Lupin<br />

Hoary Velvet Lupin<br />

L" Littorali.s<br />

Shore Lupin<br />

L" LyaLLi<br />

L. danaus<br />

lr" LODDL<br />

Lyall Lupin<br />

Mount Dana Lu.pin<br />

48 SS, NC<br />

36 LS, NC<br />

4B<br />

4B<br />

24<br />

4ö<br />

48<br />

4B<br />

/,a<br />

SS, NC<br />

SS, C, H<br />

SS,<br />

LS, C,G,F,H<br />

SS,<br />

SS,<br />

SS, -<br />

SS, C, H<br />

SS, NC<br />

ss, Nc<br />

Nturber <strong>of</strong> cultivars<br />

Observed in<br />

L97 2<br />

10<br />

5<br />

1<br />

5<br />

'l<br />

I<br />

Tested in<br />

L97 3<br />

U<br />

0<br />

0<br />

0<br />

0<br />

0<br />

5B


Table 9 - Continued<br />

Specíes Number <strong>of</strong> cultivars<br />

Synonynrs and Common names 2n Characters*<br />

L. Luteus L"<br />

Yellov¡ Lupin<br />

L. mienanthus Guss.<br />

L. Wt,sutus<br />

Hairy Lupín<br />

Fíeld Lupin<br />

L. rrutabiLís Suteet<br />

L" cm,tckshanski<br />

South American Lupin<br />

L" Nanus<br />

L" affínis<br />

Sky Lupín<br />

N " ynotk<strong>at</strong>ensis<br />

Nootka Lupin<br />

L" orn<strong>at</strong>us<br />

OrnaËe LupÍn<br />

u.<br />

7-<br />

yquqeÐ ^^'7 ^^^-L-'"-",^ uutLt4Ð<br />

L" perenis<br />

Sundial Lupin<br />

L" pilosus<br />

L" uayius L, ssp"<br />

oz,íentalis Franco &<br />

Sílva<br />

52 LS, C, G, F, H Bg<br />

48 LS, NC<br />

4B LS, c, G, H L2<br />

48 ss, c, H 11<br />

48 ss, NC<br />

48 ss, cc, F 2<br />

LS, NC<br />

48 ss, -<br />

42 LS, C, -<br />

L. poLyphyLLus 48 SS, C, H<br />

I{ashington Lupin<br />

L. pubescens BentJn. 48 SS, C, H<br />

L" dzmnetti<br />

L. pusiLl¿¿s Pursh 48 SS, NC<br />

L" intez,montanus<br />

Rusty Lupin<br />

L. z.iuuLaz.is SS, NC<br />

Stream Lupin<br />

r972 r97 3<br />

I<br />

50<br />

0<br />

0<br />

0<br />

59


Table 9 - Continued<br />

Species<br />

Synonyms and Coumon names<br />

L. subalpinus<br />

Subaapíne Lupin<br />

L. subeænows<br />

Texas Lupin<br />

L" suceutlentus<br />

Arroyo Lupin<br />

L. somd.L¿enszs Baker<br />

L" tnune<strong>at</strong>us<br />

tr^Iood Lupin<br />

L. uayius L.<br />

L" syluestz,i..s<br />

L, semzuez,ticiLL<strong>at</strong>us Desr.<br />

O<strong>the</strong>r non-identified specíes<br />

(Pullnan, U" S "A" )<br />

/,9<br />

Characters* 0bserved ín<br />

7972<br />

SS, NC<br />

SS, C, F9 H<br />

SS, C, F<br />

LS, NC<br />

SS, NC<br />

LS, NC<br />

SS} NC<br />

Number <strong>of</strong> cultívars<br />

10<br />

56<br />

Tested in<br />

L973<br />

0<br />

0<br />

60


nutritional abnormalitíes and failure to receive arlequ<strong>at</strong>e photoperiod. or<br />

vernal-i z<strong>at</strong>íon requírement "<br />

2"22 Nursery Trials in 1973<br />

Nurseries were planËed <strong>at</strong> eight loc<strong>at</strong>ions in <strong>Manitoba</strong>, namely<br />

trnlinnipeg, carman, Manitou, sprague, Steinbacho G1en1ea, Franklin and<br />

Carberry. Those loc<strong>at</strong>ed aÈ Ialinnipeg, Carman, Steinbach and. Carberry<br />

were pranted in close proximity to <strong>the</strong> yield tría1s <strong>at</strong> <strong>the</strong>se loc<strong>at</strong>Íons.<br />

These \^rere conprised <strong>of</strong> 98 different entries <strong>of</strong> L. aLbus, L. angusti,_<br />

foLt'us' and -t. Luteus. Included in <strong>the</strong>se entries were cultívars th<strong>at</strong><br />

r^rere present in <strong>the</strong> replic<strong>at</strong>ed yíeld trials <strong>at</strong> each loc<strong>at</strong>ion for yield<br />

comparíson purposes" The o<strong>the</strong>r four loc<strong>at</strong>ions consisÈed <strong>of</strong> 62 lines <strong>of</strong><br />

Èhe above three species, plus tr. eosentini arrd L" mutabiLts" Fababeans<br />

!/ere presenË <strong>at</strong> all loc<strong>at</strong>íons for comparison <strong>of</strong> various agronomic<br />

characteristics. Íhe species and culËivars tested are listed ín Table<br />

10 along with <strong>the</strong>ír cultivar identífic<strong>at</strong>ion nu¡lber, source and breeder<br />

íf knov¡n.<br />

The cultivars <strong>of</strong> any one species r¡/ere grouped and planted adjacent<br />

to each o<strong>the</strong>r in single ror^rs, 5.6 m long (rod row), r¿íth 30.5 cm between<br />

all rows. Thís resulted in four main blocks in each trial, with Ëhe<br />

first three being a separ<strong>at</strong>e block f.or L. albus" L. angustífoL.íus and<br />

L" Luteus, with <strong>the</strong> fourth block consisting <strong>of</strong> tr. cosenttni anð. L. rm,Lta-<br />

bilis. order <strong>of</strong> planËing wiÈhín a species block was randomized for<br />

every locaËíon, so th<strong>at</strong> any tr¡ro cultivars would not appear side by side<br />

more than once.<br />

Fababeans (cv. Ackerperle) and PI soybeans vüere presenÈ in identical<br />

row lengËhs and spacíng aË three meËer inËervals throughout <strong>the</strong> entire<br />

6T


Table 10" Species and cultivars tested in<br />

cultivar identific<strong>at</strong>ion number<br />

where known)<br />

Species /cultivar Cult.<br />

no.<br />

L. albus<br />

Sa<strong>at</strong>gut<br />

Russían cv.<br />

Kierskij skoc<br />

Pfluges Gela<br />

Baily I<br />

Italian cv.<br />

Reuscher<br />

S. Afríca ll 255<br />

Ka1í<br />

Neuland<br />

Gyul<strong>at</strong>amyai<br />

Algerian cv.<br />

Zagrebska<br />

USSR-305<br />

Blanca<br />

S " Afríca lf 244<br />

ì4SU-3 , 46-L0<br />

MSU-2<br />

UlËra<br />

Gela**<br />

S. Africa ll 257<br />

Mich. 47-B<br />

GelaJÁtr<br />

Gulzower<br />

Ultra"^*<br />

Grecian cv.<br />

Spanish cv"<br />

L" angustifolius<br />

Rancher<br />

Uniwhite<br />

Borre<br />

Bríanskyj<br />

Georgia PI<br />

LasËor¿ski<br />

Roseus semp.<br />

2a<br />

3a<br />

5a<br />

6a<br />

8a<br />

9a<br />

'l n^<br />

LLa<br />

1n^<br />

LLd<br />

L3a<br />

L4a<br />

15a<br />

L6a<br />

17a<br />

18a<br />

l-9a<br />

20a<br />

2La<br />

))e<br />

23a<br />

L+d<br />

25a<br />

26a<br />

.r-7 ^<br />

1b<br />

2b<br />

3b<br />

+D<br />

5b<br />

6b<br />

7b<br />

<strong>the</strong> 1973 nurseries, along wiËh<br />

and source (^"Breed.er listed<br />

Source<br />

Robinson, Minn" U.S.A.<br />

U. S" S. R.<br />

tl<br />

Schultz and Velserro, G.rr"rry<br />

Hackbarth, Geruany<br />

Hackbarth, Germany<br />

ll il<br />

South Africa<br />

Poland<br />

Ritterhau"*, G"r*"rry<br />

Hackbarthu Germany<br />

tr ff<br />

llil<br />

El1iott, Mich. St<strong>at</strong>e, U.S.A"<br />

CenËmaiertk, Germany<br />

South Africa<br />

Elliott, Mich. St<strong>at</strong>e, U.S.A,<br />

rr il il tr<br />

Schultz and Velsen*, Germany<br />

ttftilrr<br />

South Africa<br />

Elliott, Mich. St<strong>at</strong>e, U.S.A.<br />

Schultz and Velsen*, Germany<br />

ilackbarth, Germany<br />

Schultz and Velsen',


Table 10 - Conrinued<br />

Specí es /cu1Ëivar<br />

L. angustifoLius - conr'd.<br />

Pfluge<br />

S. Africa ll 277<br />

Giepie<br />

7OO2 VAAL<br />

Steb.<br />

S" Africa 60/206<br />

S. Africa, 123-LA 140<br />

7002 hlhite<br />

tfsu-103<br />

Elita<br />

Radd<strong>at</strong>a Hufenberger<br />

S. Africa lt L04 (LAS)<br />

New Zealand lrrhite<br />

Uniwhite<br />

RommeI<br />

PI X Borre<br />

Tifton - M3048<br />

Russian cv.<br />

Borre**<br />

Uniharvest<br />

Unicrop<br />

Schlotenitzer Rote<br />

MSU-104<br />

Neven<br />

Ritchey<br />

Blanco<br />

Gulzower Susse Blaue<br />

L" Luteus<br />

trtieiko III<br />

lulinn.34L75<br />

Palvo<br />

Martini<br />

Russian cv.<br />

Macul<strong>at</strong>us Z]nrk.<br />

Leucospermus Korn.<br />

Sam<br />

Popular<br />

n,,-l +<br />

110 "<br />

öD<br />

9b<br />

10b<br />

1lb<br />

L2b<br />

13b<br />

14D<br />

15b<br />

16b<br />

L7b<br />

lBb<br />

19b<br />

20b<br />

zLb<br />

¿¿D<br />

23b<br />

¿+D<br />

25b<br />

26b<br />

27b<br />

2Bb<br />

29b<br />

30b<br />

31b<br />

32b<br />

JJD<br />

34b<br />

35b<br />

1c<br />

2c<br />

3c<br />

4c<br />

5c<br />

6c<br />

7c<br />

Bc<br />

9c<br />

Source<br />

Hackbarth, Germany<br />

South Africa<br />

South Africa<br />

Stevens, South Africa<br />

SouÈh Africa<br />

It rt<br />

Ir tt<br />

tt il<br />

¡riiott, t"n. srare, u.s"A.<br />

Poland<br />

Hackbarth, C,ermany<br />

South Africa<br />

South Africa<br />

GladsÈones*, Australia<br />

South Africa<br />

EllioËt*, l"tich. St<strong>at</strong>e, U"S.A.<br />

Forbes*, Georgia, U.S.A.<br />

U" S. S" R.<br />

Tedín et a1.*, Sweden<br />

Gladstones*, AusÈralia<br />

tt tr<br />

Hackbarth, Germany<br />

Elliott, Mich. St<strong>at</strong>e, U.S.A.<br />

Robinson, Minn., U.S.A"<br />

1rilft<br />

Forbes, Burton and Wells*, U.S.A.<br />

Kress*, E. Germany<br />

Hackbarth and Trol1*, Germany<br />

Robinsontt, Minn", U.S.A"<br />

Lamber ts:t , Ne<strong>the</strong>rlands<br />

Robinson, Minn. , U. S .4.<br />

U.S.S"R.<br />

Ukraine, U"S.S"R"<br />

U.S.S.R.<br />

Poland<br />

63


Table 10 - Continued<br />

Species/cultivar Cult.<br />

no.<br />

L. Luta,Ls - contrd.<br />

I^Iildformen (I^ri1d rype)<br />

S. African cv.<br />

DI.^^-^^^<br />

!NÞP! sÞÞ<br />

Sam**<br />

Lima<br />

Bas<br />

Gorzowski<br />

Pomorski<br />

As<br />

Popular**<br />

Sulfa<br />

Gulzor,¡er Susse Gelblupine<br />

Balten yeltyj<br />

ExPresgJc*<br />

tr^Ieiko II<br />

Barpíne<br />

Bipal<br />

Italian wíld type<br />

Schwako<br />

Florida Cormnercial<br />

Portugal wild type<br />

Moroccan wild type<br />

Gsillagfurt<br />

L" cosentùni<br />

CB 46<br />

Cb 48<br />

L" mutabtLis<br />

Peruvian cv.<br />

Aagentine cv.<br />

10c<br />

11c<br />

12c<br />

13c<br />

15c<br />

16c<br />

L7c<br />

lBc<br />

19c<br />

20c<br />

2Lc<br />

22c<br />

23c<br />

24c<br />

25c<br />

26c<br />

27c<br />

28e<br />

29c<br />

30c<br />

31c<br />

32c<br />

1d<br />

¿o<br />

le<br />

2e<br />

Source<br />

Hackbarth, Germany<br />

Geel*, SouËh Africa<br />

Poland<br />

Poland<br />

tf<br />

tf<br />

Poland<br />

lf<br />

tt<br />

It<br />

Hackbarth*, Germany<br />

KressJ., E. Germany<br />

U"S"S.R.<br />

Poland<br />

von Sengbusch, Hackbarth & Troll<br />

Hackbarth, Germany<br />

Hackbarth, Germany<br />

ilil<br />

Troll, E" Germany<br />

Gladstones, Australia<br />

Hackbarth, C,ermany<br />

Hackbarth, Geruany<br />

It tt<br />

GladsËones*, Aus tralia<br />

ntt<br />

HackbarËh, Germany<br />

ntl<br />

The same cultivar as previously listed. but from a different source"<br />

64


test <strong>at</strong> every loc<strong>at</strong>ion. This amounËed to six culËivars <strong>of</strong> lupins beËr¿een<br />

any trro consecutive fababean check plots or pr soybean plots" This de_<br />

sign resulted ín an arrangement th<strong>at</strong> allowed for percentage yield com-<br />

parison to <strong>the</strong> fababean and chlorosís r<strong>at</strong>ing compared to Èhe soybean to<br />

be not more than one and one-half meters from any one enrry.<br />

Single ror¿s <strong>of</strong> lupins <strong>of</strong> <strong>the</strong> appropri<strong>at</strong>e species for each block were<br />

planted on eí<strong>the</strong>r síde <strong>of</strong> <strong>the</strong> soybean chlorosis indic<strong>at</strong>or plots Eo pre-<br />

vent differences in interplot eompetiËíon due Ëo <strong>the</strong> difference in growth<br />

habiÈ <strong>of</strong> soybeans. These rorìrs T¡rere not tre<strong>at</strong>ed, as entríes"<br />

seed r<strong>at</strong>e was 105 seeds per roqr for all lupin culËivars, 90 per row<br />

for fababeans and 25 per ror¿ for pr soybean" seeding d<strong>at</strong>es, as well as<br />

amounts <strong>of</strong> fertilizer applied, soil analyses, and. precipit<strong>at</strong>ion are<br />

listed in Appendíx A and B. All o<strong>the</strong>r details are similar to those in<br />

<strong>the</strong> 1973 replicared yíeld rrials.<br />

2.3 CHLOROSIS TEST<br />

severe chlorosis rnras observed in mosË lupin species in L972, and<br />

resulted in depressed yields and in some cases de<strong>at</strong>h <strong>of</strong> <strong>the</strong> plants before<br />

<strong>the</strong> flor¿ering stage. L" artgustifolius and, L. Luteus were <strong>the</strong> most severely<br />

affected by this chlorosis reactíon, however some affect r¡ras thought to<br />

have also occurred in L" aLbus" since tr. aLbus appeared to be <strong>the</strong> mosË<br />

promisíng species after <strong>the</strong> L972 testing, a chlorosis test was carried<br />

out to deËernine <strong>the</strong> extent <strong>of</strong> this reaction in L. aLbus and possible<br />

causes.<br />

Seeding, inocul<strong>at</strong>ion, Ëre<strong>at</strong>ing and maíntenance was similaï to o<strong>the</strong>r<br />

Ëests. L. aLbus, culËivar Kali, Glenlea whe<strong>at</strong> and fababeans r¡¡ere planted<br />

in 3 row ploËs, 110 meËers long. Spacing was 20 cm beËween ïor¡rs and 61 cm<br />

65


etween p1ots" PI soybeans were planËed randomly within Ëhe center roÌr<br />

<strong>of</strong> <strong>the</strong> lupin p1oË <strong>at</strong> a raËe <strong>of</strong> one seed per neËer"<br />

The loc<strong>at</strong>ion chosen for <strong>the</strong> site vüas exËremelv variable in pH and<br />

lime content" This area vras known to be variable from Ëhe work <strong>of</strong><br />

LaCroix and Lenx (L967) where <strong>the</strong>y mapped out <strong>the</strong> area on <strong>the</strong> basís <strong>of</strong><br />

Ëhe extent <strong>of</strong> chlorosís displayed by Ëhe same PI soybean indic<strong>at</strong>or used<br />

ín this Lest and percerrt CaCO, equivalents in <strong>the</strong> soil,<br />

Soí1 samples were t.aken from areas where varying degrees <strong>of</strong> chloro-<br />

sis were observed. CaCO, content and pH for Ëhese samples were <strong>the</strong>n<br />

deterruined. Plant characteristícs recorded aË <strong>the</strong>se various areas r¡rere<br />

heÍghËu pods/plant, and degree <strong>of</strong> chlorosis <strong>of</strong> <strong>the</strong> lupíns and PI soybeans<br />

on a one to five scale, where one indic<strong>at</strong>ed green and five indic<strong>at</strong>ed<br />

severe chlorosis"<br />

66


PART I]<br />

RESULTS AND DISCUSSION<br />

CONCLUSIONS


3.1 SEED Y]ELDS<br />

3"0 R E P L I C A T E D YIELD TRIALS<br />

A total <strong>of</strong> seven replíc<strong>at</strong>ed yield trials were cond.ucted in L972 and<br />

L973. Included in <strong>the</strong>se Èests r,¡ere cultivars <strong>of</strong>. L. albus, L. angusti-<br />

folius and Z. Luteus. Ln l-972 comparisons T,üere made with fababeans (cv.<br />

Ackerperle) and whe<strong>at</strong> (cv. Glenlea), bur only with <strong>the</strong> former jrn1973.<br />

0n1y three loc<strong>at</strong>ions r¡/ere harvested, namely, Glenl ea (1972), I{innipeg<br />

(1973) and Carman (1973) " Seed yields <strong>of</strong> <strong>the</strong> various cu1Èivars are given<br />

in Table 11" The o<strong>the</strong>r four loc<strong>at</strong>ions rrere not harvesLed for reasons<br />

to be discussed 1<strong>at</strong>er"<br />

Cultivars <strong>of</strong> L. aLbus consistently outyielded Ëhe o<strong>the</strong>r Ëwo species,<br />

r,rith a cultÍvar mean yíeld <strong>of</strong> 13.5, 41"6 and 19"0 qu/ha f.or Glenlea,<br />

tr'Iinnipeg and Carman respectively. L. angustifoLius was <strong>the</strong> next highest<br />

yielding species r¿ith mean cultivar yields <strong>of</strong> 6.7, 26.6 ar,ð, L2.2 qu/ha.<br />

L. Luteus was consistently Ehe lowest yielder aË all loc<strong>at</strong>j-ons wíth cul-<br />

tivar means <strong>of</strong> 4.8, 18"7 and 8"2 qu/ha. These differences in yield were<br />

all significant except for L" angustifoli,us and. L. Luteus <strong>at</strong> Glenlea.<br />

Reuscher, a culËivar <strong>of</strong> L. albus had <strong>the</strong> highest yield <strong>at</strong> all three<br />

loc<strong>at</strong>íons i¿íth values <strong>of</strong> 15.9, 51.3 and 25"3 qu/]na" rt was signifícantly<br />

hígher than al1 cultivars <strong>of</strong> L" angustifoLius and L. Luteus <strong>at</strong> all loca-<br />

tíons, and significanËly hígher than six out <strong>of</strong> eleven cultivars <strong>of</strong> L"<br />

albus <strong>at</strong> Glenlea, thirteen out <strong>of</strong> fifteen <strong>at</strong> I^Iinnipeg and seven out <strong>of</strong><br />

eíght aL Carman. There \¡ras rro signíficant diff erence between <strong>the</strong> yíe1d<br />

<strong>of</strong> this cultivar and fababeans <strong>at</strong> G1en1ea, hovrever <strong>the</strong> utility whe<strong>at</strong><br />

Glenlea, was significantly higher yielding than ei<strong>the</strong>r lupíns or fababeans


Table 11. Seed yield (qu/ha) <strong>of</strong> three lupin species for <strong>Manitoba</strong> ín L972-3<br />

Species/cultívar<br />

L" aLbus<br />

Sa<strong>at</strong>gut<br />

Georgía-L425<br />

Kierskij skoe,<br />

Gela<br />

Baily I<br />

ItalÍan cv.<br />

Reuscher<br />

S " Africa lt 255<br />

Kali<br />

Neuland<br />

Zagrebska<br />

Blanca<br />

S. Africa lf 244<br />

MSU-3, 46-10<br />

MSU_2<br />

u.<br />

MEAN OF ALL CI]LTIVARS<br />

qtLg%Ð uuJ v uuUÐ<br />

S. Africa ll 277<br />

Giepie<br />

S. Ãf.rica-7002<br />

S" Africa 1l 60/206<br />

S. Africa lt L23<br />

L!! LA<br />

S. Africa lf L04<br />

Uniharvest<br />

Unicrop<br />

MEAN OF ALL CULTIVARS<br />

L. Luteus<br />

I{eiko III<br />

Sam<br />

Popular<br />

Fì.^^-^^^<br />

úNÞ lr! eÞ Þ<br />

Lima<br />

Bas<br />

Gorzowski<br />

Pomorski<br />

As<br />

I{EAN OF ALL CI]LTIVARS<br />

V" faba-Ackerperle<br />

Glenlea r,/he<strong>at</strong><br />

L. S.D. P = 0.05<br />

Cult "<br />

fio " GLenLea-L972 þg. -1973 Carman-1973<br />

1a<br />

3a<br />

5a<br />

6a<br />

8a<br />

9a<br />

l0a<br />

lla<br />

15a<br />

I6a<br />

lBa<br />

9b<br />

10b<br />

1lb<br />

13b<br />

L4b<br />

18b<br />

20b<br />

2Bb<br />

29b<br />

1c<br />

Bc<br />

9c<br />

L2c<br />

15c<br />

L6e<br />

L7c<br />

lBc<br />

Does not include UniharvesË.<br />

15. 6<br />

15"0<br />

L2.7<br />

L+" I<br />

13.9<br />

15.9<br />

L2.9<br />

1r"9<br />

t+ "+<br />

1n q<br />

14.4<br />

12.6<br />

11.5<br />

13. 5<br />

77<br />

7"L<br />

B.B<br />

5.8<br />

4.8<br />

u_,<br />

6"7<br />

4.8<br />

4"8<br />

4"4<br />

4"5<br />

4"8<br />

crl<br />

4"8<br />

14"0<br />

2L"9<br />

38. 9<br />

40.7<br />

4L" 4<br />

48.1<br />

51.3<br />

38. 6<br />

Jö. J<br />

39 .8<br />

41. 8<br />

+J"t<br />

39.2<br />

37 "4<br />

39.4<br />

¿+-L " O<br />

)o1<br />

27 .9<br />

¿o.Y<br />

22.5<br />

¿t "J<br />

o.J<br />

27 .3<br />

27 .3t'<br />

18.8<br />

18. 6<br />

22.8<br />

L7 .6<br />

L6 "2<br />

,1 /,<br />

rB.6<br />

L5.4<br />

18.5<br />

LB "7<br />

44 "9<br />

10 Q<br />

18"4<br />

22.8<br />

24 "7<br />

15.3<br />

?5 ?<br />

L4.6<br />

L6 "4<br />

L6.6<br />

15. B<br />

10 n<br />

12 "O<br />

L4 "7<br />

LL.6<br />

tg.+<br />

7.9<br />

L2.6<br />

L2 "2<br />

I¿"+<br />

6"5<br />

10. 6<br />

6"5<br />

8.4<br />

8"4<br />

6.8<br />

4.6<br />

10. I<br />

8.2<br />

13. 6<br />

2"7 4.6 3"9<br />

69


y 38 and 57 percenr respecËively.<br />

No single entry <strong>of</strong> eí<strong>the</strong>r tr. a.wust¿foLtus or L" Luteus rùas con-<br />

sistently <strong>the</strong> highest yielding for <strong>the</strong> species <strong>at</strong> all loc<strong>at</strong>ions" Both<br />

species dísplayed a large amount <strong>of</strong> variability over <strong>the</strong> three loc<strong>at</strong>ions,<br />

as díd tr' aLbus. uniharvests r¡ras significanÈly loruer yielding than <strong>the</strong><br />

o<strong>the</strong>r cultivars <strong>of</strong>. L. øtgusti.folius <strong>at</strong> both winnipeg and carman due to<br />

serious infectÍon by Fusarium l¡trilt th<strong>at</strong> depressed yields by affectíng<br />

<strong>the</strong> w<strong>at</strong>er economy <strong>of</strong> Èhe prant and pod firlíng, culËivar 60/206 was<br />

sinilarly affect-ed by Fusarium <strong>at</strong> Carman. Hor¿evero cultivar number 20b,<br />

a south African íntroduction was significantly hígher than Ëhe fababean<br />

check <strong>at</strong> Carman.<br />

Yields <strong>of</strong> L" Luteus were uniformly 1ow <strong>at</strong> Glenlea, with no signifi-<br />

cant dífferenees among <strong>the</strong>m" popular had <strong>the</strong> highest yield aË winnípeg,<br />

and trrleiko rrr aË carman. At all three loc<strong>at</strong>ions <strong>the</strong>re r,¡as not a single<br />

culÈivar <strong>of</strong>. L" Luteus th<strong>at</strong> \^ras higher yíelding than fababeans.<br />

seed yíeld <strong>of</strong> all lupin cultivars and fababeans Trere quite low in<br />

1972 as compared to <strong>the</strong> tv¡o loc<strong>at</strong>ions in 1973 anð, to European yields<br />

(see 2'81)" These low yields !üere probably due Êo a combin<strong>at</strong>ion <strong>of</strong> res-<br />

Ëricted moisture and heawy soil texture (Appendix B) which severery<br />

lim:ited root development and resulted in drought responses th<strong>at</strong> severely<br />

depressed yields" The moisËure stress coubined wÍËh extremely high<br />

temper<strong>at</strong>ures <strong>at</strong> flor,rering time resulted in a grearer proportion <strong>of</strong> florrrer<br />

abscision than normelry experienced" which fur<strong>the</strong>r contributed. to d.e-<br />

pressed yields <strong>of</strong> both lupins and fababeans.<br />

The clÍm<strong>at</strong>ic regime duríng <strong>the</strong> growing season ín L973 <strong>at</strong> l,rlinnípeg<br />

rras very favourable in terms <strong>of</strong> distribution <strong>of</strong> rainfall, toËal rainfall<br />

70


and temper<strong>at</strong>uTes during critical times such as flowering (Appendix A).<br />

This combined r,¡ith successful nodul<strong>at</strong>ion and increased. seed r<strong>at</strong>es re-<br />

sulted in yields th<strong>at</strong> vrere approxim<strong>at</strong>ely Èhree to four times as greaË<br />

for al1 species as those obtained Ln L972 <strong>at</strong> Glenlea. However, <strong>the</strong> dif-<br />

ferences in yields between Glenlea ín 1-972 and Carman in 1973 T^rere not<br />

as gre<strong>at</strong>. This was possibly due to <strong>the</strong> simílarity in <strong>the</strong> precipit<strong>at</strong>ion<br />

received <strong>at</strong> <strong>the</strong>se Ëwo loc<strong>at</strong>ions. yields <strong>of</strong> all lupin species were<br />

approxim<strong>at</strong>ely t\r7ice as gre<strong>at</strong> aË Carman, however, fababeans yíelrJerJ less<br />

than 2,. alb'us anð, L. a.nçustifoli-us" These results suggest a dífference<br />

ín drought tolerance <strong>of</strong> <strong>the</strong>se tr¡ro crops whích would explain <strong>the</strong>ir rela*<br />

tive performance under <strong>the</strong> drier conditions <strong>at</strong> Carman.<br />

As mentioned, only three out <strong>of</strong> <strong>the</strong> seven yield Erials planted were<br />

harvested. The four failures can be <strong>at</strong>tributed to one or more <strong>of</strong> Ëhe<br />

followíng factors: soil carbon<strong>at</strong>e content, lack <strong>of</strong> effectíve weed con-<br />

trol, and insect problems.<br />

The high soíl lime content (CaCOr) <strong>of</strong> <strong>the</strong> L972 test sites aËI^Iinnipeg<br />

and Morden resulted in <strong>the</strong> complete loss <strong>of</strong> both tests due Ëo <strong>the</strong> extreme<br />

suscepÈíbility <strong>of</strong> lupins to lime-induced iron chlorosis" Lime contents<br />

<strong>of</strong> <strong>the</strong>se test sites ranged from 10.5 to 28.6 percenL eqirírzalen.ts <strong>of</strong> CaCo,<br />

in air dried samples Èaken from <strong>the</strong> top 30 cm <strong>of</strong> soil. L. angustr.foLius<br />

and L" Luteus were Ëhe first and. most seriously effected. They showed<br />

sígns <strong>of</strong> acute chlorosís as early as <strong>the</strong> trüo or three leaf stage. L.<br />

Luteus was usually <strong>the</strong> most seriously affected.<br />

The plants reacted by extensive yellowíng <strong>of</strong> <strong>the</strong> leaves accompanied<br />

by severely stunted growth. Most cultivars did not reach flowering, and<br />

those th<strong>at</strong> did, usually failed to produce viable seed. L" aLbus was<br />

initially less affected by <strong>the</strong> lime content, but laËer in <strong>the</strong> growing<br />

77


season shovred signs <strong>of</strong> chlorosis, and <strong>the</strong> pods set developed only sma1l,<br />

somerárh<strong>at</strong> shrivelled seeds. These reactions Ëo soil lime r¿ere consisËent<br />

\^ríth those reported by o<strong>the</strong>r authors (see 1.4). The high lime conËent<br />

díd not seem to have any adverse effects on Glenlea r¿he<strong>at</strong> or fababeans<br />

<strong>at</strong> <strong>the</strong>se loc<strong>at</strong>íons.<br />

Iron chel<strong>at</strong>e vras broadcast over <strong>the</strong> chlorotic Ëest sites and worked<br />

in with a hoe, but this tre<strong>at</strong>ment did not visibly remedy Ëhe chlorosis.<br />

Due to this particular reaction <strong>of</strong> lupins to soil 1íme, and Ëo Ëhe<br />

prevalence <strong>of</strong> this type <strong>of</strong> soil in <strong>Manitoba</strong>, test sites to be used in<br />

1973were carefully chosen on <strong>the</strong> basis <strong>of</strong> <strong>the</strong>ir freedom f¡sn sionifí-<br />

cant amounts <strong>of</strong> GaCOr" During <strong>the</strong> search for such loc<strong>at</strong>Íons, it was<br />

noted th<strong>at</strong> lime content \^/as not necessarily assocí<strong>at</strong>ed wiËh pH or soil<br />

texture (Appendíx B). Hoq¡ever, a sandy texture was usually indic<strong>at</strong>.íve<br />

<strong>of</strong> both low pH and low soil 1ime, due to <strong>the</strong> extensíve leachíng th<strong>at</strong><br />

takes plaee ín <strong>the</strong>se soils" Ttris resulted in most <strong>of</strong> <strong>the</strong> Ëest sites<br />

being loc<strong>at</strong>ed in <strong>the</strong> two large sandy areas in <strong>Manitoba</strong>, namely, <strong>the</strong><br />

