21.05.2013 Views

The Influence Of Priming Two Cucumber Cultivar Seeds

The Influence Of Priming Two Cucumber Cultivar Seeds

The Influence Of Priming Two Cucumber Cultivar Seeds

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) 2010<br />

CONTENTS<br />

- <strong>The</strong> <strong>Influence</strong> <strong>Of</strong> <strong>Priming</strong> <strong>Two</strong> <strong>Cucumber</strong> <strong>Cultivar</strong> <strong>Seeds</strong> By Wetting And<br />

Drying Cycles In Distilled Water, Caco3, Mgso4 And Caco3+ Mgso4 Solutions On<br />

Growth And Yield<br />

Caser G. Abdel and Waadalla A. Hassawy………………………..…………………………………..1<br />

- Sensory Evaluation Characteritics <strong>Of</strong> Different Walnut <strong>Cultivar</strong>s (Juglans<br />

Regia L.) In Duhoh<br />

Azad A. T. Mayi…………………………………………………..………………………………..19<br />

- Response <strong>Of</strong> Pistachio (P. Vera) Transplants To Varying Levels <strong>Of</strong> Water,<br />

Media Cultures And Phosphorus: 1-Vegetative Growth Characteristics<br />

Azad A. T. Mayi And Khitam Adieb…………………….………..………………..………………..25<br />

- Effect <strong>Of</strong> Foliar Application <strong>Of</strong> Naa, Kno3 And Fe On Quantity And Quality <strong>Of</strong><br />

Peach Fruit (Prunus Persica L.) Cv. Early Coronet<br />

Zulaykha R. Ibrahim Sarfaraz F. A. Al- Bamarny And Mohammed A. Salman………………….......36<br />

- Effect of diet supplemented with ascorbic acid on:1.Growth performance and<br />

carcass traits of Meriz goat.<br />

Jalal Eliya Alkass, Mwafq Suliaman Barwary And Araz Omer Bamerny……………………..….......49<br />

- Socio-Economic And Technical Factors Associated With Broiler Production In<br />

Duhok Governorate<br />

Rezgar M.Mohammed, Johnny S. Yokhana………………..………………………...………………..55<br />

- Effect <strong>Of</strong> Some Treatments On Vas Life <strong>Of</strong> Rosa Cv. Queen Elizabeth Flowers<br />

Hadar Saeed Faizy Al-Mizory………………..……………………………….……...………………..60<br />

- Estimation <strong>Of</strong> Some Genetic Paramrters, Correlation And Path Coefficient<br />

Analysis For Some Traits In Eggplant<br />

Abduljabbar I. Marie and Jiyan A. Teli………………………….……...…………………...………..70<br />

- Estimating <strong>Of</strong> Annual Sediments <strong>Of</strong> Duhok Dam By Using River Turbidity<br />

Water Samples<br />

..Abdulsatar Haji Sulaiman………………………….……...…………………...……………………..82<br />

- <strong>The</strong> Economies <strong>Of</strong> Goats And Meriz Kids Managed Under Different Feeding<br />

Systems<br />

Kamal Noman Dosky and Rezgar Mostafa Mohammed….……...…………………...……………....90<br />

- Responses <strong>Of</strong> Five Water Stressed Fababean (Vicia Faba L.) <strong>Cultivar</strong>s To<br />

Exogenous Abscisic Acia Application<br />

Caser G. Abdel and Shamil Y. H. M. Al-Hamadany….……...………..………………...…………….94<br />

- Genetic Variability Correlation And Path Analysis In Some Maize Inbred Lines<br />

Mohammed Ali Hussain….……...………..………………...………………………………...……….94


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) 2010<br />

- Micropropagation <strong>Of</strong> Crotone (Codiaeum Variegatum)<br />

Mosleh M.S. Duhoky and Layla S. M. Al-Mizory….……...………..………………....…………….112<br />

- Regeneration <strong>Of</strong> F1 Hybrids <strong>Of</strong> Eggplant (Solanum Melongena L.) And<br />

Tomato(Lycopersicon Esculentum L.) From Stem Explants.<br />

Mosleh M.S. Duhok,Y Payman A. A. Zibari, and Mohammad M. A. Salman……...…...………….122<br />

- Effect <strong>Of</strong> Humic Acid And Seaweed Extract On Growth, Yield And Fruits<br />

Quality <strong>Of</strong> <strong>Cucumber</strong> (Cucumis Sativus L).<br />

Ghurbat H. Mohammad….……...………..………………....……………………………………....131<br />

- Fect <strong>Of</strong> Packaging Materials And Storage On Local Orange Juice By Using<br />

Models Systems<br />

Rajab.I. Hameed.Duhok ….……...………..………………....……………………………………....139<br />

- Ovarian Response In Superovulated Karadi Yerling Ewes Treated With Insulin<br />

Araz G. Pedawy and Jalal E. Alkass….……...………..…..…………....…………………………....148<br />

- Hematological And Serological (Celisa) Studies <strong>Of</strong> Caprine Anaplasmosis In<br />

Duhok Governorate <strong>Of</strong> Kurdistan Region <strong>Of</strong> Iraq<br />

Ibrahim Abdulqader Naqid and Ihsan Kadir Zangana…………....………………….……………....153<br />

- Evaluation <strong>Of</strong> Test-Day Milk Yield <strong>Of</strong> Native Sheep Breeds In Some<br />

Commercial Flocks<br />

Jalal Eliya Alkass and Haval.A. Gardi…………....………………….………………………...…....162<br />

- Studies On <strong>The</strong> Attainment <strong>Of</strong> Puberty In Karadi Ewe Lambs 2. Relationship<br />

<strong>Of</strong> Age At Puberty To Some Biochemical Constituents <strong>Of</strong> Blood*<br />

Araz G.Pedawy and Jalal E. Alkass…………....………………….………………………........…....166<br />

- Effect <strong>Of</strong> Spraying With Molybdenum And Iron On <strong>The</strong> Growth And Seed<br />

Yield <strong>Of</strong> Nigella Damascene L.<br />

Yousif H. Hammo and Balkies G. Sahi…………....………………….………………………..…....171


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

THE INFLUENCE OF PRIMING TWO CUCUMBER CULTIVAR SEEDS BY<br />

WETTING AND DRYING CYCLES IN DISTILLED WATER, CaCO3, MgSO4<br />

AND CaCO3+ MgSO4 SOLUTIONS ON GROWTH AND YIELD<br />

CASER G. ABDEL * and WAADALLA A. HASSAWY **<br />

* Dept. of Horticulture, College of Agriculture, University of Dohuk, Kurdistan Region-Iraq<br />

** Dept. of Horticulture, College of Agriculture, University of Mosul-Iraq<br />

Received: February 17, 2009; Accepted for publication: February 18, 2010)<br />

ABSTRACT<br />

<strong>Seeds</strong> of Babylon and Khalifa cultivars were unprimed or primed by soaking them to extent of 100% of initial seed<br />

weights with distilled water, -1.5 Mpa CaCO3, -1.5 Mpa MgSO4, and a mixture -1.5 Mpa of CaCO3+ MgSO4, for 24 hrs<br />

then seeds were oven-dried to their initial weights under 55 o C. <strong>Priming</strong> was recycled 3 times. <strong>The</strong>reafter, seeds were sown<br />

directly in the field (direct cultivation) or sown in pots inside the plastic house then planted in the field (indirect cultivation).<br />

<strong>The</strong> objective of this study was to find out the priming influence on growth and yield. Results manifested that indirect<br />

cultivation yielded earlier and gave higher yield than direct one (23.3%, in 2004 and 1.2% in 2005). <strong>The</strong> highest yield 11.2<br />

kg.m -2 was confined to MgSO4 treatment in 2004, and 10.5 kg.m -2 in 2005 was accompanied by CaCO3+ MgSO4 treatment.<br />

Babylon yielded earlier and exceeded Khalifa in total yield by (38.3% in 2004 and 14.5% in 2005). Indirect Babylon<br />

cultivation showed the highest yields in 2004 (11.1 kg.m -2 ) and 2005 (9.8 kg.m -2 ). Babylon primed by MgSO4 and CaCO3+<br />

MgSO4 gave the highest yield (14.4 kg.m -2 in 2004 and 11.2 kg.m -2 in 2005, respectively). <strong>The</strong> highest yield (11.8 kg.m -2 ) in<br />

2005 was concomitant to indirect cultivation of Babylon primed by MgSO4+ CaCO3.<br />

KEYWORDS: <strong>Cucumber</strong>, Ion antagonism, Seed priming, CaCO3, MgSO4.<br />

S<br />

INTRODUCTION<br />

eed osmotic priming has been less<br />

successful in improving the performance<br />

of large seeds, for instance osmotic priming of<br />

soybean seeds led to greater germination and<br />

emergence rates at suboptimal temperatures in<br />

laboratory and growth chamber studies but had<br />

little effect on seedling emergences or yields in<br />

several early spring field plantings under cold,<br />

wet conditions (Khan, 1981). TeKrony and Egli<br />

(1991) noted that seed vigour affected vegetative<br />

growth and frequently was related to the yield of<br />

crops that were harvested vegetatively or during<br />

an early reproductive growth. <strong>The</strong>re was usually<br />

no such relationship in crops harvested at full<br />

reproductive maturity usually was not associated<br />

closely with vegetative growth. <strong>The</strong>y concluded<br />

that planting high vigour seeds could be justified<br />

for all crops to insure adequate plant population<br />

densities across the wide range of field<br />

conditions that occur during emergence.<br />

Haigh and Barlow (1987) found that tomato<br />

seeds primed in solutions that contained KNO3<br />

germinated more rapidly and synchronously than<br />

those primed in solutions without KNO3. <strong>The</strong>y<br />

inferred that the NO3 - salts may be absorbed<br />

preferentially to lower the internal osmotic<br />

potential and thereby encourage water flux, an<br />

effect that would explain the alleviation of<br />

"under priming" by inclusion of KNO3 in the<br />

priming solution. Smith and Cobb (1991)<br />

compared many salt solutions as priming agents<br />

for sweet pepper seed. <strong>The</strong>y found that priming<br />

effect was dependent on solution ψs and the<br />

duration of soak and not on the specific salts.<br />

Use of moist, solid or semi-solid carriers,<br />

(exfoliated vermiculite, expanded calcined clay,<br />

Agro-Lig such leonardite shale, bituminous soft<br />

coal, sodium polyproponate gel or synthetic<br />

calcium silicate) to condition seeds for enhanced<br />

germination has been developed only recently<br />

(Khan et al., 1992). Basra (1995) reported<br />

number of osmotica, including KNO3, K3PO4,<br />

KH2PO4, MgSO4, NaCl, glycerol, and manitol.<br />

MATERIALS AND METHODS<br />

This experiment was carried out during 2004<br />

and repeated during 2005 growing seasons, at<br />

the experimental field, Horticulture Department,<br />

Agriculture and Forestry College, Mosul<br />

University, Mosul, IRAQ. <strong>Seeds</strong> of Babylon<br />

cucumber cultivar were produced by PetoSeed<br />

Company, US and Khalifa cucumber cultivar<br />

seeds were produced by Modesto Seed<br />

1


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

Company, US. Both cucumber cultivars were<br />

purchased from Agricultural Bureau, Mosul.<br />

A Split-Split Plot within Factorial<br />

Randomized Complete Block Design was<br />

adopted for this experiment. <strong>The</strong> main Plot (A)<br />

was the cultivation methods. <strong>The</strong>y represented<br />

by (i) - Direct seeds in permanent field when<br />

environment temperature was suitable for<br />

optimal growth (a1) and (ii) - <strong>Seeds</strong> were sown<br />

in plastic tea pots and kept in plastic-house until<br />

the ambient outdoor environment being suitable<br />

for sustaining optimal growth. <strong>The</strong>reafter they<br />

were planted in the permanent field (a2). <strong>The</strong> sub<br />

main plot was seed priming (B) was done as<br />

below:<br />

<strong>Seeds</strong> were unprimed (b1) and others were<br />

soaked for 24 hr. with 100% of their initial<br />

weights in distilled water (b2), -1.5 Mpa CaCO3<br />

(b3), -1.5 Mpa MgSO4 (b4), or -1.5 Mpa CaCO3+<br />

MgSO4 mixture (b5). <strong>The</strong> sub sub-main plot (C)<br />

was the cucumber cultivars where Babylon<br />

cultivar was (c1) and Khalifa cultivar was (c2).<br />

<strong>The</strong>n these seeds were rinsed and oven-dried at<br />

55 o C. for 72 hrs. to retain their initial weights.<br />

This hydrating-drying cycle was repeated three<br />

times. Thus (2x2x5=20) treatments were<br />

included in this experiment. Each treatment was<br />

replicated three times and a replicate was<br />

represented by a furrow of 1m width and 3m<br />

length planted on one side with 35 cm plant intra<br />

space. <strong>The</strong> very similar design was repeated in<br />

the second growing season (2005).<br />

Soaking solutions were prepared by<br />

dissolving the above chemical compounds in<br />

distilled water. <strong>The</strong> electrical conductivities of<br />

these solutions were measured by HANA<br />

ELECTRICAL CONDUCTIVITY DEVICE. <strong>The</strong><br />

osmotic potential was calculated by the<br />

following equation: OP Mpa = EC (dSm -1 ) x -<br />

0.36 (Ayers and Wescot, 1976). Field soil was<br />

clay (56.4% clay, 12.3% sand and 31.3% silt), its<br />

field capacity, wilting point and bulk density<br />

were 21.8%, 12.9% and 1.6 g.cm‾³, respectively.<br />

Soil was plowed vertically and horizontally,<br />

then, dissected to match the proposed design.<br />

<strong>Seeds</strong> of indirect cultivation were sown in<br />

teapots (filled with 1:1:1 peat moss: sheep<br />

manure: sand) inside the plastic house on March<br />

10, 2004. While in second season, seeds were<br />

sown on March 23, 2005. In first year trail,<br />

plants were transplanted in the permanent field<br />

on April 3, 2004 and on April 16, 2005 in<br />

second year trail, where plants possessed 4-6<br />

leaves. <strong>Seeds</strong> of direct cultivation were sown<br />

directly in the permanent field, at the date of<br />

2<br />

transplanting. Replanting was made on April 17,<br />

2004, since some plants of indirect cultivation<br />

were chilled and completely damaged. Plants<br />

were fertilized by NPK 27:27:0 four times at<br />

rates of 10 g.m -2 during the growing season. <strong>The</strong><br />

first application was done immediately after<br />

transplanting, while the others were during<br />

fruiting stage. Foliar spray of PhytoPhert<br />

micronutrients were also applied three times at a<br />

rate of 1.5 g.l -1 . <strong>The</strong> first was at flowering<br />

commencement and the other two were during<br />

fruiting stage. Weeds were eradicated manually<br />

whenever required around the growing season. A<br />

Mixture of 1 g.l -1 Benomyl fungicides and 2.5<br />

ml.l -1 Endosulfan insecticides was sprayed first<br />

on plants in the plastic house. This mixture was<br />

sprayed at the permanent field when plants<br />

possessed three actual leaves and three weeks<br />

latter to control powdery mildew and white fly.<br />

At any tabulated harvest fresh weight,<br />

numbers of fruits were taken. At the end of<br />

growing season on July 25, 2004 and July 29,<br />

2005 plants were pulled out, then brought to<br />

vegetable laboratory. Leaf number and branches<br />

number were counted. Leaf areas and plant<br />

lengths were measured. Leaves fresh weight,<br />

stem fresh weight, and plant fresh weight were<br />

weighed by sensitive metler balance. Samples of<br />

fruits, leaves, stems were weighed then ovendried<br />

at 65 o C for 72 hrs and finally reweighed.<br />

Fruit, stem, leaves, plant dry matter percentages<br />

besides leaf area index were calculated. Calcium<br />

content of fruits was determined according to<br />

procedure that recommended by Westerman<br />

(1990).<br />

RESULTS AND DISCUSSION<br />

<strong>The</strong> obtained results exhibited that indirect<br />

cultivation was superior on direct cultivation in<br />

2004. It substantially exceeded the latter in terms<br />

of plant fresh weight 16.4%, leaf dry weight<br />

41.1%, leaf fresh weight 29.2%, leaf number per<br />

plant 18.2% and total yield 23.3% (tables, 2 and<br />

4); fresh fruit yield at 3 rd , 4 th , 6 th , 9 th ,and 13 th ,<br />

respectively by 600.9, 220.8, 156.5, 62.5, and<br />

46.7% (table, 5); fruit number.m -2 at 4 th , 5 th , 6 th<br />

, and 9 th ,respectively by 236.4, 24.3, 168.9 and<br />

68.8% (table, 7). Like wise in 2005 indirect<br />

cultivation was significantly exceeded its<br />

corresponding direct cultivation in plant dry<br />

weight 11.3%, leaf dry weight 10.8%, and leaf<br />

fresh weight 29.7% (table, 3); fresh fruit yield<br />

g.m -2 at 6 th , 12 th , 14 th , 16 th , 17 th , 18 , 19 th and<br />

20 th by 96.4, 22.9, 81.4, 32.6, 77.2, 116.4, ∞ and


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

∞ %, respectively; fruit number.m -2 at 2 nd (∞%),<br />

3 rd (164.4%), 4 th (133.3%), 5 th (107.8%), 6 th<br />

(166.6%), 8 th (33.8%), 11 th (29.5%), and 17 th<br />

harvests (47.8%). <strong>The</strong> superiority of indirect<br />

cultivation was due to the performance of seed<br />

germinations under plastic house in which it<br />

provided the germinating seeds and thereby<br />

seedling performances with suitable temperature<br />

that if otherwise seeds will either not germinate<br />

or give sluggish seedlings, sine cucumber<br />

requires high light intensities and temperature<br />

(Swiader et al., 1996). <strong>Cucumber</strong> is a<br />

thermophilic and frost-susceptible crop, growing<br />

best at temperatures of 20 0 C (Tatlioglu, 1993).<br />

<strong>Seeds</strong> primed by MgSO4 in 2004 profoundly<br />

exceeded that of unprimed seeds in calcium<br />

content of fruit 26.5%, fruit fresh yield g.m -2 at<br />

2 nd 80% (tables, 4 and7); seeds primed by<br />

distilled water in total fruit yield 60%, fruit yield<br />

at 2 nd harvest 795.5%, 9 th harvest 40% (tables, 4<br />

and 5) and in fruit number.m -2 at second harvest<br />

800% (table,7); seed primed by CaCO3+MgSO 4<br />

mixture in calcium content of fruit 36.1% (table,<br />

4); besides its superiority over that of CaCO3 in<br />

fresh fruit yield at 9 th harvest 20.7% (table, 5).<br />

However in 2005 growing season, seed primed<br />

by an equal mixture of CaCO3+MgSO4 was the<br />

most effective treatment. It significantly<br />

exceeded that unprimed in plant dry weight<br />

16.3%, and fruit fresh yield at 5 th harvest112.8%,<br />

and fruit number at 11 th harvest 41.2% and 14 th<br />

harvest 35.5% (tables, 3). <strong>The</strong>se improvements<br />

in growth and yield might be attributed to the<br />

nutritional values of these compounds, ion<br />

antagonism between these two compounds or to<br />

the osmosis effects of salt solution where seeds<br />

were primed. Frett et al., (1991) compared<br />

factorial combinations of Ca 2+ , Na +, or K + with<br />

NO3 - , Cl - , SO 4 or H2PO4 - at -0.8MPa and 20 0 C as<br />

priming agents for asparagus and tomato seeds.<br />

<strong>The</strong>y found that salt solutions were more<br />

effective than PEG in speeding tomato seed<br />

germination; however, salt solutions provided no<br />

such benefit for asparagus seeds.<br />

Results of 2004 trail exhibited that Babylon<br />

cultivar responded more than that observed in<br />

Khalifa. It highly exceeded the latter in leaf area<br />

16.6%, plant dry matter percentage 15.9%, leaf<br />

dry matter accumulation in leaf 39.4%, leaf fresh<br />

weight 26%, fruit length 90%, fruit dry matter<br />

percentage 4.5%, and total yield 38.3% (table, 2<br />

and 4); fruit fresh weight at 3 rd , 4 th ,5 th 7 th and 8 th<br />

harvests by 3.7, 256, 112, 336.7, and 117%,<br />

respectively, (table, 5); fruit number at 3 rd , 4 th<br />

,5 th , and 7 th harvests by 257, 227.3, 105.3 and<br />

320%, respectively, (table, 6). Likewise in 2005<br />

trail, also Babylon cultivar exceeded its<br />

corresponding one in fruit dry matter percentage<br />

2.2%, fruit length 10.6%, accumulation of dry<br />

matter in a plant 10.4%, leaf area 17.2%,<br />

percentage of plant dry matter 13.7%, leaf dry<br />

weight 34.3%, leaf fresh weight 26.7% fruit dry<br />

matter percentage 2.2%, and fruit length 10.6%,<br />

(tables, 3 and 4); fresh fruit yield at 2 nd , 3 rd ,4 th ,<br />

5 th , 6 th , 7 th , 8 th , and 18 th harvests by 1131.5,<br />

2031, 497.6, 235.1, 102.2, 151.5, and 31.6%<br />

,respectively. <strong>The</strong> higher response potency of<br />

Babylon cultivar over Khalifa might be due to<br />

seed priming which obviously reflected on<br />

growth and yield explains the well established<br />

genome expression abilities of Babylon cultivar.<br />

It also may be due to precise segregation and<br />

breeding techniques that were applied by the<br />

producing company in introducing this cultivar<br />

to growers. Moreover, this cultivar is very<br />

successful in Iraq and it is the most familiar.<br />

<strong>The</strong> results of 2004 growing season revealed<br />

that indirect cultivation of seed primed in CaCO3<br />

solution gave the highest individual fresh weight<br />

for leaf 9.5 g, and total yield of fresh fruit 12.6<br />

kg.m -2 , (tables, 2 and 4). In 2005 growing<br />

season, direct cultivation in an equal mixture of<br />

CaCO3+MgSO4 was apparently overwhelming<br />

other interaction treatments. It displayed the<br />

highest total yield 11.13 kg.m -2 , fresh fruit yield<br />

at 3 rd harvest 75 g.m -2 , fruit number.m -2 26.5<br />

(tables, 4 and 10). <strong>The</strong>se improvements were due<br />

to the influence of priming on germination and<br />

seedlings performances during the very early<br />

stages of growth and their consequences.<br />

Changes in gene expressions are required in the<br />

early phases of imbibitions to switch seeds from<br />

developmental germinative mode; the<br />

completion of this "Switching" during priming;<br />

could hasten growth initiation when the seeds<br />

are re-imbibed (Kermode et al., 1986).<br />

<strong>The</strong> indirect cultivation of Babylon<br />

interaction in 2004 manifested the highest<br />

individual leaf dry weight 4.3g, leaf number per<br />

plant 106, fruit length 16.7 cm, percentage of<br />

fruit dry matter 4.5 g, and total yield 11.1 kg.m -2<br />

(tables, 2 and 4); yield of fresh fruit at 3 rd , 4 th ,<br />

5 th , 6 th , 7 th , 8 th ,and 9 th harvests, and their values,<br />

respectively, were 328.3, 445, 940, 843.3, 703.3,<br />

and 1395 g.m -2 (table, 5); fruit number.m -2 at 4 th ,<br />

5 th , 6 th , 7 th , and 8 th harvests, and their values<br />

were 5.3, 11.3, 10, 10.6 and 8.3, respectively,<br />

(table, 7). Similar results were observed in 2005<br />

experiment, where indirect cultivated Babylon<br />

interaction showed the highest leaf area 106.3<br />

3


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

cm 2 , plant dry matter percentage 22.9%, leaf dry<br />

matter percentage 48.7%, total yield 9.77 kg.m -2 ,<br />

percentage of fruit dry matter 4.6%, fruit length<br />

16.4 cm, (tables, 3 and 4); fresh fruit yield at 2 nd<br />

, 3 rd , 4 th , 6 th , 7 th , 12 th , 14 th , 17 th ,18 th ,19 th , and<br />

20 th harvests and their values were 51.1, 92.4,<br />

793, 948.9, 1386.7, 777.4, 488.9, 393.3, 292.4,<br />

and 92.2 g.m -2 , respectively; fruit number.m -2 at<br />

1 st , 2 nd , 3 rd , 4 th ,5 th , 6 th , 7 th , 8 th , 9 th , 11 th , and<br />

17 th harvests and their magnitudes were,<br />

respectively, 0.6, 1, 1.5, 1.7, 7.13, 5.4, 7.1, 5.6,<br />

6.7, 9.63, and 3.3, (tables, 9 and 10). <strong>The</strong>se<br />

results could be referred to the combination of<br />

favourable growing condition at very early stage<br />

Resemble results were observed in 2005 trail.<br />

Babylon seeds primed in ion antagonism<br />

solution (CaCO3+MgSO4) were the most<br />

effective interaction treatment. Thus it gave the<br />

highest plant dry weight 83 g, leaf dry weight<br />

4.3 g and total yield 11.2 kg.m -2 (tables, 3 and<br />

4); fruit fresh yield at 2 nd , 5 th , 7 th , 8 th , 9 th , 10 th ,<br />

11 th , 12 th , 17 th , and 18 th harvests with values of<br />

55.6, 780.6, 934.4, 775, 1088.9, 1166.7, 833.3,<br />

1461.1, 516.7, and 391.7, respectively (tables, 9<br />

and 10); fruit number.m -2 at 3 rd , 7 th , 8 th , 9 th , 11 th ,<br />

14 th , 16 th , and 17 th harvests with values of 0.7,<br />

8.7, 6.4, 7.77, 11.23, 5.7, 4.5 and 3.8,<br />

respectively, (tables, 9 and 10). Recent studies<br />

manifested that seeds priming overcome<br />

incomplete embryo probles and altering the<br />

performance of metabolic activities in seed<br />

embryos. Basra (1995) summarized that priming<br />

operates to enhance seed quality by a<br />

combination of processes that may include<br />

cellular repair and improved membrane<br />

integrity; decreased seed exudation and<br />

concomitant decreased growth of pathogenic<br />

organisms; enhanced mobilization of seed<br />

protein, lipid, and starch as a result of activation<br />

or synthesis of advanced embryo development;<br />

weakened restraining tissues around the radical;<br />

4<br />

and vigorous of well adapted cultivar namely<br />

Babylon.<br />

Babylon seeds primed in MgSO4 solution in<br />

2004 growing season manifested the<br />

highest individual leaf dry weight 4.2 g,<br />

individual leaf fresh weight 9.7 g, calcium<br />

content of fruit 3035.5 mg.kg -1 , fruit<br />

length 15.8 cm, and total yield14.1 kg.m -2<br />

(tables, 2 and 4); fresh fruit yield at<br />

2 nd harvest 1768.3 g.m -2 and 7 th harvest 1316.7<br />

g.m -2 (table, 5); fruit number.m -2 at 2 nd and<br />

7 th harvests with values of 21.7 and 15.7,<br />

respectively, (table, 7).<br />

and increased potential for oxidative<br />

phosphorylation and ATP accumulation.<br />

Results of 2004 experiment revealed that<br />

direct cultivation of Babylon seeds primed by<br />

MgSO4 was the best triple interaction treatment.<br />

It manifested the highest magnitudes in term of<br />

plant dry matter percentage 26.2%, total yield of<br />

fresh fruit 14.1 kg.m -2 (tables, 2 and 4); fresh<br />

fruit yield at 2 nd harvest 242 g.m -2 and fruit<br />

number.m -2 at 2 nd harvest 29.7 (tables, 5 and 7).<br />

Whereas, the best triple interaction in 2005<br />

experiment was direct cultivation of Kalifa seeds<br />

primed in ion antagonism solution. This<br />

treatment gave the highest plant length 146.5<br />

cm, total yield 11.7 kg.m -2 , and fruit yield at 9 th<br />

harvest 533.3 g.m -2 ,(tables, 3,and 4). Seed<br />

priming affects directly and in directly on cell<br />

metabolism, as documented by previous<br />

investigations. <strong>Priming</strong> synchronized the<br />

development of seeds, bringing them all to the<br />

same metabolic state. In carrot or celery seeds<br />

with rudimentary embryos, considerable embryo<br />

growth may occur during priming, even though<br />

radical growth is prevented (Van der Toorn,<br />

1989).


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

Table(1): Meteorological data, irrigation frequencies and soil depleted water to a 40cm depth<br />

Meteorological data Months<br />

April May June July August<br />

Maximum temperature Cº 26.8 34.2 39.2 48.3 49.3<br />

Minimum temperature Cº 12.3 17 21.1 29.4 24.9<br />

Relative humidity (%) 48 34 25 21 20.8<br />

Rain fall incidences mm. 71.4 3.7 0.0 0.0 0.0<br />

Cultivation methods and cvs (A*B)<br />

(A*C)<br />

Treatments and Cvs (B*C)<br />

Table (2): <strong>The</strong> influences of cultivation methods and priming seeds of two cucumber cultivars by CaCO3,,<br />

MgSO4 and their ion antagonism on growth during 2004 growing season.<br />

Cultivation<br />

methods<br />

(A)<br />

Treatments of<br />

Seed<br />

<strong>Priming</strong> (B)<br />

<strong>Cultivar</strong>s Cvs.<br />

( C)<br />

Direct<br />

sowing<br />

Indirect<br />

sowing<br />

Direct<br />

Indirect<br />

Cont<br />

Distil<br />

CaCO3<br />

MgSO4<br />

CaCO3+<br />

direct<br />

Fw/p La i La B/p Dm%/p L dw lfw Pl L dm% Ln/p<br />

304.9b 3.6a 92.7a 4.9a 22.8a 3.4b 7.2b 168.8a 49a 91.7b<br />

indirect 355.2a 3.5a 78.2b 4.6a 21.8a 4a 9.3a 165.1a 41.2a 108.4a<br />

Cont 307.8a 3.5a 84.8a 4.5b 22.5a 3.4a 7.9a 169.1a 44.7a 90.7a<br />

Dist 355.4a 3.8a 85.7a 5.6a 21.7a 3.6a 7.6a 167.9a 47.8a 109a<br />

CaCO3 331a 4a 87.9a 5.4a 21.7a 3.7a 8.6a 170.9a 44.7a 114a<br />

MgSO4 326.2a 2.9a 80.5a 3.7c 22.1a 3.7a 8.7a 164.7a 42.7a 91.4a<br />

CaCO3+<br />

MgSO4<br />

329.8a 3.6a 88.4a 4.6b 23.7a 3.8a 8.5a 162.2a 45.6a 99.7a<br />

Babyl 321.3a 3.8a 92a 5a 24a 4a 9.2a 158.4b 43.9a 94.1a<br />

Khali 338.8a 3.3a 78.9b 4.6a 20.7b 3.3b 7.3b 175.5a 46.3a 106a<br />

Cont 322.7ab 3.6a 93.2a 4.3bc 21.5a 3.38b 6.4c 179.3a 53.3a 78.2c<br />

Distil 318.2ab 4.1a 97.2a 5.6a 21.7a 3.4ab 6.6c 155.8a 52.5a 88.9bc<br />

CaCO3 299.4b 3.8a 96.2a 5.6a 22.5a 3.4ab 7.4bc 168.1a 47.8ab 106.6ac<br />

MgSO4 292.6b 3a 82.2a 3.8c 23.2a 3.5ab 8.3ab 170.9a 42.6bc 87.2bc<br />

CaCO3+<br />

MgSO4<br />

291.4b 3.5a 94.4a 5.2ab 25.3a 3.5ab 7.3bc 170a 48.8ab 97.8ac<br />

Cont 392.7a 3.4a 76.5a 4.7ac 23.4a 3.4ab 9.4a 159a 36.2c 106.6ac<br />

Dist 360.1ab 3.5a 74.2a 5.7a 21.8a 3.4ab 8.6ab 180a 43bc 129.1a<br />

CaCO3 359.9ab 4.2a 79.5a 5.1ab 20.9a 3.96ab 9.5a 173.7a 41.7bc 121.4ab<br />

MgSO4 339.2ab 2.8a 78.7a 3.7c 20.9a 3.9ab 9.2a 158.5a 42.8bc 95.7ac<br />

CaCO3+<br />

MgSO4<br />

324.2ab 3.7a 82.3a 4c 22.1a 4a 9.7a 154.5a 42.4bc 92.4bc<br />

Babyl 296.3b 3.8a 105.4a 4.7ab 24.5a 3.7b 7.9a 157a 47.3a 82.2b<br />

Khali 313.5ab 3.2a 80b 5.1a 21.2bc 3.2c 6.5c 180.7a 50.7a 101.3ab<br />

Babyl 346.4ab 3.8a 78.6b 4.4b 23.5ab 4.3a 10.5a 159.9a 40.6b 106a<br />

Khali 364a 3.4a 77.9b 4.9ab 20.1c 3.3bc 8a 170.37a 41.8b 110.7a<br />

Babyl 279a 4.3a 93.8a 4.1df 24.9ab 3.5bc 8.7ab 172.8a 42.4a 92.4ab<br />

Khali 336.7a 2.7a 75.8a 5ad 20bc 3.3c 7.1c 165.5a 47.7a 89.1ab<br />

Babyl 363.7a 4a 90.8a 5.3ab 22.5ac 4.1a 8.7ab 151.3a 46.9a 103.5ab<br />

Khali 347.1a 3.6a 80.7a 6a 20.1ac 3.1c 6.5c 184.5a 48.6a 114.6ab<br />

Babyl 338.9a 4.2a 78.8a 5.3ac 23ac 3.9ab 9.4a 158.5a 42.1a 106.3ab<br />

Khali 323a 3.7a 77a 5.5ab 20.4ac 3.5bc 7.5bc 183.3a 47.4a 121.7a<br />

Babyl 290.1a 2.8a 83.1a 3.8ef 24.1ac 4.2a 9.7a 147.4a 42.8a 83.8b<br />

Khali 362.4a 3a 77.8a 3.7f 19.8c 3.3c 7.7bc 182a 42.6a 99ab<br />

Babyl 335a 3.6a 93.3a 4.4cf 25.3a 4.2a 9.5a 162.2a 45.6a 84.5b<br />

5


(A*<br />

C)<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

6<br />

Direct cultivation<br />

Indirect cultivation<br />

MgSO4<br />

Cont<br />

Distil<br />

CaCO3<br />

MgSO4<br />

CaCO3+<br />

MgSO4<br />

Cont<br />

Distil<br />

CaCO3<br />

MgSO4<br />

CaCO3+<br />

MgSO4<br />

Khali 324.5a 3.6a 83.5a 4.8be 22.1ac 3.3bc 7.4bc 162.3a 45.7a 105.6ab<br />

Babyl 264.4ab 4.4a 111.6ab 4cd 24.2ab 3.6bc 6.8dg 182.4a 53.3ab 76c<br />

Khali 318.4ab 2.3a 74.8cd 4.7ad 18.8b 3.1c 5.9fg 176.1a 53.3ab 80.3bc<br />

Babyl 336.8ab 3.7a 109ac 5.4ac 21.7ab 3.6bc 7.7cg 135.4a 47.4ad 81.9ac<br />

Khali 299.7ab 3.3a 85.5ad 5.8a 21.7ab 3.2c 5.6g 176.2a 57.7a 95.8ac<br />

Babyl 332.5ab 4.9a 116.1a 5.6ac 23.7ab 3.5bc 8.3be 153.2a 42.9bd 101ac<br />

Khali 312.9ab 4.6a 76.4cd 5.7ab 21.3ab 3.4c 6.4eg 183a 52.7ac 112.3ac<br />

Babyl 235.5b 2.9a 89.1ad 3.9cd 26.2a 3.8ac 8.9bd 155a 42.5bd 78.1c<br />

Khali 349.6ab 2.7a 75.2cd 3.7d 20.2ab 3.3c 7.6cg 186.8a 42.8bd 96.3ac<br />

Babyl 312ab 3a 100.9cd 4.7ad 26.5a 3.8ac 7.7cg 158.8a 50.5ad 73.7c<br />

Khali 286.8ab 4.4a 88ad 5.7ab 24.1ab 3.2c 6.8dg 181.2a 47.2ad 121.8ac<br />

Babyl 293.5ab 4.3a 76cd 4.1bd 25.5ab 3.3c 10.5ab 163.2a 31.5e 108.7ac<br />

Khali 355ab 3a 76.9bd 5.3ac 21.3ab 3.4c 8.2bf 154.8a 40.8ed 97.9ac<br />

Babyl 390.7a 4.3a 72.6d 5.2ad 23.2ab 4.5a 9.7ac 167.1a 46.4bd 125ac<br />

Khali 394.6a 3.9a 75.9cd 6.2a 20.7ab 3c 7.5cg 192.9a 39.6de 133.3a<br />

Babyl 345.3ab 3.6a 81.4bd 5ad 22.3ab 4.3ab 10.5ab 163.8a 41.3de 111.7ac<br />

Khali 333.2ab 4a 77.5bd 5.3ad 19.4ab 3.6bc 8.6be 183.6a 42.1cd 131.2ab<br />

Babyl 344.7ab 2.6a 77.2bd 3.7d 22.4ab 4.5a 10.5ab 139.8a 43.1bd 89.5ac<br />

Khali 375.1a 3.3a 80.3bd 3.7d 19.4ab 3.3c 7.8cg 177.2a 42.5bd 101.8ac<br />

Babyl 357.9ab 4.3a 85.6ad 4cd 24.1ab 4.5a 11.3a 165.6a 40.7de 95.3ac<br />

Khali 362.3ab 2.8a 79bd 3.9cd 20.2ab 3.5bc 8cf 143.4a 44.1bd 89.4ac<br />

* plant fresh weight g (fw/p), leaf area index (Lai), leaf area (La), branch number per plant (B/P), plant dry matter percentage (dm%/P),<br />

individual leaf dry weight g (L dw), leaf fresh weight g (L fw), plant length cm (Pl), leaf dry matter percentage (Ldm%), leaf number per<br />

plant (ln/p).<br />

Table (3): <strong>The</strong> influences of cultivation methods and priming seeds of two cucumber cultivars by CaCO3,,<br />

MgSO4 and their ion antagonism on growth during 2005 growing season.<br />

Cultivation methods and cvs (A*B)<br />

Cultivation<br />

methods<br />

(A)<br />

Treatments of<br />

Seed<br />

<strong>Priming</strong> (B)<br />

<strong>Cultivar</strong>s Cvs.<br />

( C)<br />

direct<br />

sowing<br />

indirect<br />

sowing<br />

direct<br />

Dw/p La i La B/p Dm%/p L dw lfw Pl Ldm% Ln/p<br />

67.9b 3.6a 93.2a 5.2a 21.8a 3.7b 7.4b 168.4a 50.3a 96.8a<br />

indirect 75.9a 3.68a 78.8b 5.6a 21.8a 4.1a 9.6a 164.7a 43.4b 113.5b<br />

Cont 66.2b 3.4b 85.3a 5ab 22.5a 3.9a 8.3a 165.6a 49.6a 95.7b<br />

Dist 76.7a 4ab 86.2a 6.3a 21.2a 3.8a 8a 171a 48.4a 112.1ab<br />

CaCO3 70.7ab 4.5a 88.5a 5.9ab 21.3a 3.9a 8.7a 171.4 46.3a 122.5a<br />

MgSO4 69.2ab 3.2b 80.9a 4.7b 21a 3.9a 9.1a 161.6a 44.4a 96.5b<br />

CaCO3+<br />

MgSO4<br />

77a 3.3b 88.9a 5.1ab 23a 3.9a 8.5a 163.1a 45.6a 99.2ab<br />

Babyl 75.5a 3.8a 92.8a 5.2a 23.2a 4.3a 9.5a 158.6a 46.2a 100.1a<br />

Khali 68.4b 3.6a 79.2b 5.6a 20.4b 3.5b 7.5b 174.5a 47.5a 110.1a<br />

Cont 70.8bd 3.2a 93.7a 4.6b 21.3a 3.7ab 6.9c 174.3a 56.9a 81.7c<br />

Distil 70.5bd 3.75a 97.9a 5.8ab 21.2a 3.6b 6.9c 159.4a 53.5ab 93.6ac<br />

CaCO3 68.9bd 4.5a 97.1a 6ab 21.6a 3.7ab 7.6bc 169.3a 50ac 116.5ac<br />

MgSO4 64.6cd 2.85a 82.2a 6ab 21a 3.7ab 8.7ac 170.4a 44.5c 91.1bc<br />

CaCO3+<br />

MgSO4<br />

60.6d 3.7a 94.8a 5.2ab 24a 3.6b 7c 168.7a 46.4bc 101.3ab<br />

Cont 84.4a 3.4a 76.9a 5.4ab 23.7a 4.1ab 9.6ab 157a 42.2c 109.7ac<br />

Dist 79ab 4.2a 74.6a 6.8a 21.3a 4ab 9.1ab 182.6a 43.3c 130.6a<br />

CaCO3 74.9ac 4.4a 79.9a 5.7ab 21.1a 4.2ab 9.9a 173.5a 42.5c 128.6ab<br />

MgSO4 73.9ad 3.5a 79.5a 4.8ab 21.1a 4.1ab 9.5ab 152.7a 44.3c 101.9ac<br />

CaCO3+<br />

MgSO4<br />

71.8ad 3b 83a 5.1ab 22a 4.2ab 10a 157.6a 44.8c 97ac<br />

indirect Babyl 70.9b 3.7a 106.3a 4.8a 22.9a 3.9b 8.1b 156.4a 48.7a 85.9b


Cultiva<br />

tion<br />

metho<br />

ds and<br />

cvs<br />

(A*B)<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

Treatments and Cvs (B*C)<br />

indirect cultivation<br />

direct cultivation<br />

direct<br />

Cont<br />

Khali 65b 3.5a 80b 5.7a 20.7b 3.4c 6.8c 180.4a 51.8a 107.8a<br />

Babyl 80a 3.9a 79.2b 5.6a 23.5a 4.7a 10.9a 160.8a 43.6b 114.2a<br />

Khali 71.7b 3.6a 78.3b 5.6a 20.1b 3.6c 8.3b 168.6a 43.2b 112.9a<br />

Babyl 67.7c 3.6b 94.6a 4.7b 25.2a 4.4a 9ab 169.1a 52.1a 96.6ab<br />

Khali 64.6c 3.1b 76.1a 5.3ab 19.8c 3.4c 7.5bc 162.1a 47.1ab 94.8ab<br />

Distil Babyl 82ab 4.2ab 91.8a 5.8ab 21.7ac 4.3a 9.3ab 153.7a 47.3ab 112.5ab<br />

CaCO3<br />

Khali 71.3bc 3.8ab 80.7a 6.8a 20.8bc 3.3c 6.7c 188.3a 49.5ab 111.7ab<br />

Babyl 75.8ac 4.9a 99.8a 5.8ab 22.8ac 4.1ab 9.7ab 160a 43b 114.4ab<br />

Khali 65.5c 4.1ab 77.3a 5.9ab 19.9c 3.7bc 7.8bc 182.7a 49.5ab 130.7a<br />

MgSO4 Babyl 69bc 3.1b 83.8a 5.1ab 22.6ac 4.3a 10.2a 146a 44.4ab 88.4b<br />

CaCO3+<br />

MgSO4<br />

Cont<br />

Khali 69.5bc 3.2b 78a 4.4b 19.5c 3.5c 8ac 177.1a 44.4ab 104.6ab<br />

Babyl 83a 3b 94.1a 4.7b 23.9ab 4.3a 9.3ab 164a 44ab 88.5b<br />

Khali 70.9ac 3.6b 83.8a 5.6ab 22ac 3.5c 7.7bc 162.2a 47.1ab 109.8ab<br />

Babyl 64.2ce 3.5ac 112.4ab 4.3ab 24.6ab 4.1ad 7.8cd 174a 60.7a 77.7c<br />

Khali 56.9e 2.9c 75cd 4.9ab 18.1c 3.3de 6.5cd 174.5a 53.1ac 85.7ac<br />

Distil Babyl 72.8ae 3.9ac 110.1ac 5ab 20.6ac 3.7ce 8.1bd 138.8a 47.4bd 86.4ac<br />

CaCO3<br />

Khali 65be 3.6ac 85.7ad 6.6ab 21.9ac 3.4de 5.8bd 180a 59.5a 100.8ac<br />

Babyl 75.1ae 5.1a 117.8a 6ab 23ac 3.7de 8.5bd 156.5a 44.3cd 108.4ac<br />

Khali 66.6be 3.9ac 76.5cd 6ab 20.1bc 3.7de 6.6cd 182.1a 55.8ab 124.5ac<br />

MgSO4 Babyl 60.7de 2.9bc 89.5ad 4.8ab 22.7ac 4be 9.5ac 153.3a 45.1bd 81.8bc<br />

CaCO3+<br />

MgSO4<br />

Cont<br />

Khali 68.5be 2.8c 75cd 4.4ab 19.2bc 3.5de 7.9bd 187.5a 43.8cd 100.4ac<br />

Babyl 81.6ac 3bc 101.7ad 4b 23.8ab 4be 6.9cd 159.4a 45.9bd 75.1c<br />

Khali 68.2be 4.4bc 88ad 6.3ab 24.1ab 3.3de 7.1cd 178a 46.9bd 127.6ac<br />

Babyl 71.3be 3.8ac 76.5cd 5ab 25.9a 4.7ab 10.8ab 164.3a 43.4cd 115.4ac<br />

Khali 72.3ae 3.3ac 77.3cd 5.8ab 21.5ac 3.5de 8.5bd 149.6a 41d 104ac<br />

Distil Babyl 91.2a 4.4ac 73.4d 6.6ab 22.8ac 4.8a 10.5ab 168.6a 47.2bd 138.6a<br />

CaCO3<br />

Khali 77.7ac 4ac 75.7cd 7a 19.7bc 3.3e 7.7bd 196.6a 39.4d 122.5ac<br />

Babyl 76.6ae 4.8ab 81.8bd 5.7ab 22.6ac 4.5ac 10.9ab 163.5a 41.6cd 120.3ac<br />

Khali 64.4ce 4ac 78bd 5.8ab 19.6bc 3.8ce 8.9ad 183.4a 43.3cd 136.9ab<br />

MgSO4 Babyl 77.3ad 3.4ac 78bd 5.3ab 22.5ac 4.7ab 10.8ab 138.8a 43.6cd 95ac<br />

CaCO3+<br />

MgSO4<br />

Khali 70.5be 3.5ac 81.1bd 4.3ab 19.7bc 3.5de 8.2bd 166.7a 44.9cd 108.8ac<br />

Babyl 84.4ab 3bc 86.4ad 5.3ab 24ab 4.7ab 11.7a 168.7a 42.4cd 101.9ac<br />

Khali 73.7ae 2.9bc 79.5bd 4.9ab 19.9bc 3.7ce 8.3bd 146.5a 47.2bd 92.1ac<br />

* plant dry weight g (Dw/p), leaf area index (Lai), leaf area (La), branch number per plant (B/P), plant dry matter<br />

percentage (dm%/P), individual leaf dry weight g (L dw), leaf fresh weight g (L fw), plant length cm (Pl), leaf<br />

dry matter percentage (Ldm%), leaf number per plant (ln/p).<br />

Table (4): <strong>The</strong> influences of cultivation methods and priming seeds of two cucumber cultivars by CaCO3,<br />

MgSO4 and their ion antagonism on yield components.*<br />

Cultivation<br />

methods<br />

(A)<br />

Treatments of Seed<br />

<strong>Priming</strong> (B)<br />

<strong>Cultivar</strong>s Cvs.<br />

( C)<br />

Direct<br />

sowin<br />

g<br />

direct<br />

2004 growing season 2005 growing season<br />

F Ca Fl F dm% Ty.m -2 Fn/p Ty.3m -2 Fdm% F Ca Fl<br />

1.96a 15.8a 4.5a 8.6b 10.1a 25.8a 4.6a 1.1a 16a<br />

indirect 2.25b 14.8a 4.4a 10.6a 11a 26.1a 4.5a 1.08a 15.8a<br />

Cont 2.18b 15.7a 4.5a 9.9ab 10.5a 24.6ab 4.4b 1.04ab 16.1a<br />

Dist 2.89a 15.4ab 4.3a 7b 11.5a 26.9ab 4.5ab 1.11ab 16.2a<br />

CaCO3 2.52a 14.7b 4.4a 10.2ab 9.7a 22.7b 4.7a 1.22a 15.3b<br />

MgSO4 2.75a 15.3ab 4.4a 11.2a 10.6a 24.1ab 4.6ab 0.95b 15.9ab<br />

CaCO3+<br />

MgSO4<br />

2.02b 15.2ab 4.3a 9.8ab 10.6a 31.5a 4.5ab 1.13ab 15.8ab<br />

Babyl 2.44a 15.7a 4.5a 11.2a 11.4a 27.7a 4.6a 1.14a 16.7a<br />

Khali 2.5a 14.8b 4.3b 8.1b 9.8b 24.2a 4.5b 1.04a 15.1b<br />

Cont 2.35bc 15.5ac 4.4a 7.3bc 6.7b 20b 4.3b 1.12ab 16.3a<br />

Distil 2.38bc 14.8cd 4.2a 6.6c 11ab 25.8ab 4.6ab 1.14ab 16.4a<br />

7


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

8<br />

(A*C)<br />

treatments and Cvs (B*C)<br />

Direct cultivation<br />

Indirect cultivation<br />

Indirect<br />

sowing<br />

CaCO3 2.18bc 14.1d 4.4a 7.9ac 10.7ab 25.8ab 4.8a 1.18ab 15.5ab<br />

MgSO4 2.08bc 14.8bd 4.4a 12.1ab 11.1ab 24.1ab 4.7ab 1.02ab 16.1ab<br />

CaCO3+<br />

MgSO4<br />

2.28bc 15bd 4.3a 9.3ac 9.2ab 33.4a 4.7ab 1.03ab 15.6ab<br />

Cont 2.01bc 16ab 4.6a 12.5a 12.3a 29.2ab 4.4ab 0.95ab 16ab<br />

Dist 3.4a 16.3a 4.5a 7.4bc 4.9a 28.1ab 4.4ab 1.09ab 15.9ab<br />

CaCO3 2.86ab 15.3ac 4.4a 12.6a 8.7b 19.7b 4.6ab 1.56a 15.1b<br />

MgSO4 3.43a 15.8ab 4.5a 10.3ac 10.1ab 24ab 4.6ab 0.88b 15.8ab<br />

CaCO3+<br />

MgSO4<br />

1.77c 15.5ac 4.3a 10.3ac 11.9a 29.6ab 4.4b 1.22a 16ab<br />

Direct Babyl 2.19a 14.8b 4.5a 11.2a 11ab 26a 4.7a 1.15a 16.9a<br />

Indirect<br />

Cont<br />

Khali 2.31a 14.8b 4.2b 10a 9.3b 25.9a 4.6a 1.04a 15.1b<br />

Babyl 2.69a 16.7a 4.5a 11.1a 11.8a 29.3a 4.6a 1.14a 16.4a<br />

Khali 2.69a 14.9b 4.4ab 6.2b 10.2ab 22.9a 4.3b 1.03a 15.1b<br />

Babyl 2.21ab 15.9a 4.7a 12.1ab 11.4ac 27.5ab 4.3b 1.19ac 16.6ab<br />

Khali 2.14ab 15.5a 4.3ab 7.7bc 9.6bd 21.8b 4.5ab 0.88cd 15.7bc<br />

Distil Babyl 2.79a 15.8a 4.5ab 8bc 12.6ab 30ab 4.7ab 0.97bd 17.2a<br />

CaCO3<br />

Khali 2.99ab 15ab 4.2b 5.9c 10.4ad 23.8ab 4.3b 1.26ab 15.2cd<br />

Babyl 2.28ab 15.4a 4.5ab 11.3ab 9.2cd 22.5ab 4.8a 1.38a 16.3ab<br />

Khali 2.75ab 14b 4.4ab 9.1bc 10.3ad 23ab 4.6ab 1.06bd 14.3d<br />

MgSO4 Babyl 3.03a 15.8a 4.6ab 14.1a 10.8ad 25ab 4.8a 1.03bd 16.7a<br />

CaCO3+<br />

MgSO4<br />

Cont<br />

Khali 2.48ab 14.9ab 4.3ab 3.3bc 10.4ad 23.1ab 4.5ab 0.87d 15.1cd<br />

Babyl 1.9b 15.7a 4.2b 10.2ac 13a 33.6a 4.6ab 1.12ad 16.5ab<br />

Khali 2.14ab 14.8ab 4.4ab 9.3bc 8.1d 29.3ab 4.5ab 1.14ad 15.1cd<br />

Babyl 2.38bd 15.5be 4.8a 11.7ad 9.5ad 21.9ab 4c 1.22ab 16.7ae<br />

Khali 2.31bd 15.5be 4.1b 13.3ab 7.8bd 18.1b 4.6ab 1.02bc 15.8bh<br />

Distil Babyl 2.04cd 14.3e 4.3ab 7.8ae 11.2ac 26.9ab 4.8ab 1.1ac 17.4a<br />

CaCO3<br />

Khali 2.75ad 14.6e 4.1ab 6.9ae 10.9ac 24.8ab 4.4ac 1.19ac 15.4di<br />

Babyl 2.11cd 14.1e 4.6ab 12.1ad 10.7ac 25.4ab 4.9a 1.27ab 16.8ad<br />

Khali 2.24cd 14e 4.3ab 13.1ab 10.8ac 26.1ab 4.8ab 1.09ac 14.3i<br />

MgSO4 Babyl 2.18cd 14.8de 4.6ab 14.1a 11.2ac 24.6ab 4.8a 1.15ac 17.1ab<br />

CaCO3+<br />

MgSO4<br />

Cont<br />

Khali 1.97cd 14.8de 4.2ab 6.5be 11ac 23.6ab 4.6ac 0.88bc 15.1gi<br />

Babyl 2.24cd 15.1ce 4.1ab 10.3ad 12.4ab 31.7ab 4.8a 1.02bc 16.5af<br />

Khali 2.31bd 14.9de 4.5ab 10.3ad 6d 35.1a 4.6ac 1.04ac 15.1hi<br />

Babyl 2.04cd 16.3ad 4.6ab 12.5ac 13.4a 33ab 4.6ac 1.16ac 16.6ab<br />

Khali 1.97cd 15.6be 4.5ab 2e 11.3ac 25.4ab 4.3ac 0.75c 15.6bi<br />

Distil Babyl 3.54ab 17.2a 4.7ab 8.1ae 13.9a 33.2ab 4.7ab 0.85bc 16.9ac<br />

CaCO3<br />

Khali 3.26ac 15.3be 4.3ab 5ed 9.9ad 22.9ab 4.2bc 1.32ab 14.9gi<br />

Babyl 2.45bd 16.7ac 4.4ab 10.5ad 7.7cd 19.5ab 4.7ab 1.49a 15.9bh<br />

Khali 3.26ac 14e 4.4ab 5.2ce 9.8ad 19.9ab 4.4ac 1.03ac 14.3i<br />

MgSO4 Babyl 3.88a 16.8ab 4.6ab 14.1a 10.3ad 25.4ab 4.7ab 0.92bc 16.3ag<br />

CaCO3+<br />

MgSO4<br />

Khali 2.99ac 14.9ed 4.3ab 10.1ad 9.7ad 22.6ab 4.4ac 0.85bc 15.2ei<br />

Babyl 1.57d 16.3ad 4.3ab 10.2ad 13.6a 35.6a 4.5ac 1.22ab 16.5af<br />

Khali 1.97cd 14.6e 4.3ab 8.4ae 10.3a 23.6ab 4.3ac 1.23ab 15.5ci<br />

* Calcium g.kg -1 on dry basis in fruit (F Ca), fruit length cm (Fl), fruit dry matter percentage (F dm%), mean of<br />

total yield kg.m -2 on 2004 or of 3m 2 furrow on 2005 (Ty),fruit number per plant (fn/p)


Indirect<br />

cultivation<br />

Cultivation methods and cvs (A*B)<br />

(A*C)<br />

Treatments and Cvs (B*C)<br />

Direct cultivation<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

Cultivation<br />

methods<br />

(A)<br />

Treatments of<br />

Seed<br />

<strong>Priming</strong> (B)<br />

<strong>Cultivar</strong>s Cvs.<br />

( C)<br />

Table (5): <strong>The</strong> influences of cultivation methods and priming the seeds of Babylon and Khalifa cucumber<br />

cultivars by CaCO3, MgSO4 and their ion antagonism on fruit yield g.m -2 at each harvesting intervals (H1-H10)<br />

during 2004 growing season.*<br />

Direct<br />

sowing<br />

Indirect<br />

sowing<br />

direct<br />

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10<br />

0.0a 561.7a 38.3b 77.5b 225b 365.8b 290a 363.3a 778.7b 827a<br />

indirect 20a 650.7a 303.5a 303.5a 721.7a 938.3a 613.3a 551.7a 1267.7a 853a<br />

Cont 12.5a 635.8ab 233.3a 310.8a 537.5a 1070.8a 545.8a 554.2ab 1487.5a 67.1a<br />

Dist 9.2a 130.8b 56.3ab 131.3a 491.7a 327.1b 366.7a 479.2ab 375b 692.5a<br />

CaCO3 0.0a 601.7ab 20.8b 89.6a 383.3a 841.7ab 425a 150b 745.8b 1057.5a<br />

MgSO4 28.3a 1171.7a 100ab 200a 462.5a 608.3ab 729.2a 429.2ab 900a 1010a<br />

CaCO3+<br />

MgSO4<br />

0.0a 490.8ab 204.2 220.8a 491.7a 412.5b 191.7a 675a 1607.5a 769.2a<br />

Babyl 20a 739a 202.5a 297.5a 643.3a 739.2a 735a 593.3a 1233a 957a<br />

Khali 0.0a 473.3a 43.3b 83.5b 303.3b 565a 168.3b 321.7b 813.3a 723a<br />

Cont 0.0a 266.7a 166.7ab 308.3ab 375ab 533.3c 491.7a 183.3b 866.7c 158.3a<br />

Distil 0.0a 178.3a 0.0b 12.5b 33.3b 70.8c 208.3a 333.3ab 658.3c 455a<br />

CaCO3 0.0a 278.3a 0.0b 25b 375ab 258.3c 216.7a 208.3b 275c 925a<br />

MgSO4 0.0a 1443.3a 0.0b 25b 283.3ab 575bc 483.3a 425ab 1108.3bc 1283.3a<br />

CaCO3+<br />

MgSO4<br />

0.0a 641.7a 25b 16.7b 58.3b 391.7c 50a 666.7ab 985c 1313.3a<br />

Cont 25a 1005a 300ab 313.3ab 700ab 1608.3a 600a 925a 2108.3ab 1183.3a<br />

Dist 18.3a 83.3a 112.5ab 250ab 950a 583.3bc 525a 625ab 91.7c 930a<br />

CaCO3 0.0a 925a 41.7b 154.2ab 391.7ab 1425ab 633.3a 91.7b 1216.7ac 1190a<br />

MgSO4 56.7a 900a 200ab 375ab 641ab 641.7bc 975a 433.3ab 691.7c 736.7a<br />

CaCO3+<br />

MgSO4<br />

0.0a 340a 383.3a 425a 925a 433.3c 333.3a 683.3ab 2230a 225a<br />

Direct Babyl 0.0a 582a 76.7b 150b 346.7b 635a 516.7ab 483.3ab 1070.7ab 1026a<br />

Indirect<br />

Cont<br />

Khali 0.0a 541.3a 0.0b 5b 103.3b 96.7b 63.3b 243.3b 486.7b 627.3a<br />

Babyl 40a 896a 328.3a 445a 940a 843.3a 953.3a 703.3a 1395.3a 887.3a<br />

Khali 0.0a 405.3a 162b 162b 503.3b 1033.3a 273.3b 400ab 1140ab 818.7a<br />

Babyl 25a 616.7ab 450a 508.3a 891.7a 1525a 808.3ab 808.3a 1783.3a 408.3a<br />

Khali 0.0a 655ab 16.7b 113.3b 183.3a 616.7b 283.3ab 300ab 1191.7ab 933.3a<br />

Distil Babyl 18.3a 83.3b 112.5b 225ab 683.3a 429.2b 591.7ab 741.7a 225b 941.7a<br />

CaCO3<br />

Khali 0.0a 178.3b 0.0b 37.5b 300a 225b 141.7b 216.7ab 525b 443.3a<br />

Babyl 0.0a 886.7ab 8.3b 129.2b 408.3a 600b 658.3ab 275ab 925ab 1286.7a<br />

Khali 0.0a 316.7b 33.3b 50b 385.3a 1083.3ab 191.7b 25b 566.7b 828.3a<br />

MgSO4 Babyl 58.7a 1768.3a 200ab 383.3ab 775a 583.3b 1316.7a 558.3ab 1200ab 1406.7a<br />

CaCO3+<br />

MgSO4<br />

Cont<br />

Khali 0.0a 575ab 0.0b 16.7b 150a 633.3b 141.7b 300ab 600b 613.3a<br />

Babyl 0.0a 340b 241.7ab 241.7ab 458.3a 558.3b 300ab 583.3ab 2031.7a 741.7a<br />

Khali 0.0a 641.7ab 166.7ab 200ab 525a 266.7b 83.3b 766.7a 1183.3ab 796.7a<br />

Babyl 0.0b 0.0b 333.3ab 616.7ab 750ab 1066.7ab 983.3ab 366.7ab 1700ad 266.7ab<br />

Khali 0.0b 533.3ab 0.0b 0.0c 0.0b 0.0b 0.0b 0.0b 33.3e 50ab<br />

Distil Babyl 0.0b 0.0b 0.0b 0.0c 0.0b 91.7b 300ab 666.7ab 450be 766.7ab<br />

CaCO3<br />

Khali 0.0b 356.7b 0.0b 25c 66.7b 50b 116.7b 0.0b 866.7ae 143.3ab<br />

Babyl 0.0b 490ab 0.0b 50c 450ab 433.3b 433.3ab 366.7ab 250ce 1326.7ab<br />

Khali 0.0b 66.7b 0.0b 0.0c 300ab 83.3b 0.0b 50b 300ce 523.3ab<br />

MgSO4 Babyl 0.0b 242a 0.0b 50c 416.7ab 800ab 766.7ab 450ab 1333.3ae 1373.3ab<br />

CaCO3+<br />

MgSO4<br />

Cont<br />

Khali 0.0b 466.7ab 0.0 0.0c 150b 350b 200b 400ab 883.3ae 1193.3ab<br />

Babyl 0.0b 0.0b 50b 33.3c 116.7b 783.3ab 100b 566.7ab 1620ae 1400ab<br />

Khali 0.0b 1283.3ab 0.0b 0.0c 0.0b 0.0b 0.0b 766.7ab 350ce 1226.7ab<br />

Babyl 50ab 1233.3ab 566.7a 400ac 1033.3ab 1983.3a 633.3ab 1250a 1866.7ac 550ab<br />

Khali 0.0b 776.7ab 33.3b 226.7ac 366.7ab 1233.3ab 566.7ab 600ab 2350a 1816.7a<br />

Distil Babyl 36.7ab 166.7b 225ab 450ac 1366.7a 766.7ab 883.3ab 816.7ab 0.0e 1116.7ab<br />

Khali 0.0b 0.0b 0.0b 50c 533.3ab 400b 166.7b 433.3ab 183.3de 743.3ab<br />

CaCO3 Babyl 0.0b 1283.3ab 16.7b 208.3ac 366.7ab 766.7ab 883.3ab 183.3b 1600ae 1246.7ab<br />

9


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

10<br />

Khali 0.0b 566.7ab 66.7b 100bc 416.7ab 2083.3a 383.3ab 0.0b 833.3ae 1133.3ab<br />

MgSO4 Babyl 113.3a 1116.7ab 400ab 716.7a 1133.3ab 366.7b 1866.7a 666.7ab 1066.7ae 1440ab<br />

CaCO3+<br />

MgSO4<br />

Khali 0.0b 683.3ab 0.0b 33.3c 150b 916.7ab 83.3b 200b 316.7ce 33.3b<br />

Babyl 0.0b 680ab 433.3ab 450ac 800ab 333.3b 500ab 600ab 2443.3a 83.3ab<br />

Khali 0.0b 0.0b 333.3ab 400ac 1050ab 533.3b 166.7b 766.7ab 2016.7 366.7ab<br />

Table (6): <strong>The</strong> influences of cultivation methods and priming the seeds of Babylon and Khalifa cumber cultivars by CaCO3,<br />

MgSO4 and their ion antagonism on fruit yield g.m -2 at each harvesting intervals (H11-H17) during 2004 growing season.*<br />

Cultivation methods and cvs (A*B)<br />

(A*C)<br />

Treatments and Cvs (B*C)<br />

Direct cultivation<br />

Cultivation<br />

methods<br />

(A)<br />

Treatments of<br />

Seed<br />

<strong>Priming</strong> (B)<br />

<strong>Cultivar</strong>s Cvs.<br />

( C)<br />

Direct<br />

sowing<br />

Indirect<br />

sowing<br />

direct<br />

H11 H12 H13 H14 H15 H16 H17<br />

636.7a 811.7a 442.3b 1073.9a 769.7a 1121.3a 275.3a<br />

indirect 454.3b 368.3b 648.7a 1110.3a 773a 974b 265a<br />

Cont 337.5a 873.3a 310a 625a 704.2a 784.2a 190.8a<br />

Dist 243.3a 483.3a 508.3a 1237.5a 470.8a 1032.5a 225a<br />

CaCO3 777.5a 560a 686.7a 1300a 942.5a 1323.3a 395a<br />

MgSO4 754.2a 696.7a 635a 1187.3a 829.2a 1114.2a 360.8a<br />

CaCO3+<br />

MgSO4<br />

615a 336.7a 587.5a 1110a 910a 984.2a 179.2a<br />

Babyl 632.7a 353.3a 636.7a 1086.3a 827a 1250.7a 355.3a<br />

Khali 458.3a 826.7a 454a 1098a 715.7a 844.7a 185a<br />

Cont 300a 1096.7a 0.0a 813.3a 775a 700a 233.3a<br />

Distil 275a 966.7a 308.3a 1083.3a 366.7a 1320a 275a<br />

CaCO3 941.7a 545a 531.7a 1213.3a 723.3a 1188.3a 381.7a<br />

MgSO4 958.3a 1083.3a 5050a 1031.3a 1025a 1453.3a 445a<br />

CaCO3+<br />

MgSO4<br />

708.3a 366.7a 866.7a 1228.3a 958..3a 945a 41.7a<br />

Cont 375a 650a 620a 436.7a 633.3a 868.3a 148.3a<br />

Dist 211.7a 0.0a 708.3a 1391.7a 575a 745a 175a<br />

CaCO3 613.3a 575a 841.7a 1388.3a 1161.7a 1458..3a 408.3a<br />

MgSO4 550a 310a 765a 1343.3a 633..3a 775a 276.7a<br />

CaCO3+<br />

MgSO4<br />

521.7a 306.7a 308.3a 991.7a 861.7a 1023.3a 316.7a<br />

Direct Babyl 816.7a 582.7a 744.7a 1230.5a 929.3a 1514.7a 456a<br />

Indirect<br />

Cont<br />

Khali 456.7a 1040.7a 140a 917.3a 610.2a 728a 94.7b<br />

Babyl 448.7a 124a 528.7a 942a 724.7a 986.7a 254.7ab<br />

Khali 460a 612.7a 768.7a 1278.7a 821.3a 961.3a 275.3ab<br />

Babyl 466.7ab 1020a 100a 563.3a 900a 930a 306.7a<br />

Khali 208.3b 726.7a 520a 686.7a 508.3a 638.3a 75a<br />

Distil Babyl 445ab 233.3a 541.7a 1125a 500a 1328.3a 358.3a<br />

CaCO3<br />

Khali 41.7b 733.3a 475a 1350a 441.7a 736.7a 91.7a<br />

Babyl 1130a 203.3a 806.7a 1295a 801.7a 1508.3a 545a<br />

Khali 425ab 916.7a 566.7a 1306.7a 8013.3a 1138.3a 245a<br />

MgSO4 Babyl 691.7ab 310a 910a 998a 1066.7a 1528a 375a<br />

CaCO3+<br />

MgSO4<br />

Cont<br />

Khali 816.7ab 1083.3a 360a 1376.7a 591.7a 703.3a 346.7a<br />

Babyl 430ab 0.0a 825a 1450a 866.7a 961.7a 191.7a<br />

Khali 800ab 673.3a 350a 770a 953.3a 1006.7a 166.7a<br />

Babyl 600ab 2040ab 0.0a 1126.7ab 1150a 1033.3a 466.7a<br />

Khali 0.0b 153.3c 0.0a 50ab 400a 366.7a 0.0a<br />

Distil Babyl 550ab 466.7bc 616.7a 1216.7ab 733.3a 1666.7a 550a<br />

CaCO3<br />

Khali 0.0b 1466.7ac 0.0a 950ab 0.0a 973.3a 0.0a<br />

Babyl 1566.7a 406.7bc 1063.3a 1476.7ab 430a 1650a 556.7a<br />

Khali 316.7b 683.3ac 0.0a 950ab 1016.7a 726.7a 206.7a<br />

MgSO4 Babyl 883.3ab 0.0c 1010a 706ab 1216.7a 2066.7a 623.3a<br />

Khali 1033.3ab 2166.7a 0.0a 1356.7ab 833.3a 840a 266.7a


Dir<br />

ect<br />

cul<br />

tiv<br />

ati<br />

on<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

Indirect cultivation<br />

CaCO3+<br />

MgSO4<br />

Cont<br />

Babyl 483.3ab 0.0c 1033.3a 1626.7ab 1116.7a 115.7a 83.3a<br />

Khali 933.3ab 733.3ac 700a 830ab 800a 733.3a 0.0a<br />

Babyl 333.3ab 0.0c 200a 0.0b 650a 826.7a 146.7a<br />

Khali 416.7ab 1300ac 1040a 873.3ab 616.7a 910a 150a<br />

Distil Babyl 340ab 0.0c 466.7a 1033.3ab 266.7a 990a 166.7a<br />

CaCO3<br />

Khali 83.3b 0.0c 950a 1750a 883.3a 500a 183.3a<br />

Babyl 693.3ab 0.0c 550a 1113.3ab 1173.3a 1366.7a 533.3a<br />

Khali 533.3ab 1150ac 1133.3a 1663.3ab 1150a 1550a 283.3a<br />

MgSO4 Babyl 500ab 620ac 810a 1290ab 916.7a 983.3a 126.7a<br />

CaCO3+<br />

MgSO4<br />

Khali 600ab 0.0c 720a 1396.7ab 350a 566.7a 426.7a<br />

Babyl 376.7ab 0.0c 616.7a 1273.3ab 616.7a 766.7a 300a<br />

Khali 666.7ab 613.3ac 0.0a 710ab 1106.7a 1280a 333.3a<br />

Table (7): <strong>The</strong> influences of cultivation methods and priming the seeds of Babylon and Khalifa cucumber<br />

cultivars by CaCO3, MgSO4 and their ion antagonism on fruit number per m 2 at each harvesting intervals (H1-<br />

H10) during 2004 growing season.*<br />

Cultivation methods and cvs (A*B)<br />

(A*C)<br />

Treatments and Cvs (B*C)<br />

Cultivation<br />

methods<br />

(A)<br />

Treatments of<br />

Seed<br />

<strong>Priming</strong> (B)<br />

<strong>Cultivar</strong>s Cvs.<br />

( C)<br />

Direct<br />

sowing<br />

Indirect<br />

sowing<br />

direct<br />

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10<br />

0.0a 7a 0.5b 1.1b 2.8b 4.5b 3.3a 4.3a 9.3b 9.7a<br />

indirect 0.3a 8a 2.6a 3.7a 8.8a 12.1a 7a 6.7a 15.7a 10.3a<br />

Cont 0.2a 8ab 2.9a 3.7a 6.4a 12.8a 6.5a 6.6ab 17.8a 8.1a<br />

Dist 0.1a 1.6b 0.8ab 2a 5.9a 2.3a 4a 5.7ab 4.6b 8.1a<br />

CaCO3 0.0a 7.4ab 0.3b 1.2a 4.8a 10.2a 4.2a 1.8b 9.1b 12.8a<br />

MgSO4 0.4a 14.4a 1.3ab 2.4a 5.7a 9ab 8.8a 5.3ab 11.8ab 11.8a<br />

CaCO3+<br />

MgSO4<br />

0.0a 6.1ab 2.6ab 2.7a 6.1a 5.3ab 2.3a 8.1a 19.1a 9.2a<br />

Babyl 0.3a 9.1a 2.5a 3.6a 7.8a 8.8a 8.4a 7a 15a 11.3a<br />

Khali 0.0a 5.9a 0.7b 1.1b 3.8b 7.8a 2b 4a 10a 8.7a<br />

Cont 0.0a 3.2a 2.2ab 3.7ab 4.5ab 6.3bc 5.8a 2.2b 10.2bc 1.8a<br />

Distil 0.0a 2.2a 0.2b 0.5b 0.5b 1.5c 1.8a 3.8ab 8bc 5.3a<br />

CaCO3 0.0a 3.7a 0.0b 0.3b 4.5ab 3.2c 2.5a 2.5b 3.5bc 10.7a<br />

MgSO4 0.0a 17.8a 0.0b 0.5b 3.5ab 6.7bc 5.8a 5.2ab 13bc 15a<br />

CaCO3+<br />

MgSO4<br />

0.0a 8a 0.3b 0.3b 0.8b 5bc 0.7a 7.8ab 11.7bc 15.7a<br />

Cont 0.3a 12.8a 3.7ab 3.7ab 8.3ab 19.3a 7.2a 11a 25.5a 14.3a<br />

Dist 0.2a 1a 1.5ab 3.5ab 11.3a 7bc 6.2a 7.5ab 1.2c 10.8a<br />

CaCO3 0.0a 11.2a 0.7b 2ab 5.2ab 17.2ab 5.8a 1.2b 14.7ab 14.8a<br />

MgSO4 0.8a 11a 2.5ab 4.3ab 7.8ab 11.3ac 11.8a 5.3ab 10.7bc 8.7a<br />

CaCO3+<br />

MgSO4<br />

0.0a 4.2a 4.8a 5a 11.3a 5.5bc 4a 8.3ab 26.5a 2.7a<br />

Direct Babyl 0.0a 7.2a 1a 1.9b 4.2bb 7.5ab 6.1ab 5.6ab 12.5ab 11.8a<br />

Indirect<br />

Cont<br />

Khali 0.0a 6.7a 0.1a 0.2b 1.3b 1.5b 0.5b 3b 6.1b 7.6a<br />

Babyl 0.5a 10.9a 4a 5.3a 11.3a 10a 10.6a 8.3a 17.5a 10.7a<br />

Khali 0.0a 5.1a 1.3a 2.1b 6.3ab 14.1a 3.4ab 5ab 13.9a 9.8a<br />

Babyl 0.3a 7.7ab 5.5a 6a 10.5a 18a 9.5ab 9.5a 20.3ab 4.7a<br />

Khali 0.0a 8.3ab 0.3b 1.3bc 2.3a 7.7ab 3.5ab 3.7ab 14.8ad 11.5a<br />

Distil Babyl 0.2a 1b 1.5b 3ac 8.2a 5.2b 7ab 8.7ab 2.7d 11.2a<br />

CaCO3<br />

Khali 0.0a 2.2b 0.2b 1bc 3.7a 3.3b 1b 2.7ab 6.5cd 5a<br />

Babyl 0.0a 10.8ab 0.2b 1.5bc 5.2a 7.2ab 6ab 3.3ab 11bd 15.5a<br />

Khali 0.0a 4b 0.5b 0.8bc 4.5a 13.2ab 2.3b 0.3b 7.2cd 10a<br />

MgSO4 Babyl 0.8a 21.7a 2.5ab 4.7ab 9.3a 6.5ab 15.7a 6.7ab 16.5ac 16.2a<br />

CaCO3+<br />

MgSO4<br />

Khali 0.0a 7.2ab 0.0b 0.2c 2a 11.5ab 2b 3.8ab 7.2cd 7.5a<br />

Babyl 0.0a 4.2b 2.8ab 3ac 5.7a 7ab 3.7ab 6.7ab 24a 8.8a<br />

Khali 0.0a 8ab 2.3ab 2.3ac 6.5a 3.5b 1b 9.5a 14.2ad 9.5a<br />

Cont Babyl 0.0b 0.0b 4.3ab 7.3ab 9ab 12.7ad 11.7ab 4.3ab 19.7ad 3ab<br />

11


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

Indirect cultivation<br />

12<br />

Khali 0.0b 6.3ab 0.0b 0.0c 0.0b 0.0d 0.0b 0.0b 0.7ed 0.7b<br />

Distil Babyl 0.0b 0.0b 0.0b 0.0c 0.0b 1.3cd 3.7b 7.7ab 5.3be 9ab<br />

CaCO3<br />

Khali 0.0b 4.3b 0.3b 1bc 1b 1.7cd 0.0b 0.0b 10.7a 1.7b<br />

Babyl 0.0b 6.3ab 0.0b 0.7c 5.3ab 5cd 5ab 4.3ab 3ce 15ab<br />

Khali 0.0b 1b 0.0b 0.0c 3.7ab 1.3cd 0.0b 0.7b 4ce 6.3ab<br />

MgSO4 Babyl 0.0b 29.7a 0.0b 1bc 5ab 8.7ad 9ab 5.3ab 15.3ae 15.3ab<br />

CaCO3+<br />

MgSO4<br />

Cont<br />

Khali 0.0b 6ab 0.0b 0.0c 2b 4.7cd 2.7b 5ab 10.7ae 14.7ab<br />

Babyl 0.0b 0.0b 0.7b 0.7c 1.7b 10ad 1.3b 6.3ab 19ae 16.7ab<br />

Khali 0.0b 16ab 0.0b 0.0c 0.0b 0.0d 0.0b 9.3ab 4.3ce 14.7ab<br />

Babyl 0.7ab 15.3ab 6.7a 4.7ac 12ab 23.3ab 7.3ab 14.7a 22ac 6.3ab<br />

Khali 0.0b 10.3ab 0.7b 2.7ac 4.7ab 15.3ad 7ab 7.3a 29a 22.3a<br />

Distil Babyl 0.3b 2b 3ab 6ac 16.3a 9ad 10.3ab 9.7a 0.0e 13.3ab<br />

CaCO3<br />

Khali 0.0b 0.0b 0.0b 1bc 6.3ab 5cd 2b 5.3a 2.3de 8.3ab<br />

Babyl 0.0b 15.3ab 0.3b 2.3ab 5ab 9.3ad 7ab 2.3a 19ae 16ab<br />

Khali 0.0b 7ab 1b 1.7bc 5.3ab 25a 4.7b 0.0b 10.3ae 13.7ab<br />

MgSO4 Babyl 1.7a 13.7ab 5ab 8.3a 13.7ab 4.3cd 22.3a 8a 17.7ae 17ab<br />

CaCO3+<br />

MgSO4<br />

Khali 0.0b 8.3ab 0.0b 0.3c 2b 18.3ac 1.3b 2.7a 3.7ce 0.3b<br />

Babyl 0.0b 8.3ab 5ab 5.3ac 9.7ab 4cd 6ab 7a 29a 1b<br />

Khali 0.0b 0.0b 4.7ab 4.7ac 13ab 7bd 2b 9.7a 24ab 4.3ab<br />

Table (8): <strong>The</strong> influences of cultivation methods and priming the seeds of Babylon and Khalifa cucumber<br />

cultivars by CaCO3, MgSO4 and their ion antagonism on fruit number per m 2 at each harvesting intervals (H11-<br />

H17) during 2004 growing season.*<br />

Treatment<br />

s and Cvs<br />

(B*C)<br />

Cultivation methods and cvs (A*B)<br />

(A*C)<br />

Cultivation<br />

methods<br />

(A)<br />

Treatments of<br />

Seed<br />

<strong>Priming</strong> (B)<br />

<strong>Cultivar</strong>s Cvs.<br />

( C)<br />

Direct<br />

sowing<br />

Indirect<br />

sowing<br />

direct<br />

H11 H12 H13 H14 H15 H16 H17<br />

7.6a 9.2a 5.3a 12.6a 9.1a 13.5a 3.3a<br />

indirect 5.4a 4.4a 7.7a 14.2a 9a 11.3a 3.2a<br />

Cont 4.1a 10.3 3.7a 5.8b 8.3a 9.1a 2.3a<br />

Dist 2.9a 5.6a 5.9a 14.8a 5.6a 12.3a 2.7a<br />

CaCO3 93a 6.7a 8.25a 15.3a 11a 15.7a 4.6a<br />

MgSO4 9a 7.3a 7.5a 13.8ab 9.4a 13.1a 4.3a<br />

CaCO3+<br />

MgSO4<br />

7.2a 4.1a 7.1a 17.5a 10.8a 11.8a 2.3a<br />

Babyl 7.5a 4.2a 7.6a 12.8a 9.8a 14.8a 4.3a<br />

Khali 5.5a 9.4a 5.3a 14a 8.2a 9.9a 2.1a<br />

Cont 3.5a 13a 0.0a 9.7ab 9.2a 8.5a 2.8a<br />

Distil 3.2a 11.2a 3.7a 12.8ab 4.5a 16a 3.2a<br />

CaCO3 11.3a 6.5a 6.5a 14ab 8.3a 14.3a 4.3a<br />

MgSO4 11.5a 10.8a 5.8a 12.2ab 11.8a 16.7a 5.3a<br />

CaCO3+<br />

MgSO4<br />

8.3a 4.5a 10.5a 14.5ab 11.7a 11.8a 0.7a<br />

Cont 4.7a 7.7a 7.3a 1.8b 7.5a 9.7a 1.8a<br />

Dist 2.7a 0.0a 8.2a 16.8a 6.7a 8.7a 2.2a<br />

CaCO3 7.2a 6.8a 10a 16.5a 13.7a 17a 4.8a<br />

MgSO4 6.5a 3.7a 9.2a 15.5a 7a 9.5a 3.3a<br />

CaCO3+<br />

MgSO4<br />

6a 3.7a 3.7a 20.5a 10a 11.7a 3.8a<br />

Direct Babyl 9.7a 6.9a 9a 14.6a 11.1a 18.3a 5.5a<br />

Indirect<br />

Cont<br />

Khali 5.4a 11.5a 1.6b 10.7a 7.1a 8.7b 1.1b<br />

Babyl 5.3a 1.5a 6.3ab 11.1a 8.5a 11.4ab 3.2ab<br />

Khali 5.5a 7.3a 9.1a 17.4a 9.4a 11.2ab 3.2ab<br />

Babyl 5.5ab 12a 1.2a 6.7a 11a 10.8a 3.8a<br />

Khali 2.7b 8.7a 6.2a 4.8a 5.7a 7.3a 0.8a<br />

Distil Babyl 5.2ab 2.7a 6.3a 13.3a 6a 15.8a 4.3a


Cultivation<br />

methods and cvs<br />

(A*B)<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

Direct cultivation<br />

Indirect cultivation<br />

CaCO3<br />

Khali 0.7b 8.5a 5.5a 16.3a 5.2a 8.8a 1a<br />

Babyl 13.3a 2.5a 9.8a 15.3a 9.3a 18.2a 6.3a<br />

Khali 5.2ab 10.8a 6.7a 15.2a 12.7a 13.2a 2.8a<br />

MgSO4 Babyl 8.5ab 3.7a 10.7a 11.7a 12.2a 17.7a 4.7a<br />

CaCO3+<br />

MgSO4<br />

Cont<br />

Khali 9.5ab 10.8a 4.3a 16a 6.7a 8.5a 4a<br />

Babyl 5ab 0.0a 10.2a 17.2a 10.7a 11.7a 2.5a<br />

Khali 9.3ab 8.2a 4a 17.8a 11a 11.8a 2a<br />

Babyl 7ab 24a 0.0a 13.3ac 14a 12.7a 5.7a<br />

Khali 0.0b 2bc 0.0a 6bc 4.3a 4.3a 0.0a<br />

Distil Babyl 6.3ab 5.3ac 7.3a 14.3ac 9a 20a 6.3a<br />

CaCO3<br />

Khali 0.0b 17ac 0.0a 11.3ac 0.0a 12a 0.0a<br />

Babyl 18.7a 5ac 13a 17.3ac 4.7a 20.3a 6.3a<br />

Khali 4ab 8ac 0.0a 10.7ac 12a 8.3a 2.3a<br />

MgSO4 Babyl 11ab 0.0c 11.7a 8.3ac 14a 23.7a 7.7a<br />

CaCO3+<br />

MgSO4<br />

Cont<br />

Khali 12ab 21.7ab 0.0a 16ac 9.7a 9.7a 3a<br />

Babyl 5.7ab 0.0c 13a 19.7ac 14a 14.7a 1.3a<br />

Khali 11ab 9ac 8a 9.3ac 9.3a 9a 0.0a<br />

Babyl 4ab 0.0c 2.3a 0.0c 8a 9a 2a<br />

Khali 5.3ab 15.3ac 12.3a 3.7bc 7a 10.3a 1.7a<br />

Distil Babyl 4ab 0.0c 5.3a 12.3ac 3a 11.7a 2.3a<br />

CaCO3<br />

Khali 1.3b 0.0c 11a 21.3ab 10.3a 5.7a 2a<br />

Babyl 8ab 0.0c 6.7a 13.3ac 14a 16a 6.3a<br />

Khali 6.3ab 13.7ac 13.3a 19.7ac 13.3a 18a 3.3a<br />

MgSO4 Babyl 6ab 7.3ac 9.7a 15ac 10.3a 11.7a 1.7a<br />

CaCO3+<br />

MgSO4<br />

Khali 7ab 0.0c 8.7a 16ac 3.7a 7.3a 5a<br />

Babyl 4.3ab 0.0c 7.3a 14.7ac 7.3a 8.7a 3.7a<br />

Khali 7.7ab 7.3ac 0.0a 26.3a 12.7a 14.7a 4a<br />

Table (9): <strong>The</strong> influences of cultivation methods and priming the seeds of Babylon and Khalifa cucumber<br />

cultivars by CaCO3, MgSO4 and their ion antagonism on fruit number per a furrow of 3m 2 at each harvesting<br />

intervals (H1-H10) during 2005 growing season.*<br />

Cultivation<br />

methods<br />

(A)<br />

Treatments of<br />

Seed<br />

<strong>Priming</strong> (B)<br />

<strong>Cultivar</strong>s Cvs.<br />

( C)<br />

indirect<br />

sowing<br />

indirect<br />

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10<br />

0.9a 1.7a 2.3a 4.2a 16a 14.9a 16.4a 17.8a 16.2b 18.9b<br />

direct 0.0a 0.0b 0.87b 1.8b 7.7b 6.5b 14.1a 13.3b 21.7a 28.1a<br />

Cont 0.2a 1.2a 1.4a 3.7a 13.2a 12.2a 15.3a 13.5a 20.5a 23.3a<br />

Dist 1a 0.9a 1.8a 3.6a 14.1a 11.3a 15.9a 18a 19a 26.6a<br />

CaCO3 0.6a 0.4a 1.8a 2.2a 9.3a 9.5a 14.4a 15.3a 17.3a 22.3a<br />

MgSO4 0.3a 0.8a 1.9a 3.1a 11.8a 9.8a 14.4a 14.8a 20a 23.3a<br />

CaCO3+<br />

MgSO4<br />

0.2a 0.9a 1.1a 2.6a 11a 10.7a 16.2a 16.2a 17.9a 22a<br />

Babyl 0.9a 1.6a 3.1a 4.2a 16.7a 13.3a 21.7a 17.5a 21.8a 21.9b<br />

Khali 0.0a 0.1b 0.1b 1.8b 7b 8b 8.8b 13.6b 16b 25.1a<br />

Cont 0.3a 2.3a 0.8cd 5.2a 19.2a 18.7a 20.3a 14.7bc 22.2ac 21.7cd<br />

Distil 2a 1.8a 3.2ab 4.8ab 20.3a 14ac 17.7a 18.8ab 14.8bd 22cd<br />

CaCO3 1.2a 0.8ab 2ac 3.2ab 11.5ab 13.3ad 14a 15.3bc 12d 12e<br />

MgSO4 0.7a 1.5ab 3.8a 4ab 16.2ab 13.2ad 14.2a 16.5b 14cd 19d<br />

CaCO3+ 0.3a 1.8a 1.2bd 4ab 12.8ab 15.3ab 15.7a 23.5a 18.2ad 20d<br />

13


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

(A*C)<br />

Treatments and Cvs (B*C)<br />

indirect cultivation<br />

direct cultivation<br />

14<br />

direct<br />

sowing<br />

MgSO4<br />

Cont 0.0a 0.0a 2ac 2.2ab 7.2b 5.7d 10.3a 12.3bc 18.8ad 24.8bd<br />

Dist 0.0a 0.0a 0.3cd 2.3ab 7.8b 8.7bd 14.2a 17.2b 23.2ab 31.2ab<br />

CaCO3 0.0a 0.0a 1.5bd 1.2b 7b 5.7d 14.8a 15.2bc 22.7ab 32.7a<br />

MgSO4 0.0a 0.0a 0.0d 2.2ab 7.3b 6.3cd 14.7a 13.2bc 26a 27.7ac<br />

CaCO3+<br />

MgSO4<br />

0.0a 0.0a 0.5cd 1.2b 9.2b 6d 16.7a 8.8c 17.7ad 24cd<br />

indirect Babyl 1.8a 3.1a 4.5a 5.1a 21.4a 15.8a 21.1a 16.9a 19.7a 17.8c<br />

direct<br />

Cont<br />

Khali 0.0b 0.2b 0.1c 3.3a 10.6b 14ab 11.7b 18.6a 12.8b 20.1c<br />

Babyl 0.0b 0.0b 1.7b 3.3a 11.9b 10.9b 22.4a 18.1a 23.9a 25.9b<br />

Khali 0.0b 0.0b 0.0c 0.3b 3.5c 2.1c 5.9c 8.6b 19.4a 30.2a<br />

Babyl 0.3a 1.8a 2.8a 5.2a 15.8ac 13.8ac 18.8ac 16.5ab 24.3a 20.2bd<br />

Khali 0.0a 0.5a 0.0b 2.2ab 10.5bd 10.5ac 11.8bd 10.5b 16.7ab 26.3ac<br />

Distil Babyl 2a 1.8a 3.5a 4.8ab 22.3a 16.5a 24.3a 19a 20.8ab 24.7ad<br />

CaCO3<br />

Khali 0.0a 0.0a 0.0b 2.3ab 5.8d 6.2c 7.5d 17ab 17.2ab 28.5a<br />

Babyl 1.2a 0.8a 3.3a 3.2ab 9.8bd 9.3ac 18.3ac 16.3ab 17.5ab 19cd<br />

Khali 0.0a 0.0a 0.2b 1.2b 8.7cd 9.7ac 10.5cd 14.2ab 17.2ab 25.7ac<br />

MgSO4 Babyl 0.7a 1.5a 3.7a 4ab 16.8ac 12ac 21.2ab 16.5ab 23a 19.3cd<br />

CaCO3+<br />

MgSO4<br />

Cont<br />

Khali 0.0a 0.0a 0.2b 2.2ab 6.7d 7.5bc 7.7d 13.2ab 17ab 27.3ab<br />

Babyl 0.3a 1.8a 2.2a 4ab 18.5ab 15ab 26a 19.2a 23.3a 26.2ac<br />

Khali 0.0a 0.0a 00b 1.2b 3.5d 6.3c 6.3d 13.2ab 12.5b 17.8d<br />

Babyl 0.7ab 3.7a 1.7cg 6.3a 22.3ab 18a 23.7ac 16ad 25.7ab 22.7dh<br />

Khali 0.0b 1bc 0.0g 4ac 16be 19.3a 17ae 13.3be 18.7ae 20.7ei<br />

Distil Babyl 4a 3.7a 6.3ab 5.7ab 33a 18.3a 25.7ab 16.3ad 18.7ae 22.7eh<br />

CaCO3<br />

Khali 0.0b 0.0c 0.0g 4ac 7.7cf 9.7ab 9.7ce 21.3ab 11de 21.3eh<br />

Babyl 2.3ab 1.7ac 3.7cd 4.3ac 9.7bf 9.3ab 15ae 12.7be 14be 10.7i<br />

Khali 0.0b 0.0c 0.3fg 2ac 13.3bf 17.3a 13be 18ac 10e 13.3hi<br />

MgSO4 Babyl 1.3ab 3a 7.3a 3.7ac 22.3ab 13ab 18.7ae 14.3be 17ae 14gi<br />

CaCO3+<br />

MgSO4<br />

Cont<br />

Khali 0.0b 0.0c 0.3fg 4.3ac 10bf 13.3ab 9.7ce 18.7ac 11de 24ch<br />

Babyl 0.7ab 3.7a 3.3ce 5.7ab 19.7bc 20.3a 22.3ad 25.3a 23ad 19fi<br />

Khali 0.0b 0.0c 0.0g 2.3ac 6df 10.3ab 9ce 21.7b 13.3be 21ei<br />

Babyl 0.0b 0.0c 4bc 4ac 9.3bf 9.7ab 14be 17ad 23ad 17.7fi<br />

Khali 0.0b 0.0c 0.0g 0.3bc 5df 1.7b 6.7e 7.7de 14.7be 32ad<br />

Distil Babyl 0.0b 0.0c 0.7eg 4ac 11.7bf 14.7a 23ac 21.7ab 23ad 26.7bf<br />

CaCO3<br />

Khali 0.0b 0.0c 0.0g 0.7bc ddf 2.7b 5.3e 12.7be 23.3ad 35.7ab<br />

Babyl 0.0b 0.0c 3cf 2ac 10bf 9.3ab 21.7ad 20ac 21ae 27.3bf<br />

Khali 0.0b 0.0c 0.0g 0.3bc 4df 2b 8ed 10.3ce 24.3ac 38a<br />

MgSO4 Babyl 0.0b 0.0c 0.0g 4.3ac 11.3bf 11ab 23.7ac 18.7ac 29a 24.7dg<br />

CaCO3+<br />

MgSO4<br />

Khali 0.0b 0.0c 0.0g 0.0c 3.3ef 1.7b 5.7e 7.7de 23ad 30.7ae<br />

Babyl 0.0b 0.0c 1dg 2.3ac 17.3bd 9.7ab 29.7a 13be 23.7ad 33.3ac<br />

Khali 0.0b 0.0c 0.0g 0.0c 1f 2.3b 3.7e 4.7e 11.7ce 14.7gi<br />

Table (10): <strong>The</strong> influences of cultivation methods and priming the seeds of Babylon and Khalifa cucumber<br />

cultivars by CaCO3, MgSO4 and their ion antagonism on fruit number per a furrow of 3m 2 at each harvesting<br />

intervals(H11-H19) during 2005 growing season.*<br />

Treatments of<br />

Seed<br />

<strong>Priming</strong> (B)<br />

indirect<br />

H11 H12 H13 H14 H15 H16 H17 H18 H19<br />

26.8a 15.8b 17.8a 13.6a 12.8a 9.8a 9.9a 6.2a 2.1a<br />

direct 20.7b 23.2a 18.9a 14.3a 13.6a 11.2a 6.7b 4.9a 0.0a<br />

Cont 20.4b 17a 17.8a 12.4b 14.3a 10.2a 8.8a 5.6a 1.9a<br />

Dist 24.2ab 19a 21.5a 14.9ab 14.8a 10.5a 7a 6.4a 1.2a<br />

CaCO3 23.9ab 17.7a 16.8a 12.2b 10.42a 10.5a 8.2a 4.6a 0.5a<br />

MgSO4 21.6b 20.7a 18a 13.7ab 14.8a 10.5a 7.8a 5.7a 1.2a<br />

CaCO3+ 28.8a 22.5a 17.6a 16.8a 11.6a 10.8a 9.9a 5.3a 0.4a


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

Cultivation methods and cvs (A*B)<br />

(A*C)<br />

Treatments and Cvs (B*C)<br />

indirect cultivation<br />

direct cultivation<br />

<strong>Cultivar</strong>s Cvs.<br />

( C)<br />

indirect<br />

sowing<br />

direct<br />

sowing<br />

MgSO4<br />

Babyl 24.1a 17.6b 17.4a 13.9a 11.3b 11.4a 8.7a 6a 1.3a<br />

Khali 23.5a 21.4a 19.2a 14.1a 15a 9.6a 8a 5.1a 0.7a<br />

Cont 25.3ac 14.3c 20.3ab 13.5ab 17.2ab 11.7ab 12.5ab 7.5a 3.8a<br />

Distil 27.8ab 14.8bc 20.3ab 16.3a 15.7ab 9.8ac 7.5bc 7.7a 2.3ab<br />

CaCO3 22.2bc 13.3c 12.8b 9.5b 7.8c 6c 7.8ac 4.8a 1b<br />

MgSO4 24.2bc 18ac 15.8ab 13ab 10.7bc 9bc 8.5ac 5.2a 2.3ab<br />

CaCO3+<br />

MgSO4<br />

34.7a 18.5ac 19.7ab 15.8ab 12.5ac 12.5ab 13.3a 5.7a 0.8b<br />

Cont 15.5c 19.7ac 15.3ab 11.3ab 11.5bc 8.7bc 5c 3.7a 0.0b<br />

Dist 20.5bc 24.2a 22.7a 13.5ab 13.8ac 11.2ac 6.5c 5.2a 0.0b<br />

CaCO3 25.7ac 22ac 20.7a 14.8ab 13ac 15a 8.5ac 4.3a 0.0b<br />

MgSO4 19bc 23.5ab 20.2ab 14.3ab 18.8a 12ab 7.2bc 6.2a 0.0b<br />

CaCO3+<br />

MgSO4<br />

22.8bc 26.5a 15.5ab 17.7a 10.7bc 9.2bc 6.5c 5a 0.0b<br />

indirect Babyl 28.9a 14.1c 19.2ab 11.7b 12.5b 10.5a 9.9a 6.7a 2.7a<br />

direct<br />

Cont<br />

Khali 24.8ab 17.5bc 16.4b 15.6a 13ab 9.1a 9.9a 5.6a 1.5ab<br />

Babyl 19.3b 21.1ab 15.7b 16.1a 10.1b 12.2a 7.5ab 5.2a 0.0b<br />

Khali 22.1b 25.3a 22.1a 12.6ab 17a 10.2a 6b 4.5a 0.0b<br />

Babyl 22.5b 16.5b 19ab 12.3ab 14ac 9.8a 9.5ab 6.3a 2a<br />

Khali 18.3b 17.5b 16.7ab 12.5ab 14.7ac 10.5a 8ab 4.8a 1.8a<br />

Distil Babyl 24.2ab 16.7b 19.5ab 16.5ab 12.2ac 10.3a 9.3ab 7.5a 1.2a<br />

CaCO3<br />

Khali 24.2ab 22.3ab 23.5a 13.3ab 17.3ab 10.7a 4.7b 5.3a 1.2a<br />

Babyl 22.2b 17b 13.2b 10.7b 8.5c 11a 6.5ab 4.2a 1a<br />

Khali 25.7ab 18.3ab 20.3ab 13.7ab 12.3ac 10a 9.8ab 5a 0.0a<br />

MgSO4 Babyl 17.8b 14.7b 17.5ab 12.7ab 10.5bc 12.2a 6.7ab 4.8a 1.2a<br />

CaCO3+<br />

MgSO4<br />

Cont<br />

Khali 25.3ab 26.8a 18.5ab 14.7ab 19a 8.8a 9ab 6.5a 0.7a<br />

Babyl 33.7a 23ab 18ab 17.2a 11.5bc 13.5a 11.5a 7a 0.8a<br />

Khali 23.8ab 22ab 17.2ab 16.3ab 11.7bc 8.2a 8.3ab 3.7a 0.0a<br />

Babyl 29.7ab 13.7c 23.7ac 11.3ac 17.7ab 12ad 12.7ab 10a 4a<br />

Khali 21bc 15c 17ad 15.7ab 16.7bc 11.3ad 12.3ac 5ab 37a<br />

Distil Babyl 30.7ab 13.7c 20.7ad 18ab 15.3bc 10ad 10.3ac 9a 2.3a<br />

CaCO3<br />

Khali 25bc 16bc 20ad 14.7ab 16bc 9.7ad 4.7bc 6.3ab 2.3a<br />

Babyl 20bc 12c 10.7d 5.3c 6.3c 4.7d 5.7bc 2.7b 2a<br />

Khali 24.3bc 14.7c 15bd 13.7ac 9.3bc 7.3bd 10ac 7ab 0.0a<br />

MgSO4 Babyl 23.3bc 13.7c 20.3ad 9bc 10bc 11ad 6.3ac 5ab 3.3a<br />

CaCO3+<br />

MgSO4<br />

Cont<br />

Khali 25bc 22.3ac 11.3d 17ab 11.3bc 7cd 10.7ac 5.3ab 1.3a<br />

Babyl 40.7a 17.3bc 20.7ad 14.7ab 13.3bc 15ab 14.7a 7ab 1.7a<br />

Khali 28.7ab 19.7ac 18.7ad 17ab 11.7bc 10ad 12ac 4.3ab 0.0a<br />

Babyl 15.3bc 19.3ac 14.3cd 13.3ac 10.3bc 7.7bd 6.3ac 2.7b 0.0a<br />

Khali 15.7bc 20ac 16.3ad 9.3bc 12.7bc 9.7ad 3.7c 4.7ab 0.0a<br />

Distil Babyl 17.7bc 19.7ac 18.3ad 15ab 9bc 10.7ad 8.3ac 6ab 0.0a<br />

CaCO3<br />

Khali 23.3bc 28.7ab 27a 12ac 18.7ab 11.7ad 4.7bc 4.3ab 0.0a<br />

Babyl 24.3bc 22ac 15.7bd 16ab 10.7bc 17.3a 7.3ac 5.7ab 0.0a<br />

Khali 27ac 22ac 25.7ab 13.7ac 15.3bc 12.7ac 9.7ac 3b 0.0a<br />

MgSO4 Babyl 12.3c 15.7bc 14.7bd 16.3ab 11bc 13.3ac 7ac 4.7ab 0.0a<br />

CaCO3+<br />

MgSO4<br />

Khali 25.7bc 31.3a 25.7ab 12.3ac 26.7a 10.7ac 7.3ac 7.7ab 0.0a<br />

Babyl 26.7ac 28.7ab 15.3bd 19.7a 9.7bc 12ad 8.3ac 7ab 0.0a<br />

Khali 19bc 24.3ac 15.7bd 15.7ab 11.7bc 6.3cd 4.7bc 3b 0.0a<br />

15


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

REFERENCES<br />

- Ayers R. S. and D.W. Wescot (1976). Water quality of<br />

16<br />

agriculture. Irrig. & Drainage . Paper, 29: Food and<br />

Agric. Org. UN, Rome ppxiii.<br />

- Basra, A. S. (1995). Seed Quality: Basic Mechanisms and<br />

Agricultural Implications. Pp 321-359. Food<br />

Products Press.<br />

- Frett J. J., W.G. Pill, and D. C. Morneau (1991). A<br />

comparison of priming agents for tomato and<br />

asparagus seeds. HortScience 26: 1158-1159.<br />

- Haigh A.M. and E. W. R. Barlow (1987). Germination<br />

and priming tomato, carrot, onion and sorghum<br />

seeds in a range of osmotica. J. Amer. Soc. Hort.<br />

Sci. 112: 202-208.<br />

- Kermode A. R., J. D. Bewley, J. Dasgupta, and S. Misra<br />

(1986). <strong>The</strong> transition for seed development to<br />

germination: A key role for desiccation.<br />

HortScience 21: 1113-1118.<br />

- Khan A. A. (1981). Hormonal regulation of primary and<br />

secondary seed dormancy. Israel J. Bot. 29: 207-<br />

224.<br />

- Khan A. A., G. S. Abawi and J. D. Maguire (1992).<br />

Integrating matriconditioning and fungcidal<br />

treatment of table beet seed to improve stand<br />

establishment and yield. Crop Sci. 32: 231-237.<br />

- Smith P.T. and B. G. Cobb (1991). Accelerated<br />

germination of pepper seed by priming with salt<br />

solutions and water. HortScience 26: 417-419.<br />

- Swiader, J. M., G. W. Ware and P. J. MacCollum (1996).<br />

Producing Vegetable Crops. Danville, Illinois:<br />

Interstate Publisher Inc. Chapter 17, <strong>Cucumber</strong>s.<br />

- Tatlioglu, T. (1993). <strong>Cucumber</strong>s. In G. Kalloo and B.O.<br />

Bergh (ed.) Genetic improvement of vegetable<br />

crops. Pergamon Press, New South Wales,<br />

Australia.<br />

- TeKrony D. M. and D. B. Egli (1991). Relationship of<br />

seed vigor to crop yield: A review. Crop Sci. 31:<br />

816-822.<br />

- Van der Toorn P. (1989). Embryo growth in mature<br />

celery seeds. PhD. Dissertation, Agriultural<br />

University, Waginengen, <strong>The</strong> Netherlands, 95pp.<br />

- Westerman R. L. (1990). Soil testing and plant analyze.<br />

3 rd . Ed. Sci. Soc. Amer. Midison W. I., USA


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

0.1-<br />

ىظَووت اشَيكذ % 011<br />

كشي ةهتاي ظَوت َىطهيي ىتشث . اسَيمرمةد<br />

ظاند ىسكثولد اظائ ظاند ىسكظائسَيذ ةهتاي ةفيلةخو لباب ازايخ وَيزَوج وودزةي َىظَوت<br />

