01.06.2013 Views

download/files/Proteomics brochure 7-08-04.pdf

download/files/Proteomics brochure 7-08-04.pdf

download/files/Proteomics brochure 7-08-04.pdf

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Solutions for Protein<br />

Mass Spectrometry<br />

Innovation you can’t afford to miss<br />

Analyze • Detect • Measure • Control TM


• Ultra-Sensitive Protein Analysis<br />

Finnigan LTQ linear ion trap mass spectrometer<br />

• Sheer Analytical Power<br />

Finnigan LTQ FT hybrid mass spectrometer<br />

• Rapid, Confident Protein ID<br />

Finnigan LTQ with vMALDI source and Ettan DIGE<br />

• Ultimate Analytical Flexibility<br />

MDLC LTQ workstation<br />

• Integrated <strong>Proteomics</strong> Workstation<br />

Finnigan ProteomeX LTQ workstation<br />

• Powerful Bio-Software Solutions<br />

2<br />

Including BioWorks software with<br />

SEQUEST ® algorithm and DeNovoX <br />

sequencing software<br />

Thermo is Revolution<br />

With the complete sequencing of the human genome, accomplished in 2000, a significant<br />

milestone in human scientific pursuit was reached. No sooner was this accomplished, however,<br />

than the race to characterize the protein products of all of those newly-discovered genes began.<br />

The concept of the human proteome and the science of proteomics were born.<br />

The characterization of proteins has proven to be a formidable analytical challenge. Proteins in<br />

biological samples are present in vast numbers, at widely varying concentrations, and in myriad<br />

modified forms. Combine this overt complexity with universal organizational demands for<br />

increased throughput and operational efficiency and the challenge can seem insurmountable.<br />

Fortunately, Thermo Electron can help. With an impressive array of innovative new products,<br />

technologies, and integrated solutions, Thermo is redefining the practical limits of what is<br />

possible in proteomics research.