Carberry area and <strong>the</strong> Sandylands area. As a result <strong>of</strong> this action, no<br />

chlorosis due to lime was experíenced in 1973 <strong>at</strong> any <strong>of</strong> <strong>the</strong> tesË siËes<br />

and all soybean PI indíc<strong>at</strong>or plots germin<strong>at</strong>ed and appeared thrifty<br />

throughout <strong>the</strong> growing season.<br />

The yield ËTial <strong>at</strong> Carberry r^/as not harvested due to serious weed<br />

problems and Blister Beetle <strong>at</strong>tack" Initially, <strong>the</strong> site was Ëre<strong>at</strong>ed<br />

with Treflan, <strong>at</strong> 3/4 pound per acree pre-plant, to ínsure some weed con-<br />

Ërol to compliment hand hoeing" All cultivars <strong>of</strong> lupins, and fababeans<br />

had good, even emergence, but were soon cror.¡ded by weeds th<strong>at</strong> competed<br />

for light, moisture and nutrients which depressed normal growth and<br />

development <strong>of</strong> <strong>the</strong> test plots, The pre-plant tre<strong>at</strong>ment hias riot successful<br />

72


in th<strong>at</strong> <strong>the</strong> most prevalent weed problem was wíld o<strong>at</strong>s (Pl<strong>at</strong>e 1), r¿hich<br />

continued to germin<strong>at</strong>e r,rell into <strong>the</strong> summer favoured by coo1, moist<br />

we<strong>at</strong>her. Couch grass (Agropyton ï,epens) and pigweed (Anananthus ï'etro-<br />

fleæus) \^rere also very prevalent <strong>at</strong>. this test site. Hand hoeing was<br />

carried out a nr:mber <strong>of</strong> times, however, weeds continued to germin<strong>at</strong>e<br />

and we<strong>at</strong>her conditions prevented s<strong>at</strong>isfactory control.<br />

In míd June, when <strong>the</strong> lupins were just about to flower, a severe<br />

ínfestaËion <strong>of</strong> Blister Beetles occurred (Epicanta suhgLabz'a and Lytta<br />

rnLttaLLii). Minor, LocaTízed infest<strong>at</strong>ions occurred ín L97 2, but were<br />

not consídered to be a potantial problem sínce conËrol was easily ob-<br />

tained with a foliar spray <strong>of</strong> Guthione. This chemical was <strong>the</strong>refore<br />

applíed <strong>at</strong> Carberry when <strong>the</strong> infest<strong>at</strong>ion was first noticed on fababeans<br />

and L. albus in <strong>the</strong> early bud stage. However, this tre<strong>at</strong>ment did not<br />

corrtrol <strong>the</strong> beeËles since popul<strong>at</strong>ions increased to approxim<strong>at</strong>ely 200<br />

beetles per square meËer <strong>of</strong> plot area after a two week períod. Severe<br />

damage T¡ras observed on fababeans, all specíes <strong>of</strong> lupins, and to soybeans.<br />

The beetles seemed to preferentially feed on <strong>the</strong> young succulent flower<br />

buds which left only Ëhe veget<strong>at</strong>ive parËs <strong>of</strong> <strong>the</strong> plant Ëh<strong>at</strong> developed<br />

norrnally. Thís pest problem will be fur<strong>the</strong>r díscussed in a followíng<br />

section "<br />

The t.est <strong>at</strong> SÈeinbach r\ras not harvested for <strong>the</strong> same reasons as for<br />

Carberry, however, <strong>the</strong> severity <strong>of</strong> each differed. Beetle infest<strong>at</strong>íon<br />

\^ras minor and localLzed. Spraying wiËh Guthíone effectively controlled<br />

this pest. Damage caused was less severe since <strong>the</strong> infest<strong>at</strong>ion occurred<br />

when <strong>the</strong> pods were starËing Ëo fill and were <strong>the</strong>refore more resístant to<br />

<strong>at</strong>tack.<br />

I{eeds posed <strong>the</strong> major problem and could noË be effectively controlled.<br />

73


Many dífferent species <strong>of</strong> weeds occurred in large numbers and conËributed<br />

to <strong>the</strong> final failure <strong>of</strong> this tesÈ. The most prevalent were volenteer<br />

rape, lambfs quarters (Chenopodium aLbwn) o wild buckr¿he<strong>at</strong> (Polygonum<br />

conuoluuLus) and couch grass (A. nepens) (Pl<strong>at</strong>e 2). I¡trild mustard<br />

(Bz'assíca kaber) and wild nil1eË (Setaz,ia uiz,idus) were also troublesome<br />

aË some loc<strong>at</strong>ions (Pl<strong>at</strong>e 3). Contact sprays úrere not used sínce avail-<br />

able liter<strong>at</strong>ure did not recor¡rnend any type <strong>of</strong> post-emergence spray"<br />

3 "2<br />

AGRONOMIC CHARACTERISTICS<br />

3"21 Emergence and Seedling Vigor<br />

The Èhree species <strong>of</strong> lupíns are quite variable in <strong>the</strong>ír ínitial<br />

establíshment, as are cultivars r,rithin species. overall, 1upíns are<br />

quicker to emerge and to become established than fababeans, but slower<br />

than Glenlea whe<strong>at</strong>, (Pl<strong>at</strong>es 4 and 5) " In <strong>the</strong> two yield Ërials Ëh<strong>at</strong> v¡ere<br />

elosely observed (Glenlea " L972 and tr^Iinnipeg, L973) <strong>the</strong>re exísted large<br />

dj.fferences in <strong>the</strong> time to emergence for lupíns, fababeans and Glenlea<br />

wheaË (Table 12). Ln 1972, Glenlea v¡he<strong>at</strong> r¿as firsË to emerge <strong>at</strong> approxi-<br />

m<strong>at</strong>ely 10 days after seeding, followed by L. angustifoLius witt. a culti-<br />

var average <strong>of</strong> 13.5 days " L. albus and L. Luteus r¡rere next to emerge in<br />

th<strong>at</strong> order" Fababeans were last to emerge <strong>at</strong> approxin<strong>at</strong>ely 20 days<br />

after seeding. rn 1973, r:nder more favourable precipit<strong>at</strong>ion, time <strong>of</strong><br />

emergence r¿as rel<strong>at</strong>ively unchanged for fababeans, L" arryustifoLius and<br />

L" Luteus" Glenlea r,¡heaË r¡ras noË present ín this test. However, <strong>the</strong><br />

Ëime to emergence f.or L" albus shortened on an average <strong>of</strong> two to eight<br />

days, buË Ëhis did not have any effect in hastening n<strong>at</strong>urity. The differ-<br />

ences nere probably due to <strong>the</strong> rel<strong>at</strong>ively laxge seed síze <strong>of</strong> L. aLbus<br />


TabTe 72. Days Ëo emergences<br />

in vield trials ín<br />

Species /cultivar<br />

L. albus<br />

Sa<strong>at</strong>gut<br />

Georgía-1425<br />

Kierskij skoe "<br />

Gela<br />

Baily I<br />

Italian cv"<br />

Reuscher<br />

S. Af rica lt 255<br />

Ka1í<br />

Neuland<br />

T.eoro1:'qlr n<br />

Blanca<br />

S " Africa 1f 244<br />

MSU-3, 46-L0<br />

MSU_2<br />

L. angusti.fol¿us<br />

S. Africa ll 277<br />

Giepie<br />

S. Africa-7002<br />

S " Africa lf 60 /20<br />

S. Africa lf L23<br />

Df i &lftLd<br />

S. Africa li L04<br />

Uniharvest<br />

Unicrop<br />

L" Luteus<br />

tr{eíko IIf<br />

Sam<br />

Popular<br />

Ekspress<br />

Lima<br />

Bas<br />

Gorzowski<br />

Pomorski<br />

4Þ<br />

V. faba-Ackerperle<br />

Glenlea wheaL<br />

Emerqence<br />

Glenlea Vtpg.<br />

16<br />

L6<br />

15<br />

L6<br />

15<br />

15<br />

15<br />

'2<br />

L6<br />

20<br />

L6<br />

20<br />

L7<br />

T4<br />

't /,<br />

13<br />

13<br />

11<br />

aô<br />

IJ<br />

L;<br />

15<br />

15<br />

19<br />

L9<br />

13<br />

15<br />

19<br />

20<br />

10<br />

flowering and harvest for cultivars tested<br />

L972 ar'd l-973<br />

13<br />

L4<br />

L2<br />

t1<br />

L2<br />

11<br />

L2<br />

L2<br />

T4<br />

72<br />

aô<br />

IJ<br />

13<br />

T2<br />

1ô<br />

IJ<br />

15<br />

1a<br />

IJ<br />

15<br />

t:<br />

LI<br />

15<br />

L7<br />

IJ<br />

L6<br />

IJ<br />

15<br />

15<br />

1B<br />

L2<br />

13<br />

1L<br />

J-+<br />

2L<br />

n^-.^ $^ ó<br />

uoJó LU.<br />

Flor^¡ering<br />

Glenlea Wpg"<br />

48<br />

46<br />

4B<br />

49<br />

49<br />

46<br />

/,o<br />

/,o<br />

4B<br />

JO<br />

JO<br />

6B<br />

62<br />

OI<br />

62<br />

66<br />

72<br />

u:<br />

IJ<br />

76<br />

74<br />

75<br />

?n<br />

69<br />

7L<br />

76<br />

57<br />

52<br />

64<br />

59<br />

OU<br />

o¿<br />

60<br />

s9<br />

56<br />

5B<br />

5B<br />

56<br />

OJ<br />

46<br />

4B<br />

68<br />

69<br />

OJ<br />

u?<br />

69<br />

4/<br />

57<br />

70<br />

68<br />

72<br />

70<br />

7L<br />

ov<br />

72<br />

70<br />

lL+<br />

u:<br />

Harves t<br />

Glenlea Wpg.<br />

L20<br />

L20<br />

109<br />

L2s<br />

L25<br />

].25<br />

L25<br />

':o<br />

105<br />

L25<br />

L20<br />

108<br />

111<br />

II4<br />

113<br />

II+<br />

115<br />

115<br />

LL4<br />

t:,<br />

r:s<br />

135<br />

135<br />

135<br />

135<br />

L36<br />

L36<br />

134<br />

LL2<br />

105<br />

135<br />

133<br />

L29<br />

L25<br />

L34<br />

L34<br />

L32<br />

135<br />

L23<br />

135<br />

L22<br />

L34<br />

L34<br />

130<br />

t31<br />

115<br />

114<br />

LL4<br />

1_15<br />

Lt4<br />

I.LO<br />

LLz<br />

118<br />

118<br />

LL7<br />

119<br />

L2L<br />

rlB<br />

L2L<br />

L22<br />

1? 1!<br />

115<br />

77


.vhich r¡ould be better supplied with <strong>the</strong> T¡r<strong>at</strong>er riecessary to stimul<strong>at</strong>e <strong>the</strong><br />

onseË <strong>of</strong> germin<strong>at</strong>íon. Differences in seed co<strong>at</strong> perroeability which occurs<br />

upon storage can explain <strong>the</strong> differences in time to gerrn-in<strong>at</strong>ion th<strong>at</strong><br />

occurred wíthin a species and <strong>the</strong> fact th<strong>at</strong> many seeds r¡/ere found to be<br />

germín<strong>at</strong>ing as l<strong>at</strong>e as four weeks after seeding. Lupin cultivars are<br />

known for <strong>the</strong>ir ability to development impermeability, <strong>the</strong> extent <strong>of</strong><br />

which is dependent upon storage conditions, and in any given sample <strong>of</strong><br />

seed <strong>the</strong>re ís usually a certain percentage <strong>of</strong> hard seeds.<br />

Once emerged, greaË differences existed between species in growth r<strong>at</strong>e<br />

and weed competition. L. aLbus had a faster and more vigorous growth<br />

than Ëhe o<strong>the</strong>r species, and this combined with its larger leaf sËructure<br />

made it <strong>the</strong> best weed competitor. ¿. angustifoLi,us, wiËh a similar time<br />

to emergencee iniËially lagged behind tr. albus ín growth, but eventually<br />

caught up and surpassed most cultívars <strong>of</strong>. L. albus in height" Its very<br />

fine leaf structure made it less competitive Ëhan Ëhe wider leafed tr.<br />

aLbus (Pl<strong>at</strong>e 6) , br.rt this was partly coüpens<strong>at</strong>ed for by pr<strong>of</strong>use l<strong>at</strong>eral<br />

branching" L. Luteus, usually <strong>the</strong> last to emergee hras Ëhe least competi-<br />

Ëive <strong>of</strong> <strong>the</strong> three species. Once emerged, it remained in a low growíng,<br />

rosette stage for approxirn<strong>at</strong>ely two weeks, during which time serious weed<br />

competition occurred. It remained quiËe prostr<strong>at</strong>e throughout Lhe enËire<br />

season and never reached heights greaËer than 70 cm as compared to<br />

heights <strong>of</strong> 96 and 90 cm for L" aLbus and L. angusti,folius, respectively"<br />

3.22 Flowering and Pod Settíng<br />

Days to florøering was variable between and. within specíes (Table 12) "<br />

7B


Cultivars <strong>of</strong> L. albus were first to flower in both years, followed<br />

by L. angustifoLíus whose earlier flowering cultivars required <strong>the</strong> same<br />

amount. <strong>of</strong> time to flower as did <strong>the</strong> l<strong>at</strong>.er flowering cultivars <strong>of</strong>. L. aLbus"<br />

In this respect, UniharvesË, rnras by far <strong>the</strong> earlíest flo\^rering cultivar<br />

<strong>of</strong> L. arlgustl:folius. L. Luteus was usually last to flower, however, <strong>the</strong><br />

dífference in Ëhe Ëime to flowering between it and tr. angust¿foLius was<br />

rioË as gre<strong>at</strong> as Ëhe difference between -t. aLbus and tr" angusti.foLius.<br />

L. albus vras more variable than <strong>the</strong> o<strong>the</strong>r two species, with a rarrge<br />

<strong>of</strong> 36 to 72 days from time <strong>of</strong> planting to flowering. The variability ín<br />

L" angustifoLius and L. Luteus was much less, wíth ranges <strong>of</strong> 63 to 72<br />

and 68 to 76 days respectively. fn both years L" aLbus, cultívar lulSU-3,<br />

r,¡as fírst Ëo flor¿er and L" Luteus, cultivar As, was <strong>the</strong> last" Floweríng<br />

for all species contÍnued for approxim<strong>at</strong>ely two and one-half weeks ín<br />

1972 and three and one-half weeks ín L973, progressing from <strong>the</strong> main<br />

branch raceme to <strong>the</strong> l<strong>at</strong>eral branches.<br />

Flower color is also variable. IË is white, wÍth varying tínges <strong>of</strong><br />

purplish-blue in tr. albus and may be white, blue, pink or purplish in<br />

L" angustifoLius. The flowers <strong>of</strong> tr. Luteus are always a bright yellow.<br />

The flowers <strong>of</strong> tr. aLbus and L. angustl:foLius are alËern<strong>at</strong>e in short<br />

ternrlnal racemes as compared to tr. Luteus, whose flor¿ers are whorled in<br />

long terrninal racemes th<strong>at</strong> stand far above <strong>the</strong> foliage (Pl<strong>at</strong>es 7-9) "<br />

0f <strong>the</strong> copious flowers produced in all speciese very few seË seed"<br />

Flower abortion was considerable in L972, when sometimes entire racemes<br />

would abort, hovrever, Ëhe proportíon <strong>of</strong> abortion in L973 was much less<br />

due to a rnore favourable environment. This high degree <strong>of</strong> flor¿er abor-<br />

tion Ís consisËent with oËher reports which found up Ëo 90% abortion<br />

under suboptimalgrowing conditíons, (Barbacki and Kapsa, 1960)"<br />

BO


3"23 Lodgíng<br />

Lodging th<strong>at</strong> occurred can be aËtríbuËed Eo one or more <strong>of</strong> <strong>the</strong> follor,¡-<br />

ing factors: stem stiffness or strength! soíl texture which influenced<br />

root devel-opment, and plant height" The tendancy Ëo lodge varied from<br />

locaËion to loc<strong>at</strong>ion and from species to species "<br />

L. aLbus usually had <strong>the</strong> thickest stem, followed by L. angustifoLius.<br />

BoËh were quite strong and resistant to breakage. The main stem <strong>of</strong> tr"<br />

Luteus T¡ras noË as sËiff and tended to be more succulent. This resulted<br />

in a greaÈer amount <strong>of</strong> lodging in Ëhis species.<br />

The l<strong>at</strong>eral branches produced near <strong>the</strong> base <strong>of</strong> all species after <strong>the</strong><br />

main stem had flowered had a sËrong tendency to break <strong>of</strong>f or lodge. This<br />

was partícularly Ërue in <strong>the</strong> case <strong>of</strong>. L, albus where <strong>the</strong> weight <strong>of</strong> <strong>the</strong><br />

Large pods and leaves seemed to be Ëoo gre<strong>at</strong> to be supported by <strong>the</strong><br />

l<strong>at</strong>eral branches "<br />

Besides lodging beíng affected by stalk strength, o<strong>the</strong>r factors such<br />

as plant height and root development influenced lodgíng" In <strong>the</strong> case <strong>of</strong><br />

L. aLbus and L. arryustifoLius Lodging seemed to be largely dependent on<br />

planr heíghr (Table 13). In L972, cultivars <strong>of</strong> L" albus were quíte<br />

short, ranging from 35 to 6l cm, and little lodging occurred" Hovrever,<br />

in 1973, Ëhe culËivars T^rere much taller and those th<strong>at</strong> were gre<strong>at</strong>er than<br />

75 cm lodged to varying degrees "<br />

The heights <strong>at</strong> Carman approxim<strong>at</strong>ed those<br />

<strong>at</strong> Glenlea which resulted in only minor lodging. L" anryst¿folius whi.dn<br />

Ëended to be <strong>the</strong> tallest growing <strong>of</strong> <strong>the</strong> three speciesu rangíng frorn 56<br />

to 90 cm, lodged to some degree <strong>at</strong> all three locaËions. tr. Luteus Ëended<br />

to be <strong>the</strong> shorËesË <strong>of</strong> Ëhe Ëhree species, ranging from 31 to 70 cm. Lodgíng<br />

in fhís species r,/å,s not entirely dependenË upon plant heighË, since it lodged<br />

B3


Table 13. Plant heights and lodging index for cultívars <strong>at</strong> Glenlea (L972),<br />

Liinnipeg and Carman (L973)<br />

Plant height (cm) Lodging (0 to S)*<br />

Species/cultivar Glenlea wpg. Carman Glenlea lJpg. Carman<br />

L. albus<br />

Sa<strong>at</strong>gut<br />

Georgia-7425<br />

Kierskij skoe.<br />

Gela<br />

Baily I<br />

Italian crz"<br />

Reuscher<br />

Ð. Arrr_ca ï ¿))<br />

Kali<br />

Neuland<br />

L"<br />

L.<br />

Zagrebska<br />

Blanca<br />

Þ. Arrr_ca # ¿+4<br />

MSU-3, 46-L0<br />

Irsu-2<br />

angustifoLius<br />

b. Arrr_ca ff ¿I I<br />

Giepíe<br />

S. Africa-7002<br />

S" Africa 11 60/206<br />

S. Africa ll L23<br />

Elita<br />

S. Af rica lf L04<br />

Uniharvest<br />

Unicrop<br />

Luteus<br />

trrleiko III<br />

Sam<br />

Popular<br />

Ekspress<br />

LÍma<br />

Bas<br />

Gorzor,rski<br />

Pomorski<br />

Àõ<br />

V. faba-Ãckerperle<br />

Glenlea r,¡he<strong>at</strong><br />

56<br />

61<br />

35<br />

45<br />

45<br />

51<br />

56<br />

'1<br />

56<br />

4L<br />

3B<br />

+o<br />

7L<br />

6L<br />

56<br />

56<br />

66<br />

6L<br />

u:<br />

JI<br />

31<br />

Jl-<br />

4I<br />

JJ<br />

4T<br />

J¿<br />

7I<br />

B1<br />

87<br />

93<br />

7L<br />

66<br />

91<br />

B4<br />

B4<br />

o4<br />

96<br />

84<br />

84<br />

73<br />

55<br />

77<br />

90<br />

B3<br />

86<br />

BB<br />

B;<br />

93<br />

54<br />

64<br />

65<br />

64<br />

70<br />

64<br />

65<br />

70<br />

59<br />

b,L<br />

108<br />

t?<br />

-fr<br />

6T<br />

50<br />

67<br />

JO<br />

59<br />

59<br />

t:<br />

65<br />

58<br />

63<br />

IJ<br />

7;<br />

76<br />

5+<br />

38<br />

39<br />

43<br />

46<br />

36<br />

35<br />

53<br />

30<br />

32<br />

I^Ihere 0 = no lodging and 5 = severe lodging.<br />

75<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

0<br />

:<br />

0<br />

0<br />

0<br />

0<br />

0<br />

2<br />

0<br />

0<br />

0<br />

1<br />

J<br />

1<br />

; 2<br />

2<br />

5<br />

J<br />

I<br />

I<br />

1<br />

0<br />

2<br />

0<br />

0<br />

4<br />

2<br />

U<br />

0<br />

2<br />

2<br />

0<br />

I<br />

4 1I<br />

J<br />

J<br />

4<br />

2<br />

-<br />

5<br />

5<br />

5<br />

5<br />

5<br />

4<br />

:<br />

0<br />

0<br />

0 I<br />

I<br />

; I<br />

0<br />

I 0<br />

¿<br />

J<br />

; J<br />

J<br />

0<br />

q<br />

4<br />

5<br />

5<br />

4<br />

¡)<br />

L<br />

2<br />

I<br />

B4


to some extent <strong>at</strong> all loc<strong>at</strong>ions regardless <strong>of</strong> height" The severe lodging<br />

th<strong>at</strong> occurred in this species in 1973 was due to <strong>the</strong> high r¿inds th<strong>at</strong><br />

<strong>at</strong>tained speeds <strong>of</strong> 60 M.P.H., which were experíenced a number <strong>of</strong> times<br />

aË both trrlinnipeg and Carman. These winds easily bent over <strong>the</strong> succulent<br />

stem <strong>of</strong> tr. Luteusu but not <strong>the</strong> o<strong>the</strong>r species" The effect <strong>of</strong> Ëhese wínds<br />

on L. aLbus, L. angustifoLius and fababeans in sone cases r^ras to upïoot<br />

those which had not developed an extensive, deep penetr<strong>at</strong>ing rooË system.<br />

3"24 Days to M<strong>at</strong>urity<br />

Much vari<strong>at</strong>ion in days to m<strong>at</strong>urity occurred between and within <strong>the</strong><br />

species tesLed (Table 12). The figures presented were based on differ-<br />

ent criteria for <strong>the</strong> different specíes. Days Ëo maËurity for L" aLbus<br />

was deterrnlned when <strong>the</strong> foliage dropped and <strong>the</strong> pods had turned brown<br />

and <strong>the</strong> seeds r¿ere hard. This was feasible sínce no sh<strong>at</strong>tering occurred<br />

in this species" Days to m<strong>at</strong>uríty may rrel1 be decreased by one to tr/ro<br />

weeks if sw<strong>at</strong>hing before <strong>the</strong> above sËage is practiced raËher than straight<br />

combining. Days to m<strong>at</strong>uríty for L. angustl:foLius arrd L. Luteus were<br />

approximaËed when most <strong>of</strong> <strong>the</strong> pods had turned brown and some <strong>of</strong> <strong>the</strong> more<br />

m<strong>at</strong>ure pods started Ëo sh<strong>at</strong>ter, since pod sh<strong>at</strong>tering is a serious problem<br />

in most cultivars <strong>of</strong> <strong>the</strong>se species" These d<strong>at</strong>es may not be too meaning-<br />

fu1, since this time may also be decreased if sw<strong>at</strong>híng can be carried<br />

our earlier.<br />

L" ØLgustifoLius was <strong>the</strong> earliesË to maËuree requiring It2 to LI6<br />

days to reach m<strong>at</strong>urity. This requÍrement rnras consistenË over <strong>the</strong> two<br />

years, however, it drastieally changed from L972 to 1973 for <strong>the</strong> oËher<br />

Ëwo species. L" albus ü/as next to m<strong>at</strong>ure ín 1972, requiring 108 to L25<br />

days depending upon cultivar" L" Luteus was last to uaËure in 7972, with<br />

B5


1íÈtle vari<strong>at</strong>ion between cultivars" which required from 134 to 136 days.<br />

In 1973, Ëhe growíng season requirement for tr. albus increased by<br />

7 to 2a days" This could possibly be explaíned by Èhe wetter growing<br />

seasoll ín 1973, v¡hich favoured development <strong>of</strong> l<strong>at</strong>eral branches, and<br />

delayed m<strong>at</strong>urity.<br />

The time to m<strong>at</strong>urity f.or L. Luteus apparently decreased in L973.<br />

This may be due to faults in observ<strong>at</strong>ion in L972, since in this year<br />

days to m<strong>at</strong>uriËy was noted when <strong>the</strong> ent.ire plant turned brown, and pods<br />

were seríously sh<strong>at</strong>tering. This was not correct, since it was found<br />

th<strong>at</strong> cultivars oL L. Luteus should be sw<strong>at</strong>hed before <strong>the</strong> pods dry and<br />

begin to sh<strong>at</strong>Ëer.<br />

L. aLbus, culËívar zagrebska, was <strong>the</strong> first <strong>of</strong> this species to<br />

nâture in both years <strong>at</strong> 105 and L22 days, This is comparable to Glenlea<br />

whe<strong>at</strong> and fababeans" L" Luteus ar,d L. øngustifolius required approxi-<br />

maËely one and one-half weeks longer than Glenlea whe<strong>at</strong> Ëo reach m<strong>at</strong>urity,<br />

hov¡ever <strong>the</strong> earlisË cultívars r¡rere comparable to fababeans"<br />

3.25 Pod Sh<strong>at</strong>tering<br />

A typically wild characteristic th<strong>at</strong> has been transmitted to some<br />

cultivars <strong>of</strong> lupÍns is Ëhe tendency for its pods to shaËÈer. Degree <strong>of</strong><br />

sh<strong>at</strong>Èering r¡ras variable between and withÍn <strong>the</strong> species tested.<br />

L. aLbus never sh<strong>at</strong>Ëered or dropped its pods. It could be left stand-<br />

ing nntil completely dry when all <strong>the</strong> seeds were hard and Ëhen sËraighË<br />

B6


cornbined (Pl<strong>at</strong>e 10). The seeds Ëhresir well , however, a small proportion<br />

<strong>of</strong> green pods present may cause problems in storage.<br />

L. Luteus had a Ëendency to sh<strong>at</strong>ter under extremely hot and dry<br />

we<strong>at</strong>her, hov¡ever pod drop r¡ras a more serious problem" There seemed to<br />

be vari<strong>at</strong>ion among cultivars in this respect and cultivars such as Weilco<br />

III had líËtle sh<strong>at</strong>terÍng and negligíble pod drop.<br />

L. angusti.fol'Lus was inclined to sh<strong>at</strong>ter seriously (Pl<strong>at</strong>e 11-) " It<br />

sh<strong>at</strong>tered as seriously as fababeans presenË in <strong>the</strong> tesËs, however pod<br />

drop was not a problem. If cut and bundled prior to complete m<strong>at</strong>urity<br />

and allowed to dry, shaËËeri.ng losses were reduced. This was also true<br />

for L" Luteus" Degree <strong>of</strong> sh<strong>at</strong>Ëering was varíab1e among Ëhe cultivars<br />

<strong>of</strong>. L" angustifoLius tested, and some <strong>of</strong> <strong>the</strong> neÍrer varieties such as Uni-<br />

harvest and Unicrop r¿ere almosË non-sh<strong>at</strong>tering.<br />

3"26 F'rosË Resistance<br />

Varying degrees <strong>of</strong> frost occurred in <strong>the</strong> l<strong>at</strong>e spring <strong>at</strong> some <strong>of</strong> <strong>the</strong><br />

test loc<strong>at</strong>ions (Appendix A), buË had little if any effect on <strong>the</strong> lupin<br />

seedlings. These observ<strong>at</strong>ions are consistent wiËh those reported by<br />

o<strong>the</strong>rs (Henson and Stephens, l95B; Offutt, L96L; Forbes and l^Iells, L966) "<br />

At a few loc<strong>at</strong>ions, frost blackened <strong>the</strong> margins <strong>of</strong> <strong>the</strong> leaves <strong>of</strong> both<br />

fababeans and PI sovbeans.<br />

An early frost <strong>at</strong> SteÍnbach and Franklin seriously danaged Ëhe pods<br />

<strong>of</strong>. L" albus r¡hich were still very green (Pl<strong>at</strong>e 12). Early fal1 frosts<br />

recorded for o<strong>the</strong>r loc<strong>at</strong>ions had 1itt1e effecË on <strong>the</strong> dry, m<strong>at</strong>uring pods.<br />

p.-7


3.3 QUAIITY CHARACTERISTICS<br />

3.31 Crude ProÈein ConËent<br />

ProËeín content for all cultivars in yield trials was deteruined<br />

by <strong>the</strong> Kjeldahl method and percenÈage conversion was made<br />

6"25 x N, dry basis" Distinct dífferences exisÈed between<br />

all had protein con.tent.s gre<strong>at</strong>er than eí<strong>the</strong>r Glenlea whe<strong>at</strong><br />

(Table 14).<br />

using <strong>the</strong> factor<br />

species and<br />

or fababeans<br />

CulËivars <strong>of</strong>. L" Luteus had <strong>the</strong> highest overall mean protein contenË<br />

over <strong>the</strong> three loc<strong>at</strong>íons <strong>of</strong> 45"37"" L. albus and L. artgustifoLius lnad<br />

mearls <strong>of</strong> 35.4 and 34.3"Á respectively. These values are similar Ëo those<br />

reported by Gladstones (I970a), however <strong>the</strong> overall mean fo'r L. albus is<br />

somewh<strong>at</strong> lower and th<strong>at</strong> tor L. Luteus ís somewhaË higher"<br />

At Glenlea, in L972" protein contents for all species were lower<br />

than those reported by Gladsüones and also those <strong>at</strong> <strong>the</strong> o<strong>the</strong>r two loca-<br />

tions ín L973. This was probably due Ëo lack <strong>of</strong> nodulaËion and <strong>the</strong><br />

smaller seed size experienced for all species ín L972 wlnich is known Ëo<br />

have a rnajor influence on protein content. species means in order <strong>of</strong><br />

magnítude for this year for L. Luteus, L. angustifoLr.us and L. albus<br />

were 43.6, 31.5 and 30"8"/" respectively. Some vari<strong>at</strong>ion existed r¿ithín<br />

specíes.<br />

Protein content <strong>of</strong> <strong>the</strong> cultivars tested <strong>at</strong> <strong>the</strong> two locaËions in<br />