َىوام وب<br />

CaCO3 + MgSO4<br />

ةوهتاي ازايخ َىظَوت . ىازاج َىض ىسكةزابوود ةتاي ةي ىزةدةزةض ظةئ . م◦<br />

اد كيوضب وَيكفاق ظاند ىدناض ةهتاي َىوود ايو ) وخوةتضاز اندناض(<br />

42<br />

11<br />

ذ Mpa 0.1-<br />

َلىةًكَيت و<br />

MgSO4<br />

ةتخوث<br />

Mpa<br />

ايتامزةط لاث زةض ل اد َىهظَوئ ظاند ىسك<br />

اد ىيظةشد زةطكَيئ َىكَيئ اي اكَيز وود ب ىدناض<br />

.) وخوةتضاز ةن اندناض(<br />

اد ىكيتضلاث<br />

َىيناخ ظاند ىاو اهتفانخ اكَيز ب مصن اي ىتامزةطذ تنضازاث ةهتاي مامةن َىطهيي ىتشثو<br />

اوهتايو ىوووهيوي زةوض ل َىنسكظائسَيذ وَيزَوج وودزةي ىاظةئ انسكَيتزاك انسكزايد َوب ووبوةئ َىهيلوكةظ َىظةئذ مةزةم<br />

َىمةيزةب . وخوةتضاز اندناضذ ووب ترياب اي وخوةتضازةن اندناض وك سكزايد ىامانجةئ<br />

. ازايخ وَيزَوج وودزةي َىمةيزةب<br />

ل % 0.4 و َى4112<br />

لااض ل % 42.2 ارَيز ب ووب ترنشةم ىيةشيمةي َىمةيزةبو ووبست تخةوزةب َىي وخوةتضازةن<br />

اندناض<br />

ىيةوشيمةي َىمةويزةب َىزاووبد َىنسكظائسَيذ وَييزةدةزةض ازةوظاند ىسكزاموت ةهتاي ظاضزةب وَيييادوج<br />

4<br />

4<br />

لااض ل م / مغك 01.1 و َى 4112 لااض ل MgSO4 اناهيئزاك ب َىمةدد م / مغك<br />

. ةفيلةخ َىزَوجذ ووب ست تخةوزةب َىي ىو َىمةيزةب لباب َىزَوج<br />

00.4<br />

CaCO3 + MgSO4<br />

مةويزةب ويترنشةوم لباب َىزَوج . َى4111<br />

لااض ل % 02.1 و َى4112<br />

لااض ل % 2..2<br />

CaCO3 +<br />

.<br />

. َى4111<br />

لااض<br />

ةتشيةط مةيزةب ويترنشةمو<br />

اناهيئزاكب َىمةدد ىَ<br />

4111<br />

ارَيز ب ووب ترث ىو َىمةيزةبو<br />

اناهيئزاكبو وخوةتضاز اندناض َىمةدد ىاطيدو CaCO3 اناهيئزاكبو وخوةتضازةن اندناض ىمةدد<br />

سكزاموت<br />

17


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 1-18, 2010<br />

تانوبراك ليلاحمو رطقملا ءاملاب ففجتلا و بيطرتلا نم تارود ةطساوب رايخلا نم نيفنص روذب ةملقا ريثات<br />

لصاحلاو ومنلا<br />

ىلع امهيطيلخ وا مويسينملا تاتيربك وا مويسلاكلا<br />

وصلاخلا<br />

روذتتبلل التتصلا ياتتجلا نزوتتلا نتتم % 011 را تتقمب رتتطقملا ءاتتملا اتتط ةتتفيلخ و نولباتتب راتتيخلا افنتتص روذتتب بتتعقن<br />

لاكتساب اتكيم0.1<br />

-و<br />

مويتسينملا تاتتيربك نتم لاكتساب اتكيم0.1<br />

-و<br />

مويتسلاكلا تاتنوبراك نتم لاكتساب اكيم0.1-<br />

لولحمبو<br />

رود ت تتيعا , التتصلا اتتهنزو ىتتلا لتتصتل وتتيم وتت رد 11 ىتتلع نرفلاتتب روذتتبلا<br />

بتتفف فتتث وعاتتس 42 تتملو<br />

اتتمهيطيلخ نتتم<br />

ويكيتتسلاب ها تقا اتط وا لتقحلا اتط رتفابم وتملققملا رتيرو وتملققملا روذتبلا بعرز و . تارم ةثلاث هذى فيفجتلا و بيطرتلا<br />

اتتنلا ترهتضا . لتصاحلاو وتمنلا اتط روذتبلا ةتملقا ريثاتت ةطرعم وسار لا هذى نم ي هلا ناكو اكيتسلابلا بيبلا لخاد اط<br />

اتط % 42.2 را تقمب هرتفابملا رتير وتعارزلا ىتلع بقوفت ذا رايخلا لصاحل وميق ىلعا بطعا لقحلا اط هرفابملا وعارزلا نا<br />

وتتتملققملا روذتتتبلل اتتقطارم لتتتبرملا رتتتملل فتتتغك00.4<br />

لتتتصا ىتتلعا ناتتتك . وتتينا لا ونتتتسلا اتتتط % 0.4 را تتقمبو ىتتتلولا ونتتسلا<br />

وتتملققملا روذتتبلل اتتقطارم لتبرملا رتتتملل فتتغك01.1<br />

وتينا لا ونتتسلل لتتصا ىتلعا ناتتكو ىتتلولا ونتسلا اتتط مويتتسينغملا تاتتيربكب<br />

اتتلكلا لتتصاحلاو<br />

رتكبملا لتتصاحلا اتتط اوتفتم نولباتتب فنتتص ناتك . مويتتسينملا تاتتتيربك و مويتسلاكلا تاتتنوبراك نتتم ميتلخب<br />

رتتير(<br />

ها تتقلاب وتتعارزلا بتتطعا .% 02.1 را تتقمب وتتينا لا ونتتسلا اتتطو % 2..2 را تتقمب ىتتلولا ونتتسلا اتتط وتتفيلخ فنتتص<br />

ىتتلع<br />

و ىتلولا ونتسلا اتط وتعارزلا وتقيرطو يانتصلا نيتب لخا تتلل لتبرملا رتتملل فتغك 00.0 لصا ىلعا نولباب فنصل ) هرفابملا<br />

ناتتك لتتيلاحملاو يانتتصلا نيتتب لخا تتتلل لتتبرملا رتتتملل فتغك 02.2 لتتصا ىتتلعا . وتتينا لا ونتتسلا اتتط لتتبرملا رتتتملل فتغك 8..<br />

رتتملل فتغك 00.4 لتصا ىتلعا ناتك وتينا لا ونتسلا اتطو اتلولا ونتسلا اتط مويسينغملا تاتيربكب فلقاملا نولباب فنصل اقطارم<br />

رتتملل فتغك 00.. لتصا ىتلعا . مويتسلاكلا تاتنوبراك لتم مويتسينغملا تاتتيربك ميتلخب فلقاتملا نولباتب فنتصل اتقطارم لتبرملا<br />

تاتنوبراك لتم مويتسينغملا تاتيربك ميلخب هروذب وملقاملا نولباب فنصل اقطارم ناك وينا لا ونسلا اط اثلا لا لخا تلل لبرملا<br />

هرفابملا رير ها قلا ةقيرطب عورزملاو مويسلاكلا<br />

18


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 19-24, 2010<br />

SENSORY EVALUATION CHARACTERITICS OF DIFFERENT<br />

WALNUT CULTIVARS (Juglans regia L.) IN DUHOH<br />

AZAD A. T. MAYI<br />

Dept. of Horticulture, College of Agriculture, University of Duhok, Kurdistan Region-Iraq<br />

(Received: January 21, 2010; Accepted for publication: June 26, 2010)<br />

ABSTRACT<br />

This study was conducted in Duhok, Kurdistan region at five locations (Bagera, Mayi, Amedy, Zakho and Duhok<br />

center) during the period 08-09 in order to collect information for improving the present assortment of scion cultivars.<br />

A total of 17 walnut individual cultivars were investigated to determine the main chemo-physical and qualitative<br />

characteristics of the nuts. <strong>The</strong> walnut population we studied can be considered as a genetically valuable one. In the<br />

present high quality fruit was obtained. Among the 17 individuals, provided the best proportion of kernel mass<br />

compared with endocarp. Sensory characteristics of the nuts (fruit thickness, length, width, size, Length/width ratio,<br />

fresh weight and dry weight, kernel weight, kernel color, Oil,) were studded. as compared with others (_Azad2 cv.<br />

Were dominated in shell thickness, Kavlesin2, in fruit length, and width, A. Mirza in fruit L/W ratio and nut fruit size<br />

(2.12cm,38.61cm,34.30cm,1.250cm and 200cm3 respectively). while in this study, we can observe that E.Taha resulted<br />

in the highest nut flesh weight and kernel dry weight (15.09g and 7.18g, respectively, at Mayi location) However, the<br />

obtained results indicated that trees fruit nut of cv.Ramzi1 at Mayi location was superior over all cultivars in fruit<br />

kernel color (10.50) and cv. Azad3 in Oil percentage (73.41%) at Duhok center location.<br />

KEY WORDS: sensory evaluation, walnut fruits, fruit in shell, internal characteristics of a kernel.<br />

T<br />

INTRODUCTION<br />

he Common walnut (Juglans regia),<br />

Persian walnut, or English walnut), is<br />

the original walnut tree of the Old World. It is<br />

native in a region stretching from the Balkans<br />

eastward to the Himalayas and southwest China.<br />

<strong>The</strong> largest forests are in Kyrgyzstan, where<br />

trees occur in extensive, nearly pure walnut<br />

forests at 1,000–2,000 m altitude (Hemery<br />

1998., Ingels, et al.1990, Prasad, 2003, Colaric,<br />

et al. 2006 and Rezso, et al 2008).<br />

Persian walnut is commercially cultivated in<br />

many regions around the world for its timber, as<br />

well as for its nuts. European production of<br />

Persian walnut still largely depends on trees<br />

originated from seedlings. During the last 20<br />

years, important work on seedling selection has<br />

been carried out in local populations of walnut<br />

throughout Europe. Also, the characteristics of<br />

wild walnut trees have been described in<br />

Bulgaria, Germany, Greece, Hungary, Italy,<br />

Poland, Portugal, Romania, Slovenia, Spain and<br />

the Ukraine( Solar et al., 2002) . A valuable<br />

edible nuts produced by walnut trees are well<br />

appreciated because they are enriched with<br />

unsaturated fat (linoleic, oleic acid). <strong>The</strong>y also<br />

contain other beneficial components like plant<br />

amino acid (e.g. arginine and leucine),<br />

carbohydrates (e.g. dietary fiber), vitamins (e.g.<br />

vitamin A and E), pectic substances, minerals<br />

(magnesium, potassium, phosphorus, sulphur,<br />

copper and iron), plant sterols, phytochemicals<br />

(phenolic acids, flavonoids, etc.) (Kris-Etherton<br />

et al., 1999; Carpenter,2000, Sinesio, et al. 2001,<br />

Prasad, 2003). Especially pellicle -a thin cover<br />

that surrounds kernel, was found as the most<br />

important source of walnut phenolics, although it<br />

only represents 5% of the fruit weight (Solar et<br />

al., 2002,Colaric et al., 2005, Rezso, et al. 2008).<br />

A wide range of walnut cultivars grown in<br />

Duhok governorate is mainly a consequence of<br />

a long-term project called ‘Introduction and<br />

selection of fruit plants. <strong>The</strong> main purpose of the<br />

study is to ensure the Duhok fruit-growers<br />

quality plant material of tested varieties of local<br />

and foreign origin. Generally, in evaluating new<br />

cultivars or genotypes more commercially<br />

important tree and nut characteristics are<br />

emphasized. Nevertheless, among sensory<br />

properties of nuts only pellicle color, shell<br />

strength, shell seam, easiness of kernel halves<br />

removal and taste used to be evaluated for<br />

selection purposes (Prasad, 2003, Draganescu,<br />

et al. 2006 and Muharrem, et al. 2008).<br />

However, from the consumer’s point of view<br />

(his satisfaction and further consumption) the<br />

sensory properties of fruit are among the most<br />

important, especially visual and taste properties,<br />

therefore sensory characterization is rather<br />

welcome. <strong>The</strong> main purposes of this study are to<br />

describe and evaluate some sensory<br />

characteristics of nuts in different walnut<br />

cultivars.<br />

MATERIAL AND METHODS<br />

<strong>The</strong> study was carried out in Duhok<br />

governorate (Fig.1) Kurdistan region in five<br />

different locations, Bagera, Mayi, Amedy,<br />

Zakho and Duhok center (Table 1). <strong>The</strong> survey<br />

continued from 2009 and the seedling cultivars<br />

origin are named by grower orchards. <strong>The</strong>n the<br />

91


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 19-24, 2010<br />

ripe and healthy nuts of seventeen different<br />

walnut cultivars, which were harvested in<br />

October 2009. <strong>The</strong>n shelled nuts were<br />

immediately dried in shed and room temperate<br />

(Rataj and Brindza, 1999 and Prasad, 2003). <strong>The</strong><br />

shell was cracked and kernel divided into fourth<br />

replicates, then for each ones derived from 25<br />

different fruit nuts (to represent one sample)<br />

were allotted. Sensory evaluation comprised<br />

estimation of external and internal properties of<br />

walnut fruit.<br />

02<br />

Table (1): Locations and Walnut cultivars used in<br />

sensory evaluation:<br />

Location <strong>Cultivar</strong>s<br />

Bagera kavlasin 1<br />

kavlasin 2<br />

Mayi Azad 1<br />

Azad 2<br />

Remzi 1<br />

Remzi 2<br />

Remzi 3<br />

Ehmed Taha<br />

Ehmed Selman 1<br />

Ehmed Selman 2<br />

Selim Said<br />

Heji Khefur<br />

Amedy Sediq Qesab<br />

Heji Reshed<br />

Mistefa Taha<br />

Zakho Ali Mirza/ Bije<br />

Duhok Azad3,seed from Austrian<br />

<strong>The</strong> main physical characteristics of fruits<br />

were observed by collecting 100 fruits from each<br />

individual , and the following characteristics<br />

were measured:<br />

1- <strong>The</strong> dimensions of 25 fruit nuts: (length,<br />

width, thickness, Length/width) of the<br />

endocarp measured with a digital vernire<br />

calipers to the precision of 0.01mm.<br />

2- Weight (g), (flesh, dry weight) measured with<br />

the weighing instrument, Sartorius BA310S to<br />

the precision of 0.001g.<br />

3- Volume cm 3 , measured by immersing in water<br />

in a measuring cylinder to the precision of 0.01l.<br />

4- Weight of kernel(g), measured with the<br />

weighing instrument, Sartorius BA310S to the<br />

precision of 0.001g.<br />

5- Shell thickness(mm), measured with a digital<br />

venire calipers to the precision of 0.01mm.<br />

6- Kernel color, measured by exotica<br />

horticultural color guide (1-12).<br />

7- Oil%, measured by sacsolate instrument.<br />

Statistical analyzed:<br />

Each panel was analyzed as a randomized<br />

complete block design with the assessors as<br />

block and cultivars/types as treatments. Data for<br />

all cultivars were analyzed using ANOVA in<br />

SAS. Means were compared using the Duncan<br />

test (P ≤ 0.05).


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 19-24, 2010<br />

Fig. (1) Territorial distribution of the selected sample in Duhok maps.<br />

RESULTS AND DISCUSSION<br />

Table (2) should that the difference between<br />

cultivars, were significant Azad2 dominated in<br />

shell thickness, Kavlesin2, in fruit length, and<br />

width, A. Mirza in L/W ratio and nut fruit size<br />

<strong>Cultivar</strong>s<br />

kavlesin 1<br />

kavlesin 2<br />

Azad1<br />

Azad2<br />

Remzi1<br />

Remzi 2<br />

Remzi 3<br />

E.Taha1<br />

E.Selman1<br />

E.Selman2<br />

S. Seid<br />

H. Khefur<br />

S. Qesab<br />

(2.12cm,38.61cm,34.30cm,1.250cm and 200cm 3<br />

respectively). However, the lowest fruit shell<br />

thickness, fruit length, fruit width and fruit<br />

volume were observed with M. Taha<br />

(12.5mm,25.91mm,25.92mm,78.33mm 3 )and<br />

fruit L/w (0.970mm) with H. Reshid.<br />

Table (2): <strong>The</strong> evolution of physical parameters of different cultivars<br />

Fruit shell.<br />

Thickness mm<br />

15.5b-d<br />

15.7b-d<br />

12.7e<br />

21.2a<br />

14.0b-e<br />

13.3de<br />

14.6b-e<br />

15.9bc<br />

15.0b-e<br />

15.4b-d<br />

16.4b<br />

14.0b-e<br />

14.4b-e<br />

Fruit Length<br />

mm<br />

31.26d-f<br />

38.61a<br />

35.31bc<br />

32.29de<br />

32.05de<br />

35.45bc<br />

38.24a<br />

37.38ab<br />

36.93ab<br />

33.30cd<br />

33.27cd<br />

36.43ab<br />

31.54d-f<br />

Fruit Width<br />

Mm<br />

27.12fg<br />

34.30a<br />

30.48b-e<br />

30.36b-e<br />

26.07g<br />

29.30d-f<br />

30.72b-d<br />

31.01b-d<br />

32.14a-c<br />

27.96e-g<br />

32.30ab<br />

33.64a<br />

29.49c-f<br />

Fruit Size<br />

Mm 3<br />

176.67b<br />

146.67d<br />

17833b<br />

160c<br />

156.66c<br />

145d<br />

100g<br />

180b<br />

120f<br />

130e<br />

121.6f<br />

100g<br />

146.67d<br />

Fruit L/W<br />

Mm<br />

69.40d-g<br />

65.78hi<br />

67.57g-i<br />

65.69i<br />

69.72c-f<br />

70.03cde<br />

69.52d-g<br />

69.33d-g<br />

68.55e-g<br />

67.73f-h<br />

71.52bc<br />

68.53e-g<br />

65.79hi<br />

09


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 19-24, 2010<br />

00<br />

H. Reshid<br />

M. Taha<br />

A. M. Bije<br />

Azad3<br />

15.5b-d<br />

12.5e<br />

14.8b-e<br />

13.4c-e<br />

29.41f<br />

25.91f<br />

37.36ab<br />

29.95ef<br />

30.34b-e<br />

25.92g<br />

29.91b-e<br />

26.99fg<br />

123.33ef<br />

78.33h<br />

200a<br />

149.33d<br />

Different letters within each column show significant differences in sensory descriptor<br />

among cultivars (Duncan, P < 0.05).<br />

Results in (Table3) revealed that cultivars<br />

E.Taha resulted in the highest flesh weight and<br />

kernel dry weight (15.09g and 7.18g, for at<br />

locations Mayi respectively,).However,<br />

A.M.Bije gave the highest nut dry weight<br />

12.25g. While, the lowest fresh weight, nut dry<br />

weight and kernel dry weight(8.02g, 7.00g,<br />

4.91g) at H.Khefur, Remzi3 and E.Selman2 was<br />

observed respectively<br />

<strong>The</strong> obtained results in table(4) indicated that<br />

Ramzi1 cv. was superior over all cultivars in<br />

fruit kernel color (10.50) and Azad3cv. in oil<br />

percentage (73.41%). While, A. Mirza cv. gave<br />

the lowest values in color (6.27) and oil<br />

percentage with Azad2 (65,69%) <strong>The</strong><br />

walnut population presented in this study can be<br />

considered as a genetically valuable<br />

72.61ab<br />

65.91hi<br />

70.79bcd<br />

73.41a<br />

population(Solar, et al 2002 and Colaric, 2005) .<br />

Seventeen prospective elites were selected with<br />

above average quality fruits and high mass<br />

proportion of kernel. <strong>The</strong>se could play one<br />

important role in a possible breeding programme<br />

of walnut aimed at improving the present<br />

assortment of scion cultivars from Duhok. Due<br />

to the high variability (kernel/endocarp<br />

proportion, color, strength, flavor, dry weight<br />

and oil) of the nuts and the diversity of the local<br />

prospective elites, seedling methods for mass<br />

production may not be commercially useful.<br />

While the reasons of acceded one parameter to<br />

the other ones of different cultivars may be<br />

return to genetics or to the environmental<br />

condition (Draganescu, 2006 and Muharrem, et<br />

al. 2008).<br />

Table (3):<strong>The</strong> evolution of physic-mechanical characteristics of different cultivars.<br />

<strong>Cultivar</strong>s<br />

kavlesin 1<br />

kavlesin 2<br />

Azad1<br />

Azad2<br />

Remzi1<br />

Remzi 2<br />

Remzi 3<br />

E.Taha1<br />

E.Selman1<br />

E.Selman 2<br />

S. Seid<br />

H. Khefur<br />

S. Qesab<br />

H. Reshid<br />

A. M. Bije<br />

Azad3<br />

fresh<br />

weight<br />

(g)<br />

9.78f<br />

12.54c<br />

13.49b<br />

11.74d<br />

10.57e<br />

9.70f<br />

8.99h<br />

15.09a<br />

9.54fg<br />

9.13gh<br />

8.96h<br />

8.02i<br />

11.61d<br />

11.57d<br />

14.84a<br />

12.92c<br />

Nut dr.<br />

weight<br />

(g)<br />

8.85g<br />

11.26c<br />

11.46b<br />

9.55f<br />

8.52i<br />

8.59hi<br />

7.00k<br />

9.73e<br />

9.71e<br />

8.70gh<br />

8.55hi<br />

7.88j<br />

11.19c<br />

9.51f<br />

12.25a<br />

10.14d<br />

kernel. dr.<br />

weight<br />

(g)<br />

5.24k<br />

6.79b<br />

6.75bc<br />

5.51ij<br />

6.56cd<br />

5.97f<br />

5.63hi<br />

7.18a<br />

5.75gh<br />

4.91L<br />

5.87fg<br />

5.58h-i<br />

6.24e<br />

6.62b-d<br />

6.43de<br />

6.32e<br />

Different letters within each column show significant differences in sensory descriptor<br />

among cultivars (Duncan, P < 0.05).


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 19-24, 2010<br />

Table 4: Sensory evaluation of color and oil(%) of different walnut cultivars.<br />

<strong>Cultivar</strong>s<br />

kavlesin 1<br />

kavlesin 2<br />

Azad1<br />

Azad2<br />

Remzi1<br />

Remzi 2<br />

Remzi 3<br />

E.Taha1<br />

E.Selman1<br />

E.Selman 2<br />

S. Seid<br />

H. Khefur<br />

S. Qesab<br />

H. Reshid<br />

M. Taha<br />

A. Mirza<br />

Azad3<br />

Color<br />

1-12<br />

6.33f<br />

6.37f<br />

7.27d<br />

6.52ef<br />

10.50a<br />

7.57d<br />

9.59b<br />

8.42c<br />

5.27g<br />

8.10c<br />

7.47d<br />

7.00de<br />

7.52d<br />

8.30c<br />

6.40f<br />

6.27f<br />

7.52d<br />

Oil<br />

%<br />

69.40d-g<br />

65.78hi<br />

67.57g-i<br />

65.69i<br />

69.72c-f<br />

70.03cde<br />

69.52d-g<br />

69.33d-g<br />

68.55e-g<br />

67.73f-h<br />

71.52bc<br />

68.53e-g<br />

65.79hi<br />

72.61ab<br />

65.91hi<br />

70.79bcd<br />

73.41a<br />

Different letters within each column show significant differences from each<br />

others among cultivars (Duncans at 5% level).<br />

REFERENCES<br />

- Carpenter R.P, D.H Lyon, and T.A. Hasdel (2000).<br />

Guidelines for sensory analysis in product<br />

development and quality control. Aspen Publishers,<br />

Inc., Gaithersburg, Maryland, USA.<br />

- Colaric M, F. Stampar, M. Hudina, and A. Solar (2006).<br />

Sensory evaluation of different walnut cultivars<br />

(Junglas regia L). Acta Agri. Slovenia 87(2): 403-<br />

413.<br />

- Colaric M., R. Veberic, A. Solar, M. Hudina and F.<br />

Stampar (2005). Phenolic acids, syringaldehyde,<br />

and juglone in fruits of different cultivars of<br />

Juglans regia L. J. Agr. and Food Chemistry, 53:<br />

6390-6396.<br />

- Draganescu, E., G. Nedelea , E. Mihut, and A.Blidariu<br />

(2006). Research concentrating the germplasm<br />

variability of walnut (Juglans regia) in Banat,<br />

Romania. Acta Horti. 420:544-547.<br />

- Hemery, G. E. (1998). Walnut seed-collecting expedition<br />

to Kyrgyzstan in Central Asia. Quarterly J. Forestry<br />

92 (2): 153-157.<br />

- Ingels C.A., G.H. Mc Granahan and A.C.Noble (1990).<br />

Sensory evaluation of selected Persian walnut<br />

cultivars. HortScience, 25: 1446-1447.<br />

- Kris-Etherton P.M., S.Yu-Poth, J.Sabate, H.E.Ratcliffe,<br />

G.Zhao and T.D. Etherton(1999). Nuts and their<br />

bioactive constituents: effects on serum lipids and<br />

other factors that affect disease risk. <strong>The</strong> American<br />

J. Clinical Nutr. 70: 504S-511S.<br />

- Muharrem E., M. Sütyemez and N. Ergun (2008. Sensory<br />

and Descriptor Attributes of Some Walnut <strong>Cultivar</strong>s<br />

and Types .J. Biol. Environ. Sci. 2(6):89-94.<br />

- Prasad, R.B.N. 2003. Walnuts and pecans. In:<br />

Encyclopedia of Food Sciences and Nutrition.<br />

Caballero B., Trugo L.C. and Finglas P.M. (eds.).<br />

London, Academic Press: 60716079.<br />

02


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 19-24, 2010<br />

- Rataj V. and J. Brindza (1999). Variability of the<br />

physico-mechanical properties of the ecotypes of<br />

nut fruits (Juglans regia L.) in Slovakia,<br />

International Agrophysics 13 : 3, p. 369-373.<br />

- Rezso T. , A. Bandi, M. Toth and A. Balog<br />

(2008). Evaluation of an isolated Persian walnut<br />

(Juglans regia L.) population from Eastern<br />

Transylvania, Romania.J.Agri.and Envir.6 (3,4).<br />

02<br />

- Sinesio F, G.L, A. Romero, E .Moneta, and J.C. Lombard<br />

(2001). Sensory evaluation of walnut: An<br />

interlaboratory study. Food Sci Technol Int 7: 37-47.<br />

- Solar A., A. Ivancic, F.Stampar and M.Hudina (2002).<br />

Genetic resources for walnut (Juglans regia L.)<br />

improvement in Slovenia. Evaluation of the largest<br />

collection of local genotypes. Genetic Resources<br />

and Crop Evolution, 45: 491-501.<br />

َىكوهد ل (Juglans regia L.) اشيط تَييادوج تَيصظن ايتادنةضاي ىتصةه ايهادوج<br />

قايرئ.<br />

َىناتصدروك انَيرةه/<br />

نوهد ايولناس/<br />

َىندناض اذيهوك / ىرالناتضيب الصث<br />

ارةةظ د اةظه َىناتةصدروك انَيرةةه.<br />

ىكوةهد اهةةطشَيراثه 800? -800><br />

واشيط َىصفن ايتانةص ر و تنضخَيئ ضَيث رةضه ايناشَيث انزلموك وب<br />

اةضه زةك ةةيتاه ةة يهوكةظ ظةةئ<br />

: ةتخوث<br />

) َىكوهد َىرةتنةص وئ وخاس,<br />

ىدَيمائ,<br />

َييام,<br />

ازَيطاب(<br />

َىشيط تَيي ىك رةص تَيي ىروج و ىوايشيف تَيتةوخاص نيترشاب انزك اصين س د وب ا يئرالب ة تاه اشيط تَيصفن 7=<br />

اي مصه ورةت اصَيك و يناث / يشيرد ىثهةق ايتايرتص و يناث و يشيرد,<br />

تي س,<br />

ىلوكاك اصَيك,<br />

َىلوكاك َىطن ر,<br />

رابةق(<br />

َلىةب َىيناث و َىيشيرد رةضه8نصةوظةكو<br />

ىثهةق ايتايرتص رةضه8داسائ(<br />

ادناو ارةب ظاند ىهادوج دناخةظ ةيتاه ) َىشيط<br />

يدةه 9هةص<br />

800و<br />

هةص 718;0 ،هص 9:190 ،هص 9>1 و هغ 7;10? ( ( َىو<br />

ل 9 داسائ َىصفن وئ 701;0َىلوكاك<br />

َىطن ر بارةظ د ىمةله ىد تَيصظن ىمةه رةضه ىر وصثب تظةكرةص<br />

.)% =91:7َ(<br />

كوىد يف زوجلا نم ةفلتخملا فانصلال ةيسحلا ةنراقملا<br />

7 ىشم ر<br />

َىتي س اشَيزب ىك وهد َىرةتنةص<br />

ةصلاخلا<br />

كوىد ةظفاحم يف ِ ) كوىد زكرم ،وخاز ،ةيدامع ،ييام ،ىريكاب(<br />

ِعق اوملا يف ناتسدرك ميلقإ --<br />

ةساردلا هذى ْتيرجأ<br />

ِ ددع . لابقتسم اهتافص نيسحَتل و ةسوردملا فانصلاا لصا لوح َتامولعم عم َ جَت ْ يكل 800? -800><br />

ةرتفلا ءانثأ<br />

مىأ ةسارد مت و فنص 7= ةساردلا يف ةسوردملا فانصلأا<br />

ِ ةيسيئرلا ِ فانصأ راشتنا . ةزوجلل<br />

ةيعونلاو ةيوايزيفلا تافصلا<br />

صئاصخلا . يلخادلا ءزجلا نع<br />

ربعت ىف تسرد يتلا تافصلاف<br />

. ةمهملا ةيثارولا تافصلا نع ربع َ ُي ْت َسرَد يذلا روجلا<br />

نزو ،مجح،ةزوجلل<br />

ضرع / لوطلا<br />

ةبسن،ةزوجلا ضرع ،ةزوجلا<br />

لوط ،ةزوجلا<br />

كمس ُ ،(<br />

ةزوحلل ةيواميكلا و ةيوايزيفلاا<br />

نسلفك ، 8دازا<br />

( فنصلا ناب جئاتنلا ىف ةرهظ . ) تيزلا ، بل نول ،فاجلا<br />

و يرطلا نزوو ،بل<br />

ِ يف ،8<br />

ةَفَد صلا ِكم َ س ُ يف<br />

/ لوطلأ يف ازريم ،ضرعلاو ، ِلوطلا<br />

ِ 800و<br />

مس 718;0 ،مس 9:190 ،مس 9>1 و مغ 7;10? (<br />

جِئاتَنلا ُ راشأ َ ،امنيب ،يلاوتلا ىلع ييام ِعقوم يف ،مغ<br />

ةزوجلا بللا ِنول يف عقاوملا لُكل ّ زوجل اراجشأ ىلع اَقوفتم ّ َناَك 7<br />

.<br />

9<br />

دازأ فنصلل كوىد زكرم<br />

يزمر فنص<br />

ِعقوم يف ) %


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 25-35, 2010<br />

RESPONSE OF PISTACHIO (P. VERA) TRANSPLANTS TO VARYING<br />

LEVELS OF WATER, MEDIA CULTURES AND PHOSPHORUS:<br />

1-VEGETATIVE GROWTH CHARACTERISTICS<br />

AZAD A. T. MAYI and KHITAM ADIEB<br />

Dept. of Horticulture, College of Agriculture, University of Duhok, Kurdistan Region- Iraq<br />

(Received: February 25, 2010; Accepted for publication: November 3, 2010)<br />

ABSTRACT<br />

<strong>The</strong> study was carried out during 2009 at the nursery of Horticulture/ Agriculture-University of Duhok-Kurdistan<br />

Region to investigate response of two years and pistachio transplants grown in two levels of irrigation (25 or 50 %) of<br />

soil available water capacities were depleted, three varying culture media (1:1, 2:1 river loamy soil : peatmoss besides<br />

check loamy river soil only and five P2O5 concentration (0,100, 200, 300, 400mg.P.L -1 . Pots -1 ). <strong>The</strong> parameters were<br />

studied (stem height, stem diameter, leaf number, leaf area ,leaf fresh and dry weights). <strong>The</strong> results showed that the<br />

irrigation of transplant at 25% significantly increased ,stem diameter, leaf area ,leaf fresh and dry weights (6.13mm,<br />

31.77cm 2 , 3.77g, 1.49g) respectively. While, media cultures( 2:1) affected significantly all parameter (80.27cm,<br />

6.16mm, 35.17, 32.1cm 2 , 4.21g, 1.71g) respectively. P concentration 200mg increase all studied parameters (78.28cm,<br />

6.49mm, 35.39, 34.58cm 2 ,4.30g, 1.66g) respectively. However, all interactions led to significant increase of all<br />

parameters. <strong>The</strong> best treatment was 25%water + 2:1 river loamy soil to peatmoss +200mg.L -1 .Pots -1 which gave the<br />

highest means of most studied parameters (8.01mm,43.33, 3.73 cm 2 , 4.77g and 2.10g)respectively.<br />

While,50%+2:1+300mg.L -1 increased stem length (97.33cm).<br />

KEY WORD: Pistachio, Media Culture, Water Stress, Nutrition.<br />

T<br />

INTRODUCTION<br />

here are about 11 pistachio species (Pistacia<br />

spp. L). only P. vera is commercially grown,<br />

since it produces most pistachio production<br />

comes from arid zone in countries nearly<br />

uniform marketable fruit size. Which constitute<br />

the main pistachio exporting countries through<br />

worldwide Yoursa (2007)and Ala (2004).<br />

Pistachio plants grow best in deep, river<br />

loamy soils (Ala 2004 and Yoursa, 2007).<br />

Pistachio trees are long-lived, tap-rooted and can<br />

grow up to 20-30 feet tall. Like any other fruit or<br />

nut tree, well-drained soils are needed for<br />

optimum growth. Pistachios are drought tolerant,<br />

but for commercial crop production there must<br />

be adequate soil moisture.<br />

Growers believe that pistachio are drought<br />

resistance trees. However, pistachio requires<br />

ample amounts of water for satisfactory growth.<br />

(Hegazi, et al., 2002) Studies with different plant<br />

species have shown consistently that growth was<br />

directly related to water availabilities. <strong>The</strong> effect<br />

of soil moisture tensions on the growth of some<br />

pistachio cultivar was previously studied by<br />

Soliman, (1992). Abo-Taleb et al., (1998) and<br />

Hegazi, et al., (2002) . I n other deciduous fruits,<br />

many studies were done to show the effect of<br />

water stress on growth characteristics of many<br />

trees among them walnut ( Goldhamer et al.,<br />

1992), Peach (Girona et al., 1993), Fig<br />

(Maximos et al., 1991) and Al-khateeb, (1996)<br />

and Apple (Yang, et al. 1996).<br />

<strong>The</strong>ir result indicated that increasing the<br />

available soil water increased stem length,<br />

number of leaves, average leaf area , fresh and<br />

dry weight. <strong>The</strong> reduction in the plant growth<br />

parameters values under water stress condition<br />

was found also in pomegranate fruits by<br />

(Hegazi, et al., 2002 ). Drought resistance in<br />

olive possesses the capacity to withstand the<br />

effects of water shortage for relatively long<br />

period without serious injury, (Adel, 1998, and<br />

Laz, et al.,(1999). Several evidences indicate<br />

that there are changes in the photosynthetic<br />

pigments and their mechanisms in the<br />

chloroplasts and changes in the ultra structure<br />

may occur under water stress.<br />

Phosphorus is a macronutrient which<br />

constitute the energy reservoir molecules and is<br />

also necessary in the production of wood and<br />

fruits Hegazi, et al., (2002). <strong>The</strong> effect of 5<br />

levels of phosphorus 15.5, 31,62 and 124mg/kg)<br />

on peach seedling, indicated that top dry matter<br />

increased in response to the lowest rate of added<br />

phosphorus Neilsen et al.,(1993). Phosphorus<br />

52


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 25-35, 2010<br />

foliar spray at 400 and 600mg increased stem<br />

length, number of new leaves/plant and stem<br />

diameter, leaf area and plant dry weight (Alkhateeb,1996<br />

and Hegazi, et al., 2002).<br />

<strong>The</strong> aim of the present work is to find out the<br />

effect of water stress, Phosphorus, and culture<br />

media on some morphological, physiological<br />

characteristics of transplanting pistachio, under<br />

water stress conditions<br />

52<br />

MATERIALS AND METHODS<br />

<strong>The</strong> study was carried out in the nursery of<br />

Horti./ Agri. Duhok Univ. Kurdistan Region-<br />

Iraq. Uniform and healthy pistachio transplant of<br />

y<br />

500<br />

400<br />

300<br />

200<br />

100<br />

two years old during 2009 were selected. <strong>The</strong><br />

experiments were started in 10 th April 2009, as<br />

transplants were grown in pots each of ( 7.5kg)<br />

weight, filled with three media cultures (river<br />

loamy soil, 1/1 river loamy soil to peatmoss and<br />

2:1 river loamy soil to peatmoss), plants were<br />

irrigated while 25% or 50%, of soil available<br />

water depleted (figer.1, 2, 3) as adapted by Abo-<br />

Taleb, et al., (1998) and Caser (2008). Five p2o5<br />

concentrations (0,100, 200, 300, 400mg.P.L -<br />

1 .Pots -1 ) were applied to the pots. <strong>The</strong> following<br />

measurements were recorded on 10 th October<br />

2009.<br />

y = 10.8089 - 1.07452 x + 0.0600537 x**2<br />

S = 32.3335 R-Sq = 97.5 % R-Sq(adj) = 97.2 %<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

x<br />

Figure (1). Soil moisture depletion curve of AWC (y) versus current resistance in<br />

(OHM) (x) for pots of river loam soil<br />

Fig (1): Soil moisture depletion curve of AWC (y) versus current resistance in (OHM) (x)<br />

for pots of river loam soil.<br />

y<br />

500<br />

400<br />

300<br />

200<br />

100<br />

y = 12.8682 - 1.95731 x + 0.0713832 x**2<br />

S = 70.0147 R-Sq = 91.1 % R-Sq(adj) = 90.1 %<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100<br />

Figure (2). Soil moisture depletion<br />

x<br />

curve x<br />

of AWC (y) versus current resistance in<br />

(OHM) (x) for pots of 1/1 river loamy to peatmoss mixture soil<br />

Fig (2): Soil moisture depletion curve of AWC (y) versus current resistance in (OHM) (x)<br />

for pots of 1/1 river loamy to peatmoss mixture soil


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 25-35, 2010<br />

0 10 20 30 40<br />

x<br />

50 60 70 80 90 100<br />

Figure (3): Depletion percentage (X) of available water<br />

capacity AWC of 2/1 peatmoss/river loamy versus curent<br />

resistance OHM (y).<br />

Fig (3): Depletion on percentage (X) of available water capacity AWC of 2/1<br />

peatmoss/river loamy versus current.<br />

<strong>The</strong> parameters were measured:<br />

1- Stem length (cm).<br />

2- Stem diameter 5(mm) above the soil.<br />

3- Number of new leaves/ plant.<br />

4- Leaf area (cm 2 ): (Saieed,1990 and Azad<br />

2007).<br />

Leaf area (cm 2 )= area of (A4)paper cut×part weight (g)<br />

Weight of (A4) paper (g)<br />

5- Fresh leaf weight(g).<br />

6- Leaf dry weight (g).<br />

y<br />

500<br />

400<br />

300<br />

200<br />

100<br />

Statistical analysis:<br />

<strong>The</strong> obtained data were tabulated and<br />

statistically analyzed by computer using SAS<br />

system (1996). Experiments conducted in this<br />

study followed a Complete Randomized Block<br />

Design in factorial experiment, the experiment<br />

comprised of 30 treatments with three replicates<br />

each replicate was presented by three pots and<br />

each pot contains four transplants. <strong>The</strong><br />

differences between various treatment means<br />

were tested with Duncun multiple range test at<br />

5% level. (SAS Institute.Inc,1996).<br />

RESULTS AND DISCUSSIONS:<br />

1-Stem length (cm):<br />

<strong>The</strong> obtained results of water regime (Table<br />

1) revealed that pistachio transplant with two<br />

levels of water, non significant affected in stem<br />

length. While, pistachio transplants treated with<br />

media culture substantially increased stem length<br />

(80.27cm) at 2:1 river loamy soil to peatmoss<br />

significantly. However, results showed that P<br />

0<br />

y = -31.1519 + 5.14194 x<br />

S = 72.1468 R-Sq = 86.4 % R-Sq(adj) = 85.9 %<br />

concentration 300mg.p.L -1 .Pots -1 was the<br />

paramount, as it gave the highest stem length<br />

(80.72cm) whereas; untreated treatment was the<br />

worst treatment (63.61cm). <strong>The</strong> interaction<br />

between water regime and media culture<br />

displayed that 25% water plus 2:1river loamy<br />

soil to peatmoss appeared to be the most potent<br />

treatment gave the highest stem length (81.2cm).<br />

Results of water level and P concentration<br />

interaction manifested that 50% water with<br />

300mg.p.pot -1 resulted in the highest increase in<br />

stem length (88.11cm). However, the lowest<br />

stem length was observed with 50% water in<br />

control. Results of media culture and P<br />

concentration interaction revealed that 2:1 river<br />

loamy soil to peatmoss with P at concentration<br />

200mg.p.L -1 .Pot -1 resulted in the highest stem<br />

length (87.17cm). Results of water levels, media<br />

culture and P concentration interactions<br />

indicated that 50%water plus media culture and<br />

300mg.p.L -1 .Pot -1 concentration was the most<br />

effective treatment as it displayed the highest<br />

stem length (97.33cm). while, the lowest<br />

coincide with 25%water plus 1:1river loamy<br />

soil to peatmoss at untreated treatment (39cm).<br />

2-Stem diameter (mm):<br />

Table (2) revealed that pistachio transplants<br />

treated with two levels of water resulted in a<br />

significant increase in stem diameter(6.13) at<br />

25% water as compared to the 50%. However,<br />

pistachio transplants treated with media culture<br />

substantially increased in stem<br />

diameter(6.16mm) at 2:1river loamy soil to<br />

peatmoss. While, P concentration significant<br />

increase in stem diameter(6.49mm), particularly<br />

52


25% water<br />

50% water<br />

media ×p<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 25-35, 2010<br />

at 200mg.p.L -1 .Pots- 1 as compared to<br />

control(4.87mm).<br />

<strong>The</strong> obtained results of both water regime and<br />

media culture revealed that treating pistachio<br />

transplants resulted in a significant increase in<br />

stem diameter(5.84mm), particularly at 50% plus<br />

2:1sand to peatmoss as compared to control.<br />

However, water levels with P concentrations<br />

substantially increased steam diameter(6.50mm)<br />

specially at 25%water plus100mg.p.L -1 .Pots -1 as<br />

compared to control. While, results indicated<br />

that the combination between media culture and<br />

P concentration displayed that 2:1river loamy<br />

soil/peatmoss and 200mg.p.L -1 .Pot -1 appeared to<br />

water<br />

level<br />

52<br />

be the most potent treatment, as it gave the<br />

highest stem diameters (7.80mm). However, the<br />

lowest values were accompanied with 1: 1river<br />

loamy soil/peatmoss plus untreated check<br />

(4.20mm). Results of water regime, media<br />

culture, P concentrations and their interactions<br />

manifested that treating pistachio transplants<br />

with (50% water, 2:1river loamy soil/peatmoss<br />

plus 200mg.L -1 .pots -1 gave the highest stem<br />

diameter (7.59mm). However, the lowest stem<br />

diameters was observed with(25% water,<br />

1:1river loamy soil/peatmoss plus untreated<br />

check (4.22mm).<br />

Table (1): Effect of water level, media culture, phosphorus concentrations and their interactions on stem length(<br />

cm) of pistachio transplant.<br />

media<br />

cul.<br />

river loamy<br />

soil<br />

1:1river loamy<br />

soil to peat<br />

2:1river loamy<br />

soil to peat<br />

river loamy<br />

soil<br />

1:1river loamy<br />

soil to peat<br />

2:1river loamy<br />

soil to peat<br />

phosphorus Concentrations (mg.L -1 .pots -1 water ×<br />

Control 100mg 200mg 300mg 400mg<br />

media<br />

76.00c-h 81.00b-f 73.33d-h 68.33f-j 72.33d-i 74.20c<br />

39.00k 75.00c-h 76.67c-h 72.33d-i 80.00b-g 68.60d<br />

77.33c-h 83.33b-d 82.00b-e 79.33c-g 84.00b-d 81.20a<br />

70.00e-j 71.33d-i 80.67b-f 87.00a-c 65.00h-j 74.80bc<br />

60.67ij 74.67c-h 64.67h-j 80.00b-g 74.33c-h 70.87cd<br />

58.67j 80.67b-f 92.33ab 97.33a 67.67g-j 79.33ab<br />

water × p water level<br />

25% 64.11d 79.78b 77.33b 73.33bc 78.78b 74.67a<br />

50% 63.11d 75.56b 79.22b 88.11a 69.00cd 75.00a<br />

river loamy<br />

soil<br />

1:1river loamy<br />

soil to peat<br />

2:1river loamy<br />

soil to peat<br />

media cul.<br />

73.00c-e 76.17b-e 77.00b-d 77.67bc 68.67de 74.50b<br />

49.83e 74.83b-e 70.67c-e 76.17b-e 77.17b-d 69.73c<br />

68.00de 82.00ab 87.17a 88.33a 75.83b-e 80.27a<br />

phosphor conc. 63.61c 77.67ab 78.28ab 80.72a 73.89b<br />

Means within a column, row and their interactions followed with the same letters are not significantly different<br />

from each others according to Duncans multiple ranges test at 5% level.


25% water<br />

50% water<br />

media ×p<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 25-35, 2010<br />

water<br />

level<br />

Table (2): Effect of water level, media culture, phosphorus concentrations and their interactions on stem<br />

diameter( mm) of pistachio transplant.<br />

media<br />

cul.<br />

river loamy<br />

soil<br />

1:1river loamy<br />

soil to peat<br />

2:1river loamy<br />

soil to peat<br />

river loamy<br />

soil<br />

1:1river loamy<br />

soil to peat<br />

2:1river loamy<br />

soil to peat<br />

phosphorus Concentrations((mg.L -1 .pots -1 ) water ×<br />

Control 100mg 200mg 300mg 400mg<br />

media<br />

7.19a-c 7.67ab 6.71a-e 5.13e-j 5.45d-i 6.43a<br />

4.22g-j 5.20e-j 6.13-fb 5.81c-g 6.12b-f 5.49bc<br />

5.97c-f 6.63a-e 8.01a 6.58a-e 5.14e-j 6.47a<br />

3.91ij 4.97f-j 6.21b-f 5.59c-h 4.85f-j 5.11c<br />

4.18h-j 5.98c-f 4.31g-j 5.93c-f 4.93f-j 5.07c<br />

3.77j 5.71c-h 7.59ab 6.90a-d 5.25e-j 5.84ab<br />

water × p water level<br />

25% 5.79b-d 6.50ab 6.95a 5.84b-d 5.57cd 6.13a<br />

50% 3.95e 5.55cd 6.04bc 6.14bc 5.01d 5.34b<br />

river loamy<br />

soil<br />

1:1river loamy<br />

soil to peat<br />

2:1river loamy<br />

soil to peat<br />

media cul.<br />

5.55c-f 6.32b-d 6.46bc 5.36d-f 5.15e-g 5.77a<br />

4.20g 5.59c-f 5.22e-g 5.87b-f 5.53c-f 5.28b<br />

4.87fg 6.17b-e 7.80a 6.74b 5.20e-g 6.16a<br />

phosphor conc. 4.87b 6.03a 6.49a 5.99a 5.29b<br />

Means within a column, row and their interactions followed with the same letters are not significantly different<br />

from each others according to Duncans multiple ranges test at 5% level.<br />

3- Number of new leaves/plant:<br />

<strong>The</strong> obtained results (Table 3) revealed that<br />

treated pistachio transplant water levels<br />

significantly increased in leaf number (33.49<br />

Leaf.plant -1 ). Pistachio transplant treated with<br />

media culture substantially increased in leaves<br />

number(33.22Leaf.plant -1 ). However,<br />

phosphorus concentrations profoundly, exceeded<br />

leaves number in 200mg.p.L -1 .pots -1 . <strong>The</strong><br />

obtained results indicated that 50%water plus<br />

200 mg.L -1 .pots -1 were superior over 25%water<br />

plus 0mg.P.Pots -1 in leaves number. <strong>The</strong><br />

combination between water levels and<br />

Phosphorus concentrations displayed that 25%<br />

water mixed with 200 mg.p.L -1 .pots -1 appeared<br />

to be the most effective treatment, as it gave the<br />

highest leaves number 34.11Leaf.plant -1 ).<br />

52


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 25-35, 2010<br />

water<br />

level<br />

03<br />

25%<br />

50%<br />

media ×p<br />

Table (3): Effect of water level, media culture, phosphorus concentrations and their interactions on leaves<br />

number(Leaf.plant -1 )of pistachio transplant.<br />

media<br />

cul.<br />

river loamy<br />

soil<br />

1:1river loamy<br />

soil to peat<br />

2:1river loamy<br />

soil to peat<br />

river loamy<br />

soil<br />

1:1river loamy<br />

soil to peat<br />

2:1river loamy<br />

soil to peat<br />

phosphorus Concentrations(mg.L -1 .pots -1 ) water ×<br />

Control 100mg 200mg 300mg 400mg<br />

media<br />

27.67f-j 33.67c-h 27.33f-j 25.00h-k 30.33e-i 28.80b<br />

17.00k 21.67i-k 32.00d-h 28.67e-j 35.33a-f 26.93b<br />

27.67f-j 33.33c-h 43.00ab 27.67f-j 37.00a-e 33.73a<br />

27.67f-j<br />

34.00c-h<br />

43.33ab 32.67d-h 34.67b-g 34.47a<br />

26.00g-j 36.00a-f 22.67i-k 42.00a-c 20.33jk 29.40b<br />

33.33c-h 40.67a-d 44.00a 35.67a-f 29.33e-i 36.60a<br />

water × p water level<br />

25% 24.11c 29.56b 34.11a 27.11bc 34.22a 29.82b<br />

50% 29.00b 36.89a 36.67a 36.78a 28.11bc 33.49a<br />

river loamy<br />

soil<br />

1:1river loamy<br />

soil to peat<br />

2:1river loamy<br />

soil to peat<br />

media cul.<br />

27.67e 33.83b-d 35.33bc 28.83de 32.50b-e 31.63b<br />

21.50f 28.83de 27.33e 35.33bc 27.83de 28.17c<br />

30.50c-d 37.00b 43.50a 3167b-d 33.17b-e 35.17a<br />

phosphor conc. 26.56c 33.22ab 35.39a 31.94b 31.17b<br />

Means within a column, row and their interactions followed with the same letters are not<br />

significantly different from each others according to Duncans multiple ranges test at 5% level.<br />

Results of water levels, media cultures and P<br />

concentrations interaction revealed that pistachio<br />

transplant treated with 50%water+ 2:1river<br />

loamy soil to peatmoss plus 200 mg.p.L-1.pots-1<br />

was the most potent treatment as it gave highest<br />

leaves number (44.00Leaf.plant-1). While the<br />

lowest leaves number was coincide with<br />

25%water+ 1:1river loamy soil to peatmoss and<br />

untreated check treatment (17.00Leaf.plant-1).<br />

However, in media cultures combined with P<br />

concentrations at 2:1river loamy soil to peatmoss<br />

plus 200 mg.p.L-1.pots-1 was the most effective<br />

treatment as it showed that the maximum leaves<br />

number (43.50Leaf.plant-1).<br />

4-Leaf Area (cm 2 ):<br />

<strong>The</strong> obtained results of both levels of water<br />

(Table4) revealed that irrigated pistachio<br />

transplants with 25%water resulted in significant<br />

increase in leaf area(31.77cm 2 ). Pistachio<br />

transplants treated with media cultures<br />

significantly increased leaf area (32.09 cm 2 )<br />

specially in 2:1river loamy soil to peatmoss in<br />

relation to other treatment. While, at P<br />

concentrations leaf area increased significantly<br />

(35.55cm 2 ) at 300mg.p.L -1 .pots -1 compared to<br />

untreated check (25.40cm 2 ). Results indicated<br />

that the combination between water levels and<br />

media cultures displayed that 25% water and<br />

2:1river loamy soil to peat appeared to the most<br />

potent treatment, as it gave the highest leaf area<br />

(34.73cm 2 ). However, the worst results were<br />

accompanied with (50%water and river loamy<br />

soil)(28.95cm 2 ). Results of water levels and P<br />

concentrations interaction manifested that<br />

pistachio transplants<br />

treated with 25% water and 200mg.L -1 .pots -1<br />

gave the highest leaf area (37.69cm 2 ). However,<br />

the lowest leaf area was observed with<br />

50%water plus 400 mg.p.L -1 .pots -1 (25.02cm 2 ).<br />

Results of P and media cultures interaction<br />

revealed that pistachio transplants treated with P<br />

at concentration 300mg and 2:1river loamy<br />

soil/peatmoss resulted in the highest leaf area<br />

(42.31cm 2 ). Results of P, media cultures, and<br />

water levels interaction indicated that 25%water<br />

+300mg and 300 mg.L -1 .pots -1 was the most<br />

potent treatment of leaf area (43.73cm 2 ). While<br />

the lowest leaf area was coincide with 50%<br />

water and 2:1river loamy soil to peatmoss and<br />

untreated(21.41cm 2 ).


25% water<br />

50% water<br />

media ×p<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 25-35, 2010<br />

water<br />

level<br />

Table (4): Effect of water level, media culture, phosphorus concentrations and their interactions on leaf area<br />

(cm 2 ) of pistachio transplant.<br />

media<br />

cul.<br />

river loamy<br />

soil<br />

1:1river<br />

loamy soil to<br />

peat<br />

2:1river<br />

loamy soil to<br />

peat<br />

River loamy<br />

soil<br />

1:1river<br />

loamy soil to<br />

peat<br />

2:1river<br />

loamy soil to<br />

peat<br />

phosphorus Concentrations(mg.L -1 .pots -1 ) water ×<br />

Control 100mg 200mg 300mg 400mg<br />

media<br />

25.65k-o 30.37f-l 35.25c-f 32.42e-i 26.44j-o 30.03b<br />

26.03j-o 26.76j-n 39.88a-c 30.49f-k 29.62g-m 30.55b<br />

25.64k-o 33.71d-h 37.94b-d 43.73a 32.67e-i 34.74a<br />

26.09j-o 27.09j-n 34.65d-h 29.48h-m 27.47i-n 28.96b<br />

27.57 31.16f-j 25.03l-o 36.31b-e 24.99m-o 29.01b<br />

21.41o 27.66i-n 34.73d-g 40.89ab 22.60no 29.46b<br />

water × p water level<br />

25% 25.77d 30.28bc 37.69a 35.55a 29.58bc 31.77a<br />

50% 25.02d 28.64c 31.47b 35.56a 25.02d 29.14b<br />

River loamy<br />

soil<br />

1:1river<br />

loamy soil to<br />

peat<br />

2:1river<br />

loamy soil to<br />

peat<br />

media cul.<br />

25.87gh 28.73e-g 34.95bc 30.95de 26.96g 29.49b<br />

26.80gh 28.96e-g 32.46cd 33.40b-d 27.31fg 29.78b<br />

23.53h 30.69d-f 36.34b 42.31a 27.63e-g 32.10a<br />

phosphor conc. 25.40d 29.46b 34.58a 35.55a 27.30c<br />

Means within a column, row and their interactions followed with the same letters are not significantly different<br />

from each others according to Duncans multiple ranges test at 5% level.<br />

5-Leaf fresh Weight (g)<br />

Results in (Table 5) revealed that water levels<br />

significantly increased leaf fresh weight(3.77g).<br />

<strong>The</strong> obtained results of media culture displayed<br />

that treated pistachio transplants significantly<br />

increased leaf fresh weight(4.21g) at2:1river<br />

loamy soil/peatmoss. However, P concentrations<br />

substantially increased leaves fresh weight<br />

(4.30g) specially at 200 mg.p.L -1 .pots -1<br />

as compared to control(3.11gm). Results<br />

indicated that interaction between water<br />

regime, media cultures and leaves fresh weight<br />

increased at 25%water plus 2:1river loamy<br />

soil/peatmoss (4.22g).<br />

Results indicated that the combination<br />

between water levels and P concentration<br />

displayed that 25% water and 200 mg.p.L -1 .pots -1<br />

appeared to be the most potent treatment, as it<br />

gave the highest leaf fresh weight (4.73g).<br />

Results of P and media cultures interaction<br />

revealed that pistachio transplants treated with P<br />

at concentration 200mg and 2:1river loamy<br />

soil/peatmoss resulted in the highest leaf fresh<br />

weight (4.60g). Results of P, media cultures, and<br />

water levels interaction indicated that 50%<br />

water plus 2:1river loamy soil/peatmoss and 100<br />

mg.p.L -1 .pots -1 was the most potent treatment of<br />

leaf fresh weight (4.81g). While the lowest leaf<br />

fresh weight was coincide with that50%<br />

water +1:1river loamy soil/peatmoss and<br />

untreated (0.91g).<br />

03


25% water<br />

50% water<br />

media ×p<br />

25% water<br />

50% water<br />

water<br />

level<br />

water<br />

level<br />

media ×p<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 25-35, 2010<br />

05<br />

Table (5): Effect of water level, media culture, phosphorus concentrations and their interactions on fresh leaf<br />

weight (g) of pistachio transplant.<br />

media<br />

cul.<br />

river loamy<br />

soil<br />

1:1river loamy<br />

soil to peat<br />

2:1river loamy<br />

soil to peat<br />

river loamy<br />

soil<br />

1:1river loamy<br />

soil to peat<br />

2:1river loamy<br />

soil to peat<br />

phosphorus Concentrations(mg.L -1 .pots -1 ) water ×<br />

media<br />

Control 100mg 200mg 300mg 400mg<br />

4.09a-f 3.73ef 4.64a-c 3.82d-f 3.68e-g 3.99a<br />

0.91j 2.81i 4.78ab 3.40f-i 3.60e-g 3.10c<br />

4.61a-c 4.06c-f 4.78ab 4.15a-e 3.51e-h 4.22a<br />

3.98c-f 3.02g-i 3.64e-g 3.64e-g 2.90hi 3.44b<br />

0.91j 3.71e-g 3.52e-h 3.76d-f 2.88hi 2.95c<br />

4.16a-e 4.81a 4.44a-d 4.80a 2.79i 4.20a<br />

water × p water level<br />

25% 3.20de 3.53cd 4.73a 3.79bc 3.60c 3.77a<br />

50% 3.01e 3.84bc 3.87bc 4.07b 2.86e 3.53b<br />

media cul.<br />

River loamy<br />

soil<br />

4.04bc 3.37de 4.14a-c 3.73cd 3.29de 3.71b<br />

1:1river loamy<br />

soil to peat<br />

0.90f 3.26de 4.15a-c 3.58de 3.24e 3.03c<br />

2:1river loamy<br />

soil to peat<br />

4.38ab 4.44ab 4.60a 4.47ab 3.15e 4.21a<br />

phosphor conc. 3.11c 3.69b 4.30a 3.93b 3.23c<br />

Means within a column, row and their interactions followed with the same letters are not significantly different<br />

from each others according to Duncans multiple ranges test at 5% level.<br />

6-Leaf dry weight (g):<br />

Table (6): Effect of water level, media culture, phosphorus concentrations and their interactions on leaves dry<br />

weight (g) of pistachio transplant.<br />

media<br />

cul.<br />

phosphorus Concentrations(mg.L -1 .pots -1 ) water ×<br />

media<br />

Control 100mg 200mg 300mg 400mg<br />

River loamy soil 1.02j 1.31f-i 1.78b-d 1.48e-g 1.25g-j 1.37c<br />

1:1river loamy soil to<br />

peat<br />

0.50k 1.26g-j 1.74b-d 1.40e-h 1.24g-j 1.23d<br />

2:1river loamy soil to<br />

peat<br />

1.98ab 1.85a-c 2.10a 2.10a 1.42e-h 1.89a<br />

river loamy soil 1.85a-c 1.11ij 1.38f-i 1.34f-i 1.22g-j 1.38c<br />

1:1river loamy soil to<br />

peat<br />

2:1river loamy soil to<br />

peat<br />

0.51k 1.45e-h 1.32f-i 1.57d-f 1.20h-j 1.21d<br />

1.89a-c 1.32f-i 1.65c-e 1.78b-d 1.03j 1.54b<br />

water × p water level<br />

25% 1.16fg 1.47cd 1.87a 1.66b 1.30ef 1.49a<br />

50% 1.41de 1.30ef 1.45cd 1.56bc 1.15g 1.38b<br />

media cul.<br />

river loamy soil 1.43bc 1.21d 1.58b 1.41bc 1.23d 1.37b<br />

1:1river loamy soil to<br />

peat<br />

0.50e 1.36cd 1.53bc 1.48bc 1.22d 1.22c<br />

2:1river loamy soil to<br />

peat<br />

1.93a 1.59b 1.88a 1.94a 1.22d 1.71a<br />

phosphor conc. 1.29c 1.39b 1.66a 1.61a 1.22c<br />

Means within a column, row and their interactions followed with the same letters are not significantly different<br />

from each others according to Duncans multiple ranges test at 5% level.


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 25-35, 2010<br />

Results in (Table 6) revealed that water levels<br />

significantly affected the leaf dry weight (1.49g).<br />

<strong>The</strong> obtained results of media cultures displayed<br />

that treated pistachio transplant with 2:1river<br />

loamy soil/peatmoss resulted in significant<br />

increase in leaf dry weight(1.71g). Pistachio<br />

transplant treated with P concentrations<br />

significantly increased leaf dry weight (1.66g),<br />

especially when 200 mg.p.L -1 .pots -1 was applied<br />

as compared to 400mg.L -1 .pots -1 .<br />

<strong>The</strong> obtained results revealed that 25%water<br />

+2:1river loamy soil/peatmoss was superior over<br />

that of 50% water+1:1river loamy soil/peatmoss<br />

in leaf dry weight(1.89g).<br />

<strong>The</strong> combination between water levels and<br />

phosphorus concentration displayed that<br />

25%water and 200mg.p.L -1 .pots -1 appeared to be<br />

the most potent treatment (1.87g). While the<br />

lowest leaf dry weight(1.15g) was coincide with<br />

50%water +400 mg.L -1 .pots -1 . Results of media<br />

cultures and P concentrations interaction<br />

manifested that treated with 2:1river loamy<br />

soil/peatmoss and 200 mg.p.L -1 .pots -1 resulted in<br />

the highest leaf dry weight(1.88g). <strong>The</strong> lowest<br />

leaf dry weight was observed with1:1river loamy<br />

soil/peatmoss and untreated check (0.50g).<br />

Results of water levels, media cultures, P<br />

concentrations and their interaction manifested<br />

that pistachio transplant treated with that 25%<br />

water +2:1river loamy soil/peatmoss and<br />

200mg.p.L -1 .pots -1 was the most potent treatment<br />

as it gave the highest leaf dry weight (2.10g).<br />

While, the lowest leaf dry weight was coincide<br />

with that 25%water +1:1river loamy<br />

soil/peatmoss and control (0.50g).<br />

Increase in height, stem diameter, leaf<br />

number, leaf area, vegetative fresh weight and<br />

dry weight were attributed to medium mixture of<br />

2:1river loamy soil to peatmoss which provided<br />

optimal root growth ambient conditions of<br />

aeration, water availabilities, pH, organic<br />

content and adequate phosphorus and other<br />

nutrients. Water stress was found to affect every<br />

aspect of plant growth. Some of these effects<br />

were related to decrease in turgid. Water<br />

potential and osmotic potential, water<br />

availability. Several of evidences indicate that<br />

there are changes in the photosynthetic pigments<br />

and mechanisms in the chloroplasts and that<br />

change in ultra structure may occur under water<br />

stress. Phosphorus is a macronutrient that is used<br />

in the sugar phosphates that store energy and is<br />

also necessary in the production of wood.<br />

(Soliman, 1992), (Abotaleb et al. 1998),<br />

(Goldhamer et al. 1992), (Girona et al. 1993),<br />

(Maximos etal. 1991), (Yang 1996 ),<br />

(Adel,1998) and (Laz et al. 1999).<br />

REFERENCES<br />

- Abo-Taleb S.A, Noman, V.F. and Sari El Deen, S.<br />

(1998).Growth of Pomegranate transplants as<br />

affected by different water regimes. Annals of<br />

Agric. Sc., Moshtohor, 36(2):1073-1091.<br />

- Adel,M.G.(1998). Studies on sensitivity of some olive<br />

varieties to drought . M.Sc. <strong>The</strong>sis Fac. <strong>Of</strong> Agric.<br />

Fayoum, Cairo Univ. Egypt.<br />

- Ala Abed alrezaq El-Khatab (2004).Effect of some<br />

growth regulators , Nitrogen fertilizer and foliar<br />

fertilizers and media culture on vegetative and root<br />

growth of Olive transplants (Olea europeae) cv.<br />

Nipal and K18 after transplanting directly. Mse.<br />

<strong>The</strong>sis, Agre. Baghdad Univ. Iraq .<br />

- Al-Khateeb,A.F.M. (1996). <strong>The</strong> influence of some growth<br />

regulators and mineral nutrients on growth and<br />

drought resistance of some fig varieties. Ph.D.<br />

<strong>The</strong>sis, Fac. <strong>Of</strong> Agri. Zagazig Univ. Egypt.<br />

- Azad A.T.Mayi (2007). Effect of foliar spray with iron<br />

and GA3 on the Vegetative growth, Nutrient<br />

contents, Yield and some storage characteristics of<br />

Apple fruits cvs. 'Barwari' and 'Starking'.<br />

Ph.D. <strong>The</strong>sis,Agri.Duhok Unvi. Kurdistan. Iraq.<br />

- Caser G. Abdel (2008). Improving the Production of well<br />

Irrigated Carrots (Daucus Carota L. var. Sativus,<br />

Cv. Nates) Grown under Plot and Furrow<br />

Cultivations by<br />

-Naphthalene Acetic Acid (NAA) Application. J. Duhok<br />

Univ. 10(2):49-64.<br />

- Girona, J.,Mata.,D.A. and Goldhamer, R.S. (1993).<br />

Patterns of soil and trees water Statues<br />

and leaf functioning during regulators deficit<br />

irrigation scheduling in peach. J.Amer. Hort.<br />

Sci..118(5):580-586.<br />

- Goldhamer D.A., Robert Beede, Stve Sibbett and Dave<br />

Ramos (1992). Decline and recovery of hedgerow<br />

walnut from sustained deficit irrigation .Hort.<br />

Sci.27(6).<br />

- Hegazi, E.S; T. A. Yahia; S.A. Abou Taleb and M. Abou<br />

El-Wafa (2002). Effect of phosphorus<br />

on pomegranate transplants under water stress.<br />

J. Horticulture and Desert Agriculture. Vol.<br />

11:421-432.<br />

- Hegazi, E.S; T. A. Yahia; S.A. Abou Taleb and M. Abou<br />

El-Wafa (2002). Effect of different available water<br />

levels on some transplants of pomegranate<br />

cultivars. J. Horticulture and Desert Agriculture.<br />

Vol. 11:447-462.<br />

00


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 25-35, 2010<br />

- Laz, S.I. El-Sherif, A.H. and Sari El-Deen,S.A. (1999).<br />

03<br />

Studies on the susceptibility of some olive cultivars<br />

to drought. Zagazig. J.Agri. 26(6).<br />

- Maximos,S., Abo-Rawash, M.,Behairy, Z. and Basea, R.<br />

(1991). Studies on the effect of irrigation and some<br />

growth retardants on fig transplant. Ann. Agri. Sc.,<br />

Fac.Agri. Ain Shams Univ.36(1)171-181.<br />

- Neilsen, D., Parchomchuk, p. and Hogue E.J.(1993).Soil<br />

and peach seedling responses to soluble phosphorus<br />

applied in single or multiple doses.<br />

Communications, in Soil. Sci. and plant Ann.,24 (9-<br />

10):881-898.<br />

- Saieed, N. T. (1990). Studies of variation in primary<br />

productivity growth and morphology in relation<br />

to the selective improvements of broad leaved trees<br />

species. Ph.D. <strong>The</strong>sis National Uni-Irland.<br />

- SAS Institute, Inc (1996). <strong>The</strong> SAS system. Relase 6.12.<br />

Cary, NC.<br />

- Soliman, S.S.(1992). Effect of creation soil moisture<br />

levels on some physiological responses Manfalouty<br />

Pomegranate tree. M.Sc. <strong>The</strong>sis, Fac. Agric. Dept.<br />

Assuit Univ. Egypt.<br />

- Yang S., Lee,S.W.,R.O.,Y.T. M., and K.J. (1996).Effect<br />

of growing period on growth of apple trees. J.of<br />

Agri.Sci. Soil and Fertilizer 38 (1):435-439.<br />

- Yousra Mohammed Saleh Al-Jubury.(2007). Response of<br />

Aleppo pistachio transplant cv. Asoury to different<br />

growing media and spray with Gibberellic acid and<br />

Zinc. M.Sc. <strong>The</strong>sis. Hort. Sc. And Landscape<br />

Design Agric. and Forestry Univ. Mosul.<br />

زةسه ىزوفسف وئ َىىدىاض تَيدىةظاى , َىىادظائ تَيتسائ وب اقةتسف تَيك وامةى اىوبيشاز<br />

َىىوبييش تَيتةوخةس-1<br />

قايرئ َىىاتسدزوك انَيزةٍ نوٍد ايولىاش َىىدىاض اريهوك ىزالىاتسيب الشث اٍةط وامةى ل ٌسك ةيتاٍ ايةييهوكةظ ظةئ<br />

ظةئ و اداىاجييئ د ٌدىاض ةييتاٍ و لىاس وود َىيرب اقةتسف تَيلمامةى زةسه<br />

ٌادمانجةئ ةيتاٍ ينهوكةظ<br />

.<br />

2009<br />

ةتخوث<br />

لااس ل<br />

1:1,<br />

ىزابيز تَيظَيه زةب اخائ َىىدىاض تَيدىةظاى َىس وئ ) % 50,25(<br />

َىىادظائ تَيتسائ وود : ٌاييئزالب ةييتاٍ ةزةلَيت زاك<br />

, 200و100,0<br />

ىزوفسف تَيتسةخ ضيَيث وئ ىسونتيث<br />

وب ىزابيز تَيظَيه زةب اخائ 2:1,<br />

2<br />

, هس31.77<br />

, هس80.27<br />

(<br />

, 33.49<br />

, هوم6.13<br />

(<br />

اتةوخاس ىمةٍ اىسكةدَيش ازةطةئ ةيوب ظائ<br />

ىزةوشث اتةوخاس ىمةٍ اىسكةدَيش ازةطئ ةيوب<br />

2:1<br />

ادىةظاى َلىةب<br />

ىسونتيث وب ىزابيز تَيظَيه زةب اخائ<br />

) 25%<br />

( . ٌاجييئ<br />

. َىيرَيزد ىوبذ<br />

/ ل.<br />

)<br />

هطوم)<br />

هغ1.49<br />

400,300<br />

, هغ3.77<br />

2<br />

ىمةٍ اىسكةدَيش ازةطئ ةيوب هطوم200<br />

ىزوفسف ايتسةخ اسةو زةٍ .) هغ1.71<br />

, هغ4.21<br />

, هس32.10<br />

, 35.17 , هوم6.16<br />

زةٍ وك سكزايد َىييهوكةظ َىمانجةئ<br />

ةىوب<br />

2<br />

.) هغ1.66<br />

, هغ4.30<br />

, هس34.58<br />

, 35.39 , هوم6.49<br />

, هس78.28(<br />

ىزةوشث اتةوخاس<br />

) ٌاجييئ / ل.<br />

هطوم200+<br />

ىسوم<br />

تيث وب ىزابيز تَيظَيه زةب اخائ 2:1+<br />

ظائ % 25(<br />

2<br />

, هس4.78هط<br />

, 2.10 هط(<br />

. .<br />

ىسك لةلَيت تَي زةلَيتزاك َىس<br />

ىزةوشث َىكةطىةسب مَيئ ظيده ًتسطزةو ةييتاٍ تَيتةوخاس ىمةٍ اىسكةدَيش ازةطةئ<br />

.<br />

8.01 هوم,<br />

043.73,43.