izing <strong>Proteomics</strong><br />

Innovation you can’t afford to miss!<br />

3


Ultrasensitive Protein Analysis<br />

Finnigan LTQ Linear Ion Trap Mass Spectrometer<br />

4<br />

The revolutionary Finnigan LTQ<br />

linear ion trap mass spectrometer<br />

has pushed protein detection limits<br />

to unimaginably low levels. The<br />

large-capacity linear ion trap stores<br />

dramatically more ions and uses<br />

dual detectors for 100% detection<br />

efficiency.<br />

Thermo’s patented linear ion trap<br />

provides superior effective trapping<br />

capacity with its segmented design.<br />

Complete with radial ejection and<br />

dual detectors, the Finnigan linear<br />

ion trap is the most efficient trap<br />

available, providing power and<br />

sensitivity for all proteomic<br />

applications.<br />

Extremely rapid scan speeds result<br />

in many more MS/MS and MS n<br />

sequencing attempts per unit<br />

time, resulting in far greater<br />

protein coverage than has ever<br />

been possible before.<br />

Finnigan LTQ<br />

linear ion trap


Sheer Analytical Power<br />

Finnigan LTQ FT Hybrid Mass Spectrometer<br />

47 kDa protein<br />

(+ 31 charge<br />

state)<br />

Relative Abundance<br />

100<br />

95<br />

90<br />

85<br />

80<br />

75<br />

70<br />

65<br />

60<br />

55<br />

50<br />

45<br />

40<br />

35<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

antiVFab # 99-127 RT: 9.70-14.13 AV: 29 NL: 9.84E4<br />

T:FTMS + pNSIsid = 10.00 Full ms2 1241.00@0.00 [700.00-1800.00]<br />

Relative Abundance<br />

1241.5134<br />

100<br />

95<br />

1241.4363<br />

90<br />

1241.5903<br />

85<br />

80<br />

1241.3849<br />

75<br />

70<br />

65<br />

1241.6418<br />

60<br />

55<br />

50<br />

1241.3335<br />

1241.6932<br />

45<br />

40<br />

35<br />

1241.2823<br />

1241.7445<br />

30<br />

25<br />

1241.2309<br />

1241.7957<br />

20<br />

15 1240.9230<br />

1241.1798<br />

1241.0515<br />

1241.9234 1242.1024<br />

1242.1541<br />

1242.3078<br />

10<br />

5<br />

0<br />

1242.4613<br />

1240.8 1241.0 1241.2 1241.4 1241.6<br />

m/z<br />

1241.8 1242.0 1242.2 1242.4 1242.6<br />

1241.5517<br />

1210.4679<br />

Remove uncertainty from peptide<br />

and PTM assignments. The<br />

extraordinary new Finnigan LTQ FT<br />

incorporates an FT-ICR detector for<br />

ultra-high resolution (>100,000) and<br />

extremely accurate mass measurements<br />

(


Rapid, Confident Protein Identification<br />

Finnigan LTQ with vMALDI Source and Ettan DIGE<br />

Data Dependent MS/MS<br />

of a protein mixture with<br />

several MS/MS spectra<br />

shown<br />

6<br />

Quickly determine which proteins<br />

are present during rapid screening<br />

of proteomics samples by combining<br />

the speed of MALDI ionization<br />

with the sensitivity and MS/MS<br />

performance of the Finnigan LTQ.<br />

Finnigan vMALDI Ion Source<br />

Achieve confident, high-throughput<br />

protein ID with the new intermediate-pressure<br />

Finnigan vMALDI ion<br />

source for the Finnigan LTQ mass<br />

spectrometer. Quickly generate<br />

SEQUEST-searchable MS/MS<br />

spectra for unambiguous protein<br />

identification based on peptide<br />

sequence, not just peptide molecular<br />

weight. And with unique MS n<br />

capability, even post-translational<br />

modification (PTM) spectra (e.g.<br />

phosphorylation, glycosylation)<br />

are easily obtained.<br />

2D Gels and DIGE Chemistry<br />

Chemistry and hardware must<br />

work together to ensure a seamless<br />