1973 were guiËe consistent. Low standard error values indíc<strong>at</strong>e th<strong>at</strong><br />

littIe vari<strong>at</strong>ion occurred for Ëhis characterisËic"<br />

90


'IADIE 14 "<br />

Species /cultivar<br />

L" albus<br />

SaaLgut<br />

Georgía-L425<br />

Kierskij skoe.<br />

Gela<br />

Baily I<br />

Italian cv.<br />

Reuscher<br />

S. Africa ll 255<br />

fl^1 :<br />

t\or !<br />

Protein content<br />

basis<br />

Neuland<br />

á46r a ^ ^-^t çU ùN4 ^1. ^<br />

Blanca<br />

S. Afríca li 244<br />

MSU-3, 46-70<br />

MS TT- ?<br />

Cult "<br />

no.<br />

MEANS OF ALL CULTIVARS<br />

T ^"-n" , ^J--' l:^'7 .' " , -<br />

Uo UttAUùUuJvuu4Ð<br />

S. Africa lf 277<br />

Giepie<br />

S. Africa-7002<br />

S. Africa-60/206<br />

S. Africa ln L23<br />

Elíta<br />

S. Afríca ll L04<br />

Uniharvest<br />

Unicrop<br />

MEAN OF AIL CULTIVARS<br />

L" Luteus<br />

i,Jeiko III<br />

Sam<br />

Popular<br />

Ekspress<br />

Lima<br />

Bas<br />

Gorzowski<br />

Pomorski<br />

MEAN OF A].L<br />

V" faba-Ackerperle<br />

Glenlea v¡he<strong>at</strong><br />

CI]LTIVARS<br />

La<br />

2a<br />

3a<br />

4a<br />

6a<br />

Ba<br />

9a<br />

10a<br />

lla<br />

15a<br />

16a<br />

18a<br />

9b<br />

10b<br />

1lb<br />

13b<br />

L4b<br />

lBb<br />

20b<br />

28b<br />

29b<br />

lc<br />

8c<br />

9c<br />

I¿C<br />

14c<br />

16c<br />

L7c<br />

18c<br />

<strong>of</strong> cultivars tested in L972-3, N x 6"25, dry<br />

Glenlea<br />

L972<br />

30"8<br />

30.0<br />

27 .7<br />

31" 5<br />

30.7<br />

32 "0<br />

30. I<br />

32 "3<br />

30 "7<br />

30. 3<br />

34 "B<br />

30. 6<br />

29 "L<br />

30.8<br />

J¿"O<br />

3r"0<br />

32"8<br />

30 "2<br />

31" 9<br />

31. B<br />

30.4<br />

31. 5<br />

44"6<br />

4J"J<br />

44 "B<br />

¿+J " J<br />

4J. Õ<br />

1,1 ,<br />

4L.4<br />

46.2<br />

/,') (-<br />

24"6<br />

L4.4<br />

LocaËion<br />

wpg"<br />

a973<br />

37.6<br />

37 .L<br />

36"8<br />

35 .0<br />

37 "8<br />

35"0<br />

36.8<br />

36.8<br />

37 "4<br />

40"4<br />

39 "6<br />

36 .8<br />

J/ "J<br />

37.0<br />

38.5<br />

37 .2<br />

34.0<br />

JO"Õ<br />

35"6<br />

34. 0<br />

JO. ö<br />

JO"4<br />

35. B<br />

35 "7<br />

46 .6<br />

46"4<br />

46 "2<br />

46"6<br />

46 "0<br />

46.0<br />

46.8<br />

46"6<br />

45 "2<br />

26 "4<br />

Carman<br />

t97 3<br />

36. B<br />

JO.4<br />

JO"L<br />

37 "2<br />

Jö. O<br />

37 "6<br />

41. 0<br />

39 "6<br />

38.4<br />

tn_,<br />

38"3<br />

33. B<br />

36.8<br />

35 .8<br />

35 "4<br />

50. ¿<br />

38.2<br />

3s.4<br />

35 .8<br />

44"6<br />

45 "2<br />

45 "6<br />

46 "O<br />

43 "6<br />

46 "B<br />

46 "4<br />

46.0<br />

46.3<br />

29.r<br />

Mean * SE<br />

35.1 + 1.8<br />

?/, q 1a<br />

32 "3 3.2<br />

3s"6 0"4<br />

35"5 L"6<br />

34.8 1.9<br />

35"7 L"6<br />

33.5 2"4<br />

36.9 2"1<br />

40"0 0.3<br />

36.2 2 "3<br />

35.4 2"2<br />

36.r 0"9<br />

53"ó ¿"J<br />

33"8 3"3<br />

33.5 + 0.5<br />

4t , 1 a<br />

J+"+ t_. o<br />

34.7 0.8<br />

33.2 t_'<br />

34.5 L.7<br />

37 .3 0.6<br />

35 .6 0.1<br />

45"4 + 0"9<br />

4s.2 O "6<br />

44"9 0"7<br />

4s.7 0"6<br />

45 .L 0.7<br />

45.L 0"6<br />

44"8 1.5<br />

44 "5 1.3<br />

46"3 0.s<br />

26"7 + L.I<br />

97


The increase in protein from 1972 to L973 was gre<strong>at</strong>est for tr. albus<br />

and <strong>the</strong> least for L" Luteus" This is understandable, since L. albus lnas<br />

relaËively larger seed and, 1000 kernel weight which increased Ln L973<br />

would cause a relaËively larger increase ín protein content in a 1.arget<br />

seeded species. Again, as in L972, vari<strong>at</strong>íon within species occurred<br />

with ranges for L" aLbus, L. avryust¿foLius and L. Luteus <strong>of</strong> 36.2 to 4L.07",<br />

33.8 to 38.27" and 43"6 to 46.8% respectívely. Ranking, in order <strong>of</strong> <strong>the</strong><br />

magnitude <strong>of</strong> protein content, changed in L973 to L" Lul;eus, L. albus and<br />

<strong>the</strong>n tr. angustífolius. This can again be explained by <strong>the</strong> rel<strong>at</strong>ive in-<br />

crease in proLein content <strong>of</strong> <strong>the</strong> three species as seed size increases.<br />

Cultivars <strong>of</strong> L. Luteus had by far <strong>the</strong> gre<strong>at</strong>est protein content, but<br />

all cultívars ranked last in seed yíeld. The cultivars <strong>of</strong>. L" aLbus wíth<br />

<strong>the</strong> highesË seed yields ranked lower in protein than tr. Luteus arld L.<br />

angustifolius. Thís inverse rel<strong>at</strong>ionship beËlreen yield and protein con-<br />

tent also seems to exist withÍn a specíes, buË ís not as apparent and is<br />

not necessarily true for all cultivars within a specíes.<br />

All cultivars <strong>of</strong> lupins far surpassed fababeans and Glenlea whe<strong>at</strong><br />

which had overall means for <strong>the</strong> three loc<strong>at</strong>ions <strong>of</strong> 26"7% and I4.4% (one<br />

loc<strong>at</strong>ion only) respectively" The gains ËhaË can be made by growing<br />

lupins r<strong>at</strong>her than fababeans as a high proËein crop may be better illus-<br />

tr<strong>at</strong>ed if yields <strong>of</strong> each are converted to kilograms <strong>of</strong> protein per hec-<br />

Ëare. This is done ín Table 15 for some <strong>of</strong> <strong>the</strong> higher yieldíng cultivars<br />

<strong>of</strong> lupins, and for fababeans growrl <strong>at</strong> idinnipeg in L973" These values are<br />

corrected to Lhe usual sËorage moisture contents from <strong>the</strong> dry<br />

basis Lh<strong>at</strong> was used to c¡bËain <strong>the</strong> proteín values found in Table<br />

L4. These are L5"/. and L4% 14"C. for fababeans and lupins respectively.<br />

92


Table 15. Yield, in terms <strong>of</strong> kilograms <strong>of</strong> protein<br />

Lupiras<br />

Lupdnus<br />

Iapirws<br />

v vvuv<br />

Jque<br />

<strong>of</strong> <strong>the</strong> high yieldíng cultivars <strong>of</strong> lupins<br />

cv. Ackerperle <strong>at</strong> Wínnipeg Ín 1973<br />

per hectare for some<br />

and for fababeans,<br />

Sp ecies / cul tivar Yield <strong>of</strong> crude protein<br />

kglha<br />

aLbus<br />

Reus cher<br />

ftalian cr¡.<br />

Sa<strong>at</strong>gut<br />

Zagrebska<br />

Blanca<br />

Gela<br />

angustifoLdus<br />

S. Africa ln 704<br />

Giepie<br />

Unícrop<br />

S. Africa lf 227<br />

T,uteus<br />

Popular<br />

Bas<br />

trrreiko III<br />

Sam<br />

LO¿J"J<br />

L447 "8<br />

t+¿o.u<br />

L423.5<br />

1383. 0<br />

L249.2<br />

863.4<br />

851.3<br />

840"5<br />

815. B<br />

90s.9<br />

846 "6<br />

7 53.4<br />

7 4L.2<br />

Ackerperle 1007 .6<br />

93


0n <strong>the</strong> above basis, cultivars <strong>of</strong> Z. albus far outyielded fababeans,<br />

with Reuscher, <strong>the</strong> highesÈ yielding cultivar, being 6L7" gre<strong>at</strong>er than<br />

fababeans. Yields <strong>of</strong> <strong>the</strong> o<strong>the</strong>r two species, which seemed very 1ow on<br />

a seed yield basis, closely approximaËed fababean yÍelds when converted<br />

to weight <strong>of</strong> protein per unit area. The híghest yielding cultivar <strong>of</strong><br />

L. angustl:foLius and L. Luteus, on this basis were 85 .7 arrd 89.97" res-<br />

pectively <strong>of</strong> <strong>the</strong> fababean cultivar, Ackerperle.<br />

3.32 Amíno Acid CornposiËion<br />

Amino acid analyses (Beckman 121, Amino Acid Anal-yzero lB hour<br />

hydrolys<strong>at</strong>e) for lupíns, soybean, fababean and Manitou whe¿t are given<br />

in Table 16. The values for lupins are a mean <strong>of</strong> four cultivars for<br />

each species. They include Blanca, Reuscher, Neuland and Gela f.or L"<br />

albus; unicrop, uniharvest, s. Africa 104 and 60/206 tor L" angusti.-<br />

foLius; and Bas, Weiko III, Popularo and Ekspress for L" Luteus.<br />

Absolute values for <strong>the</strong> different amino acids differ somernrh<strong>at</strong> from<br />

those reported by o<strong>the</strong>r authors, however <strong>the</strong> reason for <strong>the</strong>se differ-<br />

erices cannot be ascertained since meËhods are not staËed and units <strong>of</strong><br />

expression vary" I^Ih<strong>at</strong> is Ín general agreement with <strong>the</strong> values ob¡ained<br />

in Èhe above analyses is <strong>the</strong> overall low methioine conLent and high<br />

lysine conËent as compared Ëo cereal grains.<br />

Lupins are gerlerally deficient in methíonine, wíth average values<br />

<strong>of</strong> 0.66, 0.53, and 0"58 grams per 100 grams <strong>of</strong> crude protein for L. aLbus,<br />

L" angustifolius and L" Luteus respectively, These values are similar to<br />

fababeans, cv. Ackerperle which has a meËhionine content <strong>of</strong> 0"64, and. to<br />

mosË oËher legumes, wíth <strong>the</strong> exception <strong>of</strong> soybeans which has approxim<strong>at</strong>ely<br />

Ëwíce <strong>the</strong> methionine content" However, this rnain limiËing amíno acid in


Table 16. Amino acid composiÈion in<br />

lupin species, fababeans,<br />

Lysine<br />

Amino acid<br />

Methíonine<br />

Histidine<br />

Aroin-íno<br />

Aspartic acid<br />

Threonine<br />

Glutamic acid<br />

Serine<br />

Proline<br />

Glycine<br />

Alanine<br />

Valine<br />

Isoleucine<br />

Leucine<br />

Tryosine<br />

Phenylalanine<br />

g <strong>of</strong>. aa/I00 g <strong>of</strong> proteín for three<br />

soybeans, and ManiËou whe<strong>at</strong><br />

Lupins. rnean <strong>of</strong> 4 cvs. O<strong>the</strong>r, síngle deter.<br />

I<br />

'ñ<br />

0l +) (â<br />

l.^l<br />

.a s.È<br />

N\ ù) Fl<br />

B S.O<br />

5 .11<br />

0"66<br />

2 "38<br />

10. 82<br />

LL.79<br />

3 "75<br />

24.56<br />

5. 68<br />

4.35<br />

4.4L<br />

3"60<br />

4.32<br />

4 "54<br />

B"2L<br />

4 "44<br />

4. 0B<br />

ù\<br />

5 "22<br />

0.53<br />

2.87<br />

LL.69<br />

LL"25<br />

3 "6s<br />

26.L2<br />

5.38<br />

4.10<br />

/, ^')<br />

3"6s<br />

+"LJ<br />

4.34<br />

7 "56<br />

3.62<br />

4.09<br />

eù<br />

+)<br />

F.<br />

3.6s<br />

0"sB<br />

2.92<br />

12 "87<br />

11. 39<br />

3 "49<br />

28 "25<br />

5.24<br />

3.76<br />

4.32<br />

3 .45<br />

3"81<br />

4.09<br />

8"62<br />

2 "84<br />

4.L5<br />

c)<br />

rl<br />

¡'l<br />

CJ<br />

oq)<br />

EË<br />

,ô<<br />

d<br />

h<br />

Þ<br />

7 "33<br />

0 "64<br />

2 "89<br />

10"57<br />

12. BB<br />

4 "L8<br />

20 "02<br />

5.7 3<br />

4.90<br />

5. 09<br />

4. 81<br />

5 "26<br />

4 "62<br />

8"58<br />

3.57<br />

4"76<br />

{J<br />

od3<br />

ô00)0<br />

Ê(d ,c .lJ<br />

$Ð B .rl<br />

o${ d<br />

'oo € .cu<br />

>' Fr A.) E<br />

Ø<br />

^&<br />

>nJ<br />

UtrL)<br />

7 .3L<br />

1" 39<br />

3"00<br />

9. 05<br />

L3"97<br />

4 .63<br />

22.68<br />

6.04<br />

s.44<br />

4.98<br />

4.96<br />

5 "46<br />

5 .08<br />

B"BB<br />

4.13<br />

s.89<br />

cú<br />

H<br />

¿.tJ<br />

L"23<br />

2.34<br />

4.6L<br />

5"38<br />

2"95<br />

3s .98<br />

4.77<br />

r0. 90<br />

4.29<br />

3"50<br />

4.3s<br />

3"56<br />

1 ^.)<br />

2"83<br />

5. 15<br />

95


lupins may be cheaply supplímented wÍth synÈhetic meËhionine, or with<br />

cereals which have a rnuch higher methioníne content (Manitou whe<strong>at</strong>, aË<br />

L.23 e/L00g protein).<br />

The three species <strong>of</strong> lupins analyzed are moder<strong>at</strong>ely deficíent in<br />

rysine, with values <strong>of</strong> 5"11, 5"22 and 3"65 for L. albus, L" arryustr.foltus<br />

and L. Luteus respectively" The value f.or L" Luteus is signíficantly<br />

lower than <strong>the</strong> o<strong>the</strong>r two species, but agrees r¿ith Ëhe value reported by<br />

Florence (1965). Fababeans are higher Ín lysine than lupins, as are soy-<br />

beans, however lupins have approxim<strong>at</strong>ely tvrice Ëhe lysine content <strong>of</strong><br />

ManiÈou whe<strong>at</strong>"<br />

The contenË <strong>of</strong> <strong>the</strong> five oËher limiting amino acids approximaÈed <strong>the</strong><br />

values for fababeans and soybeans (There are eíght essential amíno acids<br />

for higher organisms such as mane namely, lysine, methionine, threonineu<br />

valine, isoleucine, leucine, phenylalanine, tryptophane" None <strong>of</strong> <strong>the</strong>se<br />

are essential for rrmrínants, since rumen micro-organisms can syn<strong>the</strong>size<br />

<strong>the</strong>se amino acids from o<strong>the</strong>r appropri<strong>at</strong>e feedstuffs, although <strong>the</strong>y may<br />

be limíting in Èhe young, active growing stages before a functional rrmen<br />

has developed (Mahler and cordes, 7966). Tryptophane values T¡rere not<br />

obtained for any <strong>of</strong> <strong>the</strong> samples, however Gladstones (1970a) reported<br />

values rangíng from 1"0 to L"3%"<br />

3.33 Analysis <strong>of</strong> l,rlhole and Dehulled Lupin Seed<br />

Analysis <strong>of</strong> whole and dehulled lupin seed is gÍven in Table 17, along<br />

wíÈh values for fababeans and soybeans" The values obtained for fababeans<br />

and soybeans are for <strong>the</strong> cultivars Ackerperle and Portage respectively,<br />

whereas <strong>the</strong> values obtained for lupins are an average <strong>of</strong> <strong>the</strong> same four<br />

cultivars for each species used for amino acid analysis "<br />

96


Table 17" Analysis <strong>of</strong> whole and dehulled<br />

fababean and soybean seed<br />

Iupin seed as compared to<br />

Analysis Sp ecies /cu1 tivar trrlhole bean Dehulled Hulls<br />

Proportíon <strong>of</strong> total<br />

bean (%, dry basis)<br />

Dry marrer (1:)<br />

Proteìn content<br />

(N x 6.25, dry basis)<br />

Crude fibre<br />

(%" ary basis)<br />

Crude f<strong>at</strong><br />

("Á, dry basis)<br />

Energy (Kcal/e)<br />

L. aLbus<br />

L" angustiuoLius<br />

L" Luteus<br />

V" faba, Aclcerperle<br />

Soybean, Portage<br />

L. albus<br />

L" angustifoLi.us<br />

L. Luteus<br />

V. faba<br />

Soybean<br />

L" aLbus<br />

L" angustt folius<br />

L" Luteus<br />

V. faba<br />

Soybean<br />

L. albus<br />

L" angustifolius<br />

L" Luteus<br />

v. faba<br />

Soybean<br />

L" albus<br />

L. arryustifolíus<br />

L. Luteus<br />

v" faba<br />

Soybean<br />

L. aLbus<br />

L" angustifoltus<br />

L. Luteus<br />

V. faba<br />

Soybean<br />

100<br />

100<br />

100<br />

100<br />

100<br />

o/. A<br />

95. 0<br />

94"3<br />

94.8<br />

o( 7<br />

36 "7<br />

35"5<br />

45"5<br />

26"6<br />

40 "6<br />

9.2<br />

L3.9<br />

L4.9<br />

9, 1<br />

4"5<br />

9"2<br />

J"J<br />

4"4<br />

1a<br />

l-" J<br />

IY"¿<br />

4928 " 0<br />

4693 "0<br />

4566 "0<br />

432L"0<br />

5503. 0<br />

83. B<br />

76"2<br />

77 "2<br />

R7?<br />

o, /,<br />

94.3<br />

o/, -7<br />

Ja. t<br />

94"3<br />

94"4<br />

96"s<br />

t^ .<br />

+J. O<br />

44 "9<br />

5R?<br />

29 "2<br />

¿+¿"4<br />

r"6<br />

1.8<br />

'lo<br />

L.7<br />

1" 9<br />

10.5<br />

6.8<br />

L"4<br />

20.1<br />

5091.0<br />

4885. 0<br />

4B2s.o<br />

4364 " 0<br />

5627 "0<br />

1/<br />

LO"Z^<br />

23"8<br />

22. B<br />

12 "7<br />

7.6<br />

94" 6<br />

96. r<br />

95.0<br />

9 6.4<br />

9 6.5<br />

5"0<br />

7.8<br />

6"6<br />

6"4<br />

8.7<br />

Lo 1<br />

47 .3<br />

51.1<br />

44.4<br />

J¿"U<br />

r.4<br />

L.+<br />

1"0<br />

u"t<br />

4160. 0<br />

4292 " 0<br />

4168.0<br />

4333.0<br />

5511. 0<br />

97


There existed a considerable amount <strong>of</strong> vari<strong>at</strong>ion between lupín<br />

species in proportion <strong>of</strong> seed co<strong>at</strong>. tr" aLbus had <strong>the</strong> lowest proportíon<br />

aL L6.2"/". L. angustl:folius and L. Luteus were much higher wíth values<br />

<strong>of</strong> 23"8 and 22.87" respectively. These values r¡rere gre<strong>at</strong>er than ei<strong>the</strong>r<br />

fababeans or soybeans.<br />

It was found th<strong>at</strong> <strong>the</strong> seed co<strong>at</strong> <strong>of</strong> lupins conËained almost all <strong>the</strong><br />

crude fibre and a very small amount <strong>of</strong> proËein. The removal <strong>of</strong> <strong>the</strong> seed<br />

co<strong>at</strong> <strong>the</strong>refore increased Ëhe value <strong>of</strong> <strong>the</strong> lupin seed by increasing pro-<br />

tein levels for Ëhe three species to 43"6,44.9" and 58.37" for L. aLbus,<br />

L. angustifolùus, and tr. Luteus respectívely, and decreasing fibre levels<br />

f.rom 9"2, 13.9, and 14.9% to L"6" 1"8 and L"97.. These values are for<br />

lupin germ meal following removal <strong>of</strong> approxiur<strong>at</strong>ely 907" <strong>of</strong> <strong>the</strong> seed co<strong>at</strong>e<br />

which Gladstones (1970b) feels can be accomplished by commercial milting<br />

procedures.<br />

The crude f<strong>at</strong> content <strong>of</strong> lupins varied from 4" 47" f.or L. Luteus to<br />

9.2% for L. aLbus. These values were much higher than Ëh<strong>at</strong> obtained for<br />

fababeans, but much lor¿er than <strong>the</strong> crude f<strong>at</strong> eontent <strong>of</strong> soybeans"<br />

Energy values obtained for <strong>the</strong> whole seeds <strong>of</strong> L. aLbus, L" angusti--<br />

foLùus and tr. Luteus were 4928, 4693, and 4566 Kcal/g, respectively"<br />

These were all higher Èhan fababeans, but lower than soybeans. Removal<br />

<strong>of</strong> <strong>the</strong> seed co<strong>at</strong> increased Èhese energy values for lupíns and soybeans,<br />

but resulted ín only minor increases for <strong>the</strong> fababeans.<br />

3.34 Seed Color<br />

This characteristic \¡ras found<br />

and T,¡ithin species, as illustr<strong>at</strong>ed<br />

to<br />

ín<br />

be very variable<br />

Table 18. Seeds<br />

l_n<br />

<strong>of</strong><br />

Lupinus species<br />

L. albus were<br />

9B


able rõ. Seed color, f000<br />

culËivars ËesËed<br />

kernel weight, and test weight for lupin<br />

in 1972 and L973<br />

Species / cul tivar Colorrl 1000 kernel wt. (g)<br />

Mean * SE<br />

L" aLbus<br />

Sa<strong>at</strong>gut<br />

Georgie-L425<br />

Kierskíj skoe.<br />

Gela<br />

Baíly I<br />

Italian cult"<br />

Reuscher<br />

S. Africa lf 255<br />

Kali<br />

Neuland<br />

Zagrebska<br />

Blanca<br />

S " Africa ll 244<br />

¡4SU-3, 46-10<br />

MSU-2<br />

L. angusti,foLius<br />

S. Africa li 227<br />

Giepie<br />

S" Africa-7002<br />

S. Africa-60/206<br />

S. Africa lf L23<br />

Elíta<br />

S. Africa lf L04<br />

Uniharvest<br />

Unicrop<br />

L" Luteus<br />

trrreiko III<br />

Sam<br />

Popular<br />

Ekspress<br />

LÍma<br />

Bas<br />

Gorzowski<br />

Pomorski<br />

As<br />

V" faba-Ackerperle<br />

Glenlea whe<strong>at</strong><br />

w<br />

w<br />

P<br />

I.I<br />

P<br />

P<br />

w<br />

P<br />

w<br />

I,{<br />

P<br />

}I<br />

P<br />

I¡I<br />

üI<br />

fto<br />

Gm<br />

ulu<br />

II w<br />

Gm<br />

Gm<br />

Intrfm<br />

tr^ifnt<br />

I^I<br />

Wm<br />

Wm<br />

trIm<br />

I4f<br />

I^I<br />

I{m<br />

I^I<br />

tr{m<br />

Color abbrv: I,I(white), P(pink),<br />

i^Ifm(whíte, f aintly<br />

Values from one loc<strong>at</strong>ion on1v.<br />

453 + 38<br />

329 L4<br />

355 2L<br />

363 27<br />

384 4s<br />

443 + 54<br />

4L4 - 36<br />

378 33<br />

344 46<br />

392 50<br />

413 + 35<br />

392 s3<br />

363 23<br />

403 40<br />

3s4 33<br />

195+ 4<br />

¿v5 )<br />

202 4<br />

L92 5<br />

LB2r,*<br />

lgg**<br />

195+ 7<br />

193 10<br />

22L T6<br />

151 +<br />

L3g<br />

131<br />

L44<br />

L43<br />

L42 +<br />

150<br />

L29<br />

L45<br />

450 +<br />

4Lxt<br />

9<br />

13<br />

9<br />

9<br />

B<br />

t2 I<br />

11<br />

II<br />

J4<br />

Test wt" (Ke/hl)<br />

Mean * SE<br />

79"4 + 0"7<br />

78.6 0.2<br />

78.6 0.8<br />

78.6 0.4<br />

78.1 l.l<br />

78.2 + 0.6<br />

79.0 0.1<br />

81.0 0.2<br />

81.0 0.8<br />

80 "2 r.2<br />

79.9 + 0.L<br />

78.0 - 0.6<br />

79.5 1" 0<br />

79"5 0.8<br />

79.7 0.8<br />

79.L + 0.4<br />

79 .g 0.4<br />

80. 6 0.4<br />

80. B 0.2<br />

79 . B**<br />

81.1**<br />

80.0 + 0.5<br />

78.1 1" r<br />

75.7 0.3<br />

82"6 + L.6<br />

83.9 0.9<br />

81.7 1.8<br />

83"5 1.3<br />

83.0 1.5<br />

83.7 + r"4<br />

ör"b t"r<br />

84"2 2"L<br />

83"1 1" I<br />

86.7 + 2.3<br />

$J , /tczt<br />

Gm(grey mottled), i,Im(whiËe motË1ed)<br />

motËled) .<br />

99


ah¡rays skin pink or chalk v¡híte in co1or, with <strong>the</strong> l<strong>at</strong>er sometimes being<br />

índic<strong>at</strong>ive <strong>of</strong> sweetness or 1or^r alkaloid contenË as it was for <strong>the</strong> o<strong>the</strong>r<br />

two species tested. Hor¿evero white seeded, bitter strains (high alka-<br />

loid content) have been detectec.<br />

Seed color <strong>of</strong>. L. angust¿foL'Lus was much more variable than tr. aLbus.<br />

It ranged from a dark grey with líghter grey or white mottling to seeds<br />

whích were entirely white. Seed <strong>of</strong> <strong>the</strong> cultivars Uniharvest and Unicrop<br />

r¡rere someT¡rh<strong>at</strong> unique ín th<strong>at</strong> <strong>the</strong>y were almosÈ perfectly white, excepÈ<br />

for <strong>the</strong> faintest <strong>of</strong> scroll Ëype, cream colored mottling"<br />

The variability in this characteristic for L" Luteus was similar to<br />

thaË in ¿. angustùfoLùus. Color ranged from entírely whiËe to white with<br />

extensíve grey or brown mottling.<br />

The light seed color Ln L" albus and more recently in <strong>the</strong> o<strong>the</strong>r two<br />

species due to muË<strong>at</strong>íon is said Ëo result in "an increase in <strong>the</strong> value<br />

<strong>of</strong> <strong>the</strong> lupin as a cultiv<strong>at</strong>,ed plant, for we prefer light-colored seeds for<br />

aes<strong>the</strong>tic reasons and probably also because <strong>of</strong> flavour, for it has been<br />

proved in a n:'nber <strong>of</strong> pulses .. th<strong>at</strong> darker seeds do not have as pleasanË<br />

a taste as light ones," (Schwanitz, L967).<br />

The white seed color is desirable for <strong>the</strong> above reasons. as well as<br />

for use as a marker to índicaËe freedom from alkaloids in <strong>the</strong> ner¿er bred<br />

varieties, as opposed to <strong>the</strong> bitter cultivars which are usually mottled.<br />

I{iËh Ëhis characteristic, visual assessment cari be made on <strong>the</strong> degree <strong>of</strong><br />

mechanical contamin<strong>at</strong>ion or th<strong>at</strong> due to cross-pollin<strong>at</strong>ion and successíve<br />

segregaËion <strong>of</strong> high and low alkaloid Ëypes"<br />

100


3.35 Seed Shape and Thousand Kernel Weíght<br />

Along r,¡íËh seed shape, 1000 kwt is riot a quality characterístic per<br />

se, buË is knor¿n Ëo affect rel<strong>at</strong>ive seed composition in terms <strong>of</strong> fibre<br />

and protein coriterit, aad also methods <strong>of</strong> handling ín terms <strong>of</strong> millíng,<br />

crushing, seedíng, harvesting and storage"<br />

Seed shape varied between species, with tr. aLbus easily distinguish-<br />

able from <strong>the</strong> o<strong>the</strong>r two species uiíËh its seeds th<strong>at</strong> are 0.9 to 1"4 cm<br />

1ong, eompressed and anguLar. L. angusti-foli-us and L" Luteus differ<br />

greaËly in shape from -t. albus, but are quite similar to each o<strong>the</strong>r.<br />

seeds <strong>of</strong> Ëhe former are spheroidal and 6 to B mm long and 5 to 6 mm wid.e.<br />

The l<strong>at</strong>er have seeds th<strong>at</strong> are compressed to varying degrees and measure<br />

6 to B mrn long and 5 to 7 nrn wide" In addiËion to <strong>the</strong> difference in<br />

compression between <strong>the</strong>se tswo species, <strong>the</strong> seeds may also be distinguished<br />

by <strong>the</strong> presence <strong>of</strong> a predominant raphe ín L" qngusti.foLíus"<br />

Results <strong>of</strong> 1000 kr¡/t are given in Table 18. The vari<strong>at</strong>ion between<br />

species was large for this characLeristic, and in some cases much varia-<br />

Ëion occurred beLween cultivars and locaËions.<br />

Cultivars <strong>of</strong> L. albus had <strong>the</strong> highest 1000 kwt, with cultivar means<br />

rangíng from 329 to 453 grams per thousand seeds. Inter-cultivar vari-<br />

abílity was <strong>the</strong> highest in this species as shown by <strong>the</strong> large range <strong>of</strong><br />

values. Varíability beËween loc<strong>at</strong>ions was also large, indic<strong>at</strong>ed by <strong>the</strong><br />

Taüher high standard errors. Next in magnitude were tr. angustifoLíus<br />

and tr. Luteus rsiËh cultÍvar means rangíng from I92 to 221 grans anð. I29<br />

to 151 grams, respectively. variability over loc<strong>at</strong>ions for <strong>the</strong>se two<br />

species was very low compared to Z. albus, which ís índic<strong>at</strong>ed by Ëhe 1or^r<br />

st.andard errors.<br />

101


Fluctu<strong>at</strong>ions in 1000 kwt from L972 to 1973 were closely correl<strong>at</strong>ed<br />

wiÈh fluctu<strong>at</strong>íons in protein content for L" aLbusn with Ëhe former in-<br />

creasíng by 30 to 140 grams from GlenLea (L972) to l,rrinnipeg (1973). The<br />

1ow fluctu<strong>at</strong>íon ín 1000 kt^rË in <strong>the</strong> o<strong>the</strong>r two species \^ras paralleled by<br />

low protein fluctu<strong>at</strong>ions"<br />

ConsÍdering <strong>the</strong> three species as a wholeo 1000 kwt is positively<br />

correl<strong>at</strong>ed wíËh seed yield. Cultivars <strong>of</strong> L" aLbus which had Ëhe highesË<br />

1000 kwt had Èhe híghest seed yields, and <strong>the</strong> cultivars <strong>of</strong>.t. Luteus<br />

r¿hích had <strong>the</strong> lowest 1000 krut had <strong>the</strong> lowest yíelds.<br />

Iababeans, cv" Ackerperle, which l¡ias present <strong>at</strong> all loc<strong>at</strong>ions, had<br />

a Larger seed size than all but one cultivar <strong>of</strong>. L" aLbus" The vari<strong>at</strong>ion<br />

was similaï to L" aLbus, which ís indic<strong>at</strong>ed by its relaËively high<br />

standard error values.<br />

3"36 test I,Ieíght<br />

Mean test weíghts were quite consistent for <strong>the</strong> different specíes"<br />

however, culËivar means for all species varíed from 75.7 to 84"2 kE|nL"<br />

However, discreËe specíes differences existed (Table 18) "<br />

L. Luteusu which had Ëhe lowest 1000 ic\^rË, had <strong>the</strong> highest overall<br />

mean hectaliËre weight <strong>of</strong> 83"0 kg/hf. Thís is <strong>the</strong> usual correl<strong>at</strong>ion for<br />

<strong>the</strong>se Ëwo characteristÍcs in most crops" L. aLbus and L. angustì'foLius,<br />

which had gre<strong>at</strong>ly differing 1000 kwt (<strong>the</strong> former approximaËely twice as<br />

gïe<strong>at</strong>), did not vary in Ëest weight to <strong>the</strong> extent th<strong>at</strong> was expected"<br />

They had overall mean values <strong>of</strong> 79"3 a¡rd 79.5 kg/hl, respectively.<br />

r02


Little vari<strong>at</strong>ion in this characteristic occurred between <strong>the</strong> three<br />

locaËionso indic<strong>at</strong>ed by <strong>the</strong> low SE values. Test weight <strong>of</strong> fababeans T¡ras<br />

also quite consistent over <strong>the</strong> three loc<strong>at</strong>ions, and iÈs mean value <strong>of</strong><br />

86"7 kg/hl r¿as gre<strong>at</strong>er Ëhan all cultivars <strong>of</strong> lupins'<br />