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 25-35, 2010<br />

. 2009<br />

ماع<br />

يف<br />

ءاملا نم نييوتسم<br />

قارعلا<br />

يف روفسفلا و ةيعارزلا طاسوأ , ءاملا تايوتسمل قتسفلا تلاتش ةباجتسا<br />

يرضخلا ومنلا تافص -1<br />

– ناتسدرك م يلقا كوهد ةعماج-ةعارزلا<br />

ةيلك – ةنتسبلا مسق لتشم ىف ةساردلا هذه<br />

: يه ةسوردملا لماوعلا<br />

.<br />

نيدناسلا<br />

يف ةعورزملا ناتنس رمعب قتسفلا تلاتش ىلع<br />

زيكارت ةسمخو<br />

سوم<br />

تيب عم ةيرهنلا ةبرت2:1<br />

, سوم<br />

تيب عم ةيرهنلا ةبرت 1:1,<br />

ةيرهنلا ةبرت<br />

ددع<br />

, قاسلا<br />

رطق,<br />

قاسلا<br />

لوط(<br />

ةسوردملا تافصلا.<br />

نادنس/<br />

ل.<br />

مغلم<br />

, 400,000<br />

ةصلاخلا<br />

تيرجا<br />

ةبرجتلا<br />

( ةيعارز طاسوأ ةثلاث<br />

, 200<br />

ادعام ايونعم ةسوردملا تافصلا لك ةدايز ىلا ءام 25%<br />

تدا .) قارولال فاجلاو ىرطلا نزو<br />

عيمج<br />

يف<br />

ةدايز تببس<br />

200روفسفلا<br />

زيكرت كلذك<br />

2:1<br />

طسو اما<br />

. ) 1.71مغ<br />

. ) مغ<br />

1.49<br />

2<br />

كلذك.<br />

) مغ1.66<br />

, مغ 4.3 , مس 34.58 , 35.39<br />

, مغ<br />

3.77<br />

2<br />

, مس<br />

31...<br />

, ملم<br />

6.13(<br />

, 100<br />

2<br />

, مغ 4.21 , مس 32.10 , 35.17 , ملم 6.16 , مس 80.27(<br />

, ملم<br />

6.49 , مس<br />

78.28<br />

, 0<br />

روفسفلا<br />

تذفن<br />

50,25<br />

نم<br />

, ةيقرولا ةحاسملا,<br />

قارولاا<br />

قارولاا ددع و ةلتشلا لوط<br />

ةسوردملا تافصلا<br />

( ةسوردملا تافصلا لك ةدايز ىلا ىدا مغلم<br />

نزو , ةيقرولا ةحاسملا , قارولأا ددع,<br />

ةلتشلا رطق , ةلتشلا لوط ةسوردملا تافصلا لك ةدايز ىلإ تدأ<br />

ىطعأ نادنس/<br />

روفسف مغلم200+<br />

سوم<br />

تيب عم ةيرهنلا ةبرت 2:1+<br />

ءام25<br />

تناك ةلماعملا<br />

لضفأ . قارولأل<br />

تداز<br />

قاسلا<br />

لوط ادعام . مغ2.10<br />

2<br />

, مغ4.78 , مس43.73,<br />

43.0.<br />

ملم,<br />

8.01 ( . يلاوتلا<br />

تلاخادتلا عيمج<br />

فاجلا و يرطلا<br />

ىلع تافصلا لكل ةميق<br />

.<br />

مس97.33<br />

نادنس.<br />

ل.<br />

غلم300<br />

+ 2:1+<br />

%<br />

لضفأ<br />

50<br />

ىف<br />

02


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 36-48, 2010<br />

63<br />

EFFECT OF FOLIAR APPLICATION OF NAA, KNO3 AND<br />

FE ON QUANTITY AND QUALITY OF PEACH FRUIT<br />

(Prunus persica L.) CV. EARLY CORONET *<br />

ZULAYKHA R. IBRAHIM, SARFARAZ F. A. AL- BAMARNY * and MOHAMMED A. SALMAN **<br />

*<br />

Dept .<strong>Of</strong> Horticulture, College <strong>Of</strong> Agriculture, University <strong>Of</strong> Duhok , Kurdistan Region-Iraq<br />

**<br />

Dept .<strong>Of</strong> Horticulture, College <strong>Of</strong> Agriculture, University <strong>Of</strong> Baghdad-Iraq<br />

(Received: March 10, 2010; Accepted for publication: June 24, 2010)<br />

ABSTRACT<br />

<strong>The</strong> experiment was carried out at Seiujh - Duhok Governorate, Kurdistan Region, Iraq, during 2008. 4-years old<br />

peach trees were sprayed till run off with two concentrations of NAA (0 and 5ppm), three concentrations of KNO3 (0,<br />

0.1 and 0.2 %), and three concentrations of Fe (0, 30 and 60ppm) one month after fruit set, at two times i.e,<br />

24/April/2008 and 25/May/2008. <strong>The</strong> aim was to study the influence of these treatments on quantity and fruit quality.<br />

Raising the levels of NAA to 5ppm, KNO3 to 0.2 % and Fe to 60 ppm led to a significant increase in yield per tree,<br />

fresh weight, pulp weight, size, carbohydrate contains,TSS and juice percentage of fruit while decrease fruit acidity.<br />

<strong>The</strong> interaction between higher levels of NAA, KNO3 and Fe led to a significant increase in all quantity and fruit<br />

quality characteristics mentioned above.<br />

KEY WORDS: Foliar Application, NAA, KNO3, Fe, Fruit, and Peach<br />

T<br />

INTRODUCTION<br />

he peach Prunus persica is known as a<br />

species of prunus called a “peach”. It is a<br />

deciduous tree belonging to the family<br />

“Rosaceae”. (Grisez et al., 2000). Peach crop is<br />

one of the most important stone fruit, due to<br />

heavy loading and dietetic value, beside the<br />

different uses of the fruit, it is often used as table<br />

fruits (fresh fruit), juice and jams (Bal, 2005).<br />

All commercial cultivars belong to (P.<br />

persica L.) are primarily grown in temperate<br />

zones and in the tropics and subtropics at higher<br />

elevation (Hammerschlag, 1986). <strong>The</strong> total<br />

number of peach trees planted in Kurdistan was<br />

estimated to be (66509) trees and the average<br />

yield of a tree was (18.1kg) (Annual Abstract<br />

STAT, 2007).<br />

Studies recorded that synthetic auxins such as<br />

NAA have been used since long time to improve<br />

fruit quantity and quality in many deciduous<br />

fruit also known by their ability to increase the<br />

cell size which enhances fruit growth aids in<br />

developing fruit, Agusti at al., (2002) indicated<br />

that treatment with synthetic auxins in peach and<br />

apricot increased fruit size and also increased the<br />

carbohydrate level in the fruit and as a result<br />

enlarge the fruit, due to the enhance strength of<br />

the sink for carbohydrate. Antonio and Bettio<br />

(2003) showed that treating peaches cv.<br />

diamante by the application of (NAA) at the rate<br />

of (30mg.L-¹) led to increase fruit size and to<br />

* Part of thesis submitted by the first Author<br />

delay the harvesting period of peaches. <strong>The</strong><br />

same phenomena with peach cv. Oded was<br />

recently reported by Flaishman (2006) in which<br />

auxine treatment increased sink strength and<br />

stimulated the rate of fruit growth and<br />

accelerated maturation so that the fruit size and<br />

the yield was increased, by increasing cell<br />

division and elongation and the control of preharvest<br />

drop. Flaishman (2006) recently<br />

reported that auxin treatment increased sink<br />

strength and stimulated the rate of fruit growth<br />

and accelerated maturation on peach cv. “Oded”.<br />

So, increase in fruit size was achieved without<br />

concomitant fruit drop. Gupta and Kaur (2007)<br />

noted that spraying Plum cv. Satluj purple with<br />

NAA(10 and 20ppm) at different stages of fruit<br />

development, That the maximum fruit yield was due<br />

to more fruit retention and increase in the size of the<br />

fruit, with significant increase in fruit weight and total<br />

soluble solid(TSS) was observed in growth regulator<br />

treatment. Stern et al. (2007) studied the effect<br />

of application of (30mg.Lˉ¹ NAA) on Japanese<br />

plum (Prunus salicina)at the beginning of pithardening<br />

when fruit let diameter was ca. 13 mm<br />

caused appreciable and significant increases in<br />

fruit size and total yield.<br />

In terms of nutrient absorption, foliar<br />

fertilization can be formed 8 to 20 times as<br />

efficient as ground application; however, this<br />

efficiency is not always achieved in actual practice<br />

(Anonymous, 1985).Recently, nutrition studies<br />

have been considered to be the most effective


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 36-48, 2010<br />

factor in improving fruit yield and their quality,<br />

owing to the role of various minerals in<br />

physiological metabolisms of plant (Ashley et al.,<br />

2006).<br />

Chatzitheodorou et al. (2004) studied the<br />

response of the peach cultivars “Spring Time”<br />

and “Red Haven” grown in clay loam soil, to<br />

nitrogen, phosphorus and potassium fertilizers,<br />

manure, as well as some combinations of these.<br />

<strong>The</strong>y noted a significant increase of fruit yield as<br />

well as of fruit quality and fruit size of both cv.<br />

However, total soluble solids content (%) of the<br />

cvs. “Spring Time” and “Red Haven” did not<br />

alter significantly in comparison to the control<br />

for all the fertilizer combinations used. Ruiz<br />

(2006) applied a field trial with three sources of<br />

K (KNO3, K2SO4 and KCl) at 300 kg K2O haˉ¹<br />

of early nectarines cv. Fairlane resulted in a<br />

significant increase in yield, fruit weight and<br />

diameter of the fruit by all the K sources up to<br />

leaf K levels of 1.5-1.6 kgˉ¹, while no effects<br />

were measured in all evaluated seasons in terms<br />

of soluble solids levels in the fruit. Mimoun et<br />

al. (2008) studied the effects of Potassium Foliar<br />

Spray on Peach cultivar “Royal Glory” and<br />

<strong>The</strong>plum cultivar grown was “Black Star”. At<br />

the beginning of the season, the results showed<br />

that the use of potassium foliar fertilization<br />

increased fruit weight, total soluble solid and<br />

improved fruit quality of Black Star plum and<br />

Royal Glory peach at harvest indicated that the<br />

fruit maturity was earlier with the foliar<br />

application.<br />

Iron plays an important role in the activation<br />

of chlorophyll and in the synthesis of many<br />

heme proteins such as different cytochromes,<br />

which participate in different functions in the<br />

plant metabolism (Bhandari and Randhawa<br />

1985).<br />

Abadía et al. (2002) studied the effect<br />

spraying of different Fe-compounds at Fe<br />

concentration of 2mM (FeSO4.7H2O, Fe (III)citrate,<br />

Fe (III)-EDTA, Fe (III)-DTPA and Fe<br />

(III)-IDHA on twenty year-old peach trees<br />

(Prunus persica L. cv. Babygold 10, grafted on<br />

seedling) grown on a flood-irrigated calcareous<br />

soil, they stated that the best Fe compound used<br />

was Fe(II)-sulfate, with other compounds being<br />

less effective, led to improving fruit yield and<br />

quality. Zarraek et al. (2005) revealed that<br />

micronutrients foliar sprays enhanced nutritional<br />

status and improved the yield and quality of<br />

peach trees. Sprayed "Florida Prince and Desert<br />

Red" peach trees once, twice and thrice a year<br />

with combinations of chelate at the rate of<br />

0.7g/L Fe, 0.3 g/L Zn and 0.3 g/L Mn or<br />

combinations of Zn, Mn, Fe sulphate at 0.5 g/L.<br />

<strong>The</strong> results indicated that spraying the trees<br />

twice or thrice yearly was more effective than<br />

spraying once a year or control in improving and<br />

increasing yield, fruit weight, fruit size and fruit<br />

firmness of both peach fruits (El-Sheikh et al.,<br />

2007).<br />

Since most of Iraqi soils (Duhok soils) are<br />

calcareous and their pH is high this tends to<br />

decrease nutrients availability in the soil (Al-<br />

Zubaidi, 1989). This study investigates foliar<br />

application of nutrients and the interactive effect<br />

of NAA, KNO3 and Fe on nutrient status, yield<br />

and yield components of peach tree.<br />

MATERIALS AND METHODS<br />

This study was conducted at Seiujh, 15km<br />

north of Duhok city, Kurdistan Region, Iraq in<br />

2008. Trees used for this investigation were four<br />

years old peach (Prunus persica L) cv. Early<br />

coronet, budded on seedling peach rootstocks,<br />

the trees were similar in size, bloom density.<br />

Full bloom occurred at 15 th march. On 23/ April<br />

/2008, when the mean fruit diameter was (9 ±<br />

1.5mm), 54 peach trees, cv. Early Coronet was<br />

grouped into three randomized complete blocks<br />

of 18 trees according to the tree size, crop<br />

density and location.<br />

Each tree was foliar sprayed to drip point<br />

(run off) with a solution containing ( 0 , 5 NAA<br />

, 0, 0.1, 0.2 % KNO3 and 0, 30, 60 Fe ) alone or<br />

in combination at two times on April 24-2008<br />

and May 25-2008, using 16 Liter sprayer. <strong>The</strong><br />

surfactant agent Tween-80 was added to all<br />

solutions at rate 0.01% to reduce surface tension<br />

of solution. N P K. Fertilizer 27:27:0 were<br />

addressed to each tree at a rate of 780g/ tree.<br />

Regular agricultural practices were applied to all<br />

trees throughout this experiment.<br />

Naphthalene acetic acid NAA (Riedel- de<br />

Haen) purity 98% were used, potassium nitrate<br />

KNO3 (Merck) containing (13.8% N, 36.5% K)<br />

and NaFeEDDH (Technical Sodium Ferric<br />

ethylenediamine dio-hydroxyphenyle acetate (Fe<br />

approx. 6%)].<br />

<strong>The</strong> experimental was laid out in<br />

Randomized Complete Blocks Design (R.C.B.D)<br />

with three replicates, one tree per replicate.<br />

Observation on different growth parameter was<br />

recorded at the end of the experiment. Duncan<br />

Multiple Range Test was used for the<br />

comparison of treatment means at 5% level (Al-<br />

Rawi and Khalafallah, 1980). All the data were<br />

tabulated and statistically analyzed with<br />

computer using SAS system 2000.<br />

Measurements<br />

At the final harvest (1 st June), the yield per<br />

tree was recorded in kilogram for determination<br />

of fruit characteristics. Twenty fruits were<br />

picked up randomly from each replicate as a<br />

63


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 36-48, 2010<br />

composite sample (Wislmer and Proctor,<br />

1995).<br />

1-Tree Yield (kg): Fruits from individual tree<br />

were picked and then weighed.<br />

2- Fresh Fruit Weight (g): Fruits were<br />

randomly picked up, and weight was taken by<br />

electrical balance 0.00g.<br />

3- Fruit Pulp Weight (g): Fruits were randomly<br />

picked up, and weight was taken by electrical<br />

balance 0.00g.<br />

4- Fruit size (cm³): was determined by using<br />

graduated cylinder.<br />

5- Total carbohydrate of the fruit (%):By using<br />

a pipette 1ml of the sample in test tube; 1ml<br />

phenol (5%) is added, shaked them well and then<br />

5ml H2SO4 (97%conc.) is added. And<br />

determined as described in (Lane and Eynon<br />

method) (Joslyn, 1970).<br />

6- Fruit Juice: It was measured after washing<br />

the fruits, grounding them and juice extracting,<br />

with the use of lab-scale fruit juice extractor<br />

Juicer/ blender, Panasonic, Mj, Japan ((Branas,<br />

1974).<br />

63<br />

7- Total Acidity (%): It was determined by<br />

titration of sodium hydroxide solution 0.1N with<br />

10ml of fruit juice using phenol-phthalein as<br />

indicator (Sourour, 1992).<br />

8-Total Soluble Solids TSS%: <strong>The</strong>y were<br />

estimated in the juice by a hand refractometer.<br />

RESULTS AND DISCUSSION<br />

1- Tree Yield (Kg): Table (1) showed that<br />

increasing levels of NAA, KNO3 and Fe<br />

significantly increased tree yield as compared<br />

with control. <strong>The</strong> highest yield was obtained<br />

from trees foliar sprayed with 5ppm NAA, 0.2%<br />

KNO3 and 60ppm Fe. A significant increased of<br />

tree yield was noted in interactions between<br />

5ppm NAA 0.2% KNO3, 5ppm NAA <br />

60ppm Fe and 0.2% KNO3 60ppm Fe. <strong>The</strong><br />

highest significant tree yield (24.44 kg) was<br />

obtained when trees were treated with 5ppm<br />

NAA 0.2% KNO3 60ppm Fe, where the<br />

lowest tree yield (14.99 kg) was recorded in the<br />

untreated trees.<br />

Table (1): Tree yield (Kg) of peach cv. Early Coronet as influenced by foliar spray of NAA, KNO3 and Fe.<br />

NAA<br />

(ppm)<br />

KNO3<br />

(%)<br />

0 0 14.99<br />

i<br />

0.1 17.31<br />

gh<br />

0.2 18.18<br />

f-h<br />

5 0 18.79<br />

e-h<br />

NAA<br />

×<br />

Fe<br />

KNO3<br />

×<br />

Fe<br />

Fe<br />

Mean<br />

0.1 19.90<br />

c-e<br />

0.2 20.90<br />

cd<br />

0 16.83<br />

e<br />

5 19.86<br />

c<br />

0 16.89<br />

f<br />

0.1 18.60<br />

e<br />

0.2 19.54<br />

de<br />

Fe(ppm)<br />

0 30 60<br />

18.34<br />

c<br />

17.21<br />

h<br />

18.96<br />

e-g<br />

20.04<br />

c-e<br />

20.71<br />

cd<br />

21.60<br />

bc<br />

22.67<br />

b<br />

18.74<br />

d<br />

21.66<br />

b<br />

18.96<br />

e<br />

20.28<br />

cd<br />

21.35<br />

b<br />

20.20<br />

b<br />

19.74<br />

d-f<br />

20.35<br />

c-e<br />

21.08<br />

b-d<br />

21.58<br />

bc<br />

22.78<br />

b<br />

24.44<br />

a<br />

20.39<br />

c<br />

22.93<br />

a<br />

20.66<br />

b-d<br />

21.56<br />

bc<br />

NAA<br />

<br />

KNO3<br />

17.31<br />

e<br />

18.87<br />

d<br />

19.77<br />

c<br />

20.36<br />

c<br />

21.42<br />

b<br />

22.67<br />

a<br />

KNO3<br />

Mean<br />

18.84<br />

c<br />

20.15<br />

b<br />

NAA<br />

Mean<br />

Means within a column, row and their interactions followed with the same letters are not significantly different<br />

from each other according to Duncan’s multiple range test at 5% level.<br />

22.76<br />

a<br />

21.66<br />

a<br />

21.22<br />

a<br />

18.65<br />

b<br />

21.48<br />

a


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 36-48, 2010<br />

2- Fruit Fresh Weight (g): Table (2) shows That<br />

the largest increase in fruit fresh weight was<br />

induced by 5ppm NAA, 0.2% KNO3 and 60ppm<br />

Fe which was significantly higher than the<br />

untreated tree. <strong>The</strong> highest average of fruit fresh<br />

weight was obtained when trees were sprayed<br />

with 5ppm NAA0.2% KNO3, 5ppm<br />

NAA60ppm Fe and 0.2% KNO3 60ppm Fe<br />

which was significantly differ from control.<br />

Regarding the effect of interactions of<br />

NAA KNO3 Fe, shows that the maximum<br />

fresh weight of fruit (104.75g) was obtained<br />

when peach trees were foliar sprayed with 5ppm<br />

NAA 0.2% KNO3 60ppm Fe which was<br />

significantly higher as compared with the other<br />

interactions and control. Whereas the minimum<br />

fresh weight of fruit (85.96 g) was noticed in the<br />

untreated trees.<br />

Table (2): Fruit fresh weight (g) of peach cv. Early Coronet as influenced by foliar spray of NAA, KNO3 and Fe.<br />

NAA<br />

(ppm)<br />

KNO3<br />

(%)<br />

0 0 85.96<br />

j<br />

0.1 88.01<br />

ij<br />

0.2 90.89<br />

gh<br />

5 0 91.67<br />

fh<br />

NAA<br />

×<br />

Fe<br />

KNO3<br />

×<br />

Fe<br />

Fe<br />

Mean<br />

0.1 94.73<br />

de<br />

0.2 97.17<br />

cd<br />

0 88.29<br />

e<br />

5 94.52<br />

c<br />

0 88.82<br />

g<br />

0.1 91.37<br />

f<br />

0.2 94.03<br />

de<br />

Fe(ppm) NAA<br />

0 30 60<br />

91.41<br />

c<br />

90.58<br />

hi<br />

90.98<br />

gh<br />

93.23<br />

e-h<br />

94.00<br />

ef<br />

96.02<br />

de<br />

99.99<br />

b<br />

91.60<br />

d<br />

96.67<br />

b<br />

92.29<br />

ef<br />

93.50<br />

de<br />

96.61<br />

bc<br />

94.13<br />

b<br />

93.74<br />

e-g<br />

94.66<br />

de<br />

95.81<br />

de<br />

95.93<br />

de<br />

99.00<br />

bc<br />

104.75<br />

a<br />

94.74<br />

c<br />

99.89<br />

a<br />

94.84<br />

cd<br />

96.83<br />

b<br />

100.28<br />

a<br />

×<br />

KNO3<br />

91.22<br />

d<br />

93.31<br />

c<br />

93.87<br />

c<br />

96.58<br />

b<br />

100.63<br />

a<br />

KNO3<br />

Mean<br />

Means within a column, row and their interactions followed with the same letters are not significantly different<br />

from each other according to Duncan’s multiple range test at 5% level.<br />

3 - Fruit Pulp Weight (g): Values in table (3)<br />

cleared that the highest concentration of 5ppm<br />

NAA or 0.2% KNO3 or 60ppm Fe increased fruit<br />

pulp weight significantly (91.63, 90.51 and<br />

91.54g) respectively. <strong>The</strong> interactions between<br />

NAAKNO3, NAAFe and KNO3 Fe resulted<br />

the highest fruit pulp weight was obtained when<br />

trees were foliar sprayed with 5ppm<br />

NAA0.2% KNO3 (93.48g),<br />

5ppmNAA60ppm Fe (95.14g) and 0.2%<br />

KNO360ppm Fe (93.44g). <strong>The</strong> highest<br />

significant of fruit pulp weight (96.49g) was<br />

97.32<br />

a<br />

91.98<br />

c<br />

93.90<br />

b<br />

96.97<br />

a<br />

NAA<br />

Mean<br />

91.54<br />

b<br />

97.03<br />

a<br />

obtained from trees received 5ppm NAA 0.2%<br />

KNO3 60ppm Fe. Whereas the lowest fruit pulp<br />

weight (81.70g) was recorded in the untreated<br />

trees.<br />

4- Fruit Size (cm³): <strong>The</strong> size of fruit increased<br />

significantly and gradually by increasing the<br />

levels of NAA to 5ppm, KNO3 to 0.2% and Fe to<br />

60ppm. <strong>The</strong> interactions of NAAKNO3,<br />

NAA Fe and KNO3 Fe resulted in a<br />

significant increase in fruit size. <strong>The</strong> maximum<br />

fruit size was attained to trees sprayed with<br />

5ppm NAA 0.2% KNO3 (98.11cm³), 5ppm<br />

63


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 36-48, 2010<br />

NAA60ppm Fe (98.23cm³) and 0.2% KNO3<br />

60ppm Fe (98.38cm³). Concerning the<br />

interactions between NAA KNO3 Fe, shows<br />

that the interaction between 5ppm NAA0.2%<br />

KNO360ppm Fe gave the highest value<br />

(102.35cm³) of fruit size, whereas the lowest<br />

value of fruit size (85.37cm³) was observed from<br />

the untreated trees (table 4).<br />

5- Fruit Carbohydrate (%): Table (5) showed<br />

that the fruit Carbohydrate concentration was<br />

increased significantly by increasing the levels<br />

to5ppm NAA, 0.2% KNO3 and 60 ppm Fe. <strong>The</strong><br />

04<br />

interactions of 5ppmNAA 0.2% KNO3, 5ppm<br />

NAA 60ppm Fe or 0.2% KNO3 60ppm Fe had<br />

a significant increase of fruit Carbohydrate<br />

concentration as compared to other interactions.<br />

<strong>The</strong> highest percentage of Carbohydrate<br />

concentration (18.25%) was attained when the<br />

trees received 5ppm NAA 0.2% KNO3 60ppm<br />

Fe, whereas the lowest percentages of<br />

Carbohydrate (11.13%) in fruits was obtained<br />

from trees receiving no NAA, KNO3 or Fe<br />

(control).<br />

Table (3): Fruit pulp weight (g) of peach cv. Early Coronet as influenced by foliar spray of NAA, KNO3 and Fe.<br />

NAA<br />

(ppm)<br />

KNO3<br />

(%)<br />

0 0 81.70<br />

0.1 83.88<br />

Fe(ppm) NAA<br />

<br />

0 30 60<br />

i<br />

g-i<br />

0.2 85.19<br />

5 0 87.00<br />

NAA<br />

×<br />

Fe<br />

KNO3<br />

×<br />

Fe<br />

Fe<br />

Mean<br />

f-i<br />

d-h<br />

0.1 88.49<br />

c-g<br />

0.2 90.61<br />

b-e<br />

0 83.59<br />

d<br />

5 88.70<br />

bc<br />

0 84.35<br />

0.1 86.18<br />

f<br />

d-f<br />

0.2 87.90<br />

c-e<br />

86.15<br />

c<br />

83.07<br />

hi<br />

85.36<br />

e-i<br />

87.01<br />

d-h<br />

88.00<br />

d-h<br />

91.78<br />

a-d<br />

93.34<br />

a-c<br />

85.15<br />

d<br />

91.04<br />

b<br />

85.54<br />

ef<br />

88.57<br />

b-e<br />

90.18<br />

a-c<br />

88.09<br />

85.40<br />

e-i<br />

88.00<br />

d-h<br />

90.39<br />

b-f<br />

93.84<br />

ab<br />

95.09<br />

ab<br />

96.49<br />

a<br />

87.93<br />

c<br />

95.14<br />

a<br />

89.62<br />

b-d<br />

91.55<br />

ab<br />

KNO3<br />

83.39<br />

e<br />

85.75<br />

de<br />

87.53<br />

cd<br />

89.62<br />

bc<br />

91.79<br />

ab<br />

93.48<br />

a<br />

KNO3<br />

Mean<br />

Means within a column, row and their interactions followed with the same letters are not significantly different<br />

from each other according to Duncan’s multiple range test at 5% level.<br />

b<br />

93.44<br />

a<br />

91.54<br />

a<br />

86.50<br />

b<br />

88.77<br />

a<br />

90.51<br />

a<br />

NAA<br />

Mean<br />

85.56<br />

b<br />

91.63<br />

a


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 36-48, 2010<br />

Table (4): Fruit size (cm³) of peach cv. Early Coronet as influenced by foliar spray of NAA, KNO3 and Fe.<br />

NAA<br />

(ppm)<br />

KNO3<br />

(%)<br />

0 0 85.37<br />

0.1 87.52<br />

Fe(ppm) NAA<br />

<br />

0 30 60<br />

f<br />

ef<br />

0.2 88.87<br />

5 0 89.14<br />

NAA<br />

×<br />

Fe<br />

KNO3<br />

×<br />

Fe<br />

Fe<br />

Mean<br />

ef<br />

d-f<br />

0.1 92.20<br />

b-e<br />

0.2 95.03<br />

bc<br />

0 87.25<br />

d<br />

5 92.12<br />

bc<br />

0 87.25<br />

d<br />

0.1 89.86<br />

cd<br />

0.2 91.95<br />

c<br />

89.69<br />

c<br />

87.98<br />

ef<br />

90.17<br />

d-f<br />

90.97<br />

c-e<br />

92.03<br />

b-e<br />

94.58<br />

b-d<br />

96.94<br />

b<br />

89.70<br />

cd<br />

94.52<br />

b<br />

90.00<br />

cd<br />

90.43<br />

c-f<br />

93.01<br />

b-e<br />

94.40<br />

b-d<br />

95.23<br />

bc<br />

97.11<br />

b<br />

102.35<br />

a<br />

92.61<br />

b<br />

98.23<br />

a<br />

92.83<br />

bc<br />

KNO3<br />

87.93<br />

d<br />

90.23<br />

cd<br />

91.41<br />

c<br />

92.14<br />

bc<br />

94.63<br />

b<br />

98.11<br />

a<br />

KNO3<br />

Mean<br />

Means within a column, row and their interactions followed with the same letters are not significantly different<br />

from each other according to Duncan’s multiple range test at 5% level.<br />

92.38<br />

bc<br />

93.95<br />

b<br />

92.11<br />

b<br />

95.06<br />

ab<br />

98.38<br />

a<br />

95.42<br />

a<br />

90.03<br />

c<br />

92.43<br />

b<br />

94.76<br />

a<br />

NAA<br />

Mean<br />

89.86<br />

b<br />

94.96<br />

a<br />

04


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 36-48, 2010<br />

04<br />

Table (5): Fruit carbohydrate concentration (%) of peach cv. Early Coronet as influenced by foliar spray of<br />

NAA, KNO3 and Fe.<br />

NAA<br />

(ppm)<br />

KNO3 (%) Fe(ppm) NAA<br />

<br />

0 0 11.13<br />

0 30 60<br />

g<br />

0.1 11.67<br />

fg<br />

0.2 13.31<br />

d-f<br />

5 0 12.15<br />

NAA<br />

×<br />

Fe<br />

KNO3<br />

×<br />

Fe<br />

Fe<br />

Mean<br />

d-g<br />

0.1 13.82<br />

cd<br />

0.2 15.95<br />

b<br />

0 12.04<br />

c<br />

5 13.97<br />

b<br />

0 11.64<br />

c<br />

0.1 12.74<br />

c<br />

0.2 14.63<br />

b<br />

13.01<br />

b<br />

11.92<br />

e-g<br />

13.03<br />

d-f<br />

13.17<br />

d-f<br />

12.94<br />

d-g<br />

15.19<br />

bc<br />

16.31<br />

b<br />

12.71<br />

c<br />

14.81<br />

ab<br />

12.43<br />

c<br />

14.11<br />

b<br />

14.74<br />

b<br />

13.76<br />

12.32<br />

d-g<br />

12.11<br />

d-g<br />

13.67<br />

c-e<br />

12.65<br />

d-g<br />

16.28<br />

b<br />

18.25<br />

a<br />

12.70<br />

c<br />

15.73<br />

a<br />

12.48<br />

c<br />

14.20<br />

b<br />

KNO3<br />

11.79<br />

d<br />

12.27<br />

d<br />

13.39<br />

c<br />

12.58<br />

cd<br />

15.10<br />

b<br />

16.84<br />

a<br />

KNO3<br />

Mean<br />

Means within a column, row and their interactions followed with the same letters are not significantly different<br />

from each other according to Duncan’s multiple range test at 5% level.<br />

6- Fruit Juice (%): A significant increase was<br />

observed in fruit juice percentage by foliar<br />

application of 5ppm NAA, 0.2% KNO3 or<br />

60ppm as compared with control. Fruits from<br />

trees receiving 5ppm NAA0.2% KNO3, 5ppm<br />

NAA60ppm Fe and 0.2% KNO3 60ppm Fe<br />

a<br />

15.96<br />

a<br />

14.21<br />

a<br />

12.18<br />

c<br />

13.68<br />

b<br />

15.11<br />

a<br />

NAA<br />

Mean<br />

12.48<br />

b<br />

14.84<br />

showed significantly higher values for<br />

percentage of fruit juice. <strong>The</strong> fruit juice<br />

percentage in fruit, from trees receiving 5ppm<br />

NAA 0.2% KNO3 60ppm Fe was 40.06%<br />

which was significantly higher as compared to<br />

other interactions and the control (table 6).<br />

a


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 36-48, 2010<br />

Table (6): Fruit juice (%) of peach cv. Early Coronet as influenced by foliar spray of NAA, KNO3 and Fe.<br />

NAA<br />

(ppm)<br />

KNO3<br />

(%)<br />

0 0 28.10<br />

0.1 29.19<br />

Fe (ppm) NAA<br />

<br />

0 30 60<br />

l<br />

kl<br />

0.2 30.26<br />

5 0 31.03<br />

NAA<br />

×<br />

Fe<br />

KNO3<br />

×<br />

Fe<br />

Fe<br />

Mean<br />

jk<br />

0.1 32.94<br />

ij<br />

f-h<br />

0.2 34.02<br />

ef<br />

0 29.18<br />

e<br />

5 32.66<br />

d<br />

0 29.56<br />

e<br />

0.1 31.07<br />

d<br />

0.2 32.14<br />

d<br />

30.92<br />

c<br />

30.05<br />

jk<br />

31.90<br />

h-i<br />

33.92<br />

e-g<br />

34.18<br />

ef<br />

35.02<br />

de<br />

37.00<br />

bc<br />

31.96<br />

d<br />

35.40<br />

b<br />

32.12<br />

d<br />

32.34<br />

g-i<br />

33.28<br />

f-h<br />

35.44<br />

de<br />

36.03<br />

cd<br />

38.35<br />

b<br />

40.06<br />

a<br />

33.69<br />

c<br />

38.15<br />

a<br />

34.18<br />

c<br />

KNO3<br />

30.16<br />

e<br />

31.46<br />

d<br />

33.20<br />

c<br />

33.75<br />

c<br />

35.44<br />

b<br />

37.03<br />

a<br />

KNO3<br />

Mean<br />

Means within a column, row and their interactions followed with the same letters are not significantly different<br />

from each other according to Duncan’s multiple range test at 5% level.<br />

7- Fruit Acidity (%): Data in table (7) shows<br />

that fruit acidity was not affected by NAA<br />

application, whereas fruit acidity was reduced<br />

significantly by foliar application of 0.2% KNO3<br />

and 60ppm Fe as compared to the control. <strong>The</strong><br />

control treatments showed a significant higher<br />

fruit acidity.<strong>The</strong> interactions of NAAKNO3,<br />

NAAFe and KNO3Fe pointed that the<br />

33.46<br />

c<br />

35.46<br />

b<br />

33.68<br />

b<br />

35.82<br />

b<br />

37.75<br />

a<br />

35.92<br />

a<br />

31.95<br />

c<br />

33.45<br />

b<br />

35.12<br />

a<br />

NAA<br />

Mean<br />

31.61<br />

b<br />

35.40<br />

application of three treatments caused a<br />

significant decrease in fruit acidity as compared<br />

to control. Concerning the interactions of<br />

NAA KNO3 Fe, shows that the lowest value<br />

for fruit acidity (0.29%) was recorded in fruits<br />

from the trees received 5ppm NAA 0.2%<br />

KNO3 60ppm Fe, whereas the acidity of fruit<br />

from the untreated trees was (0.40%).<br />

a<br />

06


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 36-48, 2010<br />

00<br />

Table (7): Fruit acidity (%) of peach cv. Early Coronet as influenced by foliar spray of NAA, KNO3 and Fe.<br />

NAA<br />

(ppm)<br />

KNO3<br />

(%)<br />

0 0 0.40<br />

Fe(ppm) NAA<br />

<br />

0 30 60<br />

a<br />

0.1 0.39<br />

ab<br />

0.2 0.33<br />

5 0 0.35<br />

NAA<br />

×<br />

Fe<br />

KNO3<br />

×<br />

Fe<br />

Fe<br />

Mean<br />

b<br />

ab<br />

0.1 0.30<br />

b<br />

0.2 0.36<br />

ab<br />

0 0.37<br />

a<br />

5 0.34<br />

ab<br />

0 0.38<br />

a<br />

0.1 0.34<br />

ab<br />

0.2 0.34<br />

ab<br />

0.35<br />

a<br />

0.36<br />

ab<br />

0.35<br />

ab<br />

0.30<br />

b<br />

0.38<br />

ab<br />

0.32<br />

b<br />

0.32<br />

b<br />

0.33<br />

ab<br />

0.34<br />

a<br />

0.37<br />

a<br />

0.29<br />

b<br />

0.31<br />

b<br />

0.32<br />

b<br />

0.31<br />

b<br />

0.36<br />

ab<br />

0.29<br />

b<br />

0.31<br />

b<br />

0.32<br />

ab<br />

0.30<br />

b<br />

KNO3<br />

0.35<br />

a<br />

0.35<br />

a<br />

0.31<br />

b<br />

0.35<br />

a<br />

0.33<br />

ab<br />

0.32<br />

ab<br />

KNO3<br />

Mean<br />

Means within a column, row and their interactions followed with the same letters are not significantly different<br />

from each other according to Duncan’s multiple range test at 5% level.<br />

8- Total Soluble Solid (%): Data in table (8)<br />

shows that total soluble solids (TSS) solids in<br />

fruits from the trees receiving 5ppm NAA, 0.2%<br />

KNO3 or 60ppm Fe was increased as compared<br />

with fruits from trees receiving no NAA, KNO3<br />

or Fe. That TSS in fruits from the trees foliar<br />

sprayed with 5ppm NAA0.2% KNO3, 5ppm<br />

0.33<br />

ab<br />

0.31<br />

b<br />

0.34<br />

ab<br />

0.33<br />

ab<br />

0.30<br />

b<br />

0.31<br />

b<br />

0.35<br />

a<br />

0.34<br />

ab<br />

0.32<br />

b<br />

NAA<br />

Mean<br />

0.34<br />

a<br />

0.33<br />

NAA 60ppm Fe and 0.2% KNO3 60ppm Fe<br />

were significantly higher than those resulted<br />

from the other interactions. <strong>The</strong> highest TSS in<br />

fruits was 16.05% resulting from fruits on the<br />

trees received 5ppm NAA 0.2% KNO3 60ppm<br />

Fe. Whereas, the lowest value was recorded in<br />

fruits from the untreated trees (12.00%).<br />

a


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 36-48, 2010<br />

Table (8): Fruit total soluble solids (%) of peach cv. Early Coronet as influenced by foliar spray of NAA, KNO3<br />

and Fe.<br />

NAA<br />

(ppm)<br />

KNO3<br />

(%)<br />

0 0 12.00<br />

0.1 12.53<br />

0.2 13.76<br />

Fe(ppm) NAA<br />

<br />

0 30 60<br />

j<br />

i<br />

e-h<br />

5 0 12.08<br />

NAA<br />

×<br />

Fe<br />

KNO3<br />

×<br />

Fe<br />

Fe<br />

Mean<br />

0.1 13.79<br />

ij<br />

e-g<br />

0.2 14.27<br />

de<br />

0 12.77<br />

d<br />

5 13.38<br />

c<br />

0 12.04<br />

0.1 13.16<br />

f<br />

e<br />

0.2 14.01<br />

cd<br />

13.07<br />

c<br />

13.14<br />

h<br />

13.63<br />

f-h<br />

14.16<br />

d-f<br />

13.14<br />

h<br />

14.58<br />

cd<br />

15.38<br />

b<br />

13.64<br />

c<br />

14.37<br />

b<br />

13.14<br />

e<br />

13.38<br />

gh<br />

14.03<br />

d-f<br />

14.84<br />

bc<br />

13.97<br />

e-g<br />

14.93<br />

bc<br />

16.05<br />

a<br />

14.09<br />

b<br />

14.98<br />

a<br />

13.68<br />

e<br />

KNO3<br />

12.84<br />

d<br />

13.40<br />

c<br />

14.25<br />

b<br />

13.06<br />

d<br />

14.44<br />

b<br />

15.23<br />

a<br />

KNO3<br />

Mean<br />

Means within a column, row and their interactions followed with the same letters are not significantly different<br />

from each other according to Duncan’s multiple range test at 5% level.<br />

Discussion: It is observed from the above<br />

mentioned results in tables (1, 2, 3, 4, 5, 6, 7<br />

and 8) that a significant increase occurred in tree<br />

yield, fruit fresh weight, pulp weight, fruit size,<br />

Fruit Carbohydrate, Fruit Juice and decreased<br />

fruit acidity by foliar sprays with NAA, KNO3<br />

and Fe. Increasing yield components by foliar<br />

application of NAA may be attributed to the role<br />

of NAA in increasing cell division and<br />

elongation and its role in enhancement of<br />

metabolite accumulation in fruit. Also it had a<br />

positive effect on the number of fruit per tree,<br />

14.10<br />

c<br />

14.77<br />

b<br />

14.00<br />

b<br />

14.48<br />

b<br />

15.45<br />

a<br />

14.53<br />

a<br />

12.95<br />

c<br />

13.92<br />

b<br />

14.74<br />

a<br />

NAA<br />

Mean<br />

13.50<br />

b<br />

14.24<br />

fruit weight, and fruit size which reflected<br />

eventually in increasing the total yield. Auxin is<br />

known by its ability to increase cell size which<br />

enhances fruit growth in some species and in all<br />

species synthetic auxins had the potential for<br />

increasing fruit size without thinning. <strong>The</strong>refore,<br />

auxins such as NAA have been used since long<br />

time to improve fruit quantity and quality in<br />

many deciduous fruit trees. (Stern et al., 2003;<br />

Acquaah, 2005 and Edgerton and Willims<br />

2009) respectively. Gupta and Kaur (2007)<br />

displayed that foliar sprayed of plum trees with<br />

a<br />

04


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 36-48, 2010<br />

(10-20ppm NAA) increased fruit yield due to the<br />

more fruit retention and increased the size of<br />

fruit, and also the increase in fruit weight which<br />

might be due to hormone mediation, direct<br />

transport and accumulation of photosynthesis in<br />

the fruit, which resulted in better development of<br />

the fruit. <strong>The</strong> results are in agreement with those<br />

of (Antonio and Bettio, 2003; Ruth et al., 2006<br />

and Stern et al., 2007).<br />

For the effect of potassium on yield<br />

properties, it was noticed from the obtained<br />

results that potassium level increased<br />

significantly tree yield, fruit fresh weight, pulp<br />

weight, fruit size. <strong>The</strong> reason of this might be<br />

interpreted that plants during flowering and fruit<br />

setting stages were in critical demand of their<br />

physiological activation which required a high<br />

amount of potassium to perform the biological<br />

processes, which helps increasing fruit weight,<br />

size, flesh weight, pulps weight, number of fruits<br />

per tree and total yield. (Awsthi et al., 1998)<br />

showed that fruit yield and fruit weight of peach<br />

fruits increased with increasing rate of<br />

application up to 700 g K/tree, due to the role of<br />

potassium influencing meristematic growth,<br />

photosynthesis and activates a number of<br />

enzymes, including those involved in the<br />

synthesis of carbohydrates, and is also involved<br />

in the neutralization of organic acids and the<br />

promotion of normal cell division and growth.<br />

<strong>The</strong>se results are in parallel with<br />

(Chatzitheodorou et al., 2004; Taylor,<br />

2005; Ruiz, 2006 and Mimoun et al.,<br />

2008). Also, Khan et al., (2000) concluded<br />

that the highest fruit set was recorded in<br />

Red haven peach trees fertilized with 1 kg<br />

N and 1.2 kg each of P and K. as a result of<br />

increasing chlorophyll content in leaf as<br />

increasing potassium level in leaf which<br />

leads to increase carbohydrate synthesis in<br />

the leaf. <strong>The</strong>refore potassium enhances fruit<br />

quantity and quality and increases yields.<br />

Also the table clearly shows that potassium<br />

significantly increased fruit carbohydrate, juice,<br />

TSS and carbohydrate content, the explanation<br />

of this might be due to the role of potassium in<br />

stimulation of enzyme responsible for<br />

carbohydrate synthesis and energy production.<br />

<strong>The</strong> reason behind high juice percentage in fruit<br />

might be due to the role of potassium in<br />

increasing total sugar and TSS in fruit juice and<br />

activation of cell division, growth and its<br />

expansion also help mobilization of<br />

carbohydrate between parts of the plant<br />

(Tucker, 1999). Whereas the total acidity was at<br />

03<br />

higher ratio in the control treatment which might<br />

be due to the role of potassium in increasing<br />

carbohydrate concentration which leads to<br />

decrease acidity percentage (table 6). <strong>The</strong>y are<br />

also in confirm with the results of (Tagliavini<br />

and Marangoni , 2002 and Mimoun et al.,<br />

2008).<br />

<strong>The</strong> obtained results revealed that iron<br />

application also significantly improved yield<br />

component. (Gobara, 1998) Demonstrated<br />

that the beneficial effect of iron on<br />

improving the nutritional status of the<br />

trees in synthesis of various organic<br />

compounds and activating both cell<br />

division and enlargement which surly<br />

reflected in improving the yield. Iron<br />

performs a number of important functions in the<br />

overall plant metabolism like other elements, it<br />

functions both as a structural component and as a<br />

cofactor for enzymatic reactions. Iron is a<br />

transition metal, as it exists in more than one<br />

oxidation state. Large portion of iron is found<br />

to be associated with porphyries in the form of<br />

cytochromes, which are necessary for the electron<br />

transport system in mitochondria as well as<br />

chloroplasts. Iron is the main component of<br />

ferredoxin which is indispensable for the light<br />

reaction of photosynthesis and nitrogen<br />

fixation (Awad and Atawia, 1995A and Awad<br />

et al., 2000B). Iron is involved as an active<br />

factor in the structure of catalase, peroxidase,<br />

oxidase and cytochrome enzymes which<br />

facilitate the activation performance of many<br />

physiological processes in plant cell. Similar<br />

results were recorded in improved yield<br />

component by ( Mukherji and Ghosh, 2005).<br />

Also similar results are found in spraying<br />

trees with Fe gave significantly increase<br />

carbohydrate concentration, TSS, fruit<br />

sugar, juice (Álvarez-Fernández et al.,2003<br />

and Al-Aareji,2004).<br />

REFERENCES<br />

- Abadía, J. A.; Álvarez-Fernández ; F. Morales ; M. Sanz<br />

and A. Abadía (2002). Correction of iron chlorosis<br />

by foliar sprays. Acta Hortic. 594, 115-<br />

121.<br />

- Acquaah. G. (2005). Horticulture Principles and Practices.<br />

3 rd edition. Prentice Hall Inc. New Jercy.<br />

- AI-Aareji, J. M. A. (2004). Effect of foliar spray with<br />

iron and manganese on quality and quantity of<br />

pear fruit cvs. Le-Conte. Iraqi. J. Agric.<br />

Sci.5(2):14-20.<br />

- Al-Rawi, K. M. and A. Khalafalla. (1980). Analysis of<br />

Experimental Agriculture Disgen. Dar Al-Kutub for<br />

Printing and Publishing. Mosul Univ. (In Arabic)


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 36-48, 2010<br />

- Álvarez-Fernández, A.; P. Paniagua; J. Abadía and A.<br />

Abadía. (2003 ). Effects of Fe deficiency chlorosis<br />

on yield and fruit quality in peach (Prunus persica<br />

L. Batsch). J. Agric. Food Chem. 51: 5738-5744.<br />

- Al-Zubaidi, A. H. (1989). Soil salinity, thetirocal and<br />

practical principles. Beat Al-Hekma. Baghdad<br />

Univ. (In Arabic)<br />

- Agusti, M.; S. Zaragoza; D. J. Iglesias; V. Almela; E. P.<br />

Millo and M. Talon. (2002).<strong>The</strong> synthetic auxin<br />

3,5,6-TPA stimulates carbohydrate accumulation<br />

and growth in citrus fruit. Plant Growth Regul. 36:<br />

141–147.<br />

- Annual Abstract of Statistics. (2007). Central Statistical<br />

organization. Ministry of Planning . Republic of<br />

Iraq.<br />

- Anonymous, (1985). TNA principles of foliar feeding.<br />

Trans National Agronomy, Grand Rapids. MI. 2p.<br />

- Antonio, S. I andM. G. A.Bettio. (2003). Application of<br />

auxins and ringing branches on peachs cv.<br />

Diamante. Rev. Bras. Frutic. 25(1): 1-4.<br />

- Ashley M. K.; M. Grant and A. Grabov. (2006). Plant<br />

response to potassium deficiencies: areole for<br />

potassium transport proteins. J. Exp. Botany, 57,<br />

(12) : 425-436.<br />

- Awad, S. M. and A. R. Atawia. (1995). Effect of foliar<br />

sprays with some micronutrients on "LeConte" pear<br />

trees. 1- Tree growth, flowering and leaf mineral<br />

contents. Annals Agric. Sci. AinShams Univ. Cairo,<br />

40: 359-367.<br />

- Awad, S. M.; A. A. El-Gazzan and H. F. El-Wakeel.<br />

(2000). Effect of Foliar application with some<br />

micronutrients on Anna apple trees. Arab Univ. J.<br />

Agric. Sci. Ain Shoims Univ., Cairo, 8: 270-303.<br />

- Awasthi, R. P.; V. P. Bhutani; M. S. Mankotia; N. S. Kith<br />

and G. Dev. (1998). Potash improves the yield and<br />

quality of June Elberta peach. Better Crops Intern.,<br />

12: 30–33.<br />

- Bal, J. S. (2005). Fruit Growing. Kalyani Publishers. Lu<br />

Dhiana-New Delhi-Noida(up).Hayderabad-Chennai-<br />

Cacutta Cuttack.<br />

- Bhandari, A. R. and N. S. Randhawa. (1985). Distribution<br />

of available micronulrients in soil of apple<br />

orchards in Mimachal Paradesh. J. Indian Soc. Soil<br />

Sci.33:171-174.<br />

- Branas, J. (1974). Viticulture, Imprimerie Dehan,<br />

Montpellier, France.<br />

- Chatzitheodorou, I. T.; T. E. Sortiropoulosi; G. I.<br />

Mouhtaridou1 and D. A. Greece (2004). Effects of<br />

nitrogen, phosphorus and potassium on fruit drop,<br />

fruit size and total yield of peach. 1N.A.G.R.E.F.,<br />

Pomology Institute, Naoussa, Greece<br />

2N.A.G.R.E.F., Soil Science Institute, <strong>The</strong>rmi-<br />

<strong>The</strong>ssaloniki.<br />

- Flaishman, M. (2006). Development of stone fruit for<br />

export. Annual Report for the Chief Scientist. Acta<br />

Hort. 671: 151-157.<br />

- Gobara, A. A. (1998). Response of Le-Cont Pear trees of<br />

foliar application of some nutrients, Egypt. J. Hort.<br />

25: 55-70.<br />

- Grisez, T. g.; R. B. Jill and P. K. Robert. (2000).<br />

Rosaceae, Rose family, Prunus L. cherry, Peach,and<br />

plum. (http://www.nsl.Fs.Fed.us/wpsm/prunus.pdf).<br />

- Gupta, M. and H. Kaur (2007). Effect of synthetic auxins on<br />

plum cv. (Saltuj purple) Indian J. hort. 64 (3): 378-281.<br />

- Hammerschlag, F. A. (1986). Peach growing and<br />

germplasm in china. Acta Hort. 173:5155.<br />

- Joslyn, M. A. (1970). Methods in Food Analysis (2).<br />

Acad. Press, N. Y. London.<br />

- Khan, M. S.; F. K. Wazir and M. Ayaz (2000). Effects of<br />

nitrogen, phosphorus and potassium on fruit drop,<br />

fruit size and total yield of peach. Sarhad J. Agric.<br />

16: 25–32.<br />

- Mimoun, B. M.; M. Ghrab; M. Ghanem and O. Elloumi.<br />

(2008). Effects of Potassium Foliar Spray on Olive,<br />

Peach and Plum. Part 2: Peach and Plum.<br />

Experiments p. 14-17.<br />

- Mukherji, S. and A. K. Ghosh(2005). Plant Physiology.<br />

New Central Book Agency (P) Ltd.8/1 Chintamoni<br />

Das land, Kolkata/India.<br />

- Ruiz, R. (2006). Effects of different potassium fertilizers<br />

on yield, fruit quality and nutritional status of<br />

“Fairlane” nectarine trees and on soil fertility. Acta<br />

Hort. 721:185-190.<br />

- Ruth B. A.; R. A. Stern; M. Flaishman; M. Galilee.<br />

(2006). Synthetic auxin promotes fruit development<br />

and climacteric in Prunus salicina Technology<br />

Center, P.O. Box 831, Kiryat-Shmona 11016,<br />

Institute of Horticulture, ARO, <strong>The</strong> Volcani Center,<br />

P.O. Box 6, Bet-Dagan 50250.<br />

- SAS Institute, Inc (2000). Statistical analysis system. SAS<br />

institute Inc., Cary, NC. USA.<br />

- Sourour, M. M. (1992). Response of 'Anna' apple trees to<br />

different methods and forms of iron applications.<br />

Alex. J. Agric .Res. 37 (2): 191-204.<br />

- Stern, K. R; S. Jansky and E. J. Bidlack. (2003).<br />

Introductory Plant Biology, 9 th edition. McGrowhill<br />

Company. New York.<br />

- Stern, R. A.; M. Flaishman; S. Applebaum and B. A.<br />

Ruth. (2007). Synthetic auxin promotes fruit<br />

development and climacteric in (Prunus salicina)<br />

HortSci. 114(4): 275-280.<br />

- Taylor, K. C. (2005). Cultural Management of the Bearing<br />

Peach Orchard. Stone Fruit Horticulturist, 21<br />

Dunbar Road, Byron, Georgia, <strong>The</strong> University of<br />

Georgia and Ft. Valley State University, the U.S.<br />

Department of Agriculture and counties of the state<br />

cooperating.<br />

- Tucker, A. R. (1999). Essential plant nutrients: <strong>The</strong>ir<br />

presence in North Carolina soils and role in plant<br />

nutrition. N.C.D.A. and C.S. Agronomic division.<br />

P: 1-10.<br />

- Wislmer P. T. and proctor J. T. A. (1995). Benzyl adenine<br />

Affects cell division and cell size during apple fruit<br />

thinning. J.Amer . Soc. Hort. Sci. 120(5). 802-807.<br />

- Zarraek, O.; Y-Gogorcena; J. A. Gomez; J. A. Betran and<br />

M. A. Moreno. (2005). <strong>Influence</strong> of almond X<br />

peach hybrids rootstocks on flower and leaf mineral<br />

concentration, yield and vigour of two peach<br />

cultivars. HortSci. 106: 502-514.<br />

03


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 36-48, 2010<br />

ندناض ةنيتاه نَيوةئ<br />

ةتاه زاد<br />

03<br />

. ادَى<br />

8002<br />

Early Cororet<br />

َىزوجذ اد لىاض زاوض َىيذد اخَوخ نَيزاد زةض ل نانيئوبج ةتاه ةنيلوكةظ ظةئ<br />

َىشزةو د َىقايرع اناتضدزوك انَيزةه<br />

00 و 00 و سفص ايتايرتب ىنضائ و % 0,8 و % 0,0<br />

َى<br />

5<br />

8002<br />

(<br />

NAA<br />

ضىزايةئ ى<br />

85<br />

ل َىوود ايو َى<br />

8002<br />

-<br />

و سفص ينَيتايرتب<br />

اناطين ى<br />

82<br />

َىكوهد اهةطصَيزاث<br />

KNO3<br />

و<br />

ppm 5<br />

-<br />

ةتخوث<br />

َىجَيض ازةظةد ل َىكةناتطيبد<br />

و سفص ينَيتايرتب<br />

NAA<br />

ل َىندناسبةج ذ َىكةظيةه ىتشث َىكَيئ اي نازاجوود<br />

ـب ندناشةز<br />

ppm<br />

ذ دنلب ينَيتايرتب ازاد<br />

اندناشةز . ىقَيف َىمةهزةب اي ىدنةضو ىزَوج زةض ل ايزةدةزةض انسكَيتزاك انسكيقات وبذ<br />

زةه َوب اد ىمةهزةب د ظاضزةب انوبةدَيش َىزةطةئ ةنيووب<br />

ppm 00<br />

ايتايرتب ىنضائ و<br />

% 0,8<br />

ايتايرتب<br />

KNO3<br />

نَيتضةزةك ايةرَيزد و ىقَيف اكفان ايةشَيك و ىقَيف ازابةق و زةت ايةشَيك و َىكةزاد زةه َوب ىقَيف ازامذد و َىكةزاد<br />

KNO3 و NAA ذ دنلب ينَيتايرت ازةبظان د نادكَيل ناطيد . ىقَيف اظائ ايةرَيز و<br />

TSS<br />

و<br />

)<br />

ppm<br />

نَيتضةزةك ايةرَيز و ىتازديهوبزاك<br />

. نسكزايد ةنيتاه ةظزةض ل نَيوةئ َىي ىقَيف ينَي ىدنةض و ىزَوج نَيتةلخاضد سكزايد ظاضزةب اكةنوبةدَيش ىنضائ و<br />

– ةجيس ةقطنم يف ناتسب يف ةعورزم لا Early Coronet فنص تاونس 2 رمعب خوخلا راجشا<br />

و ) نويلملاب ءزج 5 و رفص(<br />

زيكرتب<br />

ىلولاا نيترمل<br />

NAA<br />

ـب راجشلاا تشر .<br />

) نويلملاب ءزج 00و<br />

00 ،رفص(<br />

زيكرتب ديدحلاو<br />

ةيعونو ةيمك يف تلاماعملا ريثات ةساردل<br />

8002<br />

رايا<br />

25<br />

8002<br />

ةصلاخلا<br />

ىلع ةبرجتلا تذفن<br />

ماع للاخ قارعلا – ناتسدرك ميلقا – كوهد ةظفاحم<br />

)% 0.8 و % 0.0 ،رفص(<br />

زيكرتب<br />

يف ةيناثلا و<br />

8002<br />

ناسين<br />

24<br />

KNO3<br />

مويساتوبلا تارتن<br />

يف دقعلا نم دحاو رهش دعب<br />

زيكرتب مويساتوبلا تارتنو نويلملاب ءزج 5 ( NAA) كيلخلا ضماح نيلاثفن نم ةيلاعلا زيكارتلاب راجشلاا شر ىدا . رامثلا<br />

نزولا و ةرجش / رامثلا ددع و ةرجش / لصاحلا ةيمك يف ةيونعم ةدايز ىلا<br />

ريصعلا ةبسنو ) TSS(<br />

) نويلملاب<br />

ءزج<br />

00<br />

زيكرتب ديدحلا و<br />

% 0.8<br />

ةبئاذلا ةبلصلا داوملا ةبسنو ةيتارديهوبراكلا داوملا ةبسنو ةرمثلا محل نزو و ةرمثلا مجح و يرطلا<br />

عيمج يف ةيونعم ةدايز ىلا ديدحلا و مويساتوبلا<br />

تارتنو<br />

NAA<br />

نم ةيلاعلا زيكارتلا نيب لخادتلا ىدا امك<br />

.<br />

هلاعا ةروكذملا<br />

. رامثلا يف<br />

رامثلل ةيعونلا و ةيمكلا تافصلا


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 49-54, 2010<br />

EFFECT OF DIET SUPPLEMENTED WITH ASCORBIC ACID ON:<br />

1.GROWTH PERFORMANCE AND CARCASS<br />

TRAITS OF MERIZ GOAT *<br />

JALAL ELIYA ALKASS, MWAFQ SULIAMAN BARWARY and ARAZ OMER BAMERNY<br />

Dept. of Animal Production, College of Agriculture, University of Duhok, Kurdistan Region-Iraq<br />

(Received: April 1, 2010; Accepted for publication: August 29, 2010)<br />

ABSTRACT<br />

<strong>The</strong> study was conducted at the Animal Farm, Department of Animal Production, College of Agriculture,<br />

University of Duhok during the period from 14 th June to 14 th September 2009, where a total of twenty weaned (3-4<br />

month old) male Meriz kids with an average live body weight of 13.48 ± 0.62 kg were divided randomly into 4 equal<br />

treatment groups and received 0,750, 1000 and 1250 mg/kg diet of vitamin C for duration of 90 days.<br />

Results revealed that the overall mean of daily weight gain was 0.071 ± 0.007 kg. Meriz kids received 750 mg/kg of<br />

vitamin C in diet had numerically higher daily gain and feed efficiency and lower water consumption compared to<br />

other groups. Although results indicated that all carcass characteristics were not affected significantly by treatment,<br />

however a slight improvement was observed in final weight, hot carcass weight and fat thickness for kids fed 750<br />

mg/kg diet vitamin C.<br />

KEY WORDS: Ascorbic acid, Growth, Carcass, Meriz.<br />

I<br />

INTRODUCTION<br />

n tropical and sub-tropical countries,<br />

climatic heat is the major constraint affect<br />

animal productivity. It was indicated that heat<br />

stress causes a decrease in live body weight and<br />

gain (Kamal et al., 1989; Maria et al., 2006), a<br />

decrease in food intake, an increase in water<br />

consumption (Walker and Dziemian 1950).<br />

Vitamin C supplementation is not commonly<br />

practiced in adult livestock nutrition (McDowell,<br />

2000). Nevertheless, it has been reported that the<br />

concentration of ascorbic acid in plasma is<br />

decreased by heat stress in calves (Cummins and<br />

Brunner, 1991). Also, a study on Merino sheep,<br />

Haliloğlu and Serpek (2000) found that ascorbic<br />

acid affects positively the fertility and body<br />

weight of pregnant sheep and new – born lambs.<br />

More recently, working with weaned male lambs<br />

Abd El-Monem et al (2008) found that final live<br />

body weight, daily body gain, feed intake and<br />

feed conversion were significantly (p


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 49-54, 2010<br />

head, feet and the viscera. Kidney and pelvic fat,<br />

testes and scrotal fat were also removed<br />

(Colomer-Rocher et al., 1987). Hot carcass<br />

weight was recorded. <strong>The</strong> digestive tract was<br />

removed and weighed, then empted of its<br />

content and washed, drained and weighed.<br />

Empty body weight was computed as the<br />

difference between slaughter weight and the<br />

weight of digestive content.<br />

After chilling the carcasses at 4°C for 24 hrs,<br />

cold carcasses were weighed. <strong>The</strong> carcass was<br />

spilt along the vertebral column into left and<br />

right halves using an electrical saw. <strong>The</strong> area of<br />

longissimus dorsi muscle at the 12th rib was<br />

determined by tracing the muscle on semitransparent<br />

waxed, and the area was measured<br />

by a compensating polar planimeter. Fat<br />

thickness over the L, dorsi muscle was recorded<br />

by averaging three separate measurement using<br />

Vernia.<br />

<strong>The</strong> data obtained was analyzed using the GLM<br />

(General Linear Model) within SAS (2005)<br />

program as in the following models:<br />

Yij = μ + Ti + eij<br />

Where:<br />

Yij = Observational value of the j th animal.<br />

μ = Overall mean.<br />

Ti = Effect of i th treatment (T = 1, 2, 3, 4).<br />

eij = experimental error assumed to be NID with<br />

(O, σ 2 ).<br />

05<br />

RESULTS AND DISCUSSION<br />

Growth and feed efficiency:<br />

<strong>The</strong> findings related to fattening performance<br />

(initial and final body weight, average daily<br />

weight gain, daily feed intake and feed<br />

efficiency) are presented in Table (1). <strong>The</strong><br />

statistical analyses indicated a non significant<br />

difference in the initial live body weight among<br />

experimental groups. <strong>The</strong> overall mean of daily<br />

gain in weight was 0.071 ± 0.007 kg (Table 1).<br />

This value is within the range of 0.060 to 0.11<br />

kg reported by Dosky (2010) and Mayi (2009),<br />

respectively for the same studied breed.<br />

Table (1):- Daily feed intake, feed efficiency and water consumption for different treatment<br />

groups of Meriz kids (Mean ± s.e).<br />

Traits Overall mean Treatments<br />

Control 750 mg 1000 mg 1250 mg<br />

No. animals 5 5 5 5<br />

Initial wt (kg) 13.48 ± 0.62 13.34 ± 1.11a 13.40 ± 0.66 a 13.88 ± 1.54 a 13.32 ± 1.49 a<br />

Final wt (kg) 19.92 ± 1.10 19.48 ± 2.04 a 20.54 ± 1.39 a 19.88 ± 2.46 a 19.78 ± 2.67 a<br />

Daily gain in weight (kg)<br />

1 st month 0.034 0.045 0.033 0.034<br />

2 nd month 0.134 0.100 0.085 0.086<br />

3 rd month 0.054 0.096 0.110 0.124<br />

Average 0.071 ± 0.007 0.068 ± 0.017 0.082 ± 0.012 0.066 ± 0.014 0.070 ± 0.017 a<br />

a<br />

a<br />

a<br />

Daily feed intake (kg) 0.555 0.538 0.545 0.566<br />

Feed/gain (kg/kg) 8.16 6.81 8.13 7.86<br />

Daily water consumed<br />

(L)<br />

2.118 1.889 2.344 2.017<br />

Means with different letters within each row differ significantly; otherwise they do not differ significantly.


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 49-, 2010<br />

Although Meriz kids received 750mg/kg diet<br />

vitamin C had higher daily weight gain<br />

(0.082kg) compared to other treatment groups<br />

(Table 1), yet the differences between them were<br />

not significant. Moreover, it seems form Figure<br />

(1) that average daily gain was lowest at the first<br />

month of the experiment, appreciable increase<br />

was found in the second month particularly for<br />

the control group. By the third month of the<br />

experiment, daily gain in weight increased by<br />

increasing of vitamin C doses from 750 to 1000<br />

to 1250mg/kg diet. Thus, if the experiment was<br />

extended for another period one could expect<br />

that the response of kids to supplementation of<br />

vitamin C will increase and consequently the<br />

differences among treatment groups will be<br />

more detectable or may be the absence of<br />

variation in growth parameters among treatment<br />

groups in the weaned and growing Meriz kids<br />

reinforces the basic axis that this domestic breed<br />

has acquired long term adaptation to harsh<br />

environmental conditions in predominantly<br />

semi-arid location within the region.<br />

However, Abd El-Monem et al., (2008)<br />

indicated that daily body gain of lambs was<br />

significantly (P


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 49-54, 2010<br />

05<br />

CARCASS CHARACTERISTICS<br />

Carcass characteristic of different treatment<br />

groups of Meriz are presented in Table (2). Hot<br />

and chilled carcass weights averaged 8.50 ± 0.55<br />

and 8.19 ± 0.54 kg, respectively. Yet, the<br />

difference among treatment groups was not<br />

significant. However Abd El-Monem et al<br />

(2008) observed an improvement of hot carcass<br />

weight when growing lambs treated with the<br />

ascorbic acid at all rates of 500,750 and 1000 mg<br />

per kg diet.<br />

<strong>The</strong> average dressing percentage based on<br />

full and empty body weight was 42.26 ± 0.63<br />

and 48.75 ± 0.76 %, respectively. Also,<br />

statistical analyses revealed that supplementation<br />

of vitamin C had no significant effect on this<br />

trait. <strong>The</strong> dressing percentages obtained in this<br />

study were lower than those reported by Mayi<br />

(2009) for Meriz goat slaughtered at a heavier<br />

weight (25.8 kg), but it is higher than those<br />

observed by Dosky (2010) for the same breed<br />

raised either intensively or semi intensively or in<br />

pasture.<br />

Percent shrinkage averaged 3.71 ± 0.30 %<br />

(Table 2). However, the differences among<br />

treatment groups were not significant. Similarly,<br />

Mayi (2009) and Dosky (2010) indicated that<br />

shrinkage percentage averaged 3.47 and 4.05 %<br />

for Meriz carcasses. <strong>The</strong> greater loss in weight<br />

due to chilling of Meriz can be possibly<br />

attributed to their thinner subcutaneous fat cover<br />

( Table 2).<br />

THE RIB EYE AREA AND THE FAT<br />

THICKNESS<br />

In the present work, result showed that rib<br />

eye area averaged 6.60 ± 0.46cm 2 (Table 2). No<br />

significant differences were observed between<br />

control and other treatments in this trait. While,<br />

Abd El-Monem et al (2008) indicated that eye<br />

muscle weight was improved when growing<br />

lambs treated with ascorbic acid at all the rates<br />

of 500, 750, and 1000 mg per kg diets. Also,<br />

goat carcasses had a very thin layer of<br />

subcutaneous fat (0.78 ± 0.05 mm) (Table 2). A<br />

typical feature of goat carcasses in their thin fat<br />

cover (Colomer-Rocher et al. 1992; Dhanda et<br />

al. 2003), Control treatment had thinner fat over<br />

eye muscle numerically (0.68 ± 0.079mm)<br />

compared to other treatments (0.90 ± 0.11, 0.70<br />

± 0.05 and 0.84 ± 0.14mm), respectively (Table<br />

2), yet, the differences were not significant.<br />

Similarly, working with pigs, it was reported that<br />

dietary vitamin E and C supplementation to pigs<br />

resulted in a non-significant effect on carcass<br />

characteristics (% Lean cut, % fat tissue and fat<br />

thickness) (Eichenberger et al., 2004). In<br />

general, the value of both fat thickness and rib<br />

eye area obtained in the current investigation is<br />

lower than those reported by Mayi(2009) for<br />

Meriz goat slaughtered at a heaver weight but it<br />

is higher than those noted by Dosky (2010) for<br />

the same breed.<br />

Table (2):- Effect of supplementation of vitamin C on fattening performance and carcass traits (Mean ± s.e).<br />

Trait Overall mean Treatment<br />

Control 750 mg 1000 mg 1250 mg<br />

No. animals 5 5 5 5<br />

Final wt (kg) 19.92 ± 1.10 19.48 ± 2.04 a 20.54 ± 1.39 a 19.88 ± 2.46 a 19.78 ± 2.67 a<br />

Empty body wt.<br />

(kg)<br />

17.30 ± 0.98 16.98± 1.87 a 17.70± 1.35 a 17.38± 2.08 a 17.16± 2.39 a<br />

Hot carcass wt.<br />

(kg)<br />

8.50 ± 0.55 8.32± 1.14 a 8.62± 0.56 a 8.50± 1.20 a 8.58± 1.35 a<br />

Chilled carcass<br />

wt(kg)<br />

Dressing %<br />

8.19 ± 0.54 8.02± 1.10 a 8.32± 0.60 a 8.20± 1.15 a 8.24± 1.32 a<br />

1 42.26 ± 0.63 41.94± 1.89 a 41.98± 0.39 a 42.34± 1.16 a 42.78± 1.20 a<br />

2 48.75 ± 0.76 48.30± 2.03 a 48.86± 0.91 a 48.35± 1.18 a 49.49± 1.71 a<br />

Shrinkage % 3.71 ± 0.30 3.63± 0.71 a 3.59± 0.72 a 3.52± 0.31 a 4.10± 0.56 a<br />

Fat thickness<br />

(mm)<br />

Rib-eye area<br />

(cm 2 )<br />

0.78 ± 0.05 0.68± 0.079 a 0.90± 0.11 a 0.70± 0.05 a 0.84± 0.14 a<br />

6.60 ± 0.46 6.40± 0.92 a 6.60± 0.40 a 7.20± 1.39 a 6.20± 0.66 a<br />

Means with different letters within each row differ significantly.<br />

(1): Based on slaughter weight.<br />

(2): Based on empty body weight.


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 49-54, 2010<br />

REFERENCES<br />

*Arab Veterinary Industrial Co. (Avico) P.O.Box:150906<br />

Amman (11115) Jordan<br />

-Abd EL –Monem, U. M., Abel-Ghany, B. and abd El-<br />

Hamid, A. A. 2008. Effect of ascorbic acid<br />

supplementation on growth performance, carcass<br />

traits, some physiological parameter and some<br />

blood constitute of growing lambs under the<br />

summer Egyptian condition. Egyptian J. sheep and<br />

goat Sci. 3:41-52.<br />

-Alkass, J. E. and Juma, K. H. 2005. Small Ruminant Breed<br />

of Iraq. In: Characterization of Small Ruminant<br />

Breed in West Asia and North Africa. (ed. Iniguez<br />

L.) Vol. 1. West Asia. International Center for<br />

Agriculture Research in the Dry Areas (ICARDA).,<br />

Aleppo, Syria, pp.63-101.<br />

-Colomer-Rocher, F., Morand-Fehr, P. and Kirton, A. H.<br />

1987. Standard methods and procedures for goat<br />

carcass evaluation, jointing and tissue separation.<br />

Livestock Production Science, 17:149–159.<br />

-Colomer-Rocher, R., Kirton, A. H., Mercer, G. J. K. and<br />

Duganzich, D. M. 1992. Carcass composition of<br />

New Zealand Saanen goats slaughtered at different<br />

weights. Small Rumin. Res. 7: 161-173.<br />

-Cummins, K. A. and Brunner, C. J. 1991. Effect of calf<br />

housing on plasma ascorbate and endocrine and<br />

immune function. J. Dairy. Sci. 74:1582- 1588.<br />

-De Rodas, B. Z., Maxwell, C. V., Davis, M. E., Mandali,<br />

S., Broekman, E. and Stoecker, B. J. 1998. Lascorbyl-2-<br />

polyphosphate as a vitamin C source for<br />

segregated and conventionally weaned pigs. J.<br />

Anim. Sci., 76:1636- 1643.<br />

-Dhanda, J. S., Taylor, D. G. and Murray, P. J. 2003.<br />

Growth, carcass and meat quality parameters of<br />

male goats: effects of genotype on live weight at<br />

slaughter. Small Rumin. Res. 50: 57-66.<br />

-Dosky, K. N. S. (2010). Fattening and some carcass<br />

characterirics of Meriz and native goat male kids<br />

raised in either concentrate or pasture conditions.<br />

Mesopotamia J. of Agric.38 (2). (In press).<br />

-Eichenberger Barbara, H. P., Wenk, P. C. and Gebert. S.<br />

2004. <strong>Influence</strong> of dietary vitamin E and C<br />

supplementation on vitamin E and C content and<br />

thiobarbituric acid reactive substances (TBARS) IN<br />

different tissues of growing pigs. Arch. Anim. Nutr.<br />

58:195-208.<br />

-FAO(Food and Agriculture organization). 2000. Quarterly:<br />

Bulletin of Statistics. Vol. 1. - FAO, Rome, Italy.<br />

-Haliloğlu, S. and Serpek, B. 2000. <strong>The</strong> effects of plasma<br />

vitamin C and Ceruloplasmin levels and exogen<br />

vitamin C supplementation on reproduction in<br />

sheep. Turkish J. Vet. Anim. Sci. 24:403-412.<br />

(Cited by Ghanem et al., 2008).<br />

-Kamal, T. H., Habeeb, A. A., Abdel-Samee, A. M. and<br />

Abdel-Razik, M. A. 1989. Supplementation of heatstress<br />

Friesian cows with urea and mineral mixture<br />

and its effect on the milk production in subtropics.<br />

Proceeding of International Symposium on the<br />

Constraints and Possibilities on Ruminant<br />

Production in the Dry Subtropics. Cairo, Egypt,<br />

1:183.<br />

-Maria I. F. M., Askar, A. A. and Bahgat, L. B. 2006.<br />

Tolerance of New Zealand and Californian doe<br />

rabbits at first parity to the sub-tropical<br />

environment of Egypt. Livestock Prod. Sci. 104:<br />

165.<br />

-Mayi, V. J. T. 2009. Effect of fattening period on growth<br />

rate and carcass characteristics of Meriz and native<br />

black goats. MSc. <strong>The</strong>sis. College of Agriculture.<br />

University of Duhok.<br />

-McDowell, L. R., 2000. Vitamins in Animal and Human<br />

Nutrition, second ed. State University, Ames IA,<br />

Iowa, pp. 597–634.<br />

-SAS. 2005. SAS/STAT User's Guide for personal<br />

Computers, Release 8.00. SAS Institute Inc., Cary,<br />

NC, USA.<br />

-Selim, N. A., Abdel-Khalek, A. M., Nada, S. A. and El-<br />

Medany, Sh. A. 2008. Response of growing rabbits<br />

to dietary antioxidant vitamins E and C. 1. Effect on<br />

performance. 9th World Rabbit Congress– Verona<br />

– Italy<br />

-Walker, J. and Dziemian, A. J. 1950. Biochemical and<br />

Physiological Data on the Normal Goat. Medical<br />

Divis. Res. Rep.No. 31, Chemical Corps Medical<br />

Directorate. Army Chemical Center, Md.<br />

05


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 49-54, 2010<br />

09<br />

: زةطل ادَيكيلائد ديضةئ كيبزوكضةئ َىيشست انسكةدَيش انسكَيتزاك<br />

. ىشةزةو َىشةث وَيخةلةك وَيتةخولاض اطنةض انوبةدَيش -1<br />

َىندناض اريلوك ه ىزةوةنايط َىوةيزةب اكشب ه ازةوةنايط انسكنادوخ ىذوسث ه ىاد مانجةئ ةييتاي ةهيلوكةظ<br />

ىاو اطنةض اريسب و)<br />

ىايةو 4-3(<br />

ىسكةظيرش ينَي ايرض تيكطيط 20 وك 2009 َىنوميئ<br />

وب ىسكلةكَيت َىي ىاو َىفةلائ وك ىاثوسط زاض زةض ه ىسكشةباد ةهتاي و ىوب ماسطوميك<br />

. اذوز 90 َىواو وبو فلائ ماسط وميك/<br />

ذ مغك/<br />

مكمو 750 وَييو . ىوب مغك<br />

0.007 ± 0.071<br />

ماسط نو<br />

1250<br />

و<br />

14<br />

1000 ، 750 ، 0<br />

ات َىناسيصخ<br />

14<br />

0.62 ± 13.48<br />

ىارَيز ىاظ ـب<br />

ﭫةئ<br />

ةتخوث<br />

ذ كويد ايوكناش<br />

C<br />

ىكَيثتضةداي<br />

ينواتيف هةطد<br />

اكطيط اي ةناذوز اطنةض ارَيز وك ىسكزايد َىهيلوكةظ وَيوانجةئ<br />

زايد اوانجةئ ىازةزةض ىد وَيثوسط هةطد دزوازةب ب َىيطنةض ارَيز ويترهمب ةتشيةط ادَينزاوخد وتسطزةو<br />

اكةيترَيـض َلىةب ،ىخةلةك وَيتةخولاض زةض ةهيسكةن فاجزةب ةَينسكيتزاك ض<br />

750<br />

14<br />

C<br />

ينواتيظ<br />

C ينواتيظو ىفلائ ايزاكتضةد وك ةهيسك<br />

وـك وَيكـطيط ىاو ه ىشةـب ايتاسيوتـضو مزةط َىخةلةك ايطنةضو اكطيط ايطنةض ايياوود زةض ةيسك ىيةزاوش<br />

: يف ةقيلعلل<br />

c نيماتيف ةفاضا ريثات<br />

زعرملا زعامل ةحيبذلا<br />

تافصو ومنلا ءادا -1<br />

. C ينواتيظ ارَيز ذ مغك/<br />

مغكمو<br />

ةتتملا لاتت وتتهد ةتتعماج ةتتعا زلا ةتتيله يياوتتيحلا زاتتتيلا يتتوي ااوتتيحلا ةتتيبرت حورتتيم يتتف ةتتيا ةلا دذتته هتتيرجأ<br />

± 13.48 ي اةتتبا اعو ةتعمبو ) ررتشأ 4-3<br />

و تلع يتغه يتغلم 1250 و 1000 , 750 , رفتص<br />

(<br />

ةتموةفملا زتعرملا ءاةتج نتم<br />

د ةتي<br />

750 هتلوانت يتتلا ءاةتيلا هتققح اتمه . يتغله 0.007<br />

,<br />

C<br />

نيماتتيف<br />

± 0.071<br />

20<br />

تيعوت يتت تيح<br />

2009<br />

وتليا<br />

14<br />

ةصلاخلا<br />

ةياغل ااريزح<br />

نتم ةفاتضا أتلع ذتغتتل يماتيم ةتعب أ أتلا يتغه 0.62<br />

. آموي اوعوت ةمل<br />

تلب ةتي ةتيمويلا ةتييعولا داتيزلا ةتعم ااتب ا اتتنلا ريتيت<br />

رت لا تلاماتعملاب<br />

ةتي اقم ءاتملا نتم ةتيمه ليا هلوانتو<br />

ي اذغ ليوحت ءافهو ةييعو دايع ألعأ C نيماتيف يغله ∕ يغلم<br />

لا ةتفلتخملا تلاماتعملا نيتب ةتيونعملا قورتفلا اةتعيا نتم يغرتلا أتلع ااتب ا اتتنلا ريتيت اتمه . ةيونعم امرنيب<br />

.<br />

ةينهةلا ةقبةلا كميو ةحيبذلا اعوو ي ارنلا اعولا يف انوحت هققح ةي لع يغه/<br />

يغلم<br />

750<br />

قورفلا نكت يلو<br />

هلوانت يتلا ءاةيلا اا


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 55-59, 2010<br />

SOCIO-ECONOMIC AND TECHNICAL FACTORS ASSOCIATED WITH<br />

BROILER PRODUCTION IN DUHOK GOVERNORATE<br />

REZGAR M.MOHAMMED and JOHNNY S. YOKHANA<br />

Dept. of Animal Production, College of Agriculture, University of Duhok, Kurdistan Region-Iraq.<br />

(Received: April 8, 2010; Accepted for publication: July 20, 2010)<br />

ABSTRACT<br />

<strong>The</strong> study investigated factors associated with the production efficiency in a sample of (20) broiler farms<br />

distributed between five productive zones in Duhok governorate. Structured questionnaire were prepared to collect<br />

data on social qualifications of labour force concerning their level of education and the status of farm ownership and<br />

rent, quality of day old chicks, mortality, feed conversion and age of broiler marketing were also studied. <strong>The</strong><br />

technical specifications of broiler houses were also monitored. Feeders, waterers, light source and availability of<br />

feedmills were also studied. Frequency distribution, Pearson correlation and regression technique were used to<br />

analyse the data. <strong>The</strong> results revealed many deviations from the technical specifications in the sample that was<br />

studied, which led to the detoriation of the most productive qualities.<br />

KEYWORDS: Broiler, Socio-economic, Technical factors.<br />

T<br />

INTRODUCTION<br />

he poultry industry has developed<br />

rapidly in Duhok governorate since the<br />

beginning of the seventies, when the private<br />

sector appeared to invest in this activity, taking<br />

advantage of government support of loans,<br />

technical and veterinary services, and the<br />

development of regulations and directives<br />

governing the sector. Broiler production has<br />

been developed, as the number of fields<br />

increased to about (67) fields with the capacity<br />

of about (800) thousand birds in 2008 1 .<br />

Poultry production has an important role in<br />

supporting a white meat for human consumption<br />

which peculiar high nutrition value whereas it<br />

contains (23.5%) protein, (8.5%) fat, (0.3%)<br />

organic salts, (67.2%) water and its calorie<br />

numbers per each kilogram reaches (1783)<br />

calories 2 .<br />

In spite of the development in the amount of<br />

broiler production sector, it suffers from many<br />

problems; the most notable problems were<br />

decreasing productive efficiency in most<br />

fields which leads to high production costs to<br />

them. As a result of the failure to regulate this<br />

industry and the lack of massacres model that<br />

can accommodate all the quantity of production,<br />

there were periods which supplied more than<br />

what is demanded; this led to lowering the prices<br />

and it often leads to big losses in the owners<br />

part.<br />

A number of economic studies have been<br />

taken in this field, either in the analysis of<br />

production costs by the various items and to<br />

derive the marginal and average cost functions<br />

of broiler farms to identify the optimal size of<br />

the field, or in the economic efficiency in order<br />

to identify the reasons behind the high<br />

production costs of broiler fields by using a<br />

number of economic criteria and economic<br />

feasibility criteria of projects and economic<br />

return to the scale of broiler fields.<br />

Although the broiler farms are economic<br />

activities, there are many technical factors and<br />

specifications that should be provided to reach<br />

the economic efficiency and hence profitability.<br />

We have noticed that there have not been any<br />

scientific studies on the availability of these<br />

technical factors in broiler fields. <strong>The</strong> aim of this<br />

study is to identify the availability of various<br />

technical factors that affect the productive<br />

efficiency of a sample of broiler fields in Duhok<br />

governorate, and then submit some<br />

recommendations to improve the production<br />

efficiency, and therefore economic efficiency of<br />

these fields.<br />

MATERIALS AND METHODS<br />

Structured questionnaire has been designed<br />

for data collection; it includes several questions,<br />

some of which relate to the social characteristics<br />

of broiler breeders, efficiency of food conversion<br />

ratio, mortality percentage, marketing age,<br />

various technical specifications of the houses,<br />

and equipment for the study sample. Random<br />

sampling technique was followed to arrive at a<br />

55


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 55-59, 2010<br />

total of (20) broiler farmer, which makes about<br />

(30%) of the total fields in Duhok governorate;<br />

they are distributed into five areas in the<br />

governorate (Duhok, Amedy, Shekhan, Aqra and<br />

Sumail) (table 1). Interview schedule was used<br />

to gather information from respondents.<br />

Frequency distribution, Pearson correlation and<br />

regression technique were used to analyse the<br />

data using WINKS SDA-Statistical Data<br />

Analysis program.<br />

55<br />

Results & Discussion<br />

1. Social characteristics of farmers<br />

It is clear from the study that the number of<br />

farms owned and leased is (15) and (5) farms<br />

respectively, which represents (75%) and (25%)<br />

of the total, the highest percentage of the owned<br />

farms is in Sumail, which is about (46%).<br />

Approximately (60%) of respondents had no<br />

formal education, (15%) intermediate, (15%)<br />

agriculture institute, (5%) non-agriculture<br />

institute and only (5%) of them have been<br />

graduated from the college of agriculture. As for<br />

the staff expertise, nearly (5%) between one to<br />

three years, (65%) were between four to seven<br />

years, (20%) between eight to ten years, and<br />

about (10%) more than ten years.<br />

2. <strong>The</strong> quality of chicks<br />

<strong>The</strong> quality of one day-chick is one of the<br />

factors affecting production efficiency in broiler<br />

fields. It is known that all broiler chicks are<br />

produced locally from layers raised locally<br />

where their sources are international companies.<br />

<strong>The</strong> survey shows that the percentage of fields,<br />

which considers that the quality of chicks is<br />

good, is around (65%) and the medium quality is<br />

about (35%).<br />

3. Mortality percentage<br />

Mortality percentage is considered as one of<br />

the most important factors affecting the cost of<br />

production. Although the accepted ratio in<br />

commercial broiler production is about (3-5%)<br />

(Naji, Kaissy, Hjo and Khalidi, 2007) and the<br />

majority of the respondents had access to<br />

veterinary services, the average mortality rate in<br />

the sample is about (8%), with a range of (5-<br />

30%). <strong>The</strong> reason for this high mortality<br />

percentage might be the mismanagement of the<br />

flock, nutritional deficiency, metabolic and other<br />

diseases. <strong>The</strong> mortality factor is one of the most<br />

important factors that lead to the high cost of<br />

production, which in turn could lead to the<br />

disability of many farm owners to endure in the<br />

production process. An analysis using Pearson's<br />

correlation coefficient indicates no statistically<br />

significant linear relationship between mortality<br />

rate and average total production (table 2).<br />

4. <strong>The</strong> average of feed conversion efficiency<br />

It is known that the cost of nutrition<br />

constitutes about (60 - 70%) of the total costs of<br />

production (Naji, Kaissy, Hjo and Khalidi,<br />

2007). So, the feed conversion efficiency is one<br />

of the most important measurements that give an<br />

idea of the cost of production. As a result to the<br />

continued improvement in respect to the<br />

genetics, in addition to the improvement in the<br />

management and nutrition, this rate has become<br />

about (1.67 - 1.75) in most countries of the<br />

world 3 . <strong>The</strong> study has shown that about (70%) of<br />

farms are within the accepted rate concerning<br />

feed conversion efficiency, while (30%) exceed<br />

the mentioned rate. Feed conversion efficiency<br />

had a positive and significant correlation with<br />

average total production (table 2).<br />

5. Marketing age<br />

It is agreed that the economic age of<br />

marketing starts from (42) days up to (52) days,<br />

and in some cases marketing is done before or<br />

after that rate. This depends on the weight of the<br />

birds and the size preferred by the consumer. It<br />

is noted that the percentage of farms that have<br />

been marketing at the age of (42) days is (30%),<br />

the farms that have been marketing at the age<br />

(45) days is (20%), at (49) days was (30%),<br />

while at (52) days was (20%). As far as, the live<br />

body weight at (49) days could be reached,<br />

(2.250) kg is considered as an acceptable weight<br />

by the local consumer. However (20%) of the<br />

total sample fields marketed at (52) days of age<br />

and this is because of low body gain, decrease of<br />

feed conversion efficiency and mismanagement.


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 55-59, 2010<br />

Table (1): Distribution of broiler farms in Duhok governorate.<br />

Area No. of broiler<br />

farms*<br />

% of the total No. of farms<br />

studied<br />

% of the total<br />

Amedy 2 3 1 1.5<br />

Sumail 18 27 9 13.5<br />

Duhok 9 13 2 3<br />

Shekhan 5 7.5 3 4.5<br />

Aqra 28 42 5 7.5<br />

Zakho 4 6 - -<br />

Mangesh 1 1.5 - -<br />

Total 67 100 20 30<br />

* Data from the general directorate of agriculture in Duhok governorate.<br />

Table (2) : Matrix of correlation coefficients.<br />

Traits Mortality rate Feed conversion<br />

efficiency<br />

Average total production<br />

Mortality rate 0.082 - 0.266<br />

Feed conversion efficiency 0.456 *<br />

Average total production<br />

* Significant at 5% level of probability.<br />

Table (3): Regression coefficients between dependent and independent variables.<br />

Regression on: Mortality rate Feed conversion<br />

efficiency<br />

Average total production<br />

Certificate - 1.135 0.017 1759.502*<br />

Staff expertise - 1.258 0.054 2711.322*<br />

Chicks quality - 0.590 - 0.042 - 366.697<br />

* Significant at 5% level of probability.<br />

Mortality rate was found to have a negative<br />

non-significant regression on educational level<br />

of farmers, staff expertise and chicks quality.<br />

Feed conversion efficiency had a positive and<br />

non-significant regression with education level<br />

of farmers and staff expertise but it was negative<br />

and non-significant with chicks quality. Average<br />

total production was found to have a positive<br />

significant regression on educational level of<br />

farmers and staff expertise but it was negative<br />

and non-significant with chicks quality (table 3).<br />

6. Technical specifications of broiler houses<br />

One of the objectives of this study is<br />

searching for the ideal specifications for the<br />

houses according to North & Bell 4 , to provide<br />

warmth for broilers during cold weather and to<br />

provide proper cooling in hot weather. It has<br />

been observed that most of fields were similar to<br />

the closed type, whose ventilation depends on<br />

the movement of the free open air only.<br />

<strong>The</strong> most important specifications for broiler<br />

houses have been researched in the studied<br />

sample like house orientation, width & height of<br />

the house and thermal insulation in the field.<br />

It is always advised that the house orientation<br />

should be east-west 5 , which reduces the effect of<br />

high summer temperature 6 . <strong>The</strong> results showed<br />

that (60 %) of the total number of the houses has<br />

been brought to the longitudinal axis east-west.<br />

It is known that the temperature may rise during<br />

the summer in some areas of study, thus it could<br />

be higher than (40ºc) during the day time, which<br />

is higher than the temperature required for<br />

optimal production in poultry, which is ranged<br />

between (18-22ºc), (Austic & Nesheim, 2005).<br />

<strong>The</strong> width of the house in semi-closed system<br />

should not be more than (12 m) (Ernst, 1995),<br />

and it is preferred that the width would be<br />

between (10-11 m). <strong>The</strong> study has shown that<br />

(70 %) of the total houses are built with the<br />

width of (10-12 m).<br />

55


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 55-59, 2010<br />

<strong>The</strong> height of the house is recommended to<br />

be between (2.1-2.4 m) (North & Bell, 1990).<br />

<strong>The</strong> study has shown that (70 %) of the total<br />

houses are built with the height of (2-2.4 m).<br />

It would be better to isolate the poultry<br />

houses with one of the available thermal<br />

insulation materials, where it saves the cost of<br />

heating in cold weather and prevents humidity<br />

condensation on the ceiling, as it reduces the<br />

effectiveness of the heat of the sun in summer<br />

(North & Bell, 1990). <strong>The</strong> study shows that<br />

about (40%) of the houses are thermally<br />

insulated and (55%) of house ceilings are from<br />

steel plates and (45%) are from cement. Perhaps<br />

the main reason which makes the producers not<br />

embark upon providing their houses with<br />

thermal insulation is the high cost.<br />

7. Technical specifications of broiler house<br />

equipments<br />

It is necessary to provide the appropriate<br />

equipments and tools to ensure the good<br />

performance of the birds. It is necessary to keep<br />

pace with modern developments and techniques<br />

in these equipments, which would facilitate the<br />

work and maximize the productive efficiency of<br />

the breeding birds, which lead to the reduction of<br />

cost. Some equipment are studied in the fields<br />

like feeders, waterers, lights and feed mills.<br />

<strong>The</strong> study shows that about (90%) of the<br />

fields used automatic feeders and waterers. All<br />

the houses were supplied with electricity and<br />

light bulbs are distributed on three lines which is<br />

the accepted distribution. About (80%) of the<br />

total fields own feed mills to grind and mix the<br />

ration themselves, which will lead to lowering<br />

the cost of food.<br />

Recommendations:<br />

Based on the findings of this study the following<br />

recommendations were advanced towards<br />

55<br />

alleviating the problems being encountered by<br />

poultry farmers and increasing their<br />

productivity.<br />

1- Implementation of the recommendations on<br />

good technical specifications and requirements<br />

for housing poultry in general and broiler in<br />

particular.<br />

2- Tighten control over the quality of chicks at<br />

the age of one day and at the level of the fields<br />

of maternal and the hatching chicks and make<br />

sure that there were no diseases when they are<br />

distributed to the breeders.<br />

3- Extension activities should focus on training<br />

the farmers on the improved production<br />

management to enable them to use the available<br />

resources efficiency and increase productivity.<br />

REFERENCES<br />

- General Directorate of Agriculture - Duhok (2009),<br />

personal communication.<br />

- Naji,S.A.H, G.A.Al-Kaissy, N.N.A.Al-Hjo and<br />

R.A.Al-Khalidi (2007) Poultry Meat Production<br />

and Technology. Ministry of Higher Education and<br />

Scientific Research. University of Baghdad<br />

(Arabic).<br />

- Austic R.E., and M.C., Nesheim (0991), Poultry<br />

Production, Thirteenth Edition, Williams &<br />

Wilkens, Baltimore, Maryland.<br />

- North M.O., and D.D. Bell (1990), Commercial<br />

Chicken Production Manual, Van Nostrand, New<br />

York, 154-161.<br />

- Ernst, R.A. (1995), Housing for Improved Performance<br />

in Hot Climates. In: Daghir, N.J. (ed.) Poultry<br />

Production in Hot Climates. CAB International,<br />

Wallingford, 81-82.<br />

- Parkhurst, C.R., and G.J.Mountney (1988), Poultry<br />

Meat and Egg Production, 1 st ed., AVI, New York,<br />

100.