system for proteomic research.<br />

Ettan DIGE (2-D Fluorescence<br />

Difference Gel Electrophoresis)<br />

from GE Healthcare (formerly<br />

Amersham Biosciences) is the<br />

state-of-the-art 2D protein expression<br />

visualization system. The Ettan<br />

DIGE system is perfectly suited to<br />

the new vMALDI LTQ mass spectrometer<br />

workstation for maximum<br />

protein throughput.<br />

Cytochrome-C Lactalbumin BSA<br />

Finnigan vMALDI<br />

source with LTQ<br />

linear ion trap


CCD image of protein digest<br />

with α-cyano matrix<br />

Analysis of a four-peptide mixture,<br />

200 amol each, with α-cyano matrix<br />

The Perfect System for High-<br />

Throughput Protein Analysis<br />

The Finnigan vMALDI ion source is<br />

completely optimized to harness the<br />

incredible sensitivity of the Finnigan<br />

LTQ for high-throughput MALDI-<br />

MS/MS analysis. The Finnigan<br />

vMALDI ion source utilizes:<br />

• Crystal Positioning System (CPS) to automatically target<br />

the optimum sampling pattern<br />

• Automated Spectral Filtering (ASF) for real-time monitoring<br />

of spectral quality<br />

• Automatic Gain Control (AGC )<br />

to determine the optimum<br />

number of laser shots for the<br />

best possible sensitivity<br />

Angiotensin I fragment 1-7<br />

Bradykinin<br />

Angiotensin I<br />

Neurotensin<br />

The system is designed to allow<br />

walk-away automation during data<br />

acquisition and has the intelligence<br />

to change experimental conditions<br />

to provide the best possible outcome:<br />

First, the CPS performs a<br />

digital analysis of the sample spot<br />

image to rapidly identify crystals<br />

with good signal-to-noise potential.<br />

CPS also remembers the ablated<br />

path, so that only fresh crystals are<br />

interrogated. Then, the Finnigan<br />

vMALDI ion source begins sampling,<br />

using ASF for real-time monitoring<br />

of spectral quality. When high<br />

quality spectra are detected, the<br />

Finnigan vMALDI ion source uses<br />

AGC to determine the optimum<br />

Automated sampling pattern<br />

mapped with CPS<br />

MS/MS of 50 fmol myoglobin digest,<br />

precursor is the T2 fragment at m/z 1606.9<br />

number of laser shots to achieve<br />

the highest possible sensitivity<br />

without sacrificing spectral quality.<br />

Data Dependent MS/MS is immediately<br />

performed on all precursor<br />

ions, giving MS/MS spectra to identify<br />

all peptides that are present.<br />

Poor signal: Move to different crystal<br />

CPS<br />

ASF<br />

AGC<br />

Good Signal<br />

Excellent Quality Spectra<br />

Examine Spectra<br />

Optimize Laser<br />

CPS, ASF, and AGC allow automated acquisition<br />

of high quality MS and MS/MS spectra<br />

MS 3 of 50 fmol myoglobin digest,<br />

precursor is at m/z 1192.7<br />

Move to next sample: Repeat process<br />

7


Ultimate Analytical Flexibility<br />

MDLC LTQ Workstation<br />

Analytical precision<br />

demonstrated by<br />

duplicate analyses<br />

with the MDLC LTQ<br />

8<br />

Relative Abundance<br />

The combination of the Ettan MDLC<br />

chromatography system from GE<br />

Healthcare and the Finnigan LTQ<br />

from Thermo creates a powerful<br />

new integrated LC/MS system<br />

with extraordinary flexibility and<br />

innovative applications.<br />

RT: 0.00 - 60.01<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

RT: 0.00 - 60.02<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Relative Abundance<br />