103


AGRONO<br />

4"0<br />

4.L NURSERY ]N 1972<br />

NU<br />

SERY<br />

APPRAISAL<br />

ITY CHARACT<br />

MIC &<br />

ER ISTICS<br />

QUAL<br />

OF AGRIC ULT URAL ACCESSI<br />

T}ae L972 riursery r¿hich contaíned 449 TupLn accessíons had a primary<br />

objective <strong>of</strong> obtaining an over-vier¡ <strong>of</strong> <strong>the</strong> species <strong>of</strong> lupins in terms <strong>of</strong><br />

habit, seed size, potential yielding ability, flowering, time to m<strong>at</strong>urity,<br />

and o<strong>the</strong>r characteristics" The secondary objective r¡/as to increase seed<br />

for successive testing" From <strong>the</strong> forty different species osbseved in this<br />

tesE" only <strong>the</strong> five th<strong>at</strong> had seen previous use in agriculture r¡rere deemed<br />

to have any potential, namely, "t. aLbus, L. Gngust¿folius, L. Luteus, L.<br />

mutaþiLis and tr" cosent¿nL" 0n1y 98 <strong>of</strong> <strong>the</strong> originaL 227 accessions <strong>of</strong><br />

<strong>the</strong>se species were fur<strong>the</strong>r tested in <strong>the</strong> 1973 nursery trials due to Ëhe<br />

lack <strong>of</strong> adequ<strong>at</strong>e seed production"<br />

The high lime content <strong>at</strong> t}:.e 1972 nursery site resulted in severe<br />

chlorosis in most. species, includíng <strong>the</strong>agricultural Ëypes. The vari<strong>at</strong>ion<br />

in líme tolerance found in Ëhe L972 repLic<strong>at</strong>ed yield trials was similar<br />

to th<strong>at</strong> in this test, namely, tr" Luteus was <strong>the</strong> first and Ëhe most seri-<br />

ously affect, closely followed by L. angustl:folius. Both displayed<br />

chlorosis as early as 10 days after emergence. Thís resulted in many<br />

lines dying before flowering. L. albus seemed to be <strong>the</strong> least affected<br />

by <strong>the</strong> high lime content, which reached 1eve1s <strong>of</strong> 28"67" equívalents <strong>of</strong><br />

CaCO^ in <strong>the</strong> top 30 cm <strong>of</strong> soi1. L. eosentini and L" rm.ttab¿L¿s seemed to<br />

J-<br />

have a lime Ëolerance siuúlar to L" aLbus"<br />

OF<br />

ON<br />

S


O<strong>the</strong>ï facËors th<strong>at</strong> influenced seed production were; Fusariurn tr{ílt<br />

(Fusartun spp"), which af.fected L" artgustifol'Lus 'nore than <strong>the</strong> o<strong>the</strong>r<br />

forrr species; drought <strong>at</strong> crítical stages <strong>of</strong> development; seed imperme-<br />

ability; and faílure to receive suitable photoperiod or vernaliz<strong>at</strong>ion<br />

requirement in some lines <strong>of</strong> L" aLbus (Pl<strong>at</strong>es 13" 14)"<br />

The above factors resulted in only 27/49 origínal lines <strong>of</strong> L. aLbus<br />

being resred in L973" Sirnilarly, only 35/75, 32/89" 2/4 and 2/2 acces-<br />

sions <strong>of</strong>. L. øtgustí.folius, L. Luteuso L. rm,LtabiLis ar.d L" cosentini res-<br />

pectively v¡ere fur<strong>the</strong>r tested in 1973.<br />

4"2 NURSERY TRIAI,S IN 1973<br />

The choise <strong>of</strong> test siËes for <strong>the</strong> nurseries in 1973 r,¡as based prinarily<br />

on <strong>the</strong>ir freedom from any signifieant levels <strong>of</strong> CaCOr. This r.ras done with<br />

<strong>the</strong> cooperaËion <strong>of</strong> <strong>the</strong> Provincial Soils Testing Labor<strong>at</strong>ory who provided<br />

<strong>the</strong> resulËs <strong>of</strong> <strong>the</strong> analyses for CaCO, for samples sent in from rural areas<br />

in <strong>Manitoba</strong>. Only those areas rrhere calcium rsas estim<strong>at</strong>ed as beíng very<br />

low (corresponding to 2% or less CaCOr) ldere considered. Thís resulted<br />

in no chlorosis occurring <strong>at</strong> any <strong>of</strong> Ëhe Ëest sites in ei<strong>the</strong>r <strong>the</strong> Pl-soybean<br />

indicaËor or lupins "<br />

A second critería in <strong>the</strong> choise <strong>of</strong> Ëest sites r,¡as freedom from resi-<br />

dues <strong>of</strong> crops th<strong>at</strong> are susceptíble to Fusarium tr^Iilt or root rote since<br />

this seemed to be a potenËially serious problem as indic<strong>at</strong>ed by disease<br />

losses ín L972.<br />

Nurseríes were planted <strong>at</strong> eight Manítoba loc<strong>at</strong>ions, namely, I'Iinnipeg,<br />

c<strong>at</strong>mant" ManiËou, sprague, steinbaeh, Glenlea, Franklin, and carberry.<br />

The l{innipeg loc<strong>at</strong>ion r,¡as aË <strong>the</strong> campus ËesË site' and Glenlea was in<br />

105


conjunction rÀiith <strong>the</strong> Glenlea Research St<strong>at</strong>ion. The remaining six were<br />

planted on <strong>the</strong> farms <strong>of</strong> co-operaÈors. 0f <strong>the</strong> eighË loc<strong>at</strong>íons listed<br />

above, <strong>the</strong> last four were not harvested for seed yield determinaËíon due<br />

to various factors.<br />

The nurseries loc<strong>at</strong>ed aË Carberrv and Steínbach vrere not harvesËed<br />

for Ëhe same reasons as previously díscussed in rel<strong>at</strong>ion to <strong>the</strong> yield<br />

trials, namely" high popul<strong>at</strong>ions <strong>of</strong> weeds and damage by Blister Beetles.<br />

The nursery <strong>at</strong> Glenlea was planted l<strong>at</strong>er than <strong>the</strong> o<strong>the</strong>rs (May f9),<br />

just prior to heavy raínfalls. This cornbined with <strong>the</strong> heawy clay soil<br />

resulted in <strong>the</strong> test area being flooded on two different occasions --<br />

before emergence and shortly after. All lupin species and <strong>the</strong> fababeans<br />

failed to toler<strong>at</strong>e <strong>the</strong> \¡r<strong>at</strong>er logging. Seeds roEted due Ëo <strong>the</strong> various<br />

organisms favoured by <strong>the</strong> high moisturee as did <strong>the</strong> seedlingsr root<br />

sysËems. Resulting stands rrrere approxim<strong>at</strong>ely two to five percent <strong>of</strong> <strong>the</strong><br />

seed originally planted" Some lines <strong>of</strong>. L. aLbus seemed Ëo withstand<br />

<strong>the</strong> w<strong>at</strong>er logging, and maËured to produce seed, however, it was probably<br />

due to random escape r<strong>at</strong>her than tolerance. Since Ëhese nurseries r¿ere<br />

not replic<strong>at</strong>ed, a conclusion on this aspect cannot be made, however,<br />

Ëhese resulËs are consistent with those reported by Gladstones (1970b),<br />

namely, th<strong>at</strong> 1upíns are intolerant <strong>of</strong> w<strong>at</strong>er logging"<br />

The trial <strong>at</strong> Franklin was Ëre<strong>at</strong>ed pre planË r,riËh Treflan, with no<br />

adverse effects on gerrnin<strong>at</strong>ion and seedlíng growth" lJeed populaËions<br />

were much lower than ín <strong>the</strong> adjacent untre<strong>at</strong>ed areas, however, wild o<strong>at</strong>s<br />

T¡7ere a conËinuous problem throughout <strong>the</strong> growing season.<br />

BlisÈer Beetle infest<strong>at</strong>ion, which caused minor damage, were effec-<br />

Ëively conËro11ed with Guthíone. Lines <strong>of</strong> L" angust¿folíus m<strong>at</strong>ured early,<br />

L07


hor¿ever, most lines r¡rere completely sh<strong>at</strong>tered before harvest was possible<br />

L<strong>at</strong>e, heavy, rains seriously delayed <strong>the</strong> m<strong>at</strong>uriÈy <strong>of</strong> tr. albus, L. Luteus<br />

a¡¡d L. mul;abdlis and most lines <strong>of</strong> <strong>the</strong>se species were much too green to<br />

harvest" The above factors made this test meaningless in terms <strong>of</strong> seed<br />

yield and <strong>the</strong>refore it tras not harvested"<br />

4"21 Seed Yields<br />

Those accessions r,¡hich had sufficient quantities <strong>of</strong> seed to plant<br />

<strong>at</strong> least one nursery loc<strong>at</strong>ion (105 seeds) r¡/ere tested in <strong>the</strong> 1973 nurs-<br />

eries. Due to Ëhe lack <strong>of</strong> seed, replic<strong>at</strong>íon r{as noË used, and where<br />

quantities <strong>of</strong> seed were adequ<strong>at</strong>ee more than one locaËion was planted"<br />

This was carried out since iË r¿as thought th<strong>at</strong> <strong>the</strong> sarnplíng <strong>of</strong> more loca-<br />

tíons was more important than precise yíeld d<strong>at</strong>a via replic<strong>at</strong>ion. Since<br />

replicaËion T¡ras not. used, <strong>the</strong> numerous accessions \¡rere arranged in such<br />

a manner as to present seed yield d<strong>at</strong>a as a percent <strong>of</strong> an adjacent,<br />

coilrmon, fababean check.<br />

Seeds yields <strong>of</strong> all accessions for <strong>the</strong> four nursery loc<strong>at</strong>ions<br />

(I,Iinnipeg, Carman, Manitou, Sprague) are listed in Appendix C, along<br />

with loc<strong>at</strong>ion and species means. Thís d<strong>at</strong>a is summarized in Table 19;<br />

and in Fig. 1, which illustr<strong>at</strong>es <strong>the</strong> yields as a percent mean for all<br />

lines <strong>of</strong> each specíes for each loc<strong>at</strong>ion; and also as an overall mean for<br />

each species <strong>at</strong> all four loc<strong>at</strong>ions. L. mutabiLis and tr" cosentini were<br />

orniËËed due Ëo <strong>the</strong> lack <strong>of</strong> seed production.<br />

Fíg" 1a, illustr<strong>at</strong>es <strong>the</strong> yíe1ds <strong>at</strong> l,Iinnipeg. As in Ehe adjacent<br />

yield trLal, L. aLbus was sígnificantly higher yielding than tr. angust¿-<br />

foLius or L. Luteus, shown by Ëhe t-values in Table 19. Species rneans<br />

108


Table 19. Comparison <strong>of</strong> <strong>the</strong> species means <strong>of</strong><br />

and -t" Luteus, via <strong>the</strong> t-test, for<br />

individuallv and combined<br />

LocaËion Comparison df<br />

Iaiínnipeg<br />

Carman<br />

ManíËou<br />

Sprague<br />

All four<br />

loc<strong>at</strong>ions<br />

L.<br />

L"<br />

L.<br />

L"<br />

L.<br />

L"<br />

L.<br />

L.<br />

L.<br />

albus x<br />

''x<br />

angusv" x<br />

albus x<br />

,lx<br />

angust. x<br />

albus x<br />

',x<br />

angust. x<br />

L. albus x<br />

[J. " X<br />

L. arqust. x<br />

L.<br />

L.<br />

T.<br />

albus x<br />

',x<br />

angust" x<br />

L.<br />

L.<br />

L"<br />

L.<br />

L"<br />

L"<br />

L.<br />

L"<br />

L"<br />

L.<br />

L"<br />

L.<br />

L.<br />

L.<br />

L.<br />

angust"<br />

Luteus<br />

Luteus<br />

angust"<br />

Luteus<br />

Luteus<br />

urLguÒ u.<br />

Luteus<br />

Luteus<br />

angust.<br />

Luteus<br />

Luteus<br />

qtLgnÐ u.<br />

Luteus<br />

Luteus<br />

5B<br />

57<br />

OJ<br />

49<br />

4B<br />

+o<br />

55<br />

52<br />

64<br />

59<br />

56<br />

64<br />

230<br />

220<br />

243<br />

L" albus, L" angustifolius<br />

<strong>the</strong> four nursery loc<strong>at</strong>ions<br />

Conclusíon*<br />

t-value % leve1 <strong>of</strong><br />

sígnífícance<br />

7 .50<br />

]-3.22<br />

5.36<br />

L"82<br />

s.95<br />

2.BB<br />

5 .35<br />

11.95<br />

5. B3<br />

-0.7L<br />

^ /,')<br />

0.98<br />

2.99<br />

8.16<br />

3.62<br />

Idhere a = L" albus"b = L" ayÌgusti.foLius, and c = L. Luteus"<br />

a<br />

b<br />

>b<br />

>c<br />

)s<br />

NS<br />

a)c<br />

b>c<br />

b<br />

NS<br />

l\ò<br />

>b<br />

)q<br />

)g<br />

NS<br />

>b<br />

)g<br />

)q<br />

1no


(J<br />

o<br />

-c ()<br />

c<br />

o(l)<br />

Á on(f,<br />

14-<br />

o<br />

\o (,-<br />

,; t-<br />

U<br />

.E<br />

()<br />

3<br />

o<br />

b EgG)<br />

E<br />

-(]<br />

þ<br />

€ (t)<br />

G)<br />

U)<br />

Figure I<br />

too<br />

50<br />

o<br />

too<br />

50<br />

o<br />

roo<br />

o.<br />

Seed yield <strong>of</strong> Lupin spp., expressed os "/" af fabobean<br />

check plots<br />

Winnipeg b. Cormon<br />

c. Monitou d. Sprogue<br />

e. lMeon <strong>of</strong> <strong>the</strong> obove four loc<strong>at</strong>ions<br />

XX<br />

X<br />

XX<br />

m<br />

ffi<br />

m<br />

tl<br />

L. albus<br />

L. angustifolius<br />

L. luteus<br />

fabobean check<br />

110


were 557", 287" and L4"I7. respectively. No significant correl<strong>at</strong>ion existed<br />

beËween <strong>the</strong> yíe1d <strong>of</strong> cultivars conrlon to boËh <strong>the</strong> replícaËed trial and<br />

Ëhe nursery trial. Thís was also <strong>the</strong> case for Carman.<br />

Fíg. lb and 1c present <strong>the</strong> yields for Carman and ManiËou, which<br />

followed <strong>the</strong> trend esËablished in <strong>the</strong> replic<strong>at</strong>ed yield trials and <strong>the</strong><br />

I^Iinnipeg nuïsery, namely, L. albus was higher yielding than L. angusti-<br />

folius and L" Luteus; and speeies means were all lower than <strong>the</strong> fababean<br />

checks.<br />

AbsoluËe yíelds decreased more in fababeans than in lupíns and was<br />

probably due to <strong>the</strong> difference in drought tolerance under restricted<br />

moísture <strong>at</strong> Carman (Appendix A). The mean yield ot L. albus (75% <strong>of</strong>.<br />

check) uras noË significantly gre<strong>at</strong>er than -t" avtgust¿folius <strong>at</strong> 63% <strong>of</strong>. t};re<br />

check, however, both were significantly greaËer than ¿" Luteus <strong>at</strong> 40% <strong>of</strong><br />

<strong>the</strong> check. Lines <strong>of</strong>. L" aLbus yielded frorn 43 to L42% <strong>of</strong> <strong>the</strong> check. Yíelds<br />

<strong>at</strong> Manitou, T¡rere sirnilar Ëo trnlinnipeg, as r¡Ias Ëhe clím<strong>at</strong>ic conditions<br />

(Appendix A and B). Mean yíelds <strong>of</strong> tr" aLbus, L" angustl:foLius and L"<br />

Luteus were 57, 34 and L57" <strong>of</strong> <strong>the</strong> fababean check respectively. Lines <strong>of</strong><br />

L" aLbus were again <strong>the</strong> highest yielders, ranging from 28 to Bl% <strong>of</strong> <strong>the</strong><br />

check.<br />

Fíg" ld, and Table 17, illustr<strong>at</strong>e th<strong>at</strong> no yield differences occurred<br />

for <strong>the</strong> species Ëested <strong>at</strong> Sprague, Mean values for L" aLbuso L" angusti-<br />

folius and L" Luteus were 89, 96 and 857" <strong>of</strong> <strong>the</strong> fababean check respec-<br />

tively" Absolute yields were extrernely low for lupins and more so for<br />

fababeans, due to Ëhe extremely droughty conditions th<strong>at</strong> resulted from<br />

1ow precípit<strong>at</strong>ion and <strong>the</strong> sandy soil texture (Appendix A and B). Drought<br />

tolerance more than yíelding ability was being measured and lupíns proved<br />

to be much more toleranË than fababeans (Pl<strong>at</strong>es 15, 16).<br />

111


Fig. 1e cornbines Ëhe results from all four loc<strong>at</strong>ions and again<br />

illustr<strong>at</strong>es <strong>the</strong> trend thaË occurred in all tests except Sprague, namely,<br />

all species are generally lower yielding than fababeans, and tr" aLbus<br />

ís <strong>the</strong> highest yielding lupin species. Included in .L. albus were lÍnes<br />

Èh<strong>at</strong> performed uniformly well in al1 <strong>the</strong> nursery tests. These included<br />

<strong>the</strong> followíng lines along with <strong>the</strong>ir means and standard errors; Georgia-<br />

L425 (99 + L9%), S" Africa ll 255 (98 + L7%), Reuscher (91 + L6%) "<br />

Gyul<strong>at</strong>amyai (86 + L0%), Baily I (83 + B%), S. Africa ll 244 (82+ L0%),<br />

and Zagrebska (81 + L37") .<br />

4. 22 OËher Agronomic Characteristics<br />

4.221 Days to Flor¿ering<br />

Thís r¿as observed <strong>at</strong> Lhe l^Iinnipeg locaËion only. As was true for<br />

<strong>the</strong> replicaËed yield trial planted adjacent to it" much vari<strong>at</strong>ion betr^reen<br />

and wiËhin species existed for Èhis characteristic (Appendix C).<br />

Línes <strong>of</strong>. L. aLbus r¡/ere usually firsÈ to flo!¡er, requiring an average<br />

<strong>of</strong> 65 days from <strong>the</strong> Ëime <strong>of</strong> seeding to vihen 757. <strong>of</strong>. <strong>the</strong> plot displayed<br />

visíble blooms. Baily I (5a) was first to flower <strong>at</strong> 59 days and S. Africa<br />

lf 255 (2Ia), <strong>at</strong> 7t days, <strong>the</strong> last" The lines common to both <strong>the</strong> repli-<br />

c<strong>at</strong>ed yíeld trial and <strong>the</strong> adjacent nursery flov¡ered an average <strong>of</strong> seven<br />

days earlier in Ëhe fo-rmer, due probably to plant spacing differences.<br />

Lines <strong>of</strong>. L. angustl:foL'Lus were usually next to flov¡er, requíring an<br />

average <strong>of</strong>.69 days from Ëhe time <strong>of</strong> seeding (excluding Ëhe early línes,<br />

UníharvesË and Unicrop). Vari<strong>at</strong>ion in thís character ranged Lrom 47 to<br />

78 days, and \^/as very similar to Ëhe replie<strong>at</strong>ed yield trial adjacenË Ëo<br />

this nursery" Unícrop and Uniharvest (2Bc and 29c) were <strong>the</strong> firsË to<br />

113


flower, being earlíer Ëhan any line <strong>of</strong> tr. aLbus. Unir,rhite and Borre<br />

were <strong>the</strong> last to flor,¡er <strong>at</strong> 78 days.<br />

Lines ol. L. Luteus r^rere usually <strong>the</strong> lasË to flower, requíring an<br />

average <strong>of</strong> 74 days. Considerable vari<strong>at</strong>ion existed in this species,<br />

rangíng frorn 66 to 84 days. This characterisËic vlas approxim<strong>at</strong>ely three<br />

days earlier in Ëhe adjacent yield trial for <strong>the</strong> lines coinmon to both"<br />

Schawko (l8c), \,ras <strong>the</strong> first Lo flower, Portugese and Moroccan wild types<br />

(30c and 31c) were <strong>the</strong> 1ast. The few lines <strong>of</strong>. L" cosentini and L. nn¿ta-<br />

bilis observed required approxim<strong>at</strong>eLy 67 and 77 days respectívely"<br />

4.222 Days to M<strong>at</strong>urity<br />

This characterisËic nas observed only <strong>at</strong> l^Iínnipeg (Appendix C).<br />

Lines <strong>of</strong>. L. arryustifoLíus and L. Luteus were <strong>the</strong> earliest to m<strong>at</strong>uree<br />

requiring an average <strong>of</strong> 118 and 119 days from seeding to when Ëhey were<br />

cut and stooked. Lines <strong>of</strong> L" aLbus \dere approxim<strong>at</strong>ely a week laËer in<br />

m<strong>at</strong>uríty, requiring an average <strong>of</strong>. L25 days. Fababeans, cv. Ackerperle<br />

required 115 days to m<strong>at</strong>ure <strong>at</strong> this loc<strong>at</strong>ion.<br />

Vari<strong>at</strong>ion for Ëhís characteristic Ln L. angustifoLius ranged from<br />

113 to 121- days, wíth <strong>the</strong> earliesË floweríng lines, Uniharvest and Uni-<br />

crop, also beíng <strong>the</strong> earlíest in maËuriËy aL 113 and 114 days respectively.<br />

Vari<strong>at</strong>ion in L. Luteus ranged from 114 to l-24 days. Ihese values were<br />

simílar for Ëhe lines common to Èhe adjacent replicaËed yield trial, hov¡-<br />

ever, days to m<strong>at</strong>uríty fox L" albus \dere approxim<strong>at</strong>ely 10 days less in<br />

<strong>the</strong> nursery trial where <strong>the</strong>y had a range <strong>of</strong>. I22 to l2B days as compared<br />

to 722 to 135 ín <strong>the</strong> replicaËed trial. This dífference could have been<br />

due to <strong>the</strong> more precise evaluaËion <strong>of</strong> this characËeristic in a larger<br />

p1oÈ such as <strong>the</strong> replic<strong>at</strong>ed plots (3 rod roÌ/s, one foot apart), as opposed<br />

LL4


to <strong>the</strong> single rod rows in <strong>the</strong> nursery" The earlÍest lines <strong>of</strong> L" albus<br />

included; Gela, Gulzower, Blanca, Baily I, USSR-305, ì4SU-3, l4SU-2, and<br />

Ultra, which required L22 to L24 days"<br />

Values f.or L" cosentin'L are not available since Ehey did noË emerge<br />

successfully. L" rm,LtabiLis was <strong>the</strong> l<strong>at</strong>est to m<strong>at</strong>ure, requiríng L47 days.<br />

Days to m<strong>at</strong>uriËy for all species may be significantly decreased if<br />

cutting (sw<strong>at</strong>hing) can be carried out before <strong>the</strong> times reporËed in<br />

Appendix C, without any serious loss Ín seed yield or quality. Closer<br />

row spacing, use <strong>of</strong> defoliants, culture on light soi1s, artificial vernal-<br />

íz<strong>at</strong>íot, or use <strong>of</strong> genetic non-branching línes (mono culms) nay also de-<br />

crease <strong>the</strong> lengthy growing season requirement.<br />

4"223 Branchíng<br />

All lines <strong>of</strong> all species observed aË tr{innipeg branched to some ex-<br />

tent, usually quíte pr<strong>of</strong>usely. This characteristic was enhanced aË this<br />

locaËion in L973 by early planting, cool spring Ëenper<strong>at</strong>ures, high levels<br />

<strong>of</strong> rainfall, and a rel<strong>at</strong>ively wide ror,r spacing. These are all reported<br />

Ëo favour branching in lupins (Barbacki and Kapsa, 1960) " This T¡ras very<br />

clear if comparison is made to <strong>the</strong> replic<strong>at</strong>ed trial <strong>at</strong>. Glenlea ín L972<br />

r¡hich was much shorter, expressed little branching due Èo l<strong>at</strong>e planËing,<br />

high spring temper<strong>at</strong>ures, and 1ow precipit<strong>at</strong>ion (Appendix A).<br />

In general, L" arryustifolius branched <strong>the</strong> earliest, wíth some lines<br />

doing so as early as L4 days after emergence. L. albus began branching<br />

much 1<strong>at</strong>er, but usually sooner than tr" Luteus. Vari<strong>at</strong>ion existed beËween<br />

and within species, and it was generally found th<strong>at</strong> Èhe laËe m<strong>at</strong>uring<br />

varieties branched much earlier Èhan <strong>the</strong> earlier m<strong>at</strong>uring lines "<br />

Branching, both l<strong>at</strong>eral and secondaryu had <strong>the</strong> general effect <strong>of</strong><br />

115


prolonging flowering over several r,¡eeks. This in turn resulted in <strong>the</strong><br />

m<strong>at</strong>urity <strong>of</strong> <strong>the</strong> pods produced on Ëhese branches being much la-ter than<br />

those on <strong>the</strong> main stem. Besídes delayíng maËurity, excessive branching<br />

hindered harvesting opeï<strong>at</strong>ions, since in shaËÈering species <strong>the</strong>re vrill<br />

always be a certain proportion <strong>of</strong> green pods <strong>at</strong> m<strong>at</strong>urity. The only<br />

advantages th<strong>at</strong> can be gained from <strong>the</strong> use <strong>of</strong> branching types are better<br />

weed compeËition and <strong>the</strong> requirement <strong>of</strong> a l0wer seed r<strong>at</strong>e.<br />

4.224 Plant HeighË and Lodging<br />

There existed considerable inËerspecífic and intervarieËal varí-<br />

abiliËy for <strong>the</strong>se characteristícs (Appendix D). This vari<strong>at</strong>ion seemed.<br />

to be inainly a response Ëo precipit<strong>at</strong>ion, since aË loc<strong>at</strong>ions with high<br />

raínfall (Ltinnipeg, Manitou) plant heighËs were similar and. much gre<strong>at</strong>er<br />

than <strong>at</strong> drier loc<strong>at</strong>ions (Carman, Sprague).<br />

Stems oÍ. L- albus became quite thick, <strong>of</strong>ten reaching basal díameters<br />

<strong>of</strong>' 2"5 cm" ThÍs extreme thickness combined with lignific<strong>at</strong>ion resulted.<br />

in a plant th<strong>at</strong> T,ras extremely resisËant to lodging under normal círcum-<br />

stances. This was also true for tr. angusti.folius a'.d L. mutabiLis.<br />

However' lodging did occur in some <strong>of</strong> <strong>the</strong> tallere more branched lines<br />

<strong>of</strong>. L" albus. rt r¿as not due to lack <strong>of</strong> stalk strength, but to ari ex-<br />

Èremely heavy canopy <strong>of</strong> pods and reaves which caughË <strong>the</strong> <strong>at</strong>ypically<br />

strong winds and uprooted <strong>the</strong> plants. Also" minor lodging was caused<br />

by breakage <strong>of</strong> <strong>the</strong> laÈeral branches.<br />

Generally, z. albus has to be r<strong>at</strong>ed as resistant to lodging, since<br />

<strong>at</strong> Manitou, where clím<strong>at</strong>ic condiËions vrere similar, except for <strong>the</strong><br />

exËreme winds, lodging was minor even<br />

íng were sinilar"<br />

though plant heights and branch-<br />

IL6


Lines <strong>of</strong>. L. angustl:foLius were similar in height to L. aLbus.<br />

Stalk strength was also siurilar, however, <strong>the</strong> pr<strong>of</strong>use, fine, laËeral<br />

branches in <strong>the</strong> taller lines hrere prone to breakage. The root system<br />

seemed to be more adegu<strong>at</strong>ee since uprootíng did not seem to be a problem"<br />

Some lodging occurred <strong>at</strong> all loc<strong>at</strong>ions, however <strong>the</strong> shorËer Ëypes T¡iere<br />

less inclined to lodge.<br />

L" Luteus was <strong>the</strong> shortesË species <strong>at</strong> a1l four loc<strong>at</strong>ions, but<br />

tended to lodge more severely than tr. aLbus or L. angustdfoLius due to<br />

<strong>the</strong> succulent n<strong>at</strong>ure <strong>of</strong> its main and l<strong>at</strong>eral branches. The severe winds<br />

aË tr^Iinnipeg resulted ín over 907. breaking or bending <strong>of</strong> <strong>the</strong> stelrrs"<br />

Generally, <strong>the</strong> taller lines lodged <strong>the</strong> most"<br />

The two lines <strong>of</strong> L. mutaþíLt s were boËh 109 cm tall. Uprooting or<br />

breakage <strong>of</strong> <strong>the</strong> l<strong>at</strong>eral branches contríbuted Ëo <strong>the</strong> lodging observed.<br />

4.225 Pod Sh<strong>at</strong>tering<br />

Except for L. aLbus and L. mutabilis some pod sh<strong>at</strong>teríng occurred<br />

in all species in <strong>the</strong> 1972 and 1973 nurseries. .L. aLbus could be left<br />

sËanding until fully m<strong>at</strong>ured and <strong>the</strong>n straight combined with a llege<br />

ploL cornbine, with little loss or breakage to <strong>the</strong> seed.<br />

Untíl <strong>the</strong> recent isol<strong>at</strong>ion <strong>of</strong> sh<strong>at</strong>ter resistant lines <strong>of</strong> tr" angus-<br />

tífolius and -t" Luteus (Sengbush and Zimmerman, 7937) <strong>the</strong> cultív<strong>at</strong>ion <strong>of</strong><br />

Èhese two species for seed was limited. Pods <strong>of</strong> <strong>the</strong>se ner¡r types have no<br />

easily viewed phenoËypic characteristic such as <strong>the</strong> constricted versus<br />

smooth pods in fababeans, which explains <strong>the</strong>ír resistance (Seitzer, 7973)"<br />

The an<strong>at</strong>omical changes involve <strong>the</strong> fusion <strong>of</strong> <strong>the</strong> normally divíded sËrips<br />

<strong>of</strong> sclerenchyma in <strong>the</strong> pod seams, or weakeníng <strong>of</strong> <strong>the</strong> endocarp <strong>of</strong> <strong>the</strong> pod<br />

wal1s, similar to ÉhaË in L. albus and o<strong>the</strong>r cultiv<strong>at</strong>.ed legr:mes" However,<br />

r77


some <strong>of</strong> <strong>the</strong> non-sh<strong>at</strong>tering types rnay be recognized by <strong>the</strong> purplish-brown<br />

pigmentaËion <strong>of</strong> <strong>the</strong> endocarp visible Ëhrough <strong>the</strong> green outer mesophyll<br />

<strong>of</strong> <strong>the</strong> irunaËure pod" In <strong>the</strong>se reduced or non-sh<strong>at</strong>tering types, <strong>the</strong><br />

dorsal and ventral seams <strong>of</strong> <strong>the</strong> pod split, but much l<strong>at</strong>er and wiËh less<br />

force than <strong>the</strong> sh<strong>at</strong>teríng types, and may be insufficient to sc<strong>at</strong>ter <strong>the</strong><br />

seeds or dislodge <strong>the</strong> pod halves. Therefore, <strong>the</strong> pods and seeds remain<br />

<strong>at</strong>tached to Ëhe plant (Pl<strong>at</strong>e 17).<br />

R<strong>at</strong>ings <strong>of</strong> sh<strong>at</strong>tering are given in Appendíx D, as sh<strong>at</strong>tering (S),<br />

reduced sh<strong>at</strong>tering (RS) or non-sh<strong>at</strong>Ëering (NS) for lines Ëh<strong>at</strong> did not<br />

sh<strong>at</strong>ter or drop <strong>the</strong>ir pods <strong>at</strong> full n<strong>at</strong>urity. Generally, tr. aLbus and<br />

L. mutabil'Ls dLd not shaËter, whereas L. angustifoLi,us and L. Luteus<br />

sh<strong>at</strong>tered extensively" L. arryustifolius sh<strong>at</strong>tered more seriously than<br />

L. Luteu.s, hov¡ever, Ëhe laËer T¡ras more inclined to pod drop <strong>at</strong> m<strong>at</strong>urity.<br />

However, many liner; <strong>of</strong> both species had reduced or compleËely non-<br />

sh<strong>at</strong>tering characteris tics.<br />

4. 23 Quality Characteristics<br />

4.23L Crude Protein Content<br />

Crude protein contents (N x 6"25, 0"02 M.C") for <strong>the</strong> accessions<br />

observed <strong>at</strong> <strong>the</strong> four nursery locaËions are given ín Appendix C, along<br />

wiÉh loc<strong>at</strong>ion, accessíon, and specíes means.<br />

As was true for <strong>the</strong> cultivars in <strong>the</strong> replic<strong>at</strong>ed trials, considerable<br />

variability for Ëhis characËerisËic occurred between and r¿íthin species,<br />

Vicia faba, cv. Ackerperle, was consistently <strong>the</strong> lowest in protein,<br />

ranging f.'rom 27.6 to 30.7, with an overall mean <strong>of</strong> 29"67.. Generally,<br />

lines <strong>of</strong>. L" Luteus r^rere consistently higher ín proËeín than <strong>the</strong> o<strong>the</strong>r<br />