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 55-59, 2010<br />

اناهيئ مةيزةب لةطد ىادَيسط وَيي ىزةنويو ىزووبائ – ىكاظج وَيزةتكاف<br />

َىكويد ايةطصَيزاث ل ىتشوط وَيكشيسم<br />

وَيكشيسم وَييةطمَيك اكةنونم اي َىناهيئ مةيزةب ايتاًَيذ لةطد ىازةتكاف انادَيسط اهيناش وب ىادمانجةئ ةيتاي ةهيلوكةظ ظةئ<br />

ل َىناهيئ<br />

مةيزةب وَييةضوان جهَيث زةطل ىسك شةباد ةهيتاي ىايةطمَيك ) 02(<br />

ةتييةطد ىاو ازامري وك وَيي ىتشوط<br />

ىاظ ل ىازةكزاك وَيي ىكاظج وَيتةمخاض ب تةبيات وَيمزوف اكَيز ب وتسطزةو ةهيتاي اتاد . َىكويد ايةطصَيزاث<br />

اسكَيت , َىنسم اي ىدةض ارَيز , ىاكولةضيض َىزوج , ازةكزاك َىي َىندناوخ َىتضائ , َىيةطمَيك اينةواخ ذ ةسطب , ىايةطمَيك<br />

وَيتةمخاض اضةوزةي . ىتشوط وَيكشيسم وَييةطزاو وَيي ىزةنوي وَيتةمخاض<br />

اضةوزةي و َىهتوسف َىيذ , ىداش اهيزوًط<br />

. ىايةطمَيك ل ىشائ انووبةي و ىيانوز , َىنزاخةظ و َىنزاوخ وب تةبيات وَييرمائ ذ ةسطب ينلوكةظ ةيتاي ىايرمائ كةدهي<br />

َىزةطةئ ةهبد وك وَيي ىزةنوي وَيجزةم ذ ويةي وَيي ىووب َىزلا كةلةط وك تيهييةطداز ىتفةكتضةد وَيمانجةئ<br />

. ادَيناهيئ مةيزةب وَيتةمخاض ايترث د َىنووضكَيت<br />

كوىد ةظفاحم يف محللا جورف جاتنا عم اهتقلاع و ةينفلا و ةيداصتقلاا – ةيعامتجلاا لماوعلا<br />

را لم زلم ةلنيعل ةليجاتنلاا<br />

ةالفكلا<br />

ةتخوث<br />

ةصلاخلا<br />

علم الهتقلاع و ةلفلتخملا للماوعلا رفوت ىدم ىلع فرعتلا فدهب ةساردلا هذى تيرجا<br />

علم ل ةلصاخ وناهتلسا ميملصت ملت . كولىد ةلظفاحم يف ةيجاتنا قطانم ةسمخ ىلع زوم لقح ) 02(<br />

اىددع غلب ،محللا جاجد<br />

يلللميلعتلا ىوتللسملاو لللقحلا ةلليكلم لليح زللم ،توللقحلا هذلللى يللف زيلماللعلل ةلليعامتجلاا ل اللصخلاب قلللعتي اللميف ياللنايهلا<br />

يافللصاوملا لذللتو قيوللستلا رللمعو ي اذلل لا للليوحتلا ةاللفت تدللعمو ياللتلاهلل ةلليوئملا ةهللسنلاو<br />

سارللفلاا ةلليعونو زيلماللعلل<br />

يلف ةالةلااو ةمدختلسملا للىانملاو للعملا اونا لثم هجلاا ضعب يافصاوم ةسارد مت امت . محللا جورف زتاسمل ةينفلا<br />

اللهترا<br />

و رادلحنلاا للماعم , يرارلكتلا عليزوتلا<br />

ةلقيرط يالنايهلا لليلحت يللف فدختلست . ةلعر ملا يلف زيراول لا رفولت مل للقحلا<br />

مللظعم يللف روىدللتلا ىلللا يدا يللتلا ةللسوردملا ةللينفلا ورللولا زللع ياللفارحنلاا زللم رلليثكلا ر اللتنلا يرللهةا دللقو .<br />

وللسريب<br />

.<br />

ةيجاتنلاا يافصلا<br />

59


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 60-69, 2010<br />

06<br />

EFFECT OF SOME TREATMENTS ON VAS LIFE<br />

OF Rosa cv. Queen elizabeth FLOWERS<br />

HADAR SAEED FAIZY AL-MIZORY<br />

Dept. of Hortiscinse, College of Agricultural, University of Duhok, Kurdistan Region-Iraq<br />

(Received: April 8, 2010; Accepted for publication: October 11, 2010)<br />

ABSTRACT<br />

Five years old Rosa cv. Queen Elizabeth flowers were taken from shrubs grown in Agricultural College gardens at<br />

the University of Dohuk. <strong>The</strong> length of cut flowers petule was estimated at 50-70 cm. <strong>The</strong> effect of flowers cutting<br />

stage was studied on vase flowers age stage of non opening sepals, stage of semi opened sepals, stage of non opening<br />

petals, stage of semi opened petals and the stage of full petals opening interacted with three different methods of cut<br />

flowers, cutting the flowers and putting them in water after 10 minutes, cutting the flowers and putting them directly<br />

in water and cutting the flowers under water directly.<br />

<strong>The</strong> experiment was arranged according to factorial randomized complete design in four replicates and 15 flowers<br />

for each replicate. <strong>The</strong> highest percentages mean of petals falling down at petals full opening and at semi opened<br />

petals were recorded (97.35%). Flowers’ cutting at the stage of non opening petals was better and the mean<br />

percentage of petals fulling down was 55.55%. Whereas, the flowers were declined and the mean of petals falling<br />

down percentage was 90.83%, when they were cut and put in water after 10 minutes. While the percentage of petals<br />

falling down was better when the flowers were cut under water directly (72.57%). Cutting flowers at full opening<br />

stage for cutting the flowers and putting them in water after 10 minutes and cutting the flowers and putting them<br />

directly in water gave 100.00% petals falling down as compared with those cut under water (92.06%) for the same<br />

treatment. <strong>The</strong> lowest petals falling down percent was 43.74% which was recorded while cutting flowers at the stage<br />

of non opening sepals and those cut under water directly .<br />

A<br />

INTRODUCTION<br />

rose is a perennial flower shrub or vine<br />

of the genus Rosa, within the family<br />

Rosaceae, which contains over 100 species and<br />

comes in a variety of colors. <strong>The</strong> species form a<br />

group of erect shrubs, and climbing or trailing<br />

plants, with stems that are often armed with<br />

sharp prickles. Most are native to Asia, with<br />

smaller numbers of species native to Europe,<br />

North America, and northwest Africa. Natives,<br />

cultivars and hybrids are all widely grown for<br />

their beauty and fragrance (Britannica Online<br />

Encyclopedia, 2007).<br />

Roses are one of the oldest known flowers<br />

and are grown in many countries of the world,<br />

and are one of the most favorite ornamental<br />

plants because of the beauty of its flowers,<br />

aromatic with different colors and shapes that<br />

live long after the cutting in addition to the<br />

volatile oils. <strong>The</strong> production and trade of cut<br />

flowers from the important issues of our time,<br />

and it is no doubt that it occupies a prominent<br />

place in the economies of many countries of the<br />

world, especially the developed countries<br />

concerned with the education and the production<br />

of cut flowers.<br />

Flowers are extremely perishable maintaining<br />

their physiological functions vary actively even<br />

after harvest, and the beginning of their<br />

senescence very often depends on ethylene. A<br />

rise in ethylene production that accelerates<br />

senescence has been found in cut carnations and<br />

roses (Quesada and Valpuesta, 2000).<br />

Ichimura et al,. (2005) found that saponin(s)<br />

was extracted from tea seeds, and its effect on<br />

the vase life, transpiration from leaves and<br />

hydraulic conductance of stem segments in cut<br />

roses (Rosa hybrida L. cv. Sonia) were<br />

investigated. <strong>The</strong> continuous treatment with teaseed<br />

saponins (TSS) at 20 mg/ L significantly<br />

extended the vase<br />

life of cut rose flowers, flowers at normal<br />

harvest maturity (sepals starting to reflex)<br />

Moreover (Liao et al., 2000) also reported<br />

that the postharvest quality of cut flowers Rosa<br />

hybrida L. cv. Diana was affected by a treatment<br />

of sucrose when Flower longevity was 7.4 ± 0.8<br />

(days) at 120 (g/L) concentration , While<br />

Flower diameter was 4.5 ± 0.3 (cm) at STS (0.2<br />

mM) + sucrose (120 g/ L) +HQS( 200 mg/L)<br />

concentrations when the flowers taken at Halfopen<br />

stage<br />

<strong>The</strong> aim of this study is to know the best age and<br />

way to harvest, thereby prolonging the vaslife of<br />

flowers after post harvesting.<br />

MATERIALS AND METHODS<br />

This experiment carried out in the ornamental<br />

plants laboratory of Department of Horticulture/<br />

College of Agriculture/ University of Dohuk,


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 60-69, 2010<br />

Sumeil in the period from May 8 th , 2007 to May<br />

22 th , 2007. <strong>The</strong> Rosa cv. Queen Elizabeth<br />

flowers of the Queen Elizabeth were taken from<br />

shrubs of five years old plants in the gardens of<br />

the College in the early morning using a sharp<br />

and sterilized blade the length of cut flower was<br />

ranged from 50 to 55 cm, and leaving two leaves<br />

on the cut flower and other leaves removed,<br />

taking account that the lower parts of the stem of<br />

flowers.<br />

Flowers were cut and placed in vas was<br />

washed well with hot water and soap using a<br />

brush to get rid of the remaining sediment at the<br />

bottom contained sterile water and clean and<br />

cool somewhat by sucrose (5 g L-1),<br />

(Treetaruyanondha and Ketsa, 1988) for a depth<br />

of 5 cm, taking into account changing it every<br />

two days and cut 1 cm of the lower flower stem.<br />

A factorial experiment was carried out of two<br />

factors using a Factorial Experiment within<br />

Randomized Complete Design. <strong>The</strong> first factor<br />

was five stages of harvest: stage of non opening<br />

sepals, stage of semi opened sepals, stage of non<br />

opening petals, stage of semi opened petal, the<br />

stage of full petals opening. <strong>The</strong> second factor<br />

included three different methods of flowers<br />

cutting, cutting the flowers and putting them in<br />

water after 10 minutes, cutting the flowers and<br />

putting them directly in water and Re-cutting the<br />

flowers under water directly. By 15 treatments<br />

replicated 4 times, and every experimental unit<br />

included 3 flowers. Data were taken after 14<br />

days from experiment beginning and the<br />

following characteristics were examined.<br />

1. Average percentage of flowers in the<br />

emergence of Anther.<br />

2. <strong>The</strong> average percentage of opening sepals.<br />

3. Average percentage of petals opening.<br />

4. Average percentage of petals falling<br />

down Petals.<br />

5. <strong>The</strong> average percentage of wilting flowers: the<br />

duration of survival of the flowers valid<br />

point Vaslife (days) number of days until flower<br />

wilting was calculated (Abdel-Rahman, 2006).<br />

6. Average percentage of dry material: fresh<br />

weight was recorded for the flower after picked,<br />

and then by dry weight after drying flowers in an<br />

electric oven at the temperature of 70 C ْ for a<br />

period of 24 hours (Al-Sahaf, 1989).<br />

<strong>The</strong>n the percentage of dry matter of the<br />

flowers was calculated through the following<br />

mathematical relationship:<br />

% of dry matter = Dry weight × 100<br />

Fresh weight<br />

(Abdel-Rahman ,2006).<br />

7. Average loss percentage in dry weight: <strong>The</strong><br />

calculation of the percentage of lost weight in<br />

accordance with the following relationship:<br />

<strong>The</strong> percentage of lost weight =<br />

Fresh weight in the beginning of vas life -<br />

fresh weight of the end of the vas life<br />

Fresh weight in the beginning of vas life<br />

DATA STATISTICAL ANALYSIS:<br />

After the conversion of the angular values of<br />

percentages, analysis of variance was conducted<br />

using the SAS(2001) system, Duncan test was<br />

conducted to compare the means of the various<br />

transactions at the level of 5%,<br />

RESULTS<br />

Table (1) declares the effect of cutting stage<br />

on the average percentage of flower opening<br />

access to the lowest rate for the emergence of<br />

Anther when the flowers were picked in the non-<br />

non opening sepal (63.21%), while this value<br />

reached a maximum at the stage of full petals<br />

opening (79.19%). As for the effect of how to<br />

pick the flowers on the emergence of anther, the<br />

highest average percentage of the emergence of<br />

anther was recorded when the flowers were<br />

picked and then placed in water after 10 minutes<br />

(68.31%) as compared with the lowest average<br />

percentage of the emergence of anther when the<br />

flowers were picked under water directly<br />

(27.49%).<br />

While there was a considerable variation in<br />

the effect of the overlap interaction appearance<br />

Anther per cent was the lowest average<br />

percentage of the emergence of anther when the<br />

flowers were picked and then placed in water<br />

after 10 minutes, followed by harvest treatment<br />

of flowers under water when taken in the<br />

opening of sepals stage these values were 0.00%<br />

and 6.25%, respectively. Treatments were<br />

significantly best on the both stages of picking<br />

the flowers stage of in non opening petals and<br />

stage of full petals opening. When picking<br />

flowers and then placing them in water after 10<br />

minutes, where the ratio was 100.00%.<br />

06


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 60-69, 2010<br />

Table (1):- <strong>The</strong> effect of the stage of harvesting flowers and method of harvest and their interaction effect on the<br />

average percentage of the emergence of Anther of Rosa cv. Queen Elizabeth after 14 days pots harvesting.<br />

03<br />

Stage of flowers<br />

harvesting<br />

cutting the flowers and<br />

putting them in water<br />

after 10 minutes<br />

<strong>The</strong> method of flowers harvesting<br />

cutting the flowers<br />

and putting them<br />

directly in water<br />

cutting the<br />

flowers under<br />

water directly<br />

Effect of flowers<br />

harvesting stage<br />

Non opening petals 8.34 f 9.57 ef 0.00 f 12.35 c<br />

Semi opened sepals 6.25 f 24.90 d-f 29.15 d-f 20.10 b<br />

Non opening petals 33.33 c-f 70.80 a-b 100.00 a 70.80 a<br />

Semi opened petals 52.08 c-e 62.18 b-d 95.83 a b 70.00 a<br />

Full petals opening 37.49 c-f 91.68 a b 100.00 a 79.19 a<br />

Effect of method of<br />

flowers harvesting<br />

27.49 b 52.82 a 68.31 a<br />

Means followed by the same letters within each factor orinteraction don't differ significantly (p≥ 0.05)<br />

according to Duncan's multiple .<br />

Table (2) shows that the effect of the picking<br />

flowers stage on the average percentage of<br />

opening sepals. This percentage arrived<br />

maximum (42.00%) when the flowers picked at<br />

full opening petals stage, whereas the lowest<br />

percentage was recorded for flowers picked in<br />

the non opening sepals stage (14.20%).<br />

<strong>The</strong> effect of how to pick the flowers was<br />

significantly affective by giving the least<br />

percentage of the of sepals opening when the<br />

flowers picked under the water (17.55%), on the<br />

other hand, the highest percentage of opening<br />

sepals was obtain (38.15%), when flowers<br />

picked and placed in water after 10 minutes.<br />

While the overlap of the interaction also had an<br />

effect in the average percentage of opening<br />

sepals with access to lower value when flowers<br />

picking under the water directly in the opening<br />

sepals stage (8.00%), followed by harvest<br />

treatment of flowers under the water when taken<br />

in non opening sepals stage (10.40%). <strong>The</strong><br />

highest proportion of opening sepals was<br />

recorded when flowers picked and placed in<br />

water after 10 minutes in the full opening petals<br />

(56.15%).<br />

Table (2):- <strong>The</strong> effect of the stage of harvesting flowers and method of harvest and their interaction affect on the<br />

average percentage of opening sepals Rosa cv. Queen Elizabeth after 14 days pos harvesting.<br />

Stage of flowers<br />

harvesting<br />

cutting the<br />

flowers and<br />

putting them<br />

in water after<br />

10 minutes<br />

<strong>The</strong> method of flowers harvesting<br />

cutting the flowers<br />

and putting them<br />

directly in water<br />

cutting the flowers<br />

under water directly<br />

Effect of flowers<br />

harvesting stage<br />

Non opening sepals 16.50 fg 16.50 fg 10.40 g 14.46 d<br />

Semi opened sepals 27.00 e f 27.00 e f 8.00 g 20.66 c<br />

Non opening petals 34.50 bc 34.50 bc 16.25 gf 30.90 b<br />

Semi opened petals 47.75 ab 47.75 ab 24.75 ef 37.20 a<br />

Full petals opening 56.00 a 56.00 a 28.70 de 42.00 a<br />

Effect of method of flowers<br />

harvesting<br />

38.15 a 38.15 a 17.55 c<br />

Means followed by the same letters within each factor orinteraction don't differ significantly (p≥ 0.05)<br />

according to Duncan's multiple .<br />

Table (3) shows that the average proportion<br />

of opening petals was highly affected as far as<br />

petals opened when flowers picking in the non<br />

opening sepals stage, opening sepals stage and<br />

the stage of non opening petals these values<br />

amounted to 95.83%, 93.00%, 0.43 %,<br />

respectively. On the other hand, the treatments<br />

of how to pick the flowers affect the average of<br />

the percentage of opening petals, where the<br />

lowest value was obtained when the flowers


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 60-69, 2010<br />

were picked under water directly (33.30%), and<br />

this value was better to the other two cuttings<br />

which amounted to a maximum when flowers<br />

were picked in the water directly (46.21%). In<br />

the impact of the interaction effect of overlap in<br />

the average percentage of opening petals, the<br />

highest value was recorded when the flowers<br />

were taken at non opening sepals stage and<br />

opening sepals stage when flowers were picked<br />

and placed in the water after 10 minutes and<br />

when flowers picked and placed in water directly<br />

(100.00%), in return for taking the flowers in the<br />

last three stages when the flowers picked in the<br />

three methods, and the lowest percentage was<br />

0.00% .<br />

Table (3):- <strong>The</strong> effect of the stage of harvesting flowers and method of harvest and their interaction affect on the<br />

average percentage of opening petals Rosa cv. Queen Elizabeth after 14 days pos harvesting.<br />

Stage of flowers<br />

harvesting<br />

cutting the flowers<br />

and putting them in<br />

water after 10<br />

minutes<br />

<strong>The</strong> method of flowers harvesting<br />

cutting the flowers<br />

and putting them<br />

directly in water<br />

cutting the<br />

flowers under<br />

water directly<br />

Effect of<br />

flowers<br />

harvesting<br />

stage<br />

Non opening sepals 100.00 a 100.00 a 87.50 bc 95.83 a<br />

Semi opened sepals 100.00 a 100.00 a 79.00 c 93.00 a<br />

Non opening petals 0.00 d 0.00 d 0.00 d 0.43 b<br />

Semi opened petals 0.00 d 0.00 d 0.00 d 0.00 c<br />

Full petals opening 0.00 d 0.00 d 0.00 d 0.00 c<br />

Effect of method of flowers<br />

harvesting<br />

40.00 a 46.21 a 33.30 b<br />

Means followed by the same letters within each factor orinteraction don't differ significantly (p≥ 0.05)<br />

according to Duncan's multiple .<br />

Table (4) shows that the age of direct cutting<br />

affected the fall of petals were obtained at the<br />

highest average of petals per cent when the<br />

flowers are taken at the stage of full opening<br />

petals reached 97.35%, followed by a semi<br />

opened petals, with an average ratio of the<br />

percentage fall petals (94,495%) and surpassed<br />

the stage of the other cut methods, reaching a<br />

minimum per cent at picking the flowers in the<br />

non opening sepals stage 55.55%. <strong>The</strong> highest<br />

average percentage of fall petals was recorded<br />

(90.83%) when the flowers were taken then<br />

placed in water after 10 minutes, on the other<br />

hand, the lowest average percentage fall petals<br />

(72.57%) was recorded when the flowers were<br />

picked under water directly. <strong>The</strong> lowest average<br />

percentage fall petals was obtained when the<br />

flowers picked under water directly in non<br />

opening stage (43.74) as compared with the<br />

highest average percentage of fall petals (100%)<br />

when the flowers picked and then placed in the<br />

water after 10 minutes and when the flowers<br />

taken and then placed in the water in the last<br />

three stages.<br />

Table (4):- <strong>The</strong> effect of harvesting stage flowers and method of harvest and their interaction affect on the<br />

average percentage of falling dawn petals Rosa cv. Queen Elizabeth after 14 days pos harvesting.<br />

Stage of flowers<br />

harvesting<br />

cutting the flowers and<br />

putting them in water<br />

after 10 minutes<br />

<strong>The</strong> method of flowers harvesting<br />

cutting the flowers<br />

and putting them<br />

directly in water<br />

cutting the<br />

flowers under<br />

water directly<br />

Effect of<br />

flowers<br />

harvesting<br />

stage<br />

Non opening sepals 56.25 e 66.68 de 43.74 e 55.55 c<br />

Semi opened sepals 97.90 bc 85.40 cd 81.23 cd 88.17 b<br />

Non opening petals 100.00 a 100.00 a 62.53 de 87.51 b<br />

Semi opened petals 100.00 a 100.00 a 83.32 cd 94.44 a<br />

Full petals opening 100.00 a 100.00 a 72.06 c 97.35 a<br />

Effect of method of flowers<br />

harvesting<br />

90.83 a 90.41 a 72.57 b<br />

Means followed by the same letters within each factor or interaction don't differ significantly<br />

(p≥ 0.05) according to Duncan's multiple .<br />

02


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 60-69, 2010<br />

Table(5) shows significant effects of cutting<br />

stage on the percentage of wilting flowers as the<br />

highest value of the wilting flowers (76.63%)<br />

was obtained when the flowers were taken at the<br />

non opening sepals stage, followed by treatment<br />

of picking flowers at the stage of full opening<br />

petals (71.53 %), and then gradually decreased<br />

to reach the lowest per cent (33.33%) when the<br />

flowers picked in the semi opening sepals stage.<br />

No significant differences were recorded for<br />

the effect of how to pick the flowers. <strong>The</strong><br />

highest average percentage of wilting flowers<br />

was recorded when flowers picked and then<br />

06<br />

placed in water after 10 minutes (51.66%), on<br />

the other hand, the lowest average percentage of<br />

wilting flowers was recorded when the flowers<br />

picked under water directly (39.16%). <strong>The</strong><br />

results of interaction affect showed that the<br />

highest average percentage of wilting flowers<br />

(100%) was obtained when the flowers picked<br />

and then placed in water after 10 minutes in full<br />

opening petals stage, whereas the lowest average<br />

percentage of wilting flowers was obtained when<br />

the flowers picked and then placed in water<br />

directly (6.25%) in non opening sepals stage.<br />

Table (5):- <strong>The</strong> effect of flowers harvesting stage and method of harvesting and their interaction on the average<br />

percentage of wilting flowers Rosa cv. Queen Elizabeth after 14 days pos harvesting.<br />

Stage of flowers<br />

harvesting<br />

cutting the flowers<br />

and putting them in<br />

water<br />

minutes<br />

after 10<br />

<strong>The</strong> method of flowers harvesting<br />

cutting the flowers<br />

and putting them<br />

directly in water<br />

cutting the<br />

flowers under<br />

water directly<br />

Effect of flowers<br />

harvesting stage<br />

Non opening sepals 8.33 cd 6.25 d 8.33 cd 76.30 a<br />

Semi opened sepals 33.33 b-d 29.15 b-d 37.50 b-d 33.33b<br />

Non opening petals 62.50 b 47.90 bc 47.90 bc 52.77 ab<br />

Semi opened petals 54.15 b 60.43 b 45.85 b-d 53.48 ab<br />

Full petals opening 100.00 a 58.35 b 56.25 b 71.53 a<br />

Effect of method of<br />

flowers harvesting<br />

51.66 a 40.41 a 39.16 a<br />

Means followed by the same letters within each factor or interaction don't differ significantly<br />

(p≥ 0.05) according to Duncan's multiple .<br />

Table (6) shows no significant differences in<br />

the average percentage of dry material. <strong>The</strong><br />

highest percentage of dry material was recorded<br />

when flowers were picked at the stage of full<br />

opening petals, as compared with picking semi<br />

opening petals stage (21.91%). <strong>The</strong> largest<br />

percentage of dry material (31.25%) was<br />

recorded when the flowers were picked under<br />

water directly then decreased to reach the lowest<br />

values (21.87%, 22.07%) when the flowers<br />

picked and then placed in water directly and in<br />

water after 10 minutes respectively.<br />

Flowers picking under water led to increase<br />

the proportion of dry material in flowers, which<br />

reached the highest percentages (35.40%,<br />

31.57%) when they were picked under water<br />

directly at the stages of full opening petals and<br />

semi opening. This value was decreased to reach<br />

the lowest (16.64%) when flowers were picked<br />

and then placed in water after 10 minutes in semi<br />

opening petals stage.


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 60-69, 2010<br />

Table (6):- <strong>The</strong> effect of the flowers harvesting stage and method of harvesting and their interaction on the<br />

average percentage of dry matter of Rosa cv. Queen Elizabeth after 14 days pos harvesting.<br />

Stage of flowers<br />

harvesting<br />

cutting the flowers<br />

and putting them in<br />

water after 10<br />

minutes<br />

<strong>The</strong> method of flowers harvesting<br />

cutting the flowers and<br />

putting them directly<br />

in water<br />

cutting the flowers<br />

under water directly<br />

Effect of<br />

flowers<br />

harvesting<br />

stage<br />

Non opening sepals 21.16 ab 23.75 ab 29.61 ab 24.84 a<br />

Semi opened sepals 21.33 ab 22.44 ab 29.84 ab 24.53 a<br />

Non opening petals 22.04 ab 21.82 ab 29.86 ab 24.57 a<br />

Semi opened petals 16.64 b 17.55 b 31.55 ab 21.91 a<br />

Full petals opening 29.22 ab 23.81 ab 35.40 a 29.47 a<br />

Effect of method of<br />

flowers harvesting<br />

22.07 b 21.87 b 31.25 a<br />

Means followed by the same letters within each factor or interaction don't differ significantly<br />

(p≥ 0.05) according to Duncan's multiple .<br />

Table (7) shows that the flowers in the five<br />

stages did not record any significant differences<br />

in the amount of loss in terms of total dry<br />

weight.<br />

<strong>The</strong> results of the interaction between the<br />

stages of flowers cutting and how to pick them<br />

showed that the lowest values for the weight loss<br />

amounted to 13.89, 14.07 and 14.23 grams<br />

opening sepals stage, on opening petals stage<br />

and semi opening petals stage when flowers cut<br />

under water directly, these values were increased<br />

and reached (31.58, 24.44, 21. 52) grams for the<br />

three stages, respectively when flowers picked<br />

and placed in water after 10 minutes. In general,<br />

picking flowers under the water reduced the loss<br />

in dry weight of flowers during the old as the<br />

coordinating lower values recorded for the loss<br />

of weight.<br />

Table (7):- the effect of the flowers harvesting stage and method of harvesting and their interaction on the<br />

average percentage of the loss in dry weight Rosa cv. Queen Elizabeth after 14 days pos harvesting.<br />

Stage of flowers<br />

harvesting<br />

cutting the flowers<br />

and putting them in<br />

water after 10<br />

minutes<br />

<strong>The</strong> method of flowers harvesting<br />

cutting the<br />

flowers and<br />

putting them<br />

directly in water<br />

cutting the flowers<br />

under water directly<br />

Effect of flowers<br />

harvesting stage<br />

Non opening sepals 26.30 ab 24.04 a-c 20.00 a-c 23.44 a<br />

Semi opened sepals 31.58 a 24.16 a-c 13.89 c 23.21 a<br />

Non opening petals 24.44 a-c 17.60 bc 14.07 c 18.70 a<br />

Semi opened petals 21.52 a-c 21.64 a-c 14.23 c 19.13 a<br />

Full petals opening 20.55 a-c 24.02 a-c 16.22 bc 20.26 a<br />

Effect of method of<br />

flowers harvesting<br />

24.87 a 22.29 a 15.68 b<br />

Means followed by the same letters within each factor orinteraction don't differ significantly<br />

(p≥ 0.05) according to Duncan's multiple .<br />

DISCUSSION<br />

<strong>The</strong> results in table (1) indicate that picking<br />

flowers at non opening sepals’ stage was the best<br />

period for cutting as compared with other<br />

periods. <strong>The</strong> average percentage emergence of<br />

anther explained on the basis that after picking<br />

the flowers, processing the outputs of<br />

photosynthesis is stopped or limited by the<br />

limited quantity manufactured total vegetation<br />

harvested with flowers, and this may result in the<br />

failure of flower buds to open (Van der Meulen-<br />

Muisers et al., 2001). As to the effect of the<br />

method of cutting which has the same scale as<br />

the results indicated that the cutting under water<br />

directly was better than other transactions, it is<br />

known that after flowers picking, it excluded<br />

from the main source of water uptake of roots,<br />

01


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 60-69, 2010<br />

which depend on the vessel to the container,<br />

therefore to prolong the vas life of cut flowers<br />

post harvested, it must be placed immediately<br />

after cutting ater before the composition of the<br />

bubble and air movement within the tissue-borne<br />

water and closed it, and this is what makes<br />

picking the flowers under water best because a<br />

lack of air bubble formation (Meyer, 2007).<br />

While it can be noted in table (2) that the<br />

impact of the cut and how the cut was similar to<br />

result the status of the emergence of anther<br />

results have been interpreted on the basis of<br />

interpretation of the past. <strong>The</strong> results of the table<br />

(3) that the status of opening Petals affected<br />

stages picking flowers have opened Petals of the<br />

cut flowers at the stage of non opening sepals<br />

and semi opening sepals rate (95.83%, 93.00%),<br />

respectively, compared with other stages of the<br />

proportion of the open (5.55%). <strong>The</strong>se results<br />

can be explained on the basis of the results in the<br />

interpretation of the effect of the cut in the<br />

average proportion of opening petals, in<br />

addition to how to interpret the results of the<br />

effect of cut in the average percentage of<br />

opening Petals As previously stated in the<br />

interpretation of the results of effect in the<br />

average proportion of opening sepals .<strong>The</strong><br />

interpretation of the results of the impact of the<br />

cut on the average proportion of opening sepals<br />

may be interpreted as the basis of that part plant<br />

life and increase the process of transpiration rate<br />

of increase compared with the demolition of the<br />

building below, especially as cut flowers<br />

depends only on the vegetation part picketing<br />

with it, which increase the speed of flowers<br />

senesces and increased abssisic acid, which leads<br />

to made a separation zone and accordingly.<br />

Petals fall (Street and Opik ,1976).<br />

Conversely, we find that also influence how<br />

the cut in the fall Petals where Petals falling<br />

proportion when the flowers picking under water<br />

directly compared with other transactions may<br />

be the interpretation of this result on the grounds<br />

that it is the substance of water is the foundation<br />

for keeping cut flowers live, to their dependence<br />

on water balance between the amount of water<br />

absorbed from the lower parts of the stem and<br />

falls within the amount of water lost through<br />

transpiration control of the process to harvest a<br />

florist under water, it regulates the withdrawal of<br />

water and minerals to timber vessels, as it is<br />

processed whenever the energy of the core<br />

processes of the cell such as the maintenance<br />

and installation of the Almitukondria and other<br />

organism cell (Coker et al., 1985).<br />

00<br />

<strong>The</strong> results of the table (5) showed that the effect<br />

of cut flowers stage in the flower falling down,<br />

where we find that the more advanced stages of<br />

picking flowers increased flower falling down<br />

with the exception of the treatment of non<br />

opening sepals where the percentage of wilting<br />

flowers decreased and this results can be<br />

explained on the basis that the amount of water<br />

lost in the flowers advanced in age is greater<br />

than the amount of water absorbed, in addition to<br />

the increase in breathing that are increased food<br />

analysis and carbohydrates in addition to<br />

Athleen play an active role in the aging of<br />

flowers, and that this leads to the speed of<br />

wilting flowers (Redman et al 2002).<br />

Since the appearance and quality of flowers and<br />

the longevity vas life after the cut depends on<br />

many factors, including the conditions of<br />

production and cut the appropriate date, as well<br />

as the depletion of the source of energy and<br />

natural maturation and aging of the flowers and<br />

the accumulation of tissue Athleen in cut flower<br />

as well as other factors which affect the<br />

longevity of the coordination flowers. (Gast<br />

coordination, 1997 and Teixeira da Silva 2003).<br />

<strong>The</strong> interpretation of wilting flowers in the<br />

semi opening sepals stage was due to the<br />

possibility of a result of declining water<br />

absorption of less amount of the water than lost,<br />

as it hindered the absorption of water by the<br />

accumulation of micro-organisms in timber<br />

vessels, tanker vessels, or analyzed by micro-<br />

organisms as well as clogging carrier or some<br />

parts of the region Mucilage membranes leading<br />

to the wilting flowers before maturity (Mayak<br />

and Halevy 1974, Van Leperen et al., 2002).<br />

While explain wilting flowers for a semi opening<br />

Petals stage on the basis of the important role<br />

carbohydrates play in maintaining the quality of<br />

the flowers during the period of post-harvest if<br />

the sugars are the main source of carbon used to<br />

produce the necessary energy metabolism(<br />

Monterio et al., 2002) contrast to the process, we<br />

find that the effect of cut in the rate of wilting<br />

flowers, where the results indicate the table (5)<br />

that picking the flowers under the water directly,<br />

the percentage of wilting flowers less with the<br />

treatment of picking flowers and then placed in<br />

water after 10 minutes and the treatment of<br />

picking flowers and putting them directly in the<br />

water can be directly interpreted on the basis of<br />

these results that when picking the flowers under<br />

the water, it would prolong the life of the<br />

flowers vas life due to lack of formation of the<br />

bubble leads to the continuity of water


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 60-69, 2010<br />

withdrawals within the timber vessels, which<br />

leads to control of the process of transpiration,<br />

where the flowers to extend the life of cut<br />

flowers in coordinating while wilting flowers<br />

can be explained by a higher when flowers<br />

picked out of the water on the grounds that the<br />

composition of the bubble and air movement<br />

within the tissues of the carrier led to the<br />

breakdown of water column of the water carrier<br />

thereby reducing the amount of water absorbed<br />

at the expense of the amount of water lost, as it<br />

hindered the absorption of water leading to<br />

declining access to water tension, which leads to<br />

increased production of Athleen before the<br />

maturity of the flowers and thus accelerate their<br />

senescence (Paulin et al., Coker) (1985 and<br />

others 1985). It was noted synchronization an<br />

increase in the level of Abscisic acid when<br />

exposed to water (Eze et al., 1986) so that to<br />

explain on the basis that picking the flowers<br />

under the water directly has increased the vas<br />

life as well as increased dry weight of the<br />

flowers as the delivery of water to cut down in<br />

the stem in a horrific post-harvest when the<br />

flowers picked out of the water, but the flowers<br />

that picked under water directly, maintained at<br />

the delivery of water until the end of the<br />

experiment, and claimktiric respiration and the<br />

production of Athleen was early in the picking<br />

flowers out of the water followed in the late cut<br />

under water. <strong>The</strong> results of the table (6) showed<br />

that there is no effect cut stage on the<br />

percentage of dry material which were not there<br />

a significal difference between the five stages of<br />

either how to cut the effect of this capacity, it is<br />

clear where the increased dry weight when<br />

flowers picked under water directly compared to<br />

harvest flowers and put them in the water After<br />

10 minutes, may explain the reason to encourage<br />

the removal of water by the flowers and petals<br />

growth and slow down operations and a decrease<br />

of strap down and senescence (increasing the<br />

activity of Rnase dry weight), where cell petals<br />

swelling sustain longer. or could be interpreted<br />

on the basis of improving the water balance in<br />

the flower, leading to increased solvents and<br />

therefore the withdrawal of the largest quantities<br />

of water.<br />

While recalling the results of table (7) he did not<br />

cut the impact of moral stages in the average<br />

percentage of the loss of weight dry, while we<br />

note the results of the same table as that of the<br />

impact of cut in the rate of loss of weight dry<br />

.<strong>The</strong> loss weight dry, when flowers compared to<br />

transactions under the water the other has been<br />

interpreted this result on the basis of preserving<br />

the in tumescent and thus reduce the loss in dry<br />

weight, as well as to reduce the loss of<br />

Carbohydrate as much as possible, or might be<br />

interpreted on the basis of improving the water<br />

balance in the flower, leading to increased<br />

solvents and thus the largest amount of the<br />

withdrawal of water by the relationship increase<br />

in water less water & dry article.<br />

REFERENCES<br />

-Abdel-Rahman, H. (2006). Effect of Spraying With<br />

Paclobutrazol and Micronutrient on Growth<br />

,Flowering and Tuberous roots Formation of<br />

Dahlia hybrda cv. Edinburgh Propagated by Tow<br />

Methods<br />

-PhD thesis, Faculty of. Agriculture and Forestry/<br />

University of Mosul.(Arabic).<br />

-Al-Sahaf, F. H. R. (1989). Applied Plant Nutrition Press,<br />

Library, University of Mosul, Iraq.(Arabic).<br />

-Britannica Online Encyclopedia Britannica.com. (2007).<br />

http://www.britannica.com/EBchecked/topic/50971<br />

0/rose.<br />

-Coker, T.; S. Mayalk and J. E. Thompson(1985). Effect of<br />

water stress on ethylene production and membrane<br />

micro viscosity in carnation flowers-wasic. Hortic.<br />

27 : 317-327.<br />

-Eze, J. M.; S. Mayak; J. E. Thompsonan; E. B. Dumbroff<br />

(1986). Senescence in cut Carnation flowers :<br />

temport and physiological relationship ,among the<br />

water status ,ethylene abscisic acid and membrane<br />

permeability . Physiol. Plant. 68:323-328.<br />

-Gast, K. L. B. (1997). Postharvest handling of fresh cut<br />

flower and material. Kansas state University.<br />

Cooperative Extension Service MF-2261:1-11.<br />

-Ichimura ,K; T. Fujiwara ; Y. Yamauchi; H. Horie and K.<br />

Kohata. (2005). Effects of Tea- Seed Saponins on<br />

the Vase Life, Hydraulic Conductance and<br />

Transpiration of Cut Rose Flowers . JARQ 39 (2),<br />

115 – 119 . http://www.jircas.affrc.go.jp<br />

-Ketsa, S. and K. Treetaruyanondha (1988). Effect of 8-<br />

hydroxyquinolinen sulfate and sucrose on vaselife<br />

and post harvest change of "Christian Dior" Cut<br />

Roses. THA KASETSART JOURNAL NATURAL<br />

SCIENCES. 22 (3) :165-70.<br />

-Liao ,L.J; Y.Lin ;K. Huang; W.Chen and Y. Cheng (2000).<br />

Postharvest life of cut rose flowers as affected<br />

by silver thiosulfate and sucrose. Bot. Bull Acad.<br />

Sin 41:299-303<br />

06


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 60-69, 2010<br />

-Mayak, S.; A. H. Halevy ; S. Sagie ; A. Bar-Yoseph and<br />

06<br />

B. Baravado (1974). <strong>The</strong> water balance of cut rose<br />

flowers. Plant physiol. 31:15-22.<br />

-Meyer, M. H. (2007). Keeping Cut Flower and Flowering<br />

plants .University of Minnesota. Copperative<br />

Extension Service FS- 1128:1-5.<br />

-Monterio, J. A.; T. A. Nell and J. E. Barrett (2002). Effect<br />

of oxegenous sucrose on carbohydrate levels,<br />

flower repiration and longevity of hed miniature<br />

rose Rosa hybrid a flower during post production.<br />

Postharvest Biology and Technology 26:221-229.<br />

-Paulin, A.; Kerhardy and B. Maestri (1985). Effect of<br />

drought and prolonged refrigeration of senescence<br />

in cut Carnation Dianthus caryophyllus. Physiol.<br />

plant. 64: 535- 540.<br />

-Redman, P. B.; J. M. Dole; N. O. Maness and J. A.<br />

Anderson (2002). Postharvest handling of nine<br />

specially cut flower species. Sci.hort.,92:293-303.<br />

-Quesada, M.A. y V. Valpuesta. 2000. Juvenilidad,<br />

senescencia y abscission p.451-464. In: J. Azcón-<br />

Bieto y M. Talón (eds.) Fundamentos de Fisiología<br />

Vegetal. McGraw Hill. Madrid, España<br />

-SAS, [2001] . SAS\STAT, User-guide for Personal<br />

Computer , Release6 , SAS .Institute Inc .Cary.<br />

Nc .USA.<br />

-Street, H. E. and H. opik (1976). <strong>The</strong> Physiology of<br />

Flowering Plants. Second edition:259-260.<br />

-Teixeira da Silva,J.A.(2003). <strong>The</strong> cut flower:Postharvest<br />

Consideration .Online Journal of Biological<br />

Sciences.3(4):406-442.<br />

-Van der Meulen – Muisers, J. J. k .; J. C. Van Oeverent ;<br />

L. H. W. Vander Plas and J. M. Van Tuyl (2001).<br />

Postharvest flower development in Asiatic hybrid<br />

Lilies as related to tepal carbohydrate status.<br />

postharvest Biology and technology 21:201-211.<br />

-Van Leperen, W.; U. Van Mecteren and J. Nijsse (2002).<br />

Embolism repair in cut flower stems: aphasic all<br />

approaoh. Postharvest Biology and<br />

Technology.25:1-14.<br />

ادانادلوط فاند اشوز نَيلوط َىيذ زةض ل ايزةدةزةض كةدنه انسكَيتزاك<br />

Rosa cv. Queen Elizabeth<br />

اريلوك نَيغابد ندناض ةنيتاه نَيوةئ اكياد نَيكةووزذ هض 05 - 05 اهارَيزدب يننض ةنتاه ) Rosa spp.<br />

ةةتاه ادانادلوط فاند لاوط َىيذ زةض ل َىنينض نَيغانوق جنَيث انسكَيتزاك<br />

. ادلااض<br />

0<br />

(<br />

اشوز نَيلوط<br />

ةتخوث<br />

َىيذد َىكوهد ايوكناش ل َىندناض<br />

ىيجةوت نَيطلةب انووبةظةن اغانوقو ىطئةك نَيطلةب انووبةظ ظين اغانوقو ىطئةك نَيطلةب انووبةظ ىزةب اغانوق (<br />

نسكيقات<br />

لاوط انينض(<br />

َىنينض نَيكَيز َىض لةطد ناو انادطَيل<br />

لةطد ) واوةت انووبةظ اغانوقو ىيجةوت نَيطلةب انووبةظ ظين اغانوقو<br />

سَيرل زةكطَيئ لاوط انينضو اد َىظائ فاند زةطكَيئ ناو انانادو لاوط انينضو اداكيقةد<br />

00 ذ ووب<br />

ىتاوكَيث َىي كةيةزابوود زةهو انسكةزابوود زاوض ب<br />

05<br />

ىتشث اد َىظائ فاند ناو انانادو<br />

CRD َىنياصيد فيود ل نانيئوبج ةتاه ينلوكةظ . َىظائ<br />

اغانوقو ىيجةوت نَيطلةب اي واوةت انووبةظ اغانوقد نسكزاموت ةنتاه ىيجةوت نَيطلةب انايزةو اي ىيةدةض ايةرَيز نيستدنمب<br />

ارةَيزو ووب ترشاب اي ىطئةك نَيطلةب انووبةظةن اغانوقد لاوط انينضو ،%<br />

50.70<br />

ناوانينض َىمةدد % 55.07 ةتشهةط ىيجةوت نَيطلةب انايزةو ايةرَيزو نووب ضيوث لوط َلى ،%<br />

00.00<br />

زةطكَيئ لاوط انينض َىمةدد ووبترنَيك َىي ىيجةوت نَيطلةب انايزةو ايةريز . اداكيقةد<br />

. لاوط<br />

ةتشهةطو ىيجةوت نَيطلةب انووبةظ ظين<br />

05<br />

ةتشهةط اطلةب انايزةو<br />

ىتشث اد َىظائ فاند ناو انانادو<br />

ناو انانادو اداكيقةد 05 ىتشث اد َىظائ فاند ناو انانادو واوةت<br />

انووبةظ اغانوقد لاوط انينض . )% 07.00(<br />

َىنسكدزةوازةب َىمةدد % 055<br />

اد َىظائ سَيرل<br />

ةتشهةطو ىيجةوت نَيطلةب انايزةو ايةرَيز انووبةدَيش َىزةطةئ ةنووب زةطكَيئ اد َىظائ فاند<br />

انينض َىمةدد نانيئةظتضةدب ةتاه َىنايزةو<br />

ايةرَيز نيترنَيكو َىيزةدةزةض نامةه وب )% 57.59(<br />

.%<br />

47.04<br />

اد َىظائ سَيذ ل ناو انينض لةطد<br />

ةيتشهةط اوةئ اد َىظائ سَيرل زةطكَيئ ىيجةوت نَيطلةب انووبةظةن اغانوقد لاوط


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 60-69, 2010<br />

تارييذش<br />

ذم .<br />

ذس ) 05-05(<br />

درولا راهزلا يرهزملا رمعلا يف تلاماعملا ضعب ريثأت<br />

Rosa cv. Queen Elizabeth<br />

وذلب يرذهزلا اذهلماا<br />

ذم<br />

وذ وم راذهزلاا ذللال فذاارم ةذممخ ريثأذت ةذسارد ذت و . تاوفذس<br />

Queen Elizabeth<br />

0<br />

فذص<br />

Rosa spp<br />

ةصلاخلا<br />

دروذلا راذهزأ تتذخأ<br />

اذهرمع وذهد ةعماج / ةعارزلا ةيلك قئادا يف ةعورزم<br />

ذذذ ةيذذسأ لا ارولاا ةذذذلارم , ةيذذسأ لا ارولاا ذذذ ت دذذع ةذذذلارم يذذه ةذذذفوللاملا راذذهزلال يرذذذهزملا رذذمعلا يذذذف يذذحبلا<br />

ارولاذذذل فذذذما لا ذذذ لا ةذذذلارمو ةذذح م ذذذ ةذذذيي و لا ارولاا ةذذذلارم , ةذذيي و لا ارولاا ذذذ ت دذذذع ةذذذلارم , ةذذح م<br />

, قئاذذعد<br />

05<br />

ةذذذيلماعلا ةذذذبري لا تتذذذ<br />

دذعب اذملا يذف اهعذ و ذث راذذهزلاا ذلع ةذيلمع يذه راذهزلاا ذلع رذذا ذم اوذ أ ةذثلاث ذم ةذلخاد م ةذيي و لا<br />

. يرذذذشابم اذذذملا ءذذذحت راذذذهزلاا<br />

ذذذلع ةذذذيلمعو اذذذملا يذذذف يرذذذشابم اهعذذذ وو راذذذهزلاا ذذذلع ةذذذيلمع<br />

تاررذذ م ةذذعبرأب Factorial Experiment Within Randomized Complete Design<br />

. يرهز<br />

فذذما لا يئاوذذاعلا يمذذ لاب<br />

00<br />

ىلع رر م فك ىو ااو<br />

ارولاا ةذذذلارمو ةذذيي و لا ارولاذذذل<br />

فذذما لا ذذذ لا ةذذلارم يذذذف ةذذيي و لا ارولاا بعاذذذم ل ةذذ وقملا ةبذذذمفلا بذذسو م تاذذك<br />

فذذ فأ تاذك ةيذسأ لا ارولاا ذ ت دذع ةذلارم يذف راذهزلاا ذلع تأو , ) ٪ 50.70 (<br />

بعاذم ل ةذ وقملا ةبذمفلا بذسو م تذلبو راذهزلاا تروهدذت يذا يذف , ) ٪ 00.00 (<br />

ارولاا بعاذذمت ةبذذم ءذذ اك اذذمفيب قئاذذعد<br />

راذهزلاا ذلع ىدأ يذا يذف ) ٪ 07.00 (<br />

05<br />

ىذلا اذملا يذف يرذشابم ءعذ وو ءذ لع امدذفعو قئاذعد<br />

دذذعب اذذملا يذذف ءعذذ وو راذذهزلاا ءذذ لع امدذذفع<br />

ةبذمفلا بذسو م تذلب دذلاف اذملا ءذحت راهزلاا لع م ة رالاملاب ) ٪ 055.55(<br />

تو اذم ىذلعأ ةذح م ذ ةذيي و لا<br />

ةذيي و لا ارولاا بعاذمت بذسو م تذلب يذيا<br />

) ٪ 55.07<br />

( ةذذيي و لا ارولاا<br />

ةبذمفلا تذه بذسو م تذلبو يرذشابم اذملا ءذحت راذهزلاا ءذ لع امدذفع فعأ ةيي و لا<br />

ذت يذ لا ةذيي<br />

و لا ارولاا بعاذم ل ةذ وقم ةبذم فعأ م ة رالاملاب ةلماعملا س فل ) ٪ 57.59 (<br />

.<br />

) ٪ 47.04(<br />

05<br />

دذعب اذملا يذف ءعذ وو ءذ لع امدذفع فذما لا ذ لا ةذلارم يذف<br />

تلب ييا ةيي و لا ارولاا بعامت ةبم يدا ز<br />

ةيي و لا ارولاا بعام ل ة وقملا<br />

ء اك ي لاو يرشابم املا ءحت ةيسأ لا ارولاا ت دع ةلارم يف راهزلاا ء لع امدفع اهيلع و حلا<br />

06


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 70-81, 2010<br />

ESTIMATION OF SOME GENETIC PARAMRTERS , CORRELATION AND<br />

PATH COEFFICIENT ANALYSIS FOR SOME TRAITS IN EGGPLANT<br />

ABSTRACT<br />

07<br />

ABDULJABBAR I. MARIE* and JIYAN A. TELI **<br />

*College of Agriculture, University of Mosul -Iraq<br />

** College of Agriculture, University of Duhok, Kurdistan Region-Iraq<br />

(Received: April 11, 2010; Accepted for publication: December 26, 2010)<br />

Full diallel crosses was conducted at the Vegetable Field, College of Agriculture, University of Dohuk to study<br />

some genetic parameters for eggplant varieties and their hybrids, correlation and path analysis for some trait in<br />

eggplant.<br />

<strong>The</strong> results showed that additive variance (σ 2 A) was significant for all traits (plant height, no. of branches, date of<br />

flowering, no. of flowers/ inflorescence, average wt. of fruit no. of fruit/plant total yield/plant , fruit weight and<br />

diameter), whereas the dominant variance (σ 2 D) and environmental variance (σ 2 E) were not significant for all traits.<br />

Heritability in broad sense was high for all studied traits except no. of branches and early yield. Narrow sense<br />

heritability was high for plant height, date of flowering , no. of flowers inflorescence -1 , fruit weight , no. of fruits<br />

plant -1 , fruit length and diameter, which reflect the importance of additive gene action for these traits and the<br />

average degree of dominance was less than one for all traits, indicating the presence of partial dominance.<br />

Appositive phenotypic correlation was found between the total yiel/plant with no. of branches, fruit length and no.<br />

of fruits plant -1 . Path coefficient analysis revealed that no. of fruits plant -1 and fruit weight had high direct effects on<br />

the total yield while date of flowering had a positive indirect effect on the plant yield through fruit weight. And no. of<br />

branches plant -1 had high indirect effect through no. of fruits. It concluded that fruits number and fruit weight traits<br />

had highly direct and indirect effect from other traits for this we can depended on it for selection for highly yield in<br />

eggplant.<br />

KEYWORDS: Eggplant, heritability, path analysis.<br />

E<br />

INTRODUCTION<br />

ggplant (Solanum melongena L.) is one<br />

of the most important vegetables grown<br />

throughout the world including tropical, subtropical<br />

and temperate regions .<strong>The</strong> crop was<br />

brought from South East Asia and distributed to<br />

Western and Northern Africa , the<br />

Mediterranean Basin ,and eventually Europe<br />

during the Arab incursion into those region<br />

starting in the seventh century (Daunay et al<br />

2001) . It is one of the most widely used<br />

vegetable crops after tomato and potato, but it<br />

tops the list of canned vegetables after tomato. In<br />

popular medicine, eggplant is indicated for the<br />

treatment of several diseases including diabetes,<br />

anthritis, asthma and bronchitis. In addition to<br />

several groups have provided evidence that<br />

eggplant extracts have a significant effect in<br />

reducing blood and cholestrol rates in human<br />

(Khan 1979; Jorge et al 1998). Nowadays,<br />

eggplant continues to be an economically and<br />

nutritionally important species in Asian and<br />

Mediterranean countries (FAO 2000) . Eggplant<br />

ranks second among the processed vegetables in<br />

the world.<br />

Genotypic variations and correlations in<br />

quantitative traits which are of economic<br />

importance are valuable in selecting the desired<br />

types. In a planned hybridization programme for<br />

evolving a new variety with increased yield and<br />

improved quality of fruits, a complete<br />

knowledge of genetic variability and interrelation<br />

in quantitative traits of the particular<br />

crops is necessary. Diallel crosses have been<br />

employed in genetic research to investigate the<br />

inheritance of the important attributes among a<br />

set of genotypes to identify superior parent traits<br />

among hybrid or cultivar<br />

Development. Conventional diallel analysis is<br />

limited to partitioning the total variation of data<br />

into general combining ability (GCA) for each<br />

parent and specific combining ability (SCA) for<br />

each cross (Yan and Hunt 2002). Diallel cross<br />

analysis is considered to be one of the important<br />

programmes attained by breeding scientists for<br />

generation testing of possible crosses between<br />

genotypes that produce the best crosses


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 70-81, 2010<br />

assigning from combined parents , then to<br />

introduce them in a breeding program to obtain<br />

new varieties and hybrids. Since then the<br />

principles of diallel cross was developed by<br />

many researchers (Jink and Hayman 1953;<br />

Hayman 1958; Griffing 1956a 1956b; Gardner<br />

and Eberhart, 1966).<br />

Correlation can be expressed by the nature of<br />

association between yield and their components<br />

and between each pair of components<br />

themselves. In a plant breeding program<br />

correlation offers an important role to the<br />

breeder by providing information to predict and<br />

select the trait with low heritability through their<br />

type of association and the degree with other<br />

trait having high heritability (Ahmed 2003).<br />

To obtain high production in many<br />

varieties through a breeding program depend<br />

upon actually on the highly effective traits which<br />

have direct and indirect correlation with the<br />

yield that consider a good method to know the<br />

traits effort , time and costs (Relad et al. 1987) .<br />

Chezhain et al. (2000) found that estimates of<br />

variance effects were high for general and<br />

specific combining ability in plant height,<br />

number of fruits plant -1 , fruit weight and fruit<br />

yield plant -1 . Jahhav et al. (2001) ascertained<br />

that the variance due to the general and specific<br />

combining ability were high for plant height ,<br />

fruit number , fruit weight and fruit yield .<br />

Sharma et al. (2002) proved that mean square<br />

due to general and specific combining ability<br />

were highly significant for fruit yield plant -1 ,<br />

mean fruit weight and number of fruit plant -1 ,<br />

the mean square values for gca were higher than<br />

sca for all traits . Biswajit et al. (2004) showed<br />

in eggplant, that the analysis of variance for<br />

combining ability revealed significant means<br />

square for both effects of general and specific<br />

combining ability in most traits except for<br />

general combining ability effects in plant height<br />

and weight of marketable fruits plant -1 . <strong>The</strong><br />

objectives of this study were to determine the<br />

nature of gene action through separating the<br />

genetic variance by using a diallel crosses<br />

suggested by Griffing (1956).<br />

MATERIALS AND METHODS<br />

Four varieties of eggplant (Solanum<br />

melongena L.) from different origins were<br />

selected in this investigation, three of them were<br />

importanted and the fourth one was an ecotype,<br />

as shown in table (1).<br />

Table (1): Name of varieties used in this study, their sources and some general of their traits.<br />

No. Variety Origin Fruit form Source<br />

1 Early long purple Imported U.S.A<br />

Prolonged lightly purple<br />

General Agency of Agricultural<br />

Researches<br />

General Agency of Agricultural<br />

2 Long purple Imported U.S.A<br />

Prolonged Black<br />

Researches<br />

General Agency of Agricultural<br />

3 Black Beauty Imported U.S.A Spherical Deep black<br />

Researches<br />

4<br />

Alton Kubry Native , Karkuk, Iraq Little elongated Deep black<br />

General Agency of Agricultural<br />

Rearches<br />

Those varieties are widespread in Iraq and<br />

convergence the demand by farmers (Al-Rekabi<br />

and Abduljabbar 1981), and given numbers (1 to<br />

4) respectively in the presentation of results and<br />

discussion. Full diallel cross among these<br />

varieties with all possible probabilities which<br />

cultivated in the vegetable field of Horticulture<br />

Department , Dohuk University , during growing<br />

season of 2006 was carried out according to<br />

method I of Griffing, 1956 to complete gathering<br />

all hybrids seed required . <strong>Seeds</strong> of F1 hybrids<br />

and parents were sown in plastic containers<br />

filled with sterile soil prepared for this purpose<br />

in the plastic house in the last week of February<br />

2007 . After 45 days , seedlings were planted in<br />

the vegetable field , using R.C.B.D design with<br />

three replication , each replicate includes 4<br />

parents and 12 individual hybrids , cultivated in<br />

rows 3 m. long spaced 1 m. apart ,while<br />

seedlings were planted 0.4 m. apart within each<br />

row (AL-Assaf and Hassan 1983) .<strong>The</strong> lateral<br />

seedlings are regarded as guard plants . Other<br />

agricultural practices were performed as<br />

followed by farmers in the area. Measurements<br />

and data were taken from 4 plants in each<br />

experimental unit located at the mid row. <strong>The</strong><br />

data were recorded on ; plant length (cm.) , no.<br />

of branches , flowering date (day) by counting<br />

the number of days from planting to opening the<br />

first flower , number of flowers inflorescence -1 ,<br />

number of fruit plant -1 , average weight of<br />

fruit(g) , fruit length and diameter (cm.) , early<br />

yield (kg/plant) which included the first three<br />

07


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 70-81, 2010<br />

harvestings start from 10/8 to 29/8 and the total<br />

yield plant -1 (kg).<br />

Analysis of variance for each trait was done<br />

according to RCBD (Steel and Torrie 1981). <strong>The</strong><br />

additive, dominant and environmental variances<br />

were estimated by using EMS from Griffing<br />

analysis (Griffing analysis 1956b, 1 st method,<br />

model 1).<br />

σ 2 A = 2 Ø 2 G.C.A<br />

σ 2 D = Ø 2 S.C.A<br />

MSe<br />

σ 2 E = -----------<br />

r<br />

<strong>The</strong>ir significance from zero tested according<br />

to (Kempthorn 1957) method. Heritability in<br />

broad sense H 2 (b.s) , narrow sense h 2 (n.s) concept<br />

and average degree of dominance for each trait<br />

were calculated as follow:<br />

σ 2 G<br />

H 2 (b.s) = -------------- X 100<br />

σ 2 P<br />

σ 2 A<br />

h 2 (n.s) = ---------------X 100<br />

σ 2 P<br />

ā =<br />

07<br />

2<br />

2<br />

D<br />

2<br />

A<br />

Correlation coefficients were estimated between<br />

each two pairs of the studies traits by using<br />

computer software depending on the LSMGP<br />

system certified by Harvey (1987).<br />

Correlation coefficients between the studied<br />

traits were divided into direct and indirect effects<br />

by using path coefficient analysis according to<br />

the method mentioned by (AL-Rawi 1987).<br />

RESULTS AND DISCUSSION<br />

Table (2) revealed the mean values of parents<br />

and their hybrids for eight traits. Duncan's<br />

multiple range test showed significant<br />

differences between genotypes (parents and their<br />

hybrids) in all studied traits plant height (cm),<br />

number of branches/plant, flowering date (day)<br />

by counting the number of day from planting to<br />

opening the first flower, number of flowers<br />

inflorescence-1 number of fruits plant-1, average<br />

weight of fruit (g), fruit length and diameter<br />

(cm), early yield (kg/plant) . <strong>The</strong> results proved<br />

that parent (1) was shorter than other genotypes<br />

in height (61.00 cm) and parent (4) was the<br />

longest one (113.33 cm).<br />

Otherwise, hybrids 2x4 and 4x2 were longest<br />

(92.00 cm), whereas the hybrid 1x3 was the<br />

shortest in height (66.17 cm). <strong>The</strong> results<br />

indicated that the largest number of branches<br />

reached (9.33) in parent (1), and the lowest value<br />

(6.50) in parent (3). <strong>The</strong> biggest number of<br />

branches (9.17) was found in the hybrids (1x4,<br />

2x1) and lowest number (6.50) for the hybrids<br />

(3x1, 4x3).<br />

<strong>The</strong>se results concurred with Peter and Singh<br />

(1974) , Ghoudhuri (1977) who found significant<br />

differences for plant height and concurred with<br />

Borikar et al. (1981) , Saha et al. (1991) in the<br />

same table it can be noticed that parent (1) was<br />

the earliest in date of flowering as compared to<br />

other parents (89.66 days) , while parent (3)<br />

could be considered the later one in this trait<br />

(111.33 days). <strong>The</strong> lowest value in date of<br />

flowering (98.33 days) was found in the hybrid<br />

1x2, while the hybrid 3x4 was the most delaying<br />

genotype in flowering (117.33 days). Similar<br />

results were reported by Hassan et al. (1982)<br />

who found existence of significant differences<br />

among genotypes (parent and hybrids) of<br />

eggplant in this trait. Number of flowers<br />

inflorescence -1 was restricted between (1.86) for<br />

parent (4) and (5.40) for parent (2). <strong>The</strong> hybrid<br />

(4 x 2) gave the highest number of flowers<br />

(4.06) whereas, the lowest number of flowers<br />

inflorescence -1 (1.10) was found in the hybrid (3<br />

x 2). <strong>The</strong> comparison between genotypes in the<br />

number of fruits plant -1 ranged between (79.00)<br />

in parent (1) and (22.55) in parent (4) , and<br />

between (60.22) in hybrid( 1x 2) and ( 20.89) in<br />

hybrid (3 x 4) . This might be interpreted that<br />

parent (4) appeared to be contributing in<br />

decreasing number of fruits plant -1 in their<br />

hybrids to the contrary with the parent (1) which<br />

shared in increasing this trait in their hybrids<br />

.Similar results were reported by Dharmegowda<br />

et al. (1979b) , (AL-hamdani , and Hassan<br />

1999).<br />

Average fruit weight ranged between (55.73 g)<br />

for the parent (1) and (133.09 g) for the parent


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 70-81, 2010<br />

(3) .<strong>The</strong> hybrid (3x4) produce the highest fruit<br />

weight approaching (141.37 g ) , while the<br />

lowest fruit weight (60.68 g) resulted from<br />

hybrid 1x2 . <strong>The</strong>se results concurred with Dixit<br />

et al. (1982) who found out significant<br />

differences between parents and hybrids in fruit<br />

weight trait.<br />

\<strong>The</strong> highest early yield plant -1 resulted in<br />

production (0.84 kg) in the parent (3) while the<br />

lowest yield (0.42 kg) found in parent (4).<br />

Hybrid (4x2) produced the highest early yield<br />

(0.93 kg) while the lowest early yield was (0, 28<br />

kg) produced by the hybrid (1x2). Similar results<br />

were reported by Monterio and Costa (1977)<br />

who found that the parent and hybrids had<br />

significant differences in the early yield plant -1 .<br />

\<strong>The</strong> parents differ in the total yield plant -1<br />

accounted as (2.38 kg) for the parent (4) and<br />

(4.40 kg) for the parent (1) . 1x3 and 4x1<br />

hybrids were distinguished for the highest yield<br />

(3.92 kg) whereas, the hybrid (4x3) gave the<br />

lowest yield (2.53 kg).<br />

\ Concerning with fruit length , it restricted<br />

between (9.79 – 15.34 cm) for parent (3) and<br />

patent (4) respectively , these differences might<br />

be due to genetic factors of the different<br />

varieties. <strong>The</strong> hybrid 1x2 appeared to have<br />

highest value in this trait measuring (15.63 cm),<br />

whereas, the hybrid 3x4 gave the lowest value<br />

(8.91cm).<br />

\<strong>The</strong> results proved that parent (3) gave the<br />

highest diameter (11.32 cm) , while the lowest<br />

value (3.24 cm) was recorded in the parent (1).<br />

In hybrids fruit diameter ranged from (3.54 cm)<br />

for hybrid 1x2 and (8.18 cm) for hybrid 3x4<br />

.<strong>The</strong>se results are in harmony with the finding of<br />

Singh et al. (1977) and Hassan et al. (1982) who<br />

found that genotypes are significantly varied in<br />

fruit length and diameter.<br />

07


74<br />

Genotypes<br />

1<br />

2<br />

3<br />

4<br />

1 × 2<br />

1 × 3<br />

1 × 4<br />

2 × 1<br />

2 × 3<br />

2 × 4<br />

3 × 1<br />

3 × 2<br />

3 × 4<br />

4 × 1<br />

4 × 2<br />

4 × 3<br />

Plant height<br />

(cm)<br />

61.00<br />

g<br />

71.83<br />

dg<br />

74.50<br />

cf<br />

113.33<br />

a<br />

70.67<br />

efg<br />

66.17<br />

fg<br />

91.16<br />

b<br />

72.67<br />

dg<br />

83.83<br />

bcd<br />

92.00<br />

b<br />

81.16<br />

be<br />

83.17<br />

bcd<br />

75.33<br />

cf<br />

85.83<br />

bc<br />

92.00<br />

b<br />

81.83<br />

be<br />

No. of branches/<br />

plant<br />

9.33<br />

a<br />

7.83<br />

ab<br />

6.50<br />

b<br />

7.00<br />

b<br />

8.33<br />

ab<br />

7.83<br />

ab<br />

9.17<br />

a<br />

9.17<br />

a<br />

8.16<br />

ab<br />

8.33<br />

ab<br />

6.50<br />

b<br />

7.33<br />

ab<br />

8.00<br />

ab<br />

6.83<br />

b<br />

9.17<br />

a<br />

6.50<br />

b<br />

Table (2): Mean values of parents and hybrids for the studied traits.*<br />

Date of<br />

flowering<br />

(day)<br />

98.66<br />

h<br />

104.33<br />

fg<br />

111.33<br />

bc<br />

108.67<br />

cde<br />

98.33<br />

h<br />

103.33<br />

fg<br />

100.67<br />

gh<br />

101.33<br />

gh<br />

106.33<br />

ef<br />

106.66<br />

def<br />

106.67<br />

def<br />

112.67<br />

b<br />

117.33<br />

a<br />

99.33<br />

h<br />

110.33<br />

bcd<br />

110.67<br />

bc<br />

No. of flowers/<br />

inflorescence<br />

3.63<br />

bcd<br />

5.40<br />

a<br />

2.30<br />

eh<br />

1.86<br />

fgh<br />

3.73<br />

bcd<br />

3.60<br />

bf<br />

3.60<br />

bf<br />

3.96<br />

bc<br />

3.40<br />

be<br />

2.73<br />

cf<br />

1.30<br />

gh<br />

1.10<br />

gh<br />

1.40<br />

gh<br />

3.73<br />

bcd<br />

4.06<br />

b<br />

2.50<br />

dg<br />

Average wt.<br />

of fruit (g)<br />

55.73<br />

f<br />

59.45<br />

ef<br />

133.09<br />

a<br />

106.47<br />

b<br />

60.68<br />

ef<br />

96.39<br />

bc<br />

74.83<br />

de<br />

71.40<br />

def<br />

84.65<br />

cd<br />

81.78<br />

cd<br />

136.15<br />

a<br />

133.85<br />

a<br />

141.37<br />

a<br />

76.67<br />

de<br />

82.57<br />

cd<br />

105.31<br />

b<br />

No. of fruits/<br />

plant<br />

79.00<br />

a<br />

58.33<br />

bc<br />

23.11<br />

e<br />

22.55<br />

e<br />

60.22<br />

b<br />

41.33<br />

d<br />

53.67<br />

bcd<br />

47.67<br />

bcd<br />

41.78<br />

d<br />

43.66<br />

cd<br />

23.67<br />

e<br />

22.33<br />

e<br />

Total yield/<br />

plant (kg)<br />

4.40<br />

a<br />

3.47<br />

abc<br />

3.07<br />

bcd<br />

2.38<br />

d<br />

3.63<br />

ab<br />

3.92<br />

ab<br />

3.85<br />

ab<br />

3.32<br />

bcd<br />

3.48<br />

abc<br />

3.47<br />

abc<br />

3.20<br />

bcd<br />

2.97<br />

bcd<br />

Early yield/<br />

plant (kg)<br />

0.43<br />

bc<br />

0.50<br />

bc<br />

0.84<br />

ab<br />

0.42<br />

bc<br />

0.28<br />

c<br />

0.51<br />

abc<br />

0.53<br />

abc<br />

0.52<br />

abc<br />

0.57<br />

abc<br />

0.45<br />

abc<br />

0.67<br />

abc<br />

0.61<br />

abc<br />

Fruit length<br />

(cm)<br />

* Means followed by the same letter within a column do not differ significantly from each other using Duncans Multipe Range Test at 5% level.<br />

20.89<br />

e<br />

50.99<br />

bcd<br />

39.99<br />

d<br />

24.22<br />

e<br />

2.95<br />

bcd<br />

3.92<br />

ab<br />

3.26<br />

bcd<br />

2.53<br />

cd<br />

0.60<br />

abc<br />

0.32<br />

c<br />

0.93<br />

a<br />

0.26<br />

ab<br />

15.34<br />

ab<br />

13.60<br />

bcd<br />

9.79<br />

hij<br />

11.45<br />

fgh<br />

15.63<br />

a<br />

11.57<br />

eh<br />

12.64<br />

dg<br />

14.63<br />

abc<br />

11.58<br />

eh<br />

13.33<br />

c-f<br />

10.13<br />

hij<br />

9.14<br />

ij<br />

8.91<br />

j<br />

13.45<br />

cde<br />

13.29<br />

cf<br />

10.84<br />

ghi<br />

Fruit<br />

diameter (cm)<br />

3.24<br />

g<br />

3.53<br />

g<br />

11.32<br />

a<br />

5.01<br />

de<br />

3.54<br />

g<br />

4.58<br />

ef<br />

4.09<br />

fg<br />

4.02<br />

fg<br />

5.11<br />

de<br />

4.99<br />

de<br />

7.04<br />

c<br />

6.99<br />

c<br />

8.18<br />

b<br />

5.09<br />

de<br />

4.44<br />

ef<br />

5.77<br />

d<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 70-81, 2010


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 70-81, 2010<br />

Gene action and Genetic Parameters:<br />

Table (3) revealed that additive variance<br />

varied from zero for all traits with the exception<br />

of early yield palnt -1 (these traits are under the<br />

effect of over dominant). This result agreed with<br />

the findings of AL-hamdani (1999) who stated<br />

that additive variance was significant for number<br />

of branches plant -1 , date of flowering, number of<br />

flowers inflorescence -1 , number of leaves till<br />

first inflorescence and total yield plant -1 .<br />

<strong>The</strong> dominant genetic variance and<br />

environmental variance were not varied from<br />

zero for all traits. <strong>The</strong> additive genetic variance<br />

values were higher than those of dominant<br />

genetic variance in all traits.<br />

It is noticed that estimation of heritability in<br />

broad sense was high in all traits excluding<br />

number of branches and early yield which<br />

exhibited moderate values. <strong>The</strong>se results are<br />

similar to the finding obtained by Singh et al.<br />

(1974b), where heritability was high for plant<br />

height and fruit diameter, and with those of Peter<br />

and Singh (1974) for number of flowers<br />

inflorescence -1 , fruit weight and also with those<br />

of Boriker et al. (1981) for both plant height and<br />

number of branches plant -1 . Heritability in<br />

narrow sense h 2 (n.s) were moderate for early yield<br />

33.68% and high for other traits . This illustrates<br />

that heritability is high enough to perform the<br />

selection of these traits in early generations.<br />

Regarding traits revealing low heritability in<br />

narrow sense , this reflects the low additive<br />

genetic variance value . Similar results were<br />

reported by AL-hamdani (1999) who mentioned<br />

that heritability in narrow sense was high for<br />

number of flowers inflorescence -1 and fruit<br />

diameter .<br />

Average degree of dominance was low for<br />

some traits and high for other traits. Nandpur<br />

and Tyagi (1976) also reported that fruit size<br />

submits to partial dominant, Dharmegowda et al.<br />

(1979b) stated that date of flowering is<br />

submitted under partial dominance.<br />

Phenotypic correlation:<br />

Table (4) display the phenotypic correlation<br />

between each two pair of studied traits by using<br />

the data of parents and F1 hybrids of full diallel<br />

cross. <strong>The</strong> total yield exhibited a positive and<br />

significant correlation with number of branches<br />

plant -1 , fruit length and number of fruits plant -1 ,<br />

whereas, it was negatively and significant<br />

correlated with date of flowering , fruit diameter<br />

and fruit weight .<strong>The</strong>se result are in conformity<br />

with the finding of AL-Sahaf et al. (2003) who<br />

found that the yield was significantly correlated<br />

with no. of branches and number of fruit plant -1<br />

.<strong>The</strong> early yield plant -1 had appositive and<br />

significant correlation with date of flowering ,<br />

fruit diameter and fruit weight , whereas,<br />

negatively and significant correlated with fruit<br />

length and number of fruits plant -1 . Fruit weight<br />

trait revealed a positive and significant<br />

correlation with date of flowering and fruit<br />

diameter and negatively correlated with no. of<br />

branches, fruit length and no. of fruits plant -1<br />

<strong>The</strong>se results are in agreement with Khanna and<br />

Chaudhury (1974) AL-hayani et al. (2000) , AL-<br />

Kumer et al. (1993) , Mirsha and Mirsha (1990)<br />

who reported existence of significant correlation<br />

between fruit weight and no. of fruits plant -1 . On<br />

the other hand, number of fruits plant -1 was<br />

significantly and positively correlated with no.<br />

of branches and fruit length, while it had<br />

negative and significant correlation with date of<br />

flowering and fruit diameter. <strong>The</strong>re was also a<br />

significant and positive correlation between fruit<br />

diameter and date of flowering and negatively<br />

correlated with no. of branches and fruit length.<br />

Fruit length had a positive and significant<br />

correlation with number of branches, and had a<br />

negative and significant correlation with date of<br />

flowering. Date of flowering does not revealed<br />

any correlation with no. of branches . <strong>The</strong> same<br />

result was obtained between no. of branches and<br />

plant height.<br />

Path Coefficient Analysis:<br />

Data reported in table (5) illustrate the direct<br />

and indirect effects of correlation coefficient<br />

between the total yield and some affecting traits.<br />

Date of flowering appeared to have negative<br />

direct effect on the yield, while the indirect<br />

effect was low through plant height and high<br />

through fruit weight, in spite of it had negative<br />

correlation with the yield but it can indirectly<br />

affect the yield through fruit weight. Similar<br />

results were reported by Rao et al. (1974) who<br />

found in chilli plant that date of flowering had<br />

positive effects on fruit yield . Plant height<br />

exhibited a positive direct effect on the yield<br />

plant -1 , and a positive indirect effect through<br />

07


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 70-81, 2010<br />

fruit weight only , whereas , the negative indirect<br />

effect through date of flowering, no. of branches<br />

, and no. of fruit plant -1 . <strong>The</strong>se results concurred<br />

with Allam and Malik (1987) who found a<br />

positive indirect effect on the plant yield. It is<br />

obviously appear a positive low direct effect of<br />

number of branches on the total yield measured<br />

(0.064), and it had low positive indirect effects<br />

through date of flowering, and high through<br />

fruits number plant -1 whereas, it had a negative<br />

indirect effect through plant height fruit weight.<br />

<strong>The</strong>se result are inconformity with Nadar (1980),<br />

AL-hubaity (1996) who found that no. of<br />

branches plant -1 had higher indirect effect on the<br />

yield of tomato plant. On other hand , number of<br />

fruits appeared to have a very high positive<br />

direct effect (1.478) , and it had low positive<br />

indirect effect through date of flowering and no.<br />

of branches , while an indirect effect was highly<br />

07<br />

negative through fruit weight ( - 0.815) and low<br />

through plant height ( - 0.027) . Similar results<br />

were reported by Srivastava and Udaipur (1973)<br />

in tomato, Singh, Nandpur et al. (1977b) and<br />

AL-hubaity (1996) in tomato, who emphasized<br />

that number of fruits plant -1 was the main<br />

component of yield.<br />

As for the average fruit weight, it had a high<br />

positive direct effect (0.931) on the yield,<br />

whereas, it showed a low positive indirect effect<br />

through the remnant traits recorded (- 0.139, -<br />

0.033, - 1.293) for date of flowering , no. of<br />

branches and no. of fruits respectively .<br />

<strong>The</strong> breeder can be used highest direct<br />

effects were resulted from no. of fruits and fruit<br />

weight, indirect effects of fruit weight through<br />

date of flowering and no. of fruits through<br />

branches number in breeding program.


44<br />

Hybrids<br />

<br />

2<br />

A<br />

<br />

2<br />

D<br />

<br />

2<br />

E<br />

2<br />

H<br />

2<br />

h<br />

a<br />

Plant height<br />

(cm)<br />

138.638<br />

89.899<br />

37.182<br />

46.147<br />

13.590<br />

13.984<br />

92.824<br />

73.194<br />

0.732<br />

Table ( 3): Estimation of additiv, dominant and environmental variances, heritability in board sense, narrow sense<br />

and average digree of dominance for the studied traits<br />

No. of<br />

branches/<br />

plant<br />

0.476<br />

0.379<br />

0.029<br />

0.474<br />

0.403<br />

0.414<br />

55.680<br />

52.425<br />

0.352<br />

No. of leaves<br />

till 1 st<br />

inflorescence<br />

1.087<br />

0.762<br />

0.336<br />

0.697<br />

0.420<br />

0.432<br />

77.217<br />

58.972<br />

0.786<br />

Date of<br />

flowering<br />

(day)<br />

29.848<br />

19.124<br />

2.929<br />

4.019<br />

1.535<br />

1.579<br />

95.527<br />

86.989<br />

0.443<br />

No. of flowers/<br />

inflorescence<br />

0.8930<br />

0.589<br />

0.216<br />

0.328<br />

0.149<br />

0.153<br />

88.158<br />

70.981<br />

0.696<br />

Average wt.<br />

of fruit<br />

(g)<br />

771.879<br />

493.400<br />

39.436<br />

65.024<br />

32.570<br />

33.515<br />

96.140<br />

91.467<br />

0.319<br />

No. of fruits/<br />

plant<br />

281.045<br />

181.536<br />

33.338<br />

51.005<br />

23.329<br />

24.005<br />

93.091<br />

83.220<br />

0.487<br />

Total yield/<br />

plant<br />

(kg)<br />

0.204<br />

0.144<br />

0.034<br />

0.113<br />

0.082<br />

0.084<br />

74.417<br />

63.832<br />

0.576<br />

Early yield/<br />

plant<br />

(kg)<br />

0.009<br />

0.009<br />

0.002<br />

0.018<br />

0.016<br />

0.016<br />

41.517<br />

33.681<br />

0.671<br />

Fruit<br />

length (cm)<br />

4.418<br />

2.849<br />

0.369<br />

0.645<br />

0.342<br />

0.362<br />

93.329<br />

86.127<br />

0.409<br />

Fruit<br />

diameter<br />

(cm)<br />

4.273<br />

2.714<br />

0.417<br />

0.459<br />

0.072<br />

0.074<br />

98.482<br />

89.724<br />

0.442<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 70-81, 2010


47<br />

Traits Plant Height<br />

(cm)<br />

No. of<br />

Branches<br />

Table (4) : Correlation coefficient between studied traits .<br />

Date of Flowering(day) Fruit length<br />

(cm.)<br />

Fruit diameter<br />

(cm.)<br />

No. of Fruit /plant Fruit Weight (g) Early Yield<br />

(kg/plant)<br />

Total Yield(kg/plant) - 0.340 0.505 ** - 0.626 ** 0.511 ** - 0.452 * 0.814 ** - 0.523 ** - 0.279<br />

Early yield(kg/plant) 0.079 - 0.075 0.569** - 0.440 * 0.455 * - 0.425 * 0.420 *<br />

Fruit weight (g) 0.140 - 0.521 ** 0.773 ** - 0.899 ** 0.841 ** - 0.875 **<br />

No. of Fruit /plant - 0.344 0.587 ** - 0.785 ** 0.827 ** - 0.725 **<br />

Fruit diameter (cm) 0.017 - 0.547 ** 0.455* -0.765 **<br />

Fruit length (cm) - 0.203 0.536 ** - 0.400 *<br />

Date of Flowering<br />

(day)<br />

No. of Branches - 0.055<br />

0.214 - 0.354<br />

* ,** significant at P (0.05 , 0.01 ) respectively .<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 70-81, 2010


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 70-81, 2010<br />

Date of<br />

flowering<br />

Plant height<br />

Branches<br />

number<br />

Fruits number<br />

Fruit weight<br />

Table (5): Estimation of direct and indirect effect for some traits on the total yield.<br />

Date of<br />

flowering<br />

Plant height<br />

Branches<br />

number<br />

Fruits number Fruit weight<br />

-0.181 0.017 -0.023 -1.160 0.720<br />

-0.038 0.080 -0.003 -0.509 0.130<br />

0.064 -0.004 0.064 0.868 -0.485<br />

0.142 -0.027 0.037 1.478 -0.815<br />

- 0.139 0.011 -0.033 -1.293 0.931<br />

REFERENCES<br />

- Ahmed , N.S. (2003). Diallel crossing and genetic analysis<br />

of some Tobacco varieties (Nicotiana tabacum L.).<br />

M. Sc. <strong>The</strong>sis .Univ. of Sulaimania, Agric. Sc. –<br />

field crops.<br />

- AL-Assaf , M. A. Hassan .(1983). Effect of distance<br />

culture and nitrogen fertilization on growth traits<br />

and fruit quality yield on eggplant. M. Sc. <strong>The</strong>sis<br />

.College of Agric. And Forestry .Mosul Univ. Iraq.<br />

- AL-hamdani , Sh. U. Hassan (1999). Test the hybrid<br />

vigour and gene action in eggplant .M.Sc. <strong>The</strong>sis<br />

College of Agric. And Forestry. Mosul Univ. Iraq<br />

(In Arabic).<br />

- AL-hayani , M. W. Ahmad (2000) . Full diallel crossing<br />

and determine genetic information for some<br />

important traits in eggplant . Ph. D. <strong>The</strong>sis<br />

Horticulture Department . College of Agric. Univ.<br />

of Baghdad . (In Arabic).<br />

- AL-hubaity , A. J. I. (1996). Study the combining ability ,<br />

heterosis and path coefficient analysis in tomato<br />

(Lycopersicon esculentum Mill.) Ph. D. thesis .<br />

College of Agric. And forestry . Mosul Univ. Iraq .<br />

(In Arabic).<br />

- AL-Kumar, M. Kh. K. B. Esho and M. Butris (1993). <strong>The</strong><br />

performance and correlation estimate for yield and<br />

it's component in height eggplant varieties .<br />

Rafidian J. Agric. 25(1):11-15.<br />

- Allam , M. S. and A. K. Malik (1987). Variability and<br />

traits association in tomato. Bangladesh J. Agric.<br />

14(1): 107-113.<br />

- AL-Rawi , K. M. (1987) . Introduction to regression<br />

analysis .Directorate of book house for publishing<br />

and pressing . Mosul Univ. Iraq .(In Arabic).<br />

Ducation And Scientific Research. Foundation of<br />

Technical Institute.<br />

- Al-Rekabi, F.I.and Abduljabbar j. (1981). Vegetable<br />

production. Ministry of Higher E<br />

- AL-Sahaf , F. H. ; F. M. J. AL-Sady and S. K. Sadik<br />

(2003). Heterosis and correlation of F1 hybrid traits<br />

in eggplant . Iraqi J. Agric. 8(5):<br />

- Borikar , S. T. ; V. G. Makne and V. G. Kalkarni (1981).<br />

Note on diallel analysis in brinjal . Ind. J. Agric.<br />

Sci. 51(1):51-52.<br />

- Biswajit, P.; Y. V. Singh and H. H. Ram, (2004).<br />

Combining ability studies for yield and yield<br />

attributing traits in round fruited eggplant (Solanum<br />

melongena L.). Under Tarai condition of<br />

Uttaranchal, India. 23:137-140.<br />

- Chezhian,P. ; S. Babu and J. Ganesan(2000). Combining<br />

ability studies in eggplant (Solanum melongena L.)<br />

. Tropical Agric. Research 12:394-397.<br />

- Daunay , M. C. ; R. N. Lesteer , C. Gebhardt and M.<br />

Jahn(2001). Genetic resources of eggplant<br />

(Solanum melongena L.) allied species . A new<br />

challenge for molecular geneticists and eggplant<br />

breeders.PP :251-274 in solanaceae V. Edited by R.<br />

G. Van Den Berg G. W. Bare Ndse and Mariani.<br />

Nijmegen University press , Nijmegen the Nether<br />

lands.<br />

- Dharmegowda , M. V. ; K. C. Hiremath and J. V.<br />

Goud(1979b). Genetic analysis of yield and it's<br />

components in brinjal (Solanum melongena L.)<br />

.Mysore J. Agric. Sci. 13:151-155.<br />

- Dixi, J.; R. D. Bhutani and B. S. Dudi (1982). Heterosis<br />

and combining ability in eggplant. Ind. J. of Agric.<br />

Sci. 52(7):444-447.<br />

- FAO (1998) . Food and Agriculture Organization of the<br />

United Nations .FAO production year book .vol 52.<br />

Rome Italy.<br />

- Gardner ,C.O. and S.A. Eberhart (1966). Analysis and<br />

interpretation of the variety crosses diallel and<br />

related populations. Biometric , 22:439-452.<br />

- Ghoudhuri, H. G. (1977).Genetical studies in west African<br />

eggplant. Ind. J. Genet. And Pl. Breed. 37(1):46-53.<br />

- Griffing, B. (1956 a).A generalized treatment of diallel<br />

crosses in quantitative inheritance .Heredity, 10:31-<br />

50.<br />

- Griffing, B. (1956 b). Concept of general specific<br />

combining ability in relation to diallel crossing<br />

systems .Aust. J. Biol. Sci. 9:463-293.<br />

07


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 70-81, 2010<br />

- Harvey, A. (1987). Introduction for use of LSMLGP<br />

(least square and maximum likelihood, General<br />

purposes program) . Ohio state Univ.,U.S.A.<br />

- Hassan , L. ; C.A.Razzyque ; N.I.Faridi and H.K. Saha<br />

(1982). Diallel analysis in (Solanum melongena<br />

L.). Bangladesh J.Agric. Sci. 9(1):51-59.<br />

- Jahhav , M.G. ; A.V. Burli ; S. M. More and B. N. Gare<br />

(2001). Combining ability and gene action for<br />

quantitative traits in chilli . Journal of Maharashta<br />

Agric. Universities , 26(3) :252- 253.<br />

- Jorge ,P. A.R. ; L. C. Neyra ; R. M. Osaki ; E. Almedia<br />

and N. Bragagnolo (1998) . Efeito da berinjela<br />

sobreos lipids da plasmaticos , aperoxidacao lipidca<br />

ea reversao da disfuncao endothelial na<br />

hipercolestermia experimental .Arquivos Brasileiros<br />

de Cardio logia 70 (2): 87- 91.<br />

- Kempthorne O. (1957). An introduction to genetic<br />

statistics . John Wiley and Sons, New York.<br />

- Khan, R. (1979) . Solanum melongena and it's ancestral<br />

forms . pp.629- 636. J.Hawkes ; R. Lester and A.<br />

Skelding (Eds.) In. <strong>The</strong> biology and taxonomy of<br />

the solanaceae.<br />

- Khanna , K. R. and R. C. Chadhary (1974) . <strong>The</strong> nature of<br />

gene action and combining ability for some<br />

vegetative traits in tomato . Euphytica , 23:159-<br />

165.<br />

- Monterio , M. S. and C.P.DA. Costa (1977) . Heterotic<br />

behavior and phenotypic stability in hybrids of<br />

eggplant ( Solanum melongena L. ) Esalo,<br />

piracicabae , (Brazil ,793.Pl. Breed. Abst. 10888.<br />

1977).<br />

- Nadar , C. R. (1980) . Variability studies in tomato .Pl.<br />

Breed. Abst. 3429. 1982.<br />

- Nandpur , K. A. ; J. S. Kanwar and R. Lal (1977).<br />

Variability path analysis and discriminate function<br />

selection in tomato . Haryana J. Hort. Sci. ,<br />

6(1/2):73- 78.<br />

- Peter , k. V. and R. D. Singh (1974). Combining ability ,<br />

heterosis and analysis of phenotypic variation in<br />

brinjal.Ind.J. Agric.Sci. 44(6):393- 399.<br />

77<br />

نًَتةمخاس كةدنه ىب<br />

correlation, path analysis<br />

َىكشةز ناجاب َىمةهزةبد ىتازىجو ىنادنةض<br />

- Rao , V.V. ; B. G. Jaisani and G. J.Patel (1974).<br />

Interrelationship and path coefficient of quantitative<br />

traits in chilli . Indiana J. Agric. Sci. 44 (4) :462-<br />

465.<br />

- Relad , M.Sh. ; M. Yasein and A. A. Mohamed (1987).<br />

Correlation and path coefficient analysis between<br />

grain yield and some traits at specific ages of<br />

growth . Agric. Sci. Fac. Agri. Ainshames Univ.,<br />

32(1):165- 178.<br />

- Saha , M. G. ; A. K. M. A. Hussein ; K. R. Hogue and A.<br />

Bhowmik (1991). Genetic analysis of plant height<br />

and number of branches in brinjal (Solanum<br />

melongena L.) . Annals of Bangladesh Agric. 1(2)<br />

:91- 97.<br />

- Sharma , K. C. ; S. Verma and S. Pathak (2002).<br />

Combining ability effects and components of<br />

genetic variation in tomato (Lycopersicon<br />

esculentum Mill.) Ind. Journal of Agric. Sci. 72(8):<br />

496- 497.<br />

- Singh , H. N. ; S. N. Singh and R. K. Mital (1977).<br />

Heterosis in brinjal .Pradesh Inst. Agric. Sci.<br />

Kanpur India 1245- 1247. (Pl. Breed Abst. 8145.<br />

1977).<br />

- Singh , O. and J. Kumar (2005). Variability , heritability<br />

and genetic advance in brinjal .Ind. J. of Hort.<br />

62(3):265- 267.<br />

- Singh , S. ; S. Dharma ; Y. S. Chauhan and R. P. Katiyar<br />

(1974 b). Genetic variability , heritability and<br />

genetic advance in brinjal ( Solanum melongena<br />

L.) Progressive Hort. 6(1) :15- 18. (Pl. Breed. Abst.<br />

10645)<br />

- Srivastava , L. S. and V. Udaipur (1973). Genetic<br />

parameters , correlation coefficient analysis in<br />

tomato . Ind. Agric .Sci. 43(6):604-907.<br />

- Steel , R. G. D. and J. H. Torrie (1981). Principles and<br />

procedure of statistics . 2 nd Edition . McGraw- Hill<br />

Int. Book Comp.<br />

- Yan , W. and L. A. Hunt (2002). Bioplot analysis of<br />

diallel data .Crop Sci. 42:21-30 .<br />

, ىكًتنذ َىشاىًَش انسكزاي<br />

ىةكًتنذ َىشاىًَةش اةنسكزاي امةزةةم ب َىكىهد ايىكناش َىندناض ارًلىك ني ىتاوةشزةش ينًظةشد ةنًلىكةظ ظةئ<br />

ننًتةمخاةس كةدنه ىب<br />

correlation, path analysis<br />

د<br />

ىتزىك<br />

, , َىكشةز ناجاب َىمةهزةبد<br />

ىتازىجو ىنادنةض نًَتةمخاسىب<br />

. ىمةهزةبو نسك ةنًتاهزةسل ينلىكةظ<br />

ىتشط انسكلةكًَت ينناًش ينهادىج ينتاوكًث انسكاسكًت زةبد َىنسكمىكاي ىكًتًَنذ ازاكيسك انىبةه ب نسك ىنًبشًَث<br />

فاضشًَث َىنسكمىك اًكًتنذ ينًهادىجو<br />

. ةظ ناتةمخاس ىم ةه ب<br />

تةبيات انسكلةكًَت نًَناًش اًهادىج نًًَتاوكًَثزةسل


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 70-81, 2010<br />

نًًَهادىةجو زادتاةوتةسةد اةًكًتنذ اةًهادىج َلىةب<br />

نًَتةمخاةس ىمةةهىب نىةب فاةضشًَث زوشد هةسفزةب ني ىكتنًنذ ارنَيز<br />

. تخةوزةب َىمةهزةب َىتةمخاس ىمبذ اد ناتةمخاس ىمةهد نىب<br />

. نىب فاضشًَثد ناتةمخاس ىمةه ىب َىهةطنيذ<br />

ن ة ة ت ز ة ب ن ة ي ى ك ً ت ن ذ ا ر ة نَي ز ت خ ة و ز ة ة ب َى م ة ة ه ز ة ب و ا ك ة ض ا ز ا م ر ة ه ن ًَ ت ة م خ ا ة س ن ا ظ ى م ب ذ ن س ك ة ن ً ت ا ه ز ة س ل ين ل ى ك ة ظ<br />

و ىكًَف اطنةس اًياسكًَتو َىنادلىط اكشثد اىط ازامرهو َىنادلىط َىناظذو ىكةوز اًهادنمب نًَتةمخاسىب فاضشًَثزوشد<br />

ىمةةهىب نسةط انسكلةةكًَتدي ازايسك انىبةهد َىنسكًَتزاكىك<br />

ىكًف اًتانهةثو ىرَيزدو ادىكةكةووزد ىكًفازامره<br />

انىبةهزةسل تةلاةد اتةمخاس ىمةهىب َىكًئذ ىب ترنًَك زادتاةوتسة اسنم اسكًَت ةظ ىد َىكةياذو<br />

. سكزايد اتةمخاس<br />

زةةه ىةب ىتةشط َىمةةهزةب ىك سكزايد َىنًلىكةظ . ىبةه ناتةمخاس ىمةهزةسل تاةوتسةد َىنسكةظزاث اتاةوتسةد<br />

نيستدنمبو . ادىكةووزد ىكًفازامره و ىهارَيزدو اقةض ازامره لةطد ىنيزةئ ينيزادي دنةىيةث نًَيدنةىيةث ىكةكةووز<br />

ىك سك زايد ) path analysis(<br />

انسكةظوسش . تنيد ةتاه ىكًفاًتانهةثو ىكًف اطنةس ازةبظاند (0.841) اسكشائ ايدنةىيةث<br />

زةسل زةسكًَئ نًَنسكًَتزاك ىك نًَتةمخاس نيترطنسطذو اد ىكةووز د ىكًف ازامرهو اقةض<br />

ازامره , ىكةووز اًتادنمب<br />

ىكةووز اًتادنمب د ىمةهزةبد زةسكًَئ ةن اي ىنَيز ةئ اكةنسكًَتزاك َىنادلىط َىناظذ َلى ةب ىسك ىكةووز ىتشط َىمةهزةب<br />

. ىبةه اد ىكًَف اطنةسو<br />

ناجنذابلا يف تافصلا ضعبل راسملا لماعمو<br />

طابترلااو ةيثارولا ملاعملا ضعب ريدقت<br />

اتت ججك تتم ناتتجنذابلا ناجتصلا ةتتيثارولا ملاتتعملا ضتعب ةتت اردل<br />

وايتسلا يثاروتلا نياتبتلا اتما . رت بملا لتصاحلا ةفتص اد تافصلا يمجل<br />

ايوجعم<br />

تيمجل ةتيلا<br />

ماتتفترا تافتتصل ةتتيلا<br />

ت اولا وجعملاتب اتيروتلا ةبتسن اتنار . تافتصلا تيمجل ةتيوجعم نت<br />

يتت لا وجعملاتتب اتتيروتلا ةبتتسن<br />

ةصلاخلا<br />

وتتكو ةتعماج – ةتت ار لا ةتتيار لتقي يتتف ةتت اردلا اتيرجأ<br />

. ناجنذابلا يف تافصلا ضعبل راسملا لياحتو طابترلاا لماعم كلذرو<br />

σ<br />

ي متل<br />

2 A<br />

σ<br />

يعيمجتلا يثارولا نيابتلا نار<br />

2 E<br />

2 يت يبلا يثاروتلا نياتبتلاو σ D<br />

و رتت بملا لتتصاحلاو مرتتفلاا ودتت يتفتتص ادتت ةتت وردملا تافتتصلا<br />

اتتمم ةرتتمللا رتت و اوتت و تاتتبجال راتتمللا ودتت ةرتتمللا نزو ادتتعم ةتتيرك لا ةروتتجلا يتتف راتتكزلاا ودتت رتتيك تلا دتت وم تاتتبجلا<br />

تيمجل ليحتصلا دتياولا نم ل ا ) ā ( ةوايسلا ةجرو ادعم انار رخا بناج نم . تافصلا هذ ل يعيمجت لعف ووجو س عي<br />

ناتر تاتبجال يتا لا لتصاحلا نا ةت اردلا ترت ظا . تافتصلا هذتك وتا ر يتست ةتيئ<br />

نزو نيتب ناتر ) 0 . 148(<br />

ج ةوايت ووتجو وتا ادتي اتمم تافتصلا<br />

رت رم طاتبترا وتا ا ناو . تاتبجال راتمللا ودت و ةرمللا او مرفلاا ود م ابجوم<br />

ا ابترا ا بترم<br />

نزوو تاتبجال رامللاودت و ت او رتشابم ريثيتت ات ل مرفلاا ود تابجلا مافترا نا راسملا لماعم لياحت ر ظا . اكر و ةرمللا<br />

لتصاحلا وتا ارتشابم رتي اتبجوم اريثيتت بتل نات ف رتيك تلا دت وم اتما تاتبجال يتا لا لتصاحلا وتا يلا رتشابم ريثيتت ات ل ةرمللا<br />

نا ااتجتت لاا نت ميو.<br />

مرتفلاا ودت الاتخ نتم<br />

اتكوامت ا نت مي اذتل ,<br />

رتشابم رتي يلات ريثيت ات ل راتمللا ودت و ةرتمللا نزوو تاتبجلا مافترا الاخ نم<br />

رتخلاا تافتصلا ضتعب الاتخ نتم رتشابم رتي و رتشابم ريثيتت اتم ل ناتر ةرتمللا نزوو رامللا ود يتفص<br />

.<br />

ناجنذابلا يف يلاعلا لصاحال باختنلال ةلوار<br />

77


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 82-89, 2010<br />

28<br />

ESTIMATING OF ANNUAL SEDIMENTS OF DUHOK DAM BY<br />

USING RIVER TURBIDITY WATER SAMPLES<br />

..<br />

ABDULSATAR HAJI SULAIMAN<br />

Dept. of Soil & Water Science, College of Agriculture, University of Duhok, Kurdistan Region, Iraq.<br />

(Received: April 27, 2010; Accepted for publication: February 14, 2011)<br />

ABSTRACT<br />

An estimation technique was developed in this study based on runoff water turbidity and soil concentration sampling<br />

data in the Duhok Dam catchments, were used to develop relation between turbidity value and suspended sediment. <strong>The</strong><br />

main purpose of this study is to estimate the annual sedimentation for the Duhok Dam watershed through taking continually<br />

sampling from the seasonal runoff which outlet to the Duhok seasonal river. To achieve this work, standard curve of the soil<br />

concentration (Kg/m 3 ) and turbidity meter (NTU) was prepared, daily rainfall data and total runoff for the rainfall season<br />

2008-2009 was taken for the study. <strong>The</strong> study found relationship between suspended sediment and turbidity at a study<br />

catchments, which implemented to estimate erosion . For the purpose of increase accuracy in collection of rainfall data, the<br />

samples must be include all rainfall events. <strong>The</strong> total sedimentation was estimated as (4082.055 Ton) and the approximate<br />

annual soil erosion can be easily determined depending on the watershed area.<br />