20<br />

10<br />

0<br />

0.10<br />

518.7<br />

5.06<br />

519.0<br />

7.24<br />

535.8<br />

8.60<br />

535.8<br />

11.36<br />

535.8<br />

13.<strong>08</strong><br />

518.8<br />

The pumps perform high pressure<br />

mixing and the system uses realtime<br />

flow monitoring to assure<br />

absolute gradient reproducibility.<br />

The entire system flowpath is bioinert,<br />

allowing high-yield analysis<br />

of post-translationally modified<br />

17.67<br />

563.4<br />

17.86<br />

465.6<br />

19.80<br />

501.9<br />

19.77<br />

501.9<br />

20.67<br />

636.8<br />

22.68<br />

536.8<br />

22.73<br />

536.8<br />

25.32<br />

748.3<br />

27.67<br />

616.3<br />

29.29<br />

460.6<br />

31.14<br />

9<strong>08</strong>.5<br />

peptides. The system can perform<br />

rapid LC/MS separations using a<br />

single column or high resolution<br />

multidimensional separations,<br />

allowing customization of separations<br />

for optimal detection of<br />

peptides by the Finnigan LTQ.<br />

34.75<br />

557.6<br />

36.62<br />

518.7<br />

40.34<br />

518.8<br />

42.27<br />

518.7<br />

44.78<br />

518.7<br />

48.53<br />

518.8<br />

MDLC LTQ provides<br />

ultimate versatility<br />

29.28<br />

460.6<br />

0.23<br />

519.0<br />

5.13<br />

535.8<br />

5.41<br />

518.7<br />

7.62<br />

519.0<br />

9.92<br />

518.7<br />

12.90<br />

518.8<br />

16.24<br />

597.4<br />

17.70<br />

465.6<br />

21.53<br />

650.4<br />

25.31<br />

748.3<br />

26.72<br />

771.4<br />

31.04<br />

9<strong>08</strong>.5 34.45<br />

557.7<br />

37.05<br />

789.5<br />

40.38<br />

518.7<br />

0 5 10 15 20 25 30<br />

Time (min)<br />

35 40 45 50 55 60<br />

41.65<br />

518.7<br />

45.26<br />

518.8 45.61<br />

518.8<br />

52.64<br />

783.8<br />

53.00<br />

783.8<br />

53.56<br />

727.3<br />

56.58<br />

518.7<br />

0 5 10 15 20 25 30 35 40 45 50 55 60<br />

Time (min)<br />

49.75<br />

518.8<br />

53.01<br />

462.2<br />

55.93<br />

519.1<br />

57.91<br />

519.1


Integrated <strong>Proteomics</strong> Workstation<br />

Finnigan ProteomeX LTQ Workstation<br />

Use turnkey, customized proteomics<br />

application methods to perform<br />

advanced protein analysis.<br />

The Finnigan ProteomeX LTQ workstation<br />

integrates optimized, colorcoded<br />

combinations of columns,<br />

Finnigan ProteomeX LTQ workstation with new Micro AS<br />

autosampler for integrated proteomics analysis<br />

plumbing kits, and methods into<br />

easy-to-use configurations for very<br />

specific analytical objectives:<br />

High-Throughput Protein ID<br />

Maximum Sequence Coverage<br />

Phosphorylation Site Mapping<br />

MudPIT<br />

9


High-Throughput Protein ID<br />

Perform a rapid desalting, concentration, and LC/MS analysis for high-throughput protein ID.<br />

Enzymatic digest<br />

of excised<br />

protein spots<br />

Relative Abundance<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

20<br />

90<br />

0<br />

60<br />

22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0<br />

10<br />

50<br />

80Time<br />

(min)<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

Relative Abundance<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

Relative Abundance<br />

100<br />

90<br />

80<br />

70<br />

100<br />

0<br />

40<br />

70<br />

26.30<br />

22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0<br />

100<br />

30<br />

20<br />

60<br />

50<br />

Time (min)<br />

90 Spot # Base Peak<br />

422.0<br />

26.25<br />

422.0<br />

26.34<br />

421.9<br />

80<br />

10<br />

26.23<br />

421.9<br />

40<br />

26.37<br />

422.1<br />

0<br />

70<br />

26.21<br />

25.0<br />

26.0 27.0 28.0 29.0<br />

23.0 24.0<br />

30<br />

422.0<br />

20<br />

60<br />

Time (min)<br />

26.39<br />

422.0<br />

26.41<br />

50<br />

26.19<br />

422.1 422.0<br />

10<br />

26.43<br />

40<br />

422.0<br />

0<br />

23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0<br />

26.48<br />

30<br />

Time (min)<br />

26.16<br />

422.1 422.1<br />

Rapid desalt and<br />

full mass scan<br />

Relative Abundance<br />

Relative Abundance<br />

20<br />

26.53<br />

421.9<br />

25.56 25.61<br />

523.6 523.6 26.14<br />

27.44<br />

422.0 26.64 27.37 27.3727.44<br />

422.0 738.4 738.3 27.48<br />

422.0<br />

10<br />

27.35 738.327.86 738.327.86<br />

25.52 25.77<br />

26.75 26.7527.35<br />

738.3<br />

767.7<br />

523.5 523.6 422.0 422.0738.3<br />

28.0428.26<br />

28.93<br />

767.8<br />

29.06<br />

840.0 419.3419.2<br />

0<br />

22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0<br />

Time (min)<br />

29.27<br />

419.2<br />

85.73<br />

85.83<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

782.1<br />

882.2<br />

981.3<br />

680.3<br />

567.3<br />

1094.3<br />

1336.4<br />

92.69<br />

10<br />

60.93<br />

0<br />

63.94 67.61 72.07 73.60 76.24<br />

82.06<br />

81.62<br />

80.54<br />

89.36 91.84 92.87<br />

101.23<br />

106.35<br />

104.30<br />

107.37<br />

115.51<br />

118.98<br />

121.94<br />

123.74<br />

126.11<br />

60 70 80 90 100 110 120<br />

96.27<br />

97.27<br />

101.75<br />

87.27 95.48<br />

112.10<br />

111.02<br />

Time (min)<br />

Rapid identification of<br />

proteins from 2D gel<br />

using MS/MS data and<br />

SEQUEST searching<br />

algorithms<br />

500 1000 1500 2000<br />

Maximum Sequence Coverage<br />

and perform a Data Dependent Top Ten MS/MS experiment with the Finnigan LTQ.<br />