118


major species, \,rith an overall mean for a1l loc<strong>at</strong>ions <strong>of</strong> 44.9%"<br />

49 .67. .<br />

The two línes <strong>of</strong> L" mutabiLis had protein contenËs <strong>of</strong> 48.6 and<br />

L. angustifoLius and L. aLbus had sirúlar protein contents with<br />

mean values <strong>of</strong> 36.4 and 36.3 respectively" The two línes <strong>of</strong> L. cosen-<br />

tint tested were sirnilar to <strong>the</strong>se two species.<br />

Protein contents <strong>of</strong> all species were higher <strong>at</strong> Carman than <strong>at</strong> <strong>the</strong><br />

o<strong>the</strong>r three loc<strong>at</strong>.ions, with species means <strong>of</strong> 40.1, 37.2 and 46.5"/" r.or<br />

L, aLbus, L. angustifoLius anÅ, L. Luteus, respectively. This ur-ight<br />

well be explained on <strong>the</strong> basis <strong>of</strong> <strong>the</strong> effíciency <strong>of</strong> nitrogen fixing<br />

bactería, since <strong>the</strong> light textured and friable soil <strong>at</strong> Carman seemed<br />

to favour better nodul<strong>at</strong>ion (PlaËes 18 and 19). Loc<strong>at</strong>ions where nodu-<br />

l<strong>at</strong>ion was poorer had lower protein contents" A1so, <strong>the</strong> rel<strong>at</strong>Í-vely<br />

larger seed size obtaíned aË this loc<strong>at</strong>ion due to <strong>the</strong> majoriËy <strong>of</strong> pods<br />

being set on <strong>the</strong> main stem could have contributed to some <strong>of</strong> Ëhe in-<br />

crease in proËein. seed set on l<strong>at</strong>eral and secondary branches is<br />

smaller and shírivelled and pod distribution is effected by clim<strong>at</strong>e<br />

(Barbacki and Kapsa, 1960). Clim<strong>at</strong>ic condítions could Ëherefore affect<br />

protein content indirectly through pod distributíon and seed size. At<br />

I^Iinnipeg where <strong>the</strong> majority <strong>of</strong> pods were set on <strong>the</strong> l<strong>at</strong>erals, 1000 kfft<br />

was lower than <strong>at</strong> Carman, as \¡¡as <strong>the</strong> protein content" However, nod.ula-<br />

tion was more successful <strong>at</strong> tr{innipeg than <strong>at</strong> Manitou or sprague, which<br />

was reflected in an overall higher proËein content than <strong>at</strong> <strong>the</strong> laËter<br />

two loc<strong>at</strong>íons whích had similar 1000 kwts.<br />

L. aLbus was <strong>the</strong> ruost varíahle ín protein conLe-nt, røhich !ùas prob-<br />

ably due to its gre<strong>at</strong>eï variabilÍty in seed size. tr. Luteus and. L.<br />

angusl;ifolius were less variable ín both characteristics.<br />

L2A


4.232 Seed Color<br />

The variability within species for this characterístic T¡ras greaLer<br />

than th<strong>at</strong> found in Ëhe replíe<strong>at</strong>ed yield trials (Appendix D). Lines <strong>of</strong><br />

L. aLbus were eiËher whíte or skin pink in color, however <strong>the</strong> colors<br />

and degrees <strong>of</strong> motËling in lines <strong>of</strong>. L. angusti,folius and L. Lut<strong>at</strong>s were<br />

much more variable (PlaËes 20 - 27).<br />

4.233 Seed Shape and Thousand Kernel hleight<br />

Seed shape <strong>of</strong> tr" arryustifoLius and L" Luteus was similar Ëo th<strong>at</strong><br />

observed in <strong>the</strong> replic<strong>at</strong>ed yield trials, whereas L" albus dísplayed<br />

gre<strong>at</strong>er variability. The seed was basically angular or oval, with<br />

ranges bet\^reen <strong>the</strong> two. Variability was also observed in <strong>the</strong> degree <strong>of</strong><br />

coupression <strong>of</strong> <strong>the</strong> seeds" ranging from very fl<strong>at</strong> and wrinkled to very<br />

plutrp and smooth" Seed seË on <strong>the</strong> l<strong>at</strong>eral branches <strong>of</strong> all species was<br />

always smaller and generally inferior in quality when compared Ëo <strong>the</strong><br />

seeds set on <strong>the</strong> main stalk"<br />

Thousand kernel weíghts are listed in Appendix D, as a mean * SE<br />

for each accession for <strong>the</strong> four loc<strong>at</strong>ions. As in <strong>the</strong> replÍc<strong>at</strong>ed trials,<br />

seed size T¡ras correl<strong>at</strong>ed wíth yie1d. L" aLbus had <strong>the</strong> largesË overall<br />

seed size <strong>of</strong> 387 * 16 grains and subsequently <strong>the</strong> highest overall yield.<br />

L" Luteus had <strong>the</strong> lowesË overall seed r,reight <strong>at</strong> 155 + 1.3 grams and <strong>the</strong><br />

lowest overall seed yield. Thís correl<strong>at</strong>ion was not necessarily true<br />

for all línes within a speciesu but seed size should be considered an<br />

importanË yield component, along with branching and pod dístribuËíon"<br />

L22


Pl<strong>at</strong>e 20<br />

L" aLbus (2 x N<strong>at</strong>ural Size)<br />

Pl<strong>at</strong>e 22<br />

L" angustifolius (2tz x N. S . )<br />

P l-a te<br />

L. cosentini (2 *<br />

D1 ^ +^<br />

L" angtLstifoli.us<br />

21<br />

NaËural Size)<br />

¿J<br />

(2% x N"s")


Pl<strong>at</strong>e 24<br />

L. Luteus (3 x N"S")<br />

Pl<strong>at</strong>e 26<br />

L" mutabilis (2 x N.S.)<br />

L. Luteus (3 x N.S.)<br />

Pl<strong>at</strong>e 27<br />

L. rrutabilis (2 x N.S.)


Inter-line variability was <strong>the</strong> highesË in tr" albus wíËh accession<br />

means ranging from 282 to 448 grams per 1000 seeds" Betsween loc<strong>at</strong>íon<br />

variability was also highest in this species. L. angust¿fol'Lus was 1ess<br />

variable r¿ith accession means ranging frorn 161 Xo 246 grans. L. Luteus<br />

was <strong>the</strong> least varíable \,rith 1000 kwts ranging from 145 to 179 grams.<br />

Protein contents <strong>at</strong> <strong>the</strong> four different loc<strong>at</strong>ions T¡rere somer^7h<strong>at</strong> rel<strong>at</strong>ed<br />

to seed size" where larger overall seed size ÞIas associ<strong>at</strong>ed with a higher<br />

protein corltent "<br />

4.234 Test l^Ieight<br />

Test weights are given in Appendix D, as a mean * SE for <strong>the</strong> four<br />

nursery loc<strong>at</strong>ions. Fababeans had <strong>the</strong> highest Ëest weight with a mean<br />

<strong>of</strong> 90 + 0.9 kg/n1-. Test r,reights <strong>of</strong> L. Luteus were <strong>the</strong> next highest,<br />

r,riËh an overall mean <strong>of</strong> 84.5 + 0"2 kg/1n1-. L. angustifolius and L. aLbus<br />

had sinr-ilar test weights rangíng from 78.5 to 82.3 and 79 to 85 kg/hl<br />

respectively. Variabílity within specíes and beËween loc<strong>at</strong>ions was 1or¿<br />

as reflected in <strong>the</strong> 1oi¿ sÈandard errors.<br />

725


5.0 CHLOROSIS IN LUPINS CHLOROSIS<br />

TEST IN L97 3<br />

Chlorosis is a term denoting a visible defíciency <strong>of</strong> chlorophyll,<br />

manifested in a yellowing <strong>of</strong> <strong>the</strong> leaves. It may be caused by various<br />

agents or facËors, such as, fungi, bacteria, virus, waËer-logging, high<br />

levels <strong>of</strong> N-fertílity, lufn or Mg deficiencies, or o<strong>the</strong>r nutritional ínr-<br />

balances. However, <strong>the</strong> most common cause is iron deficiency. Chlorosis,<br />

associ<strong>at</strong>ed with iron deficiency, tends to occur in <strong>the</strong> nel¡resË growth<br />

(expanding leaves), as intervienal yellovring, or compleÈe yellowing <strong>of</strong><br />

<strong>the</strong> leaves in severe cases. This type <strong>of</strong> chlorosis is commonly observed<br />

on calcareous soils, and is <strong>the</strong>refore Èermed lime-induced chlorosis, how-<br />

ever it may also occur on acidíc soils<br />

Many types <strong>of</strong> crop plants are susceptÍble to íron chlorosis, includ-<br />

ing soybeans, field beans, peas and lupins. These are <strong>of</strong>Ëen called acid-<br />

loving plants, since <strong>the</strong>y are unable to obËaín sufficient iron under<br />

basic condiËions. Various authors (Brown, 1953; Brown et al" 1955, L956;<br />

Blanc-Aicard and Drouineau, 1955) suggested th<strong>at</strong> this could be due to<br />

dífferences in enz)¡me systems, abilíty to absorb iron, or capacity for<br />

root saËur<strong>at</strong>íon with calcír¡n.<br />

Most lupins gror¡rrr ín <strong>the</strong> L972 observ<strong>at</strong>ion rìursery displayed varying<br />

degrees <strong>of</strong> chlorosis, ranging from faínt yellowing to severe yellowing<br />

accompanied by de<strong>at</strong>h. In some species symptoms occurred as early as <strong>the</strong><br />

two leaf stage and resulted in seedling de<strong>at</strong>h.<br />

afI<br />

<strong>of</strong><br />

L. Lul;eus was Ëhe fírst to be affected, showing deficiency symptoms<br />

<strong>the</strong> early two leaf stage. Many lines died before reaching a height<br />

10 cm, however, oËher lines become chlorotic aË laËer stages but seË


few pods th<strong>at</strong> contained severely shrivelled seed (Pl<strong>at</strong>e 28) " A second<br />

effect whích contríbuted to <strong>the</strong> eventual deaËh oÍ. L. Luteus" as well as<br />

oËher species Èh<strong>at</strong> developed chlorosls, !¿as <strong>the</strong>ir increased suscepti-<br />

bílity to p<strong>at</strong>hogens such as Fusal,'Lt¡n" Wallace and Lr¡nË (1960) also<br />

reported thís increase in susceptibility in species o<strong>the</strong>r than lupins"<br />

L. an4ustifoLius utas <strong>the</strong> nexË most severely affected (pl<strong>at</strong>e 29) "<br />

Most lines failed to reach m<strong>at</strong>urity, and those thaË did produced<br />

seed which was severely díscolored and shrivelled.<br />

L. mutabiLis dispLayed slight chlorosis shortly after <strong>the</strong> plants<br />

had flowered, which resulted in poor quality seed being produced.<br />

ïhe majority <strong>of</strong> <strong>the</strong> línes on L. albus appeared thrifËy, and did<br />

not suffer perceptibly from chlorosis. However, <strong>the</strong>y seemed to be less<br />

vigorous than <strong>the</strong> same lines <strong>at</strong> o<strong>the</strong>r loc<strong>at</strong>íons "<br />

Chlorosis in lupíns has been reported by various authors (Scholz,<br />

1933; Triwosch, 1933; Parsche, 1935; Hackbarrh er al. 1935). t.r was<br />

<strong>at</strong>tributed to a basic soíl reaction and to a soíl lime content which<br />

resulted ín lirne induced iron chlorosis or more rarely manganese defi-<br />

ciency' L. Luteus was reported to be <strong>the</strong> rnost susceptible in Ëhis res-<br />

pect" order <strong>of</strong> susceptibiliËy reported for L. aLbus, L" angustifolius,<br />

and L. mutabilis varíed. These reporËs led to <strong>the</strong> assrmption th<strong>at</strong> <strong>the</strong><br />

chlorosis experienced in L972 <strong>at</strong> Wínnipeg and Morden üras due to lime-<br />

induced iron deficiencíes. On thís basis soil samples were taken from<br />

<strong>the</strong>se t\^ro sites and <strong>the</strong> analysis revealed <strong>the</strong> followíng: pH = 7.4 and<br />

7"8, and CaCO, content <strong>of</strong> medír¡n and high (CaCO, content from <strong>the</strong><br />

Provincíal Soil Testing Labor<strong>at</strong>ory is reported qualit<strong>at</strong>ively from very<br />

1ow to high, r¡here very low corresponds to 27" ot less CaCO, and lor^r to<br />

high corresponds to gre<strong>at</strong>er Ëhan 27" caco.). Lacroíx and Ler.z (L967)<br />

r27


found th<strong>at</strong> gre<strong>at</strong>er than I"6'A CaCO, equivalents rsould cause visible chlo-<br />

rosis in PI-soybeans, whi-ch are sensiËíve indic<strong>at</strong>ors <strong>of</strong> Èhe potenËial<br />

<strong>of</strong> a soil to índuce chlorosis due Ëo lime-induced iron deficiency.<br />

0n this basis, íron and manganese sulf<strong>at</strong>es \¡rere broadcast on <strong>the</strong><br />

nursery site and ¡,¡orked ín wiÈh a hoe, but did not, visibly allevi<strong>at</strong>e Ëhe<br />

chlorosis" Leaf Éissue samples were taken from <strong>the</strong> four agricultural<br />

species before <strong>the</strong> applic<strong>at</strong>íon <strong>of</strong> <strong>the</strong> soíl ammendmenÈs and were anaLyzed.<br />

for íron" Three Èypes <strong>of</strong> samples L7eïe takeno namely, from visibly healthy<br />

plants (no yellowing), from plants th<strong>at</strong> dísplayed intermedí<strong>at</strong>e chlorosis,<br />

and from those th<strong>at</strong> dÍsplayed severe chlorosis. The results <strong>of</strong> <strong>the</strong><br />

tissue analyses are given in Table 20"<br />

Table 20" Tissue analysis for iron (ppm) for L. aLbus, L. angustifolius"<br />

L" Luteus, and Z" nutabiLi.s th<strong>at</strong> displayed different degrees<br />

<strong>of</strong> chlorosis<br />

Species /cu1tívar<br />

L" aLbus" cv. Ne-uland*<br />

L" angust"¡ cv. Giepie<br />

L. Luteus" cv. Sam<br />

L" rrutabt Lí.s<br />

Degree <strong>of</strong> chlorosis<br />

Fe (ppm)<br />

Iiealthy ModeraÈe Severe<br />

190<br />

135<br />

185<br />

110<br />

No yellowing, but varíous degrees <strong>of</strong> stunting.<br />

c'enerally, iron levels in <strong>the</strong> healthy plants <strong>of</strong> all species were<br />

símilar, however, Ëhey increased considerably in <strong>the</strong> mod.er<strong>at</strong>e and severely<br />

chlorotic plants " This result is supporËed by auËhors who have failed to<br />

shors a correl<strong>at</strong>ion between low íron levels ín <strong>the</strong> leaves and <strong>the</strong> degree <strong>of</strong><br />

250<br />

230<br />

490<br />

180<br />

620<br />

530<br />

7L0<br />

L29


chlorosís in o<strong>the</strong>r crop plants (Oserkowsky, 1933; T\,¡-r.,rman, 1959). Leeper<br />

(L952) revíewÍng Èhis topíc concluded thaÈ most evidence índic<strong>at</strong>es th<strong>at</strong><br />

chlorotic leaves contain as much or more iron than green leaves, whích<br />

is also true for <strong>the</strong> preceeding results " This phenomena is also supported<br />

by Jacobson and 0erË1i (1956) who suggested thaË iron must be supplies <strong>at</strong><br />

Ëhe proper stage <strong>of</strong> developnenÉ to <strong>the</strong> leaves <strong>of</strong> srmflowers for chloro-<br />

phyll development Ëo occur, Ëherefore, older, chlr>rotic Ëissue may contj.nue<br />

to accrrnul<strong>at</strong>e iron vet remain chlorotic.<br />

The results reported by <strong>the</strong> above authors and Ëhe leaf tíssue analysis<br />

1ed to <strong>the</strong> assumpÈion thaË <strong>the</strong> chlorosis resulËed from imbalances in Ëhe<br />

iron nutrition <strong>of</strong> <strong>the</strong> planË due ro soil lime. This led to <strong>the</strong> incorpora-<br />

Ëion <strong>of</strong> <strong>the</strong> Pl-soybean indic<strong>at</strong>or inËo <strong>the</strong> 1973 tests to assess this pro-<br />

blem" If thís was indeed a reaction to lime, cultiv<strong>at</strong>íon <strong>of</strong> both -õ. dngus-<br />

tifoLius and L. Luteus would be seriously resËricted in <strong>Manitoba</strong> since <strong>the</strong><br />

majority <strong>of</strong> <strong>the</strong> cultivaËed acreage is high in lime in ei<strong>the</strong>r <strong>the</strong> top soil,<br />

Ëhe sub soil, or both"<br />

L. aLbus, cv. Kali, along r,¡ith fababeans and Glenlea whe<strong>at</strong> were<br />

planted on an area known to be varíable ín pH and CaCO, content. The<br />

Pl-soybean indic<strong>at</strong>or vras ínterplanted <strong>at</strong> various intervals, No visible<br />

chlorosis or stunting occurred ín <strong>the</strong> fababeans or whe<strong>at</strong>, however, varying<br />

degrees <strong>of</strong> chlorosis occurred in tr. albus and <strong>the</strong> soybean indic<strong>at</strong>or plants.<br />

CaCO, content and pH were deËermined for <strong>the</strong> soil samples Ëaken from areas<br />

where varying degrees <strong>of</strong> chlorosis were observed. Plants aË <strong>the</strong>se areas<br />

krere raÈed on a 1 to 5 scale for <strong>the</strong> degree <strong>of</strong> yellowing" Height and<br />

pods per plant were noted. The results are given in Table 21.<br />

In areas r¡here chlorosis was observed in lupins, <strong>the</strong> Pl-soybeans<br />

developed a more severe chloroËis reacËion, and usually died before<br />

reaehing tlne 2 leaf stage. Soil reaction was uniformly basic, although<br />

130


variable. However, CaCO,<br />

soil and from 3"00 to 34.<br />

content varied from<br />

27% in <strong>the</strong> sub-soil"<br />

0.79 to 16"35% ín rhe rop<br />

Table 21. Degree <strong>of</strong> chlorosis and<br />

Pl-soybeans as rel<strong>at</strong>ed plant characteristics <strong>of</strong>. L" aLbus and<br />

to soil pH and CaCOa content<br />

Pl-ant characteristics<br />

L" aLbus" cv. Kalí Chlorosis (f-S)*<br />

Ht. (cm) Pods/pl. Kali PI- soy "<br />

and<br />

and<br />

36-50<br />

42-55<br />

45-55<br />

L5-20<br />

20-30<br />

10-15<br />

L2-LB<br />

14-18<br />

J-+-ro<br />

L-J<br />

3-4<br />

L-¿<br />

Depth <strong>of</strong><br />

sample<br />

(cm)<br />

0-30<br />

30-50<br />

0-30<br />

30-50<br />

0-30<br />

30-50<br />

0-30<br />

30-50<br />

0-30<br />

30-50<br />

0-30<br />

30- 50<br />

Soil characteristícs<br />

pH<br />

8.0<br />

7.0<br />

7 "6<br />

7 "7<br />

7"4<br />

19<br />

CaCO r%<br />

(equivalents )<br />

1. 55<br />

4 "28<br />

n70<br />

4"00<br />

0"78<br />

3. 00<br />

L0.24<br />

10. 35<br />

10.59<br />

L2.57<br />

16"35<br />

Inlhere 1= green and 5 = severe chlorosis and/or de<strong>at</strong>h <strong>of</strong> <strong>the</strong> plant.<br />

Degree <strong>of</strong> chlorosís, prant height, and pods per plant all appeared<br />

be directly rel<strong>at</strong>ed to <strong>the</strong> levels <strong>of</strong> carbon<strong>at</strong>e (cacor) in <strong>the</strong> soil<br />

not to pH. These results ruere similar to those obtained by LaCroíx<br />

Lenz (L967) f.or <strong>the</strong> pr-soybean índic<strong>at</strong>or which <strong>the</strong>y grew in Ëhe same<br />

131


tesË area. $everal oth,er auth<strong>of</strong>s suggest a direct or perhaps causal<br />

role <strong>of</strong> carbon<strong>at</strong>es in lime-induced chlorosis (Harley and Lindner, 1945;<br />

I^Iadleigh and Brown, L952) " Ilutchenson (1968) suggesËed Ëh<strong>at</strong> carbon<strong>at</strong>es,<br />

whích would be in high concentraÈions in calcareous soils, could sup-<br />

press iron uptake, transloc<strong>at</strong>ion or activíty"<br />

We may <strong>the</strong>refore conclude tln<strong>at</strong> L. aLbus, as well as <strong>the</strong> o<strong>the</strong>r agrí-<br />

eulËural specíes, are adversely affecËed by soíl lime" However, it ís<br />

<strong>the</strong> least. susceptible and <strong>the</strong>refore may be betËer suited to <strong>Manitoba</strong><br />

where high line soils are quite co'non.<br />

Chlorosis in lupins was also observed <strong>at</strong> <strong>the</strong> Brandon Research St<strong>at</strong>íon<br />

r¿here -t. aLbus r cV. Neuland, and L. angust¿folius " cv. Uniharvest r¡Iere<br />

grovrn (Tsukamoto, L973) " Soil analyses from thís loc<strong>at</strong>ion indic<strong>at</strong>ed lor.r<br />

and medium CaCO, in <strong>the</strong> top and sub-soíl respectively, wiËh a pH = 7 "L"<br />

UniharvesË became chlorotic wiLhin Ëen days <strong>of</strong> emergence, however Neuland<br />

did noË display any visible chlorosis (Pl<strong>at</strong>e 30) " Iron chel<strong>at</strong>e r,ras applied<br />

without beneficial results" Magnesíum, zanc, and manganese sulf<strong>at</strong>es were<br />

applied when chlorosis was first observed, but only <strong>the</strong> l<strong>at</strong>ter temporarily<br />

corrected chlorosis, buË neerosis followed. .t" aLbus continued to growe<br />

flowered and set seed (Pl<strong>at</strong>e 31).<br />

Breedíng for lime tolerance may be a possible method to overcome<br />

this limít<strong>at</strong>ion" Koch (f968) found thaË variabílity for this characËer-<br />

isÈic exists within <strong>the</strong> genus and th<strong>at</strong> selectíon can be effectively<br />

achieved for lime tolerant índividuals using rooË acíd secretion and<br />

selective permeabilitv as selection crítería.<br />

r5¿


6. I DISEASES<br />

6.0 D I S E A S E S AND INSECT PESTS<br />

FUSARIUM I^IILT (Fzsarium spp.) was observed in most species tested<br />

Ln1972, and was particularly severe in tr. angusttfoLius and L" Luteus"<br />

Initial infection was via <strong>the</strong> root system from which this p<strong>at</strong>hogen<br />

was ísol<strong>at</strong>ed and identified" ThÍs p<strong>at</strong>hogen is soil borne and crops<br />

previously grown in <strong>the</strong> tesË areas vrere coilnon hosts <strong>of</strong> <strong>the</strong> wilt Fusaria<br />

(Armstrong and Armstrong" L964; Ialeimer, L944). Weímer (1941) suggested<br />

th<strong>at</strong> <strong>the</strong> coûmon strain producíng <strong>the</strong> wilt was F" oæAsporum, however,<br />

o<strong>the</strong>r species, which <strong>at</strong>Ëack many o<strong>the</strong>r crops, rnay be ínvolved, such as<br />

F. auerzaceum, F. redoLens and /. solani" Csuti (L962) found many specf-es<br />

<strong>of</strong> Fusarír,un associ<strong>at</strong>ed with <strong>the</strong> wilt <strong>of</strong> lupins" but suggesËed thaË .E"<br />

oæAsporan was always <strong>the</strong> first invader"<br />

Symptorns on <strong>the</strong> root syst.em r./ere usually a dry rot, with lesions<br />

ranging from sÈrar¿-colored Ëo a dark red (Pl<strong>at</strong>e 32). As <strong>the</strong> disease<br />

progressed., dwarfing, yellowing and r¿ilting <strong>of</strong> <strong>the</strong> above ground portions<br />

were characteristic. Blighting <strong>of</strong> seedlings, followed by quick deaLh<br />

occurred from early infecËíon. Infection <strong>of</strong> older plants resulËed in<br />

severe yellowing, wiltíng" and poor seed set"<br />

Infected plants I4rere prone to secondary infecÈion by p<strong>at</strong>hogens such<br />

as mildews (Pl<strong>at</strong>e 33) "<br />

In 1973" <strong>the</strong> incidence and severity <strong>of</strong> Fusarial infection was low,<br />

but was most, prevalent in L" arryust¿foLius, and occurred much l<strong>at</strong>er than<br />

ín 1972. A newly acquired accession <strong>of</strong> tr. angust¿foLius, cv. Maresa,<br />

developed wí1t <strong>at</strong> flowering v¡hich resulted ín L00% loss <strong>of</strong> a 75 square


meter area" Nearbv lines <strong>of</strong> L. Luteus and tr. albus did not become in-<br />

fected.<br />

Seed tre<strong>at</strong>menÈ wíth Captan or mercurials did not seen to be effec-<br />

tive in controlling Fusarial wilt" O<strong>the</strong>r chemical seed ËreaÈmenËs have<br />

had lirnited success since <strong>the</strong> quanËity <strong>of</strong> chemical applied to <strong>the</strong> seed<br />

co<strong>at</strong> is sma1l and iË soon sloughs <strong>of</strong>f and cannot be expected to protect<br />

<strong>the</strong> plant for any length <strong>of</strong> time from <strong>the</strong> soil inhabiting Fusarírrn<br />

species (I^Ieimer f952b) Crop rot<strong>at</strong>ion may <strong>the</strong>refore provide <strong>the</strong> only<br />

source <strong>of</strong> control, although it may not be rzery effective since <strong>the</strong> p<strong>at</strong>ho-<br />

gen is very widespread and persisËenÈ.<br />

"Damping-<strong>of</strong>f" <strong>of</strong> seedlings caused by PhythiLtn spp., and Anthracnose<br />

(GLonerelLa cingul<strong>at</strong>a) were <strong>the</strong> only o<strong>the</strong>r fungal diseases observed<br />

(Pl<strong>at</strong>e 34).<br />

The simi-larity <strong>of</strong> synrptoms caused by dífferent agenËs or conditions<br />

are sometimes confusíng" The wilting, yellowing and stunting caused by<br />

lime-chlorosis, Fusarium Inlilt, and virus infection are similar. In some<br />

localized cases, a severe wilting and discoloring <strong>of</strong> lupins was observed<br />

where lime was noË inducing chlorosís and p<strong>at</strong>hogens could not be iso-<br />

l<strong>at</strong>ed from <strong>the</strong> root. Damage to <strong>the</strong> roots by insects or nem<strong>at</strong>odes was<br />

noË observed" In <strong>the</strong>se cases srilting vras <strong>at</strong>tributed to viral ínfection"<br />

VIRUS DISEASES were observed on tr. anqust¿foLius on1v. InfecLion<br />

occurred before and after flowering ir b"; nlz ana Lgn;" Plants<br />

affected by wh<strong>at</strong> was thoughË Ëo be a virus had leaflets which curled<br />

down and back towards <strong>the</strong>ir lor^rer surface giving an appearance <strong>of</strong> a<br />

partly cupped hand (Pl<strong>at</strong>e 35) . The foliage was typically yellol¡r-green<br />

and <strong>the</strong> plants developed a Large number <strong>of</strong> small leaflets frorn axillary<br />

736


uds. However, o<strong>the</strong>r plants had leaflets cupped upwards and purplish-<br />

red color<strong>at</strong>ion ín addition to <strong>the</strong> yellow-green. I,treimer (1950) reporËed<br />

both <strong>the</strong>se symptoûs and <strong>at</strong>tributed <strong>the</strong>m to virus infection, but did noÈ<br />

identify <strong>the</strong> p<strong>at</strong>hogen"<br />

some stems observed had brown streaks near Ëhe apex, and <strong>the</strong> new<br />

growth became lopsided" This eventually resulted in a "shepherds crook"<br />

(Pl<strong>at</strong>e 36). This type <strong>of</strong> infection before flowering resulted in <strong>the</strong><br />

rapid de<strong>at</strong>h <strong>of</strong> <strong>the</strong> plant, whereas infection after flowering resulted ín<br />

<strong>the</strong> blackening <strong>of</strong> Ëhe pods whích failed to fill"<br />

6.2 INSECT PESTS<br />

BLISTER BEETLE infest<strong>at</strong>íon T¡ras rninor ín 1972" Caragana Blister<br />

Beetles (Epicanta subgLabna, Fall) r.rere first observed feeding on <strong>the</strong><br />

foliage shortly after <strong>the</strong> plants had flowered. Mal<strong>at</strong>híone applied as a<br />

foliar spray r^las not effectíve in controlling <strong>the</strong> beetles, buË Guthione<br />

}TAS .<br />

In 1973, infest<strong>at</strong>ion occurred prior to floweríng <strong>at</strong> all test sites.<br />

The darnage \{as so severe <strong>at</strong> Carberry and Steinbach Ëh<strong>at</strong> iË was <strong>the</strong> main<br />

factor contributing to <strong>the</strong> failure <strong>of</strong> <strong>the</strong>se tests" The beeË1e was again<br />

identified as <strong>the</strong> Caragana Blister Beetlen however, ano<strong>the</strong>r larger beetle<br />

was observed, and identified as <strong>the</strong> Nuttall Blíster Beetle (Lytta nut-<br />

tnLL¿¿" S"y). Infest<strong>at</strong>ion by <strong>the</strong> l<strong>at</strong>ter was so severe <strong>at</strong> some locaËions<br />

th<strong>at</strong> beeË1e populaËi-ons T¡rere approxim<strong>at</strong>ed as being as high as 200 per<br />

square meter. Feeding \¡Ias preferenËially on <strong>the</strong> young, succulent flower<br />

buds which left only <strong>the</strong> stems and leaves standíng (Pl<strong>at</strong>e 37). Serious<br />

damage <strong>of</strong> this n<strong>at</strong>ure l¡as also observed <strong>at</strong> <strong>the</strong> Brandon Research St<strong>at</strong>ion<br />

138


and Mariapolis, where migraËíon <strong>of</strong> <strong>the</strong> beeËIes into <strong>the</strong> lupins rìras so<br />

íntense thaË three applíc<strong>at</strong>Íons <strong>of</strong> Seven, as a folíar spray were required<br />

for effective control (Tsukamoto " 1973).<br />

Guthione was applied <strong>at</strong> leasË once to all loc<strong>at</strong>ions and up Ëo four<br />

times aË some loc<strong>at</strong>ions to control <strong>the</strong> Nuttall Blíster Beetle. The<br />

Caragana Beetle was usually controlled Íminedi<strong>at</strong>ely by Guthíone, however<br />

<strong>the</strong> Nuttall Beetle seemed to be more resistant to this insecticide.<br />

O<strong>the</strong>r insects r¡ere observed on lupins, but did not cause apprecíable<br />

damage. Thríps (FranklineLLa spp.) were quite conmon in L972, and were<br />

observed feeding on <strong>the</strong> pollen <strong>of</strong> all species.<br />

Defoli<strong>at</strong>ion <strong>of</strong> a few isol<strong>at</strong>ed plants <strong>at</strong> various test sítes was<br />

caused by webworms (Loæostege stícticaLis and L. si-milaLís) " Heavy in-<br />

fesË<strong>at</strong>ion occurred <strong>at</strong> sprague on tr. albus, where entire plots had <strong>the</strong><br />

characËeristic webbing on <strong>the</strong> foliage.<br />

RooT KNOT caused by nem<strong>at</strong>odes (MeLoidogane spp. ) was observed on a<br />

few ísol<strong>at</strong>ed plants in L972 and 1973. The planËs infected r,¡ere somewhaË<br />

yellow and stunted and had characteristic galls on <strong>the</strong> tap root (Pl<strong>at</strong>e<br />

38). These differ from Ëhe nodules formed by <strong>the</strong> N-fixing Rhizobia in<br />

Ëh<strong>at</strong> <strong>the</strong>y are part <strong>of</strong> <strong>the</strong> root tíssue and cannot be detached as nodules<br />

can.<br />

740


7"0 C O N C L U S I O N<br />

Fourty different lupin species comprised <strong>of</strong>. 449 lines r¡rere ínitially<br />

evalu<strong>at</strong>ed, <strong>of</strong> which five species r¿ere deemed as having potential" These<br />

were tr" aLbus, L" angust¿folì-uso L" Luteus, L" mutabiLis" and L. cosentini.<br />

The first three <strong>of</strong> Ëhese were planted in replic<strong>at</strong>ed yield trials <strong>at</strong> seven<br />

loc<strong>at</strong>íons in <strong>Manitoba</strong>, and were shown to be extremely variable in <strong>the</strong>ir<br />

yielding ability, both within and betv¡een species.<br />

The average highest yield (maxímum cultivar yíeld aË each locaËion)<br />

for L. aLbuso L. angust¿foLi,us, and L" Luteus was 30.8, lB.7 and 13.6<br />

qu/ha respectively, as compared to 24.2 qu/ha for <strong>the</strong> fababean check.<br />

Cultivars <strong>of</strong>. L" albus r¡rere consistently <strong>the</strong> highest yielders; with its<br />

potentíal being fur<strong>the</strong>r exhibited aË I^Iinnipeg in 1-973 by cv. Reuscher,<br />

which yíelded 51"3 qu/ha as compared to 44"9 qu/ha for <strong>the</strong> fababean check.<br />

A símilar trend r¿as shoqm to exist in <strong>the</strong> single entry nursery yield<br />

tríals where tr. albus was significantly higher yieldíng Ëhan .L" aytgust¿-<br />

folius and.L. Luteus v¡íth val-ues 697", 557" and 397" <strong>of</strong> <strong>the</strong> fababean check<br />

respectively. L" rmltabiLis and L. eosentini both had exËremely low yields<br />

<strong>of</strong> L7, or less <strong>of</strong> <strong>the</strong> fababean check.<br />

On a seed yield basis, it may be concluded th<strong>at</strong> Z. albus has <strong>the</strong><br />

gre<strong>at</strong>est potential under <strong>the</strong> condítions sampled. Lupin and fababean yields<br />

seemed to be rel<strong>at</strong>ed to moisture conditions, and in some insËances <strong>the</strong><br />

former proved Ëo be more drought Èolerant.<br />

Many limitaËions to production r¿ere encounËered. These included<br />

severe weed and BlisËer Beetle infest<strong>at</strong>ions, and adverse reactioris to<br />

soíl lime. These singly or in combin<strong>at</strong>ion resulted in <strong>the</strong> loss <strong>of</strong> four<br />

replicaËed and four síngle enËry yield Ëria1s ín L972 and L973.