KEY WORDS: Turbidity (NTU), Rainfall, Concentration, Duhok Dam.<br />

A<br />

INTRODUCTION<br />

sediment estimation technique was<br />

developed in this study based on<br />

turbidity and suspension sampling data for the<br />

outlet of Duhok river catchments. To estimate<br />

the annual sediment from which the data were<br />

collected, were used to develop relationships<br />

between turbidity and suspended sediment.<br />

<strong>The</strong>se relationships were used to estimate the<br />

total Duhok Dam sediment and then estimation<br />

erosion from the catchments. A relatively low<br />

annual sediment rate from the catchments was<br />

found at low storms. Many study found that, to<br />

establish a sound relationship between<br />

suspended sediment and turbidity for catchments<br />

requires extensive data collection of different<br />

categories of storms during any study season.<br />

Turbidity is the amount of particulate materials<br />

that is suspended in water. Turbidity<br />

measurement depend on the scattering effect that<br />

suspended solids have on light. <strong>The</strong> higher<br />

intensity of scattered light, the higher turbidity.<br />

Turbidity is measured by shining a light through<br />

the water and is reported in nephelometric<br />

turbidity units (NTU). During periods of low<br />

flow (base flow), many rivers are a clear green<br />

color, and turbidities are low, usually less than<br />

10 NTU. During a rainstorm, particles from the<br />

surrounding land are washed into the river<br />

making the water a muddy brown color,<br />

indicating water that has higher turbidity values.<br />

Also, during high flows, water velocities are<br />

faster and water volumes are higher, which can<br />

more easily stir up and suspend material from<br />

the stream bed, causing higher turbidities.<br />

Materials that cause water to be turbid include,<br />

clay, silt finely divided organic and inorganic<br />

matter, soluble colored organic compounds,<br />

microscopic organisms. (Howard, 2008).Total<br />

suspended solids (TSS) are one of the primary<br />

factors affecting turbidity in addition, organic<br />

matter also contributes to turbidity.(Wijenayake<br />

and Alahakoon, 2005). High flow rates will<br />

affect turbidity by stirring silts and other<br />

particles at river and canal bottoms. High<br />

velocity water can carry more particles and<br />

larger-sized sediments. Heavy rains and<br />

subsequent runoff water detach soil particles<br />

such as sand, silt, clay and organic matter and<br />

transport them to surface water increasing the<br />

turbidity. Researches have also been carried out<br />

to establish a relationship between turbidity,<br />

particle size and concentration to provide the<br />

basis for evaluating the effectiveness of particle<br />

removal process and in-situ measurement of<br />

turbidity is expected to be useful in estimating<br />

sedimentation rates in water (Dutrai, 1999).<br />

When water velocity is decreased or becomes<br />

with zero velocity , particles start to settle<br />

reducing the turbidity of water. However,<br />

changes in flow rate such as from laminar to<br />

turbulent may cause particulate materials from<br />

bottom sediments to re-suspend, and thereby<br />

increase the cloudiness of water. Soil erosion,


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 82-89, 2010<br />

which is caused by rainfall, snowfall and<br />

runoff flow, will also increase the turbidity of<br />

water. Suspended materials include soil particles<br />

(clay, silt, and sand), algae, plankton, microbes,<br />

and other substances. <strong>The</strong>se materials are<br />

typically in the size range of 0.004 mm (silt) to<br />

1.0 mm (sand). Turbidity can affect the color of<br />

the water. A variety of methods to estimate<br />

seasonal suspended sediment yield in a mixed<br />

land-use catchments they have examined.<br />

Despite the inherent uncertainty, all estimates of<br />

catchments sediment yield are found to be high<br />

with respect to erosion plot studies from the<br />

local area, and this suggests the importance<br />

channel erosion as major sediment sources, a<br />

finding consistent with other regional studies<br />

.Usually, we measure turbidity to provide a<br />

cheap estimate of the total suspended solids or<br />

sediments (TSS) concentration (Kg dry soil<br />

weight /m 3 water).Turbidity is measured using<br />

the techniques of turbid meter or nephelometry<br />

and is expressed in arbitrary units<br />

(Nephelometric Turbidity Unit, NTU). <strong>The</strong><br />

direct relationship between turbidity data and<br />

suspended solids concentration depends on many<br />

factors, including particle size distribution,<br />

particle shape and surface condition, refractive<br />

index of scattering particles and of the<br />

suspension medium and wavelength of the light.<br />

Another even cheaper method is to use an<br />

inexpensive devise called "Turbidity Tube" is a<br />

simple adaptation for streams of the "Secchi<br />

disk" technique for lakes. It involves looking<br />

down a tube at a black and white disk and<br />

recording how much stream water is needed to<br />

make the disk disappear.<br />

MATERIAL AND METHOD<br />

Study locations<br />

Duhok river catchments consist of following<br />

secondary laterals , Bagloor, Sendor, Garmava<br />

and Khazava catchments , the total catchments<br />

area is 133.8 Km 2 the site between latitudes (36 o<br />

52 - - 37 o 01 - N) and Longitude (42 o 51 - - 43 o 06 -<br />

E) .<strong>The</strong> highest mountain peak at Bakhar (1381<br />

m) above sea and the lowest outlet point is 560m<br />

above sea, the attached morphometric map (Fig<br />

.1) showing the site with scale (1:110000)(<br />

Aomer , 1999) Garmava river length is<br />

(14.1Km) the catchments shape as triangle, it is<br />

far Duhok city about (5Km) . Duhok Dam<br />

watershed climate region varies continually<br />

between dry in summer and wet in winter ,the<br />

rain fed area in the watershed is highly to<br />

moderate slopes and cultivated with venues and<br />

grain ( Hammed,2004) . Physical soil analysis of<br />

Duhok watershed show that the most soil,<br />

contained highly clay material, which about<br />

more than 36% and it's classified as silt clay soil<br />

with normal to moderate acidity. Only 25% of<br />

Duhok watershed was covered with forest<br />

(Gulcur and Kettaneh, 1972) but now day is less<br />

than the mention percentage even though the<br />

governorate cultivated 2.6% of forested trees as<br />

well as 6.5km of wattle fences and constriction<br />

about (3250m 3 ) prevent check dam in gullies to<br />

reduce surface runoff then reduce water erosion<br />

in the region. <strong>The</strong> erosion is their active due to<br />

the sever slope and the rate of deposit<br />

sedimentation is high .<strong>The</strong> main purpose of this<br />

study is to estimated the seasonal sedimentation<br />

for the Duhok dam watershed through<br />

continually samples during the seasonal runoff<br />

which outlet to the Duhok river due to estimate<br />

their turbidity and to find the unique relationship<br />

between turbidity and suspension concentrations<br />

using turbidity meter (HACH-2100A).Turbidity<br />

can be measured in the laboratory and also onsite<br />

in the river by a handheld turbidity meter.<br />

<strong>The</strong> meter is calibrated using standard samples<br />

from the meter manufacturer. Six glass of vials<br />

shows turbidity standards of (0.6, 1, 10,100,<br />

500) and (1000 NTUs). Once the meter is<br />

calibrated to correctly read these standards, then<br />

turbidity of runoff suspended water samples can<br />

be taken.<br />

<strong>The</strong> methods and equipment used for<br />

sampling suspended sediment are different from<br />

those used for deposited sediments. Also<br />

sampling methods for measurements of the<br />

quantity of sediment in transport are different<br />

than for measurement of sediment quality. <strong>The</strong><br />

reason for these differences reflects the fact that<br />

sediment quantity must include the sand size<br />

fractions which are unequally distributed in<br />

depth, whereas sediment quality focuses on the<br />

silt and clay fraction which is not depthdependent.<br />

For bottom sediments it may be<br />

necessary to collect deposited sediments with<br />

minimum disturbance in order not to lose the<br />

fine material on the sediment surface, or because<br />

the vertical distribution of the sediment<br />

components is important.<br />

Turbidity measure with nephelometeric<br />

turbid meters is considered a good method for<br />

estimating suspension concentration in rivers<br />

(Lewis 1996).Measuring turbidity can be done<br />

by measured using either an electronic turbidity<br />

meter or handheld turbidity tube. Both methods<br />

28


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 82-89, 2010<br />

have advantages and disadvantages, as shown<br />

below. Turbidity is usually measured in<br />

nephelometric turbidity units (NTU) or Jackson<br />

turbidity units (JTLJ), depending on the method<br />

used for measurement. <strong>The</strong> two units roughly<br />

equal (Jamie and Richard, 1996). Although<br />

measuring turbidity is easer than measuring<br />

suspended solid, more information is needed on<br />

their relation. While a relationship can be<br />

established between turbidity and suspended<br />

sediment, this relationship can and will change<br />

spatially and temporally due to variations in<br />

sediment composition and stream energy<br />

(Rasmussen, 1995).<br />

<strong>The</strong> study was started depended on the<br />

collected data of turbid runoff suspended water<br />

samples from Duhok Dam watershed river<br />

before it arrives into the reservoir, after each<br />

heavy rainfall which, cause runoff to ward the<br />

Rainfall data during study period was taken from<br />

Duhok Dam meteorology stations (Table 1). To<br />

prepare the standard curve three mixed samples<br />

of soil were taken from seven different sites<br />

along the Duhok Dam watershed, and the soil<br />

samples approximately represented the condition<br />

of watershed soil.<br />

<strong>The</strong> standard curve of the runoff<br />

concentration and water turbidity is the first step<br />

to measure total suspended sedimentation of<br />

Duhok Dam reservoir. Oven- dried mixed soil<br />

samples were taken for each sites as( 1.25,<br />

2.50, 3.75, 5.00 and 7.50 g ),then add (1 liter )<br />

water to prepar the standard concentration . <strong>The</strong><br />

weight convert to (Kg soil / m 3 ) (Hollidy, at el<br />

2003)Turbidity values taken from all samples<br />

.(Table 2),(Fig.2) show the relation between<br />

turbidity water suspention (NTU) by using the<br />

(HACH-2100A) Turbidity meter and prepared<br />

suspention consentration (Kg / m 3 ), Correlation<br />

equation was obtained and depended upon to<br />

measure the concentration of suspention real<br />

runoff water during the study periods .<br />

Total rainfall was 385.9mm during study<br />

season .In this study we chose only (11)<br />

rainstorms which really caused runoff ,which<br />

renged between (12mm) and (44mm) as shown<br />

in (Table 3) (Clumian 2). Turbidity measurment<br />

was done for the above (11) water sampls which<br />

were taken from the season flow runoff to<br />

Duhok river.<br />

Table (4)show the total monthly runoff<br />

collected in Duhok Dam during the study<br />

seasonal period. <strong>The</strong> data has been taken from<br />

Duhok/Iraq dam directory .<br />

28<br />

Table (1 ): <strong>The</strong> chosen rainfall days and their date in<br />

Duhok Dam meteorology station.<br />

# Date Rainfall (mm)<br />

1 24/10/2008 12.5<br />

2 28/11/208 19.0<br />

3 29/11/2008 35.0<br />

4 24/12/2008 24.5<br />

5 31/12/2008 44.0<br />

6 27/2/2009 25.5<br />

7 28/2/2009 15.5<br />

8 4/3/2009 10.5<br />

9 23/3/2009 30.5<br />

10 24/3/2009 24.0<br />

11 17/4/2009 32.0<br />

Table (2): Relation between soil suspension<br />

concentration and turbidity meter reading<br />

of standard curve.<br />

Kg/m 3 Concentration<br />

of Suspended<br />

8<br />

NTU(nephelometric<br />

turbidity Unit)<br />

1.25 97<br />

2.50 125<br />

3.75 135<br />

5.00 180<br />

7.50 200<br />

6<br />

4<br />

Soil suspension Km/m 3<br />

2<br />

50<br />

0<br />

0<br />

250<br />

200<br />

150<br />

100<br />

y = 86.15x 0.414<br />

R 2 = 0.9544<br />

Fig.(2):Standard curve, shows relation between soil<br />

suspension concentration and turbidity value<br />

Turbidity NUT


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 82-89, 2010<br />

Table ( 3 ): Turbidity reading (NTU) of river samples during the study season and the correlation of the<br />

suspension concentration according the standard curve formula Y=86.15X 0.414<br />

#<br />

Date<br />

(1)<br />

Rainfall (mm)<br />

(2)<br />

NTU<br />

(3)<br />

Kg/m 3<br />

From the<br />

formula (4)<br />

1 24/10/2008 12.5 1.3 0.0004<br />

2 28/11/208 19.0 22 0.037<br />

3 29/11/2008 35.0 31 0.084<br />

4 24/12/2008 24.5 95 1.266<br />

5 31/12/2008 44.0 230 10.718<br />

6 27/2/2009 25.5 18 0.0227<br />

7 28/2/2009 15.5 74 0.6926<br />

8 4/3/2009 10.5 0.5 3.9E-06<br />

9 23/3/2009 30.5 12 8.55E-03<br />

10 24/3/2009 24.0 102 1.5037<br />

11 17/4/2009 32.0 0.32 1.3E-06<br />

Table ( 4 ): Total runoff storage in Duhok Dam during rainfall seasonal 2008-2009<br />

Turbidity (NTU)<br />

# Date Runoff (m 3 )<br />

1 September 2008 0<br />

2 November 2008 188319<br />

3 December 2008 226636<br />

4 January 2009 490502<br />

5 February 2009 163865<br />

6 March 2009 2320739<br />

7 April 2009 1482095<br />

8 May 2009 150000<br />

250<br />

200<br />

150<br />

100<br />

50<br />

Total 5022156<br />

(Source Duhok Dam directory/Iraq)<br />

0<br />

0 5 10 15<br />

Suspension concentration<br />

(Kg/m 3 )<br />

y = 83.295x 0.4262<br />

R 2 = 0.9842<br />

Fig. (3): Relation between the turbidity(NTU) and natural suspension concentration(Kg/m 3 )<br />

28


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 82-89, 2010<br />

28<br />

Table (5): Ton sedimentation collected in Duhok Dam during the study season (2008- 2009).<br />

# Month<br />

1<br />

Monthly runoff to<br />

Duhok Dam(m 3 )<br />

1/10/2008 0<br />

1/11/2008 188319<br />

1/12/2008 226636<br />

1/1/2009 490502<br />

1/2/2009 163865<br />

1/3/2009 2320739<br />

1/4/2009 1482095<br />

1/5/2009 150000<br />

2<br />

Suspension<br />

Concentration Kg/ m 3<br />

3<br />

Sediment<br />

Kg<br />

0 0<br />

0.0605 11393.3<br />

5.992 1358002.9<br />

3.0263 1484406.2<br />

0.3576 58598.124<br />

0.504 1169652.5<br />

1.3E-06 1.9267235<br />

0 0<br />

4<br />

4082054.951 Kg<br />

Total Tons 4082.055 Ton<br />

RESULT AND DISCUSSION<br />

<strong>The</strong> main purpose of this study is to estimate<br />

the annual sedimentation collected in the Duhok<br />

dam reservoir through taking continually<br />

samples from the seasonal runoff which outlet to<br />

the Duhok River. Total suspended solids (TSS)<br />

is one of the primary factors affecting turbidity<br />

of runoff water flow from the catchments outlet<br />

to Duhok river ,which was measured by using<br />

turbidity meter (NTU) nephelometeric turbidity<br />

meters unite. Prolonged period of continuous<br />

runoff occurred in the initial monitoring period<br />

"Between" (2008-2009). Seasonal rainfall was<br />

less than average the distribution of rainfall on<br />

rainy day and monthly runoff was recorded in<br />

table (Table 1) and (Table 3) respectively. (Table<br />

3 columnar 3) show that as the peak water runoff<br />

flow the runoff color seem turbid, while in the<br />

gentle flow, the water color seem very clear<br />

,which flow to the Duhok Dam reservoir.<br />

<strong>The</strong> standard curve of suspended<br />

concentration and turbidity (NTU) was prepared<br />

from (Table 2) and explained in (Fig. 8), to<br />

obtain correlation equation for the eroded solid<br />

material as sedimentation to Duhok Dam<br />

reservoir.<br />

We obtained strong relationship between<br />

turbidity and sediment concentration,<br />

(Y=86.15X 0.414 with R 2 =0.95<br />

), but the<br />

relationships differed between natural runoff and<br />

suspended samples. Overall, peak sediment<br />

concentration frequently occurred with or very<br />

soon after the first flow and prior to peak<br />

discharge. Hubert at al, 2007 show that simple<br />

linear regression only occur where the particle<br />

size shape and composition of suspended soils<br />

does not vary with concentration. <strong>The</strong>se<br />

condition are in the case of predominantly fine<br />

silt and clay which are being transported<br />

specially from pasture region and un-gullied<br />

region. <strong>The</strong> relation for high concentrations<br />

which contain high percentage of sand partial is<br />

best represent by a power curve predominantly<br />

in gullied area where highly eroded puts occur<br />

and show statistically significant relationship<br />

(Armstrong et al, 2002) Turbidity explained<br />

more than 95% of the variability in sediment<br />

concentration. Similar result was observed by<br />

(Dabney et al, 2006) in natural runoff samples<br />

when they applied the correlation equation,<br />

several time , the result is very close to that we<br />

obtained in this study (Fig.8).<br />

Applied the turbidity value (NTU) of the<br />

suspended natural rainfall runoff samples which<br />

was taken from the estuary river of the Duhok<br />

watershed river on the standard curve or solve<br />

the above equation on the light of turbidity<br />

value, we obtained the concentration of the<br />

suspended soil in Kg/m 3 as shown in (Table<br />

5).<br />

(Fig.8) shown the relationship between<br />

chosen rainfall in Duhok Dam watershed, and<br />

suspension sediment concentration during the<br />

study period the relation is polynomial with<br />

(R 2 =0.75). Although the total seasonal rainfall<br />

was (386 mm) , while the rainfall storms which<br />

really cause the runoff and turbid water was<br />

(273mm), the monthly distribution of rain was as<br />

follows (66.5mm) in November and (68.5mm) in<br />

December 2008 while (41.0 ,65.0 mm) and (32.0<br />

mm) in February, March and April 2009<br />

respectively .<strong>The</strong> above rainfall data have<br />

indirect effect on the turbidity of the Duhok river<br />

and suspended sediments due to the impact of<br />

the raindrop on the Duhok Dam watershed ,


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 82-89, 2010<br />

other factors affected the turbidity of Duhok<br />

river as the watershed condition (Rainfall<br />

intensity, soil humidity ,vegetation cover , and<br />

soil texture), as will as the type of soil<br />

conservation practices .<br />

In this study for the first time we estimate the<br />

monthly sedimentation in the Duhok Dam<br />

reservoir instead of the total loading sediment,<br />

monthly sediment show the effect of the rainfall<br />

and the soil condition before rain storm<br />

. Comparing the results obtained in this study<br />

(2008-2009), with that found by (Hammed,<br />

1980) we see that the total runoff was estimated<br />

at (5022156 m 3 ) (Table 4) vs. 11511232 m 3 for<br />

the season (1978-1979) and the maximum<br />

suspended sediment concentration load was<br />

(5992 g/ m 3 ) (Table 5 columnar 3) vs. 85060 g/<br />

m 3 for study season (1978-1979). <strong>The</strong> last result<br />

is two fold more than that which the consultant<br />

report has mentioned (Duhok Dam project,<br />

1979)<br />

Also the total suspended soil was (4082.055<br />

ton) as estimated in this study (Table 5 columnar<br />

Suspension<br />

concentration(kg/m 3 )<br />

12<br />

10<br />

8<br />

6<br />

4<br />

2<br />

0<br />

4) vs. (137951 ton) for study season (1978-<br />

1979).<br />

<strong>The</strong> big difference is due to the decline in<br />

rainfall and climate change during the last three<br />

decades, for example total rainfall during study<br />

season (2008-2009) was (386 mm) while the<br />

average rainfall in the season (1978-1979) more<br />

than (600 mm) between (Duhok and Zawita)<br />

region, in addition Duhok river was flow along<br />

the year during study season(1978-1979), but<br />

now day the river flow only in the rainfall season<br />

period because of the drought of spring resource<br />

and rainfall abatement.<br />

As the total Duhok watershed area is 133.8<br />

Km 2 and the total sedimentation in this output<br />

study for the rainfall season (2008-2009) are<br />

(4082.055 ton) (Table 5), we conclude that<br />

erosion was not dangerous and less than the<br />

tolerance limit (11.4 ton/hectors) it's about<br />

(0.305 ton/hectors) and the sedimentation is<br />

little in Duhok Dam watershed region.<br />

y = 0.0179x 2 - 0.7462x + 7.1151<br />

R 2 = 0.7552<br />

0 20 40 60<br />

-2<br />

Rainfall depth(mm)<br />

Fig. (4): Relation between Rainfall depth and Suspension Concentration<br />

CONCLUSIONS<br />

All types of the erosion (Gully and sheet)<br />

were the dominant source of the most sediments,<br />

contributing to sediment yield from upland<br />

catchments to the Duhok Dam reservoir. As the<br />

main phase of gully erosion is already complete<br />

treatment and management of historical gully<br />

erosion is likely to have a lasting effect on water<br />

quality and reduced sediments. Land<br />

management, such as conserving and prevention<br />

of the formation gullies, may play a key role in<br />

decrease the eroded process. More attention<br />

needs to paid to the design and settling of<br />

sediment trapping structures in gullies to achieve<br />

maximum trap efficiency and minimize turbidity<br />

sediment yield from heavy grazing although<br />

much less significant, may rise dramatically<br />

28


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 82-89, 2010<br />

during prolonged dry period, also the mountains<br />

which surrounding Duhok Dam, shown early<br />

landslide and continuous erosion.<br />

<strong>The</strong> differences of water turbidity in the<br />

rainfall season is very important for calculation<br />

the expected actual soil loss due to the effect of<br />

rainfall drop, For example in the spring when the<br />

soil is newly ploughed and without any cover<br />

will be dangerous if the area is expected to the<br />

high spring shower high value of erosion and<br />

then high amount of suspended soil and turbid<br />

water which in turn causes large quantity of<br />

sediments in the rivers and its lateral, but less<br />

effect if the spring rain be gentle. This<br />

measurement generally provides a very good<br />

correlation with the concentration of particles in<br />

the water, which affect turbidity then increase<br />

the erosion .<br />

22<br />

RECOMMENDATIONS<br />

Depending on the output of this study we<br />

can know which period of the season is critical<br />

for soil erosion which shown as turbidity water<br />

in the river. On this basis there should be plans<br />

for soil conservation works to stop the impact of<br />

the raindrop on uncover soil surface and we<br />

recommended the following points for decrease<br />

the cause of suspension and natural water<br />

erosion.<br />

1- Reforestation the uncovered parts of the<br />

watershed and to prevent the present forest also<br />

forbidden to cut the forest trees.<br />

2- construct and develop the small check dams<br />

which traditionally named small stone dam on<br />

the laterals of the streams and gullies to reduce<br />

the flowing runoff and then decrease the gullies<br />

erosion, which dominate in the region.<br />

3- Make retaining wall on both roadsides to<br />

reduce collapse and<br />

lubrication posses in the soil.<br />

4- Construct wattle fence and develop new<br />

durable material on critical slope which have<br />

fragile and uncovered soil to conserve it from<br />

the erosion.<br />

REFERENCES<br />

- Aomer, O.A. (1999).Morphological study for some<br />

watershed discharge Arbil, Iraq Kurdistan Duhok<br />

University bulletin, <strong>The</strong> first minutes scientific<br />

congress ,V2 No, 4 P591.<br />

- Armstrong G.L., and D.H. Mackenzie (2002) .Sediment<br />

yield and turbidity records from small upland sub<br />

catchments in the Warragamba Dam catchments.<br />

New South Wales, Australian Journal of Soil<br />

Research V40.<br />

- Dabney, S.M., M.A. Locke and Jr, R.W. Steinriede<br />

(2006). Turbidity sensors track sediment<br />

concentrations in runoff from agricultural fields,<br />

federal interagency sedimentation conference<br />

proceedings, Reno, Nevada. CDROM.<br />

- Duhok Dam project consultants, (1979). Department of<br />

Dams and reservoirs first stage. Project report<br />

Vol.1, Baghdad Iraq. Ministry of irrigation.<br />

- Dutrai, G.V. (1999).In-situ light scattering measurements<br />

of Cryptosporidium and other suspended particles<br />

in water.<br />

- Gulcur, M., and M.S.Kettaneh (1972).Development plan<br />

of Duhok watershed, forestry research,<br />

demonstration and training .Fo.SF/TRQ.518 Arbil.<br />

- Hammed, M.T. (1980).Study on the relationship between<br />

rainfall and each of the discharge and suspended<br />

load of Duhok watershed. A thesis of Master degree<br />

submitted to the college of Agriculture and<br />

Forestry, Mosul University, Iraq<br />

- Hammed, M.T. (2004) .Morphological study on the<br />

secondary laterals of the Duhok river watershed<br />

.Journal of Duhok university .V7. Number 2 P.<br />

(63-75).<br />

- Hollidy,C.p.,T.C.Rasmussen and P.M.William<br />

(2003).Establishing the relationship between<br />

turbidity and total suspended sediment<br />

concentraton.<strong>The</strong> University of Georgia,<br />

Athens,GA30602.<br />

- Howard, P (2008).U.S. Department of the Interior.U.S.<br />

Geological survey.<br />

URL:http://ga.water.usgs.gov/edu/characteristics.<br />

html<br />

- Hubert, C., M. Takeuchi and M. Trevethan (2007).<br />

Available online. Using turbidity and acoustic<br />

backscatter intensity as surrogate measure of<br />

suspended sediment concentration in a small<br />

subtropical estuary. Journal of environment, P1406-<br />

1416, Austral. www .Elsevier .com/locate/jenvman<br />

- Jamie,B., and R. Balance.(1996).Water quality<br />

monitoring- a practical guide to the design and<br />

implementation of freshwater .Quality studies and<br />

monitoring programmer ,UNEP/WHO.<br />

- Lewis, J. (1996).Turbidity controlled suspended sediment<br />

sampling for runoff event load estimation, Water<br />

Resources Research, 32(7), 2299-2310.<br />

- Rasmussen, T.C. (1995).Erosion and sedimentation<br />

scientific and regulatory issues .Report developed<br />

by Georgia board of regent's scientific panel on<br />

evaluating the erosion measurement standard<br />

defined by the Georgia erosion sedimentation Act.<br />

- Wijenayake, N.A.J., and P.M.K. Alahakoon (2002).<br />

Development accost-effective turbid-meter<br />

,Department of agricultural engineering, faculty<br />

of Agriculture, University of Peradeniya 20400,<br />

Sri Lanka.


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 82-89, 2010<br />

ايتايرتو درةئ رةصل اظائ اىوبيمَش اغايبرةش يىدىاكىةصمٍ وبذ يكةراك اىربةظشثوب ٌرك ةييتٍ ٌايش َىييلوكيل َىفل<br />

ةتخوث<br />

انلهو َىىوبيمَش ارةب فايل هكم اكةيدىةويث اىاييئ كَث وبذ.<br />

َىكوٍد َىركش يرابير ينكظَيشل روجواوج اي اخائ وظائ<br />

اىركموك اكيرب,<br />

َىكوٍد َىركصل ةىلااش انله َىرابةق اىرك ٌاشيى تشةد<br />

َىييلوكيل َىظذ يكةرةش ارةط ةئ.<br />

َىخائ<br />

تشةد ةم َىييلوكيل َىظ اىاد وانجةئ وب.<br />

َىكوٍد َىركش يرابير اكيٍامود كيسَييلاىاراب ينكظيش اظائ ذ كةديٍ واوةدرةب<br />

3<br />

) هك/<br />

هغ(<br />

يخائ<br />

و ظائ ايتايرت ارةب فاى<br />

ًَيمش َىزرةول َىكةىارابرةله ًترظرةو ةتاٍ<br />

, ةيرك يكيتاتمام ينكَيرب يدىاطىةصمٍ اكةيدىةويث اىركتشرودب<br />

(Runoff(<br />

درةئرةش اظائ ارابق لةطل اىاراب َىمةجرةش<br />

.) NTU(<br />

َىىوبيمَشو<br />

و كيضب ًي ٌاراب يمةٍ نييب يرٍتربوب.<br />

َىكوٍد َىركش وب يلامار اخائذ ةىلااش يمةجرةش اىاد وانجةئ وب ) 8002 -8002(<br />

َىزرةول ينلامار ةيتاٍ اخائ انله يمةجرةش اىاراب َىمةدل درةئرةش اظائ اىوج ارطةئ ةييوب<br />

ًيوةئ ًترطرةو ةييتاٍ ٌزام<br />

. ينظيث َىكوٍد َىركش فايل ةيتاٍ اخائ ذ ةىلااش يجمرةش ًَيشد َىكفيش ارابةق فيدلو ) ًت 50282044(<br />

َىىدىاوخ<br />

ةصلاخلا<br />

هييف ةي ت لا ي يعلع اييلنتي تليت هقييحلا ن يعتجلا د ييل عتعةي ي يمم ةييكع ةيت سي ةيلع ي تعتييي تييي ةيما ةلا دليه هيف<br />

دليه ني هيحليتلا ضتيغلا<br />

ةلتيمتتلا لع ير لا ني تت يح ل<br />

نليي ةييتلاسكل هييم ل لا ةييعقع داةييعا تييي,<br />

. ةي ل سلا يما تل سلا تلت ن دةع ةتلاسلا تعتي ل ت ةخ ما ، كتهد ةم ) ةل ج(<br />

ضتح<br />

ش ي علع عتج للاخ ن كتهد ةم د ل ةل جل ةعتعحلا ما تلا تعة ل ته ةما ةلا<br />

ةييما ةلا لييه اي يي د هييل قي ةييلا لييرد هيي ل<br />

لين ةيعع هقييحلا د لتلا ن عتج ي لأا لتيه ي د ل عتج تي ة ل ، ) NTU(<br />

ةيستج تلا يلتلا ي ع ةي ل سلا يما تلا نلي ةقي ا ةيتلاع د يجعا ضتيغل ، ) 8002-8002<br />

سلا<br />

. هتييمتتلا كتييهد تييهد يير ةييعع<br />

3<br />

) تن/<br />

تغ(<br />

ةفك ختلا ة ت لا الناتي<br />

( ةيما ةلا تي ف للاخ لتيه<br />

عيتج هيف ةيتةلا د يعي ضتيغل . ةيما ةلا تيقي ةيل جكل ةعتعيحلا ةيعتس لا يما تعةي ل ةس تلف مةخ حي ه لا ، ةل جلا ن<br />

لتييه ةيعع هقييحلا ن يعتجلا اةيقي هي لا تلغيرلا<br />

لللين تيلي لا ليصاتسلا لن ي علع لتشي نا جع,<br />

ةعتعييحلا تلي لا تعةيي ي ني تع يييلكع<br />

) نيط 50282044(<br />

ةييما ةلا تيقي تيي فكل يما تلا بتييتج تعةي ي تييي ةي ل .<br />

ي لأا ي د ل<br />

يي لأا<br />

.<br />

ةما ةلا تقي ةل جلا ةح ح ةكع اد ت عا ةلتهح ةليعت لا ةعتس تلا ة ت كل<br />

28


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 90-93, 2010<br />

09<br />

THE ECONOMIES OF GOATS AND MERIZ KIDS MANAGED<br />

UNDER DIFFERENT FEEDING SYSTEMS<br />

KAMAL NOMAN DOSKY and REZGAR MOSTAFA MOHAMMED<br />

Dept. of Animal Production ,College of Agriculture, University of Duhok, Kurdistan Region-Iraq<br />

(Received: April 28, 2010; Accepted for publication: August 1, 2010)<br />

ABSTRACT<br />

<strong>The</strong> objective of this study was to assess the economic benefit of kids of goat and Meriz managed under different<br />

feeding systems by using partial budget analysis. Twelve weaned kids from each of Meriz and native goat were<br />

divided into three different feeding systems (intensive, semi-intensive and extensive) for 90 days at the animal farm of<br />

the College of Agriculture, University of Duhok.<br />

A higher return ID (4759.22 and 5884 ) with marginal return (80.2%) and (58.8%) was achieved by Meriz and<br />

goat raised under semi-intensive systems compared with those managed under both intensive and pasture systems.<br />

<strong>The</strong> results revealed that goat raised under intensive system create losses compared with those raised either semiintensively<br />

or on pasture. Also, the present results indicate that Meriz raised intensively and semi-intensively<br />

significantly gained more weight than those raised extensively. However, the differences in gain in weight were not<br />

significant among different systems in goats.<br />

KEY WORDS: feeding system, Meriz, goat, partial budget analysis.<br />

G<br />

INTRODUCTION<br />

oats are well adapted to the<br />

environmental and limited feed and<br />

utilize marginal land to produce high protein<br />

products (Kadim et al. 2003). <strong>The</strong> local goats<br />

with a population of 1.6 million head (FAO,<br />

2000) are important livestock species in Iraq;<br />

they can play important role for the provision of<br />

meat and milk, particularly under the agricultural<br />

systems prevailing in the country (Alkass and<br />

Juma, 2005).<br />

Since no information is available on the<br />

effect of different production system and breed<br />

of goat on the feasibility of rearing the animal,<br />

therefore this work was conducted to investigate<br />

the economic benefit of goats and Meriz<br />

managed under different feeding systems.<br />

MATERIALS AND METHODS<br />

Twelve weaned kids (three months old) from<br />

each of Meriz and native Goat with an average<br />

initial weight 11.7±0.47 and 12.10±0.37 kg,<br />

respectively managed under three feeding<br />

system (intensive, semi intensive and pasture)<br />

were used in this study. Kids from each breed of<br />

first group were kept in individual boxes and had<br />

ad libitum access to concentrate (ingredients<br />

composition Barley 53%, Wheat bran 25%,<br />

Soybean meal 15%, Wheat straw 6%, Salts<br />

0.5%, Limestone 0.5% and Vitamins 0.5% ) and<br />

contained 16% crude protein. Drinking water<br />

was supplied ad libitum during the experiment of<br />

90 days. Kids of the second group (semi<br />

intensive) was left at the pasture for the first 45<br />

days of the experiment and then moved to the<br />

farm to be fed a concentrate mixture ad libitum<br />

for the rest of the experiment. <strong>The</strong> third group of<br />

kids was freely grazed at pasture. All kids were<br />

weighed biweekly after being fasted for 12hrs.<br />

Partial budget analysis was used to evaluate<br />

the economic advantage of different feeding<br />

system. Partial budgeting is a planning and<br />

decision-making framework used to compare the<br />

costs and benefits of alternatives faced by a farm<br />

business. It focuses only on the changes in<br />

income and expenses that would result from<br />

implementing a specific alternative. Thus, all<br />

aspects of farm profits that are unchanged by the<br />

decision can be safely ignored (Sarah and<br />

Jeffery, 2002). Partial budgeting measures<br />

profits (or losses) which are the net benefits or<br />

difference between gains and losses for the<br />

proposed change. Gains include added returns<br />

and reduced costs, losses include added costs<br />

and reduced returns. <strong>The</strong> method entails<br />

calculating net return (NR), i.e. the amount of<br />

money left when total variable costs (TVC) are<br />

subtracted from total returns (TR):<br />

NR = TR – TVC<br />

Total variable costs include the costs of all<br />

inputs that change due to the change in


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 90-93, 2010<br />

production technology. <strong>The</strong> most important<br />

criterion in deciding whether or not to adopt a<br />

new technology is the change in net return<br />

(ΔNR). This amount is the difference between<br />

the change in total returns (TR) and the change<br />

in total variable costs (ΔTVC):<br />

ΔNR = ΔTR – ΔTVC<br />

Assuming that capital is not a constraint, the<br />

technology with the highest ΔNR is chosen.<br />

However, new technologies normally require<br />

investment, therefore additional capital is<br />

necessary. When capital is limited, the extra (or<br />

marginal) costs should be compared with the<br />

extra (or marginal) net benefits. <strong>The</strong> marginal<br />

rate of return (MRR) measures the increase in<br />

net return (ΔNR) associated with each additional<br />

unit of expenditure (ΔTVC):<br />

MRR = ΔNR / ΔTVC<br />

<strong>The</strong> MRR measures the effect of additional<br />

investment in a new technology on additional net<br />

returns (CIMMYT, 1988).<br />

Particulars<br />

RESULTS AND DISCUSION<br />

According to partial budget, it seems from<br />

results presented in table (1) that Meriz and goat<br />

raised semi-intensively is more profitable<br />

compared to those raised either intensively or<br />

extensively. Hence, the net return was amounted<br />

to ID (4759.22) and (5884) with marginal return<br />

of ID (80.2%) and (58.8%) for Meriz and goat<br />

respectively. This means that for each ID (1.00)<br />

invested in this system of feeding, the farmer can<br />

expect to recover the cost ID (1.00) and gain<br />

additional ID (0.80) and (0.58) for Meriz and<br />

goat respectively.<br />

From the data obtained in this study, it was<br />

clear that grazing Meriz and goat kids at the<br />

pasture after weaning for (45) days then moving<br />

them to the farm to be fed for next (45) days<br />

concentrate mixture is potentially more<br />

profitable than either grazing without<br />

supplementation or access feeding concentrate<br />

with no grazing. Similar economic trend was<br />

obtained by Bhatt et al (1991) and Legesse et al<br />

(2005) for black Bengal X Beetal half breed kids<br />

and Somali goats respectively managed under<br />

three feeding systems.<br />

<strong>The</strong>refore, it can be conclude that both goat<br />

and Meriz kids utilize well the good pasture for<br />

(45) days, as well as the concentrate during the<br />

second (45) days, and this result in reducing the<br />

cost.<br />

Table (1): Partial budget analysis for goat & Meriz under different feeding system (ID per each one).<br />

Feeding systems<br />

Intensive Semi-intensive Extensive<br />

Goat Meriz Goat Meriz Goat Meriz<br />

Gross returns 46875 57000 42375 43065 27600 23025<br />

Feed costs<br />

Barley 7321.875 9088.25 3710.625 4196.75 - -<br />

Wheat bran 10416.75 2572 196 1188 - -<br />

Soybean meal 3453.75 4287.125 1750.25 1979.625 - -<br />

Hay 207.25 257.25 105 118.75 - -<br />

Salt 230.125 286.25 116.625 131.25 - -<br />

Limestone 230.125 286.25 116.625 131.25 - -<br />

Vitamins 978.375 1213.5 495.875 559.75 - -<br />

Pasture - - 4687.5 4687.5 14062.5 14062.5<br />

Labor 37500 37500 25312.5 25312.5 13125 13125<br />

Total variable costs 60338.25 55490.63 36491 38305.78 27187.5 27187.5<br />

Net return -13463.25 1509.37 5884 4759.22 412.5 -4162.5<br />

NROC -13875.75 5671.87 5471.5 8921.72 - -<br />

MRR -41.9 20 58.8 80.2 - -<br />

09


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 90-93, 2010<br />

By using the Newman-Keuls multiple<br />

comparisons, it appears that gain in weight of<br />

Meriz raised intensive and semi-intensive was<br />

significantly higher than those raised on pasture<br />

09<br />

(table 2). However, with regard to goats, no<br />

significant differences in gain in weight were<br />

detected among different systems of production<br />

(table 3).<br />

Table (2): Newman-Keuls multiple comparisons between three types of Meriz feed.<br />

Newman-Keuls Multiple Comp. Differences P Q Critical q<br />

Mean(1.00)-Mean(3.00) = 8.9125 3 5.789 3.948*<br />

Mean(1.00)-Mean(2.00) = 3.7 2 2.403 3.199<br />

Mean(2.00)-Mean(3.00) = 5.2125 2 3.386 3.199*<br />

* Indicate significant differences.<br />

Table (3): Newman-Keuls multiple comparisons between three types of goat feed.<br />

Newman-Keuls Multiple Comp. Differences P Q Critical q<br />

Mean(1.00)-Mean(3.00) = 4.3375 3 2.817 3.948<br />

Mean(1.00)-Mean(2.00) = 1.9 (Do not test)<br />

Mean(2.00)-Mean(3.00) = 2.4375<br />

REFERENCES<br />

- Alkass, J. E. and K. H. Juma (2005). Small Ruminant<br />

Breeds of Iraq. In: Characterization of Small<br />

Ruminant Breeds in West Asia and North Africa (<br />

Editor, Luis Iniguez). Vol. 1. West Asia.<br />

International Center of Agriculture Research in the<br />

Dry Areas (ICARDA)., Aleppo, Syria, pp.63-101.<br />

- Bhatt A. S., R. A, Singh, S. K Verma and B. S. Gupta<br />

(1991). Carcass traits and economics of meat<br />

production in kids under different management<br />

systems. Indian Journal of Animal Science. 61(10):<br />

1149-1151.<br />

- CIMMYT (International Maize and Wheat Improvement<br />

Center) (1988). From Agronomic Data to Farmer<br />

Recommendations: An economics training manual.<br />

CIMMYT, DF, Mexico.<br />

(Do not test)<br />

(.05)<br />

(.05)<br />

- FAO ( Food and Agriculture Organization). (2000).<br />

Quarterly Bulletin of Statistics Vol-1 FAO, Rome,<br />

Italy.<br />

- Kadim, I.T., O. Mahgoub, D. S. Al-Ajmi, R. S. Al-<br />

Maqbaly, N.M. Al-Saqri and A. Ritchie (2003). An<br />

evaluation of the growth, carcass and meat quality<br />

characteristics of Omani goat breeds. Meat Science<br />

66: 203–210.<br />

- Legesse, G., G. Abebe, and K. Ergano (2005). <strong>The</strong><br />

economics of goats managed under different<br />

feeding systems. Livestock Research for rural<br />

Development. 17 (6).<br />

- Sarah R. and H.Jeffery (2002). Partial Budgeting for<br />

Agricultural Businesses, <strong>The</strong> Pennsylvania State<br />

University.


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 90-93, 2010<br />

َىنزاوخ تَيي ادوج ادوج تَينَيذز سَيذ ل ىشةزةمو ىنصب تَيكطيط انسكنادوخ ايزوبائ<br />

سةَيذ ل ىسكنادوةخ تَييىشةزةةمو ىنصب تَيكطيط َىي ىزووبائ َىيتاياد اندناطنةطلةي وب َىهيلوكةظ َىظذ مةزةم<br />

ةتخوث<br />

تَيي ىشةزةمو ىنصب ذ كَيئ زةي تَيكطيط<br />

21 . تسث تسث ايناصيم انسكةظومش اناهيئزاكب ادوج كَيذ تَيناديلائ تَينَيذز<br />

َىذوسث ل اذوز 09 َىوام وب ) ىاوزةضو يرت كةو , يرت<br />

تَيكةطيط وةب<br />

% .858<br />

و<br />

8951<br />

ىسبةةظ<br />

( َىنادكيلائ تَيمةتطيض َىض زةطل ىسكشةباد ةهتاي ىسكةظ يرش<br />

. كويد ايوكناش<br />

َىيتاةياد لةةطد ىةقايرع تََيزاهيد<br />

– َىندناض اريلوك ل ىزةوةنايط انسكنادوخ<br />

) .882 و22.0511(<br />

زةةطل ىشةزةةم و ىنصب تَيكطيط لةطد دزوازةب يرت كةو انَيذز زةطل ىسكنادوخ تَيي<br />

ىتاياد ويستدهمب<br />

كَيئ فيدل ىنصبوىشةزةم<br />

. ىناوزةضو يرت تَينَيذز ودزةي<br />

ودزةي لةطد َىنسكدوزازةب ب سك زةزةش يرت انَيذز زةطل ىسكنادوح تَيي ىنصب تَيكطيط وك امانجةئ ذ تيبدزايد<br />

تَيكطيط ب اي ةناذوز َىشةل اشَيك انوبةدَيش وك سكزايد َىهيلوكةظ َىظ تَيمانجةئ اضةوزةي . ىناوزةضو يرت كةو تَينَيذز<br />

تَيي لةطد دزوازةب ب اهيئ ةظ تضةدب ظاضزةب اي ست دهمب اشَيك<br />

يرت كةوو يرت انَيذز زةطل ىسكنادوخ تَيي ىشةزةم<br />

تَيكطيط ل زوجوازوج تَيي<br />

َىنادكيلائ تَينَيذز ازةبفاند اد َىشَيك انوبةدَيش د ىوب ظاضزةبد ةن ىشاوايجو , ىناوزةض<br />

ةفلتخم ةيوذغت مظن تحت ةابرملازعرملاو<br />

زعاملا ءادج ةرادا تايداصتقا<br />

. ىشةزةم<br />

ةيذغتلا نم ةفلتخم مظن تحت ةابرملا زعرملاو زعاملا ءادجل يداصتقلاا دئاعلا مييقتل ةيلاحلا ةساردلا فدهت<br />

ةصلاخلا<br />

ةفلتخم ةيوذغت مظن ثلاث ىلا ةموطفملا زعرملاو زعاملا نم لك ءادج نم 21 عيزوت مت . ةيئزجلا ةينازيملا ليلحت مادختساب<br />

يلاوتلا ىلع زعاملاو<br />

. كوهد ةعماج – ةعارزلا ةيلك يف ناويحلا ةيبرت عورشم يف اموي 09 ةدمل ) ىعرملا ىلع وا فثكم هبش , فثكم(<br />

زعرملا ءادجل % .858و<br />

8951 يدح دئاع عم يقارع رانيد ) .882و<br />

22.0511(<br />

دئاع ىلعا غلب<br />

. ىعرملاو فثكملا نيماظنلا لاك تحت ةابرملا زعرملاو زعاملا ءادجب ةنراقم فثكملا هبش ماظن تحت ةابرملا<br />

فثكملا هبش يماظنب ةنراقم ةراسخ تجتنا فثكملا ماظن تحت<br />

هبشو فثكملا يماظن<br />

نيب ةينزولا ةدايزلا لدعم يف ةيونعم<br />

تحت ةابرملازعرمل ا ءادجل<br />

ةيمويلا ةينزولا ةدايزلا<br />

ةابرملا زعاملا ءادج ناب جئاتنلا<br />

نم نيبت<br />

ناب ةيلاحلا ةساردلا جئاتن تنيب كلذك.<br />

ىعرملاو<br />

تاقورفلا نكت ملو , ىعرملا ىلع ةابرملاب ةنراقم ايونعم ىلعا نزو تققح<br />

دق فثكملا<br />

.<br />

زعاملا ءادج يف ةفلتخملا ةيئاذغلا<br />

مظنلا<br />

09


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 94-102, 2010<br />

49<br />

RESPONSES OF FIVE WATER STRESSED FABABEAN (Vicia faba L.)<br />

CULTIVARS TO EXOGENOUS ABSCISIC ACIA APPLICATION *<br />

CASER G. ABDEL * and SHAMIL Y. H. M. AL-HAMADANY **<br />

* Dept. of Horticulture, College of Agriculture, University of Duhok, Kurdistan Region- Iraq<br />

** Dept. of Horticulture, College of Agriculture, University of Mosul,- Iraq<br />

(Received: May 18, 2010; Accepted for publication: October 23, 2010)<br />

ABSTRACT<br />

Five fababean cultivars namely Aquadulce, Local Syrian, Taka 357, <strong>Two</strong>waytha and Babylon were water-stressed<br />

to wilt, and then they were re-watered and immediately sprayed by 0.0, 2x10 -6 M ABA or 2x10 -3 M ABA to evaluate<br />

their adaptation to resist drought throughout their responses to varying ABA rates. <strong>The</strong> results revealed that<br />

Aquadulce is the most drought resistance cultivar; this can be ascertained by its prominent yield of dry seeds (33.03<br />

g.plant -1 ), stomata aperture length of upper and lower leaf surfaces (6.7 and 7.1μm, respectively), aperture width of<br />

upper and lower leaf surface stomata (1.4 and 1.9μm, respectively). Negligible differences were detected between<br />

Aquadulce and Local Syrian cultivars. Moreover, the latter cultivar revealed unequivocal yield of mature pods (91.33<br />

g.plant -1 ). Exogenous ABA application highly improved the drought resistance capabilities of most cultivars,<br />

particularly interaction treatment of Aquadulce and 2x10 -3 M ABA, which showed profound dry seeds yield per<br />

plant (42.93 g), stomata aperture length of upper and lower leaf surfaces (6.89 and 6.6μm, respectively), stomata<br />

aperture width of upper and lower leaf surfaces (1.8 and 2.1μm, respectively). ABA application slightly affected all<br />

detected traits.<br />

A<br />

INTRODUCTION<br />

BA is oxidized to phaseic acid (PA),<br />

which, in turn, undergoes reduction at the<br />

4'-keto to give dihydrophaseic acid (DPA or epi-<br />

DFA). <strong>The</strong> provision of an -OH group at C-4'<br />

allows for conjugation with glucose and the<br />

formation of dihydrophaseic acid-glucosides<br />

(DPA-GS and epi /-DPA-GS). Abscisic acid<br />

glucose ester (ABA-GE), Phaseic acid (PA),<br />

Dihydrophaseic acid (DPA), and dihydro<br />

phaseic acid-glucosides (DPA-GS) are the major<br />

metabolites when ABA is supplied to leaves or<br />

other plant parts. <strong>The</strong>y are also the major<br />

metabolites when ABA is rapidly synthesized<br />

during stress and is dissipated on the release of<br />

stress. As to which metabolites predominate<br />

varies with species and developmental state<br />

(Srivastava, 2002). ABA is synthesized from<br />

mevalonic acid in roots and mature leaves,<br />

particularly in response to water stress. Stomata<br />

under water shortage brings about an increase in<br />

ABA which leads to stomata closure and shoot<br />

growth inhibitions (Goodwin and Mercer, 1985).<br />

In general, application of ABA to plants<br />

counteracts the simultaneous applications of<br />

IAA, GA, and cytokinin,on the other hand, often<br />

* Part of Ph. D. thesis submitted by the second author<br />

ABA increases plant responses to ethylene<br />

(Srivastava, 2002).<br />

Allen et al. (1994) concluded that leaflet<br />

grown and measured at high CO2, either water<br />

stressed or non-stressed had higher assimilate<br />

rate and lower leaf transpiration rate and<br />

therefore higher water use efficiency than those<br />

grown and measured at ambient CO2 levels, as<br />

stressed progressed water use efficiency<br />

decreased about 30 to 50% with respect to<br />

unstressed treatments. Increases in leaf<br />

temperature and gradient in leaf to air vapour, as<br />

water stress progressed were similar for both<br />

levels of CO2 treatment. Franks and Farquhar<br />

(2001) observed that ABA-treated plants had<br />

significantly smaller stomata and higher stomata<br />

density in their lower epidermis. Stomata<br />

aperture versus guard cell pressure (Pg)<br />

characteristics measured with a cell pressure<br />

probe showed that although the form of the<br />

relationship was similar in control and ABAtreated<br />

plants, stomata of ABA-treated plants<br />

exhibited more complete closure at Pg = 0 MPa<br />

and less than half the aperture of stomata in<br />

control plants at any given Pg. Scaling from<br />

stomata aperture versus Pg to stomata<br />

conductance versus Pg showed that plants grown<br />

under ABA treatment would have had<br />

significantly lower maximum stomata<br />

conductance and would have operated with<br />

lower stomata conductance for any given guard


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 94-102, 2010<br />

cell turgour. This is consistent with the<br />

observation of lower mesophyll CO2/air CO2 in<br />

ABA-treated plants with an air CO2 of<br />

350 µmol.mol -1 . It is proposed that the ABAinduced<br />

changes in stomata mechanics and<br />

stomata conductance versus cell pressure (Pg)<br />

characteristics constitute an improvement in<br />

water-use efficiency that may be invoked under<br />

prolonged water stress conditions. <strong>The</strong>refore, an<br />

attempt was conducted to evaluate the drought<br />

resistance of five fababean cultivars and through<br />

their responses to drought and ABA application.<br />

MATERIALS AND METHODS<br />

This experiment was carried out during<br />

2003 – 2004 growing season at Danadan<br />

Research Field, University of Mosul. <strong>The</strong><br />

objective of this was to evaluate the responses of<br />

five water stressed fababean (Vicia faba L.)<br />

cultivars to varying abscisic acid (ABA)<br />

application rates, in terms of improving<br />

adaptation and water stress resistance. <strong>The</strong>refore,<br />

fababean seeds were obtained from Atomic<br />

Energy Organization, Baghdad, in 2002.<br />

Factorial in Randomized Complete Block<br />

Design (F-RCBD) was used in this trail. Factor<br />

A was represented by five fababean cultivars<br />

namely Aquadulce (a1), Syrian (a2), Taka357<br />

(a3), <strong>Two</strong>waytha (a4) and Babylon (a5). Factor B<br />

was represented by exogenous ABA application<br />

rates, where 0.0 M ABA (b1), 2x10 -6 M ABA<br />

(b2) and 2x10 -3 M ABA (b3). Subsequently 15<br />

treatment combinations were included in this<br />

experiment. Each treatment was replicated three<br />

times, and every replicate was represented by<br />

three pots of 20 cm in diameter and 30 cm depth.<br />

Pots were filled with silty loam soil (14.3%<br />

clay, silt 56.3%, sand 29.4%, bulk density<br />

1.5g.cm -3 , field capacity 0.2, and wilting point<br />

0.11). Pots were covered by clear polyethylene<br />

at a height of 1.5 m to keep plants away from<br />

rainfall incidences and to facilitate bumble bees<br />

visiting during flowering stage. Five seeds were<br />

sown in every pot, on November 5 th 2004 under.<br />

<strong>Two</strong> weeks later, plants were thinned to leave<br />

three plants per pots. Pots were irrigated<br />

whenever 50% of the plants were wilted<br />

throughout the growing season in each<br />

treatment. <strong>Two</strong> doses of NPK (27:27:0) each at<br />

rate of 2.5 g per pot, the first was on December<br />

20 th 2003 and the second was on February 10 th<br />

2004. <strong>Two</strong> protective sprays were made by 1g.l -1<br />

benomyl fungicide. Plants were sprayed twice by<br />

either distilled water, 2x10 -6 M ABA or 2x10 -3<br />

M ABA on February 20 th 2004 and were<br />

repeated once more whenever plants were rewatered<br />

after wilting. Finally, plants were<br />

harvested on April 28 th 2004. Plant height,<br />

internodes length, and pod length were<br />

measured. Branch number, leaflet number, node<br />

number, flowering node number, flower number<br />

per inflorescence, first fruiting node, number of<br />

fruiting nodes, pod number, seed number per<br />

pod, aborted seeds per pod, and aborted ovules<br />

per pod were counted. Leaf area and leaf area<br />

index were calculated (Abdel, 1994). Fresh<br />

plants, matured pods, dried pods, dry pod<br />

integuments, dry plants, and dried seeds were<br />

weighed. Light microscope of 40x objective and<br />

graded 7x lenses were used to count epidermal<br />

cells population, stomata population and stomata<br />

dimensions.<br />

RESUTS AND DISCUSSION<br />

Substantial differences between responses<br />

of Aquadulce and Syrian cultivars to varying<br />

ABA concentrations were not observed in all<br />

detected vegetative parameters. Moreover, these<br />

two cultivars profoundly exceeded Taka 357 in<br />

plant height (42.2 and 36.5%, respectively);<br />

node number (58.6 and 58.3%, respectively),<br />

leaflet number per plant 54.8 and 48.7%,<br />

respectively), and plant dry weight (40.9 and<br />

30.9%, respectively). Aquadulce cultivar was<br />

also superior over <strong>Two</strong>waytha and Babylon<br />

cultivars in leaflet number per plant, leaf area<br />

index and plant dry weight. Taka 357 gave the<br />

lowest growth, however, it manifested<br />

apparently higher individual leaflet area (19.04<br />

cm -2 ) and internodes length (5.5 cm), as<br />

compared to all other cultivars (table, 1). <strong>The</strong><br />

obtained results revealed that the vegetative<br />

growth of indeterminate Aquadulce cultivar was<br />

very close to that which have been obtained<br />

from previous investigation (Abdel, 1997),<br />

which may suggested drought resistance<br />

capability. Previous studies revealed that growth<br />

of indeterminate cultivars namely, Tiger,<br />

Newblackfly and Blaze revealed higher drought<br />

resistance abilities as compared to indeterminate<br />

Beryl (Abdel, 1982). <strong>The</strong>y apparently exceeded<br />

Taka357, <strong>Two</strong>waytha, and Babylon under<br />

rainfalls. Aquadulce growth was substantially<br />

improved under rainfalls and supplementary<br />

49


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 94-102, 2010<br />

irrigation during all physiological stages (Abdel,<br />

1993). <strong>The</strong> superiority of Aqualduce and Local<br />

Syrian cultivars under water scarcity could be<br />

attributed to their genetic which reflected the<br />

highly performed breeding techniques that had<br />

been implicated during screening of the<br />

produced seeds by their producing companies.<br />

Taka357 is a determinate cultivar of a small<br />

vegetative growth possesses little number of<br />

leaves composed of broad leaflets; however,<br />

high leaf area was inadequate to brought about<br />

high leaf area index to compensate with these of<br />

indeterminate cultivars. Land coverageratio of<br />

determinate cultivars are lower that of<br />

indeterminate cultivars which make them more<br />

vulnerable to both high irradiance and<br />

evapotranspiration adversity and of low<br />

competition abilities. Subsequently these<br />

Newblack fly and Tiger cultivars were not<br />

recommended under drought (Abdel, 1982).<br />

Water stressed Aquadulce plants sprayed<br />

by 2x10 -3 M ABA manifested the highest plant<br />

height (80.5 cm), node number on main stem<br />

(19.33). When this cultivar was sprayed by 2x10 -<br />

49<br />

6 M ABA, it exhibited the highest leaflet number<br />

per plant (264.67) and plant fresh weight (137.33<br />

g). In addition to that untreated Aquadulce<br />

showed the highest plant dry weight (19.87 g).<br />

<strong>The</strong> highest internodes length (5.55 cm) and<br />

individual leaf area (20.96 cm) were confined to<br />

Taka 357 sprayed by 2x10 -6 M ABA. While the<br />

highest number of branches per plant (6.33) was<br />

observed in untreated Taka 357 (table, 1). <strong>The</strong><br />

obtained results suggested that cultivar responses<br />

were more overwhelmed by their genome rather<br />

than by ABA. <strong>The</strong>re are three reasons that<br />

reinforce this phenomenon; the first is that ABA<br />

imparted temporary elastic (not plastic) changes<br />

in stomata sizes, since ABA was sprayed<br />

immediately after re-watering. <strong>The</strong> second<br />

reason is that ABA application and drought<br />

acquired the stomata degree of adaptation which<br />

enabled them to cope with further high leaf<br />

content of ABA (Davies, 1978). <strong>The</strong> third reason<br />

could be referred to hormonal balance during<br />

juvenility, in which active ABA undergoes a<br />

conversion into inactive ABA for instance<br />

dihydrophaseic acid (Srivastava, 2002).<br />

Table (1): <strong>The</strong> effects of varying abscisic acid (ABA) rates on some growth traits of five water stressed fababean cultivars* **<br />

Parameters P h (cm) B no N no L no L a (cm -2 ) L in In l Pdw Pfw<br />

Aquadulce 71.15a 4.44ab 18.22a 240.56a 13.82b 4.46a 3.95b 15.47a 126.78a<br />

Syrian 64.75a 4b 18.11a 212ab 13.61b 3.88ab 3.59bc 13.22ab 125.11a<br />

Taka357 41.14c 5.44a 7.55b 108.66c 19.04a 2.77b 5.5a 9.14c 119.22a<br />

<strong>Two</strong>waytha 65.6a 3.55b 17.11a 180.56b 12.12b 2.8b 3.82bc 11.44bc 110.11ab<br />

Babylon 55.71b 3.44b 17.11a 179b 12.79b 3.07b 3.25c 8.81c 91.22b<br />

0.0 ABA 54.35a 4.46a 14.66a 187.33a 13.01a 3.11a 3.6a 13.08a 116.73a<br />

2x10 -6 M ABA 58.76a 4.26a 15.53a 190.67a 15.04a 3.59a 3.98a 11.59a 122.87a<br />

2x10 -3 M ABA 65.91a 3.8a 16.66a 174.47a 14.78a 3.48a 4.13a 10.17a 103.87a<br />

Aqudulce<br />

Syrian<br />

Taka 357<br />

<strong>Two</strong>waytha<br />

Babylon<br />

0.0 M 61.8 bd 4.33ac 17.33a 232.67ab 14.49ad 4.48ac 3.74bc 19.87a 132.67a<br />

2x10 -6 M 71.16ac 5ab 18a 264.67a 12.02cd 4.26ac 3.95bc 14.42ab 137.33a<br />

2x10 -3 M 80.5a 4bc 19.33a 224.33ad 14.95ad 4.65ab 4.16b 12.11b 110.33ab<br />

0.0 M 66.2ac 3.66bc 17.33a 193.33be 13.05bd 3.33ac 3.82bc 15.17ab 127.33a<br />

2x10 -6 M 61.86bd 4bc 18.33a 213.33ad 12.12cd 3.52ac 3.38bc 11.86b 126a<br />

2x10 -3 M 66.2ac 4.33ac 18.66a 229.33ac 15.66ac 4.82a 3.56bc 12.62b 122ab<br />

0.0 M 37.5f 6.33a 7b 117.33fg 19.25ab 3.07ac 5.5a 9.79b 119.67ab<br />

2x10 -6 M 39.8f 5ab 7.33b 9.33g 20.96a 2.75ac 5.46a 9.23b 120ab<br />

2x10 -3 M 46.13ef 5ab 8.33b 109.33fg 16.92ac 2.48bc 5.55a 8.42b 118ab<br />

0.0 M 59.13be 4.66ac 15.33a 225.33ad 8.27d 2.46bc 3.87bc 11.84b 108.33ab<br />

2x10 -6 M 63.46bc 3.33bc 17.33a 169.67bf 15.35ac 3.41ac 3.62bc 12.67b 121.67ab<br />

2x10 -3 M 74.2ab 2.66 18.66a 146.67fg 12.73bd 2.52bc 3.97bc 9.82b 100.33ab<br />

0.0 M 47.13df 3.33bc 16.33a 168cf 10cd 2.23c 2.89c 8.73b 95.67ab<br />

2x10 -6 M 57.5ce 4bc 16.66a 206.33ae 14.76ad 4.02ac 3.47bc 9.79b 109.33ab<br />

2x10 -3 M 62.5bc 3.3bc 18.33a 162.67df 13.62bd 2.95ac 3.39bc 7.9b 68.67b<br />

** Ph = plant height; B no = branches number per plant: N no = node number on main stem: L no = leaflet<br />

number per plant: L a = leaflet area: L in = leaf area index: In l = internodes length:<br />

Pdw = plant dry weight (g.plant -1 ):<br />

Pfw = plant fresh weight (g.plant -1 ).<br />

* Figures of unshared characters are significant (Duncan, 0.05)


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 94-102, 2010<br />

Syrian cultivar manifested superiority over<br />

Aquadulce, Taka357 and Babylon in the number<br />

of normal epidermal cells of leaf upper surface<br />

by 8, 23.9 and 13%, respectively, and likewise<br />

over Taka357 and Babylon in the leaf lower<br />

surface, respectively, by 23.5 and 15.1%<br />

(table, 3). <strong>The</strong> highest aperture width for upper<br />

and lower leaf surfaces were accompanied with<br />

Taka357 which highly exceeded other cultivars.<br />

This cultivar was exceeded Aquadulce and<br />

Syrian aperture width of upper leaf surface<br />

stoma by 10.6 and 10.8%, respectively, and in<br />

stoma: epidermis cells ratio by 18.2 and 25%,<br />

respectively, (table, 2). Local Syrian cultivar<br />

initially possesses higher epideral cells and<br />

stomata numbers per unit area as compared to<br />

other cultivars, especially Taka357. Drought<br />

highly increases the stomata population for unit<br />

area but not for entire leaf. This paradox<br />

emerges from the huge effects of drought on cell<br />

expansions rather than cell divisions in which<br />

new stomata are created, since almost cell<br />

divisions are determined during leaf<br />

differentiation. <strong>The</strong>re are numerous examples of<br />

plasticity in stomata densities within species,<br />

with changes readily induced through exposure<br />

of developing leaves to changed atmospheric<br />

CO2 concentrations (Woodward et al., 2002 and<br />

Hetherington and Woodward, 2003).<br />

<strong>The</strong> highest stomata width on leaf upper<br />

surface (7.2 μm), stomata aperture (2.7 μm) on<br />

leaf lower surface and stoma aperture on leaf<br />

upper surface (2.39 μm) were observed in<br />

Taka357 sprayed by 2x10 -3 M ABA. Untreated<br />

aquadulce revealed the highest magnitude of leaf<br />

upper surface stoma length (11.39 μm). <strong>The</strong><br />

highest number of epidermal cells (6185.5) and<br />

stomata length (8.1 μm) on leaf lower surface<br />

were coincided by Aquadulce sprayed with<br />

2x10 -3 M ABA (tables, 2 and 3). <strong>Two</strong>waytha<br />

plants sprayed with 2x10 -6 M ABA displayed the<br />

highest stoma number on upper and lower leaf<br />

surfaces 1467.7 and 2201.6 stoma.mm -2 ,<br />

respectively. Finally untreated check of Babylon<br />

was superior over other treatments in the ratio of<br />

stoma: epidermis on upper and lower leaf<br />

surfaces 0.45, 0.5, respectively, and likewise in<br />

number of leaf upper surface stoma 1467.7<br />

stomata.mm -2 . Drought resistant plant possesses<br />

lower stomata population and larger aperture<br />

area to facilitate CO2 exchange that sustains<br />

reasonable photosynthesis under drought<br />

adversity (Abdel, 1982). Franks et. al. (2001)<br />

reported that as a pressure was increased from as<br />

low as 0.3 MPa to as high as 5.0 MPa, guard cell<br />

volume increased in a saturating fashion. <strong>The</strong><br />

elastic modulus was calculated from these data<br />

and was found to range from approximately 2 to<br />

40 MPa. <strong>The</strong> data allow inference of guard cell<br />

osmotic content from stomatal aperture and<br />

facilitate accurate mechanistic modeling of<br />

epidermal water relations and stomatal<br />

functioning. ABA modifies the stomata<br />

dimensions, particularly aperture to acquire plant<br />

more efficient CO2 exchanges and thereby<br />

photosynthesis. However, it reveals temporary<br />

reduction. Terashima et. al. (1988) found that<br />

after the ABA treatment, the response of<br />

photosynthetic CO2 assimilation rate, A, to<br />

calculated intercellular partial pressure of CO2,<br />

Pi, and [A (pi) relationship was markedly<br />

depressed in H. annuus. A less marked<br />

depression was also observed in V. faba.<br />

However, when the abaxial epidermis was<br />

removed from these leaves, neither the maximum<br />

rate nor the CO2 response of photosynthetic<br />

oxygen evolution was affected by the application<br />

of ABA.<br />

49


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 94-102, 2010<br />

49<br />

Table (2): <strong>The</strong> influence of abscisic acid (ABA) on upper and lower leaf surfaces stomata behaviour of five<br />

fababean water stressed cultivars.*<br />

Stomata length μm<br />

Lower<br />

10.69a<br />

10.7a<br />

10.7a<br />

10.4a<br />

10.6a<br />

10.67a<br />

10.56a<br />

10.62a<br />

10.49a<br />

11.1a<br />

10.49a<br />

10.49a<br />

10.8a<br />

10.8a<br />

11.1a<br />

10.2a<br />

10.8a<br />

10.8a<br />

10.49a<br />

9.9a<br />

10.49a<br />

10.2a<br />

11.1a<br />

Upper<br />

10.59a<br />

10.09a<br />

10.39a<br />

10.2a<br />

10.1a<br />

10.67a<br />

9.96b<br />

10.19b<br />

11.39a<br />

9.9b<br />

10.49ab<br />

10.49ab<br />

10.2ab<br />

9.59b<br />

10.49a<br />

10.2ab<br />

10.49ab<br />

10.8ab<br />

9.59b<br />

10.2ab<br />

10.2ab<br />

9.9b<br />

10.2ab<br />

Stomata: Epidermis<br />

Lower<br />

0.36bc<br />

0.33c<br />

0.44a<br />

0.39ac<br />

0.41ab<br />

0.43a<br />

0.4a<br />

0.33a<br />

0.46ac<br />

0.38be<br />

0.25f<br />

0.34df<br />

0.32df<br />

0.32df<br />

0. 4a<br />

0.49ae<br />

0.42ab<br />

0.44ae<br />

0.41ad<br />

0.31ae<br />

0.51a<br />

0.38be<br />

0.35cf<br />

Ratio<br />

Upper<br />

0.32a<br />

0.3a<br />

0.34a<br />

0.29a<br />

0.34a<br />

0.35a<br />

0.34a<br />

0.27b<br />

0.39ab<br />

0.37ab<br />

0.2d<br />

0.29bd<br />

0.28bd<br />

0.33ad<br />

0.31bd<br />

0.4ab<br />

0.32bd<br />

0.31bd<br />

0.33ac<br />

0.24cd<br />

0.45a<br />

0.3bd<br />

0.28bd<br />

Epidermis cells.mm -2<br />

Lower<br />

4770.2a<br />

4752.7a<br />

634.4c<br />

4892.5a<br />

4036.3b<br />

3900c<br />

4445.2b<br />

4906.4a<br />

3512.1c<br />

4612.9ce<br />

6185.5a<br />

4717.7ce<br />

4560.5de<br />

4979.8bd<br />

3617gh<br />

3512.1h<br />

3774.2fh<br />

3931fh<br />

5294.4bc<br />

5451.6b<br />

3721.8fh<br />

4246ef<br />

4141.1eg<br />

Upper<br />

3844.1b<br />

4176.1a<br />

3180.1c<br />

4350.9a<br />

3634.4b<br />

3480.6c<br />

3784.7b<br />

4246a<br />

2935.5g<br />

3774.2ce<br />

4822.6a<br />

4246bc<br />

4036.3bd<br />

4246bc<br />

3354.8eg<br />

2935.5g<br />

3250fg<br />

3616.9df<br />

4350.9b<br />

5084.7a<br />

3250fg<br />

3826.6ce<br />

3826.6ce<br />

Lower<br />

1659.9b<br />

1590.1b<br />

1590.1b<br />

1887.1a<br />

1659.9b<br />

1656.4a<br />

1761.3a<br />

1614.5a<br />

1625bc<br />

1782.2bc<br />

1572.6bc<br />

1625bc<br />

1467.8c<br />

1677.4bc<br />

1415.3c<br />

1729.9bc<br />

1625bc<br />

1729.8bc<br />

2201.6a<br />

1729.8bc<br />

1887.1ab<br />

1625bc<br />

1467.8c<br />

Stomata.mm -2<br />

Upper<br />

1188.2a<br />

1275.5a<br />

1100.8a<br />

1293a<br />

1240.6a<br />

1216.1a<br />

1279a<br />

1163.7a<br />

1153.2ab<br />

1415.3ab<br />

996b<br />

1258ab<br />

1153.2ab<br />

1415.3ab<br />

1048.4ab<br />

1205.6ab<br />

1048.4ab<br />

1153.2ab<br />

1467.7a<br />

1258.1ab<br />

1467.7a<br />

1153.2ab<br />

1100.8ab<br />

* Figures of unshared characters are significant (Duncan, 0.05)<br />

0.0 ABA<br />

2x10 -6 M ABA<br />

2x10 -3 M ABA<br />

0.0 ABA<br />

2x10 -6 M ABA<br />

2x10 -3 M ABA<br />

0.0 ABA<br />

2x10 -6 M ABA<br />

2x10 -3 M ABA<br />

0.0 ABA<br />

2x10 -6 M ABA<br />

2x10 -3 M ABA<br />

0.0 ABA<br />

2x10 -6 M ABA<br />

2x10 -3 M ABA<br />

Parameters<br />

Aquadulce<br />

Syrian<br />

Taka357<br />

<strong>Two</strong>waytha<br />

Babylon<br />

0.0 ABA<br />

2x10 -6 M ABA<br />

2x10 -3 M ABA<br />

Table (3): <strong>The</strong> influence of abscisic acid (ABA) on upper and lower leaf surfaces stomata behaviour of five<br />

fababean water stressed cultivars.*<br />

Dry seed Yield<br />

g .plant -1<br />

33.03a<br />

32.83a<br />

20.56b<br />

25.09ab<br />

21.89b<br />

25.3a<br />

24.75a<br />

29.99a<br />

31.32ac<br />

24.92bc<br />

42.93a<br />

31.06ac<br />

36.43ab<br />

31.01ac<br />

20.75bc<br />

Stomata Aperture width μm<br />

Lower<br />

1.9ab<br />

1.7b<br />

2.3a<br />

1.7b<br />

1.7b<br />

1.86a<br />

1.8a<br />

1.92a<br />

2.1ab<br />

1.49b<br />

2.1ab<br />

1.8ab<br />

2.1ab<br />

1.2b<br />

2.1ab<br />

Upper<br />

1.4b<br />

1.2b<br />

2.19a<br />

1.29b<br />

1.2b<br />

1.55a<br />

1.14a<br />

1.67a<br />

1.49ab<br />

0.9b<br />

1.8ab<br />

1.2b<br />

1.2b<br />

1.2b<br />

2.39a<br />

Stomata width μm<br />

Lower<br />

6.1a<br />

6.19a<br />

6.69a<br />

6.49a<br />

6.79a<br />

6.6a<br />

6.59a<br />

6.7a<br />

6.6ab<br />

5.7b<br />

5.99ab<br />

5.7b<br />

6.89ab<br />

5.99ab<br />

7.2a<br />

Upper<br />

5.9b<br />

5.89b<br />

6.6a<br />

6.3ab<br />

5.89b<br />

6.12a<br />

5.94a<br />

6.3a<br />

5.7b<br />

5.7b<br />

6.3ab<br />

5.99b<br />

5.99b<br />

5.7b<br />

6.3ab<br />

Stomata Aperture length μm<br />

Lower<br />

7.1a<br />

6.49a<br />

7.2a<br />

6.79a<br />

6.7a<br />

6.9a<br />

6.54a<br />

7.14a<br />

6.6bd<br />

6.6bd<br />

8.1a<br />

6.6bd<br />

5.99d<br />

6.89ad<br />

7.79ab<br />

Upper<br />

6.79a<br />

6.1a<br />

6.7a<br />

6a<br />

6a<br />

6.42<br />

6.12a<br />

6.42a<br />

6.89a<br />

6.6a<br />

6.89a<br />

6.6a<br />

5.99a<br />

5.7a<br />

6.3a<br />

0.0 ABA<br />

2x10 -6 M ABA<br />

2x10 -3 M ABA<br />

0.0 ABA<br />

2x10 -6 M ABA<br />

2x10 -3 M ABA<br />

0.0 ABA<br />

Parameters<br />

Aquadulce<br />

Syrian<br />

Taka357<br />

<strong>Two</strong>waytha<br />

Babylon<br />

0.0 ABA<br />

2x10 -6 M ABA<br />

2x10 -3 M ABA<br />

Aqudulce<br />

Syrian<br />

Taka 357<br />

<strong>Two</strong>waytha<br />

Babylon<br />

Aqudulce<br />

Syrian


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 94-102, 2010<br />

22.32bc<br />

18.62c<br />

24.34bc<br />

22.3bc<br />

28.62ac<br />

19.1bc<br />

17.8c<br />

28.76ac<br />

2.1ab<br />

2.7a<br />

1.8ab<br />

1.49b<br />

1.8ab<br />

1.49b<br />

1.8ab<br />

1.8ab<br />

1.8ab<br />

2.39a<br />

1.49ab<br />

0.9b<br />

1.49ab<br />

1.2a<br />

0.9b<br />

1.49ab<br />

6.89ab<br />

5.99ab<br />

6.6ab<br />

6.89ab<br />

5.99ab<br />

6.89ab<br />

6.6ab<br />

6.89ab<br />

Aquadulce was the most potent cultivar, as it<br />

gave the highest number of flowering nodes at<br />

main stem 12.66, as compared to other cultivars.<br />

Besides, it substantially exceeded Taka357 and<br />

<strong>Two</strong>waytha in flower number per inflorescence<br />

by 36.9 and 14.4%, respectively. Taka357 gave<br />

the lowest flowering nodes (3.77) at main stem,<br />

and flower number per inflorescence (2.36).<br />

However, it gave the highest setting percentage<br />

(22.12%), where it significantly exceeded other<br />

cultivars (table, 4). Aquadulce revealed<br />

superiority over Taka357 in first fruiting node,<br />

number of fruiting nodes and seed number per<br />

pod by 29.1, 30.2 and 25.9%, respectively,<br />

(tables, 4 and 5). Negligible differences were<br />

observed between Aquadulce and Syrian<br />

cultivars in first fruiting node, fruiting node<br />

number, pod length, seed number per pod,<br />

number of aborted seeds per pod and number of<br />

aborted ovules per pod. Syrian significantly<br />

exceeded Taka357 in first fruiting node and seed<br />

number per pod by 37.1 and 29.7%, respectively.<br />

It also exceeded <strong>Two</strong>waytha and Babylon in pod<br />

length 20.8 and 19.9%, respectively, and seed<br />

number per pod 26.9 and 36.7%, respectively,<br />

(tables, 4 and 5). <strong>The</strong> obtained results unveiled<br />

the potent ability of Aquadulce and Local Syrian<br />

in producing profuse flowers which in turn<br />

resulted in reasonable pollination, setting and<br />

pod development under drought. This conclusion<br />

may explained the high setting percentage of<br />

Taka357 that accompanied by substantial<br />

reduction in pod number. Under rainfalls,<br />

6.3ab<br />

7.2a<br />

6.6ab<br />

5.99b<br />

6.3ab<br />

5.99b<br />

5.7b<br />

5.99b<br />

6.3cd<br />

7.5ac<br />

7.2ad<br />

7.2ad<br />

5.99d<br />

6.3cd<br />

6.6bd<br />

7.2ad<br />

* Figures of unshared characters are significant (Duncan, 0.05)<br />

6.6a<br />

7.2a<br />

6.3a<br />

5.7a<br />

5.99a<br />

5.99a<br />

5.7a<br />

6.3a<br />

2x10 -6 M ABA<br />

2x10 -3 M ABA<br />

0.0 ABA<br />

2x10 -6 M ABA<br />

2x10 -3 M ABA<br />

0.0 ABA<br />

2x10 -6 M ABA<br />

2x10 -3 M ABA<br />

Taka 357<br />

<strong>Two</strong>waytha<br />

Babylon<br />

Aquadulce fababean cultivar gave 36 flowers,<br />

2.8 pods, and 7.7 fruiting nodes on main stem. In<br />

this study these cultivars were categorized in<br />

accordance to their drought resistance<br />

capabilities as below Local Syrian >Aquadulce><br />

<strong>Two</strong>waytha> Babylon> Taka35.<br />

Aquadulce plants sprayed by 2x10 -3 M<br />

ABA and check revealed the highest number of<br />

flowering nodes (15) and flower number per<br />

inflorescence (4.08), respectively. While the<br />

highest setting percentage 25.02% was<br />

concomitant with Taka357 check, (table, 4).<br />

Aquadulce plants sprayed by 2x10 -3 M ABA<br />

showed the highest number of fruiting node<br />

(2.66), pod number per main stem (3) and seed<br />

number per pod (4.56), (tables, 4 and 5).<br />

Previous studies on Aquadulce fababean cultivar<br />

manifested that pod number per plant and seed<br />

number per pods highly contributed to yield<br />

(Abdel, 1997). Improvements of plant<br />

performance by ABA application might be due<br />

to the mode of action of ABA in conserving<br />

acceptable hydration status with in internal plant<br />

tissues throughout stomata aperture<br />

modifications. As a result of a daily application<br />

of 20 µM ABA to leaves for 3 weeks during<br />

growth at high Relative Humidity (RH), the<br />

stomata of ABA-treated leaves grown at high RH<br />

showed the same behaviour as did the stomata of<br />

leaves grown at moderate RH For example; they<br />

closed rapidly when exposed to desiccation<br />

(Ewert et al., 2000).<br />

44


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 94-102, 2010<br />

Ab O/P<br />

0.33a<br />

0.66a<br />

0.94a<br />

0.61a<br />

0.77a<br />

0.6a<br />

0.73a<br />

0.66a<br />

0.33a<br />

0.33a<br />

0.33a<br />

0.66a<br />

0.5a<br />

0.83a<br />

0.83a<br />

1a<br />

1a<br />

0.5a<br />

1.16a<br />

0.16a<br />

0.66a<br />

0.66a<br />

1a<br />

011<br />

Table (4): <strong>The</strong> effects of varying abscisic acid (ABA) rates on some flowering and pod performance traits of<br />

five water stressed fababean cultivars* **<br />

Ab S/P<br />

0.39a<br />

0.16a<br />

0.33a<br />

0.22a<br />

0.33a<br />

0.36a<br />

0.23a<br />

0.27a<br />

0.66a<br />

0.5a<br />

0.0a<br />

0.16a<br />

0.33a<br />

0.0a<br />

0.5a<br />

0.0a<br />

0.5a<br />

0.16a<br />

0.0a<br />

0.5a<br />

0.33a<br />

0.33a<br />

0.33a<br />

P L (cm)<br />

14.81ab<br />

16.03a<br />

14.11ab<br />

12.7b<br />

12.84b<br />

13.62a<br />

13.89a<br />

14.79a<br />

15.42ab<br />

14.17ac<br />

14.84ac<br />

16.42a<br />

14.75ac<br />

16.92a<br />

14ac<br />

14.34ac<br />

14.01ac<br />

10.6c<br />

13.67ac<br />

13.84ac<br />

11.67bc<br />

12.51ac<br />

14.34ac<br />

P no/S<br />

2.33a<br />

1.66bc<br />

1.88ab<br />

2ab<br />

1.33c<br />

1.73a<br />

1.73a<br />

2.06a<br />

2ac<br />

2ac<br />

3a<br />

1.66bc<br />

2ac<br />

1.33bc<br />

2ac<br />

1.66bc<br />

2ac<br />

2ac<br />

1.66bc<br />

2.33ab<br />

1c<br />

1.33bc<br />

1.66bc<br />

No FF<br />

2.22a<br />

1.66ab<br />

1.55b<br />

1.88ab<br />

1.33b<br />

1.66a<br />

1.6a<br />

1.93a<br />

2ac<br />

2ac<br />

2.66a<br />

1.66ac<br />

2ac<br />

1.33bc<br />

1.66ac<br />

1.33bc<br />

1.66ac<br />

2ac<br />

1.33bc<br />

2.33ab<br />

1c<br />

1.33bc<br />

1.66ac<br />

FFN<br />

6.11a<br />

6.89a<br />

4.33b<br />

6.77a<br />

7a<br />

6.2a<br />

6.06a<br />

6.4a<br />

7ac<br />

5.33cf<br />

6be<br />

6.33ad<br />

6.33ad<br />

8a<br />

4.33ef<br />

4.66df<br />

4f<br />

6.66ac<br />

7.66ab<br />

6be<br />

6.66ac<br />

6.33ad<br />

8a<br />

S%<br />

5.05b<br />

4.56b<br />

22.12a<br />

5.95b<br />

3.79b<br />

9.02a<br />

7.41a<br />

8.45a<br />

5.22c<br />

4.39c<br />

5.54c<br />

4.96c<br />

5.5c<br />

3.21c<br />

25.02a<br />

19.26b<br />

22.07ab<br />

6.54c<br />

4.76c<br />

6.57c<br />

3.37<br />

3.14c<br />

4.87c<br />

F no/I<br />

3.74a<br />

3.44ab<br />

2.36c<br />

3.2b<br />

3.48ab<br />

3.27a<br />

3.22a<br />

3.24a<br />

4.08a<br />

3.48ab<br />

3.66ab<br />

3.18 bc<br />

3.6ab<br />

3.55ab<br />

2.22d<br />

2.46cd<br />

2.39cd<br />

3.51ab<br />

3bd<br />

3.08bc<br />

3.36ab<br />

3.56ab<br />

3.53ab<br />

F N no<br />

12.66a<br />

10.88b<br />

3.77c<br />

10.88b<br />

10b<br />

8.4a<br />

10.13a<br />

10.4a<br />

9.66c<br />

13.33ab<br />

15a<br />

10.66bc<br />

10.33c<br />

11.66bc<br />

3.66d<br />

3.66d<br />

4d<br />

9c<br />

11.66bc<br />

12bc<br />

9c<br />

11.66bc<br />

9.33c<br />

Parameters<br />

Aquadulce<br />

Syrian<br />

Taka357<br />

<strong>Two</strong>waytha<br />

Babylon<br />

0.0 ABA<br />

2x10 -6 M ABA<br />

2x10 -3 M ABA<br />

0.0 M<br />

2x10 -6 M<br />

2x10 -3 M<br />

0.0 M<br />

2x10 -6 M<br />

2x10 -3 M<br />

0.0 M<br />

2x10 -6 M<br />

2x10 -3 M<br />

0.0 M<br />

2x10 -6 M<br />

2x10 -3 M<br />

0.0 M<br />

2x10 -6 M<br />

2x10 -3 M<br />

Aqudulc<br />

e<br />

Syrian<br />

Taka 357<br />

<strong>Two</strong>wayt<br />

ha<br />

Babylon<br />

**F N no = flowering node number on main stem; F no/I = flower number per inflorescence; S5 = setting<br />

percentages: FFN = first fruiting node; No FF = number of fruiting node on main stem; P no/ S = pod number<br />

per main stem; P L = pod length; Ab S/P = number of aborted seed per pod;<br />

Ab O/P = number of aborted ovule per pod<br />

* Figures of unshared characters are significant (Duncan, 0.05)<br />

Syrian cultivar exhibited the highest plant<br />

fresh weight (216 g), weight of mature pods per<br />

plant (91.33 g), weight of pod integument (8.05<br />

g.plant -1 ), and therefore, it significantly exceeded<br />

Babylon which gave the lowest plant fresh<br />

weight (131.22 g), and mature pod weight per<br />

plant (43.33 g). Syrian was also superior on<br />

Taka357 in pod dry weight per plant (27.93g),<br />

and dry seed yield (20.56 g.plant -1 ). Aquadulce<br />

highly exceeded Babylon in plant fresh weight,<br />

weight of mature pods per plant, weight of dry<br />

pods, yield of dry seeds by 35.7, 44, and 31.6%,<br />

respectively,(table, 5). It also hugely exceeded<br />

Taka357 in pod dry weight and yield of dry<br />

seeds by 32% and 37.8%, respectively. Similar<br />

results were found by Abdel (1982) He<br />

postulated that Newblackfly fababean cultivar is<br />

semi-conservatives cultivar, whereas Tiger and<br />

Blaze cultivars are conservatives and Bery<br />

cultivar was drought escapable. <strong>The</strong>y possess the<br />

capability compromising between CO2 entrance<br />

to mesophyll intercellular spaces and the exit of<br />

transpired vapour. Taka357 was categorized as<br />

drought escapee cultivar only for the production<br />

of green pod yield, but not for mature pod and<br />

dry seed yields. Babylon and <strong>Two</strong>waytha were<br />

categorized with conservative cultivars that they<br />

tightly close their stomata sustaining hydrated<br />

internal tissues concomitant with lack in<br />

mesophyll CO2 that profoundly reduces<br />

photosynthesis. Photosynthetic capacity (CO2<br />

assimilation rate for any given leaf intercellular<br />

CO2 concentration [ci]) and relative stomatal<br />

sensitivity to leaf-to-air vapor-pressure<br />

difference were unaffected by the ABA<br />

treatment (Franks and Farquhar 2001).<br />

Exogenous application of abscisic acid<br />

revealed no appreciable influences on growth<br />

responses of any of the investigated cultivars<br />

(table, 1). <strong>The</strong> reasonable interpretation of ABA<br />

ineffectiveness might be come from the<br />

following (1): <strong>The</strong> exogenous ABA presumably<br />

not demanded for permanent hormonal balance<br />

during juvenility and for further development of<br />

fababean, where a synchronization of growth<br />

(node generations) and pod development and<br />

seed performance. Accumulated ABA in leaves<br />

that were subjected to drought were mainly


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 94-102, 2010<br />

generated in mesophyll and epidermis cells<br />

contribute to the accumulated ABA although<br />

ABA synthesis is initiated in epidermis cells and<br />

then shifted to mesophyll and finally tranlocated<br />

to guard ells to mandate closure (Losanca et al.,<br />

2002). (2): During growth stage ABA is required<br />

for temporary stomata closure at drought<br />

episode, and if episode was lasted, a mechanism<br />

of stomata modification would be occurred, at<br />

leas in drought endurable plants. Bradford, et al.<br />

(1983) found that stomatal conductance of flacca<br />

leaves was greater than that of RR, and could be<br />

phenotypically reverted by spraying with 30<br />

micromolar ABA. Stomatal conductance of<br />

flacca leaves was also reduced by increasing<br />

CO2 pressure, increasing leaf to air vapor<br />

pressure difference, and decreasing quantum<br />

flux, irrespective of ABA treatment.<br />

Syrian plants sprayed with 2x10 -6 M ABA<br />

treatment apparently exceeded other interaction<br />

treatments. This treatment revealed the highest<br />

plant fresh weight (231 g), weight of mature<br />

pods per plant (105 g). Aquadulce plants sprayed<br />

by 2x10 -3 M ABA treatment gave the highest<br />

pod dry weight per plant (50.9 g) and yield of<br />

dry seeds per plant (42.93 g). However, the<br />

lowest plant fresh weight (124.67 g) was<br />

concomitant by Babylon sprayed with 2x10 -6 M<br />

ABA treatment. <strong>The</strong> lowest weight of mature<br />

pod per plant (33.33 g), and yield of dry seeds<br />

per plant (17.8 g) were consistent with Babylon<br />

sprayed with 2x10 -3 M ABA treatment (table, 5).<br />

Under rainfall conditions Aquadulce cultivar<br />

gave reasonable yield (Abdel, 1997).<br />

Furthermore, this cultivar also manifested<br />

paramount response in growth and yield<br />

parameters supplementary irrigation (Abdel,<br />

1993). Yield improvement under drought<br />

conditions might be referred to ABA role in<br />

blocking the synthesis of GAs (Hopkins, 1999),<br />

the role of phaseic acid in the casements of αamylases<br />

synthesis which resulted in further<br />

seed reserve accumulations (Srivastava, 2002).<br />

Table (5): <strong>The</strong> effects of varying abscisic acid (ABA) rates on some flowering and pod performance traits of<br />

five water stressed fababean cultivars* **<br />

Y (g.plant -1 )<br />

33.03a<br />

32.83a<br />

20.56b<br />

25.09ab<br />

21.89b<br />

25.3a<br />

24.75a<br />

29.99a<br />

31.23c<br />

24.92bc<br />

42.93a<br />

31.06ac<br />

36.43ab<br />

31.01ac<br />

20.75bc<br />

22.32bc<br />

18.62c<br />

24.34bc<br />

22.3bc<br />

28.62ac<br />

19.1bc<br />

17.8c<br />

28.76ac<br />

W 100 (g)<br />

134.51a<br />

129.83a<br />

128.5a<br />

138.29a<br />

138.69a<br />

138.85a<br />

134.62a<br />

128.43a<br />

145.79a<br />

126.01a<br />

131.74a<br />

137.92a<br />

129.05a<br />

122.51a<br />

134.73a<br />

125.48a<br />

125.3a<br />

143.98a<br />

144.28a<br />

126.6a<br />

131.82a<br />

148.26a<br />

136a<br />

P I wt<br />

8a<br />

8.05a<br />

7.36a<br />

6.69a<br />

6.2a<br />

7.08a<br />

7.17a<br />

7.53a<br />

8.23a<br />

7.79a<br />

7.97a<br />

8.04a<br />

9.88a<br />

6.23a<br />

7.86a<br />

7.08a<br />

7.15a<br />

6.48a<br />

6.31a<br />

7.28a<br />

4.79a<br />

4.8a<br />

9.01a<br />

P dwt<br />

41.09a<br />

40.89a<br />

27.93b<br />

31.78ab<br />

28.09b<br />

32.38a<br />

31.69a<br />

37.52a<br />

39.46ac<br />

32.9ac<br />

50.9a<br />

39.1ac<br />

46.3ab<br />

37.26ac<br />

28.61bc<br />

29.4ac<br />

25.78bc<br />

30.82ac<br />

28.61ac<br />

35.9ac<br />

23.89c<br />

22.6c<br />

37.77ac<br />

M P wt (g)<br />

77.44ab<br />

91.33a<br />

68.67ac<br />

53.56bc<br />

43.33c<br />

58.94a<br />

69.47a<br />

72.2a<br />

63.67ab<br />

79.33ab<br />

89.33ab<br />

83ab<br />

105a<br />

86ab<br />

62.67ab<br />

67.67ab<br />

75.67ab<br />

44.67ab<br />

62ab<br />

54ab<br />

40.67b<br />

33.33b<br />

56ab<br />

P Fwt (g)<br />

204.22a<br />

216.44a<br />

187.89ab<br />

163.67bc<br />

131.22c<br />

173.66a<br />

192.34a<br />

176.07a<br />

196.33ac<br />

216.67ab<br />

199.67ac<br />

210.33ac<br />

231a<br />

208ac<br />

182.33ae<br />

187.67ae<br />

193.67ad<br />

153be<br />

183.67ae<br />

154.33be<br />

126.33de<br />

142.67ce<br />

124.67e<br />

S no/P<br />

3.67a<br />

3.87a<br />

2.72b<br />

2.83b<br />

2.45b<br />

2.89a<br />

2.98a<br />

3.45a<br />

3.56ac<br />

2.9bc<br />

4.56a<br />

3.76ab<br />

3.5ac<br />

4.36a<br />

2.56bc<br />

3.36ac<br />

2.23c<br />

2.23c<br />

2.7bc<br />

3.56ac<br />

2.36bc<br />

2.43bc<br />

2.56bc<br />

0.0 M<br />

2x10 -6 M<br />

2x10 -3 M<br />

0.0<br />

2x10 -6 M<br />

2x10 -3 M<br />

0.0 M<br />

2x10 -6 M<br />

2x10 -3 M<br />

0.0 M<br />

2x10 -6 M<br />

2x10 -3 M<br />

0.0 M<br />

2x10 -6 M<br />

2x10 -3 M<br />

Parameters<br />

Aquadulce<br />

Syrian<br />

Taka357<br />

<strong>Two</strong>waytha<br />

Babylon<br />

0.0 ABA<br />

2x10 -6 M ABA<br />

2x10 -3 M ABA<br />

Aqudulce<br />

Syrian<br />

Taka 357<br />

<strong>Two</strong>waytha<br />

Babylon<br />

** S no/P = seed number per pod; P Fwt = plant fresh weight with pods (g.plant -1 ); M Pwt = weight of mature<br />

pods (g.plant -1 ); P dwt = pod dry weight (g.plant -1 ); P I wt = pod integument weight(g.plant -1 );<br />

W100 = weight of 100 seeds (g).<br />

* Figures of unshared characters are significant (Duncan, 0.05).<br />

010


J. Duhok Univ. Vol.13, No.1, (Agric. And Vet. Sciences) Pp, 2010<br />

REFERENCES<br />

- Abdel, C. G. (1982). Drought resistance in (Vicia faba L.):<br />

A study of four cultivars. Msc. <strong>The</strong>sis, Bath<br />

University, England, UK.<br />

- Abdel C. G. (1993). Effect of complementally watering on<br />

growth stages and yield of field bean (Vicia faba<br />

L.). Mesopotamia J. of Agric. Sci. 25 (3): 5-10.<br />

- Abdel C. G. (1994). Rapid methods for estimating leaf<br />

area and size in field bean (Vicia faba L.). Tech.<br />

Res. Vol. (7), 20:63-70.<br />

- Abdel C. G. (1997). Physiological studies on growth,<br />

flowering, fruit setting and yield of fababean (Vicia<br />

faba L. Aqudulce cv). PhD. <strong>The</strong>sis, Horticulture<br />

Department, Agriculture College, Mosul<br />

University, Mosul, Iraq.<br />

- Allen L. H., Jr. R. R. Valle, J. W. Mishoe and J. W. Jones<br />

(1994). Soybean leaf Gas-Exchange responses to<br />

carbon dioxide and water stress. Agron J. 86: 625-<br />

636.<br />

- Bradford K. J., T. D. Sharkey 3 and G. D. Farquhar (1983)<br />

Gas Exchange, Stomatal Behavior, and 13 C Values<br />

of the flacca Tomato Mutant in Relation to Abscisic<br />

Acid 1 Plant Physiology, 72:245-250.<br />

- Davies W. J. (1978). Some effects of abscisic acid and<br />

water stress on stomata of (Vicia faba L.). J. of<br />

Experimental Botany. 29 (108): 175-182.<br />

- Ewert M. S., J. W. Outlaw, S. Zang, K. Aghoram and K.<br />

A. Riddle (2000). Accumulation of an apo<br />

determinate cultivar apoplats solutes in the guard<br />

cell wall is sufficient to exert a significant effect on<br />

transpiration in (Vicia faba L.). Leaflet, Plant Cell<br />

and Environment, 23: 195-203.0<br />

ايو تي م يش لب يلا ليلا ايبابو هيثيلت و<br />

ةمديق ييقتل .<br />

011<br />

ليم<br />

- Franks P. J., T. N. Buckley, J. C. Shope , and K. A. Mott<br />

(2001). Guard Cell Volume and Pressure Measured<br />

Concurrently by Confocal Microscopy and the Cell<br />

Pressure Probe. Plant Physiol, Vol. 125:1577-1584.<br />

- Franks P. J. and G. D. Farquhar (2001). <strong>The</strong> Effect of<br />

Exogenous Abscisic Acid on Stomatal<br />

Development, Stomatal Mechanics, and Leaf Gas<br />

Exchange in Tradescantia virginiana. Plant<br />

Physiol125: 935-942.<br />

- Goodwin T. W. and E. I. Mercer (1985). Introduction To<br />

Plant Biochemistry. 2 nd ed. Pergamon Press.<br />

- Hetherington, A. M. and F. I. Woodward (2003). <strong>The</strong> role<br />

of stomata in sensing and driving environmental<br />

change. Nature 424: 901-908.<br />

- Hopkins W.G. (1999). Introduction To Plant Physiology.<br />

Second Ed. John Wiley & Sons, IMC. New York.<br />

310-365.<br />

- Losanka P. P., H. O. William, A. Karthink, and R. H.<br />

Daniel (2002). Abscisic acid an intra leaf water<br />

stress signal. Physiologia Plantarum. 108: Isue 4.<br />

- Srivastava L. M. (2002). Plant Growth and Development,<br />

Hormone and Environment. Academic Press Pp.<br />

217-231..<br />

- Terashima I., S. C. Wong, B. Osmond 1 and G. D.<br />

Farquhar (1988). Characterisation of Non-Uniform<br />

Photosynthesis Induced by Abscisic Acid in Leaves<br />

Having Different Mesophyll Anatomies. Plant and<br />

Cell Physiology, 1988, 29, (3): 385-394.<br />

- Woodward, F. I., J. A. Lake and W. P. Quick (2002).<br />

Stomatal development and CO2: ecological<br />

consequences. New Phytol. 153: 477-484.<br />

كيسسبلاا ضماحب شرلل هشطعملاءلاقابلا نم فانصا ةسمخ ةباجتسا<br />

2x10 -3<br />

و<br />

2x10 -6<br />

753<br />

هصلاخلا<br />

هيقا و يلحم حمليسو جلاليوا يهو ءلاقابلا نم فانصا ةسمخ تشطع<br />

و رفيص يهو كييسسبلاا ضمايح نم هفلتخم زيوارتب ةر ابم حرلا ةداعا دعب نيترم<br />

ريييثوا ليييه جلاليييوا نيييص اايييب ص ايييتنلا لرييي ظا . كييييسسبلاا ضمايييحل ا تباجتيييسا مديييمو فايييفجلل فانيييصلاا ا يييه لقايييت<br />

ديحاللا لايبنلل هي اجلا مو يبلل فمايبلا اي لاترا لايخ نيم يه نيم يقحتلا نيتميو فايفجلا ةيمواقم ي ةمديق فانيصلاا<br />

اريغثلا ةيحت ةريعو لاليتلا ليلع عريتم ورتيايم<br />

7.1و<br />

ءلاقايبلا فنيص نييب هيفيف لايقور دليلو حليل .<br />

6.7<br />

لفيسلاو<br />

حليلعلا هيقمللا حطسل ارغثلا ةحت ل و(33.03<br />

g)<br />

لالتلا للع عرتم ورتيام<br />

1. 9<br />

و<br />

4.1<br />

لفسلاو حللعلا هقمللا حطسل<br />

حملييس ني ل اييق ارم ديحاللا لاييبنلا ي هييغلابلا لايررقلل اييصاح ايت ا ااييو كيلض نييم ريثولااو ييلحم حمليس و جلاليوا<br />