10<br />

Base Peak<br />

Automated Data<br />

Dependent MS/MS<br />

with Dynamic<br />

Exclusion for<br />

high sensitivity<br />

A mixture of proteins was digested<br />

with enzyme and analyzed with a<br />

120-minute reversed phase gradient.<br />

The Finnigan LTQ, using a Top Ten<br />

Data Dependent Dynamic Exclusion<br />

experiment, conclusively identified<br />

multiple peptides resulting in significant<br />

coverage for all proteins in<br />

the mixture.<br />

Relative Abundance When maximum protein coverage is important, use longer gradients to achieve better peptide resolution<br />

ProteomeX<br />

Methods<br />

Accession<br />

Number Protein<br />

1 P43652 Afamin precursor (Alpha-albumin) (Alpha-Alb).<br />

2 P05091 ALDEHYDE DEHYDROGENASE, MITOCHONDRIAL PRECU<br />

3 P35221 Alpha-1 catenin (Cadherin-associated protein) (Alpha E-catenin).<br />

4 P05067 ALZHEIMER'S DISEASE AMYLOID A4 PROTEIN PRECUR<br />

5 P51693 AMYLOID-LIKE PROTEIN 1 PRECURSOR (APLP)<br />

6 P20073 ANNEXIN A7 (ANNEXIN VII) (SYNEXIN)<br />

7 Q9BZC7 ATP-BINDING CASSETTE, SUB-FAMILY A, MEMBE<br />

8 P02730 Band 3 anion transport protein (Anion exchange protein 1)<br />

9 P01884 BETA-2-MICROGLOBULIN PRECURSOR<br />

10 P55290 CADHERIN-13 PRECURSOR (TRUNCATED-CADHERIN)<br />

11 O14967 Calmegin precursor<br />

12 P17655 Calpain 2, large [catalytic] subunit precursor (EC 3.4.22.17)<br />

13 Q15699 Cartilage homeoprotein 1<br />

14 Q13033 Cell-cycle autoantigen SG2NA (S/G2 antigen)<br />

15 P54219 Chromaffin granule amine transporter (VAT1).<br />

16 P10645 CHROMOGRANIN A PRECURSOR (CGA) (PITUITARY<br />

17 O95239 CHROMOSOME-ASSOCIATED KINESIN KIF4A (CHRO<br />

18 Q9NYC9 CILIARY DYNEIN HEAVY CHAIN (AXONEMAL DYNE<br />

19 Q12860 Contactin precursor (Glycoprotein gP135).<br />

20 P01034 CYSTATIN C PRECURSOR (NEUROENDOCRINE BASIC<br />

21 P00156 CYTOCHROME B<br />

22 Q16850 CYTOCHROME P450 51 (CYPL1) (P450L1) (STERO<br />

23 P17611 Desmin<br />

24 Q9UBP4 DICKKOPF RELATED PROTEIN-3 PRECURSOR (DKK<br />

25 Q12805 EGF-CONTAINING FIBULIN-LIKE EXTRACELLULAR<br />

26 Q15668 EPIDIDYMAL SECRETORY PROTEIN E1 PRECURSOR<br />

27 P23142 FIBULIN-1 PRECURSOR<br />

28 Q9UEY8 GAMMA ADDUCIN (ADDUCIN-LIKE PROTEIN 70)<br />

29 Q9Y6H8 GAP JUNCTION ALPHA-3 PROTEIN (CONNEXIN 46)<br />

30 Q16478 Glutamate receptor, ionotropic kainate 5 precursor<br />

31 P55318 Hepatocyte nuclear factor 3-gamma (HNF-3G)<br />

32 P18065 INSULIN-LIKE GROWTH FACTOR BINDING PROTEIN<br />

33 P24592 Insulin-like grow th factor binding protein<br />

34 Q9UKP45 Kelch-like protein 1<br />

35 P10586 LAR protein precursor (Leukocyte antigen related)<br />

36 P03952 lasma kallikrein precursor (EC 3.4.21.34)<br />

37 P<strong>08</strong>547 LINE-1 reverse transcriptase homolog<br />

38 P07864 L-lactate dehydrogenase C chain (LDH-C) (LD<br />