Weed and insect control can be <strong>at</strong>Ëained with pesticides, however,<br />

<strong>the</strong> chlorosis th<strong>at</strong> r¡as shown to result from soil liue could impose serious<br />

resËrictions on Ëhe cultivaËion <strong>of</strong> this crop in <strong>Manitoba</strong>"<br />

It was shown th<strong>at</strong> all lupin species T¡rere sensitive Ëo líme-índuced<br />

chlorosis, in <strong>the</strong> followíng diníníshing order <strong>of</strong> susceptibí1ity: tr" Luteus"<br />

L. angusl;ifoLi.us" L. mutabiLis, and L. aLbus. Sínce <strong>the</strong> laËter was <strong>the</strong><br />

least suscepËible, iË ís probably best adapted to Èhe majority <strong>of</strong> soil<br />

conditions in <strong>Manitoba</strong>" However, <strong>the</strong> o<strong>the</strong>r species should not be dís-<br />

counted since <strong>the</strong>re does exist a considerable area in <strong>Manitoba</strong> th<strong>at</strong> is<br />

very 1orø in soil 1ime"<br />

The study also showed Ëh<strong>at</strong> lupins are extrenely high in proteín, but<br />

are varLable between, and to a lesser extent r¡rithin species " L. rru.tabíLis<br />

al:d L. Luteus had <strong>the</strong> highest average proËein contents <strong>of</strong> 49,L% and 44"47"<br />

respectively" Next, in order <strong>of</strong> magnitude r"rere tr. albus" L. angustifolius,<br />

and L. cosentdni <strong>at</strong> 35"97"" 35"5"/" and 35.4% respectively, as compared to<br />

28.2% for <strong>the</strong> fababean check. The above protein values multíplied by <strong>the</strong><br />

average replic<strong>at</strong>ed test yields f.or L. aLbus, L. angustifolius ar.d L. Lul;eus<br />

(a11 cultivars, all loc<strong>at</strong>ions) results in proËein yields <strong>of</strong> L207",80% and<br />

68% oÍ. <strong>the</strong> fababean check respectívely.<br />

tr{ith respect to amino acid composítion, Iupins have twice <strong>the</strong> lysine<br />

conÈenL <strong>of</strong> whe<strong>at</strong>, but somewh<strong>at</strong> less than fababeans. Methionine conËenË Ís<br />

sinilar to fababeans, both having half th<strong>at</strong> found in whe<strong>at</strong>. Lupins vary ín<br />

<strong>the</strong> proportion <strong>of</strong> seed co<strong>at</strong>e and fíbre and oil conËenË; but energy content<br />

<strong>of</strong> all <strong>the</strong> lupin species were similar and approxim<strong>at</strong>ed th<strong>at</strong> <strong>of</strong> fababeans.<br />

Seed size and yield were shown Ëo be positively correlaËed" The<br />

large seed síze <strong>of</strong>. L" albtæ contributed to its high yields relaËive Ëo<br />

<strong>the</strong> o<strong>the</strong>r species, and is Ëherefore a desírab1e characterisËíc. However,<br />

743


it renders this species urore difficult Ëo handle" rn ËhÍs respect, tr.<br />

angustifolius ar.'d L. Luteus have a more desírable seed size, but are<br />

raËher low yielding. This characteristic r¡ras shown to be variable, and<br />

selection for a smaller, rounder seed for L" albus may be beneficial,<br />

although íË would probably cause a reduction in yie1d.<br />

VariabiliËy in maËurity was also evidenË" In this respect L. angus-<br />

tífoLíus and L. Luteus are sufficiently early, but tr. aLbus ís marginal"<br />

Sw<strong>at</strong>hing oÍ. L. albus may prove to be beneficial in reducing its r<strong>at</strong>her<br />

Iengthy growing season requirement"<br />

O<strong>the</strong>r agronomic characteristics such as <strong>the</strong> height <strong>of</strong> pods above <strong>the</strong><br />

grounde stra\^/ strength and ease <strong>of</strong> threshing were shov¡n to be s<strong>at</strong>isfactory,<br />

more so in L. aLbus and L. angustifolius tlnan ín L" Luteus. The non-<br />

sh<strong>at</strong>tering characteristic <strong>of</strong> L. aLbus allows Ít to be left sËanding until<br />

full m<strong>at</strong>.urity and <strong>the</strong>n straight combinedo whereas <strong>the</strong> o<strong>the</strong>r species must<br />

be cut before sh<strong>at</strong>tering comnences, dried in <strong>the</strong> sw<strong>at</strong>h and <strong>the</strong>n threshed "<br />

Fusarium vuílt and root roË was partícularly devast<strong>at</strong>ing in tr. ayÌgus-<br />

tifoLius" and uuch less so in Ëhe oËher species. The incidence <strong>of</strong> o<strong>the</strong>r<br />

diseases was very low, and are not considered <strong>at</strong> Ëhis Ëime to be a pocen-<br />

Ëíal thre<strong>at</strong>"<br />

In conclusionu this study has shown t},:,<strong>at</strong> L" albus is <strong>the</strong> best adapted<br />

and <strong>the</strong> highest yíelding species Ëested. Its yíelds are equal to or<br />

gre<strong>at</strong>er than fababeans. It contains gre<strong>at</strong>er amounts <strong>of</strong> protein Ëhan<br />

fababeans" These in combin<strong>at</strong>íon result ín an average protein yLel:d 607"<br />

gre<strong>at</strong>er Ëhan fababeans. This proËein ís <strong>of</strong> acceptible qualíty, and com-<br />

bined with <strong>the</strong> oil content <strong>of</strong> Ëhe seed (crude oil = 9%) makes <strong>the</strong> seed<br />

crop a valuable source <strong>of</strong> protein and díetary energy.<br />

L44


Therefore we have a crop <strong>of</strong> enormous potential. One th<strong>at</strong> was exËen-<br />

sívely exploited in <strong>the</strong> past, dropped out <strong>of</strong> vogue, and ís once again<br />

gaining proruinance as a high protein crop in a world rn¡here demand for<br />

this commodity ís ever increasing. However, for iËs fu1l poËential to be<br />

realízed in <strong>the</strong> area tested, fur<strong>the</strong>r research inËo many areas <strong>of</strong> produc-<br />

tíon and utLlíz<strong>at</strong>lon are required.<br />

L45


APPENDTX A<br />

D<strong>at</strong>es <strong>of</strong> seeding and harvest, growing season precípitaËíon and occurrerice <strong>of</strong> frost<br />

Frost occurrence<br />

(rnon th )<br />

Precipit<strong>at</strong>ion (cm)<br />

lfay to September<br />

D<strong>at</strong>es <strong>of</strong><br />

Harvest<br />

SeedÍ.ng<br />

Year<br />

Loc<strong>at</strong>ion<br />

May, June<br />

16. B<br />

t.<br />

May 3<br />

Glenlea 7972<br />

May<br />

22.9<br />

+<br />

May 14<br />

?r<br />

24 "B<br />

**<br />

l{ay 2L<br />

U. <strong>of</strong> Man" -<br />

0ff-campus<br />

Morden - C.D.A. tl<br />

May, June<br />

35"8<br />

AprLL 27<br />

L973<br />

U. <strong>of</strong> Man. -<br />

n^-.-..^ ^i &^<br />

ueurP UÞ ÞI Lc<br />

May<br />

2I" 6<br />

Sept" 9<br />

May 3<br />

Carman<br />

May<br />

29.8<br />

:l*<br />

May lB<br />

Glenlea<br />

l"Iay L2<br />

tr<br />

May<br />

JO"l<br />

t(*<br />

Carberry<br />

Qonr. 11<br />

May 3<br />

tt<br />

May<br />

40" 3<br />

Manitou<br />

May, June, Sept.<br />

34 "7<br />

**<br />

l4ay B<br />

rt<br />

Neepawa<br />

13"3<br />

Sept. 15<br />

May 7<br />

rI<br />

May<br />

Sprague<br />

May, Sept.<br />

18.3<br />

IAay 16<br />

rr<br />

S teinbach<br />

each cultivar, <strong>the</strong>se are reported in Sectíon 3.1.<br />

x HarvesË daËes varied for<br />

Loc<strong>at</strong>ions not harvested.<br />

È.<br />

o\


A?PENDIX B<br />

Soil analysis, r<strong>at</strong>es and d<strong>at</strong>es <strong>of</strong> fertílízer applic<strong>at</strong>ion for test sites in L972 and 1973<br />

Fertilizer applic<strong>at</strong>ion<br />

(kelha) r"k<br />

DAIE N P<br />

pH<br />

Texture*<br />

0 to 6t' 6 to 20"<br />

CaCO, Content<br />

Year<br />

Loc<strong>at</strong>ion<br />

0<br />

clay<br />

Low<br />

V" low<br />

L97 2<br />

0<br />

00<br />

00<br />

7.2<br />

7"L<br />

cLay<br />

Med.<br />

Low<br />

tl<br />

Glenlea<br />

U. <strong>of</strong> <strong>Manitoba</strong><br />

0ff-campus<br />

0<br />

FSCL<br />

Med.<br />

V. low<br />

tl<br />

Morden, C.D"A"<br />

0<br />

00<br />

00<br />

7.2<br />

7"2<br />

cLay<br />

High<br />

V. low<br />

L97 3<br />

U, <strong>of</strong> <strong>Manitoba</strong><br />

Campus sit.e<br />

65<br />

50<br />

June 5<br />

6.5<br />

FSCL<br />

V " lov¡<br />

V" low<br />

r973<br />

Carman<br />

(s.e. 25-5-5)<br />

0<br />

0<br />

7"5<br />

clay<br />

Low<br />

V" low<br />

L973<br />

Glenlea<br />

U. <strong>of</strong> Manítoba<br />

qq<br />

45<br />

June 18<br />

o.¿<br />

LFS<br />

V. low<br />

V " 1or¿<br />

40<br />

32<br />

June 5<br />

7.5<br />

CL<br />

V. 1ow<br />

V. Iow<br />

0<br />

40<br />

32<br />

June 27<br />

6.9<br />

CL<br />

V. low<br />

V" low<br />

205<br />

70<br />

55<br />

l"I.ay 7<br />

6.4<br />

LS<br />

V. low<br />

V. low<br />

rB5<br />

60<br />

45<br />

June 5<br />

6.3<br />

LS<br />

V" low<br />

V. l-ow<br />

Carberry L973<br />

(s.w" 30-12-14)<br />

Manírou L973<br />

(s.e. 23-2-8)<br />

Neepawa L973<br />

(s"e"25-L5-L7)<br />

Sprague L973<br />

(s"e.13-1-13E)<br />

Steinbach L973<br />

(n.w.L5-4-78)<br />

Texture abbrevi<strong>at</strong>ions :<br />

ù<br />

CL = clay loam; LS = loamy sand; LFS = loamy fine sand; FSCL = fine sandy<br />

clay loam.<br />

ts<br />

s.<br />

!<br />

and hoed ín by hand"<br />

Fertilizer üias broadcast


APPENDIX C<br />

to<br />

Seed yield expressed as % <strong>of</strong> adjacent fababean checku proteín contenË (0.0"/, M.C.) and days<br />

flowering and m<strong>at</strong>urity for cultivars observed in <strong>the</strong> 1973 nurseries<br />

Days to<br />

Crude proteín, N x 6"25 (%)<br />

Seed yield, 7" <strong>of</strong> fababean check<br />

ÉÞ'<br />

oSoJ ô.d^drl<br />

'-{(üÐô0<br />

-<br />

tr${Êt-rd<br />

çF.rrdÊ<br />

yl GdO.qJ<br />

BcJtv)t<br />

ò0H<br />

.rl +J<br />

l-l .rl<br />

q)Ll<br />

+l<br />

b0<br />

o5c)<br />

Þ.do5<br />

'tri (ú lJ Õ0<br />

l¡F¡'ññ<br />

.ri trtrÊt{<br />

ñdÈ<br />

BCJEU)<br />

H V J TI<br />

F5<br />

Ê.(u<br />

Cult.<br />

no"<br />

Species/cultivar<br />

$<br />

0)<br />

FqE<br />

64 115<br />

29.6 + 0.6<br />

29 "B 27.6<br />

30.1 30.7<br />

100 100<br />

100 100<br />

Ví.cia faba<br />

Ackerperle<br />

62 L25<br />

62 126<br />

63 L25<br />

62 LzB<br />

s9 L24<br />

63 L26<br />

64 L26<br />

64 L2B<br />

65 LzB<br />

67 L27<br />

67 L25<br />

65 126<br />

33"6 + 1.0<br />

35.6 1.0<br />

34.6 L.7<br />

36"7 1.s<br />

36.2 1.3<br />

32"2 31.6<br />

34.4 33 "2<br />

31.6 31.0<br />

33" 6 34.2<br />

34. B 33" 4<br />

33"6 36"8<br />

37,0 38.0<br />

37 .2 38.6<br />

37 "6 4L.2<br />

36.2 40.2<br />

77 + 6<br />

gg Lg<br />

)/ /<br />

478<br />

838<br />

75+ 9<br />

97 t6<br />

98 L7<br />

44 11<br />

698<br />

86+10<br />

537<br />

81 13<br />

42 10<br />

70 3<br />

82 10<br />

56 11<br />

81 BB<br />

60 Lzl-<br />

60 68<br />

31 67<br />

64 9L<br />

63 100<br />

73 L42<br />

74 L4B<br />

28 73<br />

74 84<br />

70 106<br />

50 73<br />

7L 65<br />

28 7L<br />

72 74<br />

67 108<br />

36 BB<br />

57 81<br />

76 L42<br />

37 6L<br />

36 55<br />

77 101<br />

35.4 + L.2<br />

nr t<br />

-<br />

. .<br />

JO"r_ I.O<br />

33 .4 32.8<br />

35.4 3L"2<br />

37 .2 38.0<br />

39 .6 36.4<br />

35 .2 32.6<br />

37 "O 38.2<br />

38"0 39.8<br />

37.2 38"2<br />

37 "2 43"2<br />

38. B 39 "2<br />

39"6 40.4<br />

38" 0 4L.8<br />

3s" 6 39"6<br />

39"6 43"2<br />

37 "0 4L"2<br />

36.2 4L.2<br />

37 .0 4r.0<br />

77<br />

101<br />

B9<br />

/,1<br />

37 "2 0"4<br />

39 "L 1.3<br />

36. s L.4<br />

70<br />

60<br />

IJ<br />

BO<br />

29<br />

4B<br />

67 L28<br />

a-<br />

37.9 + I.L<br />

37.L I"6<br />

35.8 1.1<br />

OT L¿+<br />

65 L23<br />

70 125<br />

65 L24<br />

37 "6 2.L<br />

3s. 9 L.9<br />

J4. / l-"-L<br />

35.9 1.8<br />

36 "B 34. B<br />

33. B 34"6<br />

34.2 33"8<br />

35 "2 32.4<br />

31.0 34.6<br />

35 " 6 32.2<br />

34 "2 3L.4<br />

100<br />

43<br />

118<br />

Jb<br />

72<br />

B4<br />

52<br />

67<br />

4B<br />

70<br />

35<br />

60<br />

69<br />

49<br />

L. aLbus<br />

Sa<strong>at</strong>gut la<br />

Georgía-L425 2a<br />

Kierskijskoe" 3a<br />

Pfluges Ge1-a 4a<br />

Baily I 5a<br />

Italian cv. 6a<br />

Reuscher 7a<br />

S. Africa //255 Ba<br />

Kali 9a<br />

Neuland 10a<br />

Gyul<strong>at</strong>amyai 1la<br />

Algerian cv" L2a<br />

Zagrebska 13a<br />

USSR-305 Lha<br />

Blanca 15a<br />

S " AfrLca 1n244 I6a<br />

¡fsu-3,46-10 I7a<br />

ts<br />

À'


Appendix C - Continued<br />

Days to<br />

Crude protein, N x 6"25 (%)<br />

Seed yield, % <strong>of</strong>. fababean check<br />

Ò0<br />

oÞc)<br />

^-d^<br />

o90)<br />

+qo5-+l<br />

'FldÐô0<br />

ÊF'.idÊ<br />

Ê¡'{Él{d<br />

:'J -A .A È o)<br />

ö0H<br />

.ri .u<br />

trÞì<br />

$_t .rl<br />

oþ<br />

B5<br />

r{d<br />

frÐ<br />

+l<br />

HV¿<br />

'¡l $ .{J ò0<br />

ËË'F{d'<br />

Cult,<br />

no.<br />

Sp ecíes /cul tirzar<br />

Cd<br />

OJ<br />

ã<br />

HËHÈ<br />

!cocdo"<br />

EUtu)<br />

64 L24<br />

69 L24<br />

66 I22<br />

32"2 32.0<br />

36"2 3s"4<br />

36.0 34.6<br />

38.2 4I"2<br />

36"6 37 "2<br />

38.2 39 . 8<br />

71 60+ 6<br />

tt oo I<br />

83589<br />

83 70+ 5<br />

77 57 B<br />

92 70 10<br />

BB 60 T4<br />

63497<br />

110 79 + L6<br />

_ lL Ll<br />

+ö<br />

57<br />

50 58 +¿<br />

59 76 65<br />

52 s9 39<br />

60 79 49<br />

t-<br />

45 - 4+l<br />

42<br />

49 70<br />

50 78<br />

18a<br />

L9a<br />

2Oa<br />

L" aLbus<br />

MSU-2<br />

Ultra<br />

Gela<br />

127<br />

L25<br />

t23<br />

L22<br />

L27<br />

7T<br />

62<br />

64<br />

o¿<br />

67<br />

31. B 32"0<br />

35 .2 35.0<br />

32.8 32.0<br />

32.4 30.8<br />

31.0 32"2<br />

3s"2 34.8<br />

34 "8<br />

34.2 33. 3<br />

0.4 0.3<br />

37 "4 39 "2<br />

39.2 39"6<br />

36 " 6 41"2<br />

38.4<br />

36.8 42"2<br />

36. 8<br />

38"4<br />

58 43<br />

-57<br />

L25<br />

L2B<br />

6B<br />

65<br />

35.9 + 2.0<br />

36.4 0.3<br />

36.8 1.3<br />

34"6 + L.9<br />

37.3 2"0<br />

33. B L.7<br />

33" 9 L.7<br />

35.6 2"0<br />

35,6 + L.7<br />

36.6 - L"4<br />

-87<br />

7L<br />

54<br />

S. Ãf.ríea 1f257 2La<br />

Mich. 47-B 22a<br />

Gela 23a<br />

Gulzower 24a<br />

Ultra 25a<br />

Grecian cv. 26a<br />

Spanish cv. 27a<br />

37.4 40.1<br />

0.3 0"4<br />

2"8 5.0 3.2 4"4 2"3<br />

ss 75 s7 89 69<br />

Ci]LTIVAR MEAN<br />

CIILTIVAR SE<br />

3s "2 34 "B<br />

37 "2 36 "4<br />

37,2 36"2<br />

36 "6 36.0<br />

3s "4 34. B<br />

38"2 38.4<br />

37 .0 36. B<br />

3s.2 36 "6<br />

35 .0 36 .2<br />

3s.6 34.8<br />

3s.6 36"8<br />

37 "4 38.6<br />

36.0 3s .6<br />

36.6 37 "4<br />

3s" 0 37 "4<br />

42.4 42"4<br />

36.2 36.8<br />

36.6 36 "6<br />

34.0 37 .2<br />

35 "2 35.6<br />

57 55+16<br />

58 29 L2<br />

2r06<br />

180 89 33<br />

66458<br />

91 34 20<br />

L34 59 3s<br />

L69 78 32<br />

LL7 76 20<br />

L92 77 38<br />

95 52<br />

39 1s<br />

27 1<br />

95 38<br />

35 30<br />

25 1<br />

40 25<br />

74 36<br />

105 47<br />

47 28<br />

1B<br />

5<br />

It<br />

H À'<br />

70 115<br />

70 I77<br />

7B 118<br />

68 LL6<br />

67 115<br />

60 118<br />

oð r1ö<br />

o/ lI)<br />

65 TL7<br />

69 118<br />

35.6 + 0.4<br />

37.4 0"4<br />

36"3 0.3<br />

36.7 0"3<br />

35"7 0"5<br />

40.4 1" 0<br />

36.7 0 "2<br />

36.3 0"3<br />

3s.6 0.6<br />

35.3 0"2<br />

48<br />

19<br />

34<br />

34<br />

Jb<br />

43<br />

L. angust¿fol¿us<br />

Rancher 1b<br />

Uniwhite 2b<br />

Borre 3b<br />

Bríanskyj 4b<br />

Georgia PI 5b<br />

Las tor^¡ski 6b<br />

Roseus Semp. 7b<br />

Pfluge 8b<br />

S" Afrj-ca 11277 9b<br />

Giepie 10b


Appendíx C - Contínued<br />

Days to<br />

Crude protein, N x 6"25 (%)<br />

Seed yield, "/" ot fababean check<br />

ô0<br />

.r{ d> ¡J<br />

l-r .rl<br />

v)<br />

+l<br />

Õ0<br />

aJ 5 c.J<br />

'ñ<br />

CÊop (ú .lJ 00<br />

gF'r{d<br />

riHÊtl<br />

Ò0<br />

qJ<br />

Q)t{<br />

E5<br />

r-l cd<br />

hE<br />

TH<br />

'rl $<br />

ë.F<br />

HH<br />

:Fl o<br />

È(J<br />

Species/cultivar Cult.<br />

rro.<br />

d<br />

c)<br />

t<br />

:-l(!$È E()tv)<br />

118<br />

L20<br />

LL9<br />

LL9<br />

L20<br />

65<br />

69<br />

69<br />

69<br />

70<br />

1F<br />

Jt.¿ JJ"Z^<br />

36 "4 3s.2<br />

36 .8 36 "4<br />

37 "6 35"8<br />

3s "4 38.6<br />

?5R<br />

J4"4<br />

36.2<br />

35 .0<br />

J+" O<br />

53+23<br />

67-l4<br />

46 13<br />

9L 35<br />

59 18<br />

73+33<br />

77 22<br />

50 15<br />

72 29<br />

44 2r<br />

46+20<br />

65 L7<br />

479<br />

289<br />

L6 10<br />

93+49<br />

47 24<br />

50 L4<br />

50 13<br />

56 L7<br />

18 T2O<br />

60 69<br />

29 76<br />

s7 193<br />

40 103<br />

2B L69<br />

47 L28<br />

47 s4<br />

29 151<br />

5 100<br />

39 38<br />

36 104<br />

20 58<br />

39 78<br />

27 73<br />

42 53<br />

27 82<br />

13 84<br />

28 78<br />

23 47<br />

28 25<br />

25 100<br />

42 66<br />

648<br />

1lb<br />

rzb<br />

13b<br />

l4b<br />

15b<br />

L. angusl;ifol.tus<br />

S. Africa-7]Oz<br />

S. Africa (Sreb.)<br />

S. Africa 60/206<br />

S. Africa i/123<br />

7002 l,[hite<br />

119<br />

119<br />

118<br />

L20<br />

L20<br />

64<br />

66<br />

67<br />

72<br />

72<br />

35"0 35.8 + 0.4<br />

3s"B 35"5 0.4<br />

36"0 36 "4 0"2<br />

35.4 36.0 0.5<br />

36. 0 36 "2 0.8<br />

35.6 35"2 + 0.7<br />

37 "4 36"9 - 0.6<br />

3s.0 34"9 0.4<br />

3s.4 3s. B 0.4<br />

34"6 3s.2 0.2<br />

36.0 34.5 + L.2<br />

36. B 36 "2 0.4<br />

36 "8 37 "2 0.5<br />

37.8 38.1 0.9<br />

36 "7 39.7 1" 1<br />

35.0 35.7 + 0.6<br />

35"8 36"3 0.4<br />

3s.6 36.8<br />

38"0 37.0<br />

36 . 0 34.2<br />

37 "0 36" 0<br />

32 "B<br />

35 .0<br />

34.2<br />

34. B<br />

34"8<br />

16b<br />

L7b<br />

18b<br />

19b<br />

20b<br />

L22<br />

Ll-7<br />

Lt9<br />

LL7<br />

119<br />

73<br />

69<br />

69<br />

70<br />

o¿<br />

35"6 35"7<br />

30.6 37 "2<br />

37 .2 36 "6<br />

38. B 36 .0<br />

40.2 35 "4<br />

-/,11<br />

- 35"2<br />

- 36.8<br />

38.6 37.4<br />

38. B 36" 0<br />

- 37.4<br />

J4"¿<br />

3s .0<br />

37 "2<br />

39. 0<br />

106<br />

B3<br />

25<br />

25<br />

36<br />

25<br />

51<br />

JU<br />

33<br />

9<br />

2Lb<br />

22b<br />

23b<br />

24b<br />

2sb<br />

Jak.<br />

MSU-103<br />

Elita<br />

Radd<strong>at</strong>a Hufen"<br />

S. Africa iÉ104<br />

N.Z. I^Ihite<br />

Uniwhíte<br />

Ronrnel<br />

PI X Borre<br />

Tifton-M3048<br />

115<br />

L2T<br />

113<br />

LL4<br />

118<br />

66<br />

7T<br />

/. -7<br />

37"0 37.7 0"3<br />

37 .B 0.8<br />

36 "4<br />

36.t+<br />

37 "6<br />

40.0<br />

35.2<br />

L9L<br />

94<br />

82<br />

B5<br />

86<br />

46<br />

31<br />

50<br />

32<br />

53<br />

53<br />

57<br />

37.0 36.5 0.6<br />

L6<br />

I4<br />

27<br />

29<br />

26b<br />

27b<br />

2Bb<br />

29b<br />

30b<br />

Borre<br />

Uníharvest<br />

Unícrop<br />

Schlotenitzer<br />

70<br />

F<br />

(t¡


Appendix C - Continued<br />

Days to<br />

Crude protein, N x 6.25 (7")<br />

Seed yield, 7. <strong>of</strong>. f.ababean check<br />

Ò0<br />

.¡i É>, .lJ<br />

14<br />

v<br />

dÁtu)<br />

ò0<br />

0)<br />

.rl<br />

Ò0<br />

grÞqJ<br />

ô.dÀ<br />

THV¿<br />

¡-t<br />

otl<br />

B5<br />

F{d<br />

'rl rl<br />

ñ<br />

o<br />

AJ<br />

ã<br />

'lg+¡oo<br />

-^Hrl _ _rl<br />

trl 'F{ (O C<br />

q+rÒo<br />

,A<br />

!Ëlõ<br />

.Q o. q)<br />

(Jtv)t<br />

.Fl<br />

al<br />

Cult.<br />

no.<br />

Species/cultivar<br />

IF'NQ t1}.{trl-l<br />

:rla(dÈ<br />

BC¡ËU)<br />

B<br />

68 LL7<br />

35.6 35.2<br />

37 .6<br />

': '11 :<br />

s8467<br />

4L307<br />

99 68 15<br />

34<br />

2L<br />

70 118<br />

67 LL7<br />

68 lls<br />

36.r + 0.7<br />

36.4 0" 3<br />

35.7 0.6<br />

3s.7 0. 6<br />

35"6<br />

35 "4<br />

36. B<br />

JO<br />

33<br />

50<br />

TJ<br />

t.a<br />

r6<br />

55<br />

3lb<br />

32b**<br />

33b<br />

34b<br />

35b<br />

L. arryustifoliu.s<br />

MSU-104<br />

Neven<br />

Ritchey<br />

Blanco<br />

Gulzower Susse"<br />

37 "O 36.6<br />

36"6 3s.0<br />

35,2 35"0<br />

32"3 35.9<br />

0.2 0.2<br />

36 "L 37 "2<br />

0.3 0.5<br />

28 63 34 96 s5<br />

2"3 4.9 2.7 8.9 3.7<br />

CULTIVAR MEAN<br />

CULTIVAR SE<br />

76 119<br />

7L 118<br />

72 LL9<br />

73 1r5<br />

7A 119<br />

68 LLg<br />

76 LzT<br />

7L 118<br />

68 LL7<br />

74 1r9<br />

77 12]-<br />

74 LLg<br />

74 LLg<br />

73 119<br />

75 116<br />

46"4 + L.4<br />

43.9 L"2<br />

46.9 1.5<br />

4s.9 0"6<br />

44.8 0 "2<br />

44.8 0" 4<br />

4s.6 L.4<br />

44.5 0"4<br />

45"0 0.6<br />

47 "I 0.3<br />

43 "8 4s.0<br />

4L.4 4r"6<br />

44"0 44.2<br />

43. B 4s.2<br />

44"4 44.6<br />

46.O s0"B<br />

4s.4 47 "0<br />

48.0 5L.2<br />

46.6 47.0<br />

4s.0 45.2<br />

36 47+12<br />

69 29 14<br />

26L45<br />

ro7 s1 20<br />

64 26 13<br />

32 17+ 7<br />

35238<br />

82 30 18<br />

82 36 L6<br />

37239<br />

52 28+ 9<br />

L04 43 22<br />

111 42 24<br />

L23 85 48<br />

111 52 20<br />

21 75 32<br />

13259<br />

6204<br />

20 49 26<br />

12227<br />

42s10<br />

837L2<br />

L225L<br />

17 33 13<br />

2c<br />

3c<br />

4c<br />

5c<br />

L. Luteus<br />

WC]-KO III<br />

Minn. 34L75<br />

Palvo<br />

Martini<br />

Russian cv.<br />

4s .4 43.6<br />

48 "2 42.8<br />

43.6 44 "0<br />

43 " 4 44.8<br />

47.4 46"6<br />

44.4 44.2<br />

43 "3 4s "2<br />

43.2 42.8<br />

43.0 44 "0<br />

42"2 4L"6<br />

,t<br />

+¿+ " ö 4J.4<br />

48"6 48.2<br />

4s"4 4s.0<br />

46 "4 4s "2<br />

6c<br />

7-<br />

46.4 48.0<br />

64011<br />

45"7 + 0"7<br />

45 "O 0.7<br />

44.2 0.6<br />

44.s 0.6<br />

43.0 0.6<br />

46 "B 47 .4<br />

45.0 46 "6<br />

45 "2 45 "4<br />

46"0 44.8<br />

43 "4 44 "B<br />

24<br />

2L<br />

3<br />

22<br />

27<br />

72 26<br />

s42<br />

25 26<br />

20 75<br />

25 43<br />

Bc<br />

9c<br />

10c<br />

1lc<br />

L2c<br />

13c<br />

L4c<br />

15c<br />

Macul<strong>at</strong>us Zhuk.<br />

Leucospermus Korn.<br />

Sam<br />

Popular<br />

I^Iildfornen<br />

S. African PI<br />

Ekspress<br />

Sam<br />

Lima<br />

Bas<br />

H<br />

Ln<br />

ts


Appendix C - Continued<br />

Days to<br />

Crude protein, N x 6"25 ("/")<br />

Seed yíeld, % <strong>of</strong> fababean check<br />

119<br />

119<br />

119<br />

119<br />

118<br />

33 + L2 43"4 44"8 4I.6 42.0 43.0 + 0.6 74<br />

48 27 44.6 47.8 43.6 43. O 44.8 O.g 72<br />

40 ls 47"0 46"2 43"2 44.8 45"3 O.s 7s<br />

58 37 43"4 4s.8 42.8 42.6 43.7 0.6 73<br />

48 25 41"4 42.4 39.6 40.2 4o.g 0.s 77<br />

L24<br />

r21<br />

119<br />

118<br />

LL6<br />

L79<br />

Ll-9<br />

119<br />

1?tL<br />

1L4<br />

3? 1 13 4s"4 4s"2 44.6 4s"o 45.r + 0.2 78<br />

32 74 47.0 48.0 39.6 42"2 44.2 L.7 75<br />

29 10 44 "6 46"8 42.8 43"6 44.4 0. B 76<br />

53 34 4s"6 _ 44.6 44.0 44.7 0" s 74<br />

4t 2L 46.0 _ 44.0 43.8 44.6 0.6 70<br />

49 + 35 45"4 43.0 43.0 44.2 + O.g 73<br />

¿4 ó 45"2 _ 44"0 44.2 44.6 0"4 74<br />

s7 40 47"2 - 4s"B 46"0 46"3 0"s 66<br />

L6 4 4s"3 - 43"2 42"0 43.5 0.8 7r<br />

49 4L 46"2 - 47.2 46"4 43.3 1"3 B0<br />

L. Lu.teu.s<br />

Gorzowski 16c 14 43 14 62<br />

Po¡qorski I7c 11 52 24 105<br />

As 1Bc 10 54 21 76<br />

Poprrlar 19c ZL 34 B 168<br />

Sulfa 2Oc 27 30 11 I2Z<br />

Gulzower 2Lc 10 57 25 65<br />

Ba1Èen yelryj 22c 18 31 g 7L<br />

Ekspress 23c 18 4I L2 49<br />

l^Ieiko II 24c 24 - 16 I2L<br />

BarpÍne 25c 32 2L gB<br />

Bipal 26c 4 - 25 119<br />

Italian wild. 27c B - 32 33<br />

Schwako 2Bc 24 - g 136<br />

Florida Comm. Z9c Lg B 2L<br />

Portugese wild. 30c 6 - 11 130<br />

118<br />

T20<br />

37 + 23 44"8 - æ"8 44"6 44.4 + 0.2 84<br />

- 48"6 78<br />

38 4s "6 46 "s 43 "3 44 "O<br />

3.5 0.3 0"4 0" 3 0.3<br />

,r_<br />

9<br />

Moroccan wild. 31c 6<br />

Csillagfurt 32e 5<br />

CULTIVAR MEAN L4 40 15 85<br />

cuLTrvAR SE L.4 3"2 1"5 8.1<br />

35"2 - 67<br />

36"L 67<br />

1111<br />

11<br />

L. cosentini<br />

Gladstones-C846 lc<br />

Gladstones-CB48 2d<br />

H<br />

L¡r<br />

t\)