يي ةيصاخ<br />

فانيصلاا ضيعب ي فاييفجلا ةيمواقم ةمديق نييسحت ليلا كيييسسبلاا ضمايحب شريلا مدا .) اريغ 94.77(<br />

2x10 -3 يي هيي اجلا مو ييبلل اييصاح لييلعا ايينثلا اخادييتلا ا ييه لييطعا . M<br />

لاليتلا ليلع عريتم ورتيايم<br />

9.9و<br />

هييلنعم عوري حا يحلات يل .<br />

9..9<br />

لفيسلاو حليلعلا هيقمللا حطيسل اريغثلا ةيحت لي و و<br />

لاليتلا ليلع عريتم ورتيايم.<br />

1.4<br />

و<br />

4..<br />

يلحم<br />

كيييسسبلاا ضماييحب اييماعملا جلالييوا نييص<br />

(42.93 g)<br />

ديحاللا لايبنلا<br />

لفيسلاو حليلعلا هيقمللا حطيسل اريغثلا ةحت ةرعو<br />

.<br />

هسومدملا لاف لا عيمل كيسسبلاا ضماح زيوارت نيب


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 103-111, 2010<br />

GENETIC VARIABILITY CORRELATION AND PATH ANALYSIS<br />

IN SOME MAIZE INBRED LINES<br />

MOHAMMED ALI HUSSAIN<br />

Dept. soil and water, College of agriculture, University of Duhok, Kurdistan Region-Iraq<br />

(Received: June 8, 2010; Accepted for publication: February 27, 2011)<br />

ABSTRACT<br />

<strong>The</strong> study was carried out at the field of College of Agriculture/ University of Duhok during spring and autumn<br />

season on 2008 . Thirteen locally raised inbred lines were used in the study to calculate phenotypic coefficient of<br />

variability , genotypic variability, broad sense heritability, correlation and path analysis , the result showed that leaf<br />

area had significant genotypic and phenotypic association with ear length, number of kernels per ear and plant yield<br />

and also was found that genotypic and phenotypic coefficient had highly significant for plant yield, ear height and leaf<br />

area, while the traits (days to 50% silking, plant height, leaf area, and number of kernels per ear) had comparatively<br />

higher broad sense heritability in both season. <strong>The</strong> number of kernels/ ear and leaf area direct influence on yield and<br />

indirectly affected the ear length , this traits could be utilize for kernel yield improvement. <strong>The</strong> results of this study<br />

can be used of promising inbred lines in a program to produce the hybrid from locally inbred line.<br />

KEYWORDS: Maize genetic, variability, correlation and path analysis<br />

O<br />

INTRODUCTION<br />

ne of the well known source to get<br />

inbred lines is by making self<br />

pollination to various kinds of genotypes,<br />

synthetic compound and hybrid verities. <strong>The</strong><br />

kinds of genotypes of the hybrid and varieties<br />

which are used in agriculture are considered one<br />

of the main factors on forming of the yield of the<br />

area units, besides other various agricultural<br />

operations, where genotypes differ from each<br />

other in their genetic abilities for production and<br />

the extent to which they reach with their respond<br />

to the modern agricultural methods (10) .<br />

It is notable that the most of growing<br />

countries still depend on local varieties and<br />

synthetic varieties , also they use these varieties ,<br />

which have the trait of low yield of the area unit,<br />

in 62% of the area , which is assigned to produce<br />

maize was low rate of productivity (6 and 16) .<br />

Developing countries made use of the heterosis<br />

capability to develop programs of hybrid maize<br />

(15 and 17)<br />

. By which they could achieve high rate<br />

of yield to the area unit which fulfill the needs of<br />

local markets by this product and even they<br />

could monopoly the global markets for<br />

producing hybrid kernel in some countries.<br />

<strong>The</strong>se countries achieved an increase of<br />

productivity of (25-30%) the yield unit of area<br />

(4)<br />

. Since deduction and production of hybrid are<br />

in need to inbred lines production, which was<br />

still monopolized by specific foreign companies.<br />

<strong>The</strong> importance of inbred line production to<br />

produce single or three way cross and double<br />

cross is obvious, which play an effective role to<br />

increase the yield of the area unit. Early studies<br />

were done on the estimation of genotypes<br />

through genetic variability, heritability and<br />

correlation between the yield and its components<br />

(19) . Earlier researchers concluded that kernel<br />

yield per plant was positively and significantly<br />

correlated with plant height and number of ear/<br />

plant (1) . <strong>The</strong> 100 kernel weight was highly<br />

significant with kernel yield in double and<br />

double top crosses, plant height, days to 75%<br />

silking and 100 kernel weight positively<br />

influenced the yield directly and also indirectly<br />

through several yield components (5) .<br />

Kernel yield per plant was positively and<br />

significantly correlated with 100 kernel weight<br />

and ear height. Path analysis showed that 100<br />

kernel weight and number of ear/ plant were<br />

important components determining kernel yield (7)<br />

Days to 50% tasseling, days to 50% silking, ear,<br />

height plant height and 100 kernel weight had<br />

positive and significant correlation with kernel<br />

yield (11) also the 100 kernel weight , number of<br />

ear per plant , plant height and number of days to<br />

flowering were useful in improving kernel yield<br />

in maize hybrids (12) , path analysis showed that<br />

ear height , plant height and 100 kernel weight<br />

had main effective contribution to the kernel<br />

yield (13). Estimated the genotypic correlation<br />

coefficients were generally higher than their<br />

corresponding phenotypic correlation<br />

coefficients. Days to 50% of tasseling had<br />

positive significant correlation with ear height<br />

301


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 103-111, 2010<br />

and kernel yield while plant height and kernel<br />

yield correlation was not significant. <strong>The</strong><br />

characteristics (ear height, plant height , number<br />

of ear per plant, number of days to 50% tasseling<br />

and silking) had a direct effect on kernel yield<br />

except number of days to 50 % to tasseling. Also<br />

kernel yield was the only characteristic which<br />

gave highly genotypic and phenotypic<br />

correlation coefficient and highly heritability<br />

broad sense (11) . <strong>The</strong> aims of the present study<br />

were to improve the inbred lines and evaluate<br />

the genetic variability, heritability and inter<br />

relationship of various traits in thirteen inbred<br />

line of maize.<br />

MATERIALS AND METHODS<br />

Fifteen single cross hybrids used, which were<br />

introduce from Yugoslavia Table (1). <strong>The</strong>se<br />

hybrids were planted in the spring seasons of<br />

years (2001, 2002, 2004, 2005, 2006, 2007) and<br />

self pollination were done to all hybrids to get<br />

various generations , then getting the six<br />

generation a top cross hybridizing were done.<br />

<strong>The</strong>se generations were hybridized with<br />

synthetic IPA5012 which has broad genetic base.<br />

<strong>The</strong> most of these genotypes had gave highly<br />

general combining ability (Mohammed and<br />

Rasheed, 2009) except two genotype appeared<br />

case of sterility. A field experiment was carried<br />

out at the field of College of Agriculture /<br />

University of Duhok in spring and autumn of<br />

2008, to know the characteristics of these<br />

genotypes and their productivity. <strong>The</strong> land was<br />

prepared by adding the compound fertilizer<br />

N.P.K (0.27, 27) in a rate of 400 kg/ha, then 400<br />

kg of Nitrogen was added on two portions , half<br />

of which is 25 days after planting and the other<br />

is 30 days after the first portion (20) thirteen<br />

genotypes were planted manually in rows with 5<br />

m length , 75cm between rows and 25 cm<br />

between plants in 20-3-2008 for spring season<br />

and 15-7-2008 for autumn season.<br />

<strong>The</strong> experiment was applied with three<br />

replications according to R.C.B.D experimental<br />

design . <strong>The</strong> data was record from 10 random<br />

plants from each entry within replication for day<br />

to 50% tasseling and silking, plant hight (cm),<br />

ear hight (cm), leaf area (cm 2 ), kernel yield/<br />

plant, ear length (cm), 300 kernel weight/ gm,<br />

no. of row/ ear, no. of kernel/ ear, protein%,<br />

oil% and ear diameter (cm).<br />

<strong>The</strong> analysis of variance was carried out<br />

according to (18) . genotypic and phenotypic<br />

coefficient of variability , broad sense<br />

301<br />

heritability genotypic and phenotypic correlation<br />

coefficient and path coefficient analysis were<br />

computed (8) and used Duncan Multiple Range<br />

test to comparison between the means at 0.05<br />

probability level.<br />

RESULTS AND DISCUSSIONS<br />

<strong>The</strong> statistical analysis in table (1) showed<br />

high significant differences between inbred lines<br />

for the characters (number of days to 50 %<br />

tasseling and silking , plant height, ear height,<br />

leaf area, number of leave/ plant, yield/ plant and<br />

its components , protein and oil percentage) and<br />

also the interaction between (s×l) is high<br />

significantly for the all characters except ear<br />

length, leaf area and No. of row / ear are<br />

significant at level 0.05 and the other characters<br />

was not significant.<br />

Table (3) shows significant differences<br />

among inbred lines for days to 50 % tasseling .<br />

<strong>The</strong> inbred line (11) was earlier for days to 50 %<br />

tasseling which tasseled during (54.66) days,<br />

whereas late days of 50 % tasseling were<br />

recorded by line (9) that was (65.00) days. <strong>The</strong><br />

earlier inbred lines for days to 50 % silking were<br />

(11) which silked during (73.66) days. <strong>The</strong><br />

results in same table referred to the highest plant<br />

height observed in an inbred lines (4) and<br />

reached (179.05 cm) while the inbred (6) and<br />

reached (122.86 cm) was less for plant height<br />

also the table shows that the inbred line (7)<br />

scored a high ear height reaching (93.44) cm..<br />

While the inbred line (3) gave the lowest ear<br />

height (59.89) cm. <strong>The</strong> largest for leaf area was<br />

found in inbred lines (2) and reached (541.77<br />

cm 2 ) , whereas the less leaf area was inbred line<br />

(6) (318.69 cm 2 ) .<br />

<strong>The</strong> highest weight of kerenels / plant was<br />

observed in line (12) and was (136.53 gm) while<br />

the low weight of kerenels/plant was recorded in<br />

line (5) (58.43 gm) . <strong>The</strong> inbred line (2) obtained<br />

a high ear length scoring (20.73 cm) , while the<br />

lowest ear length was observed in line (8) (15.43<br />

cm) . <strong>The</strong> result in table (3) shows the highest<br />

300 grain weight was observed in line (10) and<br />

was reached 80.09 gm while the low 300 grain<br />

weight was recorded in line (2) (58.46 gm) . <strong>The</strong><br />

largest mean for number of rows /ear was found<br />

in line (4) (17.56) , whereas the less number of<br />

rows / ear scoring (14.66) and the high number<br />

of grains / ear was found in inbred line (3)<br />

(745.33), the inbred line (9) obtained <strong>The</strong> lowest<br />

mean of number of kerenel / ear (446.73). Table<br />

(3) also shows that the inbred line (7) was


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 103-111, 2010<br />

superior for the protein percent and the value<br />

was (7.20) , low protein percent was observed in<br />

inbred line (10) scoring (5.70), while the inbred<br />

line (8) was superior for oil percent (5.98) low<br />

oil percent was showed in inbred line (10) and<br />

the value reached (4.29) . <strong>The</strong> inbred line (7)<br />

was superior for ear diameter (2.23 cm) the<br />

fewer diameters for ear for ear showed in inbred<br />

line (1) and the value was (1.66 cm) .<br />

Table (1): Pedigree and origin of inbred lines which are used in the study<br />

No. of hybrid Pedigree Origin Name of inbred line<br />

1 zp-sc-204 Yugoslavia zp-204<br />

2 zp-sc-301 Yugoslavia zp-301<br />

3 zp-sc-595 Yugoslavia zp-595<br />

4 zp-sc-670 Yugoslavia zp-670<br />

5 zp-sc-430 Yugoslavia zp-430<br />

6 zp-sc-505 Greece zp-505<br />

7 un-sc-44652 Greece un-44652<br />

8 zp-sc-735 Greece zp-735<br />

9 zp-sc-147 Greece zp-197<br />

10 zp-sc-607 Greece zp-607<br />

11 zp-sc-707 Greece zp-707<br />

12 DK-17 Yugoslavia DK-17<br />

13 un-sc-44052 Greece un-44052<br />

Data in table (4) indicate a preference of<br />

genotypic and phenotypic for yield/ plant, and<br />

the leaf area of the spring season and yield/ plant<br />

and ear height of the autumn season. <strong>The</strong> values<br />

for all the studied characters was high but the<br />

highest was for number of kernels/ ear and leaf<br />

area for the spring season while in autumn the<br />

highest heritability was for plant<br />

height and number of days to 50 % silking.<br />

Number of days to 50 % tasseling and silking<br />

showed the least genotypic and phenotypic<br />

coefficient, so improvement by selection method<br />

through these two characters is very week. But<br />

using mass selection method through yield per<br />

plant is effective to improve the yield depending<br />

on genotypic variance the results agree with) (13) .<br />

<strong>The</strong> data in Table-5 and 6 depicted<br />

correlations of traits with kernel yield/ plant<br />

studied as was found in previous findings (1) . Ear<br />

length acted the same behavior in its correlation<br />

with kernel yield/ plant during spring and<br />

autumn season and give a positive significant<br />

genotypic and phenotypic with kernel yield/<br />

plant and leaf area.<br />

<strong>The</strong> number of kernels/ ear had a positive<br />

significant genotypic and phenotypic correlation<br />

with leaf area. Weight of (300) kernels showed<br />

negative significant genotypic with number of<br />

row/ ear in autumn season but correlation<br />

with other characters was not significant<br />

also ear diameter did not show any<br />

significant genotypic and phenotypic<br />

association with leaf area.<br />

Table (7) shows in spring season that the<br />

number of kernels per ear exerted direct positive<br />

effect on kernel yield per plant but in direct<br />

effect through ear length, number of rows/ ear,<br />

leaf area and (300) kernels weight also exerted<br />

positive direct effect on kernel yield/ plant. <strong>The</strong><br />

results are partially in agreement (8) . From the<br />

same table for the autumn season it can be<br />

noticed of rows/ ear exerted direct positive effect<br />

on kernel yield/ plant but indirect effect through<br />

ear length, and number of kernels/ ear. <strong>The</strong> trait<br />

(300) kernels weight was the second in the direct<br />

influence on kernel yield per plant because its<br />

indirect influence was wreak, so these characters<br />

can be used to improve the yield through the<br />

selection method of these characters to achieve<br />

the aim. <strong>The</strong>se data are in agreement with those<br />

(13) , (2) , (5) , (15) , (14) . It can be concluded that the<br />

number of kernel/ ear, leaf area and kernel yield/<br />

plant where to be considered for improvement of<br />

high genotypic variability and heritability in<br />

broad sense in breeding material studied.<br />

301


601<br />

Seasons<br />

Block ×<br />

Season<br />

Lines<br />

S.O.V d.f Days to 50<br />

Seasons ×<br />

Lines<br />

Error<br />

%<br />

tasseling<br />

Days to 50<br />

% silking<br />

Table (2): mean square for studied traits in both season (spring and autumn)<br />

Plant<br />

height<br />

cm<br />

Ear<br />

height<br />

cm<br />

Leaf<br />

area<br />

cm 2<br />

Ear<br />

length<br />

cm<br />

300<br />

kerenel<br />

weight<br />

gm<br />

No<br />

rows /<br />

ear<br />

No.<br />

kerenels<br />

leaf<br />

Protein<br />

%<br />

Oil<br />

%<br />

Kerenel<br />

Yield / pland<br />

1 448.32 ** 512.82 ** 665.81 ** 138.56 * 10065.64 ** 8.33 ** 549.55 ** 0.86 11370.90 ** 1.86 ** 11.30 ** 9286.59 ** 0.11 **<br />

4 2.66 2.05 37.53 27.44 257.47 1.56 12.52 0.17 687.27 0.02 0.05 44.24 0.00<br />

12 136.83 ** 147.24 ** 1496.63 ** 112241 ** 42326.55 ** 18.82 ** 367.92 ** 14.65 ** 72260.99 ** 2.13 ** 1.80 ** 2902.95 ** 0.20 **<br />

12 5.70 ** 9.01 ** 66.56 ** 39.59 * 1944.12 * 0.56 8.94 1.48 * 1125.79 0.29 * 0.16 ** 459.87 ** 0.02 **<br />

84 1.01 0.82 9.54 9.99 502.07 0.24 4.31 0.41 530.14 0.05 0.01 22.32 0.002<br />

* ** significant difference at level 0.05 and 0.01 respectively<br />

gm<br />

Ear<br />

diameter<br />

cm<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 103-111, 2010


601<br />

Inreed<br />

line<br />

1 59.00<br />

ef<br />

2 63.66<br />

d<br />

3 57.83<br />

gf<br />

4 65.16<br />

c<br />

5 59.33<br />

e<br />

6 66.66<br />

b<br />

7 64.50<br />

Day to 50%<br />

cd<br />

8 69.50<br />

a<br />

9 65.00<br />

c<br />

10 57.33<br />

g<br />

11 54.66<br />

n<br />

12 59.00<br />

ef<br />

13 64.16<br />

a<br />

tasseling /<br />

Day to 50<br />

% silking<br />

61.66<br />

ef<br />

66.50<br />

d<br />

59.83<br />

n<br />

68.00<br />

bc<br />

62.60<br />

e<br />

69.00<br />

b<br />

67.66<br />

c<br />

73.66<br />

a<br />

67.16<br />

cd<br />

60.50<br />

gh<br />

58.50<br />

i<br />

61.50<br />

gf<br />

73.00<br />

a<br />

Plant<br />

height / cm<br />

142.41<br />

g<br />

156.61<br />

de<br />

157.73<br />

ef<br />

174.95<br />

b<br />

145.18<br />

g<br />

122.86<br />

n<br />

179.05<br />

a<br />

169.96<br />

c<br />

157.78<br />

d<br />

154.90<br />

def<br />

152.22<br />

f<br />

155.06<br />

edf<br />

178.18<br />

ab<br />

Ear height<br />

61.05<br />

g<br />

72.27<br />

c<br />

59.89<br />

g<br />

90.18<br />

a<br />

63.09<br />

gf<br />

40.41<br />

h<br />

93.44<br />

a<br />

63.93<br />

efg<br />

67.50<br />

de<br />

66.15<br />

ef<br />

70.79<br />

cd<br />

61.99<br />

g<br />

79.26<br />

b<br />

/ cm<br />

Table (3): means of studied traits for inbred line of maize<br />

leaf area /<br />

cm 2<br />

427.29<br />

b<br />

541.77<br />

a<br />

390.45<br />

c<br />

520.24<br />

a<br />

341.90<br />

de<br />

318.69<br />

e<br />

522.74<br />

a<br />

327.25<br />

de<br />

348.32<br />

d<br />

398.09<br />

c<br />

353.23<br />

d<br />

Yield<br />

plant /<br />

gm<br />

89.63<br />

dc<br />

116.80<br />

b<br />

115.40<br />

B<br />

93.333<br />

c<br />

58.43<br />

f<br />

69.73<br />

e<br />

109.90<br />

b<br />

79.76<br />

d<br />

85.40<br />

cd<br />

130.23<br />

a<br />

84.13<br />

cd<br />

436.11 b 136.53<br />

533.99<br />

a<br />

a<br />

80.06<br />

d<br />

Ear<br />

length /<br />

cm<br />

16.60<br />

cde<br />

20.73<br />

a<br />

18.20<br />

b<br />

20.66<br />

a<br />

16.63<br />

cd<br />

15.76<br />

de<br />

18.10<br />

b<br />

15.43<br />

e<br />

16.26<br />

dc<br />

16.10<br />

de<br />

17.63<br />

bc<br />

19.66<br />

a<br />

20.10<br />

a<br />

300<br />

kernel<br />

weight /<br />

gm<br />

63.12<br />

dc<br />

55.46<br />

f<br />

57.64<br />

f<br />

55.59<br />

f<br />

66.39<br />

cd<br />

58.88<br />

ef<br />

72.73<br />

b<br />

62.94<br />

de<br />

58.33<br />

f<br />

80.09<br />

a<br />

77.61<br />

a<br />

69.74<br />

bc<br />

67.44<br />

cd<br />

No.<br />

row /<br />

ear<br />

15.53<br />

bcd<br />

16.53<br />

abc<br />

17.10<br />

ab<br />

17.56<br />

a<br />

15.33<br />

cd<br />

15.63<br />

bcd<br />

16.46<br />

abc<br />

14.66<br />

d<br />

16.20<br />

abcd<br />

16.23<br />

abcd<br />

11.53<br />

e<br />

16.86<br />

abc<br />

16.36<br />

abc<br />

No.<br />

kernel /<br />

ear<br />

535.1<br />

bc<br />

696.22<br />

a<br />

745.33<br />

a<br />

741.53<br />

a<br />

534.07<br />

bc<br />

468.43<br />

d<br />

543.73<br />

bc<br />

458.63<br />

d<br />

446.73<br />

d<br />

550.63<br />

bc<br />

495.97<br />

cd<br />

742.18<br />

a<br />

562.47<br />

b<br />

Protein<br />

6.48<br />

cd<br />

6.00<br />

e<br />

6.41<br />

d<br />

7.03<br />

b<br />

7.15<br />

b<br />

6.71<br />

c<br />

7.20<br />

b<br />

6.25<br />

de<br />

6.18<br />

de<br />

5.70<br />

f<br />

7.66<br />

a<br />

5.70<br />

f<br />

6.46<br />

cd<br />

%<br />

4.96<br />

ef<br />

5.30<br />

c<br />

5.73<br />

b<br />

5.25<br />

c<br />

4.36<br />

g<br />

4.96<br />

ef<br />

4.36<br />

g<br />

5.98<br />

a<br />

5.86<br />

ab<br />

4.29<br />

g<br />

4.86<br />

f<br />

5.05<br />

de<br />

5.20<br />

cd<br />

Oil<br />

%<br />

Ear dimater / cm<br />

1.66<br />

n<br />

1.84<br />

efg<br />

1.76<br />

fgh<br />

1.92<br />

de<br />

2.09<br />

b<br />

2.05<br />

bc<br />

2.23<br />

a<br />

1.86<br />

ef<br />

1.74<br />

gh<br />

1.78<br />

fg<br />

1.75<br />

gh<br />

1.98<br />

cd<br />

1.99<br />

bcd<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 103-111, 2010


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 103-111, 2010<br />

Table (4): Estimates of genotypic (GV), phenotypic coefficient variability (PCV) and (Hbs) in inbred lines of<br />

maize in spring and autumn.<br />

Traits spring autumn spring autumn spring autumn spring autumn spring autumn<br />

Days to 50<br />

%<br />

tasseling<br />

Days to 50<br />

% silking<br />

Plant<br />

height (cm)<br />

Ear height<br />

(cm)<br />

Leaf area<br />

(cm 2 )<br />

Ear length<br />

(cm)<br />

300 kernel<br />

weight<br />

(gm)<br />

No.<br />

rows/ear<br />

No. kernel<br />

/ ear<br />

301<br />

GV GCV PV PCV H 2 b.s<br />

26.619 20.220 8.602 6.942 27.730 21.137 8.730 7.098 95.993 95.661<br />

28.217 23.316 8.459 7.109 29.093 24.098 8.589 7.227 96.989 96.754<br />

233.846 280.859 9.557 10.871 242.325 291.459 9.729 11.074 96.500 96.363<br />

178.957 201.720 19.166 21.157 182.929 217.730 19.37 21.980 97.828 92.646<br />

7025.096 7397.084 20.510 19.938 7049.987 8376.333 20.547 21.217 99.646 88.309<br />

2.795 3.504 9.729 10.493 2.889 3.900 9.891 11.070 96.747 89.846<br />

58.071 64.675 12.749 12.385 60.566 70.810 13.020 12.929 95.880 91.335<br />

3.066 2.035 11.196 9.000 3.157 2.774 11.361 10.508 97.11 73.359<br />

11802.970 12305.87 19.596 19.174 11826.41 13342.71 19.615 19.965 99.80 92.229<br />

Protein % 0.527 0.246 11.374 7.422 0.572 0.310 11.850 8.330 92.132 79.394<br />

Oil % 0.480 0.163 14.682 7.377 0.493 0.1866 14.87 7.878 97.366 87.678<br />

Kernel<br />

yield / plant<br />

(gm)<br />

Ear<br />

diameter<br />

555.715 550.343 31.722 24.402 567.822 582.881 32.065 25.113 97.867 94.417<br />

0.048 0.026 12.032 8.550 6.08 0.029 12.280 9.023 96.000 89.772<br />

Table (5): Genotypic (rg) correlations between yield and other traits in spring and autumn season.<br />

season Ear length<br />

(cm)<br />

300 gr/ wt Rows/ ear Kernel/ ear Ear diam.<br />

Kernel/ plant rG spring 0.501 0.319 0.458 0.534 -0.119 0.477<br />

autumn 0.395 0.238 0.442 0.628 * -0.161 0.456<br />

Ear length (cm) spring -0.099 0.313 0.577 * 0.258 0.799 **<br />

(cm)<br />

Leaf area<br />

(cm) 2<br />

autumn -0.220 0.441 0.807 ** 0.156 0.878 **<br />

300 gr. Wt. spring -0.317 -0.228 0.106 0.011<br />

autumn -0.510 -0.273 0.110 -0.154<br />

Rows/ear spring 0.460 0.108 0.504<br />

autumn 0.627 * 0.243 0.616 *<br />

Kernel/ear spring 0.060 0.374<br />

autumn 0.007 0.689 **<br />

Ear diam. (cm) spring 0.387<br />

autumn 0.178


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 103-111, 2010<br />

Table (6): phenotypic (rp) correlations between yield and other traits in spring season.<br />

season Ear length<br />

(cm)<br />

300 gr/ wt Rows/ ear Kernel/ ear Ear diam.<br />

(cm)<br />

Leaf area<br />

(cm) 2<br />

Kernel/ plant rP spring 0.485 0.315 0.450 0.528 -0.113 0.476<br />

autumn 0.365 0.211 0.401 0.613 * -0.160 0.437<br />

Ear length (cm) spring -0.097 0.314 0.567 * 0.246 0.785 **<br />

autumn -0.213 0.381 0.734 ** 0.162 0.792 **<br />

300 gr. Wt. spring -0.306 -0.221 0.120 0.013<br />

autumn -0.385 -0.285 0.105 -0.110<br />

Rows/ear spring 0.452 0.108 0.499<br />

autumn 0.536 0.206 0.539<br />

Kernel/ear spring 0.057 0.373<br />

autumn -0.033 0.641 *<br />

Ear diam. (cm) spring 0.379<br />

autumn 0.178<br />

tab. r= 0.553 and 0.684 at 0.05 and 0.01 respectively<br />

tab. r = 0.684 at level 0.01 *, ** = significant at 0.05 and 0.01 respectively<br />

Table (7): Direct and indirect effect of different traits on kernel yield in inbred line of maize<br />

Spring Season<br />

Ear length<br />

(cm)<br />

300 kernel<br />

weight (gm)<br />

No. of row/<br />

ear<br />

No. of<br />

kernel / ear<br />

Ear Dimater<br />

(cm)<br />

Flag leaf<br />

area (cm 2 )<br />

Kernel /<br />

Plant (gm)<br />

Eear length (cm) 0.138 -0.055 0.107 0.202 -0.096 0.204 0.501<br />

300 kernel weight<br />

(gm)<br />

-0.013 0.561 -0.108 -0.080 -0.039 0.002 0.319<br />

No. of row / ear 0.043 -0.177 0.342 0.161 -0.040 0.129 0.458<br />

No.of kernels/ear 0.080 -0.128 0.054 0.351 -0.022 0.095 0.431<br />

Ear Dimater / cm 0.035 0.059 0.037 0.021 -0.373 0.099 -0.122<br />

flag leaf area<br />

(cm) 2<br />

0.111 0.006 0.172 0.131 -0.144 0.256 0.533<br />

Autumn Season<br />

Eear length (cm) 0.209 -0.173 0.342 0.277 -0.065 -0.195 0.395<br />

300 kernel weight<br />

(gm)<br />

-0.046 0.787 -0.396 -0.093 -0.046 0.034 0.238<br />

No. of row / ear 0.092 -0.401 0.775 0.215 -0.102 -0.137 0.442<br />

No.of kernels/ear 0.169 -0.215 0.170 0.343 -0.003 -0.153 0.311<br />

Ear Dimater / cm 0.032 0.086 0.189 0.002 -0.420 -0.053 -0.164<br />

flag leaf area<br />

(cm) 2<br />

0.184 -0.121 0.478 0.237 -0.100 -0.222 0.456<br />

*= Genetic correlation with kernel yield/plant = total of direct and indirect effects<br />

(*)<br />

301


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 103-111, 2010<br />

REFERENCES:<br />

Ahmed , M. A. and M. Hassanein. 2001. Partition of<br />

photosynthates in yellow maize hybride. Egyptian J.<br />

Agro., 22: 39-63.<br />

Alvi, M. B. M. Rafique, M. Shafique, A-Hussain, T.<br />

Mahmood and M. Sarwar. 2003. Characters<br />

association and path analysis of kernel yield and<br />

yield components in maize. Pak. J. Biol . Sci. 8 :<br />

136 – 138.<br />

Andro, B. 1967. Hetrosises At Mutacio Ahuhori –<br />

Caban, Budapest. PP. 11-39.<br />

Andro, B. 1977. Akukorica Jelenees Jovoje ,<br />

Budapest. PP. 26-37.<br />

Devi, I.S.S. Mohammed and Mohammed. 2001.<br />

Characters association and path coefficient analysis<br />

of kernel yield and yield component in double<br />

crosses of maize. Crop Res. Hisar; 21 : 355 – 359.<br />

Duncan, W. G. Shaver. D.L. and Williams. W.A.<br />

1973. Insulation and temperature effect on Maize<br />

growth and yield; Crop. Sci: 187-191.<br />

Khakim, A. Stoyanova S. and Tsankova. G. 1998.<br />

Establishing the correlation between yield and some<br />

morphological reproductive and biochemical<br />

characteristics in maize . Rasteniev"dni – Nauki: 35<br />

: 419-422<br />

Link , D and Mishra. B. 1973. Path coefficient analysis<br />

of yield in rice varieties. Indian J. Agric. Sci; 43 :<br />

376 – 379.<br />

Mohammed, A;H. and Rasheed, I.S;. 2009. Combining<br />

ability estimation of inbred line for yield and yield<br />

components in corn (Zea mays L) using line × tester<br />

method J. Duhok; vol, 12, No, 2 (Agri; and vet.<br />

Sciences). PP. 26-34.<br />

Mohan, Y. Singh. D.and Rao. N. 2002. Path<br />

coefficient analysis for oil and kernel yield in maize<br />

genotypes. National. J. Pl. improvement India, 4 :<br />

75-76.<br />

330<br />

Muhammad, A; Shabbir; M. Hussain A. and<br />

Muhammad. S. 2008. Evaluation of maize three –<br />

way crosses through genetic variability , broad<br />

sense heritability , characters association and path<br />

analysis . J. Agric. Res; 46 (1) : 39 – 46.<br />

Oriyanskii, N. A, Zubko Orlyanskaya N.A. and<br />

Goleva. G.G. 1999. Correlation analysis inbreeding<br />

ultra early maturing maize hybrids. Kukurzai –<br />

Sorgo; 6 : 9 – 12.<br />

Rahman, M.M,. Ali, M.R Islam, M.S. Sultan M.K. and<br />

Mitra. B. 1995. Correlation and path coefficient<br />

studies in maize composites. Bangladesh. J. Sci.<br />

ind. Res; 30 : 87 – 92.<br />

Rather, A. G. Sheikh F. A. and Wani. S. A. 1999.<br />

Variability and correlation studies in maize under<br />

rainted conditions. Advances in Pl. Sci; 12: 529-<br />

592.<br />

Sentz, J. C. Robinson H.F. and Comstock. R.E 1954 .<br />

Relation between heterozygosis and performance in<br />

maize. Agron. J., 46 : 514 – 520.<br />

Shah, V.H. and Sharma. R.N. 1970. Response of<br />

Maize (Zea mays L) germplasm to dates of planting.<br />

Indian J. Agric. Sci; 40 : 782-794.<br />

Shull, G. H. 1909. A pure line method in corn<br />

breeding report. Amer. Breeders. Assoc., 5.55-59.<br />

Steel, R. G. D; Torrie J. H. and Dickey. D. A. 1977.<br />

Principles and procedures of statistics Mc Graw<br />

Hill inc; New York.<br />

Venugopal, M; Ansari N. A. and Rajanikanth. T. 2003.<br />

Correlation and path analysis in maize. Crop. Res.<br />

Hisar. India., 25 : 525-529.<br />

Yousif , D.B 1997. Estimation of some genetic<br />

parameter in hybrid breeding of maize. Ph.D. thesis.<br />

College of Agriculture , Baghdad University (In<br />

Arabic).


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 103-111, 2010<br />

ةتخىث<br />

لااض نًَي َىصياثو َىزاوب نَيشزةو وودزةه ل كىهد ايىكناش / َىندناض ارًَلىك اًظةش ل نادمانجةئ ةتاه ةنًلىكةظ ظةئ<br />

اندناطنةطلةه ىب نسكةدزةوزةث ةنوىبتاه ىك نانًئزاكب ةنتاه ) ةللاض(<br />

شظن ةدصًَض ) 31(<br />

اد َىنًلىكةظ َىظ ل . َى 8002<br />

، ىكةووز نًَطلةب ازامذ ، َىمو سًَن انادكًل ىك % 00 ىب اذوز ازامذ ،ىكةووز اًهادنمب ،)<br />

صىنسع(<br />

َىشؤك اًهادنمب(<br />

ىنًج اًهادىج ايزةدةزةض . ىنًتوسث ارَيز<br />

، َىتيةش ارَيز ، َىو َىًتاوكًَثو ىكةووز َىمةهزةب ، َىكةشؤك زةه اًتاسيىتض<br />

ةةتاه َىكَيز انسكةظوسشو هةطنَيذو ىنًج انادَيسط ةظكًَثو هةسفزةب اكةناماز ب َىنسكتايرم ارَيزو ىهةطنيذو ظاضزةبو<br />

َىزةةبوز انيةبد ةيةه ظاضزةباي َىتايرم اكةنادَيسط ةظكًَث ىك َىدنةض َىو ةنةدد ةذامائ ينتاهةظتضةدب نًَمانجةئ . ناظًث<br />

اًهادىج ايزةدةزةض ىك نسكايىخ ةتاه اضةوزةه ىكةووز َىمةهزةبو َىشؤك نًَكفىت ازامذو َىشؤك اًهارَيزدو ىطلةب<br />

% 00 ىب اذوز ازامذ َلىةب ، َىطلةب َىزةبوزو َىشؤك اًهادنمبو ىكةووز َىمةهزةب تةزابةض وىبةدَيشاي ظاضزةبو ىنًج<br />

ل تسطد ةظىبخ َىنسكتايرم ارَيز نَيستدنمب َىشىك نًَكفىت ازامذو ىطلةب َىزةبوزو ىكةووز اًهادنمبو َىم انادكًل ىك<br />

ىكةووز َىمةهزةب ل ىبةه ازاكو ظًتشىثو زةطكًَئ اكةنسكًَتزاك َىشؤك نًَكفىت ازامذ . اد َىيصَياثو زاوب نَيشزةو وودزةه<br />

َىشزةو َىوام ل ىبةه ىطلةب<br />

َىزةبوزو َىكةشىك زةه نًَتةخ ازامذو َىشؤك اي ىهارَيزد زةطل زةطكًَئ اكةنسكًَتزاك<br />

اكةنسكًَتزاكو ىكةووز َىمةهزةب ل وىبةه ازاكو ظًتشىثو زةطكًَئ اكةنسكًَتزاك َىشؤك نًَتةخ ازامذ َلىةب . اد َىزاوب<br />

ىك وىب تةخىلاض اونةت ىكةووز َىمةهزةب اتةخىلاض . وىبةه َىشؤك نًَكفىت ازامذو َىشؤك اًهارَيزد زةطل زةطكًَئ<br />

ىمةهزةب انسككاض ىب نًَش َىد َىدنةض َىظ زةبذ . اد ناشزةو وودزةه ل وىبةدَيش َىو ظاضزةباي ىنًج<br />

اًهادىج ايزةدةزةض<br />

تةخىلاض َىظذ<br />

ءارفصلا ةرذلل راسملا ليلحتو طابترلاا لماعم ريدقتو ، تلالاسلا ضعب طابنتسا<br />

ةصلاخلا<br />

ةلثلاث يليقت دلهب8002<br />

العل يلفيرخلاو يلعيبرلا يملسكملا لالخ كلهد ةلعماج ةلعارزلا ةليلك للقح يف ةساردلا تيرجأ<br />

الفترا ، لس / تالبنلا الفترا ، كلثناو رلكذ رليهزت % 00 للا اليلاا ددلع(<br />

تافلص تلسرد . اليلحم الهتيبرت لت ةللالس ةرلشع<br />

000 نزو ، لس / صكلنرعلا كلط ، تالبن / كلبحلا للصاح ، تالبن / قارولاا ددلع ، لس / ةليقركلا ةحالسملا ، س / صكنرعلا<br />

رللطقو تلليزلا ةبللسن ، يتورللبلا ةبللسن ، يرللفتلا ةبللسن ، صكللنرع / كللبحلا ددللع ، صكنرعلاللب كفللصلا ددللع ، ارللغ / ةللبح<br />

يلئيبلاو يثاركللا طالبترلااو لساكلا نعملالب ليركتلا ةبلسنو يلئيبلاو رلهظملاو يثاركللا ريالغتلا لماعم بسح .) س / صكنرعلا<br />

ةليقركلا ةحالسملا يلب البجكم كلنعمو بلجكم رلهظمو يثارو طابترا دكجو لا تانايبلا تراشا . راسملا ليلحتو رهظملاو<br />

الفتراو تالبنلا للصاحل يلالع رلهظمو يلثارو ريالغت لماعم دجو امك تابنلا لصاحو صكنرع روذبلا ددعو صكنرعلا كطو<br />

ددلعو ةليقركلا ةحالسملاو تالبنلا الفتراو كلثنا رليهزت % 00 للا اليلأا ددلع تطعأ يح يف ةيقركلا ةحاسملاو صكنرعلا<br />

سراللم ذللا صكلنرعلا يلف روذلبلا ددلعل نالك . يلفيرخلاو يلعيبرلا يملسكملا يلف ليركت ةبلسن للعأ صكلنرعلا يلف روذلبلا<br />

صكلللنرعلا يلللف كفلللصلا ددلللعو صكلللنرعلا كلللط رلللبع رلللشابم رللليغ اريثرلللتو تالللبنلا للللصاح يلللف لاالللعفو الللبجكم رلللشابم اريثرلللت<br />

لللصاح يللف لااللعفو اللبجكم ارللشابم اريثرللت صكللنرعلا يللف كفللصلا ددللع رللثا يللح يللف يللعيبرلا للسكملا يللف ةلليقركلا ةحاللسملاو<br />

صكلنرعلا يلف كفلصلا ددلعو ةفلص نا . صكلنرعلا يلف روذلبلا ددلعو صكلنرعلا كلط لالخ لم ارلشابم رليغ اريثرلتو تابنلا<br />

اذللو للصاحلا يلف ارلشابم رليغ اريثرت صكنرعلا كط رثأ يح يف لصاحلا يف ارشابم اريثرت رثأ دق صكنرعلا يف روذبلا ددعو<br />

رياللغت لللماعم تللطعأ يلتلا تاللبنلا يللف لللصاحلا ةفلص لللا ةفاللضا الختنلاا ةلليلمع يللف تافللصلا ذله لللع داللمتعلاا لكمي<br />

لكمي لذلكو للصاحلا يلسحت يلف تافلصلا ذله للع دالمتعلاا لكمي لذللو يملسكملا لالك يلف يلالع رلهظمو يلثارو<br />

جهلا<br />

جاتنا يف ايلحم ةجتنملا تلالاسلا ذه لاغتسا<br />

333


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 112-121, 2010<br />

111<br />

MICROPROPAGATION OF CROTONE<br />

(Codiaeum variegatum)<br />

MOSLEH M.S. DUHOKY AND LAYLA S. M. AL-MIZORY<br />

Dept. of Horticulture, College of Agriculture, University of Duhok, Kurdistan Region-Iraq<br />

(Received: June 9, 2010; Accepted for publication: February 14, 2011)<br />

ABSTRACT<br />

<strong>The</strong> present study was conducted to investigate the effects of different concentration and combinations of plant<br />

growth regulators on callus induction and plant regeneration of croton (Codiaeum variegatum). <strong>The</strong> leaf segments<br />

were used as explant and cultured on MS medium supplemented with different concentrations of NAA or 2,4-D<br />

combined with BA for callus induction. <strong>The</strong> best callus was formed on whole area of explant cultured on MS medium<br />

with different levels of BA combined with different concentrations of 2,4-D. MS medium supplemented with 2mgl -1<br />

BA+ 0.2 mgl -1 2,4-D was used for percentage of callus induction (100%) and the highest average callus fresh weight<br />

(5.39 mg) was formed under dark condition. <strong>The</strong> highest percentage of callus induction (80%) and the highest<br />

average callus fresh weight (3.91 mg) was obtained under light condition compared with control treatment which did<br />

not formed callus. In multiplication stage the the maximum number of shoots, number of leaves / shoot and highest<br />

length of shoots (4.58 shoots/culture, 3.13 leaves / shoot and 2.33 cm) was obtained in MS medium supplemented with<br />

2.5mgl-1 BA respectively, compared with all treatments including the treatment control.<br />

For shoot multiplication, the maximum (4.53) shoot/ culture were formed on MS medium having 3mgl -1 BA+ 4.5<br />

mgl -1 Kin. At rooting stage, a large number of roots, root length and root percentage (2.67 roots /explant, 3.56 cm and<br />

70%) respectively, was observed when 0.5 mgl -1 IBA was used in ¼ MS medium.<br />

KEYWORDS:- Somatic embryogenesiss, Codiaeum variegatum, Auxin and Callus induction<br />

C<br />

INTRODUCTION<br />

odiaeum variegatum, commonly known<br />

as Croton and sometimes called Joseph's<br />

Coat (Deshmukh and Borle, 1975; Kupchan et<br />

al., 1976), belongs to the family Euphorbiaceae,<br />

is one of the most popular ornamental plants<br />

because of vivid foliage colors and varied leaf<br />

shapes. Codiaeum variegatum is native to<br />

Indonesia, Malaysia, Philippines, India, Thailand<br />

and Sri Lanka. It is an evergreen shrub, up to 6<br />

m in height but usually maintained at 60-90 cm<br />

and grows well in areas having humid climate.<br />

More than 200 varieties of croton exist on the<br />

globe, available in different leaf sizes, shapes<br />

and color patterns. Young leaves are usually<br />

green, bronze, yellow, or red, later changes to<br />

gold, cream, white, scarlet, pink, maroon, purple,<br />

black or brown (Fig 1).<br />

Croton can be propagated by various methods<br />

such as cuttings, grafting, seeds and air layering.<br />

From shoot tip cuttings, one mother/stock plant<br />

can yield only 20 plants per year (Nasib et al.,<br />

2008). Due to its slow rate of conventional<br />

multiplication, the plant is very high in demand.<br />

Micropropagation is a relatively new<br />

technology and applications of innovative<br />

methods have served to overcome barriers to<br />

progress in the multiplication of elite species and<br />

further improvements are anticipated. In vitro<br />

growth and development is considerably<br />

influenced by several factors like genotype, the<br />

age and size of mother plant and explant, the<br />

season, growth conditions, media composition,<br />

and various other physiological factors. As a<br />

mean of securing pathogen free plants, culture of<br />

shoot apical meristem is ideal. Other advantages<br />

that assure by this method include large number<br />

of plant production in shorter time period,<br />

irrespective of the season (Mulabagal and Tsay,<br />

2004). Croton was chosen for micropropagation<br />

due to its rare success in conventional breeding<br />

and very little data is available for its in vitro<br />

production (Shibata et al., 1996 and Orlikowska<br />

et al., 1995; 2000).<br />

<strong>The</strong> objective of the present study is to<br />

develop an alternative micropropagation of<br />

croton (Codiaeum variegatum) through indirect<br />

somatic embryogenesis, using leaf as explant.


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 112-121, 2010<br />

Fig. (1): Croton shrub is one of the ornamental<br />

plants(Codiaeum variegatum).<br />

MATERIALS AND METHODS<br />

Pot croton (Codiaeum variegatum) was<br />

grown in the greenhouse of Horticulture<br />

Department, Agriculture College, University of<br />

Duhok at 15 \ 9\ 2008.<br />

Leaves with petioles were collected, and the<br />

petioles were removed after leaves washed under<br />

tap water for 30 minutes to remove soil and<br />

other superficial contaminations. <strong>The</strong> leaves<br />

were cut into 1 cm 2 in size under sterilized<br />

condition (Fig 2). <strong>The</strong> explants were surface<br />

sterilized with 70% ethanol for 3 minutes in a<br />

laminar air flow cabinet followed by immersion<br />

in a 4 % sodium hypochlorite solution (5%<br />

active chlorine) for 10 minutes and rinsed three<br />

times with sterile distilled water, and then<br />

cultured on MS medium (Murashige and Skoog ,<br />

1962). <strong>The</strong> medium was supplemented with 30<br />

gl -1 sucrose and solidified with 7 gl -1 agar. <strong>The</strong><br />

pH of the medium was adjusted to 5.7± 0.1 befor<br />

autoclaving.<br />

First experiment: <strong>The</strong> following growth<br />

regulators were added to the medium .<br />

BA (Benzyl adenine) at (0, 1, 2) mgl -1 .<br />

NAA (Naphthalene acetic acid) at<br />

(0, 0.2, 0.4) mgl -1 .<br />

2,4-D (2,4-Dichlorophenoxy acetic acid)<br />

at (0, 0.2, 0.4) mgl -1 .<br />

Each treatment was replicated 10 times with<br />

1 explant. <strong>The</strong> explants were cultured in growth<br />

room at 25°C in the dark to encourage callus<br />

formation or in the light condition for callus<br />

growth.<br />

When the calli were one month old, they<br />

were transferred to a growth chamber and<br />

maintained under a 16 hour photoperiod and 8<br />

hour darkness under artificial light at an intensity<br />

of 1000 lux. Shoot regeneration was encouraged<br />

by 50 mgl -1 casein hydrolysis and 1 mgl -1 BA<br />

added to the medium.<br />

After 6-8 weeks, the following data were<br />

recorded: percentage of callus induction, average<br />

callus fresh weight (mg) and embryo induction<br />

percentage. All data were statistically carried out<br />

using Complete Randomized Design (CRD)<br />

using 10 replications. Significant differences<br />

among mean values were separated using<br />

Duncan Multiple Range Tests at P≤0.05<br />

(Duncan, 1955).<br />

Second experiment: After somatic embryo<br />

formation from the callus. <strong>The</strong> embryogenic<br />

callus was weekly subcultured on MS medium<br />

for accelerating the induction of embryoids, with<br />

the removal of dead and dark-brown cells from<br />

the callus. After 6 weeks of subculture, greenish-<br />

yellow, globular pro- embryoids were observed<br />

under microscopic examination and these were<br />

selected and subcultured on the same medium<br />

for maturation according to Robinson et.<br />

al.(2009) and Buchheim et. al.(1989). Matured<br />

somatic embryos (heart- and torpedo shaped)<br />

were transferred to somatic embryo regeneration<br />

medium containing MS salts; After the complete<br />

regeneration of embryoids to plantlets the latter<br />

were transferred to the third experiment. After 4-<br />

6 weeks ,the following data were recorded:<br />

No.of somatic embryo induced from callus, No.<br />

of shoot development, No. of leaves per culture<br />

and average of shoots length (cm).<br />

Third experiment: <strong>The</strong> explants were allowed<br />

to grow and then transferred to MS medium<br />

with different concentrations of cytokinin (0,<br />

2.5, 3.0, 3.5, 4, 4.5 and 5) mgl -1 BA combine<br />

with (0, 2.5, 3.0, 3.5, 4, 4.5 and 5) mgl -1 Kin.<br />

After 4-6 weeks ,the following data were<br />

recorded: No. of shoots per culture, No. of<br />

leaves per culture and average of shoots length<br />

(cm).<br />

Fourth experiment: Shoots were transferred to<br />

(¼ and ½ strength) MS medium with different<br />

concentrations (0, 0.5 and 1) mgl -1 of NAA, IAA<br />

and IBA alone for in vitro rooting. After 4 weeks<br />

,the following data were recorded: percentage of<br />

root per culture, No. of roots per culture and the<br />

average of roots length (cm). For<br />

acclimatization, rooted plants of croton with well<br />

developed roots and leaves were taken out of the<br />

culture jars washed with water to remove the<br />

agar around the roots. <strong>The</strong> plantlets were<br />

transferred to plastic pots containing soil mixture<br />

and peat moss (1 :1 by volume). <strong>The</strong> percentage<br />

survived plant were recorded after 4 weeks from<br />

transplanting.<br />

111


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 112-121, 2010<br />

RESULTS AND DISCUSSION<br />

Effect of Auxin and Cytokinine in callus<br />

induction:<br />

<strong>The</strong> most important factors contributing the<br />

induction of somatic embryo from the callus,<br />

plant growth regulators and medium formulation<br />

(Buyukalaca and Mairtuna, 1996). Among the<br />

plant growth regulators, generally auxin is<br />

known to be essential for the induction of<br />

somatic embryogenesis and 2,4-D is the most<br />

commonly used auxin (Ammirato, 1983).<br />

Morever, a combinations of 2,4-D or NAA with<br />

cytokinine was reported to be essential for<br />

induction of callus and somatic embryos (Jarsrai<br />

et al, 2003). Certain cells may need simple MS<br />

medium for the induction of somatic embryos<br />

and further development (Jarsrai et al, 1999).<br />

To determine the best callus induction<br />

response from leaves explant of different types,<br />

various concentrations and combinations of plant<br />

growth regulators were tried (Table 1). <strong>The</strong> best<br />

results of callus induction response (100%) in<br />

whole area of leaf explant was observed on MS<br />

medium supplemented with 2 mgl -1 BA<br />

combined with (0.2 or 0.4 mgl -1 ) 2,4-D (Fig 2. a)<br />

under dark condition followed by MS medium<br />

supplemented with (1, 2) mgl -1 BA + (0.2, 0.4)<br />

mgl -1 2,4-D (80%) callus was formed on the<br />

three fourths of explant under light condition<br />

(Fig 2. b). <strong>The</strong> lowest callus induction response<br />

(30%) was observed on MS medium<br />

supplemented with 1 mgl -1 BA + 0.4 mgl -1 NAA<br />

formed on the two fourths of explant under dark<br />

condition (Fig 2. c) followed by MS medium<br />

supplemented with 1 mgl -1 BA + (0.2, 0.4 mgl -1 )<br />

NAA (20%) callus was formed on the one fourth<br />

of explant under light condition (Fig 2. d)<br />

however callus was not formed at all in MS<br />

medium free-hormone (control) under both<br />

conditions (Fig 2. e). Presad et al (2006)<br />

111<br />

A<br />

B<br />

C<br />

reported callus development from Ipomoea<br />

aqatica leaves segment cultured on MS medium<br />

with different concentrations of BA combine<br />

with 2,4-D. Nurazan et al (2009) and Lima et al<br />

(2008) obtained callus in Cananga odorata and<br />

Croton uruerana using different levels of 3 mgl-<br />

1 NAA or 3 mgl -1 2,4-D from petal explant and<br />

leave segments respectively. In the same table,<br />

the average callus fresh weight was obtained on<br />

MS medium supplemented with 2 mgl -1 BA +<br />

0.2 mgl -1 2,4-D with an average of (5.39) mg/<br />

culture. Medium containing less than 2 mgl -1 BA<br />

+ 0.2 mgl -1 2,4-D and higher than produced<br />

fewer fresh weight of callus / culture under dark<br />

condition and the highest percentage of embryo<br />

induction was (98%) in the same condition and<br />

medium while the average callus fresh weight<br />

(3.91) mg/ culture was obtained on MS medium<br />

supplemented with 2 mgl -1 BA + 0.2 mgl -1 2,4-D<br />

and the highest percentage of embryo induction<br />

(89%) was obtained in MS medium<br />

supplemented with 2 mgl -1 BA + 0.4 mgl -1 2,4-D<br />

under light condition . In vitro grown leaf disk<br />

did not show any callus production on MS<br />

medium free-hormone treatment (control) (Fig<br />

2.e). Marconi and Radice (1997) reported<br />

somatic embryo from Codiaeum variegatum L.<br />

leaves explant cultured on MS medium<br />

containing 1mgl -1 2,4-D + 1mgl -1 BA.<br />

Conversely, Manohari et al (2008) concluded<br />

that in leaf explant of Elettaria cardamonum<br />

Malon, the callus induction was achieved on MS<br />

medium with combinations of NAA and BAP.<br />

<strong>The</strong> results of this work support those found by<br />

other authors. For instance, Machii (1999) did<br />

not observed callus formation in leaf explant of<br />

Morus alba L. in the absence of 2,4-D and<br />

Vietez and san-Jose (1996) did not obtained<br />

callus in leaf explant of Fagus silvatica L. in the<br />

presence of BA.<br />

Fig. (2): Callus induction from leaf of (Codiaeum variegatum). A: callus was formed on whole area of explant.<br />

B: callus was formed on the three fourths of explant. C: callus was formed on the two fourths of explant. D:<br />

callus was formed on the one fourth of explant. E: callus was not formed at all.<br />

D<br />

E


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 112-121, 2010<br />

Table (1): Effects of plant growth regulators on callus and somaic embryogenesis from leaf explant of Codiaeum<br />

variegatum after 6-8 weeks of culture in MS medium.<br />

Growth<br />

regulator<br />

mg l -1<br />

Callus<br />

induction<br />

%<br />

* Means followed by the same letter within each character (column) do not differ significantly (P≤0.05) according to<br />

Duncan's Multiple Range Test (Duncan ,1955).<br />

++++: callus was formed on whole area of explant.<br />

+++: callus was formed on the three fourths of explant.<br />

++: callus was formed on the two fourths of explant.<br />

+: callus was formed on the one fourths of explant.<br />

-: callus was not formed at all.<br />

Effect of different concentrations of BA or<br />

Kin alone on shoot formation from callus<br />

induction: Data on shoot formation revealed<br />

that when the concentration of BA was increased<br />

from 2.5 mgl -1 to 5 mgl -1 , the rate of shoot<br />

formation was also increased. Maximum number<br />

of somatic embryos induced from callus,<br />

maximum shoots formation and highest number<br />

of leaves per culture were obtained at 2.5 mgl -1<br />

BA which was 7.95 embryo/ culture, 4.58<br />

shoots/ culture and 3.13 leaves/ culture<br />

respectively after 6-8 weeks of culture<br />

inoculation (Table 2, Fig. 3 a-c). With further<br />

increase in concentration of BA, 7.5 mgl -1 BA<br />

produced 2.25 shoots/ culture while at MS<br />

medium free-hormone, the medium did not<br />

formed any shoots per culture, and the highest<br />

length of shoots (2.89 cm )was found on MS<br />

medium supplemented 7.5 mgl -1 compared with<br />

10 mgl -1 BA and control treatment which was<br />

(1.50 cm). Many researchers have also reported<br />

positive effect of BA on shoot multiplication and<br />

proliferation. Rahaman et al (2004) cultured leaf<br />

segments of Kaempferia galangal L. on different<br />

media and reported a number of somatic<br />

Dark condition Light condition<br />

Average<br />

callus<br />

fresh<br />

weight<br />

(mg)<br />

Embryo<br />

induction<br />

%<br />

Callus<br />

formation<br />

on mature<br />

leaf culture<br />

Callus<br />

induction<br />

%<br />

Average<br />

callus<br />

fresh<br />

weight<br />

(mg)<br />

Embryo<br />

induction<br />

embryonic formation on MS medium with 2<br />

mgl -1 BA plus 0.05 mgl -1 NAA. Similarity,<br />

Nakaura (1991) found mass prolific growth of<br />

Tea plants using 1 mgl -1 BA.<br />

During this investigation, it was also<br />

observed that 2.5 mgl -1 of BA was the best<br />

concentration for shoot development whereas<br />

higher concentrations inhibited it. This was in<br />

accordance with the study conducted by Kumar<br />

ad Kanwar (2004) in which they reported that<br />

lower concentration of BA (1 mgl -1 ) stimulated<br />

shoots growth in Gerbera jamesoni, but the<br />

higher concentration of BA (5 mgl -1 ) inhibited<br />

shoot proliferation.<br />

For in vitro shoot formation from callus, MS<br />

medium was supplemented with different<br />

concentrations of Kin ranging from 2.5 mgl -1 to<br />

10 mgl -1 . It was noticed that when the<br />

concentration of Kin was increased to 7.5 mgl -1 ,<br />

average number of embryo per culture formed<br />

was also increased. At this concentration,<br />

maximum number (3.70 embryo/ culture) was<br />

formed. Maximum shoots formation per culture<br />

and highest number of leaves per culture was<br />

observed at 7.5 mgl -1 Kin which was 3.45<br />

%<br />

Callus<br />

formation<br />

on mature<br />

leaf culture<br />

control 0f 0f 0g - 0f 0f 0g -<br />

BA+NAA<br />

1+0.2 40c-f 1.23e 66.6bc +++ 20ef 0.92e 0.0g +<br />

1+0.4 30d-f 2.28cd 73.5b +++ 20ef 1.47e 0.0g ++<br />

2+0.2 70a-d 2.45cd 93.4a +++ 40c-f 2.25cd 27.0e ++<br />

2+0.4 70a-d 2.57cd 56.6cd +++ 30d-f 2.09d 13.3f ++<br />

BA+2,4-D<br />

1+0.2 90ab 2.84c 46.7d +++ 50b-e 2.46cd 0.0g ++<br />

1+0.4 80a-c 2.89c 90.0a ++++ 80a-c 2.79cd 13.3f +++<br />

2+0.2 100a 5.39a 96.6a ++++ 80a-c 3.91b 33.0e +++<br />

2+0.4 100a 4.19a 86.6a ++++ 70a-d 3.36b 23.3e +++<br />

111


A<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 112-121, 2010<br />

shoots/ culture and 3.34 leaves/ culture<br />

respectively (Table 2, Fig. 3. b-d), however the<br />

highest length of shoot was obtained at 7.5 mgl -1<br />

Kin which was 2.89 cm. Whereas no embryo<br />

and shoot per culture was obtained in MS<br />

medium free-hormone and the lowest length of<br />

shoot was obtained in MS medium containing 10<br />

mgl -1 BA which was 1.50 cm. Results of other<br />

researchers showed that BA is more effective<br />

than Kin for multiple shoot induction like nodal<br />

culture of lagerstroemia flos-regina (Paily and<br />

D , Souza, 1986). In general, BA has been<br />

frequently reported to induce better shoot<br />

111<br />

multiplication than other cytokinins, particularly<br />

in tree species. Its effectiveness has been<br />

demonstrated in juvenile as well as mature<br />

tissues of Calophyllum inophyllum, Euggenia<br />

grandis and Fragraea fragns (Rao and Lee,<br />

1982). Ahmad (1989) observed the highest<br />

length of shoots from Acacia mangium (0.95<br />

cm) on MS medium with 1 mgl -1 Kin from in<br />

vitro nodal explant. Faisal et al. (2006) reported<br />

the establishment of shoot in vitro from a nodal<br />

segment in 10 mgl -1 cytokinin, while Faisal et al<br />

(2007) got the best results from shoot segment at<br />

2.5 mgl -1 Kin.<br />

Fig. (3): a: somatic embryos and shoots developed on 2.5 mgl -1 BA; b: somatic embryos and shoots developed<br />

on 7.5 mgl -1 Kin; c: shoot induction from somatic embryos explants on 2.5 mgl -1 BA; d: shoot induction from<br />

somatic embryos explants on 7.5 mgl -1 Kin.<br />

Table (2): Effects of different concentrations of BA and Kin on the growth response of Codiaeum variegatum<br />

leaf explants after 8 weeks of culture.<br />

Growth regulator mg l -1 No. of somatic<br />

embryos<br />

induced from<br />

callus<br />

No. of shoots/<br />

culture<br />

No. of Leaves/<br />

culture<br />

average Length of Shoots<br />

control 0.0 1.00e 0e 0c 0d<br />

Kin<br />

BA<br />

B<br />

2.5 2.01de 1.85d 3.30a 1.63c<br />

5.0 3.55c 2.33cd 2.81ab 1.83bc<br />

7.5 3.70c 3.45b 3.35a 2.89a<br />

10 2.05de 2.50cd 2.83ab 1.93a<br />

2.5 7.95a 4.58a 3.13a 2.33ab<br />

5.0 7.71ab 3.20bc 2.10b 2.06bc<br />

7.5 6.69b 2.25d 2.15b 1.50c<br />

10 2.88cd 2.75bcd 2.50ab 1.50 c<br />

* Means followed by the same letter within each character (column) do not differ significantly (P≤0.05)<br />

according to Duncan's Multiple Range Test (Duncan ,1955).<br />

D<br />

(cm)


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 112-121, 2010<br />

Effect of different concentrations of BA+ Kin<br />

on in vitro shoot multiplication: Different<br />

concentrations of BA ranging from 2.5 mgl -1 to 5<br />

mgl -1 with Kin ranging from 2.5 mgl -1 to 5 mgl -1<br />

in MS medium were also used for in vitro shoot<br />

multiplication. It was observed that when 3 mgl -1<br />

BA +4.5 mgl -1 Kin was used in MS medium,<br />

average of 4.53 shoots / culture were formed.<br />

When the concentration of BA was increased<br />

from 2.5 mgl -1 to 3 mgl -1 BA with 5 mgl -1 to 4.5<br />

mgl -1 Kin the number of shoots pre culture<br />

formed was also increased. At this<br />

concentration, maximum number of leaves per<br />

culture and the maximum length of shoot was<br />

observed in the same medium which were 4.7<br />

leaves/ culture and 3.7 cm respectively (Table 3,<br />

Fig. 4 a-b). Further increase in concentration of<br />

A<br />

BA, average number of shoots per culture was<br />

decreased. At 3.5 mgl -1 BA with 4 mgl -1 Kin,<br />

4.20 shoot/ culture and 4 leaves/ culture were<br />

obtained. At MS medium free-hormone<br />

minimum number of shoots per culture and<br />

number of leaves per culture was formed (2.80<br />

shoot/ culture and 3.2 leaves/ culture). Ahmad<br />

(1989) also reported the best shoot response of<br />

Acacia margium on MS medium supplemented<br />

with BA+ Kin. However, Shabbir et al (2009)<br />

reported best shoot induction response in MS<br />

medium containing (1.5 mgl -1 BA+ 0.5 mgl -1<br />

Kin) and Hameed et al (2006) and Arshed et al<br />

(2005) used MS medium supplemented with<br />

combinations of BA and Kin for shoot induction<br />

from nodal meristem and nodal segments<br />

respectively.<br />

Fig. (4): In vitro regeneration of Codiaeum variegatum. A-B: Multiple shoot regeneration from callus<br />

on MS medium containing 3.0 mgl -1 BA + 4.5 mgl -1 Kin.<br />

Table (3): Effects of different concentrations of BA + Kin on the growth response of Codiaeum variegatum leaf<br />

explants after 8 weeks of culture.<br />

Growth regulator mg l -1 No. of shoots<br />

BA + Kin<br />

developed<br />

B<br />

No. of Leaves per culture average Length of Shoots<br />

0.0 2.80abc 3.2a 1.48d<br />

2.5 + 5.0 3.92ab 3.3a 2.5bc<br />

3.0 +4.5 4.53a 4.7a 3.7a<br />

3.5 + 4.0 4.20a 4.0a 3.5ab<br />

4.0 +3.5 3.85abc 3.8a 2.7abc<br />

4.5 + 3.0 2.33bc 3.6a 1.9cd<br />

5.0 + 2.5 2.00c 3.3a 1.5d<br />

* Means followed by the same letter within each character (column) do not differ significantly (P≤0.05)<br />

according to Duncan's Multiple Range Test (Duncan ,1955).<br />

(cm)<br />

111


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 112-121, 2010<br />

Effects of different concentrations of NAA,<br />

IAA and IBA alone with (¼ and ½ strength)<br />

MS medium on in vitro rooting: <strong>Two</strong><br />

concentrations of auxin (0.5 and 1 mgl -1 ) of<br />

NAA, IAA and IBA at two levels of MS<br />

medium (¼ and ½ strength) were used for in<br />

vitro roots formation. <strong>The</strong> best response was<br />

observed when 0.5 mgl -1 IBA was added to ¼<br />

strength MS medium which was (70%) while<br />

60% of the shoots were rooted when 0.5 mgl -1<br />

IBA was added to ½ strength MS medium.<br />

However the shoots were not obtained when<br />

shoots were cultured in (¼ and ½ strength) MS<br />

free-hormone (Table 4). <strong>The</strong> lowest root<br />

induction response (20%) was observed on ½<br />

strength MS medium supplemented with 0.5<br />

mgl -1 NAA. A large number of roots, root length<br />

and root percentage (2.67 roots /explant, 3.56cm<br />

and 70%) respectively, was observed when 0.5<br />

mgl -1 IBA was used in ¼ MS medium. While a<br />

large number of roots, root length (2.55 roots<br />

/explant and 3.34 cm) respectively, was<br />

Growth<br />

111<br />

observed when 0.5 mgl -1 NAA and 1 mgl -1 NAA<br />

were used in ½ strength MS medium and 60%<br />

root percentage was observed when 0.5 mgl -1<br />

IBA was added to ½ strength MS medium . In<br />

the same table, minimum number of roots per<br />

shoot and root length were formed (1.23 roots/<br />

shoot and 1.71cm) when 1 mgl -1 NAA and 0.5<br />

mgl -1 NAA were added to ¼ strength MS<br />

medium respectively. Also minimum number of<br />

roots per shoot and root length were formed<br />

(1.34 roots/ shoot and 2.09 cm) when 0.5 mgl -1<br />

NAA and 1mgl -1 IBA were added to ¼ strength<br />

MS medium respectively. IBA has been reported<br />

to have stimulatory effect on root induction in<br />

many plant species including Alnus glutinosa<br />

(Perinet and Lalonde, 1987), Morus indica<br />

(Chand et al., 1995), Balanites aegyptica<br />

(Mansor et al., 2003) and Bambusa vulgaris<br />

(Ndiaye et al., 2006).<br />

Table (4): Effects of different concentration of NAA, IAA and IBA and salt strength of MS medium on shoot<br />

rooting of Codiaeum variegatum after 4 weeks of culture.<br />

regulator mg l -1<br />

Media con.<br />

% shoots<br />

showing<br />

root<br />

* Means followed by the same letter within each character (column) do not differ significantly (P≤0.05) according to<br />

Duncan's Multiple Range Test (Duncan ,1955).<br />

<strong>The</strong> rooted plantlets of Codiaeum variegatum<br />

were carefully removed from rooting medium<br />

and washed carefully, then transferred to<br />

greenhouse in small plastic pots with medium<br />

consisting of (sand and peat moss, 1:1). <strong>The</strong><br />

plants were finally hardened by gradually<br />

reducing the humidity. After four weeks from<br />

transplanting, the survival percentage reached to<br />

55%.<br />

¼ MS ½ MS<br />

Number of<br />

roots/shoot<br />

Root length<br />

(cm)<br />

% shoots<br />

showing root<br />

Number of<br />

roots/shoot<br />

control 0.0 0a 0c 0f 0a 0c 0f<br />

NAA<br />

IAA<br />

IBA<br />

Root<br />

length<br />

0.5 50a 1.42b 1.71e 20ab 1.34b 3.34ab<br />

1 50a 1.23b 2.23de 30ab 2.55a 2.19de<br />

0.5 60a 2.08a 2.47cd 50a 2.29a 2.58cd<br />

1 50a 2.38a 2.43cd 50a 2.33a 2.94bc<br />

0.5 70a 2.67a 3.56a 60a 2.47a 2.45cd<br />

1 60a 2.42a 3.24ab 50a 1.83ab 2.09de<br />

(cm)<br />

REERENCE<br />

- Ahmad, D. H. (1989). Micropropagation of Acasia<br />

margium from aseptically germinated<br />

seedlings. Journal of Tropical Forest Science<br />

3(3):204-208.<br />

- Ammirato, P. V. (1983). Embryogenesis.<br />

In: Handbook of Plant Cell Culture Vol. 1<br />

Evan DA,sharp WR, Ammirato and<br />

Yamada (Eds.), MacMillan Publishing Co.,<br />

New York, pp. 82-123.


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 112-121, 2010<br />

- Arshad, S. M.; A. Kumar and S. K. Bhatnagar<br />

(2005). Micropropagation of Bambusa wamin<br />

through shoot proliferation of mature nodal<br />

explant. Journal of Biological Research 3: 59-<br />

66.<br />

- Buchheim, J.A., S.M. Colbu and J.P. Ranch (1989).<br />

Maturation of Soybean somatic embryos and<br />

thaetransition to plant growth. Plant Physiol,<br />

89: 768-775.<br />

- Buyukalaca and Mairrtuna (1991). Somatic<br />

embryogenesis and plant regeneration of<br />

pepper in liquid media. Cell Tiss. And Org.<br />

Cult. 46:227-235.<br />

- Chand PK, Sahoo Y, Pattnaik, SK, Patnaik SN<br />

(1995). In vitro meristem culture- an efficient<br />

ex situ conservation strategy for elite mulberry<br />

germplasm. In Mohanty RC (eds)<br />

Environment: Change and Management,<br />

Kamalraj Enterprises, New Delhi, India, pp.<br />

127-133.<br />

- Deshmukh, S.D. and M.N. Borle. (1975). Studies on<br />

the insecticidal properties of indigenous plant<br />

products. Ind. J. Ent., 37(1):11-18<br />

- Duncan, D.B. (1955).''Multiple range and multiple<br />

F. teses, ''Biom., 11:1-42 .<br />

- Faisal, M.; N. Ahmad and M. Anis (2006). In vitro<br />

plant regeneration from Alginate –<br />

Encapsulated microcuttings of Rauvalfia<br />

tetraphylla L. American-Eurasian J. Agric.<br />

And Environ. Sci.1(1): 01-06.<br />

- Faisal, M.; N. Ahmad and M. Anis (2007). An<br />

efficient micropropagation system for<br />

Tylophora indica : and endangered<br />

medicinally important plant. Plant Biotechnol.<br />

Rep 1: 155-161.<br />

- Hameed, N. A.; Shabbir; A. Ali and R. Bajwa<br />

(2006). In vitro micropropagation of diseae<br />

free Rose ( Rosa indica L.) Mycopath 4(2):<br />

35-38.<br />

- Jasrai, Y. T.; K. N. Thaker and M. C. D. Souza<br />

(2003). In vitro propagation of Euphorbia<br />

pulcherrima Will through somatic<br />

embryogenesis. Plant Tissue Cult. 13(1): 31-<br />

36.<br />

- Jasrai, Y. T.; V. A. Chauhan and J. P. Palmer<br />

(1999). Plant somatic embryogenesis. In:<br />

Recent Trends in Developmental Biology,<br />

Gakhar S. K. and D. N. Mishea (Eds.),<br />

Himalayan Publishing House, Mumbai,<br />

pp.193-203.<br />

- Kumar, S. and J. K. Kanwar (2004). Plant<br />

regeneration from callus suspensions in<br />

Gerbera jamesonii Bolus. Journal of Fyuit and<br />

Ornamental Plant Research. 15:157-166<br />

- Kupchan, S.M., I. Uchida, A.R. Branfman, R.C.<br />

Dailey and B.Y. Fei. (1976). Antileukemic<br />

principles isolated from euphorbiaceae plants.<br />

Sci., 191:571-572.<br />

- Lima, E. C.; R. Paiva; R. C. Nogueira, F. P. Soares;<br />

E. B. Emrich and A. A. N. A. Silva (2008).<br />

Callus induction agratec., lavras. 32(1): 17-22.<br />

- Machii, H. (1992). Organigenesis from immature<br />

leaf culture in mulderry Morus alb L. J. Seric.<br />

Sci. Jpn. 61(6): 512-519.<br />

- Manohari, C.; S. Backiyarani; T. Jebasing; A.<br />

Somanath and R. Uasha (2008). Efficient plant<br />

regeneration on small Cardamon (Elettayia<br />

cardamomum Maton) through somatic<br />

embryogenesis. Indian Journal of<br />

Biotechnology 7: 407-409.<br />

- Mansor N, Ismaila D, Yaye Kene GD (2003). In<br />

vitro multiplication of the semi-arid forest<br />

tree, Balanites aegyptica (L.) Del. Afr. J.<br />

Biotechnol. 2: 421-424.<br />

- Marconi, P. L. and S. Radice (1997). Organogenesis<br />

and somatic embryogenesis in Codiaeum<br />

variegatum L. blume cv." CORAZON DE<br />

ORO". In vitro Cell. Dev. Biol.Plant 33: 258-<br />

262.<br />

- Mulabagal, V. and H.S. Tsay. (2004). Plant Cell<br />

Cultures: An alternative and efficient source<br />

for the production of biologically important<br />

secondary metabolites. Int. J. of App. Sci. and<br />

Eng., 2(1):29-48.<br />

- Murasige ,T. and F. Skoog (1962) . Arevised<br />

medium for rapid growth and bio-assays with<br />

tobacco tissue culture . Phsiologia Plantarum.<br />

15: 473–497.<br />

- Nakamura, Y. (1991). In vitro propagation<br />

techniques of Tea plants. JARQ 25: 185-195.<br />

- Nasib, A.; K, Ali and S. Khan (2008). In vitro<br />

propagation of croton (Codiaeum variegtum).<br />

Pak. J. Bot., 40 (1):99-104.<br />

- Ndiaye A. Diallo MS, Niang D, Gassama–Dia YK<br />

(2006). In vitro regeneration of adult trees of<br />

Bambusa vulgaris. Afr. J. Biotechnol. 5(13):<br />

1245-1248.<br />

- Nurazah, Z.; M. Radzali, A. Syahida and M. Maziah<br />

(2009). Effects of plant growth regulators on<br />

callus induction from Cananga odarata flower<br />

petal explant. African Journal of<br />

Biotechnology 8(12): 2740- 2743.<br />

- Orlikowska, T., I. Sabata and D. Kucharska. (2000).<br />

<strong>The</strong> effect of leaf and shoot tip removal and<br />

explant orientation on adillary shoot<br />

proliferation of Codiaeum variegatum Blume<br />

var. pictum Muell. Arg. Cv. Excellent. Sci.<br />

Horti.,85(1-2): 103-111.<br />

- Orlikowska, T., I. Sabata and E. Nowak. (1995).<br />

Adventitious shoot regeneration on explants of<br />

Anthurium, Codiaeum, Dieffenbachia,<br />

Gerbera and Spathiphllum for breeding<br />

purposes. Acta Hort., 420: 115-117.<br />

- Paily, J. and L. D , Souza (1986). In vitro clonal<br />

propagation of lagerstroemuia flos-reginnae<br />

111


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 112-121, 2010<br />

Retz. Plant Cell, Tissue and Organ Culture<br />

6(1): 41-45.<br />

- Perinet P, Lalonde K (1983). In vitro propagation<br />

and nodulation of the actinorhizal host plant,<br />

Alnus glutinosa (L.) Gaertn. Plant Sci. Lett.<br />

29: 9-17.<br />

- Prasad, K. N.; M. S. Prasad; G. R. Shivamurthy and<br />

S. M. Aradhya (2006). Callus induction from<br />

Ipomoea aquatic Forsk. Leaf and its<br />

antioxidant activity. Indian Journal of<br />

Biotechnology. 5: 107-111.<br />

- Rahman, M. M.; M. N. Amin; T. Ahamed; M. R.<br />

Ali and H. Habib (2004). Efficient plant<br />

regeneration through somatic embryogenesis<br />

for leaf base-derived callus of Kaempferia<br />

galangal L. Asian Journal of plant Sciences<br />

3(6): 675-678.<br />

- Rao, A. N. and S.K. Lee (1982). Importance of<br />

tissue culture in tree propagation. Pp. 715-718<br />

in Fujwara, A. (Ed.). Plant tissue. 1982. <strong>The</strong><br />

Japanese Association for plant tissue culture,<br />

Tokyo.<br />

اغانىقد<br />

111<br />

اناش اندناج اليسب<br />

Codiaeum variegatum<br />

. اطهةب اناش اندناض الَيسب ىىتوسك َىكةووز انسكةدَيشو<br />

وًًَتايرت لةطد ادMS<br />

وًَطهةب ذ<br />

ىسلًَض ةتاي سهاك<br />

- Robinson,J.P.; s. J. Britto and V. Balakrishnan<br />

(2009). Regeneration of Plants Through<br />

Somatic Embryogenesis in Emilia zeylanica C.<br />

B. Clarke a Potential Medicinal Herb. Botany<br />

Research International, 2 (1): 36-41.<br />

- SAS , (2001) . SAS/ STAT , Users Guide for<br />

Personal Computer, Release 6, SAS . Institute<br />

. Inc. Cary . nc. USA.<br />

- Shbbir, A.; N. Hameed; A. Ali and R. Bajwa<br />

(2009).Effect of different cultured conditions<br />

on micropropagation of Rose ( Rosa indica L.)<br />

Pak. J. Bot., 41(6): 2877-2882.<br />

- Shibata, W., F. Murai, T. Akiyama, M.<br />

Siriphol, E. Matsunaga and H. Morimot.<br />

(1996). Micropropagation of Croton<br />

sublyratus Kurz; a tropical tree of<br />

medicinal importance. Plant Cell Rep., 16:<br />

147-152<br />

- Vietez, A. M.; M. C. San-Jose (1996).<br />

Adventitious shoot regeneration from<br />

Fagus syvatica leaf explant in vitro. In vitro<br />

cellular and Development Biology, Larog.<br />

32(3):140- 147.<br />

ىىتوسك ىكةووز انسكةديش<br />

ىوىبهًش ىب ذ ىاهًئزالب ةتاي اناش اندناض الًهكةت<br />

ةتخىث<br />

َىظاًب فاند اد َىندناض ىمةدد ىسلًقات ةهتاي ىسهاك انسلًَج ىب اطهةب وهًَناًش اد َىنوىبهًش<br />

% 011<br />

، ىسهاك انسلًَض ىب<br />

9..5 شًَك ويترشابو 2,4-D تره/<br />

مغوم1.2<br />

+ BA تره / مغوم<br />

BA<br />

اضزاث<br />

BA<br />

2 لةطد اد<br />

لةطد ىاو انسك لةلًَتو<br />

MS<br />

. ادَىًيانوز وهًَنادواك وبد ىاهًئ ةفتسةدب ةتاي شًَك مغوم .950 و % 01<br />

ذ شاواًج وًَتايرت لةكد اد<br />

/ قةض<br />

5.09(<br />

MS<br />

NAA<br />

و<br />

2,4-D<br />

ذ شاواًج<br />

َىفاًب فاند اطهةب اندناض َىمةدد ىكةووز<br />

اسةو زةيو اد َىيزات وهًَنادواك وبد مغوم<br />

َىظاًب فاند ىكةووز اكةضزاث نةو ىدناض ةتاي سهاك ،ىوىبةدهًَيوود اغانىقد<br />

اقةض ايرَيزدو اطهةبو اقةض ازامش ىب ىىكزامىت ةهتاي مانجةئ ويترشاب<br />

. َىهتب مًئ زةي<br />

2.9 لةكد MS َىظاًب فاند ىدناض ةهًتاي َىمةدد اد مًئ فيوده ) مس 2... و ىكةووز اضزاث / طهةب<br />

ويترشاب<br />

لةطد<br />

BA +Kin<br />

MS<br />

انادلًه تزابةس<br />

َىفاًب فاند اد ىاو اندناض َىمةدد<br />

. لوترنىك ايزةدةزةس ىاو ذ و ىد وًَيزةدةزةس لةطد دزوازةب<br />

) ىكةووز اضزاث<br />

/<br />

قةض<br />

4.53(<br />

ازامذ ويترشاب و َىناد هووز اغانىق ىب تنسايىطةظ ةهتاي قةض وةئ َىطهي ىتشث<br />

تره/<br />

مغوم<br />

1.9<br />

لةطد<br />

) MS ¼(<br />

..05<br />

Kin<br />

و<br />

، ىكةووز<br />

BA تره/<br />

مغوم<br />

اقةض ازامذ ىب ىسكزامىت ةهتاي مانجةئ<br />

Kin تره/<br />

مغوم5.9<br />

+ BA تره / مغوم.<br />

َىفاًب فاند اد ىندناض َىمةدد ىسكزامىت ةهتاي ىدةس ىةرَيز ايووز ايرَيزد و ايووز<br />

مًئ<br />

فيوده )% 27 و مس 66.. ، ىكةووز اضزاث / هووز 76.2(<br />

IBA


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 112-121, 2010<br />

Codiaeum variegatum<br />

نوتوركلا تابنل قيقدلا راثكلاا<br />

سلاكلا ثادحتسا ىلع اهتلاخادتو ةيتابنلا ومنلا تامظنم نم ةفلتخملا زيكارتلا راثا يصقتل ةساردلا اذى تيرجا<br />

ةجسنا تمدختسا . Codiaeum variegatum<br />

نم ةفلتخم زيكارت عم اهلخادتو<br />

NAA<br />

و<br />

2,4-D<br />

ةصلاخلا<br />

نوتوركلا تابنل ةقرولا ةجسنا ةعارز للاخ نم تاتابن ىلا هروطتو هومنو<br />

ـلا نم ةفلتخم زيكارتب دوزملا<br />

BA رتل / مغلم 2 ـب دوزملا MS طسو ىلع ةقرولا جيسن ةعارز<br />

دنع ترهظ جئاتنلا لضفا<br />

غلب يرط نزو لضفاو % 022<br />

سلاكلا ثادحتسلا ةباجتسلاا ةبسن تغلب ثيح<br />

MS<br />

طسو يف اهتعارزو ةيتابن ءازجاك ةقرولا<br />

2,4-D<br />

. سلاكلا ثادحتسلا<br />

نم رتل<br />

/<br />

ملغم<br />

2.2<br />

BA<br />

ـلا<br />

عم لاخادتم<br />

غلب ءوضلا فورظ تحت سلاكلل يرطلا نزولاو سلاكلا ثادحتسلا ةيوئملا ةبسنلا امنيب . ملاظلا فورظ تحت مغلم<br />

BA<br />

ـلا نم ةفلتخم زيكارتب دوزملا<br />

5.93<br />

. سلاكلا نوكت نم تلخ يتلا ةنراقملا<br />

ةلماعم عم ةنراقم يلاوتلا ىلع مغلم 9.30 و % 02<br />

MS<br />

تغلب ةلاطتسا لضفاو قارولاا نم ددع ربكاو عرفلاا<br />

طسو ىلع ةينابن ءازجاك نوكتملا سلاكلا ةعارز مت دقف فعاضتلا ةلحرم يف اما<br />

نيوكتل<br />

لدعم ىلعا ناب جئاتنلا ترهظا<br />

. دارفنا ىلع لك Kinو<br />

/ مغلم 2.5 ـب دوزملا MS طسو ىلع اهتعارز دنع يلاوتلا ىلع ) مس 2.99 ،يتابن ءزج / ةقرو 9.09 ، يتابن ءزج / عرف 8.50(<br />

ددع لضفا ناب ظحلانف<br />

Kin + BA<br />

لخادتل ةبسنلاب<br />

. ونراقملا ةلماعم اهنمضبو تلاماعملا عيمج عم ونراقم<br />

مت اىدعب Kin رتل / مغلم 8.5 + BA رتل / مغلم 9 ـب دوزملا MS طسو ىلع ةعارزلا دنع يتابن ءزج/<br />

عرف<br />

4.53<br />

BA<br />

رتل<br />

غلب عرفلال<br />

عرفلاا ةعارز دنع ريذجت ةبسن ىلعاو<br />

ةلاطتسا لضفاوروذجلل ددع ربكا رهظ ثيح ريذجتلا طسو ىلا حاجنبو عرفلاا لقن<br />

ىلع )% 22 و مس 9.5. ، يتابن<br />

ءزج / رذج 2..2(<br />

تغلب يتلاو<br />

IBA<br />

رتل / مغلم<br />

2.5<br />

ـب دوزملاو وحلاما ةوق عبرب طسو ىلع<br />

.<br />

يلاوتلا<br />

111


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 122-130, 2010<br />

REGENERATION OF F1 HYBRIDS OF EGGPLANT (Solanum melongena L.)<br />

AND TOMATO(Lycopersicon esculentum L.) FROM STEM EXPLANTS.<br />

233<br />

MOSLEH M.S. DUHOK,Y Payman A. A. Zibari * , and Mohammad M. A. Salman **<br />

* Dept. of Horticulture, College of Agriculture, University of Duhok, Kurdistan Region-Iraq<br />

** Dept. of Horticulture, College of Agriculture, University of Baghdad-Iraq<br />

(Received: August 9, 2010; Accepted for publication: February 2, 2011)<br />

ABSTRACT<br />

An in vitro method for propagation of eggplant (Solanum melongena L.) and tomato (Lycopersicon esculentum L.)<br />

was developed. Stem explants of Fl hybrids of eggplant and tomato from in vitro germinated seedlings were cultured<br />

on MS medium supplemented with different concentrations and combinations of BA and NAA. Multiples shoots were<br />

induced from the stem explants of eggplant and tomato by culturing them on MS medium supplemented with 2.5, 5.0<br />

mgl -1 BA plus 0.3 mgl -1 IAA or 2.5mgl -1 BA plus 0.2 mgl -1 NAA. Differentiation and shoots were initiated after one<br />

week of culture and after 8 weeks of primary culture, an average of three plantlets were developed from the cultures<br />

supplemented with 5.0 mgl -1 BA in eggplant and 2.5 mgl -1 BA in tomato. <strong>The</strong> shoots when subcultured on 1/2 salt<br />

strength MS medium supplemented with 0.3 mgl -1 NAA produced plantlets subculture with well-developed root<br />

system after 4 weeks. <strong>The</strong> plantlets were then acclimatized, and planted in pots which showed 95% survival under<br />

natural conditions.<br />

INTRODUCTION<br />

Tomato and eggplant are the most common<br />

popular and principle vegetable crops in Iraq as<br />

well as they grown in the most parts of the<br />

world.<br />

A number of cultivars are grown through out<br />

the country depending upon the yield consumer ' s<br />

preference about the colour, size and shape of<br />

various cultivars. Tomato and eggplant<br />

responded to seasonal changes, low temperature<br />

and to several diseases and pests that cause<br />

serious crop losses.<br />

<strong>The</strong>se problems have been addressed by<br />

hybridizing these plants with wild resistant<br />

species, which presents a wide genetic diversity<br />

and are a source of useful agronomic traits. Now<br />

a days of tissue culture techniques are widely<br />

used for propagation of various crops .<strong>The</strong> use of<br />

tissue culture technology for vegetative<br />

propagation of plants is the most widely used<br />

application of the technology (Smith, 2000).<br />

Several methods are used to propagate plants in<br />

vitro to enhance auxiliary shoot proliferation, de<br />

novo formation of adventitious shoot through<br />

organogenesis, non- zygotic embryogenesis,<br />

currently. This method provide genetic stability<br />

and easily attainable for many plant species.<br />

(Trigiano and Gray, 2000). This paper reports a<br />

mass propagation procedure for tomato and<br />

eggplant F1 hybrid to produce plants as of<br />

original cultivar.<br />

MATERIAL AND METHODS<br />

Plant material:<br />

<strong>Seeds</strong> of tomato (Lycopersicon esculentum<br />

Mill.) olivade F1 hybrid cultivar and eggplant<br />

(Solanum melongena L.) Dusty cultivar were<br />

purchased from Nelson OY, Finald, Suomi.<br />

<strong>Seeds</strong> were washed with running tap water for<br />

five minutes. <strong>The</strong> seeds were then treated with<br />

ethanol 70% for 30 seconds before surface<br />

sterilization by dipping into 1.0% NaOCl for 5<br />

minutes and then rinsed 5 times with sterile<br />

distilled water. Sterilized seeds were placed on<br />

sterile wet filter paper in Petri dishes and<br />

incubated at 25± 2°C in the dark for 1 week.<br />

Germinated seeds (seedlings) were subcultured<br />

on half- strength MS –basal medium<br />

(Murashige and Skoog, 1962) and incubated<br />

under 16 h photoperiod, illuminated with white<br />

fluorescent lamps. Stems obtained from<br />

seedlings at 30 days old were cultured in test<br />

tubes (25x160 mm) containing 15 ml of culture<br />

MS medium.<br />

Culture media and culture conditions:<br />

Plant growth regulators (PGRs) were added<br />

to MS medium and the pH was adjusted to 5.8<br />

before autoclaving at 120 ° C for 20 minutes.<br />

Stems were grown on medium solidified with 7<br />

g/l agar and kept under 16h photoperiod,<br />

illuminated with white fluorescent lamps at 25±<br />

2 °C. Stems were subcultured at 30 days<br />

intervals to fresh medium.


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 122-130, 2010<br />

Shoot initiation and multiplication on MS<br />

basal medium was supplemented with different<br />

concentrations of BA (0.0 2.0 and 4.0 mgl -1 )<br />

alone or in combination with IAA (0.0, 0.4 mgl -<br />

1 ) for culture initiation, and (0.0, 2.5 and 5.0 mgl -<br />

1 BA) alone or in combination with NAA (0.0,<br />

0.2 and 0.3 mgl -1 NAA) for shoot multiplication.<br />

<strong>The</strong> number of shoots was visually counted after<br />

eight weeks.<br />

Rooting and acclimatized:<br />

Elongated shoots (2-2.5cm) were excised and<br />

transferred to full and half –strength MS medium<br />

containing 0.0 or 0.3 mgl -1 NAA for rooting.<br />

Plantlets with developing root system were<br />

transferred to plastic cups containing sterile peat<br />

moss irrigated with 1/4 strength MS salt . Each<br />

cup was covered with a polyethylene bag and the<br />

plants were hardened for ten days by gradually<br />

reducing the humidity through making holes in<br />

the bags.<br />

Experimental design and statistical analysis<br />

Experiments were carried out in a completely<br />

randomized design (CRD). Data scored on<br />

percentage were subjected to arcsine<br />

transformation before analysis and then<br />

converted back to percentage for presentation.<br />

Significant differences among mean values were<br />

separated and compared using Duncan’s<br />

multiple range test at 5% level (Duncan,1955 ).<br />

*Means followed by the same letters in each<br />

column does not differ significantly from each<br />

other according to Duncan’s multiple range test<br />

at 5% level.<br />

RESULTS AND DISCUSSION<br />

<strong>The</strong> stem explants obtained from in vitro<br />

seedlings of eggplant were cultured either on MS<br />

medium alone or supplemented with 4.0 mgl -1<br />

BA, 0.4 mgl -1 IAA and their combination. Stem<br />

explants of eggplant cultured on MS media<br />

supplemented with 4.0 mgl -1 BA or 4.0 mgl -1 BA<br />

+ 0.4 mgl -1 IAA produced shoots after one week,<br />

and start giving multiple shoots after 3 weeks of<br />

culture. Shoots of explants cultured in hormone<br />

free MS media were induced after 4 weeks. <strong>The</strong><br />

stem explants showed high totipotency in<br />

producing the callus in MS medium combined<br />

with BA plus IAA. Average number of shoots<br />

were significantly higher in MS media<br />

supplemented with 4.0 mgl -1 BA or 4.0 mgl -1 BA<br />

+ 0.4 mgl -1 IAA (Fig. 1). While averages shoot<br />

length was about 6 cm in MS + 4.0 mgl -1 BA or<br />

MS +0.4 IAA. (Fig. 2). No significant<br />

differences in average leaves number per shoot<br />

was observed between the treatments (Fig 3.).<br />

Fig. (1): Effect of different concentrations of BA and IAA on the average shoots number / explants of eggplant<br />

at initiation stage.<br />

234


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 122-130, 2010<br />

235<br />

Fig. (2): Effect of different concentrations of BA and IAA on the average shoots length /<br />

eggplant at initiation stage.<br />

Fig. (3): Effect of different concentrations of BA and IAA on the average leaves number /<br />

shoot of eggplant at initiation stage.<br />

When the stem explants of tomato seedlings<br />

obtained form in vitro grown seedlings were<br />

cultured on hormone free MS medium, shoots<br />

were induced after one week which increased in<br />

length greatly and produced callus after 4 weeks<br />

in culture, roots were developed after 3 weeks<br />

and exhibited high growth.<br />

Tomato stem explants cultured on MS media<br />

supplemented with 2.0 or 4.0 mgl -1 BA initiated<br />

shoots after two weeks, exhibited slow growth<br />

rate and from lower surface of explants callus<br />

was developed which was yellow in colour.<br />

<strong>The</strong> highest average of shoot number,<br />

shoot length and leaves per shoot were observed<br />

in explants cultured in hormone free MS<br />

media. (Fig 4, 5, 6).


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 122-130, 2010<br />

Fig. (4): Effect of different concentrations of BA on the average shoot number /<br />

explant of tomato at initiation stage.<br />

Fig. (5): Effect of different concentrations of BA on the average shoot length / cm<br />

of tomato at initiation stage.<br />

Fig. (6): Effect of different concentrations of BA on the average leaves number / explant<br />

of tomato at initiation stage.<br />

In regard to multiplication, stem explants of<br />

eggplants cultured in hormone free MS medium,<br />

produced shoots after three weeks, while stem<br />

explants cultured in MS medium combined with<br />

BA , shoots were included after 12 days , the<br />

highest average shoot and leaves number was<br />

observed in stem explants cultured in MS<br />

medium supplemented with 5.0 mgl -1 BA<br />

whereas the lowest average number of shoots<br />

was recorded in nodal explants cultured in<br />

hormone free MS medium (Fig .7) and (Fig .9).<br />

236


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 122-130, 2010<br />

Fig. (7): Effect of different concentrations of BA and NAA on the average shoots number / explants of eggplant at multiplication stage.<br />

237<br />

Fig. (8): Effect of different concentrations of BA and NAA on the average shoots length (cm)/<br />

explant of eggplant at multiplication stage.<br />

Fig. (9): Effect of different concentrations of BA and NAA on the average leaves number /<br />

shoot of eggplant at multiplication stage.<br />

In this culture condition, an average of 3<br />

shoots pre explants were differentiated from<br />

each node after 8 weeks of culture (Fig. 7).When<br />

the nodal explants of tomato, obtained from the<br />

initiation stage were cultured either on MS<br />

medium alone or supplemented with either BA<br />

at 2.5 mgl -1 , 0.2 mgl -1 NAA or 2.5 mgl -1 BA+0.2<br />

mgl -1 NAA, shoots were induced after ten days<br />

in explants cultured in MS medium<br />

supplemented with 2.5 mgl -1 BA or 2.5 mgl -1 BA<br />

+ 0.2 mgl -1 NAA which exhibited high growth<br />

rates. <strong>The</strong> highest shoot number was recorded in


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 122-130, 2010<br />

MS medium combined with 2.5 mgl -1 BA alone<br />

or in combination with 0.2 mgl -1 NAA (Fig.10),<br />

while the highest shoot length was noticed on<br />

explants cultured on free hormone MS medium<br />

(Fig.11), <strong>The</strong> highest average leaves number per<br />

shoot was observed on shoots from explants<br />

cultured on MS medium supplemented with 2.5<br />

mgl -1 BA +0.2mgl -1 NAA.(Fig.12 ).<br />

Fig. (10): Effect of different concentrations of BA and NAA on the average shoot number /<br />

explants of tomato at multiplication stage.<br />

Fig. (11): Effect of different concentrations of BA and NAA on the average shoot length(cm)<br />

of tomato at multiplication stage.<br />

Fig. (12): Effect of different concentrations of BA and NAA on the average leaves number / explants<br />

of tomato at multiplication stage.<br />

238


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 122-130, 2010<br />

239<br />

Fig. (13): Effect of MS Salt strength and NAA on root number / shoot of eggplant.<br />

Fig. (14): Effect of MS Salt strength and NAA on root length / shoot of eggplant .<br />

Fig. (15): Effect of MS Salt strength and NAA on roots number / shoot of tomato.


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 122-130, 2010<br />

Fig. (16): Effect of MS Salt strength and NAA on root length / shoot of tomato.<br />

<strong>The</strong> use of cytokinins and auxins at different<br />

concentrations are commonly used in in vito<br />

propagation of plants, exogenous application of<br />

BA in the prescence of auxin plays an<br />

important role in culture initiation and<br />

multiplication stages. BA induces cell division<br />

and has important role in growth of lateral buds<br />

by releasing them from apical dominance, auxin<br />

promotes cell elongation and division and<br />

stimulates vascular differentiation in plant<br />

tissues ( Davies, 1995) . Differences were<br />

noticed in response and to totipotency of the<br />

explants of eggplant and tomato due to the<br />

exogenous application of BA and auxin to<br />

culture medium during the initiation stage , this<br />

may attributed to the levels of endogenous<br />

hormones in both species under study. <strong>The</strong><br />

frequency of initiation was higher in tomato<br />

explants than eggplant explants in hormone free<br />

MS media , this most likely due to the high<br />

levels of endogenous hormones in tomato since<br />

high rates of explant initiation and growth rate of<br />

tomato shoots were observed in hormones free<br />

MS medium. A high number of Solanaceae<br />

family species were propagated in vitro by using<br />

different explants and propagation methods<br />

(Magioli et al,1998, Sharma and Rajam , 1995,<br />

Ma et al .1999 , Franklin et al . 2004 and<br />

Iwamoto and Eura , 2006). <strong>The</strong> elongated shoots<br />

were transferred to rooting medium for root<br />

induction. Roots were initiated in eggplant shoot<br />

after two weeks of culture. In tomato, shoots<br />

roots at lowers surface of shoots were induced<br />

during the subculture at initiation and<br />

multiplication stages. Among the treatments<br />

tested, shoots of eggplant and tomato cultured on<br />

a 1/2 strength MS medium supplemented with<br />

0.3 mgl -1 NAA produced the highest average<br />

root number and length per shoot (Fig 13,14<br />

15,16) . In vitro rooted plantlets were<br />

acclimatized carefully and planted in pots<br />

containing steril peat moss. Within these<br />

regenerated plants ,95% of plantlets was<br />

survived uder natural condition.<br />

REFERENCES<br />

- Davies, P. 1995 . <strong>The</strong> plant hormones ,their nature<br />

,occurrence and functions , In .P. J Davies (Id) Plant<br />

hormones. Physiology and Biochemistry and<br />

Molecular Edioloag . kluwer Academic Publishers<br />

Dorderecht , 1995 ,pp 1-12 .<br />

- Duncan, D. B (1955). Multiple range and multiple F.teses.<br />

Boim., 11:1-42.<br />

- Franklin ,G. , C.J . Sheeba and L. Sity , 2004 .<br />

Regeneration of eggplant (Solanum melongena L.)<br />

from root explants In vitro Cell, Dev. Biol, Plant<br />

40: 188- 191.<br />

- Iwamoto Y. and H. Eura 2006. Efficient plant<br />

regeneration from eggplant rootstock culture and its<br />

wild relatives . Plant Biotechnology 23: 525-529.<br />

- Ma.Y.K., Kato K. and M. Masuda. 1999. Efficient callus<br />

induction and shoot regeneration by anther culture<br />

in male sterile of tomato (Lcopersicon esculentum)<br />

J.Japanee. Soc. Hort. Sci , 68:768-773.<br />

- Magioli C. Rocha, A.P.M., de Oliveira, D. E and Mansur.<br />

E (1998) Efficient shoot organogenesis of egg<br />

plant( Solanum melongena (L.) induced by<br />

thidiazuron . Plant Cell Rep. 17:661-663.<br />

- Murashige T. and Skoog F. 1962 A revised medium for<br />

rapid growth and bioassays with tobacco tissue<br />

cultures Physiol. Plant. 15:473 -497.<br />

- Sharma, P. and M.V. Rajam 1995. Genotype explant and<br />

position effects on organogenesis and<br />

embryogenesis in eggplant ( Solanum melongena<br />

L.) J. Exp. Bot. 46 : 135-141.<br />

- Smith. R.H. 2000. Plant Tissue Culture Techniques and<br />

Experiments, 2nd. edition , A cademic press.<br />

- Trigiano, R. N. and D. J. Gray. 2000. Plant Tissue Culture<br />

Concepts and Laboratory Exercies. 2 nd ed. U. S. A.,<br />

Boca Raton New York. Washington DC.<br />

23:


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 122-130, 2010<br />

ناجابو ) Solanum melongena) ( شةز ناجاب نكةووز وودزةه وب ذ نانيئ ةظ تضةدب ةتاه يره انسكةدَيش اكةكَيز<br />

241<br />

ةتخوث<br />

شةز ناجاب نيديبرياه وودزةه نَي َىكَيئ َىميج نَيمتش نَي َىندناض نَيضزاث اندناضب)<br />

Lycopersicon esculentum(<br />

زَوض<br />

ذ ادوجكَيذ ننادكَيل و ىتايرت كةدنوب ىسكةدَيش َىي)<br />

MS(<br />

َىظايب ظان د ندناض ةتاه اكةووز وودزةه َىظَوت . زَوض ناجاب و<br />

اندناض اكَيسب زَوض ناجاب و شةز ناجاب نكَيسط ذ<br />

و)<br />

BA(<br />

ترل/<br />

مغمو5.5<br />

8<br />

انيزوب ىتشث<br />

ىذ ناي<br />

) IAA(<br />

ترل/<br />

مغمو0.0)<br />

BA(<br />

. َىندناض ذ َىكةيتفةح انيزوب ىتشَيث َىنادقةضو<br />

شةز ناجاب وب)<br />

BA(<br />

ترل/<br />

مغمو5.0<br />

ب ىسك ةدَيش َىي<br />

نانيئ ةظ تضةدب ةنتاه ىسكَيل ةدنيه وود نقَيض.<br />

) NAA(<br />

و ) BA(<br />

ذ<br />

ترل/<br />

مغمو5.0و5.5ب<br />

ىسكةدَيش َىي)<br />

MS(<br />

َىظايب ظان د ناو<br />

) differentiation(<br />

انسكتشث هاث .) NAA(<br />

ترل/<br />

مغمو0.5<br />

) BA(<br />

َىظايب ظاند نسكَيلةدنهود ةنتاه كةووز<br />

, َىندناض ذ ايتفةح<br />

ةدَيش َىي و نَيزوخ اصَيه ظين هةطد ) MS(<br />

َىظايب ظان د اقض اي ةزابوود اندناض َىوةدو . زَوض ناجاب َوب)<br />

BA(<br />

ترل/<br />

مغمو5.5<br />

ظةئ,<br />

ايتفةح<br />

4<br />

انيزَوب ىتشثو نانيئ ةظ تضةدب صَيوبو شاب<br />

نهَوز نادوخ نكةووز<br />

.) NAA(<br />

ترل\<br />

مغمو0.0<br />

ب ىسك<br />

اوةئ َىنتفةكزةض ايةرَيز ب و اداكفاق ظاند ناو انسك نَيتش اكَيسب ىةشيش ايناخ ننادواك َوب تنضاهوكةظ ةنتاه ةكةووز<br />

(Lycopersicon<br />

ةطامطلاو<br />

) Solanum melongena)<br />

ناجنذابلا يتابنل قيقد<br />

ةعورزملا ةطامطلاو ناجنذابلا ينيجهل لولاا ليجلل<br />

تاريداب نم ناقيسلا نم ةيتابنلا ءازجلاا ةعارز مت<br />

ناقيس نم<br />

ةزيامتم ةيرضخ<br />

عرفا نيوكت<br />

. NAAو<br />

نم تلاخادتوزيكارت ةدع<br />

5.2 وا ) IAA(<br />

رتل/<br />

مغلم5.0و)<br />

BA(<br />

نمرتل/<br />

مغلم2.5و5.2<br />

ب دوزملا ) MS(<br />

طسو يف اهتعارز<br />

BA<br />

راثكا<br />

ويلا<br />

فاضملا ) MS(<br />

.% 55<br />

ةيشهةط<br />

ةصلاخلا<br />

ةقرط ىلع لوصحلا مت<br />

ذا<br />

esculentum)<br />

طسو يف اىروذب<br />

قيرط نع ةطامطلاو ناجنذابلا<br />

عيباسا ةينامث دعب و ةعارزلا<br />

نم عوبسا رورم دعب ةنوكتملا ةيرضخلا عرفلاازيامت<br />

. ) NAA(<br />

رتل/<br />

مغلم5.5و<br />

) BA(<br />

رتل/<br />

مغلم<br />

ناجنذابلل<br />

) BA(<br />

رتل/<br />

مغلم<br />

2.5<br />

ب دوزم يئاذغ طسو يف<br />

تاتابنلا<br />

هذى<br />

فعاضت مت ةعارزلا<br />

ب دوزملاو حلاملاا نم ةوقلا فصن ىلع يواح ) MS(<br />

طسو يف عرفلاا ةعارز ةداعا دنع.<br />

ةطامطلل)<br />

BA(<br />

رتل/<br />

مغلم5.2و<br />

ةجتانلا تاتيبنلا تلقن عيباسا عبرا رورم دعبو . ديج يرذج عومجم تاذ تاتابن ىلع لوصحلا مت ) NAA(<br />

رتل/<br />

مغلم<br />

.<br />

% 52 ىلا تلصو ةيلاع حاجن ةبسنبو<br />

ةيكيتسلاب نيدانس يف اىديرفتب يجاجزلا تيبلل ةيعيبطلا فورظلا ىلا<br />

نم<br />

5.0


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 131-138, 2010<br />

EFFECT OF HUMIC ACID AND SEAWEED EXTRACT ON GROWTH,<br />

YIELD AND FRUITS QUALITY OF CUCUMBER (Cucumis sativus L).<br />

GHURBAT H. MOHAMMAD<br />

Dept .<strong>Of</strong> Horticulture, College <strong>Of</strong> Agriculture, University <strong>Of</strong> Duhok , Kurdistan Region-Iraq<br />

(Received: September 16, 2010; Accepted for publication: January 31, 2011)<br />

ABSTRACT<br />

This experiment was carried out in Horticulture Department/College of Agriculture/ Duhok University on<br />

<strong>Cucumber</strong> plants during season 2010, to study the effect of three levels of Humic acid (0.0, 1, 2 g.L -1 ) and three levels of<br />

Seaweed extract (0.0, 2, 3 ml.L -1 ) on cucumber cv. Carol growing inside Plastic house. <strong>The</strong> results shows that spraying<br />

Humic acid or Seaweed extract led to positive significant difference in leaf area, leaves chlorophyll content, plant length,<br />

fruits number, early and total yield as well as fruit weight, fruit length, yield per plant, fruit dry weight, fruit chlorophyll<br />

content and TSS as compared to untreated plants.<br />

<strong>The</strong> interaction between Humic acid and Seaweed extract was significantly enhanced all detected traits, Since cucumber<br />

plants received 2 g.L -1 Humic acid and sprayed with 3 ml.L -1 of Seaweed extract were characterized by the highest values<br />

of all growth and yield characteristics.<br />

KEY WORDS: <strong>Cucumber</strong>, Humic acid, Seaweed, Carol<br />

C<br />

INTRODUCTION<br />

ucumber, (Cucumis sativus L.) is one of<br />

the most important vegetable crops in<br />

Kurdistan and Iraq, it is a warm season<br />

crop required growing conditions of 26 to 30 °C and<br />

plenty of sunlight, has been commonly cultivated<br />

in Iraq during the summer and fall as well as in low<br />

tunnels and plastic and green houses (Matlob et al<br />

1989). Organic fertilizers represented by Humic<br />

acid is one of the Humus substance compound<br />

produced from organic matter analysis (Al-Niemi<br />

1999). Humic acid is a commercial product<br />

contains many elements which improve the soil<br />

fertility and increasing the availability of nutrient<br />

elements and consequently affected plant growth<br />

and yield. Humic acid reduces other fertilizer<br />

requirements, increases yield in crops, improved<br />

drainage and aeration of the soil and increase the<br />

protein and mineral contents of most crops and<br />

establish a desirable environment for microorganism<br />

development.<br />

Seaweed extracts, a concentrated organic<br />

fertilizer (usually liquid, but can be soluble granules)<br />

that can be diluted and applied to tender seedlings<br />

and transplants as well as larger plants. Seaweed<br />

extracts act as plant growth stimulants, their<br />

effectiveness may be influenced by the species<br />

included and the manufacturing technique used.<br />

Overall crop performance is improved due to their<br />

effect on plant growth, protein, carbohydrate<br />

production and prolonged chlorophyll production<br />

and photosynthesis. Nonetheless it is possible that<br />

Seaweed extracts contain sufficient trace<br />

elements to remedy marginal deficiencies as has<br />

been demonstrated by (Aitken& Senn, 1965). It<br />

is also quite possible that the nutrients and trace<br />

elements may interact with other ingredients in the<br />

Seaweed to produce a crop response.<br />

Large yield increases in potatoes, soybeans and<br />

algae cultures due to using of Humic acid have been<br />

shown by (Freeman, 1970). Syabryai et al. (1965)<br />

showed that there is an increase 100% in yield<br />

when the plants fertilized with NPK and Humic<br />

acids in potatoes and cabbage, he added that<br />

barley crops increased considerably and growth<br />

was more rapid with Humic acids. Kowalski et al<br />

(1999) describe the positive effects of Seaweed<br />

extract on plant growth and increasing yield of<br />

potato plant significantly. Thomas (2002) found<br />

that using Seaweed extract (sea Buck thorn )<br />

causes in increasing growth and fresh weight of<br />

vegetative and roots growth significant of Rose<br />

plant.<br />

<strong>The</strong> latter reported also found that application of<br />

Humic acid led to improve plant growth, increase<br />

plant yield and improve quality of squash (Hafez,<br />

2004). Jensen (2004) found that spraying Seaweed<br />

extract contain micro elements ( Co, B, Mo, Zn,<br />

Cu) as well as macro element, Auxins,<br />

Gibberellins and Cytokines led to increasing root<br />

ability for growth and nutrient absorption and<br />

increasing stem thickness and strong vegetative<br />

and root growth.<br />

This study was planned to determine the<br />

effect of humic acid and Seaweed extracts on<br />

growth, yield and fruit quality of cucumber Carol<br />

cv. under plastic house conditions.<br />

MATERIALS AND METHODS<br />

<strong>The</strong> experiment was carried out during<br />

season 2010, at the vegetative research farm,<br />

College of Agriculture, University of Duhok<br />

inside plastic house, on cucumber (cv. Carol).<br />

131


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 131-138, 2010<br />

<strong>Seeds</strong> were sown in 15 th February 2010 at a<br />

distance of 40 cm between plants and 75 cm<br />

between the rows.<br />

A completely randomized block design<br />

(RCBD) was used in this experiment. Each<br />

treatment was replicated three times with eight<br />

plants per each. <strong>The</strong> factors included the<br />

following; Humic acid (Organic matter 75% and<br />

K2O 10%) at three levels (0.0, 1, 2 g.L -1 ) and<br />

three concentrations of Seaweed extract (sea<br />

force Mgo 3.2%, Mn 1.8%, Zn 2.4%, S 4.88%<br />

and So3 12.2%) (0.0, 2, 3 ml.L -1 ). All plants<br />

under taken in this study received the regular<br />

agricultural and horticultural practices that<br />

usually carried out in the vegetable crops.<br />

Spraying was done twice within ten days intervals,<br />

starting from flower initiation stage. Data were<br />

analyzed by using SAS program (SAS, 2001).<br />

Experimental measurements were as follows:<br />

1 –Vegetative growth characteristics: -<br />

a) Plant height (cm).<br />

b) Leaf chlorophyll content%.<br />

c) Leaf area (cm 2 ).<br />

2- Yield characteristics:-<br />

a) Early yield: fruits of first five harvests from each<br />

treatment were weighted to calculate the early yield<br />

per plant.<br />

b) Total yield: all fruits harvested from each<br />

treatment along the harvesting period were<br />

weighted to calculate the total yield kg/plant and<br />

Ton/ Donum.<br />

c) Fruit number per plant: total fruits harvested<br />

from each treatment along the harvesting period<br />

were divided on the plants numbers of treatments<br />

to calculate the fruit number/ plant.<br />

3- Fruit quality characteristics: Ten fruits<br />

from each treatments were randomly taken for<br />

determining average fruit character as follows:-<br />

a) 1-Fruit weight (g).<br />

b) 2- Fruit length (cm).<br />

c) 3- Fruit chlorophyll content%.<br />

d) 4- Fruit dry weight (g)<br />

e) Total soluble solid (TSS) %<br />

132<br />

RESULTS AND DISCUSSION<br />

1- Vegetative growth characteristics: Table (1)<br />

shows that spraying Humic acid with a<br />

concentration of 2 g.L -1 caused significant<br />

increased in leaf area and leaves chlorophyll<br />

content compared with control treatment. <strong>The</strong><br />

highest average of leaf area and leaves<br />

chlorophyll content resulted from spraying with<br />

a concentration of 2 g.L -1 humic acid, where it<br />

reached to (385.49 cm 2 and 47.12%) as<br />

compared with the lowest values (339.64 cm 2<br />

and 43.13%) respectively at control treatment.<br />

While had no significant effects on plant height.<br />

Concerning the Seaweed extract, the results<br />

of the same table shows that the preferred<br />

spraying with a concentration of (2 and 3 ml.<br />

L -1 ), has a significant preference compared with<br />

control treatment. While there were not<br />

significant differences between these two levels,<br />

the highest leaf area, leaves chlorophyll content<br />

and plant height(389.10 cm 2 , 46.80% and 339.00<br />

cm) respectively resulted from spraying with a<br />

concentration of (3 ml.L -1 ) in comparison with<br />

the lowest values at control treatment.<br />

For the interaction between Humic acid and<br />

Seaweed, there is a real effect shown in table (1)<br />

from the interaction between 2 g.L -1 Humic acid<br />

and 3 ml.L -1 Seaweed was significant in its effect,<br />

the plants of this interaction characterized by the<br />

highest values of (397.62 cm 2 , 47.70% and 345.33<br />

cm) respectively. This enhancement in the<br />

characteristics of the vegetative growth may attribute<br />

to the increase of uptake of macro and<br />

microelements influenced by Humic substances<br />

which have been reported in different plant species<br />

(Chen and Aviad, 1990). In addition it was stated<br />

the coal-Humic fertilizers activated the<br />

biochemical processes in plants (Respiration,<br />

Photosynthesis and chlorophyll content)<br />

(Abolina and Tashkhadzhaev, 1968).<br />

Furthermore, the growth promoting that activity<br />

of humic substances was found to be caused by<br />

plant hormone-like material contained in the<br />

Humic substances (Donnell 1973), or may be to the<br />

presence of iron in the Humic acids or their<br />

colloidal nature have a positive effect on the<br />

growth of various groups of microorganisms<br />

which may excrete a range of vitamins, growth<br />

substances and antibiotics and these may<br />

promote plant growth (Zhang and Schmidt, 2000,<br />

Zhang et al. 2003a, Zhang et a.l 2003b, Zhang and<br />

Ervin 2004 and Hafez 2004). <strong>The</strong>se results are in<br />

agreement with those obtained by (Manuel et al.<br />

1991. Onder et al. 2004, Giuseppe et al. 2006 and<br />

Ali et al. 2008).<br />

Also the increases in vegetative growth<br />

characteristics might be due to the Auxins<br />

content in the Seaweed extracts which have an<br />

effective role in cell division and enlargement, this<br />

leads to increase the growth of plants (Gollan and<br />

Wright 2006). This extracts contain Cytokinins as<br />

well in which induce the physiological activities<br />

and increase the total chlorophyll in the plant.<br />

This will positively reflects on the activity of<br />

photosynthesis and the synthesized materials<br />

which will positively reflects on vegetative<br />

growth characteristics (Thomas, 1996).


133<br />

Table (1):- Effect of Humic acid and Seaweed extract on some vegetative growth characteristics of cucumber (Cucumis sativus L) cv. Carol.<br />

Leaf area (cm 2 )<br />

Chlorophyll content of leaves Plant height (cm)<br />

Humic<br />

acid<br />

(g.L -1 )<br />

0.0<br />

Mean effect<br />

of Seaweed<br />

0.0<br />

1 282.6<br />

b<br />

2 349.0<br />

a<br />

366. a<br />

Seaweed extract<br />

(ml.L -1<br />

2<br />

354.8<br />

a<br />

354.7<br />

a<br />

392.6<br />

a<br />

3<br />

381.4<br />

a<br />

388.<br />

2<br />

a<br />

397.6<br />

a<br />

Mean<br />

Effect of<br />

Humi<br />

339.6<br />

b<br />

364.0<br />

ab<br />

385.4<br />

a<br />

0.<br />

0<br />

38.27<br />

c<br />

43.37<br />

b<br />

46.80<br />

ab<br />

Seaweed extract<br />

(ml.L -1 )<br />

2<br />

45.43<br />

ab<br />

46.80<br />

ab<br />

3<br />

45.70<br />

ab<br />

47.00<br />

ab<br />

Mean<br />

Effect of<br />

Humic<br />

43.13<br />

b<br />

45.72<br />

a<br />

0.0<br />

283.0<br />

c<br />

295.0<br />

be<br />

Seaweed extract<br />

(ml.L -1 )<br />

2<br />

338.3<br />

a<br />

325.3<br />

ab<br />

3<br />

344.3<br />

a<br />

327.3<br />

ab<br />

Mean<br />

Effect of<br />

Humic<br />

Mean within a column, row and their interaction following with the same latter are not significantly different according to Duncan multiple range test at the probability of 0.05 level<br />

46.87<br />

ab<br />

47.70<br />

a<br />

47.12<br />

a<br />

325.3<br />

ab<br />

331.3<br />

ab<br />

345.3<br />

a<br />

321.8<br />

a<br />

315.8<br />

a<br />

334.0<br />

a<br />

321.8<br />

a<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 131-139, 2010


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 131-138, 2010<br />

2- Yeild characteristics:<br />

Data presented in table (2) it is clearly shown<br />

that Humic acid caused significant increase in all<br />

yield characteristics as compared with untreated plants.<br />

<strong>The</strong> interaction treatment between Humic acid and<br />

Seaweed extracts was significant in its effect. Since<br />

cucumber plants received 2 g.L -1 of Humic acid and<br />

sprayed with 3 ml.L -1 of Seaweed were characterized by<br />

the highest value in fruit number/plant (97.45), Early<br />

yield (1.728 kg/plant) and total yield (70.96<br />

Ton/Donum) as compared with the lowest values of<br />

these traits for control which gave (65.41, 1.295kg/plant<br />

and 43.03 Ton/D.) respectively.<br />

Reactions by Humic substances that result in<br />

increased growth. This can explain the increment of yield<br />

in response to Humic acid application. Furthermore, the<br />

addition of Humates to a hydroponic solution stimulated<br />

both root and shoot development, resulting in an increase of<br />

87% in corn yield (Lee and Bartlette 1976). Salman et al<br />

(2004) stated that Humic acid application increased<br />

total yield of all hybrids of watermelon. <strong>The</strong> yield<br />

increase of cucumber plant may be due to the increase of<br />

the distillate flowers number which lead to increase the<br />

number of fruits that reflected on yield /plant and<br />

total yield.<br />

3- Fruit quality characteristics<br />

Data in tables (3 and 4) shows that Humic<br />

acid and Seaweed extract had positive effect on<br />

134<br />

all quality traits as compared with control. Also the<br />

interaction between Humic acid and Seaweed<br />

extracts was significant in its effect. Since cucumber<br />

plants received 2 g.L -1 of Humic acid and sprayed<br />

with 3 ml.L -1 of Seaweed extract were characterized<br />

by the highest value in fruit weighty (110.84 g),<br />

fruit length (17.80 cm), yield/plant( 9.49 kg) and<br />

fruit dry weight (3.53 g). as compared with the<br />

lowest values of these traits for control which gave<br />

(89.81 g, 15.17 cm, 5.93 kg and 2.70 g)<br />

respectively. <strong>The</strong> increases in fruit quality traits may<br />

be due to that the Humic fertilizers activated the<br />

biochemical processes in plants (respiration,<br />

photosynthesis and chlorophyll content) which<br />

lead to improve the quality (Abolina and<br />

Tashkhadzhaev 1968). Plants which were sprayed<br />

with Seaweed extracts may be due to its role in<br />

increasing the leaves numbers, leaf area and dry<br />

weight so the physiological activities as<br />

photosynthesis and providing plant by nutrition and<br />

these could be the reasons of increasing fruit weight<br />

(Al-Saaberi, 2005). <strong>The</strong> effect of seaweed extracts<br />

lead to increase the percentage of the total<br />

soluble substances because of its effect on<br />

increasing leaf area and efficiency of the<br />

photosynthesis process (Jensen, 2004).


135<br />

Humic<br />

acid<br />

(g.L -1 )<br />

0.0<br />

1<br />

2<br />

Mean effect of<br />

Seaweed<br />

Table (2):- Effect of Humic acid and Seaweed extract on yield characteristics of cucumber (Cucumis sativus L.) cv. Carol<br />

0.0<br />

65.41<br />

d<br />

78.87<br />

c<br />

92.83<br />

ab<br />

79.03<br />

b<br />

Fruit number/ Plant<br />

seaweed extract<br />

(ml.L -1 )<br />

2<br />

76.17<br />

cd<br />

87.60<br />

a-c<br />

95.13<br />

a<br />

86.30<br />

a<br />

3<br />

82.49<br />

be<br />

93.70<br />

ab<br />

97.45<br />

a<br />

91.21<br />

a<br />

Mean<br />

Effect of<br />

Humic<br />

74.69<br />

c<br />

86.72<br />

b<br />

95.14<br />

a<br />

0.0<br />

1.295<br />

d<br />

1.413<br />

cd<br />

Early yield (kg/plant)<br />

seaweed extract<br />

(ml.L -1 )<br />

2<br />

1.484<br />

a-d<br />

1.478<br />

b-d<br />

3<br />

1.544<br />

a-c<br />

1.517<br />

a-d<br />

Mean<br />

Effect of<br />

Humic<br />

1.441<br />

b<br />

1.469<br />

b<br />

0.0<br />

43.03<br />

c<br />

55.56<br />

b<br />

Total yield (Ton/D.)<br />

seaweed extract<br />

(ml.L -1 )<br />

Mean within a column, row and their interaction following with the same latter are not significantly different according to Duncan multiple range test at the probability of 0.05 level<br />

1.611<br />

a-c<br />

1.440<br />

b<br />

1.662<br />

ab<br />

1.541<br />

ab<br />

1.728<br />

a<br />

1.596<br />

a<br />

1.667<br />

a<br />

64.48<br />

a<br />

54.36<br />

c<br />

2<br />

54.05<br />

b<br />

67.36<br />

a<br />

68.73<br />

a<br />

63.38<br />

a<br />

3<br />

55.07<br />

b<br />

68.10<br />

a<br />

70.96<br />

a<br />

64.71<br />

a<br />

Mean<br />

Effec<br />

t<br />

of<br />

Humi<br />

c<br />

50.72<br />

c<br />

63.67<br />

b<br />

68.06<br />

a<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 131-139, 2010


136<br />

Humic acid<br />

(g.L -1 )<br />

Table (3) Effect of Humic acid and Seaweed extract on Fruit weight (g.), Fruit length (cm.) and Yield/Plant (kg.) of cucumber (Cucumis sativus L.) cv. Carol.<br />

0.0<br />

1<br />

2<br />

Mean<br />

effect of seaweed<br />

0.0<br />

89.81<br />

c<br />

95.86<br />

be<br />

98.39<br />

a-c<br />

94.68<br />

b<br />

seaweed extract<br />

(ml.L -1 )<br />

Fruit weight (g.)<br />

Mean Effect<br />

<strong>Of</strong> Humic<br />

seaweed extract<br />

(ml.L -1 )<br />

Fruit length (cm.)<br />

Mean Effect of Humic<br />

seaweed<br />

extract<br />

(ml.L -1 )<br />

2 3 0.0 2 3 0.0 2 3<br />

102.95<br />

a-c<br />

96.45<br />

be<br />

105.67<br />

ab<br />

101.69<br />

ab<br />

104.59<br />

ab<br />

108.16<br />

ab<br />

110.84<br />

a<br />

107.86<br />

a<br />

99.11<br />

a<br />

100.16<br />

a<br />

104.96<br />

a<br />

15.17<br />

b<br />

16.67<br />

ab<br />

16.29<br />

ab<br />

16.04<br />

b<br />

Mean within a column, row and their interaction following with the same latter are not significantly different according to<br />

Duncan multiple range test at the probability of 0.05 level<br />

17.17<br />

a<br />

17.00<br />

a<br />

17.62<br />

a<br />

16.83<br />

a<br />

17.00<br />

a<br />

17.80<br />

a<br />

16.39<br />

a<br />

16.89<br />

a<br />

17.24<br />

a<br />

5.93<br />

d<br />

7.57<br />

be<br />

8.46<br />

ab<br />

7.16<br />

c<br />

8.73<br />

a<br />

8.79<br />

a<br />

Yield /Plant (kg.)<br />

Table (4):- Effect of Humic acid and Seaweed extract on Fruit dry weight (g), Fruit Chlorophyll content% and TSS% of cucumber (Cucumis sativus L.) cv. Carol.<br />

Humic acid (g.L -1 )<br />

0.0<br />

1<br />

2<br />

Mean effect of Seaweed<br />

0.0<br />

2.70<br />

d<br />

3.13<br />

be<br />

2.94<br />

cd<br />

2.92<br />

b<br />

Fruit dry weight (g)<br />

Seaweed extract<br />

(ml.L -1 ) Mean Effect<br />

of Humic<br />

2<br />

2.97<br />

cd<br />

3.10<br />

be<br />

3.02<br />

cd<br />

3.03<br />

b<br />

3<br />

2.94<br />

cd<br />

3.39<br />

ab<br />

3.53<br />

a<br />

3.28<br />

a<br />

2.87<br />

b<br />

3.20<br />

a<br />

3.16<br />

a<br />

0.0<br />

30.93<br />

b<br />

34.93<br />

a<br />

37.63<br />

a<br />

34.50<br />

b<br />

17.26<br />

a<br />

17.21<br />

a<br />

Fruit Chlorophyll content%<br />

Seaweed extract<br />

(ml.L -1 ) Mean Effect<br />

of Humic<br />

2<br />

37.60<br />

a<br />

37.33<br />

a<br />

3<br />

37.63 35.39<br />

a b<br />

35.63<br />

a<br />

35.97<br />

ab<br />

7.32<br />

b<br />

0.0<br />

2.70<br />

b<br />

3.23<br />

ab<br />

8.23<br />

a<br />

7.51<br />

be<br />

8.79<br />

a<br />

9.49<br />

a<br />

8.60<br />

a<br />

TSS%<br />

Mean Effect<br />

<strong>Of</strong> Humic<br />

6.87<br />

c<br />

8.37<br />

b<br />

8.91<br />

a<br />

Seaweed extract<br />

(ml.L -1 ) Mean Effect<br />

<strong>Of</strong> Humic<br />

Mean within a column, row and their interaction following with the same latter are not significantly different according to Duncan multiple range test at the probability of 0.05 level<br />

37.17<br />

a<br />

37.37<br />

a<br />

37.30<br />

a<br />

36.86<br />

a<br />

37.37<br />

a<br />

3.47<br />

a<br />

3.13<br />

a<br />

2<br />

3.13<br />

ab<br />

3.20<br />

ab<br />

3.67<br />

a<br />

3.33<br />

a<br />

3<br />

3.33<br />

a<br />

3.43<br />

a<br />

3.40<br />

a<br />

3.38<br />

a<br />

3.06<br />

b<br />

3.29<br />

ab<br />

3.56`<br />

a<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 131-139, 2010


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 131-138, 2010<br />

REFERENCES<br />

-Abolina, B.I. and Tashkhadzhaev, A.T. (1968). Effects of<br />

Coal-Humic Fertilizers on the Activity of<br />

Physiological Processes in Plants and in the Yield<br />

of Potatoes in Uzbekistan. Guminovye Udabr.<br />

-Aitken, J. and Senn T. (1965).seaweed products as a<br />

fertilizer and soil conditioner. Botanica Marina 8. P:<br />

144.<br />

-AL- Niemi, S.N.A.(1999). Fertilizers and soil fertility Dar-<br />

AL- kutub publication. Mosul Univ. Iraq (in<br />

Arabic).<br />

-Al- Saaberi M. R. S. (2005). Effect of Some Agricultural<br />

Treatments on Growth, Yield of Lettuce (Lactuca<br />

Sativa L.) MSC <strong>The</strong>sis Horticulture Sciences<br />

University of Mosul College of Agriculture and<br />

Forestry.<br />

-Ali, N., M. Kafi, M. Babalar, Y. Xia, A. Luo and N.<br />

Etemadi. (2008). Effect of Humic Acid on Plant<br />

Growth, Nutrient Uptake, and Postharvest Life of<br />

Gerbera Journal of plant nutrition, Volume 31,<br />

Issue 12 December 2008 , pages 2155 – 2167<br />

(Abstract).<br />

-Chen, Y. and T. Aviad, (1990). Effects of humic<br />

substances on plant growth. p.161-186 In P.<br />

MacCarthy, C.E. Clapp, R.L. Malcolm, and P.R.<br />

Bloom (Eds.). Humic substances in soil and crop<br />

sciences: selected readings. Am Soc. <strong>Of</strong> Agronomy<br />

and Soil Sci. Soc. of Am, Madison, WI.<br />

-Donnell, R.W. ,1973. <strong>The</strong> auxin-like effects of humic<br />

preparations from leonardite. Soil Sci.116 (2):106-<br />

112.Freeman, P.S. (1970). <strong>The</strong> Use of Lignite<br />

Products as Plant Growth Stimulants. U.S. Bureau<br />

of Mines, Grand Forks, ND. USA.<br />

-Freeman, P.S. (1970). <strong>The</strong> Use of Lignite Products as Plant<br />

Growth Stimulants. U.S. Bureau of Mines, Grand<br />

Forks, ND. USA.<br />

-Giuseppe, F., A. Pacifico, P. Simeone and E. Ferrara.<br />

2006. Preliminary study on the effects of foliar<br />

applications of humic acids on Italla, Tabble grape<br />

Dipartimento di Scienze delle Produzioni Vegetali,<br />

University of Bari via Amendola 165/A, 70126<br />

Bari.<br />

-Gollan, J.R. and J.T. Wright (2006). Limited grazing by<br />

native herbivores on the invasive seaweed<br />

caulerpa. Taxi folia in a temperate. Australia<br />

estuary marine and fresh water Research .<br />

57(7):685-694.<br />

-Hafez, M.M. (2004). Effect of some sources of Nitrogen<br />

fertilizer and concentration of humic acid on the<br />

productivity of squash plant. Egypt. J. Appli. Sci.<br />

19 : 293-309.<br />

-Jensen, E. (2004) Seaweed ; fact or fancy . from the<br />

organic broad caster, published by Moses the<br />

Midwest organic and Sustainable Education. From<br />

the broad caster. 12(3): 164-170.<br />

-Kowalski, B.,A.K. Jager and J. Vanstaden (1999). <strong>The</strong><br />

effect of seaweed concentrate on the invitro growth<br />

and Acclimatization of the potato plants . potato<br />

Research. 42(1): 131-139.<br />

-Lee, Y.S. and R.J. Bartlette (1976). Stimulation of plant<br />

growth by humic substances. Soil Sci., Soc. Amer.<br />

J. 40: 876-879.<br />

-Manuel, A., F. Fornes, D. García, J. Cegarra and A. Roig.<br />

1991. Effects of humic substances from different<br />

sources on growth and nutrient content of cucumber<br />

plants ISBN978-3-540-53702-1Volume 33/199<br />

pages 1391-396 (Abstract).<br />

-Matlob, A.N.; E. Sultan, and K.S. Abdul (1989). Vegetable<br />

production part one and two. Dar Al-Kutub<br />

publication. Mosul Univ. Iraq. (in Arabic).<br />

-Onder, T., A. Dursun, M. Turan, C. Erdinc. 2004. Calcium<br />

and humic acid affect seed germination, growth,<br />

and nutrient content of tomato (Lycopersicon<br />

esculentum L.) seedlings under saline soil<br />

conditions. Volume 54, Issue 3 August 2004, pages<br />

168 – 174 (Abstract).<br />

-Salman, S.R., S.D. Abou-hussein, A.M.R. Abdel-<br />

Mawgoud and M.A. El-Nemr. 2004. Fruit Yield<br />

and Quality of Watermelon as Affected by Hybrids<br />

and Humic Acid Application Department of<br />

Vegetable Research, National Research Center,<br />

Dokki, Cairo, Egypt. Journal of Applied Sciences<br />

Research 1(1): 51-58, 2005<br />

-SAS (2001). SAS/STAT 'User's Guide for Personal<br />

Computer. Release 6.12. SAS Institute Inc, Cary,<br />

NC., USA.<br />

-Syabryai, V.T., V.A. Reutov and L.M. Vigdergauz (1965).<br />

Preparation of Humic Fertilizers From Brown Geol.<br />

Zh., Akad. Nauk Ukr. RSR 25: 39- 47.<br />

-Thomas,S. C. L. (1996) Nutrient weeds as soil<br />

Amendments for Organic Cally Growth Herbs. J. of<br />

Herbs, Spices and Medicinal Plant. 4 (1): 3-8.<br />

-Thomas, S. C. L. (2002). Production Development of sea<br />

buckthorn. L., ,T. S. C. product Development of sea<br />

buckthorn P. 393-398. In J.Janik and A. whipke<br />

(Eds) Trendsin new crops and new uses ASHS,<br />

Alexandria, VA<br />

-Zhang, X. and R.E. Schmidt, 2000. Hormone- containing<br />

products impact on antioxidant status of tall fescue<br />

and creeping bent grass subject to drought. Crop<br />

Sci. 40: 1344-1349.<br />

-Zhang, X., E.H. Ervin and R.E. Schmidt, 2003a. Plant<br />

growth regulators can enhance the recovery of<br />

Kentucky bluegrass from heat injury. Crop Sci. 43:<br />

952-956.<br />

-Zhang, X., E.H. Ervin and R.E. Schmidt, 2003b.<br />

Physiological effects of liquid applications of a<br />

seaweed extract and a humic acid on creeping bent<br />

grass. J. Amer. Hort. Sci. 128: 492-496.<br />

-Zhang, X. and E.H. Ervin, 2004. Cytokinin- containing<br />

seaweed and humic acid extracts associated with<br />

creeping bent grass leaf cytokinins and drought<br />

resistance. Crop Sci. 44: 1737-1745<br />

137


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 131-138, 2010<br />

انسكيقات وبذ<br />

138<br />

ىزايخ نَيتاوكَيبو ىوةهزةبو َىيتاكضةك نَيتةخولاض ىيايزةد تَيايكو<br />

كيوويه<br />

0202<br />

(Cucumis sativus L).<br />

لااض ه كوهد ايوكناش/<br />

َىندناج اصيلوك<br />

/ ىزاكناتطيب اكشب ه نانيئوبج<br />

ىزايخ زةض ه ) ترل/<br />

نو 0,0,2,2(<br />

ىيايزةد نَييايط<br />

و ) ترل/<br />

يغ 0,0,2,2(<br />

يكيوويه َىشست<br />

َىزةوطةئ ةويووب ىياويزةد نَيياويط<br />

و ىكيووويه َىوشست ووك سكزايد اوانجةئ<br />

َىشست انسكيتزاك<br />

ةتاه<br />

ةنيلوك<br />

ةتخوث<br />

ةظ ڨ ةئ<br />

ذ ادوج<br />

نَييتايرت َىض انسكَيتزاك<br />

. اد ينوميان َىيناخ فاند<br />

هوزاك َىزوج<br />

ىوش َىوةهزةبو ىكَيف ازاوذ و ىكةووز ايهارَيزدو ) يميفوزومك(<br />

ايتادن ةضو اطلةب َىزةبووز هڨاض<br />

شَيث اكةنسكةدَيش<br />

ايتادون ةوضو يوكَيف اوي كوشه ايةوشَيكو , كةوز/<br />

يىهزةبو يكَيف ايهارَيزدو ىكَيف ايةشَيك اضةو زةه ىيةشيوةه َىيو<br />

ىيايزةد نَييايط<br />

و ىكيوويه َىشست ازةبظاند لىوق وود نَينادكَيل اضةوزةه . يايل ةح<br />

نَيتضز ةكو<br />

اد يكَيفد ) يميفوزومك(<br />

ترل/<br />

نو 0 و ىكيوويه َىشست ترل/<br />

يغ 0 انانيئزاكب َىوةدد , ناتةخولاض ىةبزؤش زةض ه نووبةه ڨاض<br />

شَيث نَينكَيتزاك<br />

. ناتةخولاض ىةبزؤش زةض ه ڨاض<br />

شَيث نَينووبةدَيش َىزةطةئ ووب َىيايزةد نيايط<br />

لصاحلاو ومنلا ىلع ةيرحبلا باشعلأاو كيمويهلا ضماح ريثأت<br />

رايخلا تابنل<br />

(Cucumis sativas L.)<br />

لصاحلا تانوكمو<br />

تتم تايو تسم ةتثلاث ريثأتت ةتساردل 0202 اتسوملا سلاتا لوتكو ةتعماج / ةتعارالا ةتيلك/<br />

ةن تسبلا اتسق<br />

نتص ىتلع ) رت ل/<br />

لتم 0,0 ,0.0(<br />

ةتيرحبلا باتشعلأا تاتتلخ سم تم تايو تسم ةثلاث عم ) ر ل/<br />

اغ0,0,2,2(<br />

باتتشعلأا تاتتتلخ سم وا كتتيمويهلا ضماتتحا ارتتلا اتتا نااتت نلا ترتتهظأ .<br />

كي تتسلابلا<br />

, راتمملا ودتع , تاتبنلا سوتط,<br />

, لتي ورولكلا تم قارولأا ىوت حم , ةتيقرولا ةحاتسملا ىتلع ةتبجوم ةتيونعم ةواتيز<br />

تتتم راتتتمملا ىوتتت حم ,<br />

ت ةتساردلا<br />

ةصلاخلا<br />

تيرجأ<br />

كيمويهلا ضماح<br />

تتيبلا تت لوراتتملا سوراتتك راتتيخلا<br />

ىلإ ىوأ ةيرحبلا<br />

اتتت لا راتتتمملا زو , تاتتتبن/<br />

لتتتصاحلا , ةرتتتمملا سوتتتط , ةرتتتمملا زو كلرتتتكو تتتلكلاو رتتتكبملا لتتتصاحلا<br />

تاتتتتلخ سمو كتتتيمويهلا ضماتتتح يتتتا لاادتتت لا . ةتتتلماعملا رتتتي لا عتتتم ةتتتنرالم ةتتتباارلا ةبلتتتتلا واوتتتملا ةبتتتسنو لتتتي ورولكلا<br />

ضماتتح رتت ل/<br />

اتتغ<br />

0<br />

مل تتسا<br />

تت لا راتتيخلا تاتتتابن تاتتيمت , ةتتسوردملا تارتتتلا عتتيمج ياتتيونعم ع تتش ةتتيرحبلا<br />

باتتشعلأا<br />

.<br />

تارتلا عيم ل ايللا ىلعأ اهااطعإا ةيرحبلا باشعلأا تاتلخ سم م ر ل/<br />

لم<br />

0<br />

ب شرو كيمويهلا


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 139-147, 2010<br />

EFFECT OF PACKAGING MATERIALS AND STORAGE ON<br />

LOCAL ORANGE JUICE BY USING MODELS SYSTEMS<br />

RAJAB.I. HAMEED.DUHOK<br />

Technical Institute Duhok, Fundation of Technical Education-Erbil, Kurdistan Region-Iraq<br />

(Received: September 23, 2010; Accepted for publication: March 10, 2011)<br />

ABSTRACT<br />

A model system of local orange juice 13% packaged in glass and plastic bottles and stored at 20,30 and 40 ° C for<br />

four months in light and without light.Results showed that increasing temperature and period storage caused<br />

decreasing in ascorbic acid content and increasing nonenzymatic browning,<strong>The</strong> stability of ascorbic acid and reduced<br />

of nonenzymatic browning was better in the paked in glass bottles.<strong>The</strong> results of ascorbic acid degradation kinetic<br />

parameter showed that the order of the reaction is First and there was an increasing in rate constant(K)in the case of<br />

increasing of the storage temperature and in the samples of glass bottles,but the rate constant was decreased in the<br />

stored dark.<strong>The</strong> activation energy(Ea) of samples stored in the light,and decrease in plastic bottles.It was found that<br />

the shelf life of samples decreased with increasing the storage temperature .We got in this study the predication<br />

equation to get the amount of ascorbic acid at any time of storage.<br />

KEYWORDS: Orange juice;Ascorbic acid; kinetic; Storage; Model-system.<br />

P<br />

INTRODUCTION<br />

rocessed products ,especially juices have<br />

become more popular because they are<br />

easier to be consumed and are produce with high<br />

nutritional quality.<br />

Orange juice is the most consumed because<br />

of its pleasant taste with high content of vitamin<br />

C.<strong>The</strong> food and beverages industry is currently<br />

looking for suitable raw materials and packaging<br />

to improve quality and shelf life of<br />

products.Quality and shelf life determination of<br />

an orange juice is strongly based on vitamin C<br />

evolution during storage such as color and<br />

flavor( Lee and Coates,1999; Meydev et al<br />

,1977; Zerdin et al ,2003).Vitamin C is an<br />

essential nutrient for humans and because of its<br />

high antioxidant power it provides protection<br />

against the presence of free radicals participating<br />

in the prevention of many disease.(Tannenbaum<br />

et al ,1985).Orange juice is packed in a wide<br />

variety of materials including metal<br />

cans,paperboard cartons,plastic containers and<br />

glass bottles.When packaging materials do not<br />

provide an adequate barrier to light and<br />

oxygen,the juice , s quality can be affected.<strong>The</strong><br />

most common problems involve browning of the<br />

juice is loss in ascorbic acid and changes in the<br />

flavor of the juice.Manufacturers have found that<br />

using different packaging may increase<br />

sales.<strong>The</strong> factors that affecting vitamin C loss in<br />

packed orange juice are temperature,dissolved<br />

oxygen and oxygen barrier provided by the<br />

container material be considered(Tannenbaum et<br />

al.,1985)Arecent trend is to employ clear<br />

containers in order to attract consumers with the<br />

fresh,bright color of citrus juices.Glass has been<br />

used for this purpose,however,this material is<br />

expensive,heavy,and prone to breakage.An<br />

alternative is to utilize clear plastic(Kabasakalis<br />

et al,2000).Solomon et al(1995) reported that<br />

light no effect on ascorbic acid content and an<br />

insignificant effect on browning of orange<br />

juices stored for 52 days at 8°C.<strong>The</strong> choice<br />

of the packaging material for fruit juices<br />

is a crucial point regarding shelf life and<br />

much researches has been done on this<br />

subject(Askar,1999;Ebbesen,1998;Siegmud et al<br />

,2004;Zerdin et al,2003).For orange juice plasic<br />

bottle is being actually used in limited<br />

research(Muratore et al,2005).Traditional<br />

methods were used for juice packaging aim to<br />

reduce the exposure of the juice to oxygen<br />

through the use of high barrier materials such<br />

glass or foil laminates in brickpacks ,with or<br />

without nitrogen flushing(Zerdin et<br />

al.2003).Kennedy et al(1992)reported that,when<br />

orange juice was stored for five months at<br />

22°C.<strong>The</strong>y found that greater amounts of oxygen<br />

in the juice led to increased browning.Sattar et<br />

al(1989)reported that ascorbic acid losses were<br />

60.6%,54.6%,51.0%,and 45.5% in clear<br />

glass,Tetrapak laminated paper,and amber glass<br />

respectively,when the containers of orange juice<br />

931


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 139-147, 2010<br />

stored at room temperature for 32 days.This<br />

study investigated the effect of temperature and<br />

packaging materials on the quality of an orange<br />

juice during storage using models systems.<br />

941<br />

MATERIALS AND METHODS<br />

Model systems composition of local orange<br />

juice (Citrus sinesis Var.local) prepared<br />

according to the approach of Wong and<br />

Stanton(1989) after knowledge of components<br />

of local orange juice, as Sucrose 4.8% ,<br />

glucose 2.6% , fructose 2.6% , citric acid 1.1% ,<br />

potassium citrate 0.7% , aspartic acid 0.31% ,<br />

arginine 0.31% , ascorbic acid 0.043% , sodium<br />

benzoate 0.1% to prevent the growth of molds<br />

and yeasts(Gordon and Christine,1990) and<br />

manitol 0.44% to arrive the total soluble solids<br />

13%.<strong>The</strong> pH was adjusted with a citric acid<br />

solution to a value of 3.7 with pH –<br />

meter(HI98107).<strong>The</strong> juice was pasteurized at<br />

82 ° C for 15 min,and while still hot filled into<br />

glass bottles and plastic bottles with capacity<br />

130 ml leaving a headspace of about 10%.<strong>The</strong><br />

juice divided to four groups as glass bottles in<br />

the light,glass bottles in the dark,plastic bottles<br />

in the light and plastic bottles in the dark.All<br />

samples stored at 20,30 and 40 ° C for four<br />

months.<br />

<strong>The</strong> ascorbic acid concentration was<br />

measured for each month by the 2,6dichlorophenol<br />

indophenol according to the<br />

A<br />

B<br />

approach of (Rangama,1977),each sample was<br />

prepared and analysed in triplicate .Absorbance<br />

measurement at 420 nm was performed with<br />

spectrophotometer(TRSP-721) to evaluate<br />

nonenzymatic browning(Klim and Nagy,1988)<br />

for each month.Rate constant for ascorbic acid<br />

degradation were calculated through linear<br />

regression analysis of Ln[A] analog storage<br />

time(Nuray et al.,2003).Half time(t1/2)was<br />

calculate according to the equation which said<br />

by Samuel and Jerme(1974).<br />

K=constant.<br />

T1/2=Ln(2)/K.<br />

Activation energy(Ea)was calculate<br />

according to the equation which said by Samuel<br />

and Jerome(1974).<br />

Slope=Ea/(2.303*R).R(gas constant)=1.987 cal -<br />

1 .mol.<br />

Slope and intercept calculate from the Arrhenius<br />

plots shown in figure 1 (Nuray et al.,2003) using<br />

Microsoft Excel 2007.Shelf life calculate<br />

according to the equation observed by Al-<br />

Zubaidy and Khalil(2007).<br />

Expire=e -(s/T+I-Ln(-Ln)p/100))) .<br />

S=slope , T=kelven temperature , I=intercept ,<br />

P=residual (AA) .<br />

Data were statistically analyzed with SPSS<br />

2003,and the means vertifing were done<br />

according to Duncan , s multiple range test at<br />

level 1%.


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 139-147, 2010<br />

C<br />

4<br />

D<br />

Fig.(1): Arhenus plots of AA degradation:(A)glass in light.(B)glass in dark.(C)plastic in light.(D)plastic in dark.<br />

RESULTS AND DISCUSSION<br />

Figure 2 show content ascorbic acid of<br />

synthetic model system orange juice stored at<br />

20,30,40 °C for four months..It was apparent that<br />

samples that were stored in plastic bottles lost<br />

more ascorbic acid than stored in glass bottle<br />

amples, plastic allows more oxygen permeation<br />

.Samples in plastic bottles in the light loss 11.9%<br />

more ascorbic acid than samples in the glass<br />

bottle packed stored in light after four months of<br />

storagr at 20 ° C,also samples that were exposed<br />

to light loss more ascorbic acid than those<br />

samples that were not exposed.<strong>The</strong> results can<br />

(AA)mg/100 ml<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5<br />

be seen in the same table illustrate that a rise in<br />

storage temperature and time caused an increase<br />

in loss of ascorbic acid.<strong>The</strong> treatment which<br />

presented the best retention of ascorbic acid was<br />

packed glass bottles in dark stored at 20 ° C. This<br />

results agrees with other authors as Ahmed et<br />

al(1976),Maeda and Mussa(1986), Sattar et al<br />

(1989),Ahyan et al(2001),Esteve et al(2005) and<br />

Zerdin et al(2003).Also there are increasing loss<br />

of ascorbic acid in samples stored in plastic<br />

bottle and thus due to allowing more oxygen<br />

permeation which is consistent with finding by<br />

Kennedy et al (1992).<br />

Figure(2):Ascorbic acid content in orange juice stored in various conditions<br />

time(month)<br />

glass in light 20 c<br />

glass in light 30 c<br />

glass in light 40 c<br />

glass in dark 20 c<br />

glass in dark 30 c<br />

glass in dark 40 c<br />

plastic in light 20 c<br />

plastic in light 30 c<br />

plastic in light 40 c<br />

plastic in dark 20 c<br />

plastic in dark 30 c<br />

plastic in dark 40 c<br />

Fig.(2): Ascorbic acid content in orange juice stored in various conditions.<br />

949


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 139-147, 2010<br />

(Nonenzymatic browning(NEB))development in<br />

samples was determined soluble brown pigments as(<br />

absorbance at 420 nm(A420)).Absorbance at 420 nm<br />

has generally been used by other resaerchers (Kacem<br />

et al.,1986;Klim and Nagy.,1988).Changes in A420<br />

values for samples during four months of storage at<br />

20,30 and 40 ° C are shown in table 1.<strong>The</strong> color<br />

samples exposed to light during four months study<br />

appeared darker significantly than unexposed.We<br />

observed an increase in browning as the storage<br />

temperature and time increased.This could in part be<br />

attributed to light transmission,especially ultra-violet<br />

light,which accelerates browning reactios.<strong>The</strong> results<br />

in the same table are apparent that samples which<br />

stored in plastic bottles contain more concentration of<br />

941<br />

browning pigments than samples stored in the glass<br />

bottles ,because plastic allows more oxygen<br />

permeation .Statistcal analysis showed that<br />

temperature and period time had significant<br />

effect(p


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 139-147, 2010<br />

A<br />

B<br />

C<br />

D<br />

Ln(AA)<br />

Ln(AA)<br />

Ln(AA)<br />

Ln(AA)<br />

4<br />

4<br />

3<br />

3<br />

2<br />

2<br />

1<br />

1<br />

0<br />

4<br />

3<br />

2<br />

1<br />

0<br />

4<br />

3<br />

2<br />

1<br />

0<br />

4<br />

3<br />

2<br />

1<br />

0<br />

0 1 2 3 4 5<br />

time(month)<br />

0 1 2 3 4 5<br />

Time(month)<br />

0 1 2 3 4 5<br />

Time(month)<br />

0 1 2 3 4 5<br />

Time(month)<br />

20 c<br />

30 c<br />

40 c<br />

20 c<br />

30 c<br />

40 c<br />

20 c<br />

30 c<br />

40 c<br />

20 C<br />

30 C<br />

40 C<br />

Fig. (3): <strong>The</strong> relation between Ln of ascorbic acid degradation and time:(A)glass in light.(B)glass in<br />

dark.(C)plastic in light.(D)plastic in dark.<br />

<strong>The</strong> rate constant(K)for ascorbic acid<br />

degradation were different at low and high<br />

temperatures for the same model system(table<br />

2).<strong>The</strong> results indicated that the rate constant(K)<br />

of ascorbic acid loss was higher at elevated<br />

temperatures,because the rise in temperature,<br />

increases the reaction rate of ascorbic acid<br />

loss.Also the results in the same table indicated<br />

that the rate constant different with different<br />

packaging material(i.e 0.119 month -1 in glass<br />

bottles stored in light at 20 ° C and 0.176 month -1<br />

in plastic bottles stored in the light at same<br />

temperature) because the plastic bottles has<br />

oxygen permeability which increase the<br />

degradation of ascorbic acid.Also we saw in the<br />

same table the half time t1/2(the time requisite to<br />

react half of initial concentration of substrate) of<br />

ascorbic acid loss decrease with increasing the<br />

temperature of storage,the results were<br />

5.819,4.053 and 2.473 months for glass bottles<br />

°<br />

in the light stored at 20,30 and 40 C<br />

respectively.<strong>The</strong> results in the same table<br />

indicated that the half time of the samples<br />

exposed to the light is lower than samples stored<br />

in dark(5.819 months for glass in the light stored<br />

at 20 ° C and 13.327 months for glass bottles in<br />

the dark stored at the same temperature).This<br />

results agree with other studies ( Zerdin et al.<br />

2003) who found much better retention of<br />

ascorbic acid in stored orange juice at 4 ° C<br />

compared to those at 25 ° C.<br />

943


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 139-147, 2010<br />

Table(2): Rate constant(K) , half timr(t1/2) and activation energy(Ea) of ascorbic acid degradation for orange<br />

juice model system stored in various.condition<br />

Packaging materials Temperature ﻩ C Rate constant(K)<br />

month -1<br />

944<br />

Half time(t1/2) month Activation energy(Ea)k.cal/mol<br />

Glass bottle in light 20 0.119 5.819 7.791<br />

Glass bottle in dark<br />

Plastic bottle in light<br />

Plastic bottle in dark<br />

<strong>The</strong> activation energy value (Ea)for ascorbic<br />

acid destruction(table 2), show that the values<br />

indicated that samples stored in plastic bottles in<br />

the light had marginally better retention of<br />

ascorbic acid for samples in glass bottle in the<br />

dark,hence Ea value of samples stored in glass<br />

bottles in the dark was 13.437 k.cal.mol -1 but for<br />

samples in glass bottles in the light was 7.791<br />

k.cal.mol -1 .<strong>The</strong> higher degradation of ascorbic<br />

acid stored in light condition samples in<br />

comparision to samples stored in dark condition<br />

was attributed to more light penetration through<br />

clear bottles.This was perhaps due to synergistic<br />

effect casued by combination of air trapped in<br />

the headspace and dissolved in the samples and<br />

that of light penetration through the bottles.<strong>The</strong><br />

results in the same table indicated that the<br />

values of activation energy(Ea) of ascorbic acid<br />

degradation of samples stored in glass bottles<br />

was higher than samples stored in plastic<br />

bottles.<strong>The</strong>( Ea )value of ascorbic acid<br />

degradation samples for glass bottles stored in<br />

dark was 13.43k.cal.mol -1 ,while for plastic<br />

bottles stored in dark was10.99k.cal.mol -1 .This<br />

results indicate that the material which presented<br />

the best retention of ascorbic acid was glass<br />

30 0.171 4.053<br />

40 0.280 2.475<br />

20 0.052 13.327 13.437<br />

30 0.106 6.538<br />

40 0.227 3.530<br />

20 0.176 3.938 7.641<br />

30 0.233 2.974<br />

40 0.408 1.699<br />

20 0.108 6.417 10.990<br />

30 0.185 3.746<br />

30 0.361 1.920<br />

bottles comparision to plastic bottels.<strong>The</strong> plastic<br />

bottles presented a poor retention of ascorbic<br />

acid . Oxygen one of main factors that<br />

contributes to ascorbic acid degradation.Results<br />

indicate that glass was the material that presents<br />

the lowest oxygen permeability comparision to<br />

plastic.This results agrees with other researchers<br />

(Alwazeer et al.,2003;Baiano and<br />

Del.,2005;Muratore et al.,2005).<br />

Considering the limit for shelf life of<br />

model system indicative to ascorbic acid<br />

degradation (table 3).Taking into account values<br />

from all treatment it is observed that glass<br />

bottles stored in light at 0 ° C hase a longer shelf<br />

life (6.58 months) than those stored at 50 ° C<br />

(0.72 month) when the lost of ascorbic acid was<br />

25%, this mean the shelf life decreased with<br />

increasing the temperature of storage.<strong>The</strong> results<br />

in the same table indicated that the shelf life of<br />

samples in glass bottles stored in dark have<br />

longer shelf life (30.54 months) comparing with<br />

those packed in glass bottles stored in light (6.58<br />

months) when the lost of ascorbic acid was 25%<br />

and stored at the same temperature (0 ° C).This<br />

results agrees with other researchers as(Maria et<br />

al,2001; Al-Zubaidy and Khalil,2007).


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 139-147, 2010<br />

Storage<br />

temperature ° C<br />

0<br />

5<br />

10<br />

15<br />

20<br />

25<br />

30<br />

35<br />

40<br />

45<br />

50<br />

Table(3): Shelf life of orange juice in relation of it , s content of ascorbic acid<br />

treatment<br />

Glass bottle in Glass bottle in Plastic battle in light Plastic battle in<br />

light<br />

dark<br />

dark<br />

50 05 50 05<br />

% lost of AA<br />

50<br />

Shelf life(month)<br />

05 50 05<br />

6.58 15.86 30.54 73.57 4.48<br />

10.79 10.8 26.1<br />

5.09 12.26 19.57 47.15 3.48<br />

8.38 7.5 18.1<br />

3.97 9.56 12.74 30.70 2.73<br />

6.57 5.3 12.8<br />

3.12 7.52 8.42 20.29 2.15<br />

5.19 3.8 9.1<br />

2.47 5.96 5.64 13.60 1.72<br />

4.13 2.7 6.6<br />

1.98 4.76 3.83 9.24 1.38<br />

3.32 2.0 4.8<br />

1.59 3.83 2.64 6.36 1.11<br />

2.68 1.5 3.5<br />

1.29 3.11 1.84 4.43 0.91<br />

2.18 1.1 2.6<br />

1.05 2.54 1.29 3.12 0.74<br />

1.79 0.8 2.0<br />

0.87 2.08 0.92 2.22 0.61<br />

1.47 0.6 1.5<br />

0.72 1.72 0.66 1.60 0.51<br />

1.22 0.5 1.1<br />

<strong>The</strong> results in table(4) indicated to finding the<br />

predication equations to get the amount of<br />

ascorbic acid (mg/100 ml)at any time of storage,<br />

and through that we can able to calculate the<br />

shelf life of juice.This results agrees with oribio<br />

and Lozano(1984).<br />

Table(4): Predication equations to get the amount of ascorbic acid (mg/100 ml)at any time of storage * .<br />

Packaging mat 0erials Storagr temperature ( ﻩ C)<br />

20 ° C 30 ° C 40 ° C<br />

Glass bottle stored in light y=-0.0909X + 3.6199 Y=-0.1094X + 3.4534 Y=-0.1661X + 3.1921<br />

Glass bottle in stored dark Y=-0.0518X +3.7628 Y=-0.0848X + 3.6554 Y=-0.1693X + 3.4736<br />

Plastic bottle in stored light Y=-0.1427X +3.5951 Y=-0.1498X + 3.3447 Y=-0.2919X + 3.1833<br />

Plastic bottle in stored dark Y=-0.0823X +3.6346 Y=-0.1035X + 3.3552 Y=-0.2670X + 3.2896<br />

* Y=Ln of ascorbic acid(mg/100 ml)<br />

X=period of storae(month)<br />

REFERENCES<br />

- Ahmed,A.A;Watrous,G.H.;Hargrove,G.L.and<br />

Dimick,P.S.(1976).Effect of Fluorescent Light on<br />

Flavor and Ascorbic acid content in Refrigerated<br />

Orange juice and drinks.J.Milk and Food<br />

Technol.39,323-36.<br />

- Ahyan,Z.;Yeom,H.W.;Zhang,Q.H.and<br />

Min,D.B(2001).Flavor.color and vitamin C<br />

retention of pulsed electric field processed orange<br />

juice in different packaging materials.J.Agric.Food<br />

Chem.49,669-674.<br />

- Alwazer,D;Delbeau,C.;Divies,C.and Cachon, R.<br />

(2003).Use of redox potential modification by gass<br />

improves microbial quality,color retention and<br />

ascorbic acid stability of pasteurized orange juice.<br />

International Journal of Food Microbiology,<br />

89,21-29.<br />

- Al-Zubaidy,M.and Khalil,A(2007).Kinetic and<br />

predicition studies of ascorbic acid degradation in<br />

normal and concentrate local lemon juice during<br />

storage.Journal of Food Chemistry.101:254-259.<br />

- - Askar,A.(1999).Flavour changes during processing<br />

and storage of fruit juices.II.Interaction with<br />

packaging materials.Fruit Processing.11.432-<br />

439.<br />

- Baiano,A.and Del Nobile,M.A.(2005).Shelf life<br />

extension of almond paste pastries.Journal of Food<br />

Engineering.66(4),487-495.<br />

- Ebbesen,A.(1998).Effect of temperature,oxygen and<br />

packaging materials on orange juice quality during<br />

storage.Journal of Fruit Processing.11,446-455.<br />

- Esteve,M.J.;Frigolta,A;Rodrigo,C.and<br />

Rodrigo,D.(2005).Effect of storage period under<br />

variable condition on the chemical and physical<br />

composition and colour of Spanish refrigerated<br />

orange juices.Food and Chemical Toxicology,<br />

43,1413-1442.<br />

- Gordon,L.and Christine,S.(1990).Effect of soluble<br />

solids and temperatures on ascorbic aicid<br />

degradation in lemon juice storaged in glass<br />

bottles.J.Food Quality.13:361-373.<br />

- Kabasakalis,V.,Sipoidou,D.and<br />

Moshatou,E.(2000).Ascorbic acid content of<br />

commercial fruit juices and its rate of loss upon<br />

storage.Food Chemistry,70,325-328.<br />

945


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 139-147, 2010<br />

- Kacem,B.;Cornell,J.;Marshal,M.;Shireman,R.and<br />

athews,R.(1986)Nonenzymatic browning in<br />

aseptically packaged orange drinks effect of amino<br />

acids and deaertation,and aerobic storage.J<br />

.Fd.Sci.52(6):1665.<br />

- Kannan,A.;Kane,D.and Labuza,T.(1988).Time and<br />

temperature effect on stability of morocan processed<br />

orange juice during storage.J.Fd.Sci.53:1470.<br />

- Kennedy,J.F.,Rivera,Z.S.,Lioyd,L.L.,Warner,F.P.,and<br />

J,UMEL,k.(1992).L-Ascorbic acid stability in<br />

aseptically processed orange juice in TetraBrik<br />

contents and the effect of oxygen.Food Chemistry,<br />

45,327-331.<br />

- Klim,M.and Nagy,S.(1988).An improved method to<br />

determine nonenzymatic browning in citrus<br />

juices.J.Agric.Fd.Chem.36(6):127.<br />

- Lee, H.S.and Coates,G.A.(1999).Vitamin C in<br />

frozen,fresh squeezed unpasteurized,polyethylenebottled<br />

orange juice:a storage study.Food<br />

Chemistry,65,165-168.<br />

- Maeda,E.E.;and Mussa,D.M.D.N.(1986).<strong>The</strong> stability<br />

of vitamin C(L-ascorbic acid)in bottled and canned<br />

orange juice.Food Chem.22,51-58.<br />

- Maria,C.;Femanda,A;Jorge,C. and JESUS,m. (2001).<br />

Modelling ascorbic acid thermal degradation and<br />

browning in orange juice under aerobic condition. J.<br />

Fd.Sci and Technology.36(3):303.<br />

- Meydev,S.,Saguy,I.and Kopelman,I.(1977). Browning<br />

determination in citrus product.J. Agric .Fd.Chem<br />

.25(3):602-604 .<br />

-<br />

Muratore,G,Lanza,C.M.,Baiano,A.,Tamagnone,P.,<br />

Nicolosi,C.,and Del Nobile,M.A.(2005).<strong>The</strong> influence<br />

of using different packaging on the quality<br />

decay kinetics of Cuccia.Journal of Food<br />

Engineering,73,239-245.<br />

- - Nuray,K.;Handel,S.and Feryal,K.(2003).Kinetic of<br />

nonenzymatic browning reaction in citrus juice<br />

concentrates during storage.Turk.J.Agric.<br />

27:353- 360.<br />

946<br />

- Ranganna,S.(1977).Manual of analysis of fruit and<br />

vegetable product.Tata.McGraw Hill,New Delhi.<br />

- Satter,A;Durrani,M.J.;khan,R.N.and Hussain,B.H.<br />

(1989).Effect of Packaging Materials and<br />

Fluorescent Light on HTST-Pasteurized Orange<br />

Drink.Zeitschrift Fur Lebensmittel-Untersuchung<br />

Und-Forschung,188,430- 433.<br />

- Samuel,H.and Jerome,B.(1974).Fundamentals <strong>Of</strong><br />

Physical Chemistry.Macmillan Co.New York.<br />

U.S.A.<br />

- Siegmud,B.,Derler,K.,and Pfannhauser,W. (2004).<br />

Chemical and sensory effects of glass and<br />

laminated carton packages on fruit juice productsstill<br />

a controversial topic.Lebensmittel-Wissenschaft<br />

and Technology.37,481-488.<br />

- Solomon,O.,Svanberg,H.and Sahlstrom, (1995).Effect<br />

of oxygen and fluorescent light on the quality of<br />

orange juice during storage at 8 ﻩ C.Food Chem.<br />

3:363-368.<br />

- Tannebaum,S.,Archer,M.and Young,V.(1985).Vitamin<br />

and minerals.In.O.R.Fennema(ED).Food Chemistry<br />

2 nd )(p.488-493).New York:Marcel Dekker.<br />

- Toribio,J.and Lozano,J.(1984).Nonenzymatic<br />

browningin apple juice concentrate during storage<br />

.Fd.Sci.49:889-892.<br />

- - Zerdin,K.,Rooney,M.L.,and Vermue,J.(2003).<strong>The</strong><br />

vitamin content of orange juice packed in an<br />

oxygen scavenger materials.Food Chemistry, 2,387-<br />

395.<br />

- Wong,M. and Stanton,D.(1989).Non-enzymatic<br />

browning in Kiwi fruit juice concentrate system<br />

during storage.J.Fd.Sci.,54.,(3):669.<br />

ةيبرعلا رداصملا<br />

ماظنلا.)<br />

1113(<br />

ةحفلاطلا سابع و للاب دممح،بيغزلا<br />

Statistical Package for Social<br />

لئاو راد.<br />

ةيئاصحلأا تانايبلا ليلتح و مهف<br />

يئاصحلأا<br />

Sciences(SPSS)<br />

.<br />

ندرلأا.<br />

نامع.<br />

رشنلل<br />

-


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 139-147, 2010<br />

ىاووخاىاا اااةتسة اتةةزةة ةجةنم<br />

ايتلاوك زةطل<br />

َىىسكزابيع تَيىادواكو َىيتسكاد ًَيتضزةك اىسكَيتزاك<br />

ب ٌسكزابيعةتاٍو ىكيتضلاثو ىةشية ًَييييا د ًتسطاد ةتاٍ،<br />

% 35<br />

ٌووة زااد َىىدىاوخ َىظ تَيمانجةئ ،زةبيض َىةو َىزةبيض ًةد اظاةٍ زاوض َىوام وة<br />

ارَاز ب ىاووخاىاا ا ااةتسة اتةةزةة ةجةنم ةم<br />

ﻩ ) و 62<br />

،52<br />

،42(<br />

ىتزوك<br />

َىمزةط تَاسنم<br />

ىيمصىا ااةى ازاسسما اىوةةدَاشو كيةزوكض ةئ َىةست ارَاز اىووبنَيك َىزةطةئ وة َ ىىسكزابيع َىمةد ل َىمزةط تَاسنم اىوةةدَاش<br />

اىوةزااد اىوبنَيكو ىكيةزوكضةئ َىةست ايتضازاث وةذ ىكيتضلاث ًَييييا ذ ووة ترَيض ىةشية ًَييييا اىاييئزاك ب اضةو زةٍ<br />

َىخسى و ةى َىكيئ لاث كيةزوكضةئ َىةست اىدىاخوز وة َىشَيكواٍ لاث وك سكزااد ىىاوصة<br />

ٌسكةذامائ، ىيمصىا ااةى زاسسما<br />

فةئ اضةوزةٍ ىةشية ًَييييا ذ ىكيتضلاث ًَييييا فاىد وةةدَاش و ، ىمزةك تَيلث اىوةةدَاش ب وةةدَاش سكَيج ىكَيلزاك<br />

ىزةبيض اىوةةية ووة هَيك كيةزوكضةئ َىةست<br />

اىدىاخوزاا<br />

)<br />

Ea<br />

( َىيكااج اشوو ،َىزةبيض اىوةةٍ ب ووةترنَيك ةرَاز<br />

ستةدَاش َىتزةةزةة ةجةنم َىظ اىسكاز َىمةد.<br />

ىةشية ًَييييا لةطد سكزةوازةة ىكيتضلاث ًَييييا فاىد ) Ea<br />

( ارَاز اىوبنَيكو<br />

ىةشَيكواٍ<br />

ةييتشٍةط وةئ ادوخ ادَيىدىاوخ َىظ تَيمانجةئ ل ، َىىسكزابيع تَا َىمزةط تَاسنم اىوبنَيك ب تاٍ َلى<br />

. َىىسكزابيع َىمةد ل اد ىكةتخةو زةٍوة ىكيةزوكضةئ َىةست ارَاز اييىاش وةذ ىييخمةت<br />

ةجذمنلا مادختساب يلحملا لاقتربلا ريصع ةيعون ىلع نزخلا فورظ و ةئبعتلا داوم ريثات<br />

ء<br />

ةرارح تاجرد يف تنزخو ةيكيتسلابو<br />

ةيجاجز ينانق يف ىبع،%<br />

35<br />

زيكرتب يلحملا لاقتربلا ريصعل هباشم ماظن رضح<br />

ةصلاخلا<br />

ﻩ<br />

تدا نزخلا ةدمو ةرارح تاجرد ةدايز نا ةساردلا جئاتن تحضوأ، همدعو ءوضلا دوجوب رهشا ةعبرا ةدمل م 62و52و42<br />

ينانقلا<br />

نم لضفا ةيجاجزلا ينانقلا مادختسا ناو<br />

،)<br />

يميزنلأا ريغ رارمسلأا(<br />

ةدايزو كيبروكسلأا ضماح ةيمك ضفخ ىلا<br />

تارشوملا ميق جئاتن تحضوا.<br />

يميزنلأا ريغ رارمسلأا روطت لدعم ضفخو كيبروكسلأا ضماح ىلع<br />

ظافحلل ةيكيتسلابلا<br />

ةرارح تاجرد ةدايزب لعافتلا تباث ميق تعفتراو ىلولأا ةبترلا نم يه كيبروكسلأا ضماح مده لعافت ةبتر نا ةيكرحلا<br />

يف اهنزخ دنع ميقلا ﻩذه تضفخناو ةيجاجزلا ينانقلاب<br />

ةنراقم ةيكيتسلاب ينانق يف ةئبعتلا دنع ميقلا ﻩذه تعفتراو<br />

نزخلا<br />

هباشمل<br />

ميقلا ﻩذه تضفخناو<br />

ءوضلا دوجوب<br />

كيبروكسلأا ضماح مدهل<br />

) Ea(<br />

طيشنتلا ةقاط ميق تضفحناو ،لظلا<br />

ضافخناب ريصعلل نزخلا ةيحلاص ةدم تدادزاو،ةيجاجزلا ينانقلاب ةئبعتلا دنع ةنراقم ةيكيتسلابلا ينانقلا يف ابعملاريصعلا<br />

ةرتف ةيا يف كيبروكسلأا ضماح ةيمك ةفرعمل ةيؤبنت تلاداعم ىلعةساردلا ﻩذه يف لوصحلا متو،نزخلا ةرارح<br />

تاجرد<br />

.<br />

نزخلا<br />

ةدم للاخ ةينمز<br />

947


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 148-152, 2010<br />

841<br />

OVARIAN RESPONSE IN SUPEROVULATED KARADI<br />

YERLING EWES TREATED WITH INSULIN *<br />

ARAZ G. PEDAWY and JALAL E. ALKASS<br />

Dept. of Animal Production, College of Agriculture. University of Duhok, Kurdistan Region-Iraq<br />

(Received: September 23, 2010; Accepted for publication: December 8, 2010)<br />

ABSTRACT<br />

Twenty five Karadi yearling ewes and 52 kg in weight were divided randomly into two groups;Group one (control,<br />

n= 13) and Group two (insulin treatment, n=12). Estrus was induced first by intravaginal sponges and PMSG .<br />

Following estrus were pre-treated with HCG and estradiol and animals in both groups were superovulated using 20<br />

IU FSH i.m. in six divided descending doses .i.e. 4/4 and 3/3 and 3/3 at 12 h interval for three consecutive days .Prior<br />

to gonadotropins adminstarion, Animals in group one were given a normal saline and group two animals were given<br />

long acting purified bovine insulin 0.2 IU /kg body weight per day s.c. for three consecutive days started on day 7 of<br />

the estrus cycle. After PGF2α treated, two rams fitted with marking crayons were introduced with ewes for detection<br />

of estrus, and then bred with natural service at approximately 12 hrs interval until the end of estrus. Three days<br />

following mating, all animals were sacrificed to determine ovulation rate. Results revealed that percent ewes<br />

responded to treatment were 69.23% for control group and 75.00% for insulin treated group. Ovulation rate<br />

averaged 1.44±0.22 and 1.56±0.24 for the control and insulin groups, respectively, and the unovulated large follicles<br />

/animal averaged 0.50±0.19 and 0.84±0.19, for control and insulin group, respectively.Percent ova recovered was 84.6<br />

and 35.7% for control and treated groups, respectively.<br />

KEY WORDS: Insulin, Ovulation , Karadi, Ewes.<br />

A<br />

INTRODUCTION<br />

pplication of insulin to modulate<br />

reproductive functions in livestock is a<br />

fairly recent development (Selvaraju et al.,<br />

2003). Moreover , in vitro, studies indicated that<br />

insulin and IGF-1 are important mediators of<br />

follicle development , steriodogenesis , oocyte<br />

maturation and subsequent embryo development<br />

(Gong et al.,1993 a; Gong et al ,1994;Totey et al<br />

.,1996;Gong et al .,1993b). Administration of<br />

insulin increases intrafollicular and peripheral<br />

IGF-1 levels in cattle (Simpson et al.,<br />

1994).Ovulation rate has been shown to be<br />

positively correlated with the peripheral<br />

concentration of insulin and IGF-1 in cattle<br />

(Gong et al., 1997). Increase in size of the<br />

follicles (Simpson et al., 1994) and ovulation<br />

rate (Cox et al., 1987) have been found in<br />

animals treated with insulin. Insulin caused<br />

recruitment of more gonadotropins responsive<br />

follicles (Cox et al., 1987) and reduced atresia of<br />

follicles (Matamoras et al., 1991).<br />

Working with goats, Selvaraju et al<br />

(2003) found that administration of purified<br />

bovine insulin (0.2 IU/kg body weight per day)<br />

on days 7, 8 and 9 of the estrus cycle resulted in<br />

a significant increase in corpus leutum and<br />

*<br />

Part of Ph. D. <strong>The</strong>sis submitted by the first author.<br />

unovulated large follicles than the control group.<br />

Thus, the use of insulin may be considered as an<br />

alternative approach to improve superovulatory<br />

response, and information on the influence of<br />

insulin on ovulatory response in livestock is<br />

scarce.<strong>The</strong>refore the present investigation was<br />

designed to study the effect of insulin treatment<br />

on ovarian response in Karadi ewe lambs.<br />

MATERIALS AND METHODS<br />

Location of the experiment<br />

<strong>The</strong> study was conducted on 25 Karadi ewes<br />

aged one year old and 52 kg in weight at Animal<br />

project, College of Agriculture, University of<br />

Duhok.<br />

Design of the experiment<br />

<strong>The</strong> experimental animals originally<br />

maintained on either 12 or 16 % crude protein<br />

were divided randomly into two groups ; Group<br />

1 (control, n=13 ) and Group 2 ( insulin<br />

treatment , n=12 ).<br />

At the start of the experiment, estrus was<br />

induced by using intra vaginal sponges<br />

containing MAP (Drug Facts and comparisons<br />

2004, Tahran, Iran) for 14 days. At the time of<br />

sponges withdrawn, animals were injected with<br />

600 IU PMSG (LABORATORIOS


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 148-152, 2010<br />

OVEJERO.S.A.Spain, then approved ram was<br />

introduced 48 hrs later to detect the estrus. After<br />

the occurrence of estrus in all ewes, the<br />

following procedure was used as described by<br />

Selvaraju et al (2003) All animals were<br />

pretreated with 250IU Human chronic<br />

gonadotropins ( Human Chorionic<br />

gonadotropin : LG life sciences Korea) intra<br />

muscularly on day 10 of the estrus cycle .Six<br />

hours later , 1 mg estradiol -17 beta(Alburaihan<br />

pharmaceutical Co. Tahran/Iran) dissolved in<br />

olive oil was administrated subcutaneously,<br />

Twenty – four hours after estradiol treatment the<br />

animals were treated with 20 IU follicle<br />

stimulating hormone (Laboratoires Serono<br />

SA,CH-1170 Aubonne, Switzerland) im. in six<br />

divided descending doses (4/4, 3/3, and 3/3) IU<br />

at 12 h intervals for three consecutive days. All<br />

animals were treated with PGF2 α analogue<br />

(CEVA ANIMAL HEALTH Ltd, CHESHAM<br />

HPS IGE-UK), 0.225 mg i.m. to induce<br />

luteolysis along with the sixth FSH treatment<br />

according to Majumdar et al. (1997). Prior to<br />

gonadotropins administration , group 1 animals<br />

were given a placebo of normal saline and<br />

group 2 animals were given long acting purified<br />

bovine insulin(Actrapid ,NOVO AIS,Denmark)<br />

0.2 IU /Kg body weight per day s.c. for three<br />

consecutive days started on day 7 of the estrus<br />

cycle .<br />

Estrus detection and breeding<br />

After PGF2 α treatment, two rams fitted with<br />

marking crayons were introduced placed with all<br />

ewes and estrus was observed twice daily (at<br />

morning and afternoon) . All ewes detected in<br />

estrus were bred with natural service at<br />

approximately 12 hrs interval until the end of<br />

estrus.<br />

Ova recovery<br />

Three days following mating , all animals<br />

were scarified to determine ovulation rate as<br />

indicated by the presence of CL .<strong>The</strong> fallopian<br />

tubes were flushed to recover ova .<strong>The</strong> weight<br />

of left and right ovaries was recorded.<br />

<strong>The</strong> diameter of corpus leutum was<br />

measured. Also, the unovulated large follicles<br />

and the white (a vascular) corpus leutum were<br />

counted.<br />

Statistical analysis<br />

General linear model (GLM) within the<br />

statistical model program SAS (2005) was used<br />

to study the effect of insulin on ovary weight ,<br />

number and diameter of corpora lutea ,ovulation<br />

rate ,number of large follicle, number of white<br />

corpora lutea and number of ova recovered ,<br />

assuming the following model;<br />

Yij = µ + Si + eij<br />

Where,<br />

Yij: measurements on j th observation;<br />

µ : overall mean;<br />

Si : effect of i th insulin level (i=Co, In); and<br />

eij: random error NID (0 , Iσ 2 e).<br />

Duncan Multiple Range Test (Duncan,<br />

1955) also used to test the significant<br />

differences between the levels of each<br />

factor affecting the studied traits.<br />

RESULTS AND DISCUSSIONS<br />

All ewes in the two treatment groups<br />

exhibited behavioral sign of estrus within three<br />

days after PGF2α injection (Table 1). This result<br />

is in accordance with those reported by Naqvi et<br />

al. (1999). Weight of ovary averaged 2.31±0.15<br />

and 2.06 ± 1.32 gm for the control and insulin<br />

treated groups, respectively. Also, the diameter<br />

of corpora lutea averaged 6.65±1.32 and<br />

6.67±1.26 mm, respectively for control and<br />

insulin treated group(Table 18). However, the<br />

difference between groups was not significant<br />

for both traits .<br />

In the study reported herein, the percent of<br />

ewes respond to treatment was 69.23% for<br />

control group compared with 75.00% for insulin<br />

treated group, and consequently the ovulation<br />

rate indicated by the presence of corpora lutea<br />

averaged 1.44 ±0.22 and 1.56±0.24 for the<br />

control and insulin group, respectively (Table 1).<br />

<strong>The</strong> mean ovulation rate obtained in the current<br />

work is higher than 0.50-0.75 recorded for<br />

pubertal Awassi ewe lambs (Jawad et al.1986),<br />

for adult Awassi ewes (0.5-1.5) treated with the<br />

different doses of GnRH (Alkass et al., 1989)<br />

and for adult Awassi (0.8-1.2) imposed to<br />

different feeding regimen (Alkass and Al-Kaisi,<br />

1987). However, in general the low response of<br />

ewes to superovulated by FSH is due to breed<br />

and age of animals used. It appears that ewes<br />

treated with insulin were stimulated to a greater<br />

extent than control group as evident by number<br />

of ovulations and unovulated large follicle.<br />

However, the difference between the two groups<br />

was not significant possibly due to limited<br />

number of animals included in the present study<br />

.<br />

841


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 148-152, 2010<br />

851<br />

Table (18): Effect of insulin treatment on ovarian response and recovery in Karadi ewe lambs<br />

super ovulated with FSH.<br />

No. animals treated<br />

No. animals exhibiting estrus<br />

(%) of animals exhibiting estrus<br />

Ovary weight (g)<br />

Diameter of corpora lutea(mm)<br />

Ovarian response<br />

No. animals responding to treatment<br />

% animals ovulated<br />

No. corpora lutea<br />

Ovulation rate (C.L./ animal)<br />

No. unovulated large follicles<br />

Unovulated large follicle/animal<br />

White (a vascular ) C.L./ animal<br />

No . of ova recovered<br />

(%) of ova recovered<br />

Parameter Control Insulin<br />

13<br />

13<br />

100.0<br />

2.31±0.15 a<br />

6.65±1.35 a<br />

9<br />

69.23<br />

13<br />

1.44±0.22 a<br />

6<br />

0.50±0.19 a<br />

2.53±0.36 a<br />

11<br />

84.6<br />

12<br />

12<br />

100.0<br />

2.06±1.32 a<br />

6.67±1.26 a<br />

9<br />

75.00<br />

14<br />

1.56±0.24 a<br />

11<br />

0.84±0.19 a<br />

2.91±0.86 a<br />

5<br />

35.7<br />

Means with different letters within each row differ significantly.<br />

<strong>The</strong> slightly higher total ovarian response in<br />

the insulin group than the control group<br />

indicating the effect of insulin on<br />

folliculogenesis (Selvaraju et al., 2003). <strong>The</strong><br />

beneficial effect of insulin on ovarian response<br />

in treated group might be due to either increase<br />

in follicular recruitment or rescuing follicles<br />

from atresia .Exogenous administration of<br />

insulin affects the follicular dynamics by<br />

increasing recruitment of follicles and reducing<br />

follicular atresia (Matamoros et al., 1991;<br />

Majumdar et al., 1997). Positive correlation<br />

between the number of gonadotropins-dependent<br />

follicles and peripheral concentration of insulin<br />

in sheep has been reported (Armstrong et al.,<br />

1983). Insulin act synergistically with FSH and<br />

LH through its own receptors to stimulate<br />

granulose cell mitosis (Matamoros et al., 1991 ;<br />

Gong et al., 1994 ).<br />

Also, insulin mediated glucose uptake<br />

increases ovulation rate by promoting cell<br />

growth (Dowing et al., 1995). <strong>The</strong> presence of<br />

unovulated large follicles may be due to a lack<br />

of LH receptors, or an inappropriate stage of<br />

development at the time of the endogenous<br />

preovulatory LH surge (Kumar et al., 1992).<br />

Thus, a beneficial effect of insulin priming on<br />

ovulation rate in super ovulated Karadi ewes<br />

would require longer period of time than that<br />

used in the current study. <strong>The</strong>re is a need to<br />

reduce the proportion of unovulated large<br />

follicles in order to improve ovulation rate. <strong>The</strong><br />

presence of a vascular corpora lutea in super<br />

ovulated ewes is in accordance with the reports<br />

of other workers (Armstrong et al., 1983;<br />

Saharrea et al., 1998). <strong>The</strong> percent of ova<br />

recovered was 84.6 and 35.7% for control and<br />

insulin treated groups, respectively. (Table 18).<br />

<strong>The</strong>se differences could be attributed to the<br />

individual variations both within and between<br />

groups in the time of ovulation and to the<br />

number of animals ovulated in each group.<br />

Previously, Selvaraju et al. (2003) stated that the<br />

total ovarian response (corpus leutum and<br />

unovulated large follicles) was significantly<br />

(P


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 148-152, 2010<br />

goats after induction of superovulation with PMSG<br />

and FSH.J.Reprod.Fert.67: 395-401.<br />

- Cox, N .M. , M .J.Stuart , T.G. Althen, W.A.Bennett, and<br />

H.W. Miller , 1987. Enhancement of ovulation rate in gilts<br />

by increasing dietary energy…and administering insulin<br />

during follicular growth. J. Anim. Sci. 64 :507–516.<br />

- Downing, J.A., J. Joss, P.Connell, and R.J. Scaramuzzi,<br />

1995. Ovulation rate and the concentrations of<br />

gonadotrophic and metabolic hormones in ewes fed lupin<br />

grain. J. Reprod. Fert. 103:137-145.<br />

- Duncan, D.B. 1955. Multiple Range and Multiple Test.<br />

Biometrics. 11 :1 – 42 .<br />

- Gong, J. G., G.Baxter, T.A.Bramley , and R.E. Webb,<br />

1997.Enhancement .of ovarian follicle development in<br />

heifers by treatment with recombinant .bovine<br />

somatotropin:a dose response study .J. Reprod.Fert.110:7-<br />

91.<br />

- Gong, J. G. ,D.McBride, T.A.Bramley, and R.Webb,<br />

1994. Effects of .recombinant bovine somatotropin, insulinlike<br />

growth factor-1 and.insulin on bovine granulosa cell<br />

steroidogenesis in vitro. J. Endocrinol 143:157-164.<br />

- Gong, J. G. ,D. McBride, T.A.Bramley, and R. Webb,<br />

1993. Effects of ..recombinant bovine somatotropin,<br />

insulin-like growth factor_I and ..insulin on the<br />

proliferation of bovine granulosa cell in<br />

vitro.J.Endocrinol,.139:67-75.<br />

- Gong, J. G. ,D. McBride, T.A.Bramley, and R. Webb,<br />

1993. <strong>The</strong> effect .of recombinant bovine somatotropin on<br />

ovarian follicular growth and .development in heifers. J.<br />

Reprod. Fert. 97:247-254.<br />

- Jawad, N.A.J. ,J.E.Alkass, and R. Al-wahab, 1986. Effect<br />

of season of ..lambing and docking on the puberty and<br />

reproduction performance of .Awassi ewe lambs .Fourth<br />

Scientific confrences, Scientific research .council ,Baghdad,<br />

Iraq, 1777-1786.<br />

- Kumar, J. ,J.C. Osborn, A.W.N.Carmon, and A.O.<br />

Trounson, 1992. .Follicular steroidogenesis and oocyte<br />

maturation after superovulation of .goats Capra hircus with<br />

gonadotropins. J.Reprod .Fert. 95: 371-.383.…..<br />

- Majumdar , A.C. ,S.D.Karche, S.Tyagi, and G.Taru<br />

Sharma, 1997.Effect of pretreatment with hCG and<br />

estradiol-17β on .superovulation and embryo recovery in<br />

goats.<strong>The</strong>riogenology 47:176-…..177. .<br />

- Matamoros , I .A. ,N.M.Cox, and A.B.Moore, 1991.<br />

Effects of exogenous ..insulin and body condition on<br />

metabolic hormones and gonadotropin-..induced follicular<br />

development in puberal gilts.J.Anim.Sci.69:2081-.2091.<br />

- Naqvi , S.M.K.,R.Gulyani, and S.R.Pareek , 1999. Effect<br />

of .superovulatory regimens on ovarian response and<br />

embryo production in ..Fine wool sheep in tropics.<br />

J.Anim.Sci. 5:595-599. …..<br />

- Saharrea , A. ,J.Valencia, A.Balcazar, O.Mejia,<br />

J.L.Cerbon, and V...Caballero, 1998. Premature luteal<br />

regression in goats superovulated .with PMSG:effect of<br />

hCG or GnRH administration during early …..luteal phase<br />

<strong>The</strong>riogenology .50:1039-1052.<br />

- SAS (2005).SAs/STAT User’s Guide for personal<br />

computers.Release .6.12.SAS Institute Inc.,Gary,Nc,U.S.A.<br />

- Selvaraju, S. , S.K.Agrwal, S.D.Karche, and A.C<br />

.Majumdar,2003. Ovarian response, embryo production and<br />

hormonal profile in .superovulated goats treated with<br />

insulin.<strong>The</strong>riogenology . 59:1459-1478.<br />

- Simpson, R. B. ,Jr. C. C. Chase, L. J.Spicer, R. K.Vernan,<br />

A. L..Hammond, and D. O. Rae, 1994. Effects of<br />

exogenous insulin.on plasma and follicular insulin like<br />

growth factor I, insulin like growth .factor binding activity,<br />

follicular oestradiol and progesterone and.follicular growth<br />

in superovulated Angus and Brahman cows. J.<br />

Reprod..Fert.102:483–492.<br />

- Totey , S.M. ,C.H.Pawshe, K.B.C. Appa Rao , 1996. IN<br />

vitro maturation of .buffalo oocytes:role of insulin and its<br />

interaction with gonadotropins ..J.Reprod.Fert.50:9-113.<br />

858


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 148-152, 2010<br />

اثوسط .<br />

851<br />

ىهيلوطهيئ ب ىسكةلمام اي صَيًب انسككليي وب لىاض كَيئ تَيي ىدزوك تَيًيم تَينادكلَيي انادظضزةب<br />