Appendíx C - Continued<br />

Days to<br />

crude proÈeín, N x 6.25 (%)<br />

Seed yíe1d, 7" <strong>of</strong> Íababean check<br />

trl<br />

>'<br />

.Ë<br />

al<br />

w(,<br />

oÞoJ<br />

J-I<br />

ò0<br />

aJ50)<br />

.tri HU)<br />

$ +J è0<br />

'r-l (d .u ò0<br />

ÊÉ'rlotr<br />

ñ.d^ñrr<br />

ll<br />

¡-t<br />

o<br />

F<br />

ÊË'rld<br />

El-tÊLl<br />

qþÊr{õ<br />

Species /cultivar<br />

d<br />

5-ASp.<br />

F(Jtcn<br />

:Fl (U t! Ê. C)<br />

EC)E(A=<br />

L46<br />

L47<br />

79<br />

75<br />

48"6<br />

49"6<br />

2L 1<br />

1e<br />

2e<br />

L" mutabiLts<br />

Peruvian cv"<br />

Argentine cv"<br />

:l Days to flower and maÈurity takerr <strong>at</strong> Èhe trIinnipeg loc<strong>at</strong>ion on1y.<br />

Cultivar Nerzen (3Zt¡ diseased aÈ all locaLions before flowering.<br />

ù.r.<br />

Cultivars <strong>of</strong> tr. cosentiní severely di-seased.


APPENDIX<br />

rrials ín L973<br />

four loc<strong>at</strong>ions)<br />

observed in <strong>the</strong> nursery<br />

and standard errors for<br />

<strong>of</strong> lupin cultivars<br />

presenËed as means<br />

Agronomic characteris tics<br />

(Quantit<strong>at</strong>ive characteris tics<br />

Iieíght<br />

(cm)<br />

**?y<br />

Lodging<br />

(o-s)<br />

Sh<strong>at</strong>tering<br />

ry^^+<br />

IEÞL<br />

,-+<br />

WL"<br />

(kelhr)<br />

Thousand<br />

seed r,rrt " (g)<br />

Colour<br />

Cult "<br />

no"<br />

Species /cultivar<br />

99+<br />

ò<br />

90 + 0"9<br />

440 +<br />

Vicda faba<br />

Ackerperle<br />

+9 11<br />

NS<br />

ll<br />

10 1<br />

70<br />

82<br />

6s<br />

56<br />

72<br />

0<br />

0<br />

2<br />

0<br />

0<br />

tt<br />

n<br />

79 + 0.2<br />

BO 0.7<br />

81 0.6<br />

78 0.3<br />

+9<br />

33<br />

L4<br />

448<br />

379<br />

282<br />

410<br />

333<br />

P<br />

P<br />

P<br />

w<br />

P<br />

1a<br />

2a<br />

3a<br />

4a<br />

5a<br />

I+<br />

+8<br />

-10<br />

10<br />

rf<br />

B0 0"6<br />

IB<br />

74<br />

11<br />

2 .)<br />

+7<br />

11<br />

6<br />

I<br />

+15<br />

t25<br />

4L5<br />

432<br />

433<br />

305<br />

32t<br />

P<br />

6a<br />

-t^<br />

P<br />

I,{<br />

B<br />

11<br />

77<br />

50<br />

70<br />

3<br />

0<br />

2<br />

79<br />

79<br />

BO<br />

82<br />

B2<br />

üI<br />

Ba<br />

9a<br />

10a<br />

L. albus<br />

Sa<strong>at</strong>gut<br />

Russian ev.<br />

Kierskijskoe.<br />

Pfluges Gela<br />

Baily I<br />

ILalian cv.<br />

Reuscher<br />

S, Africa i1255<br />

Kali<br />

Neuland<br />

+9<br />

13<br />

10<br />

L7<br />

l1<br />

75<br />

69<br />

79<br />

63<br />

A\<br />

2<br />

2<br />

0<br />

0<br />

0<br />

+ 0.0<br />

0"4<br />

0.4<br />

0"0<br />

u"4<br />

+ 0.4<br />

0.2<br />

0"4<br />

0.5<br />

0.5<br />

79<br />

79<br />

B1<br />

ó¿<br />

79<br />

36L<br />

428<br />

428<br />

373<br />

336<br />

I{<br />

P<br />

11a<br />

L2a<br />

l3a<br />

4<br />

L2<br />

I^I<br />

P<br />

I^I<br />

L+d<br />

L5a<br />

Gyultamyai<br />

Algerían crz"<br />

Zagrebska<br />

USSR - 305<br />

Blanca<br />

Gm(grey mottled), trIm(white nottled) "<br />

I^I(white), P(pink), B(brown),<br />

abbrevi<strong>at</strong>ions:<br />

Seed color<br />

S = sh<strong>at</strong>tering.<br />

RS = reduced sh<strong>at</strong>teringo and<br />

non-sh<strong>at</strong>ter i-ng "<br />

tr{here NS =<br />

-r- -L<br />

= severe lodgíng"<br />

no lodging and 5<br />

llhere 0 =<br />

H<br />

\¡<br />

À.


Appendix D - ConËínued<br />

Helght<br />

( cur)<br />

ùù J-<br />

Lodging<br />

(0-s)<br />

?k*<br />

Sh<strong>at</strong>Ëering<br />

Tes t lrt "<br />

(ke/hl)<br />

Thousand<br />

seed wt. (g)<br />

Colour<br />

Cult.<br />

no.<br />

Species /culËivar<br />

75+L5<br />

62 12<br />

668<br />

77 18<br />

63 L4<br />

78+13<br />

71 18<br />

51 8<br />

62 13<br />

69 13<br />

70+20<br />

81 5<br />

2<br />

0<br />

0<br />

0<br />

n<br />

B0 + 0.3<br />

79 0"7<br />

78 0.3<br />

79 0.0<br />

80 0" 3<br />

442 + I0<br />

37L L4<br />

4L9 10<br />

424 B<br />

399 29<br />

P<br />

I^I<br />

I,J<br />

I^I<br />

I^I<br />

2<br />

2<br />

0<br />

0<br />

J<br />

79 + O"5<br />

81 0.7<br />

79 L"4<br />

B0 0.5<br />

B0 0.3<br />

436 + 22<br />

4L3 B<br />

364 27<br />

3BB 15<br />

338 13<br />

P<br />

P<br />

I{<br />

P<br />

w<br />

U<br />

4<br />

NS<br />

It<br />

B0 + 0.7<br />

79 2.L<br />

79.8 + 0.2<br />

418 + 19<br />

440 35<br />

P<br />

P<br />

L. aLbus<br />

S. Al.rLca 11244 L6a<br />

MSU-3, 46-10 r7a<br />

MSU-2 18a<br />

Ultra L9a<br />

Gela ZOa<br />

S. Ãfri-ca 11257 2\a<br />

Mích. 47-B 22a<br />

Gela 23a<br />

Gulzower 24a<br />

Ultra 25a<br />

Grecian cv" 26a<br />

Spanish cv. 27a<br />

68 + 2.L<br />

387 + 16<br />

CULTIVAR MEAN + SE<br />

angusl;ifoLius<br />

Rancher lb<br />

Uniwhite 2h<br />

Borre 3b<br />

Brianskyj 4b<br />

Georgía PI 5b<br />

Lastowski 6b<br />

Roseus Semp. 7b<br />

Pfluge 8b<br />

S. Ãfríca 11277 9b<br />

Giepie 10b<br />

L,<br />

J<br />

5<br />

6<br />

z<br />

3<br />

ò<br />

RS<br />

79 + 0.5<br />

B0 0.0<br />

85 (1 1oc" )<br />

84 0.4<br />

80 0.4<br />

9<br />

4<br />

5<br />

6<br />

2<br />

224 +<br />

2:.0<br />

18l<br />

228<br />

¿+o<br />

W<br />

I^I<br />

Gn<br />

S<br />

q<br />

Crrn<br />

6<br />

69+<br />

62<br />

68<br />

OJ<br />

66<br />

42+<br />

t)<br />

69<br />

U<br />

2<br />

2<br />

RS<br />

Gm<br />

0<br />

-<br />

¿<br />

4<br />

2<br />

S<br />

84 + 0"5<br />

80 0"3<br />

79 0"2<br />

B2 0"6<br />

81 0.5<br />

5<br />

161 +<br />

239<br />

228<br />

225<br />

226<br />

Gm<br />

Gm<br />

5<br />

J<br />

6<br />

4<br />

S<br />

S<br />

RS<br />

6<br />

B<br />

4<br />

4<br />

Gm<br />

Gm<br />

BO<br />

69<br />

S<br />

UItr<br />

ts<br />

LTI<br />

LJì


Appendix D - Contínued<br />

Height<br />

(cur)<br />

-L S -r-<br />

Lodging<br />

(o-5)<br />

Sh<strong>at</strong>teríng<br />

Test wt.<br />

(kelrrr)<br />

Colour Thousand<br />

seed wt. (e)<br />

Cult.<br />

no.<br />

Species /cultivar<br />

{<br />

RS<br />

S<br />

238 +<br />

2L6<br />

2L8<br />

207<br />

230<br />

Gm<br />

Gm<br />

5<br />

4<br />

6<br />

5<br />

0<br />

0<br />

0<br />

ò<br />

t<br />

J<br />

2<br />

RS<br />

80 + 0.0<br />

82 _ O.B<br />

83 0.9<br />

82 0.4<br />

81 0" 6<br />

5<br />

5<br />

I\ï<br />

!ü<br />

II<br />

6<br />

4<br />

68+<br />

oo<br />

6I<br />

80<br />

65<br />

75+<br />

o4<br />

73<br />

76<br />

2<br />

U<br />

S<br />

RS<br />

86 + 0.3<br />

81 1.9<br />

B0 0.2<br />

81 r"2<br />

80 0"4<br />

6<br />

13<br />

5<br />

4<br />

4<br />

193 +<br />

L99<br />

2L8<br />

204<br />

2L2<br />

I^I<br />

!I<br />

Gm<br />

w<br />

Gm<br />

w<br />

w<br />

Gm<br />

Gm<br />

fto<br />

L. LLTLgUÞ UUJvUUULù<br />

S. Africa-7002 llb<br />

S. Afriea (Steb.) I2b<br />

S. Afríca 60/206 13b<br />

S " Africa /É123 L4b<br />

7002 I^rhite 15b<br />

Jak. 16b<br />

MSU-103 L7b<br />

Elita 1Bb<br />

Radd<strong>at</strong>Ëa Hufen. 19b<br />

S. Afríca /i104 20b<br />

N.Z. WhiLe 21b<br />

Ilniwhíte 22b<br />

Rornmel 23b<br />

Pf X Borre 24b<br />

Tifton-M3048 25b<br />

L+<br />

2<br />

2<br />

2<br />

S<br />

S<br />

5<br />

I<br />

5<br />

S<br />

S<br />

RS<br />

S<br />

ò<br />

6<br />

L2<br />

7L+<br />

82<br />

73<br />

70<br />

49<br />

2<br />

J<br />

0<br />

0<br />

0<br />

82 + 0.8<br />

B0 0.2<br />

82 0"7<br />

79 0"7<br />

85 1.1<br />

83 + 0"5<br />

80 0"3<br />

B0 0.5<br />

79 0.4<br />

83 0"5<br />

t3 t o_'<br />

L95 + L4<br />

235 9<br />

220 6<br />

223 9<br />

S<br />

4<br />

5<br />

t+'r<br />

B4<br />

2<br />

L99 L4<br />

-<br />

J<br />

S<br />

S<br />

NS<br />

I\ù<br />

ò<br />

I^I<br />

Gm<br />

5<br />

L2<br />

J<br />

}T<br />

Borre<br />

Uníharvest<br />

Unicrop<br />

6<br />

6<br />

5l<br />

7I<br />

2<br />

ô<br />

0<br />

I^I<br />

Gm<br />

26b<br />

27b<br />

2Bb<br />

29b<br />

30b<br />

5<br />

0<br />

R<br />

Schlotení tzer .<br />

MSU-104 31b<br />

;<br />

J<br />

5<br />

85 0"4<br />

79 0"7<br />

81 0.0<br />

2r7 +<br />

226 -<br />

209<br />

229<br />

224<br />

':' t<br />

226<br />

2L9<br />

220<br />

Gm<br />

Gm<br />

Gm<br />

B2<br />

77<br />

74<br />

+<br />

4<br />

aL<br />

ò<br />

NS<br />

1/,<br />

I^I<br />

Gm<br />

Neven 32b<br />

Ritchey 33b<br />

Blanco 34b<br />

Gulzower Susse. 35b<br />

69 + L.2<br />

B1 + 0.3<br />

2I7 +<br />

CTILTIVAR MEAN + SE<br />

Ltl<br />

o'\


Appendix D - Continued<br />

Ileight<br />

(cm)<br />

&&¿<br />

Lodging<br />

(0-s)<br />

Àuú<br />

Sh<strong>at</strong>Ëering<br />

Test wt.<br />

(kelhl)<br />

Colour Thousand<br />

seed wt, (g)<br />

Cu1t"<br />

Tlo.<br />

Species /cultivar<br />

w<br />

1<br />

38+<br />

4B<br />

54<br />

NS<br />

RS<br />

6<br />

B<br />

0<br />

2<br />

5<br />

5<br />

S<br />

J<br />

5<br />

9<br />

J<br />

155 +<br />

163<br />

L46<br />

L69<br />

Ls4<br />

I^I<br />

w<br />

trim<br />

a<br />

J<br />

S<br />

s<br />

tr^Im<br />

5<br />

10<br />

S<br />

S<br />

RS<br />

85 + 0.2<br />

85 0.3<br />

83 1.1<br />

85 0.0<br />

85 0"2<br />

83 + 1.9<br />

B5 0"7<br />

85 0.0<br />

85 0"0<br />

85 0.0<br />

6<br />

6<br />

158 +<br />

159<br />

L57<br />

155<br />

L57<br />

I^Im<br />

}I<br />

Wm<br />

6<br />

6<br />

4s<br />

38+<br />

59<br />

52<br />

46<br />

45<br />

0<br />

5<br />

5<br />

2<br />

2<br />

RS<br />

S<br />

.J<br />

5<br />

I<br />

InIm<br />

Wm<br />

5 1<br />

2<br />

L<br />

5<br />

RS<br />

RS<br />

RS<br />

RS<br />

RS<br />

84 + L"2<br />

85 - 0.2<br />

84 0"4<br />

84 0.3<br />

87 0"2<br />

5<br />

I<br />

6<br />

6<br />

4<br />

150 +<br />

r49<br />

I6L<br />

L79<br />

L34<br />

w<br />

tr^im<br />

L{m<br />

B<br />

6<br />

1<br />

+<br />

5<br />

L" Luteus<br />

I^Ieiko III lc<br />

Minn. 34L75 2c<br />

Palvo 3c<br />

Martini 4c<br />

Russian cv. 5c<br />

Macul<strong>at</strong>us Z]nulrc" 6c<br />

Leucospermus Korm. 7c<br />

Sam Bc<br />

Popular 9c<br />

Ilildf ormen 10c<br />

S. Afrícan PI llc<br />

Ekspress LZc<br />

Sam 13c<br />

Lima L4e<br />

Bas 15c<br />

Gorzowskí L6c<br />

Pomorskí L7c<br />

As l8c<br />

Popular l9c<br />

Sulfa 2Oc<br />

Gulzower ZLc<br />

BalËen yeltyj 22c<br />

Ekspress 23c<br />

trrleiko II 24c<br />

Barpine 25c<br />

I^i<br />

RS<br />

RS<br />

RS<br />

RS<br />

NS<br />

85 + 0.2<br />

84 0.2<br />

84 0.3<br />

84 0" 3<br />

86 0"2<br />

L66 +<br />

156<br />

l-64<br />

L57<br />

131<br />

I^I<br />

5<br />

J<br />

5<br />

46-<br />

54<br />

51<br />

56<br />

55+<br />

54<br />

3B<br />

49<br />

5<br />

+<br />

2<br />

2<br />

2<br />

2<br />

I^I<br />

tr'Im<br />

6<br />

5<br />

3<br />

Wm<br />

Wm<br />

a<br />

)L<br />

50+<br />

4J<br />

45<br />

+t<br />

s4<br />

J<br />

0<br />

0<br />

NS<br />

85 + 0.0<br />

85 0"0<br />

83 0.3<br />

83 0"3<br />

Br 0"3<br />

3<br />

2<br />

6<br />

10<br />

5<br />

6<br />

L54 +<br />

160<br />

T52<br />

L47<br />

168<br />

!¡<br />

!t<br />

I,Im<br />

RS<br />

NS<br />

2<br />

2<br />

,t<br />

I^/<br />

S<br />

I,rïm<br />

ts<br />

Lt¡<br />

!


Appendix D - Continued<br />

Ileight<br />

(c*)<br />

.L& ^L<br />

Lodging<br />

(0-s)<br />

ShaËtering<br />

Test wt.<br />

(kelhr)<br />

Thousand<br />

seed wt. (g)<br />

Colour<br />

Cult "<br />

no.<br />

Species /cultivar<br />

47+ 7<br />

5rB<br />

469<br />

646<br />

s93<br />

49+ B<br />

54 (1 loc.<br />

4<br />

ò<br />

L45+ 3<br />

150 7<br />

r4B 5<br />

L65 4<br />

153 2<br />

L49+ 9<br />

138 Tl loc. )<br />

Gm<br />

S<br />

NS<br />

Inim<br />

3<br />

5<br />

5<br />

RS<br />

S<br />

2<br />

J<br />

ò<br />

NS<br />

84 + 0.4<br />

85 0.3<br />

86 0.4<br />

85 0.3<br />

85 0.0<br />

t] t o_o<br />

tr^Im<br />

I,Im<br />

I,Im<br />

!I<br />

Wm<br />

26c<br />

27c<br />

28c<br />

29c<br />

30c<br />

3lc<br />

32c<br />

49 + L.3<br />

85 + 0"2<br />

154 + 1"3<br />

SE<br />

L" Luteus<br />

Bipal<br />

Italian wild.<br />

Schwako<br />

Florida Comm.<br />

PorÈugese wild.<br />

Moroccan wild"<br />

Csillagfurt<br />

CULTIVAR MEAN +<br />

Gm<br />

Gm<br />

1d<br />

2d<br />

L. eosentini<br />

CBL6<br />

CB4B<br />

109<br />

109<br />

NS<br />

NS<br />

79<br />

79<br />

aa1 LL I<br />

L92<br />

L" mutabilis (I loc<strong>at</strong>ion)<br />

Peruvían cv. le<br />

Argentine cv. 2e<br />

ts<br />

Lt¡


BIBLIOGRAPHY<br />

Armstrong" G" M.; Armstrong, J. K. L964. Lupínus species - common hosts<br />

for wilt fusaria from alfalfa, beans, cassia, cor¡rpea, lupine<br />

and U.S. coËton. Phytop<strong>at</strong>h. 54: L232-5.<br />

Atabekova, A. I" 1958. The dehiscence <strong>of</strong> pods in Ëhe genus Lupinus<br />

(Tourn.) L. 8u11. Moscow Society for N<strong>at</strong>ural Research. 63,<br />

1: 89"<br />

Bacon, G. H. 1948" In: Tothill, J.D. Agriculture in Sudan" London"<br />

Oxford <strong>University</strong> Press.<br />

Bailey, L. H. 1963. Manual <strong>of</strong> Cultiv<strong>at</strong>ed Plants. New York: The Mac-<br />

Míllan Company.<br />

Barbacki, S. 1960. Certain physiological properties <strong>of</strong> Lupinus Luteus,<br />

L. aLbus and tr" avryusti-foLius observed on <strong>the</strong> basis <strong>of</strong> w<strong>at</strong>err<strong>at</strong>ioning<br />

trials. Genet" pol" 1: f03-18"<br />

1: 61-r01.<br />

; Jankowski, S.; L<strong>at</strong>awiec, L. 1955. The biological and technical<br />

-jKapsa,E"L960.Variabí1ityinLupinusaLbus.Genet.pol.<br />

properties <strong>of</strong> early white lupine. 8u11. L'Acadamie Polanaise<br />

Des Sciences. 3: 2f3-18.<br />

_;<br />

Mikolajczyk, J.; Pxzybylska, J.; Sulinowski, S" L962. A Compar<strong>at</strong>ive<br />

study <strong>of</strong> bitter and non-bitter varÍetíes <strong>of</strong> lupin.<br />

Genet" pol. 3: 6L-86.<br />

Barker, D. J " I97I" Unpublished d<strong>at</strong>a, Dept. <strong>of</strong> Agric., I¡I. Australía"<br />

Benetts, H. W. L957. Lupin poisoníng <strong>of</strong> sheep in I¡Iestern Australia.<br />

Aust. vet. J. 277-82"<br />

Berezhnaya, Z" G. L968" Herbicidal trials in r.rhite lupin (I'ttpinzts aLbus)<br />

crops. Dok1. Tskha. 136: 97-101"<br />

Blanc-Aicard, D.; Drouineau, G. 1955. Capacity for calcium s<strong>at</strong>ur<strong>at</strong>ion<br />

<strong>of</strong> grape stock and resistance to calcium chlorosis. Compt. rend"<br />

24Lz I6L4-L676. Chern" Abstr. 50: 5105h.<br />

BLaszczak, W" L963a" Studies on narror¡i leaf disease <strong>of</strong> yellow lupin ín<br />

tr^Iest Poland. Roczm. wvz. Szk. roln" Poznan. 15 : 3-78 "<br />

, 1863b. Seed transmission <strong>of</strong> narrowleavedness <strong>of</strong> yellow<br />

lupin (NYL). Genet. pol " 4z 65-77.<br />

Boltom, I,{. L967 " Poultry nutrition. Bu1l . L74 Minist" Agric. Fish. Fd,<br />

London: H"M.S.O.


Brewer" H. E.; Butt, J. L. 1950. Hygroscopic equilibrium and variability<br />

<strong>of</strong> n<strong>at</strong>urally and artifícially dried blue lupine seeds. Plant<br />

Physiol. 252 245-68.<br />

Brown, J" C" 1953" The effecË <strong>of</strong> tl-re dorninance <strong>of</strong> a metabolic system<br />

requíring iron or copper on <strong>the</strong> development <strong>of</strong> lime-induced<br />

chlorosis" Plant Physiol. 28: 495-502"<br />

; Holmes, R. S" L956. Iron supply and interacting factors re-<br />

Í<strong>at</strong>ed to lime-induced chlorosis. Soil Scí. 82: 507-L9.<br />

; specht, A. w. 1955. Iron. The liníting element<br />

in a chlorosis. Part II" Plant Physiol" 302 457-62.<br />

Brummund, M. 1962. Results from <strong>the</strong> introduction <strong>of</strong> lupin defoli<strong>at</strong>ion<br />

in <strong>the</strong> year 1961 and conclusions for L962. Dtsch. Landw. 13:<br />

388-91. Field Crop Abstr. L6= 2I9.<br />

Burns, R. E. f959. Effect <strong>of</strong> acid scarificaËion on lupine seed imperiability"<br />

Plant Physiol" 34: 107-108.<br />

Buzmakov, V. V. L966. Use <strong>of</strong> ammonir-un nitr<strong>at</strong>e, ammonia liquor and sodiun<br />

chloride for <strong>the</strong> defol-i<strong>at</strong>ion <strong>of</strong> lupins" Khirniya selrKhoz. 4:<br />

49-5r.<br />

Cheremísov, B" M.; Merzlyakova, N. M"; Lifshits, A" G"; Isaev, A. P";<br />

Grigoreva, M. S.; Zaslonkin, V. P" L969' The effectíveness<br />

<strong>of</strong> nítrogin applic<strong>at</strong>ion under pea, soybeans, and o<strong>the</strong>r legr:minous<br />

crops in <strong>the</strong> Orel region" Agrokhimiya, 7 z B2-7. Field<br />

Crop Abstr. 23= 489.<br />

Chesalin, G. A.; Spivak, L. 1968. The applicaËíon <strong>of</strong> Aresín and Herban<br />

to fodder lupins. Khirniya selrKhoz. 6: 29-3L"<br />

CorbeËt, M" K. 1958. A virus disease <strong>of</strong> lupines caused by bean yellow<br />

mosaic virus" Phytop<strong>at</strong>h" 48: 86-91.<br />

Cornut, J. 1635. Canadensium plantarr¡n hisËoria" Paris. Simonem le<br />

Moyne. Cited by Gladstones' J" S" L970, in Lupins as Crop<br />

Plants. Fíeld Crop Abstr" 23: L23-L48"<br />

Csutl, E. 1962" The wílt dísease <strong>of</strong> yellow lupine in Hungary. Crop<br />

Productíon, Budapest. 11: 83-BB.<br />

Dammann, C" L902. The care <strong>of</strong> lívestock" Vol" 3u Berlin. Cited by<br />

405, U"S. Dept" <strong>of</strong><br />

Marshn Clauson, and Marsh " 19L6. Bu1l "<br />

Agríc "<br />

Darlíngton, C. D.; Wylíe, A. P" 1955" Chromosome Atlas <strong>of</strong> Flowering<br />

Plants. London: George Allen and Unwin Ltd.<br />

DeCandollê, A. L959. Origin <strong>of</strong> Cultiv<strong>at</strong>ed Plants. Reprint <strong>of</strong> <strong>the</strong> second<br />

edition. 1866. New York: Hafner.<br />

160


Decker, P. 1943. The effect <strong>of</strong> depth <strong>of</strong> planting on <strong>the</strong> emergence and<br />

survival <strong>of</strong> blue lupine" Phytop<strong>at</strong>h. 36: 479-80.<br />

1948. Anthracnose <strong>of</strong> blue lupine is seed-borne" Phytop<strong>at</strong>h.<br />

38: 568-9.<br />

Dorosinskíi, L. M. L969. The quantíty <strong>of</strong> niËrogen fixed by bacteria<br />

líving in che root nodules <strong>of</strong> lucerne and lupins. Agrokem"<br />

Talaj t. 18: 3-10.<br />

Dunn, D" B, Lg5g" Breeding sysÈems existíng in <strong>the</strong> genus Lupinus (Fabaceae).<br />

Proc. 9th Int. Bot. Congr., Montreal. 2: 99-100.<br />

; Gillett, J. M. L966. The Lupines <strong>of</strong> Canada and Alaska.<br />

Ot.Ëawa: Monograph No" 2. Queen's Printer and Controller <strong>of</strong><br />

S t<strong>at</strong>ionary.<br />

Edwardson" J. R.; CorbeÈt, M. K. L959. Lupines for forage production.<br />

Proc. Soil Sci. Soc. Tla. 19: LL9-32.<br />

; !üells, H" D.; Forbes, I. L963" Blue lupines for grazrng<br />

and for soíl ímprovement in Florida. Circ. 5-146 Fla"<br />

agric" Exp" Stns.5 Gainsville"<br />

Erdman, L. E. 1953. Legume inocul<strong>at</strong>ion. u" s"D.A. tr'rmsl Bull. 2003"<br />

Evans, L. E. 1960. R<strong>at</strong>ions for livestock. 8u11. 48. Minist" Agric"<br />

London: H.M.S.O"<br />

Florence, InI . G. S. 1965. The influence <strong>of</strong> varying proportions <strong>of</strong> plant<br />

and animal protein supplements on <strong>the</strong> growth <strong>of</strong> porkers. S.<br />

Afr. J. agric. Sci' 8: 661-72.<br />

Forbes, I.i Beck, E. Iil" L954" A rapid biological technique for screeníng<br />

blue lupine popul<strong>at</strong>íons for low-alkaloid plants. Ag. J. 46:<br />

528-29 "<br />

; Burton, G. i,{"; i^Iells,<br />

blue lupine" Crop Sci"<br />

H" D. L964. Registr<strong>at</strong>ion <strong>of</strong> Blanco<br />

4z 448.<br />

; Leuck, D. B"; Edwardson, J. R.; Burns, R. E. L97L. N<strong>at</strong>ural<br />

cross-pollin<strong>at</strong>ion in blue lupíne (Lupinus angustifoLíus L. ) in<br />