اثوسط وود وب ىسكشةباد ةهتاي<br />

) يئاوشع<br />

(<br />

ىكةمةسي مطك<br />

47<br />

ىكةزةض اشَيكب و َىكةلاض َىيذ ٌيم<br />

ىسك ةتاي اًيم انادناي َىياد ينلوطن ةئ َىناد ىشزةد<br />

ب ) زةوةنايط 34(<br />

َىوود اثوسط.<br />

) زةوةنايط 35(<br />

ٌتخوب<br />

47<br />

لوترنوك َىكَيئ<br />

. ظظائ اهييةم َىمةيرض َىنومزوي و ) ةيلبًم تاجهفضا ( َىكَيسطشَيث تَينجةفطيئ اناهيئزاكب ىنازةبل ةهتاي انسكزايد وب<br />

42 ب ىاد ىشزةد<br />

ةهتاي زةوةنايط ىمةي و ىسك ةتاي ىنازةبل ةهتاي اندناي ىد اكةزاج ىنازةبل ةهتاي انوبزايد ىتشث<br />

و 5,5و<br />

6/<br />

6<br />

اشود وود ارَيز ب و اد كَيئ فيدل تَيذوز َىض د َىنادلكَيض انسكةشةط اهَيذةي َىنومزوي ذ ىناًيج تَيكةي<br />

. اسَيمرمةد<br />

34<br />

َىمةد ازةبظاند ىناًيج تَيكةي<br />

ب ىاد ىشزةد َىوود اثوسط و ىجولويطف وخ ب ىسكةزاض<br />

ةتاي لوترنوك اثوسط ىنازةبل ةهتاي ذ َىتفةي اذوز ل<br />

ىتشث كَيئ فيدل تَيذوز َىضوب و ىزوجضةدزو سَيذ ل ذوز<br />

َىتشوسض<br />

و ىنازةبل ةهتاي انسكزايد وب اًيم لةط د ةناد ىازةب 4و<br />

/<br />

مطك<br />

/<br />

PGF2α<br />

ىناًيج تَيكةي<br />

2.4<br />

5/<br />

5<br />

ارَيسب و لاَيض َىهيلوطنةئ<br />

َىهيدنلاطاتضوسث اناد ىشزةد اهتاي كييايمد<br />

ىطنةز ىظب مانجةئ و . َىنسككَيي ارَيز اهتزامري وب ويسبزةض وتاي زةوةنايط َىنوبتوج ذ اذوز َىض ىتشث و َىنوبتوج ةهتةك<br />

. ىهيلوطن ةئ ب َىنسكةزاض اثوسط وب % 97<br />

و لىوترنوك اثوسط وب<br />

اضةوزةي . كَيئ فيدل ىهيلوطنةئ انسكةزاض و لىوترنوك اثوسط وب<br />

. كَيئ فيدل ىهيلوطنةئ و لىوترنوك اثوسط وب<br />

% 8;.45<br />

2.46<br />

2.3; ± 2.:6 و 2.3; ± 2.72<br />

-:<br />

َىنسكةزاض وب اًيم اناد ظضزةب ارَيز<br />

± 3.78 و 2.44±<br />

3.66<br />

. نيلوسنلااب ولماعملا قئافلا ضيوبتلل ويلوحلا ويداركلا جاعنلا ضيابم وباجتسا<br />

َىنسككيي ارَيز<br />

ىووب<br />

-3<br />

-4<br />

زةوةنايط / ويووبةن تَيدلكَيض ارَيز<br />

ةصلاخلا<br />

ددع ( هرطيس ىلولاا وعومجملا.<br />

نيتعومجم ىلا ايئاوشع مغك 52 يئادتبا نزوبو ونس رمعب وجعن 25 عيزوت مت<br />

قبشلا راهظا ىلع تاناويحلا ثح مت نيلوسنلااب اهنقح مت ) 12 تاناويحلا ددع(<br />

ويناثلا وعومجملا ) 13 تاناويحلا<br />

عيمج نقح متو ويناث قبشلا ثادحا مت.<br />

قبشلا روهظ دعب.<br />

لماحلا سرفلا لصم نومرىو ويلبهملا تاجنفسلاا مادختساب<br />

3/<br />

3و3/<br />

3و<br />

4/<br />

4 نيتعرج لدعمبو ويلاتتم مايا 3 للاخ تلاصيوحلا ومنل زفحملا نومرى نم ويلود هدحو 20 ب تاناويحلا<br />

هرطيسلا<br />

وعومجم ولماعم مت . قبشلا هرود نم عباسلا مويلا دنعو . امهنيب وعاس 12 هردق ينمز لصافبو ويلود هدحو<br />

موي/<br />

مغك/<br />

ويلود هدحو 0.2 لدعمبو يرقبلا نيلوسنلااب ويناثلا وعومجملا نقح مت نيح يف . يجولويسفلا حلملا لولحمب<br />

قبشلا فشكل جاعنلا عم شبك 2 لاخدا مت PGF2αنيدنلاكاتسوربلا<br />

نقح ءاهتنا دعب.<br />

ويلاتتم مايا 3 هدملو دلجلا تحت<br />

. ضيوبتلا وبسن ريدقتل حيقلتلا نم مايا 3 رورم<br />

دعب<br />

تاناويحلا حبذ مت . ايعيبط اهحيقلت متو<br />

و هرطيسلا وعومجمل % 69.23 ولماعملل جاعنلا وباجتسا وبسن تغلب : يتلااب جئاتنلا صيخلت نكميو<br />

% 75.00<br />

نيلوسنلااب ولماعملاو هرطيسلا وعومجمل0.24±<br />

1.56 و 0.22±<br />

1.44 ضيوبتلا لدعم ناك . نيلوسنلااب ولماعملا وعومجمل<br />

هرطيسلا يتعومجمل 0.19±<br />

0.84<br />

ولماعملاو هرطيسلا يتلماعمل<br />

% 3547و<br />

و 0.19 ± 0.50 ناويح/<br />

8446<br />

وضابملا ريغ تلاصيوحلا وبسن تغلب امك<br />

اهيلع لصحتسنلا تاضيوبلا وبسن تغلب امك.<br />

يلاوتلا<br />

ىلع<br />

. يلاوتلا<br />

ىلع<br />

نيلوسنلااو<br />

.<br />

يلاوتلا ىلع نيلوسنلااب


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 153-161, 2010<br />

HEMATOLOGICAL AND SEROLOGICAL (cELISA) STUDIES<br />

OF CAPRINE ANAPLASMOSIS IN DUHOK GOVERNORATE<br />

OF KURDISTAN REGION OF IRAQ<br />

IBRAHIM ABDULQADER NAQID AND IHSAN KADIR ZANGANA<br />

Dept. of Veterinary Clinical Science, College of Veterinary Medicine, University of Duhok, Kurdistan Region-Iraq<br />

(Received: October 7, 2010; Accepted for publication: January 31, 2011)<br />

ABSTRACT<br />

<strong>The</strong> objectives of the present work were done to investigate the prevalence of Anaplasma ovis infection in goats<br />

in Duhok area, Kurdistan Region, of Iraq from April to September 2009. A total of 460 local black breed goats<br />

represent (35 flocks) of different localities were examined for the presence of Anaplasma ovis by Giemsa stained blood<br />

smears and serologically by competitive inhibition enzyme-linked immunosorbent assay (cELISA) for antibodies<br />

against A. ovis. <strong>The</strong> results revealed that 257 (55.86%) and 346 (75.22%) of goats were infected with A. ovis by<br />

Giemsa stained and by (cELISA) respectively. Statistically significant difference was encountered between males and<br />

females and among the different age groups of goats, high infection rate was detected in goats more than 3 year old<br />

146 (31.74 %) , where as goats 1-3 years old and those less than one year old of 84 (18.26%) and 27 (5.86%)<br />

respectively. <strong>The</strong> percentage of parasitemia ranged between 2.8-12.2% with mean of (7.12 %). <strong>The</strong> hematological<br />

parameters were estimated from positive cases of Giemsa stained. <strong>The</strong> mean values of erythrocyte count (5.9 ± 1.17)<br />

10 6 /µl, packed cell volume (19.5 ±2.68) % and hemoglobin concentration (6.3 ± 0.83) g/dl were statistically significant<br />

decrease (P 0.05). Also there was a statistical significant increased (P 0.05) in mean corpuscular volume (MCV)<br />

(33.9 ± 5.88) fl, while there was no statistical significant in mean corpuscular hemoglobin (MCH) (10.8 ± 1.76) pg and<br />

the mean corpuscular hemoglobin concentration (MCHC) (32.3 ± 2.19) g/dl. This indicated evidence of macrocytic<br />

normochromic type of anemia, whereas no significant differences were encountered in the differential count of<br />

leukocytes.<br />

KEYWORDS;- Anaplasma ovis, Goats, Hematology, Serology; cELISA<br />

A<br />

INTRODUCTION<br />

naplasma ovis is an intraerythrocytic<br />

rickettsial pathogen of sheep, goats and<br />

wild ruminants (Kuttler, 1984; Zaugg et al.,<br />

1996; Friedhoff, 1997; Yabsley et al., 2005; de<br />

la Fuente et al., 2006).<strong>The</strong> acute phase of the<br />

disease is characterized by severe anemia, fever,<br />

weight loss, abortion, lower milk production,<br />

pallor of mucous membrane, jaundice and often<br />

death (Kocan et al., 2003).It is biologically<br />

transmitted by various tick species such as<br />

Boophilus, Dermacentor, Rhipicephalus,<br />

Hyaloma, Ixodes, and Ornithodoros species,<br />

transmission may also occur mechanically by<br />

blood –feeding arthropods or by blood<br />

contaminated fomites (Losos 1986; Kocan et al.,<br />

2003).<br />

<strong>The</strong> diagnosis of A. ovis in goats has been<br />

based primarily upon the identification of acute<br />

infections, using microscopic examination of<br />

Giemsa-stained blood smears. However,<br />

rickettsemia levels of less than 0.1% infected<br />

erythrocytes in goats are not reliably detected by<br />

this method (Palmer, 1992).<br />

Recently, a competitive inhibition enzymelinked<br />

immunosorbent assay (cELISA) based on<br />

antibody binding to recombinant DNA-derived<br />

Anaplasma marginale major surface protein-5<br />

(MSP5) has been developed and shown to detect<br />

A. marginale- infected cattle including<br />

persistently infected carriers (Palmer et al.,<br />

1994). <strong>The</strong> aims of present study includes: the<br />

estimate the prevalence of Anaplasma ovis in<br />

goats in Duhok area by Giemsa stained.<br />

Seroprevalence for antibodies against<br />

Anaplasma ovis by (cELISA) and evaluate of<br />

hematological changes of acute infection in<br />

goats.<br />

MATERIALS AND METHODS<br />

1. Sampling<br />

<strong>The</strong> prevalence of caprine anaplasmosis was<br />

studied in goats in Duhok area, North Iraq from<br />

April to September in 2009.A total of 460<br />

peripheral blood smears and sera were collected<br />

153


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 153-161, 2010<br />

from local breed of black goats from 35 flocks of<br />

different localities (districts and sub districts)<br />

which include Zakho, Batel, Sumaill, Aqra and<br />

Center of Duhok province.<br />

2. Blood Smears<br />

Method of preparation of blood smears and<br />

Giemsa staining was used as described by Adam<br />

et al., (1971). <strong>The</strong> thin and thick blood smears<br />

were prepared from the peripheral ear vein.<br />

Before the sample, the site was punctured,<br />

clipped and wiped with 70% ethanol and<br />

allowed to dry the first drop of blood always<br />

discarded, a drop of blood was taken on a clean<br />

glass microscope slide, spread by another slide<br />

at an acute angle; air dried, and fixed by<br />

methanol 5 minute and stained with 10% Giemsa<br />

stain. 30 minutes<br />

3. Serologic Test for Detection of A. ovis<br />

<strong>The</strong> anaplasmosis competitive enzyme-linked<br />

immunosorbent assay (cELISA) was performed<br />

with serum sample using the Anaplasma<br />

Antibody Test Kit, cELISA from VMRD<br />

Inc.(2006) (Pullman, WA, USA) (Knowles et<br />

al., 1996) following the manufactures’<br />

instructions. This assay detects serum antibodies<br />

to a major surface protein (MSP5) of A.<br />

marginale, A. centrale, A. ovis and A.<br />

phagocytophilum (Dreher et al., 2005).<br />

4. Hematological Examination:<br />

Ten milliliters of blood was drained from<br />

jugular vein puncture, after the area was<br />

prepared aseptically, by clipping and then<br />

154<br />

soaking with 70% ethyl alcohol. Three milliliters<br />

of whole blood were mixed in disposable clean<br />

plastic tube with an anticoagulant (EDTA) and<br />

used for the estimation hematological<br />

parameters, while remaining seven milliliters of<br />

the blood were deposited in tube free from<br />

anticoagulant, to obtain serum for estimation of<br />

serological test by ordinary centrifuge 5000 rpm<br />

spanned for 5 minutes and separated serum kept<br />

at – 20°C until used. Hematological parameters<br />

included, total erythrocyte count (RBC), packed<br />

cell volume (PCV), hemoglobin concentration<br />

(Hb), differential leukocyte count, mean<br />

corpuscular volume (MCV), mean corpuscular<br />

hemoglobin (MCH), and mean corpuscular<br />

hemoglobin concentration (MCHC), were done<br />

by methods of Coles (1986).<br />

Statistical analysis:<br />

<strong>The</strong> results were analyzed by chi- square test<br />

(X 2 ) (Tekin, 2003).<br />

RESULTS<br />

Depending on morphological characteristics<br />

of the Anaplasma inclusion body in erythrocyte<br />

by Giemsa stained blood smear, the Anaplasma<br />

ovis was identified by light microscopic examination<br />

of Giemsa stained blood smear. A. ovis<br />

appeared uniform dark dote like circular<br />

body periphery to erythrocyte as single, double and<br />

triple inclusion bodies as shown in (Fig.1).<br />

<strong>The</strong> Anaplasma parasitemia was ranged from (2.8-<br />

12.2 %) with the mean value (7.16 ± 2.98).<br />

A B<br />

Fig (1): Anaplasma ovis in Giemsa staining blood smear (X1000)


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 153-161, 2010<br />

<strong>The</strong> prevalence of A. ovis by cELISA and<br />

blood smear was shown in table (1). <strong>Of</strong> 460<br />

native goats, 346 (75.22%) were positive for A.<br />

ovis antibodies while 257 (55.86%) were<br />

positive for A. ovis by Giemsa stained blood<br />

smear in all districts and sub districts. <strong>The</strong>re was<br />

no significant difference detected among studied<br />

area. <strong>The</strong> highest rate of infection was in Aqra<br />

67.92% and a lowest rate was in Sumail 47.87%.<br />

In other areas, the rate was in the center of<br />

Duhok 62.79%, in Zakho 55.04%, in Batel<br />

52.04% as show in table (2).<br />

Table (1): Prevalence of A. ovis in goats by Microscopical examination and cELISA test.<br />

Tests No. of samples examined Positive Number (%) Negative Number (%)<br />

Microscopical examination 460 257(55.86) 203(44.13)<br />

cELISA 460 346 (75.22) 114(24.78)<br />

Table (2): Prevalence of A. ovis in goats in Different Districts and sub districts of Duhok province.<br />

Area No. of samples examined No. of +ve<br />

samples<br />

Percentage (%)<br />

Zakho 129 71 55.04<br />

Batel 98 51 52.04<br />

Sumail 94 45 47.87<br />

Center of Duhok 86 54 62.79<br />

Aqra 53 36 67.92<br />

Total 460 257 55.86<br />

No statistically significant at a level of (p 0.05)<br />

In this preliminary study, the age was<br />

considered in sampling as in table (3). <strong>The</strong>re was<br />

a statistical significance difference in the<br />

prevalent rate among different ages. <strong>The</strong> high<br />

rate of A. ovis was 146 (31.74 %) in age group<br />

above 3 years and low rate was 27(5.86 %) in<br />

age group less than one year, while in age group<br />

1-3 years it was 84(18.26 %).<br />

Table (3): Prevalence of Anaplasma ovis in the relation to the age from total examined animals.<br />

Age Number of sample<br />

examined<br />

Number +ve sample<br />

percentage<br />

Under one year 65 27 5.86<br />

1 – 3 year 157 84 18.26<br />

Above 3 year<br />

238<br />

146<br />

(%)<br />

<br />

31.74<br />

Total 460 257 55.86<br />

<strong>The</strong> prevalence of A. ovis was statistically<br />

significant difference between males and<br />

Statistically significant at a level of (p 0.05)<br />

females. <strong>The</strong> rate was 225(57.98%) in females<br />

and 32(44.44%) in males as shown in table (4).<br />

Table (4): Prevalence of A. ovis according to the sex of animals.<br />

Sex No. of samples examined No. of +ve samples Percentage (%)<br />

Male 72 32 44.44<br />

Female 388 225 57.98 <br />

Total 460 257 55.86<br />

Statistically significant at a level of (P 0.05)<br />

155


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 153-161, 2010<br />

<strong>The</strong>re was a good qualitative agreement<br />

between both cELISA and microscopic<br />

examined since the agreement was in 204<br />

samples that were positive by both tests and in<br />

70 samples that were negative by both tests. <strong>The</strong><br />

156<br />

percentage of agreement was (59.57%) but<br />

disagreement was (40.43%) when only 186 out<br />

of 460 samples failed to show agreement with<br />

test results as shown in table(6).<br />

Table (6): Qualitative agreement and disagreement between cELISA and Microscopic.<br />

<strong>The</strong> hematological findings of the goats<br />

naturally infected with A. ovis are shown in table<br />

(7). <strong>The</strong> results of the study indicate that the<br />

values of blood parameters varied in comparison<br />

with normal values of blood pictures in the<br />

healthy animals depended on different<br />

references. <strong>The</strong> PCV % mean value was (19.5 ±<br />

2.6%); the hemoglobin concentration mean<br />

value was (6.3 ± 0.8) g/µl and the mean value of<br />

the total number of erythrocyte (5.9 ± 1.17)<br />

million cell/dl were statistically significant<br />

Parameters (Mean ± S.D)<br />

decreased at level of (P 0.05). Also there was a<br />

statistical significance increased at level of (P<br />

0.05) in the mean corpuscular volume (MCV)<br />

(33.9 ± 5.88) fl, but there was no statistical<br />

significance in mean corpuscular hemoglobin<br />

(MCH) (10.8 ± 1.76) pg and the mean<br />

corpuscular hemoglobin concentration (MCHC)<br />

(32.3 ± 2.19) g/dl. This indicates the evidence of<br />

macrocytic normochromic anemia.<br />

Table (7): Hematological parameters of goats infected with A. ovis<br />

Infected with A. ovis<br />

Total RBC X 10 6 / µL 5.9 ± 1.17 a 8-17<br />

Normal range<br />

(Coles 1986)<br />

PCV % 19.5 ± 2.68 b 20-38 %<br />

Hb g/dl 6.3 ± 0.83 c 8-14<br />

MCV (fl) 33.9 ± 5.88 d 16-25<br />

MCH (pg)<br />

10.8 ± 1.76 5-8<br />

MCHC g/dl 32.3 ± 2.19 28-34<br />

Parasitemia (%)<br />

Tests No. of samples Total samples % of sample Total %<br />

Positive (Both tests) 204<br />

Negative (Both tests) 70 274<br />

15.22<br />

Positive (cELISA)<br />

Negative(Microscope)<br />

Positive (Microscope)<br />

Negative (cELISA)<br />

142<br />

7.16 ± 2.98<br />

44.35<br />

a,b,c,d difference letters are statistically significant at a level of (p 0.05)<br />

186<br />

30.87<br />

44 9.56<br />

59.57<br />

40.43<br />

Total 460 460 100 100


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 153-161, 2010<br />

DISCUSSION<br />

Studies of Caprine anaplasmosis in Iraq are<br />

very scare and little information had been<br />

provided. This preliminary study was done for<br />

the first time in Duhok area, North Iraq from<br />

April to September, 2009. Accordingly, the<br />

objective of this study was determine the<br />

prevalence of Caprine anaplasmosis (A. ovis ).<br />

For the detection of A. ovis infection, two<br />

methods were used. <strong>The</strong> first one was based on<br />

microscopical examination of Giemsa stained<br />

blood smear, and the second technique cELISA,<br />

was used for detection of antibodies in sera of<br />

the investigated animals.<br />

Microscopic examination of the Giemsa<br />

stained thin blood smears is still the most<br />

reliable and cost effective method of confirming<br />

a clinical diagnosis of anaplasmosis (De Waal,<br />

2000). <strong>The</strong> diagnosis of tick borne diseases such<br />

as babesiosis, theleriosis and anaplasmosis still<br />

depends on observing the parasities in the<br />

infected erythrocytes when the parasitemia rates<br />

are indicative. Although the parasite detection<br />

can be easily applied in the field, the sensitivity<br />

of the method and its failure to detect<br />

anaplasmosis, if the number of parasite in the<br />

peripheral blood is too low, illustrate the<br />

limitation of parasitological diagnosis by Giemsa<br />

stained blood smears (Soulsby, 1986).<br />

In the present study, the prevalence of A. ovis<br />

by Giemsa stained blood smears was high<br />

revealed that 257(55.86%) in compared with<br />

other studies was done in Iraq. Alsaad et al.<br />

(2009) found the prevalence of A. ovis in goats<br />

in Mousl province in Iraq revealed that (24.74%)<br />

were infected with A. ovis. Al-Amerey and<br />

Hasso. (2002) reported that the prevalence of A.<br />

ovis in goats in Baghdad was 32.19%.While in<br />

other countries like Jordan, the prevalence of A.<br />

ovis by thin blood films was 8.6% in sheep and<br />

goats (Sherkov et al., 1976). Razmi et al. (2006)<br />

revealed that the rate 80.3% of sheep and<br />

38.92% of goats in Iran were infected with A.<br />

ovis by Giemsa stained blood smears. Talat et al.<br />

(2005) revealed that the incidence of A. ovis in<br />

sheep and goats in Pakistan was 13.2% and<br />

9.59% respectively and Hur et al. (1995) showed<br />

that the infection rate of grazing and nongrazing<br />

goats with Anaplasma spp. in Korean was 71.7<br />

and 8.5 %, respectively. Park et al., (1997) found<br />

that the infection rate of A. ovis in Korean goats<br />

by Giemsa stained blood smears and<br />

complement fixation test (CFT) was 20.1% and<br />

75.2% respectively, these variation in the rates<br />

might be related to distribution of population of<br />

the vectors as ticks and others like flies and<br />

mosquitoes.<br />

Microscopical examination revealed that<br />

presence of A. ovis in many erythrocytes with<br />

parasitemia ranged from 2.8- 12.2% with the<br />

mean value 7.16 ± 2.98 %, and the appearance of<br />

anaplasma inclusion bodies in the erythrocyte as<br />

spherical granule with variable from single to<br />

double dote like structure. <strong>The</strong>se shapes are<br />

similar to those described by Soulsby (1986).<br />

Razmi et al. (2006) found that the ranges of<br />

anaplasmatemia in the infected cattle, sheep and<br />

goats were 0.005-0.5%, 0.01-3% and 0.01-3%,<br />

respectively. Lu et al. (1997) revealed that the<br />

peak of parasitemia of erythrocytes in goats in<br />

China was 18-55.3%. Barry and Van Niekerk<br />

(1990) mentioned that showed that the mean<br />

parasitemia reached a peak of 5% to 6%, in boar<br />

goats with a maximum of 12% in two cases in<br />

South Africa. This variability in the parasitemia<br />

might to be due to variety of infection as acute<br />

or chronic and difference in strain of the agent<br />

and immune status of the host.<br />

<strong>The</strong> prevalence rate of Anaplasma ovis<br />

related to age groups and sex of goats was<br />

studied. <strong>The</strong>re was statistically difference in rate<br />

of prevalence between the sex and age groups<br />

(p 0.05); a high rate was found in age group<br />

above 3 years in comparison to other age groups.<br />

<strong>The</strong> younger animals less susceptible to<br />

infection than aged animals this might be due to<br />

passive immunization from dame to the kids via<br />

colostrums. <strong>The</strong> rate highly prevalently in<br />

females than males this might be due to the<br />

female animals kept involves in flocks more than<br />

male. This event was in agreement with<br />

Friedhoff (1997) and Lestoquard (1924), they<br />

found factors of age, sex, and breed influenced<br />

the incidence of anaplasma infection and the<br />

symptoms of the disease depended on age, the<br />

general condition of the animals and their breed<br />

(Shompole et al., 1989).<br />

Results agree with Alsaad (1990) reported<br />

that in Mosul province in Iraq the prevalence<br />

rate of A. marginale in cattle related to age,<br />

cattle from more than one year to four years old<br />

and those more than four years old were highly<br />

affected and represented the acute form of the<br />

disease with an infection rate of (60%, 22.5%)<br />

respectively, while cattle from 6-month to one<br />

year old were mildly affected and represented<br />

the mild form with an infection rate of 17.5%.<br />

Razmi et al. (2006) found that the prevalence<br />

of anaplasmosis was not statistically significant<br />

157


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 153-161, 2010<br />

between male and female and between different<br />

age groups of cattle, sheep and goats. Soulsby<br />

(1986) reported that the younger animals were<br />

susceptible to the infection but exhibited little<br />

detectable reaction although clinical cases can be<br />

induced by splenectomy.<br />

In this study, the Anaplasma was not seen in<br />

the erythrocytes of 142 of 346 animals which<br />

were positive for A. ovis antibody by cELISA.<br />

<strong>The</strong> results show that cELISA was a favorable<br />

technique for the detection of acute and chronic<br />

anaplasmosis. Anaplasma cELISA is a<br />

breakthrough in diagnosis of anaplasmosis in the<br />

persistently infected animals and is<br />

recommended by (OIE, 2008).<br />

<strong>The</strong> competitive enzyme linked<br />

immunosorbent assay (cELISA) based on a<br />

major surface protein-5(MSP5) from A.<br />

marginale used for the detection of the<br />

prevalence of A. ovis in goats and used as a<br />

comparative test with microscopical examination<br />

of Giemsa stained blood smears. <strong>The</strong> utility of<br />

the MSP5-based cELISA in detecting cattle<br />

infected with A. marginale suggested that the<br />

assay could be used to detect goats infected with<br />

A. ovis (Visser et al., 1992., Palmer et al., 1994).<br />

A comparison between the efficiency of<br />

cELISA and microscopical examination clearly<br />

showed that cELISA was more efficient than<br />

microscopic examination. Hence, cELISA<br />

allowed a better detection of 346 (75.22%) of the<br />

infected animals, while microscopical<br />

examination was detected only of 257(55.86%).<br />

In this study, seroprevalence of A. ovis<br />

antibodies was detected in sera of 460 native<br />

goats 346(75.22%). While Ndung’u et al. (1995)<br />

reported that the high prevalence of A. ovis in<br />

goats from four regions of Kenya 119 of 127<br />

known A. ovis- seropositive goats is determined<br />

by the MSP5 CI-ELISA. In Hungaria, Horonk et<br />

al. (2007) surveyed seroprevalence of A. ovis in<br />

five local flocks of sheep which was 99.4% and<br />

in cattle 80.8% by cELISA. Birdane et al. (2006)<br />

reported that in Turkey the prevalence of A.<br />

marginale in cattle by cELISA and microscopic<br />

examination of Giemsa stained blood smears of<br />

645 animals was 357(55.35%) and 220(34.11%)<br />

respectively. de la Fuente et al. (2006) reported<br />

that in Italy the prevalence of A. ovis from<br />

bighorn sheep in Montana was 69%.<br />

Scoles et al. (2008) reported that the<br />

prevalence of A. ovis in mule deer and black-<br />

tailed deer were 73% and 71% respectively by<br />

cELISA and the percent positive was 56% for<br />

mule deer and 82% for back tailed deer by IFA<br />

158<br />

and the sensitivity and specificity of cELISA test<br />

were 98.2% and 96.3%, respectively.<br />

This study revealed variable degrees in<br />

hemogram in goats infected with A. ovis confirm<br />

that moderate to severe hemolytic anemia was<br />

very distinctive in comparison to the normal<br />

healthy parameters. <strong>The</strong>se included a drop in the<br />

mean values of erythrocyte count, packed cell<br />

volume and hemoglobin concentration and also<br />

there was a significant increas in the mean<br />

values of the mean corpuscular values (MCV),<br />

while there was no difference in (MCHC,<br />

MCH). This indicated evidence of macrocytic<br />

normochromic anemia. Arslan and Shukur<br />

(1994) reported that the hematological findings<br />

showed a significant decrease in RBC, Hb<br />

concentration, PCV, and MCHC. No changes in<br />

MCV and MCH values were noted. Anemia was<br />

found to be normocytic hypochrpmic type. Total<br />

and differential leukocyte count showed no<br />

significant changes. Yousif et al. (1983) found<br />

macrocytic hypochromic type anemia (PCV<br />

23.4% instead of 32.3%) in the healthy goats in,<br />

a flock of goats of local breed in Iraq infected<br />

with A. ovis. Barry and Van Niekerk (1990)<br />

found macrocytic hypochromic anemia with A.<br />

ovis in boar goats. Alsaad et al. (2009) indicated<br />

that blood parasitic infection of blood<br />

parameters as total red blood cells, haemoglobin<br />

concentration, packed cell volume significantly<br />

decreased at level (P< 0.05) beside the<br />

significant increase at level (P< 0.05) in the<br />

erythrocyte sedimentation rate (ESR) and<br />

anemia of different types were also recorded<br />

depending on the type of infection macrocytic<br />

hypochromic anemia in theleria infection and<br />

normocytic normochromic anemia in babesia<br />

infection.<br />

Losos (1986) mentioned the pattern of<br />

anemia in anaplasma as a progressive anemia<br />

which is initially normocytic and later becomes<br />

macrocytic, with compensatory hyperplasia of<br />

bone marrow, granulocytosis, reticulocytosis,<br />

increased mean corpuscular cell volume, and<br />

increased osmotic fragility of erythrocytes. Red<br />

blood cells are removed by phagocytosis and the<br />

reticuloenothelial system, primarily in spleen<br />

removal of the red blood cells rather than<br />

intravascular hemolysis accounts for the absence<br />

of hemoglobinemia and hemoglobinuria. Rapid<br />

destruction of red blood cells and low hematocrit<br />

levels are accompanied by degeneration of<br />

paranchymatous organ. Other, explained that the<br />

pathogenesis of anemia could not be directly<br />

correlated to the cell injury due to invasion of


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 153-161, 2010<br />

erythrocytes by the Anaplasma, but loss of red<br />

blood cells was closely correlated to the level of<br />

infection in severely anemic animals (Jones et<br />

al., 1968). Removal of erythrocytes was due to<br />

in part to autoimmune antibodies bound to<br />

erythrocytes (Schroeder and Ristic, 1965 a).<br />

REERENCES<br />

- Adam, K.M.G., Paul, J., and Zaman, V. (1971). Medical<br />

and Veterinary Protozology Churchill livingstone<br />

Edinburgh and London Pp: 200<br />

- Al-Amerey, M.A.Y., and Hasso, S.A. (2002).<br />

Epizootiological Survey of some blood and fecal<br />

parasitic protozoa of goats around Baghdad City.<br />

Basrah. J. Vet. Res., 1(2): 41-48.<br />

- Alsaad, K.M., Al-obaidi, Q.T., Esmaeel, S.A.<br />

(2009).Hematological and biochemical study on the<br />

effect of some common blood parasites in native<br />

goats in Mosul area. Iraq. J.Vet. Sci. 23:101-106.<br />

- Alsaad, K. M. (1990). Clinical, Haematological and<br />

Biochemical studies on Anaplasmosis in local<br />

Cattle breed. Msc. thesis, Submitted to the College<br />

of Vet. Med. University of Mosul.<br />

- Arslan, S. H., and Shukur A.A. (1994). Clinical and<br />

hematological studies on theleriosis and<br />

anaplasmosis in local breed cattle in Mousl region.<br />

Iraq. J.Vet. Sci. 7(2), 93-100<br />

- Barry, D.M., and Van Niekerk., C.H. (1990).<br />

Anaplasmosis in Improved Boer Goats in South<br />

Africa Artificially Infected with Anaplasma ovis.<br />

Small Ruminant Research, 3: 191-197.<br />

- Birdane, F.M., Sevinc, F., Derinbay, O. (2006).<br />

Anaplasma marginale infectious in dairy cattle:<br />

Clinical disease with high seroprevalence. Bull Vet<br />

Inst Pulawy 50: 467-470.<br />

- Coles, E.H. (1986). Veterinary clinical pathology, 4th ed.<br />

W.B. Saunders Co. Philadelphia, London, Toronto,<br />

Pp. 25 – 29.<br />

- de la Fuente, J., Atkinson, M.W., Hogg, J.T., Miller, D.S.,<br />

Naranjo,v., Almazan, C., Anderson, N., Kocan,<br />

K.M.(2006).Genetic characterization of Anaplasma<br />

ovis strains from bighorn sheep in Montana.<br />

J.Wildl. Dis. 42: 381-385.<br />

- De Waal, D.T. (2000). Anaplasmosis control and diagnsis<br />

in South Africa. Annals of the New York Academy<br />

of Science, 916: 474–483.<br />

- Dreher, U.M., de la Fuente, J., Hofmann-Lehmann, R.,<br />

Meli, M.L., Pusterla, N., Kocan, K.M., Woldehiwet,<br />

Z., Braun, U., Regula, G., Staerk, K.D.C., Lutz, H.<br />

(2005).Serologic cross-reactivity investigation<br />

between Anaplasma marginale and Anaplasma<br />

phagocytophilum. Clin. Diagn. Lab. Immunol. 12:<br />

1177–1183.<br />

- Friedhoff, K.T. (1997).Tick born diseases of sheep and<br />

goats caused by Babesia, <strong>The</strong>ileria, or Anaplasma<br />

spp. Parasitologia 39: 99-109.<br />

- Hornok, S., Elek, V., de la Fuente, J., Naranjo, V., Farkas,<br />

R., Majoros, G., Foldvari, G. (2007).First<br />

serological and molecular evidence on the<br />

endemicity of Anaplasma ovis and Anaplasma<br />

marginale in Hungary.Vet. Microbiol, 122: 316 –<br />

322.<br />

- Hur, B.H., Jun, C.K., Lee, H.M., Kim, Y.S., Kim, Y.T.,<br />

Lee, J.W., Choi, J.W., An, B.M., Song, H.J.<br />

(1995).Prevalence of blood parasites infection and<br />

experimental treatment in Korean native goats.<br />

Korean J. Vet. Serv. 19(1): 42- 52.<br />

- Jones, E. W. Kliewer, I. O., Norman, B. B and Brock, W.<br />

E. (1968). Anaplasma marginale infection in young<br />

and aged cattle, Am. J. Vet. Res., 29(3): 535-44.<br />

Schroeder, W. F. and Ristic, M. (1965a).<br />

Anaplasmosis. XVII. <strong>The</strong> relation of autoimmune<br />

processes to anemia, Am. J. Vet. Res., 26(111):<br />

239-43.<br />

- Knowles, D.P., Torioni de Echaide, S., Palmer, G.H.,<br />

McGuire, T.C., Stiller, D., McElwain, T.F. (1996).<br />

Antibody against Anaplasma marginale MSP5<br />

epitope common to tick and erythrocyte stages<br />

identifies persistently infected cattle. J. Clin.<br />

Microbiol. 34: 2225–2230.<br />

- Kocan K.M., de la Fuente J., Guglielmmone A.A,<br />

Melendez R.D. (2003). Antigens and alternatives<br />

for control of Anaplasma marginale infection in<br />

cattle. Clin. Microbiol. Rev, 16: 698 –712.<br />

- Kuttler, K.L. (1984). Anaplasma infections in wild and<br />

domestic Ruminants: a review. J. Wildl. Dis. 20:<br />

12–20.<br />

- Lestoquared, F. (1924). Deuxieme note sur les<br />

piroplasmoses du mouton en Algerie. L<br />

Anaplasmamses: Anaplasma ovis nov. sp. Bull Soc<br />

Path Exot.17: 784-787.<br />

- Losos, G.J. (1986). Infectious tropical disease of domestic<br />

animals. Churchill Livingstone Inc., New York. Pp:<br />

743–745.<br />

- Lu, W.Sh., Lu, W.X., Zhang, Q.C., Yu, F., Dou, H.F.,<br />

Yin, H. (1997). Ovine Anaplasma in Northwes<br />

China.Trop. Anim. Health Prod. 29: 16S-18S.<br />

- Ndung’u, L.W., Aguirre, C., Rurangirwa, F.R., McElwain,<br />

T.F., McGuire, T.C., Knowles, D.P., Palmer, G.H.<br />

(1995). Detection of Anaplasma ovis infection in<br />

goats by major surface protein-5competitive<br />

inhibition enzyme-linked immunosorbent assay. J.<br />

Clin. Microbiol. 33: 675–67.<br />

- OIE, (2008). Bovine Anaplasmosis in OIE Manual for<br />

Diagnostic Tests and Vaccines. In chapters 2.4.1<br />

Palmer, G. H. (1992). Development of diagnostic reagents<br />

for anaplasmosis and babesiosis,. In T. T. Dolan<br />

(ed.), recent developments in the control of<br />

anaplasmosis, babesiosis, and cowdriosis. English<br />

Press, International Laboratory for Animal<br />

Diseases, Nairobi, Kenya. Pp: 59–66<br />

- Palmer, G. H., McElwain, T. F., McGuire, T. C.,<br />

Kappmeyer, L., Davis, W. C., Stiller, D., Visser,<br />

E., Tebele, N., Ndung’u, L., Pipano, E., Shkap, V.,<br />

159


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 153-161, 2010<br />

and Knowles D. P. (1994). Recent advances in<br />

serological diagnosis of anaplasmosis: development<br />

of the msp-5 competitive inhibition ELISA, In<br />

G.Uilenberg, A. Permin, and J. W.<br />

- Hansen (ed.), Use of applicable biotechnological methods<br />

for diagnosing haemoparasites. FAO, Rome, Pp:<br />

102–104<br />

- Park, K.O., Lee, J.A., Oh, K.H., Park, Y.G. (1997).<br />

Hematological and Serological Survey to<br />

Anaplasma spp in goats. Korean. J. Vet. Serv.20<br />

(2): 217<br />

- Razmi, G.R., Dastjerdi, K., Hossieni, H; Naghibi, A.,<br />

Barati, F., and Aslani, M.R. (2006).An<br />

Epidemiological Study on Anaplasma infection in<br />

cattle, sheep, and goats in Mashhad Suburu,<br />

Khorasan Province, Iran. Ann.N.Y. Acad. Sci.<br />

1078:479-481.<br />

- Schroeder, W. F. and Ristic, M. (1965a). Anaplasmosis.<br />

XVII. <strong>The</strong> relation of autoimmune processes to<br />

anemia, Am. J. Vet. Res., 26(111): 239-43.<br />

- Scoles, G. A., Goof, W. L., Lysyk, T.J., Lewis, G. S.,<br />

Knowles, D. p. (2008). Validation of an Anaplasma<br />

marginale cELISA for use in the diagnosis of A.<br />

ovis infections in domestic sheep and Anaplasma<br />

spp. in wild ungulates.Vet. Micr. 130: 184-90.<br />

- Sherkov, SN, Rabie, Y., Kokash, L. (1976). A survey of<br />

parasitic blood diseases tick borne fever in domestic<br />

animals in Jordan. Egypt J Vet Sci 13: 29-35.<br />

- Shompole, S., Waghela, S.D., Rurangirwa, F.R.,<br />

McGuire.T.C. (1989). Cloned DNA probes identify<br />

Anaplasma ovis in goats and reveal a high<br />

prevalence of infection. J. Clin. Microbiol, Pp:<br />

2730-2735.<br />

160<br />

ل ادانصب ظانل (Anaplasmosis(<br />

صضومشلابانةئ<br />

انوبظلاب<br />

Soulsby, E. J. L. (1986). Helminths, Arthropods and<br />

Protozoa of Domesticated animals. 7 th edit.<br />

Bailliere Tindal and Cassell. London, Pp: 728 - 741.<br />

- Talat, R., Khanum, T., and Hayat, A. (2005). Studies on<br />

Mammalian Haematozoan Parasites of NWFP<br />

Pakistan.J. Biological Sci. 8(5): 726-729.<br />

- Tekin, M.E. (2003). Statistic in computer. Selcuk Univ<br />

Fac Vet Med Press, Konya.<br />

- Visser E.S., Mcguire, T.C., Palmer, G.H., Davis, W.C.,<br />

Shkap, V., Pipano, E. and Knowles D.P. (1992).<br />

<strong>The</strong> Anaplasma marginale MSP 5 gene encodes a<br />

19-kilodalton protein conserved in all recognized<br />

Anaplasma species. Infect. Immun., 60: 5139–5144.<br />

- VMRD, I. (2006). Anaplasma Antibody Test Kit,<br />

cELISA. Retrieved October 22, 2009, from<br />

http://www.vmrd.com/docs/tk/Anaplasma/Anaplas<br />

ma-Flyer-040408. pdf, 09.06.<br />

- Yabsley, M.J., Davidson, W.R., Stallknecht, D.E., Varela,<br />

A.S., Swift, P.K., Devos Jr., J.C., Dubay, S.A.<br />

(2005). Evidemce of tick born organism in mule<br />

deer (Odocoileus hemionus) from the western<br />

United State. Vector borne Zoonotic Dis. 4: 351-<br />

362.<br />

- Yousif, Y.A., Dimitri, R.A., Dwivedi, S.K., Ahmed, N.J.,<br />

(1983). Anemia due to anaplasmosis in Iraqi goats:<br />

Clinical and haematological features under field<br />

condition. Indian Vet J 60: 576-578.<br />

- Zaugg, J.L., Goff, W.L., Foreyt, W., Hunter, D.L. (1996).<br />

Susceptibility of elk (Cervus elaphus) to<br />

experimental infection with Anaplasma marginale<br />

and A. ovis. J. Wildl. Dis. 32: 62–66.<br />

زودل<br />

(cELISA)<br />

َىقايرع اناتضدزوك انَيزةه -َىكوهد<br />

اهةكصيزاث<br />

ىجولويرض و َىنيوخ<br />

اكةنيلوكةظ<br />

ةتخوث<br />

َىنيلوكةظ , لىاموخ نَيشةز نَينصب زةطل َىقايرع اناتضدزوك انَيزةه ل َىكوهد اهةطصَيزاث ل نسكةتاه ةنيلوكةظ فةئ<br />

) Anaplasma ovis(<br />

صضومشلابان ةئ ب َىنووبشوت ارَيز ادَيت 9002 لااض ل َىنوليئ اهةم ات َىناطين اهةم ذ سكَيب تضةد<br />

ذ نسكيق ات ةنيتاه ادوج ادوج نَيزةظةد ل ىشةب نَيسب 53 ذ لىاموخ نَيشةز نَينصب 060 َىمذوك ذ.<br />

نسك تنَيموكد ةتاه<br />

َىظد . ادَيم<br />

ةيرض فاند شةلةذد انووبةه وب ذ ىجولويرض تَينسكيقات و َىنيوخ نَيكةل ذ Anaplasm ovis انووبةه وب<br />

نَيكةل اكَيسب Anaplasma ovis ب نووب ىوبشووت انصب ذ ) % 23.99(<br />

506 و )% 33.56(<br />

932 َىمذوكب ادَينيلوكةظ<br />

. كَيئ فيد ل competitive inhibition enzyme-linked immunosorbent assay (cELISA) و َىنيوخ<br />

فيد ل % 55.03 و % 59.93 ارَيسب نسكزايد ةتاه انصب َىناصنيوخ انسكيقات ووب ذ كينكةت cELISA اي ىتةبيات و ىزايتضةه<br />

اضةو زةه و اد َيم و سَين نَينصب ازةب ظاند Anaplasma ovis ب َىنووبشوت ارَيز ل ووبةه ظاجزةب اكةنيزووط . كَيئ<br />

نصب<br />

306 لىاض َىض ذ ترث وك نسكزايد ةتاه َىنوبشووت اي دنلب ارَيز انصب نَينةمةت فيد ل . انصب نَيي ادوج و ادوج نَينةمةت<br />

)% 3.56(<br />

92<br />

Anaplasma<br />

و % 35.96 ارَيسب نووب نصب 50 لىاض كَيئ ذ ترنَيك وئ لىاض 5 ات 3 ازةب ظان د نَينةمةت و % 53.20<br />

ايخاضةن اجنَيز اضةوزةه.<br />

ادسَين نَينصب د<br />

)% 00.00(<br />

59 و َىم نَينصب ل )% 32.25(<br />

993<br />

ارَيسب نووب<br />

ارَيسب ؛كَيئ فيد ل


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 153-161, 2010<br />

اصنط اغايوب ب َىنيوخ تَيديلاض انسك غايوب اكيز فيد ل ظيتةشوث تَيي َىنيوخ<br />

نَينوونم وب<br />

% 39.9<br />

. Giemsa stained blood smears<br />

ةن ب نوب شوت وك وب زايد اضةو َىنيوخ تيزةظيث زةطل َىيشوخ ةن َىظ<br />

انسكيتزاك ةظيد<br />

َىكةيلائ ذ و<br />

نَيي زووض نَيكبةت ازامذةه .(P


162<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 162-165, 2010<br />

EVALUATION OF TEST-DAY MILK YIELD OF NATIVE SHEEP<br />

BREEDS IN SOME COMMERCIAL FLOCKS *<br />

JALAL ELIYA ALKASS * and HAVAL.A. GARDI **<br />

* Dept. of Animal Production, College of Agricultue, University of Salahaddin, Kurdistan Region-Iraq<br />

** Dept. of Animal Production, College of Agricultue, University of Duhok, Kurdistan Region-Iraq<br />

(Received: October 17, 2010; Accepted for publication: March 10, 2011)<br />

ABSTRACT<br />

A total of 729 test-day milk yield (TDMY) of 172 ewes belonged to three breeds namely, Hamdani, Karadi and<br />

Awassi raised at four commercial flocks in Erbil plain, and the fifith flock belongs to College of Agriculture,<br />

University of Salahaddin, were used to study milk production together with some environmental factors affecting it.<br />

Test-day milk yield was recorded at monthly interval starting one month post lambing till the ewes were dried off.<br />

Lambs were separated from their mothers at 7.00 p.m. On the following morning, ewes were hand milked at 7.00<br />

a.m., and the milk yield was recorded.<br />

Overall mean of milk yield for the three breeds was 557.66 ± 12.40 gm. Breed and flock had a significant (P


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 162-165, 2010<br />

RESULTS AND DISCUSSION<br />

<strong>The</strong> overall mean of TDMY was 557.66 ±<br />

12.40 gm (Table 1). Such finding demonstrate<br />

that Iraqi sheep is inferior in milk yield to the<br />

sheep breeds such as Assaf (353 liter) (Gootwine<br />

and Pollot, 2002).<br />

Factors affecting test – day milk yield:<br />

Breed and flock :<br />

In the current study, the effect of breed within<br />

flock on TDMY was highly significant. It<br />

appears from Table (1) that TDMY ranged<br />

between 521.36 to 656.25 gm for Hamdani,<br />

489.03 to 637.76 gm for Karadi and 396.56 to<br />

546.52 gm for Awassi. Karadi ewes surpassed<br />

Hamdani ewes in TDMY in a flock 1 (637.76 vs<br />

521.36 gm), whereas Hamdani ewes surpassed<br />

Karadi in this trait in a flock 3 (656.25 vs.<br />

489.03 gm). When comparison is made within<br />

breed between flocks, it appears that Hamdani<br />

ewes reared at flock 3 attained higher TDMY<br />

than ewes reared at flock 1 and 2. Karadi ewes<br />

reared at flock 1 surpassed those reared in a<br />

flock 3, and Awassi ewes reared at flock 2<br />

yielded lower TDMY compared to those reared<br />

at flock 4. Such differences between breeds<br />

within flock and within breed between flocks<br />

could be due to difference in the genetic make<br />

up of ewes, the availability of feed and<br />

management practices followed in each flock.<br />

Similarly Alkass et al. (2008) reported<br />

significant effect of flock on milk yield.<br />

Age of dam:<br />

Four years old ewes produced significantly<br />

(p


164<br />

J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 162-165, 2010<br />

Table (1): Mean squares, Test of significance and Least square means ± S.E. for the factors affecting Test-day<br />

milk yield (gm) of different Iraqi local ewes.<br />

Factors d.f. or No Test-day milk yield (gm)<br />

Mean squares or Means S.E.<br />

Overall mean 729 557.66 12.40<br />

Breed within flock: 7 576386.97 **<br />

Flock 1-Hamdani 109 521.36 ± 38.75 b<br />

Flock 1-Karadi 103 637.76 ± 39.52 a<br />

Flock 2 – Hamdani 105 591.70 ± 34.56 ab<br />

Flock 2 – Awassi 104 396.56 ± 34.80 c<br />

Flock 3- Hamdani 67 656.25 ± 40.62 a<br />

Flock 3 – Kaeadi 69 489.03 ± 41.88 bc<br />

Flock 4-Awassi 84 546.52 ± 45.85 ab<br />

Flock 5- Hamdani 88 526.59 ± 37.07 b<br />

Age of dam(years): 3 409887.35 **<br />

2 & less 230 484.58 ± 25.47 b<br />

3 288 535.41 ± 25.14 b<br />

4 103 623.75 ± 35.43 a<br />

5 & more 108 501.83 ± 35.73 b<br />

Type of birth : 1 429592.85 *<br />

Single 614 275.09 ± 17.14 a<br />

Twin 115 500.52 ± 31.49 b<br />

Stage of lactation: 4 1239119.52 **<br />

Test 1 172 417.87 ± 27.98 c<br />

Test 2 170 462.17 ± 28.04 c<br />

Test 3 168 544.58 ± 28.05 b<br />

Test 4 127 630.56 ± 30.82 a<br />

Test 5 92 626.34 ± 35.50 a<br />

Month of birth: 2 1556310.66 **<br />

Nov. 98 416.17 ± 37.67 c<br />

Dec. 420 524.53 ± 25.75 b<br />

Jan. 211 668.21 ± 27.81 a<br />

Residual 711 93313.45<br />

** P


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 162-165, 2010<br />

ىىاطسصاب تّيتسةك كةذيٍ تّيي لىاموخ تّيَيم سةس ل ىيرش ّىمةٍسةب اي ةىاروس اىشكةظومش اىذىاطىةسلةٍ<br />

تّيي<br />

ىساوةع و , ىداشك , ىىاذمةح تّيَيم<br />

283<br />

تّيي ىيرش ّىمةٍسةب وب ٌشكةظومش ةيتاٍ ةىاروس ًّيمثماس<br />

ةتخوث<br />

اييلوكةظ وب ًيددةحلاةس ايوكىاص/<br />

ّىىذىاض ازيلوك ّىي ّىضّييث ّىتسةك و يىاطسصاب تّيتتسةك ساض ل ىس7777كىادوخ<br />

837<br />

. ىيرش ّىمةٍسةب سةس ل ّىٍةطيير ًّيسةكّيتساك ذىةض و ىيرش ّىمةٍسةب<br />

, ىصةث اىوبكشٍ اتةٍو<br />

ّىىاص ىتشث ّىكيئ اظيةٍ ر شك ّىث تسةد ّىكةساج ةىاظيةٍ ٌشكساموت ةتاٍد ىيرش ّىمةٍسةب<br />

و ىتتسةذب ًتود ةيتاٍد ُيم ّىذيثس ى8<br />

شّيمزمةد ل ترشاث اروس و ىساظيئ ى8<br />

شّيمزمةد ر ٌشكد ادوج اَيم ر خسةب<br />

. ٌشكساموت ةتاٍد وةٍسةب<br />

اد ىسةتك ظاتىد ىصةتث ّىسوتج . هغ23751±<br />

668777ىصةث<br />

تّيسوج ّىسسةٍ ّىي و ىيرش ّىمةٍسةب ّىي ىتشط ازّيس<br />

ىيرتش ّىنٍسةب ل ظاضسةب اكةيتفةكسةس ب يلاس5<br />

تّيَيم اسةوسةٍ ىيرش ّىمةٍسةب سةس ل<br />

و . ىياييئ خسةب ود تّيي سةس ل تنفةكسةس ب ًيةٍ خسةب كيئ تّيَيم اسيد لاس 6و<br />

4و<br />

وبةٍ ظاضسةب اىشكيتساك<br />

3 ٌاو ّىير تّيَيم سةبماسةب<br />

. ًياص ّىكيئ اييىام و ّىوود ايشض ل تّيي سةس ل تنفةكسةس ب ظاضسةب ًياص ّىوود اييىاك اظيةٍ ل تّيَيم<br />

ةيراجتلا ناعطقلا ضعب يف ةيلحملا تلالاسلا جاعنل يمويلا رابتخلاا بيلح جاتنا ميوقت<br />

اببام يبااوعلاا ولااب لاا يناوبمحلا حبم لب تلالابسل ةبجعن<br />

283<br />

لوبعت ببيلحلا جاتنلا يموي صحف<br />

837<br />

ةصلاخلا<br />

ليلحت مت<br />

ضبعبا ببيلحلا جابتنا ةباارول , حيوبلا للابص ةبعماج/<br />

ةب ار لا ةبيل عبلا لوبعيف لمابخلا بيطقلا ابماا ةبيراجت نابعطع ةبعبرا يبف<br />

ببعت عببنا<br />

اياوببي ببلحت جابعنلا عبنا<br />

. ةيف اثؤملا ةيئيبلا لماوعلا<br />

. جاببعنلا ابب ج عببتحا للاوببلا وببعب اببم الاا ادببدلا حببم ااوببتبا ايادببا وببحاا اببم بببيلحلا<br />

ليجببست مببت<br />

وبنعم ايث بت بيطقلا حمبا ةللابسلل ناب<br />

) احابببص 8 ة ابسلا(<br />

يلابتلا لوبيلا لابببص يبفا , اابسم ةعبابسلا ة اببسلا يبف ابدتادما حب نلابمحلا<br />

. مبغ 23751±<br />

668777<br />

4 ا 3 رابم لاا تاا جابعنلاب ةبنراقم ببيلحلا حبم ادجاتنا يف ايونعم تاونا5<br />

نوناب ادبا<br />

يبف وبلاولا جابعنلا عبعو ت ابم<br />

. جاتنلاا لجسيا<br />

لا بلا تلالابسللا ببيلحلا جابتنلا لابعلا وبعملا بلب<br />

امعب جاعنلا ععو ت ام<br />

. م اوبتلل ةعبااملا ابدتلاي م عبل لااب لل ةعبعملا جابعنلا ععو ت ام<br />

, بيلحلا جاتنا علل<br />

. ةنا<br />

.<br />

الاا نونا ا ينا لا حيادت يف ولاولا ادتلاي م عل ايونعم ينا لا<br />

6<br />

ا<br />

165


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 166-170, 2010<br />

166<br />

STUDIES ON THE ATTAINMENT OF PUBERTY IN KARADI EWE<br />

LAMBS 2. RELATIONSHIP OF AGE AT PUBERTY TO SOME<br />

BIOCHEMICAL CONSTITUENTS OF BLOOD*<br />

ARAZ G.PEDAWY and JALAL E. ALKASS<br />

Dept. of Animal Production, College of Agriculture, University of Duhok, Kurdistan region-Iraq<br />

(Received: October 21, 2010; Accepted for publication: March 10, 2011)<br />

ABSTRACT<br />

Atotal of 30 ,six month old Karadi ewe lambs raised at the animal project,college of Agriculture ,University of<br />

Duhok were divided randomly into two groups and allocated into two dietary protein levels namely 12% and 16% ,<br />

Blood samples was collected at 6,8 month old and at the onset of puberty for determination total protein ,glucose,<br />

cholesterol and insulin.<br />

Results revealed that total protein ,cholesterol and glucose averaged 6.66±0.07 gm/l, 37.53± 1.19 mg/dl and<br />

81.42±1.46 mg/dl, respectively ; protein level had no significant effect on total protein and glucose ,whereas the effect<br />

on cholesterol was significant .Also it appears that glucose was positively correlated with weight at puberty (0.247)<br />

(p


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 166-170, 2010<br />

mg/dl (mmol/L) glucose in the<br />

sample=absorbance sample/absorbance standard<br />

×con. of standard<br />

Cholesterol; was determined by kit from<br />

archem diagnostic industry (Turkey) and the<br />

concentration calculated using the following<br />

equation.<br />

Cholesterol (mg/dl) =absorbance sample/<br />

absorbance standard ×con. of stan. (mg/dl).<br />

Insulin: All insulin samples were run in a<br />

single assay was analyzed using Elcysys and<br />

Cobase immunoassay kit (Cobas,USA) and the<br />

analytical sensitivity was 0.20 µu/ml.<br />

General linear model (GLM) within the<br />

statistical program SAS (2005) were used to<br />

analyze the factors affecting biochemical<br />

constituents. Duncan Multiple Range Test<br />

(Duncan, 1955) also used to test the significant<br />

differences between the levels of each factor<br />

affecting the studied traits.<br />

Correlation coefficients among traits<br />

associated with puberty were also calculated.<br />

RESULT AND DISCUSSION<br />

Biochemical constituents of blood<br />

Total protein, cholesterol , and glucose<br />

averaged 6.66±0.072 gm/l, 37.53±1.19 mg/dl<br />

and 81.42±1.46 mg/dl ,respectively (Table<br />

1).<strong>The</strong> present values of total protein are<br />

within the normal ranges reported by Brigele<br />

and IIgaza (2003) who found that normal values<br />

of total protein in blood serum of sheep were in<br />

a range between 6 and 8 gm/l. Also, the values<br />

of glucose concentration in blood serum of the<br />

two groups are within the normal range in sheep<br />

given by Williams (1997) being 40-80 mg/dl.<br />

However, cholesterol level was slightly lower<br />

than the normal range (52- 76 mg/dl) as<br />

indicated by Kaneko et al (1997).<br />

Feeding ewe lambs 12% or 16%. crude<br />

protein had no significant effect on both total<br />

protein and glucose ,whereas the effect on<br />

cholesterol was significant (P


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 166-170, 2010<br />

168<br />

Glucose (mg/dl)<br />

88<br />

86<br />

84<br />

82<br />

80<br />

78<br />

76<br />

74<br />

72<br />

70<br />

6 month 8 month at puberty<br />

Fig. (1) Mean total glucose (mg/dl) of ewe lambs fed two levels of protein during<br />

various period of the experiment.<br />

Correlation coefficient between age and body<br />

weight at puberty and some metabolites<br />

traits:<br />

It has been suggested that sufficient body<br />

growth is a consequence of metabolic changes<br />

occurring before and around the onset of<br />

puberty (Suttie et al.,1991) .<strong>The</strong>refore, it is<br />

plausible to think that those changes serve as<br />

peripheral signals to initiate puberty(Sakurai et<br />

al.,2004) .In the present work, the correlation<br />

coefficients between protein and each of body<br />

weight and age at puberty was non significant<br />

being -0.003 and -0.132 , respectively .Also, the<br />

correlation coefficients between cholesterol and<br />

each of body weight and age at puberty were not<br />

significant being 0.098 and -0.185<br />

respectively(Table 2). <strong>The</strong>se results suggest that<br />

plasma metabolite concentrations per se are not a<br />

significant trigger for the onset of puberty in<br />

Karadi ewe lambs. Similarly, Sakurai et al.<br />

(2004) Indicated that some metabolites including<br />

non estrified fatty acids, ketone body and acetic<br />

acid are not considered a significant trigger for<br />

the onset of puberty in Shiba goat.<br />

Time changes in plasma concentrations of<br />

glucose are shown in (Figure 1). It appears from<br />

the figure that glucose concentration relatively<br />

maintained the same (79.35-85.42) during the<br />

course of study. Furthermore, the correlation<br />

coefficient between glucose and weight at<br />

puberty was significant (0.247), while with age<br />

Protein 12%<br />

Protein 16%<br />

was not significant (0.063) (Table 2). Also,<br />

Foster and Bucholtz (1995) reported that LH<br />

secretion is suppressed by the central<br />

administration of glucose inhibitor in developing<br />

sheep, and suggested that glucose availability<br />

has a critical role in the onset of puberty.<br />

<strong>The</strong>refore, the central sensors that detect the<br />

availability of particular circulating metabolites<br />

may change before the onset of puberty. Insulin<br />

is considered to be one of the metabolic signals<br />

linking nutritional status with pulstile<br />

GnRH/LH secretion in ruminants, because<br />

circulating insulin concentration are positively<br />

correlated with the nutritional status(Hileman et<br />

al.1990;Studer et al.,1993) ,and insulin acts<br />

centrally to stimulate pulstile LH release<br />

(Tanaka et al.2000) . In the current work, insulin<br />

was correlated positively (p


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 166-170, 2010<br />

Table (2): Correlation coefficients between each of age and body weight at puberty<br />

and some blood serum parameters.<br />

Protein Cholesterol Glucose Insulin<br />

Weight at puberty -0.003 N.S. 0.098 N.S. 0.247* 0.378 *<br />

Age at puberty -0.132 N.S. -0.185 N.S. 0.063 N.S. -0.439 **<br />

N.S. Not significant<br />

* P < 0.05<br />

** P < 0.01<br />

REFERENCES<br />

- Boulanouar, B., Ahmad, M., Klopfestein, T., Brink, D.,<br />

and Kinder, J. 1995. Dietary protein or energy<br />

restriction influences age and weight at puberty<br />

in ewe lambs. Anim. Reprod. Sci. 40: 229-238.<br />

- Brigle, E. and IIgaza, A. 2003. Age and feed effect on<br />

the dynamic of animal blood biochemical values in<br />

postnatal ontogenesis in calves. Vetinari ja Ir<br />

Zootechika T. 22:5.<br />

- Castro ,A., Dhindsa, D. S., Hoversland ,A.S. and Mct<br />

Calfe, J. 1977.Serum proteins and protein and<br />

protein electrophoretic pattern in normal pygmy<br />

goats .American J. Vet. Res.38:665-667.<br />

- Duncan, D.B. 1955. Multiple Range and Multiple Test.<br />

Biometrics. 11:1 -42.<br />

- Fawcett, D. W. 1979. <strong>The</strong> male reproductive system. In:<br />

Reproduction and Human welfare. (Ed Greep R.O.<br />

Koplincky ,M.A. and Jaffe ,F.S.) Hitt press<br />

Cambrige ,UK.<br />

- Foster , D. L., and Bucholtz, D. C. 1995.Glucose as a<br />

possible metabolic cue timing puberty. Front<br />

Endocrinol 10:319-331.<br />

- Foster, D. L., Olster, D. H. and Yellon, S. M. 1985.<br />

Neuroendocrine regulation of puberty by nutrition<br />

and photoperiod. In Adolescence In Females:<br />

Endocrinological Development and Implications on<br />

Reproductive Function .PP,1-21.<br />

- Foster, D. L., Ebling, F. J. P., Micka, A. F., Vannerson,<br />

L. A, Bucholtz,.D. C.,Wood, R. I., Suttie, J. M.<br />

and Fenner, D. E. 1989. Metabolic interfaces<br />

between growth and reproduction. Nutritional<br />

gonadotrophins, prolactin and growth hormone<br />

secretion in the growth limited female .lamb.<br />

Endocri. 125: 342-350.<br />

- Hileman, S.M., Schillo, K.K., Boling, J. A., and<br />

Estienne, M.J. 1990.Effects of age on fasting –<br />

induced changes in insulin, glucose, urea nitrogen,<br />

and free fatty acids in Sera of sheep.<br />

Proc.Soc.Exp.Biol.Med.194; 21-25.<br />

- Kaneko, J. J., Harvey, J. W. and Bruss, M. L.<br />

1997.Clinical Biochemistry of. Domestic Animals<br />

.Academic press, USA.<br />

- Palsson, H., and Verges, J. B. 1952. Effects of the plane<br />

of nutrition on growth and development of carcass<br />

quality in lambs. J. Agri. Sci. 42: l.<br />

- Park, C. S. 1985. <strong>Influence</strong> of dietary protein on blood<br />

cholesterol and related metabolites of growing<br />

calves. J. Anim. Sci. 61:924-930..<br />

- Pedawy, A.G., and Alkas, J. E., 2010. Studies on the<br />

attainment of puberty in Karadi ewe lambs. 1.<br />

Effect of level of protein on age and weight at<br />

puberty. J. Duhok Univ. (in press).<br />

- Sakuri, K., Ohkura, S., Matsuyama, S., Katoh, K.,<br />

Obara ,Y., and Okamura, H., 2004.Body growth<br />

and plasma concentrations of metabolitiesand<br />

metabolic hormones during the pubertal period in<br />

female Shiba goats .J. Reprod. Dev. 50; 197-205.<br />

- SAS (2005).SAs/STAT User’s Guide for personal<br />

computers. Release 6.12.SAS Institute Inc., Gary,<br />

Nc, U.S.A.<br />

- Singh, V., Bugalia, N.S., and Kumar ,P.1994.Plasma<br />

total protein cholesterol and minerals during<br />

prepuberal and puberal periods in goats. Indian J.<br />

Anim. Sci. 64:834-835.<br />

- Steiner, R.A., 1987.Nutritional and metabolic factors in<br />

the regulation of reproductive hormone secretion in<br />

the primate.Proc.Nutr.Soc.46:159 175.<br />

- Studer, V. A., Grummer, R. R., Bertics, S. J., and<br />

Reynolds, C.K. 1993.Effect of prepartum<br />

propylene glycol administration on peripartureint<br />

fatty liver in dairy cows. J. Dairy Sci. 76:2931-<br />

2939.<br />

- Suttie, J. M., Foster, D. L., Veenvliet, B.A , Manley,<br />

T.R., and Corson, I .D. 1991. <strong>Influence</strong> of food<br />

intake but independence of body weight on puberty<br />

in female sheep .J. Reprod. Fert .92:33-39.<br />

- Tanaka,T., Nagatani, S., Bucholtz, D.C., Ohkura, S.,<br />

Tsukamura, H., Maeda, K.,and Foster<br />

,D.L.2000. Central action of insulin regulates<br />

pulsatile luteinizing hormone secretion in the<br />

diabetic sheep model. Biol. Reprod. 62:1256-1261.<br />

- Williams ,O.R. 1997. Phsiology of Domestic Animals<br />

.2 nd ed.Lowa Univ. Press,USA.<br />

169


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 166-170, 2010<br />

َىوود اي و ينتوسث % 21<br />

170<br />

اكيلائ َىكَيئ اثوسط : اثوسط وود وب ىسكشةباد ةهتاي اظيةي<br />

6<br />

َىيذ ل َىم تَيخزةب<br />

اكيثسةد ذ وتسطزةو ةهتاي َىهيوخ تيلثماس اسةوزةي ىاشَيك ةهتايد ىكةزاج ىيتفةي زةوةنايط ينتوسب<br />

% 26<br />

ةتخوث<br />

30<br />

اكيلائ<br />

و ىشوكولط ىهيتوسث ايوك انسكةظولش وب ىنازةبل ةهتاي انوبزايد َىمةد و اظيةي تشةي و اظيةي 6 َىيذد و َىهيلوكةظ<br />

-:<br />

ىووب ىطنةز ىظب مانجةئ و ىنازةب ةهتاي َىمةد ىهيلوسنةئو ىنوترسيجوسب ارَيز اسةوزةي . لىويرتسلوك<br />

2616±<br />

22611 ترول وسد\<br />

وغلم 2621±<br />

30673 وترول\<br />

وغ .6.0±<br />

6666<br />

شووكولط و لىوترسيلوك<br />

. وبةي لىوترسيلوك و ارَيز ل ىسكَيتزاك َلىةب ىشوكولط و ىهيتوسث ايوك ارَيز ل وبةن ظاضزةب انسكَيتزاك و<br />

و ) .6110(<br />

و ىهيتوسث ارَيز<br />

ووب اوضزةب و يتةشووث َىهتوشيةطَيث ل ىوشةل اشَيكو شوكولط ازةبظاند ىدنةبظةي تَيزةتكاف<br />

َىي َىدنةبظةي َىزةتكاف َلىةب ) .6302(<br />

َىهتشيةطَيث ل ىشةل<br />

اشَيك ازةبظاند وبةي اضزةب و يتةشوث ادنةبظةي ىهيلوسنةئ<br />

ممممم ممممم ج\<br />

ت ممممم<br />

% 26<br />

ممممم ا لا ممممم لك\<br />

ممممم ل ممممل ممممم ولا<br />

تريل<br />

سد\<br />

. ( - .6131 ) ىخموت اهتشيةطَيث َىمةد ل ىذ لةطد اضزةب وب يتةطَين<br />

نا ممممم لا ممممم ت مممممو لمممممر ممممم بمممممشا<br />

ت مممم<br />

عمممم ل لمممم ل لا مممملولا بل ممممص اعممممل بممممشا<br />

2621±<br />

30673<br />

. ل ل لا<br />

,<br />

% 21<br />

2<br />

لولا م ا لا ل ص اعل<br />

ممممممم ل\<br />

يممممممغ .6.0±<br />

6...<br />

6<br />

مممممم ممممم و ا لاممممممح<br />

ممممم ت مممم ل مممممل م اعممممحا ادمممممغ ل<br />

بممممشا<br />

6<br />

ل لاا<br />

اممممك لممممر ممممل ممممت ت ممممولا ومممم لل ممممك يممممل . للا مممم لا ممممل مممم ل لممممس<br />

3.<br />

7<br />

غلم<br />

ةصلاخلا<br />

ممممم ت يمممممت<br />

ممممم ممممملا لا ممممو<br />

ممممم مممم لا عمممم عممممل معمممملا مممم م ممممل مدممممعا مممممك<br />

ع ت يت كلدك ل ل كلا ك لكلا للكلا ت ولا<br />

ممممممك لكلا ل مممممم ل كلا لمممممملكلا ت ممممممولا مممممم اممممممكل لعمممممم ملا لممممممل<br />

\ يممممغل<br />

مممموت لاا امممم ن ممممك . ل مممم ل كلا ا مممم لممممر ممممل مممم لا ن ممممك ممممح لممممر .<br />

ن مممملا مممم ممممل ممممج مممموت ا ل مممم لال ن ممممك مممممك ) ..110(<br />

.)<br />

−.6131(<br />

ل ل لا<br />

2616±<br />

22611<br />

مممم ل لممممس<br />

\ يممممغل<br />

ممممك لكلا لمممملكلا ت ممممولا مممم<br />

مممم ل مممموج مممملولا عممممل ن مممملا ممممك لكلا مممم<br />

لولا عل م لا ل ول س وت لاا ن ك ح لر ) .6302(<br />

ل ل لا لولا عل


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 171-175, 2010<br />

EFFECT OF SPRAYING WITH MOLYBDENUM AND IRON ON THE<br />

GROWTH AND SEED YIELD OF Nigella damascene L.<br />

YOUSIF H. HAMMO and BALKIES G. SAHI<br />

* Dept. of Horticulture ,College of Agriculture, University of Duhok, Kurdistan Region-Iraq<br />

(Received: November 4, 2010; Accepted for publication: February 27, 2010)<br />

ABSTRACT<br />

This study was conducted in Agricultural College/ Dohuk University during 2007 and 2008 growing season. To<br />

test the effects of Fe fertilizer at (0, 100, 200, 300) mg.l -1 sprayed twice, the first was on 1/2/2008 and the second was<br />

one month later, and Mo at (0, 100, 200) mg.l -1 after one week interval with Fe on vegetative and seed yield of Nigella<br />

damascene L. Results showed that spray with 100 mg. l -1 of Mo was superior over other treatments in 100 seed weight<br />

8.51%more than control, the highest fruits number and seed yield per plant were accompanied with 200 mg l -1 of Mo<br />

(37.75, 38.20)% for the two characteristics respectively, Also 100 and 200 mg.l -1 of Fe has significantly effects in fruits<br />

number, seeds yield per plant, and the highest percentage arrive (31.76, 35.14)% than control for the two levels<br />

respectively, <strong>The</strong> dual interaction between the Mo and Fe show significantly effects on all the characteristics, the<br />

highest number of fruit per plant was obtained from plants that sprayed with 200 mg.l -1 for Mo and 200 mg.l -1 of Fe,<br />

and the highest seeds weight per plant arrive 107.47% more than control for plant that spray with 200 mg.l -1 of Mo<br />

and 100 mg.l -1 Fe .<br />

KEYWORDS: Mo, Fe, seed yield, Nigella damascene.<br />

T<br />

INTRODUCTION<br />

he genus Nigella (Ranunculaceae<br />

family) consists of about 20 species,<br />

three of which Nigella glandulifera, Nigella<br />

sativa and Nigella damascena L. N. damascena,<br />

like N. sativa, is traditionally used as a<br />

condiment and healing herb in southern Europe<br />

and the Near East, but has never grown in the<br />

wild in central Europe. (Heiss and Oeggl, 2005).<br />

<strong>The</strong>ir seeds, commonly added in many food<br />

preparations, possess diuretic, analgesic,<br />

spasmolytic, galactagogue and bronchodilator<br />

effects and have been used for a long time in the<br />

treatment of urinary calculus and bronchial<br />

asthma. Flavones glycosides, triterpenoids and<br />

alkaloids are the main constituents in the Nigella<br />

genus (Tian et al, 2006). Love - in - amist<br />

(Nigella damascena L.) is an annual herbaceous<br />

plant, seeds are usually inexpensive and easy to<br />

germinate, direct seeding - lower costs,<br />

staggered seeding, multiple plantings possible,<br />

weeding and, low market price on species<br />

commonly found in home gardens harvesting are<br />

labor intensive (Koch, 1996). Delicate flowers<br />

for fresh use; allow surplus production to set<br />

fruit for sale as fresh material, further surplus<br />

fruit may be used in dried form (Stevens, 1992).<br />

Micronutrients are necessary for plant growth,<br />

too little or too much will reduce plant yield as<br />

much as a lack of nitrogen (Malhi & Leach,<br />

2000). Plants need a continual supply of Fe<br />

because its deficiency is the most common<br />

micronutrient especially in areas of low rainfall<br />

and in alkaline soils (pH above 7.0) Harris<br />

(1992), and for its inability to translocation from<br />

older to newer leaves, it is essential for<br />

chlorophyll and the reactions of photosynthesis<br />

(Huber, 1980). With some susceptible plants the<br />

newer leaves lose all of their capacity to produce<br />

chlorophyll and the leaf turns black and dies<br />

(Tindall et al, 1996). Bishr et al (1998) found<br />

that spray Nigella sativa with 50 mg.l -1<br />

microelements (Zn, Mn, and Fe) increase plant<br />

high, branch number, plant dry weight<br />

significantly when compared with control. Mo is<br />

also required in very small quantities in plants it<br />

is less available at low pH and its deficiency<br />

commonly occurs in soils that severely lack<br />

phosphorus and sulfur (Harris, 1992). Nitrogen<br />

metabolism, protein synthesis and sulfur<br />

metabolism are also affected by Mo which has a<br />

significant effect on pollen formation, so fruit<br />

and grain formation are affected in Mo deficient<br />

plants. And the plants did not get enough Mo<br />

had a strong positive effect. (Whitcomb, 1987;<br />

Laaniste et al, 2004). Deficiencies of<br />

micronutrients as Mo could reduce the oilseed<br />

yield (Hocking et al, 1999). <strong>The</strong> objective of the<br />

present study was to clarify the influence of<br />

micronutrient (Fe, Mo) on seed yield and growth<br />

characteristics of Nigella damascene.<br />

171


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 171-175, 2010<br />

171<br />

MATERIALS AND METHODS<br />

<strong>The</strong> field experiment was conducted during<br />

the 2007-2008 growing season at horticulture<br />

Department, college of Agriculture, Dohuk<br />

University. <strong>Seeds</strong> of Nigella damascena were<br />

obtained from the herbal grocery in Dohuk.<br />

<strong>Seeds</strong> were Sowed in (25) cm pots, after one<br />

month seedling were thinned to three per pot.<br />

<strong>The</strong> experiment was laid out in Randomized<br />

Complete Block Design with three replications.<br />

Fe applied as FeSO4.7H2O with (0, 100, 200,<br />

300) mg.l -1 concentrations for two time the first<br />

was done two month after sowing and the<br />

second was one month later, whereas Mo<br />

applied as Na2MoO4.2H2O with (0, 100, 200)<br />

mgl -1 concentrations for two time after one week<br />

as interval with Fe . <strong>The</strong> studied characteristics<br />

are plant height, number of branch per plant,<br />

number of fruit per plant, number of seeds per<br />

fruit, seed weight per plant, 100-seed weight,<br />

vegetative dry weight. Data analyzed<br />

statistically; using SAS program, mean values<br />

Characters<br />

Plant length (cm)<br />

Branches number<br />

/ plant<br />

Dry weight (gm)<br />

were compared by Duncan test at 5% level<br />

(SAS, 2001).<br />

RESULTS AND DISCUSSION.<br />

1-<strong>The</strong> Effects of Mo and Fe in plant length,<br />

branch number, and plant dry weight.<br />

Data in table (1) showed that 100 and 200<br />

mg.l -1 of Mo had significantly effects on plant<br />

length, brunches number, dry weight of plant<br />

when compared with the control and the highest<br />

increasing percentage than control arrive (31.71,<br />

26.85), (41.86, 42.33), (49.37, 53.46) % for the<br />

three characters respectively, while there aren’t<br />

any effect as a result for increase in Mo<br />

concentration from 100 to 200 mg.l -1 . Spraying<br />

nigella plant with Fe resulted in substantial plant<br />

length and branch number increase particularly<br />

by 300 mg.l -1 which exceeded the untreated<br />

check by 23.68% and 15.79 % respectively. <strong>The</strong><br />

dual interaction between the Mo and Fe<br />

concentration show significantly effect on plant<br />

length as shown<br />

Table (1): Effect of Mo and Fe in some characteristics of Nigella damacena.<br />

Mo<br />

concentration<br />

(mg.l -1 )<br />

Fe concentration (mg.l -1 )<br />

0 100 200 300<br />

0 26.33b 30.00b 43.67a 44.00a 36.00b<br />

100 43.67a 49.67a 47.33a 49.00a 47.42a<br />

200 44.00a 43.33a 47.33a 48.00a 45.67a<br />

Fe effect 38.00b 41.00b 46.11a 47.00a<br />

0 13.00e 17.00de 20.33cd 21.33b-d 17.92b<br />

100 25.00a-c 25.67ab 24.67a-c 26.33ab 25.42a<br />

200 25.33ab 24.33a-c 26.67a 25.67ab 25.50a<br />

Fe effect 21.11b 22.33ab 23.89a 24.44a<br />

0 15.80e 18.40de 22.60c-e 25.50b-d 20.58b<br />

100 28.63a-c 28.20bc 34.77ab 31.33a-c 30.73a<br />

200 30.13a-c 28.10bc 37.87a 30.20a-c 31.58a<br />

Fe effect 24.86b 24.90b 31.74a 29.01ab<br />

Means with same letter for each factor and interaction are not significantly different at 5% level based on<br />

Duncan's Multiple Rang Test.<br />

Mo Effect


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 171-175, 2010<br />

in the same table and the means value<br />

arranged between (43.33 - 49.67) cm except 0, 0<br />

(control) and 0, 100 mg.l -1 which give (26.33,<br />

30.00) cm respectively. Also the interaction 200,<br />

200 mg.l-1 for the two factors give the highest<br />

brunch number with increasing percentage<br />

(105.13) % than the control treatment.<br />

Identically the dual interaction for dry weight<br />

increased significantly for the same interaction<br />

by (139.66) % than control treatment.<br />

2- <strong>The</strong> Effects of Mo and Fe in fruit number,<br />

seed production, 100 seed weight, and seed<br />

number per fruit.<br />

Data in table (2) showed that fruit number,<br />

seed weight per plant, 100 seed weight are<br />

affected significantly by Mo, the 100 mg.l -1<br />

concentration is the superior treatment it give<br />

more percentage of 100 seed weight when<br />

compared with control and 200 mg.l -1 treatment<br />

(7.62, 8.51)% respectively. <strong>The</strong> highest increase<br />

in fruits number and seed weight per plant were<br />

found in plants that sprayed with 200 mg.l -1 of<br />

gm<br />

gm<br />

Characters<br />

Fruit number /<br />

plant<br />

Seed weight /<br />

plant (gm)<br />

100 seeds<br />

weight (gm)<br />

Seed number<br />

/ fruit<br />

Mo it arrive (37.75, 38.20) % than control<br />

respectively, the 100 mg.l -1 is the superior<br />

treatment it give the highest 100 seed weight<br />

(0.221)gm which significantly superior than<br />

other, while Seed number that cannot affected<br />

significantly with this factor. Although the Fe<br />

has no effect on 100 seeds weight, and seed<br />

number per fruit as shown in table (2) it has<br />

significantly effected in fruit number at 100 and<br />

200 mg.l -1 (43.3, 44.4) when compared with<br />

control and 300 mg.l -1 respectively, also seed<br />

weight per plant when spread with all<br />

concentration when compared with control, <strong>The</strong><br />

dual interaction between the Mo and Fe show<br />

significantly effect on most of characteristics as<br />

in table (2) and the highest percentage of seeds<br />

weight increases arrive 107.47% more than<br />

control for 200, 100 mg.l -1 of Mo and Fe<br />

interaction, were as the 100 seeds weight cannot<br />

effected by this interactions, the seed number per<br />

fruit have the heights dual effect in 200, 0 mg.l -1<br />

treatment it arrive (77.88) % than control.<br />

Table (2): Effect of Mo and Fe in some characters of Nigella damacena.<br />

Mo concentration<br />

(mg.l -1 )<br />

Fe concentration (mg.l -1 )<br />

0 100 200 300<br />

0 30.0e 35.7c-e 35.0c-e 34.3c-e 33.8c<br />

100 33.3de 41.0b-d 43.7b 40.7b-d 39.7b<br />

200 35.3c-e 53.3a 54.7a 42.0bc 46.3a<br />

Fe effect 32.9c 43.3a 44.4a 39.0b<br />

0 1.128e 1.600cd 1.702cd 1.600cd 1.508c<br />

100 1.397de 1.878bc 1.951a-c 1.970a-c 1.799b<br />

200 2.190ab 2.341a 2.150ab 1.660cd 2.085a<br />

Fe effect 1.572b 1.940a 1.934a 1.743ab<br />

0 0.215a 0.196a 0.198a 0.212a 0.205b<br />

100 0.228a 0.213a 0.222a 0.221a 0.221a<br />

200 0.215a 0.204a 0.196a 0.199a 0.204b<br />

Fe effect 0.220a 0.204a 0.205a 0.211a<br />

0 16.74b 23.62ab 24.63ab 20.79b 21.45a<br />

100 18.63b 21.74b 20.21b 21.50b 20.52a<br />

200 29.77a 24.40ab 20.19b 20.20b 23.64a<br />

Fe effect 21.71a 23.25a 21.68a 20.83a<br />

Means with same letter for each factor and interaction are not significantly different at 5% level based on<br />

Duncan's Multiple Rang Test.<br />

Mo Effect<br />

171


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 171-175, 2010<br />

<strong>The</strong> positive effects of Fe may be referring to its<br />

role in the synthesis of proteins and the function<br />

of certain respiration enzymes (Whitcomb,<br />

1987). Or to its deficiency that reduces the<br />

chlorophyll produce, so resulting in low levels of<br />

photosynthesis (the Chlorophyll is the green<br />

pigmented material in the plant necessary in<br />

carrying out photosynthesis) so in some severe<br />

cases, limbs or the entire plant may be affected.<br />

(Tindall et al, 1996). <strong>The</strong> effect of Mo may be<br />

refer to its involved in several enzyme systems<br />

including nitrate reductive (Nicholas, 1975), and<br />

for its effect on aboveground biomass, leaves’<br />

and improve photosynthesis rate (Liu et al,<br />

2005). also it is required in the synthesis of<br />

ascorbic acid and is implicated in making Fe<br />

physiologically available in plants so its<br />

deficiency resembles nitrogen deficiency so<br />

plant grow poorly (katyal and randhawa, 1983).<br />

REFERENCES<br />

- Bishr, G. A. A., I. M. A. Harridy., M. E. Khattab., M. T.<br />

M. A. Soliman 1998. Improving of Nigella sativa<br />

growth, yield volatile oil and fixed oil by potassium<br />

fertilization and some micro elements. J. Agric. Sci.<br />

Mansoura Univ., 23(6): 2667-2678.<br />

- Hocking. P., R. Norton., and A. Good. 1999. Crop<br />

nutrition. Proceedings of the 10 th International<br />

Rapeseed Congress, Canberra, Australia.<br />

- Harris. R. W. 1992. Arboriculture: Integrated management<br />

of landscape trees, shrubs, and vines. 2 nd ed.<br />

Englewood Cliffs, New Jersey: Prentice Hall.<br />

- Huber. D.M. 1980. <strong>The</strong> role of mineral nutrition in<br />

defense. Pp. 381-406 in Plant disease, an advanced<br />

treatise. Vol. 5: How plants defend themselves.<br />

171<br />

Editors J.G. Horsfall and E.B. Cowling. New York,<br />

New York: Academic.<br />

- Heiss. A. G., and K. Oeggl. 2005. <strong>The</strong> oldest evidence of<br />

Nigella damascena L. (Ranunculaceae) and its<br />

possible introduction to central Europe, Veget Hist<br />

Archaeobot 14:562–570.<br />

- Koch. C. 1996. Floriculture Factsheet, Field grown cut<br />

flowers. Abbotsford Agriculture Centre 1767 Angus<br />

Campbell Road Abbotsford, B.C. V3G 2M3.<br />

- katyal J. C. and N. S. Randhawa. 1983. Micronutrients<br />

(Mo). FAO Fert. Plant Nutr. Bull. 7: 69-76.<br />

- Laaniste. P., J. Joudu., and V. Eremeev. 2004. Oil content<br />

of spring oilseed rape seeds according to<br />

fertilization, Agronomy Research 2(1), 83–86.<br />

- Liu. P; Y.S. Yang; G.D. Xu; Y.H. Fang; Y.A. Yang; and<br />

R.M. Kalin 2005.<strong>The</strong> effect of Mo and boron in soil<br />

on the growth and photosynthesis of three soybean<br />

varieties. Plant soil envFe, 51, 2005 (5): 197–205.<br />

- Malhi. S. S., and D. Leach. 2000. Restore Canola Yield by<br />

Correcting Sulfur Deficiency in the Growing<br />

Season.<br />

- Stevens. A. B. 1992. Specialty cut flowers, a commercial,<br />

and grower's guide, Kansas State University<br />

Agricultural Experiment Station and Cooperative<br />

Extension Service, http://www.oznet.ksu.edu.<br />

- SAS (1989-2001). Proprietary soft ware release, 6.12 TS<br />

020 Licensed to North Carolina state university. By<br />

SAS Institute Inc., Cary. NC. USA.<br />

- Tindall T. A., M. W. Colt., D. L. Barney. And E. Fallahi.<br />

1996. Controlling Fe deficiency in Idaho plants,<br />

Published by Ag Communications Center, Director<br />

of Cooperative Extension System, University of<br />

Idaho, Moscow, Idaho 83844.<br />

- Tian. Z., Y. Liu., S. Chen., J. Yang., P. Xiao. And. L.<br />

Wang. 2006. Cytotoxicity of two Triterpenoids<br />

from Nigella glandulifera, Molecules 2006, 11,<br />

693-699.<br />

- Whitcomb. C. E. 1987. Landscape production,<br />

establishment and maintenance. Stillwater,<br />

Oklahoma: Lacebark Publication.


J. Duhok Univ. Vol.13, No.1, (Agri. And Vet. Sciences) Pp 171-175, 2010<br />

ه كوِد ايوكٌاش/<br />

وود وب ترل/<br />

) يرضخلا ومن(<br />

َىٌدٌاض اريلوك<br />

يطمو ) 0010002000300(<br />

كسةك َيةشةط زةس ه ًويٍي دبلوو و َسائ اٌدٌاشةز ايز ةطيزاك<br />

/<br />

َىكشةسشةز َىكةوز اي َىظوت اوةِزةب و<br />

ىزاكٌاتسيب اكشث ب زةس ىةشيش َىيٌاخ ه ُسك ةيتاِ ةٍيلوكةظ فةئ<br />

ارَيز زاضد ىٍسائ اٌدٌاشةز اٌسكيقات وب<br />

ًويٍيدبلوو اٌدٌاشةز هةكَيت َىكةوَيشب َىكَيئ اٌدٌاشةز<br />

ذ َىكةظيةِ ىتشث َىوود اي<br />

2008/<br />

6/<br />

1<br />

2008/<br />

2/<br />

1<br />

اتةِ 2007/<br />

12/<br />

1<br />

ةتخوث<br />

ىزاوزةب<br />

ه َىكَيئ ازاج وب ازاج<br />

ًويٍيدبلوو اٌدٌاشةز : ةٌةظةئ ىذ ًانجةئ و َىكشةسشةز اكةوز ه ىظوت َىوةِزةب و اطلةب زةسل ترل/<br />

يطمو)<br />

001000200(<br />

ُدٌاشةز ةيتاِةٌ ََيوةئ هةطد دزوازةب ب ىوٍعو ىكةوَيشب و اظوت<br />

ازاوذ اٌووبةدَيش وب ترل/<br />

يط<br />

وب ٪37075038020<br />

ىوةٍعةو اكةٌسكَيتزاك<br />

200<br />

اٌدٌاشةز اسوزةِ 8551%<br />

100 اشَيك اٌووبدايش ىوِ ةيوب ترل/<br />

يط100<br />

ةل َىٌووبةدَيش ارَيز َيترٍمب و ةيتشِةط و<br />

ارَيز<br />

) واسكدزوازةب(<br />

ةتشِةط ) ةٌزاكلما ةمواعو(<br />

واسكدزوازةب ىةلةواعو اٌووبدايش ايةرَيز . ىظوت دَيوةِزةب ارَيز و َىوةِزةب<br />

) يديدح داسم(<br />

ىٍسائ اٍيةث ترل/<br />

يطمو<br />

1005200<br />

ارَيز اسوزةِ<br />

. كَيئ فيدل ازوج وودزةِ<br />

واسكدزوازةب ىةلةواعو اياّب َيترىَيك ارَيزذ َىٌووبدايش ارَيسب و ىظوت اوةِزةب و ىوةِزةب اسوذ زةس ه ووبةِ<br />

و َسائ ازةب فاٌد<br />

) يئاٍثلا نخدت(<br />

ىٌاود اٌووب هةَيت وك وبزايد اسةو كَيئ فيدل ازوجوود<br />

زةِ وب<br />

14035076031<br />

ةيتاِ َىوةِزةب ازاوذ ارَيز َيستدايش . ُسكيقات ةيتاِ تَيي ََيتةمخاس ىةبزوش زةس د ىوةٍعةو اكةٌسكَيتزاك ًويٍيديبلوو<br />

ًىظ د ئكةكةووِززةِ ًوب ىظ ًوت<br />

اوةِةب اٌسكًيتزاك,<br />

ازةتكافوودزةِوب ترل/<br />

يطمو<br />

وك ةًييٌوبةدًيش ارًيٍز َيترٍمب َسائترل/<br />

يطمو100و<br />

ًويٍي دبلووترل/<br />

يطمو200ارًيٍز<br />

ازةبظاٌد<br />

روذبلا جاتنإو يرضخلا ومنلا يف و ديدحلاو مويندبلوملاب<br />

Nigella damascene L.<br />

ةكربلا ةبح تابنل<br />

200<br />

. ىسكدزوازةب ًَيكةووٍزذ<br />

شرلا ريثأت<br />

اٌدٌاشةزد ُسكزايد<br />

) يئاٍثلا نخدت(<br />

ادًيٌوبًلةكًيت<br />

% 107547<br />

ةتشِةط<br />

ةصلاخلأ<br />

، 2008،2007يعارزلا<br />

مسوملل كوهد ةعماج / ةعارزلا ةيلك/<br />

ةنتسبلا مسقل عباتلا يجاجزلا تيبلا يف ةساردلا تيرجأ<br />

دعب ةيناثلاو1/2/2008<br />

يف ىلولأا نيترملو رتل/<br />

مغلم ) 011 ، 011 ، 011 ، رفص(<br />

ديدحلا نم تايوتسم ةعبرأب شرلا رابتخلا<br />

ومنلا يف رتل/<br />

مغلم ) 011 ،011<br />

،رفص(<br />

زيكرتب مويندبلوملاب شرلا لخادتم لكشبو عوبسأ دعب اهعبتي ىلولأا ةشرلا نم رهش<br />

ىلإ رتل / مغ 011 زيكرتب مويندبلوملاب شرلا ىدأ : يليام جئاتنلا مهأ تنمضتو ةكربلا ةبح تابنل روذبلا جاتنإو يرضخلا<br />

شرلا ىدأ امك % 15.0 ةدايز ةبسن ىلعأ تغلبو ) ةنراقملا(<br />

ةشوشرملا ريغب ةنراقم يونعم لكشبو ةرذب 011 نزو ةدايز<br />

% 01501 ، 0757. تغلب ةنراقملا ةلماعم نع ةدايز ةبسنب روذبلا جاتنإو رامثلا ددع ةدايز ىلإ رتل / مغ 011 زيكرتلاب<br />

يتفص نم لك يف ًايونعم ريثأتلا ىلإ ديدحلا دامس نم رتل / مغلم 011 و 011 نيزيكرتلا ىدأ امك 5 يلاوتلا ىلع نيتفصلل<br />

ىلع نيتفصلل % 0.503 ، تغلب 00573 ةنراقملا ةلماعمل ةميق لقا نع ةدايز ةبسنبو تابنلل روذبلا نزوو رامثلا ددع<br />

ىلعأ دجو امنيبف ، ةسوردملا تافصلا مظعم يف يونعم ريثأت مويندبلوملاو ديدحلا نيب يئانثلا لخادتلا رهظا امك 5يلاوتلا<br />

لخادتلا ىطعأو لخادتلا اذهب تابن لكل روذبلا نزو رثأت ، نيلماعلا لاكل رتل / مغلم 011 زيكرتلاب شرلا دنع رامثلل ددع<br />

5ةنراقملا<br />

تاتابن نع % 017537 تغلب ةدايز ةبسن ىلعأ ديدح رتل / مغلم 011 و مويندبلوملل رتل / مغلم 011 زيكرتلا نيب<br />

171

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!