Georgía and Florida" Crop Sci. 11: 851-54'<br />

; Marchant, W. H"; Southwell, B. L.; I^Iells, H. D" 1961" Blue<br />

lupines for cool-season pastuTes and cover clops in Georgia.<br />

Leaflet N"S, 27" Georgia Coastal Plain Experiment St<strong>at</strong>ion.<br />

U. <strong>of</strong> Georgia, College <strong>of</strong> AgrículËure"<br />

; I,Iells, H" D " L96L. Inherítance <strong>of</strong> resistance to anthracnose<br />

in blue lupines, Lupinus angustifoLl:us<br />

L. Crop Sci. 1: L39-4L.<br />

l- o,L


Forbes, I.; Wells, H" D. L962. The iodine-potassiun-íodide test for <strong>the</strong><br />

determin<strong>at</strong>ion <strong>of</strong> s\¡reetness or biËterness in seeds <strong>of</strong> blue lupíne.<br />

L<strong>at</strong>pinus angust¿foLius L" U"S.D.A., Crops Research Division, CR-<br />

59-62.<br />

-t<br />

.;<br />

L963. rmproved blue lupines coming for <strong>the</strong><br />

soutneast. neprinted from Nov.-Dec., L963, Crops and soíls.<br />

; _"<br />

L966. Breedíng blue lupine forage varieties<br />

for <strong>the</strong> South-EasLern United St<strong>at</strong>es. Proc. 10th inË. Grassld"<br />

congr., Helsinki, L966, 708-lf.<br />

-"<br />

l__...:26.8.Hardands<strong>of</strong>tseedednessinbluelupíne'<br />

r¡"us<br />

tion. CroP Sci. B: L95-7.<br />

angus'D1,loL1,us L.: inheritance and phenotype classifíca-<br />

; Edwardson, J. R. L957. ResisËance to gray leafspor<br />

¿'isease in blue lupins. Pl. Dis. Reptr. 4L: 1037-8'<br />

1964' A second independent gene<br />

;<br />

itr- t nã-t.rp itr rn d i Li r rtr g r. s i s Ë an c e to S t emph y L i wn s o L ani .<br />

" " "<br />

Phytop<strong>at</strong>h " 542 54-5.<br />

; _---; 1965" Inheritance <strong>of</strong> resistto<br />

=<br />

StemphyLr,un solani in blue lupine endemíc to Portugal.<br />

Phytop<strong>at</strong>h. ^n"e -i 55: 627-8.<br />

ForinËain, R. D. L973" Pulses -' and leguninous Crops" In: Documents and<br />

Discussion, Crop ProducËs, N<strong>at</strong>ional Agric. 0utlook Conference<br />

L973, Canberra, A.C.T" 4: K-31 to K-37"<br />

Gardiner, M. R. L964. Recent advances in lupinosis research. J" Agríc.<br />

I^1. Aust " 5: 890-7 .<br />

1965" Mineral metabolism in sheep lupinosis" 1. Iron and<br />

cobalt. J. comp. P<strong>at</strong>h" 752 397-408.<br />

" L966. Fungus índuced toxicity in lupinosís" Br' vet' J'<br />

L22? 508-16.<br />

" L967" The role <strong>of</strong> copper in <strong>the</strong> p<strong>at</strong>hogenesis <strong>of</strong> subacute<br />

ãã--chronic lupinosis <strong>of</strong> sheep. Aust. vet" J " 243-48'<br />

; Nottle, M" C. 1960. Lupinosis ín sheep -- labor<strong>at</strong>ory<br />

studies" J" Agric. W. Aust. l: 102f-5.<br />

Gladstones, J. S. f958. The n<strong>at</strong>ttraLized and cultiv<strong>at</strong>ed species oÍ. Ia,Lpinus<br />

(Leguminosae) recorded for l^Iestern Australia" J. Proc" R- Soc"<br />

I¡Ies t. Aust . 4Lz 29-33"<br />

. L959. The potential <strong>of</strong> lupins as crop and forage planËs<br />

in l^Iestern AustraLía" Emp. J" exp. Agric. 272 333-42'<br />

762


Gladstones, J. S" L962" The mineral composition <strong>of</strong> lupins " 2. A comparison<br />

<strong>of</strong> <strong>the</strong> copper, manganese, molybdenum, and cobalt contents <strong>of</strong><br />

lupins and o<strong>the</strong>r specíes <strong>at</strong> <strong>of</strong>ie site. AusÈ. J" exp. Agric. Anim.<br />

Husb. 2: 2L3-20.<br />

. L967. SelecËion for economic characËers in Lupinus<br />

angustùfoLius and L. digit<strong>at</strong>us" 1. Non-sh<strong>at</strong>tering pods. Aust"<br />

J. exp" Agric" Anim. Husb. 7z 360-6"<br />

" I969a" Lupins in WesÈern Australia. 2. Cultiv<strong>at</strong>ion<br />

meÈhods" J. Agric. I^I" AusË" 10: 389-93.<br />

methods<br />

I969b. Lupins in I,Iestern Australia.<br />

-- continued. J. Agríc" l^I. Aust. 10:<br />

. L970a" Lupíns in I^Iestern Australia.<br />

and feeding value <strong>of</strong> <strong>the</strong> seeds. J. Agric. ItI"<br />

123-48.<br />

f970b. Lupins as crop planËs" Fíeld<br />

3. Cultiv<strong>at</strong>íon<br />

477-84.<br />

4. Composition<br />

Aust" 1l: 26-32.<br />

Crop Abstr. 23t<br />

. L97Oc. Lupíns in Western Australia . 6. Their Place<br />

in <strong>the</strong> farming sysLeno, economics, and future market Prospects.<br />

J" Agríc. I^I" Aust. 11: 276-78"<br />

; Drover, D. P " L962. The mineral composítion <strong>of</strong> lupins.<br />

1. A survey <strong>of</strong> <strong>the</strong> copper, molybdenum, and manganese conËents<br />

<strong>of</strong> lupíns in <strong>the</strong> south l¡est <strong>of</strong> Australia. Aust. J- exp" Agric"<br />

Aním. -t1usb. 2: 46-53"<br />

; Hillu G, D " 1969. Selectíon for economíc characters<br />

tn zupínus angust¿foLì-us an:d L. digitakLs. 2. Time <strong>of</strong> floweríng.<br />

Aust. J. exp, Agric" An-im" Ilusb. 9: 2L3-20.<br />

Leach, B. J,; Drover, D. P.; Asher, C. J" L964" Field<br />

s tudies on <strong>the</strong> potassium and phosphorus nutrítion <strong>of</strong> lupins.<br />

AusË" J.<br />

exp. Agric. Aním" Husb" 4z 158-64.<br />

crop and<br />

427-46 "<br />

Longeragan, J. F. L967 " Mineral elements in temper<strong>at</strong>e<br />

pasture plants. 1. Zínc" Aust. J" agric. Res. lB:<br />

Gordon, N" C"; Henderson, J. H. M. 1951. The alkaloid content <strong>of</strong> Lupinus<br />

arryust¿folius and its toxiciËy to small labor<strong>at</strong>ory animals" J"<br />

agric" Sci" 4Lz 141-5 "<br />

Graham, P" H" L964. The applic<strong>at</strong>ion <strong>of</strong> computer Lechniques to <strong>the</strong> taxonomy<br />

<strong>of</strong> <strong>the</strong> root nodule bactería <strong>of</strong> legunes. J" gen. l"licrobiol.<br />

35: 5LI-7 .<br />

Gukova, M" M. 1968. Effect <strong>of</strong> potassir-m on niËrogen uptake by legumes.<br />

Lev. timiryazev. selrkhoz. Akac" 3: 100-9. Field Crop Abstr.<br />

2L: LL71,.<br />

163


Gukova, M" M.; Lavrova, E" K"; Ageeva, V" s" L97L" UXjIíz<strong>at</strong>|on <strong>of</strong> N<br />

from aËmosphere and fertiLízers by 1upin. ReferaËirmyi Zhurnal.<br />

55: 589. Field CroP Abstr" 252 483"<br />

Gustafss<strong>of</strong>r, A.; Gadd, I. 1'965. Mut<strong>at</strong>ions and crop improvement. 2. The<br />

genus Lupinus (Legurnínosae). Hereditas 53: 15-39'<br />

Hackbarth, J. f953. Breeding and cultiv<strong>at</strong>ion <strong>of</strong> <strong>the</strong> white lupín. MitË.<br />

Landw. 68: 453-5. 479-8L"<br />

. 1955. The ecological requirements <strong>of</strong> lupin species. L.<br />

Cultiv<strong>at</strong>ion for seed production" Z" PflZucht" 35t L49-78-<br />

; Husfeld, B" L939 "<br />

The Sweet Lupin' Berlin: Paul Parey"<br />

Mehle, A"; Sengbush, R. von. 1935. The soil requirements<br />

-; <strong>of</strong> <strong>the</strong> lupin. ImporÈance <strong>of</strong> pH and <strong>of</strong> lime content, especially<br />

in <strong>the</strong> case <strong>of</strong> sl.Ieet lupins. Dtsch. landw" Pr" 56: 4.<br />

; Tro11" H" J" 1960" Cultiv<strong>at</strong>ion and Use <strong>of</strong> Sweet Lupíns.<br />

Frankfurt on Main: DLG-Verlag.<br />

Hanleru P. 1960. Eg_!gpang..<br />

31: L447.<br />

Wittenberg: A. Ziemsen" Herbage Abstr"<br />

Harley, C. P.; Lindner, R. C. L945" Observed responses <strong>of</strong> apple and pear<br />

trees to some irrig<strong>at</strong>ion w<strong>at</strong>ers <strong>of</strong> norÈh central l{ashington.<br />

Proc. Amer. Soc" HorË" Sci" 462 35-44.<br />

Henson, P. R.; Stephens, J. L. 1958" Lupins. Fmrs' Bull. 2114, U"S.<br />

Dep. Agric", I^Iashington.<br />

Hudson, A. I^I" L934. Practices in <strong>the</strong> use <strong>of</strong> blue lupin for feed, seed,<br />

and green manure. N.Z" J" Agric" 48. 346-5I"<br />

I{uges, H. D.; Henson, E. R" L965" Crop Production" New York: Macltillan<br />

ComPanY.<br />

Hutchenson, T. C. 1968. A physíological study <strong>of</strong> Teuez'iwn scov'odnia<br />

ecoËypes whieh differ in <strong>the</strong>ir susceptability to lime índuced<br />

chlorosis and lime deficíent chlorosis. Plant and Soil " 2Bz<br />

81-105.<br />

Jacobson, L.; OerËli, J" J. L956" The rel<strong>at</strong>ion between iron and chlorophyll<br />

contents in chlorotic sunflower leaves. Plant Physiol"<br />

31: 199-204.<br />

Japel, W. L967. Studies on <strong>the</strong> defoli<strong>at</strong>ion ín lupines and common vetch"<br />

Albrecht-Thaer-Arch. 11: 249-56. Fiel-d Crop Abstr. 20: 2501.<br />

Kaw<strong>at</strong>a, M.; Tsukijiura, Y. L957. Studies on <strong>the</strong> floweringn fruítíng, and<br />

germinaËion <strong>of</strong> lupin plants. 4" Effect <strong>of</strong> dríer "Desícan"<br />

sprayed <strong>at</strong> ripening stage on tíme <strong>of</strong> m<strong>at</strong>uriËy and germin<strong>at</strong>íon<br />

<strong>of</strong> seed. Ptoc. Crop. Sci. Soc" Japan. 26: L37. Field Crop<br />

Abst:: " 11: 1098,<br />

L64


Kazimierski, T. 1960" An interspecífic hybrÍd ín <strong>the</strong> genus Lupt'nus.<br />

(Lupi.rws albus L" x Lt'Lpinus jugosLauicus RazLm, et Now" ) "<br />

Genet. po1. 1: 3-60"<br />

Kelsey,<br />

1961" Tnterspecific hybridiz<strong>at</strong>ion <strong>of</strong> lupins. Genet.<br />

pol" 2z 9l-102"<br />

. L964a. Inheritance <strong>of</strong> certain characËers in <strong>the</strong> Lupùnus<br />

aLbus L. x L. graeeus Boiss. hybrid. GeneË. pol. 5: 309-25"<br />

. L964b. InËerspecific erossing in Ëhe Mediterranean and<br />

American lupin species. Wiss. Z. Karl-Marx-Univ. Lpz. 13:<br />

697-8.<br />

H. P.; Dayton, W. A. 1942" Standardized Plant Names-. Harrisburg,<br />

Pa": J. Horce McFarland ComPanY.<br />

Klages, K. H. I^I. 1930. Geographical disÈribution <strong>of</strong> variabílity in Ëhe<br />

yield <strong>of</strong> field crops in <strong>the</strong> st<strong>at</strong>es <strong>of</strong> <strong>the</strong> Mississippi valley.<br />

Ecol. 11: 293-306.<br />

" L934. Geographical distribution <strong>of</strong> varíabÍlity in <strong>the</strong><br />

ylelds <strong>of</strong> cereal crops in South Dakota. Ecol" 12: 334-345.<br />

Koch" B. L968" Lime tolerance <strong>of</strong> lupine wíth special respect to <strong>the</strong><br />

production <strong>of</strong> varieties for green-manuring calcareous sandsoils<br />

ín <strong>the</strong> area between <strong>the</strong> Danube and Tisza"Agrobotanika, l0: 267-<br />

8. Field Crop Abstr. 252 2LB9 "<br />

Kochman, J. 1957. Studies on <strong>the</strong> p<strong>at</strong>chiness <strong>of</strong> lupine stems caused by<br />

Phomopsis Leptostt'omifoTmis (xufrn) Bubak. Acta Agrobot" 6:<br />

1L7-43.<br />

Kolstov, A" S" L969. Chemical control <strong>of</strong> weeds in annual lupin. Trudy<br />

peru. sel'-khoz" Inst " 63: L26-36. Field Crop Abstr- 24:<br />

5038.<br />

Kretovich, v" L"; M<strong>at</strong>us, v" K.; Melik-sarkisyan, s. s" L972. Cytochromes<br />

and <strong>the</strong> intensity <strong>of</strong> respiraËion <strong>of</strong> bacteroids in lupín nodules.<br />

Fiziobogiya RasËenii. l-9z 1060-65. Field Crop Abstr. 25:"<br />

3719.<br />

Kubok, I. f965" The growth and developmenË <strong>of</strong> <strong>the</strong> Lupinus in <strong>the</strong> conditions<br />

<strong>of</strong> short arid a long day" Genet" pol" 6z L99-200"<br />

Kuhn, J. 1880. Ber. landw" Insr. Univ. Halle. 2z LL5-28" Cited by<br />

Marsh, Clauson and Marsh, 1916, Luplnes as poisonous plants"<br />

BuIl. 405, U.S. Dept" Agríc.<br />

LaCroíx, J. L" 1 Lenz, L. M. L967. The use <strong>of</strong> Pl-soybeans as an indíc<strong>at</strong>or<br />

plant for <strong>the</strong> selection <strong>of</strong> chlorosis resistanË horticulËural<br />

nlants" Hort. Sci. 2z LI4.<br />

L65


Laczlmska-Hulewiczovra, T. L954. The influence <strong>of</strong> external factors on<br />

<strong>the</strong> development <strong>of</strong> <strong>the</strong> lupín" 1, Influence <strong>of</strong> vernaliz<strong>at</strong>ion<br />

on <strong>the</strong> developmenË and sËructure <strong>of</strong> yíelds <strong>of</strong> various species<br />

and varieties <strong>of</strong> lupins. Rocz Nauk, roln. 692 LB9-242. Ilerb.<br />

Abstr . 252 579.<br />

Lamberts, H. L952. Resistance to mildew ín yellow lupins. Euphytica<br />

l: L99-200.<br />

. 1955a. Broadening <strong>the</strong> bases for <strong>the</strong> breeding <strong>of</strong> yellow<br />

svreet lupine" Euphytica 4: 97-L06.<br />

. 1955b. Growing lupins for seed. LandbVoorl, 12: 62-7 '<br />

Field Crop AbsÈr. B: 904"<br />

Lamzin, V. L966. Experiments in <strong>the</strong> use <strong>of</strong> herbicides in lupins. Zastrcll.<br />

Rust" 11: 22-3"<br />

Lange, J.; Künkeln K. L963. Chemical weed control in lupins grown for<br />

seed. Dtsch. Landw., Berl. L4z L-4.<br />

Lasota, T. 1964" Investig<strong>at</strong>ions on phosphorous metabolism <strong>of</strong> some fodder<br />

lupins. 3. The effect <strong>of</strong> top-dressing phosphorus applic<strong>at</strong>ion<br />

on <strong>the</strong> yield <strong>of</strong> fodder lupins. Rocz. Nauk. roln. 88: 855-68.<br />

Herb" Abstr. 35: 887.<br />

L<strong>at</strong>awiec, K" 1958. Investig<strong>at</strong>ions on electrophotomeËríc and fluorescence<br />

methods for determin<strong>at</strong>ion <strong>of</strong> alkaloids in <strong>the</strong> seeds <strong>of</strong> white<br />

lupine. Rocz" Nauk. roln. 79: 99-100.<br />

Leeper, G. I^I. L952. Factors affecting avaílability <strong>of</strong> inorganic nuËríents<br />

in soils with special reference to rricronutrient elements. Ann.<br />

Rev" Plant Physiol. 3: f-16.<br />

Leuck, D. B.; Forbes, I.; Burnsn R" E.; Edwardson, J" R. 168. Insect<br />

visitors to <strong>the</strong> flowers <strong>of</strong> Blue Lupíne. J. Econ. Ento. 6Lz<br />

57 3"<br />

Linnaeus, C. L753. Species Plantarrrn" 2 voL. Facs' ed. Roy" Soc" L957"<br />

Mahler, H. R.; Cord.es, E. H. Lg66. Biological cheur:istry. New York:<br />

Harper and Ror¿.<br />

Marsh, C. D.; Clauson, A. B.; Marsh, H. L9L6" Lupines as poisonousplants.<br />

Bu1l" 405, U.S. Depr. Agric., trüashington"<br />

McKee, R.; Ritchey, G. E. 1946. Lupines: neT^7 legumes for <strong>the</strong> south"<br />

Fmrsl Bull . , U.S. DepË" Agric. , I^IashingËon.<br />

McNamara, P. L97L" Unpublished d<strong>at</strong>a. Dept" <strong>of</strong> Agric", W" Australía.<br />

MonsËvilaite, Ya. Yu. 1968. I,{eed control wiËh herbicides in crops <strong>of</strong><br />

lupin and in mixed crops <strong>of</strong> 1upín with maize. Khirníya se1'k]noz.<br />

6: \4*75.<br />

166


Monstvilaiten Ya. Yu.; PuzínaiËe, I" L966" The control <strong>of</strong> Agz,opgron<br />

Tepens" Zemledelíc, Mosk. No. 6, 22-3. Field Crop Abstr.<br />

2O: 350.<br />

ldordashev, A. I. L967. Chemical weed control in yellor* fodder lupíns"<br />

(Lupinus Luteus) crops. Trudy Velikoluksk. se1'-khoz" Inst.<br />

7 z 133-7 .<br />

; Mordasheva, I. D. L97L, Accumul<strong>at</strong>ion <strong>of</strong> N, P, and K in<br />

fresh herbage <strong>of</strong> yellow lupin in rel<strong>at</strong>ion to spacing <strong>of</strong> plants.<br />

Agrokhimiya 8: 89-92"<br />

_; Rogov, M" A. L970. Dessic<strong>at</strong>ion <strong>of</strong> yellow fodder lupin.<br />

Vest. sel;-khoz. Naukí, Mosk. No. 11: 64-7.<br />

Nel, P" C. 1960. Lupin seed need not always be inocul<strong>at</strong>ed. Fmg. in S.<br />

Africa. 362 2L-2.<br />

Norris, D" O. L956. Legumes and <strong>the</strong> Rhízobiun syrnbiosis" Ernp. J" exp"<br />

Agric " 24: 247-70.<br />

Offutt, M. S. L96L" Lupine, vetch, and winter pea variety trials in<br />

Arkansas, 1955 to 1958. 8u11" 638 Ark" agric" Exp. Stn"<br />

Fayetteville.<br />

" L969. Performance <strong>of</strong> winter hardy white lupines in Arkansas.<br />

Fm. Res" 18, No" 5, 3. Ark" agric" Exp. stn., Fayetteville.<br />

Oldershaw, A" W. 1951. Lupins for sandy land" Agriculture, Lond. 58:<br />

237-42.<br />

Oserkornrsky, J. 1933. Quantit<strong>at</strong>ive relaËion between chlorophyll and iron<br />

in green and chlorotic pear leaves" Plant Physiol. 8: 449-468.<br />

Ostazeski, S. A.; I^iells, H" D. f960. A Phomopsis stem blight <strong>of</strong> yellow<br />

lupine (Lupinus Luteus L.). Pl. Dis. Reptr. 44: 66-7"<br />

Ozanneu P. G.; Asher, C. J.; Kirton, D. J. L965" Root distribuËíon in<br />

a deep sand and its rel<strong>at</strong>ionshíp to ühe upËake <strong>of</strong> added potassium<br />

by pasture plants" Aust. J. agríc. Res" 16: 785-800.<br />

Parker, C. A.; Oakley, A. E " 1965. Reduced nodul<strong>at</strong>ion <strong>of</strong> lupins and<br />

serradella due to lime pelleËíng. Aust. J. exp. Agric" Anim"<br />

Husb. 5: L44-6"<br />

Parsche, F. 1935. Lime-induced chlorosís <strong>of</strong> lupins " Z" PflErnahi. Dung",<br />

4L." 282-3L2.<br />

Palme, C. G" L97L. Unpublished d<strong>at</strong>a, Dept" <strong>of</strong> Agríc. I^i. Australia.<br />

Posypanov, G. S. L972. Accumul<strong>at</strong>ion <strong>of</strong> N, P, and K by lupin plants utilizing<br />

míneral or symbiotic N. IzvesËiya Tímiryazevskoi Self<br />

skokhozyaist-vennoid Akadenii, No" 1, 36-48. Field Crop Abstr"<br />

252 5726"<br />

L67


Quinlivan, B. J" 1970" The interpret<strong>at</strong>ion <strong>of</strong> gernin<strong>at</strong>ion tests on seeds<br />

ot LtLpiras species which develop impermeability. Proc" int.<br />

Seed Test. Assoc ' 35 : 349-59 "<br />

Schmidt, E" L967" Studies on <strong>the</strong> differenti<strong>at</strong>Íon <strong>of</strong> Rhizobium strains<br />

and on seed inoculaÈion <strong>of</strong> legtrnes. Albrecht-Thaer-Arch. 11:<br />

L043-54" Field Crop Abstr. 2l-: 4.<br />

Scholz" L{. 1933. Chlorosis <strong>of</strong> <strong>the</strong> yellow lupin (Lupinus Luteus) in rel<strong>at</strong>ion<br />

Ëo iron. Z" Pf.LBrnahr. Dung. Bodenk. 28: 257-98.<br />

to<br />

Schultzn K"<br />

<strong>of</strong><br />

L934" The chlorosis <strong>of</strong> blue lupin and serradella in rel<strong>at</strong>ion<br />

íron and manganese. Z. PflErnahr. Dung. Bodenk. 35: BB-101"<br />

1958, The influence <strong>of</strong> size <strong>of</strong> seed on developmenL and yield<br />

Lupinus aLbus. Z" Acker-u. PflBau 106: 224-44.<br />

Schwanitz, F" L967 " The Orígin <strong>of</strong> Cultiv<strong>at</strong>ed Plants. Cambridge, Massachusetts:<br />

Harvard UniversiËy Press.<br />

Schwarze" P.i Hackbarth, J. L957" InvesËig<strong>at</strong>ions <strong>of</strong> Ëhe alkaloid complex<br />

<strong>of</strong> yellow, blue and white lupins' Zuchtet 27: 332-4L.<br />

SeiËzer, J. F" L973. M"Sc. Thesis, <strong>University</strong> <strong>of</strong> <strong>Manitoba</strong>"<br />

Sengbuscho R. von. 1930. Lupins low ín bitter substances" Zudntet 2z<br />

L-2 "<br />

93-109.<br />

. 1931. Lupins lacking in biËter principle. Zuchter 3:<br />

. L937. Production <strong>of</strong> legune seed. In: Production <strong>of</strong><br />

seed <strong>of</strong> herbage and forage legumes. Bull. 23, Imp. Bur. Pl.<br />

Genet. Herb. Pl.<br />

; Zínrnermann, K. L937. The discovery <strong>of</strong> <strong>the</strong> first yellow<br />

an¿ ¡fne lupins (Lupinus Luteus and Lupirws angust¿foLius) w|th<br />

non-split.ting pods, and connecËed problems, especíally those <strong>of</strong><br />

s\^reet lupin breeding. Zudntet 9: 57-65"<br />

shipton, w" A"; Parker, c. A. L966" Inocul<strong>at</strong>ion and pelleting <strong>of</strong> lupin<br />

and serradella seed. J. Agríc. I.rI. Aust. 7 z 77-8.<br />

Silva, G. M.; Oliveirâ, A. J. 1959a" Experiments <strong>of</strong>i conËrol <strong>of</strong> <strong>the</strong> pests<br />

<strong>of</strong> Ëhe yellow lupín (Lupinus Luteus L") l" Insecticides. Agronomía<br />

lusit " zLz 43-74"<br />

1959b. Experiments on conËrol <strong>of</strong> <strong>the</strong> pests<br />

-; _--.<br />

<strong>of</strong> <strong>the</strong> yellow lupin (Lupi'nus Luteus L") 2. Cultural practiees"<br />

Agronomia lusít. 2L: 123-34.<br />

Smetana, P. L97L. Unpublished d<strong>at</strong>a. Dept. <strong>of</strong> Agric" tr{. Aust.<br />

168


Stepanova, S. L. 1-97L. Variability in <strong>the</strong> growing períod in lupins <strong>of</strong><br />

Mediterranean origin. Trudy po Prikladnoí Botanike 45: L22-<br />

L27. Field Crop Abstr" 25: 5727 "<br />

Suranyi, F. 1935. Inform<strong>at</strong>ion on Ëhe soil requirements <strong>of</strong> lupins.<br />

Koztelek 452 955-6" Herb. Abstr. 6: 27.<br />

Taylor, R, L. 1962" Weed conËrol in lupins" Proc" 15Ëh N.Z" I^Ieed<br />

Control Conf. 160-65.<br />

Triwoseh, S. f933. Iron for comb<strong>at</strong>ing chlorosis <strong>of</strong> <strong>the</strong> yellow lupin<br />

(Lttpinus Luteus) on calcareous or limed soí1s. Z. PflErnahr.<br />

Dung. Bodenk. A" 31: L4-27.<br />

Tro1l, H. J. 1964. Breeding for fusarium resistance ín Lupinus Luteus.<br />

trnliss. Z. Karl-Marx-Unív. Lpz" 3: 727-32.<br />

Tsukamoto, J. L973. Personal communic<strong>at</strong>ion.<br />

Turesson, G" L922" The species and varieties as ecological uniÈs.<br />

Hereditas 3: 100-113.<br />

Turner, B. L" L959" The Legumes <strong>of</strong> Texas" Unív. Tex" Press, Austin"<br />

T\.u-yman, E. S" 1959" The effect <strong>of</strong> iron supply on <strong>the</strong> yield and composítion<br />

<strong>of</strong> leaves <strong>of</strong> tom<strong>at</strong>o plants. Plant and Soil 10: 375-BB.<br />

Van der Kamp, T" C"; Riepma I^Izn, P. 1959. Stand density invesËig<strong>at</strong>íons<br />

ín yellow fodder lupins growrÌ for seed. Meded Proefst" Akker.<br />

I^Ieidebouw, Wageningen 232 20" Field Crop Abstr. 13: 246"<br />

Vossen, T. L96L. Experiences with símazín ín <strong>the</strong> HorsË N<strong>at</strong>ional Agricultural<br />

Advisory Area (Ne<strong>the</strong>rlands). Tijdschr. PlZiekt 67: 66.<br />

Field Crop Abstr" L4: L947 "<br />

Vuuren, P, J. van. L964. Lupins in Ëhe wínter rainfall region" Fmg. S.<br />

Africa 39: 44-6"<br />

Inladleígh, C. H.; Brown, J. W" L952. Chemical st<strong>at</strong>us <strong>of</strong> bean plants<br />

afflicted with bicarbon<strong>at</strong>e-induced chlorosis. BoË. Gaz" 113:<br />

37 3-92.<br />

Wallaceu A"; LunË, O, R. 1960" Iron chlorosis in Hortícultural Plants.<br />

Amerícan Society Hort" Sci. 75: 819-41"<br />

Warmelo, K. T. van; Marasas, tr{. F" O. et al. L970" Experimental evidence<br />

th<strong>at</strong> lupinosis <strong>of</strong> sheep is a mycotoxicosís caused by <strong>the</strong> fungus<br />

Phomopsis Leptostromifonmis (Kohn). J" S. Africa vet. med" Assoc.<br />

4L". 235-47 .<br />

tr^Ieimer, J. L. 194L" Fusarium hypocotyl roË <strong>of</strong> lupínes. Phytop<strong>at</strong>h. 31:<br />

77 I-2.<br />

769


T.r^ -i * ^r T<br />

WElItlç! t u ¡ L. L943.<br />

" 1944.<br />

S ou<strong>the</strong>as Lern<br />

44L-57.<br />

. 1950.<br />

342 376-8.<br />

Anthracnose <strong>of</strong> lupines. Phytop<strong>at</strong>h" 33: 249-52'<br />

Some root roËs and a foot rot <strong>of</strong> lupines in <strong>the</strong><br />

oart <strong>of</strong> <strong>the</strong> United St<strong>at</strong>es. J. Agric' Res' 68:<br />

Truo virus diseases <strong>of</strong> blue lupines" Pl' Dis' Reptr'<br />

" L952a. LuPin anthracnose' Circ" 904 tJ.S " Dept. Agríc" '<br />

[Iashington.<br />

.Lg52b.Diseases<strong>of</strong>cultívaËedlupinesin<strong>the</strong>Sou<strong>the</strong>ast.<br />

Fmrs t Bul1. 2053 U. S. Dept" Agrie", \{ashingËon'<br />

Irlells, H. D"; Forbes, I"; Edwardson, J' R' L96L' Ahe StemphgLiwn leaf<br />

sDot complåx on blue lupine' Pl" Dis' Reptr" 45: 725-7"<br />

L962' P<strong>at</strong>hogenecitY <strong>of</strong><br />

.n"<br />

-i stempha LL?Ån Lo-tt, .n se""r"i bl"e lupine breeding lines resistanr<br />

io"S. solani and S. bottyoswn. Pl. Dis. Reptr. 462 333-<br />

334.<br />

-i, McGill, J' F' L956' Correct<br />

-3 fr,roiãã-s"ãã production problems' Leaflet N'S"<br />

Coãstal Plaín Exp. StaLion, Tifton" Georgia'<br />

your Borre svreet<br />

9, Georgia<br />

; Leuck, D" G-i Beck, E. W'; Forbes, I' L962' A proposed<br />

system -; for controlling bean yellow mosaic virus (BYMV) <strong>of</strong> sweet<br />

yellow lupine through Ëhe producEíon <strong>of</strong> certified seed' Leaflet<br />

N.S. 33, G.orgía coastãl Plain Exp. st<strong>at</strong>ion, Tifton, Georgia"<br />

I{inkler, H.; Lustig, H. 1960. Sweet lupins in cultiv<strong>at</strong>ion trials <strong>at</strong> <strong>the</strong><br />

Flahult Èxperiment Farm, Sr,¡eden. 1. VaríeËal trials <strong>of</strong> yellow<br />

andbluesT¡reeËlupinsr1951-9.2.I^Ieedcontrolexperimentin<br />

yellowsvleetlupinculËiv<strong>at</strong>ion,L955-g.Medd.St<strong>at</strong>.Jardbr.<br />

Forsok,Uppsala,ll0:l-zL"FieldCropAbstr'L4z74L'<br />

Zakharchenko, I. G.; Pirozhenko, G"<br />

bY legurnes. AgrokhimíYa,<br />

830.<br />

L97O " On <strong>the</strong> nitrogen fix<strong>at</strong>ion<br />

2B-33" Field CroP Abstr" 242<br />

Ziuimerman, K. Lg42. Studies on Ëhe histology and developmenË <strong>of</strong> <strong>the</strong> pods<br />

<strong>of</strong> Lupinus Luteus, especially Ëhe newly bred strain 35354 with<br />

non-splitËing pods. Zuchtet, L4: L29-32'<br />

r70

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!