39 O94759 LONG TRANSIENT RECEPTOR POTENTIAL CHANNEL<br />

40 O00754 Lysosomal alpha-mannosidase precursor (Man<br />

41 P04156 MAJOR PRION PROTEIN PRECURSOR (PRP) (PRP27-<br />

42 P40925 Malate dehydrogenase, cytoplasmic (EC 1.1.1.37).<br />

43 O60476 Mannosyl-oligosaccharide 1,2-alpha-mannos<br />

44 P16035 Metalloproteinase inhibitor 2 precursor<br />

45 P20774 Mimecan precursor (Osteoglycin) (Osteoinductive factor)<br />

46 O95255 Multidrug resistance-associated protein 6<br />

47 Q92859 Neogenin precursor.<br />

48 P13591 NEURAL CELL ADHESION MOLECULE, 140 KDA ISO<br />

49 Q9N0X5 Neural proliferation differentiation and control protein-1 precursor<br />

50 P19022 Neural-cadherin precursor (N-cadherin) (Cadherin-2).<br />

51 P07197 Neurofilament triplet M protein (160 kDa neurofilament protein)<br />

52 O43613 Orexin receptor type 1 (Ox1r) (Hypocretin<br />

53 P20774 OSTEOINDUCTIVE FACTOR PRECURSOR (OIF) (OSTEO<br />

54 P10451 OSTEOPONTIN PRECURSOR (BONE SIALOPROTEIN 1)<br />

55 P55058 PHOSPHOLIPID TRANSFER PROTEIN PRECURSOR (L<br />

56 P43034 PLATELET-ACTIVATING FACTOR ACETYLHYDROLASE<br />

57 P07602 Proactivator polypeptide precursor<br />

58 O6<strong>08</strong>83 Probable rRNA processing protein EBP2<br />

59 Q15113 Procollagen C-proteinase enhancer protein precursor (PCPE)<br />

60 P01210 PROENKEPHALIN A PRECURSOR [CONTAINS: MET-EN<br />

Amount Sequence<br />

Protein Injected Peptides Coverage<br />

BSA 100 amol 2 3.95%<br />

Catalase 1 fmol 13 26.48%<br />

Lactoglobulin 1 fmol 2 17.28%<br />

Carbonic Anhydrase 100 fmol 3 15.44%<br />

Lactoperoxidase 100 fmol 24 44.24%<br />

Carboxypeptidase 1 pmol 21 73.06%


Phosphorylation Site Mapping<br />

Identify sites of protein phosphorylation using chromatography columns that provide a high yield of<br />

phosphopeptides plus Data Dependent Neutral Loss MS 3<br />

scanning with the Finnigan LTQ to selectively<br />

perform MS 3<br />

on phosphopeptides.<br />

Relative Abundance<br />

100<br />

50<br />

100<br />

90<br />

80<br />

70<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

20 .1 5<br />

22 .6 4<br />

27 .6 3<br />

33 .1 3<br />

28 .2 0<br />

33 .5 9<br />

35 .7 6<br />

37 .3 6<br />

39 .5 2<br />

41 .4 0<br />

MS<br />

MS 2<br />

MS 3<br />

41 .7 1<br />

19 .7 3<br />

0<br />

4. 55 9. 44<br />

15 .4 6 42 .7 6 49 .0 4 57 .3 4<br />

0 10 20 30 40 50 60<br />

100<br />

0<br />

476.27 706.<strong>08</strong><br />

688.29<br />

1031.78<br />

1058.62<br />

982.624<br />

747.31 1013.78<br />

503.37 632.39 876.39<br />

1105.42<br />

390.18<br />

844.91<br />

1375.65<br />

1490.75<br />

1361.58<br />

1619 .71<br />

1619.72<br />

80<br />

964.67<br />

60<br />

747.34<br />

1688.81<br />

632.38<br />

40 328.26<br />

503.42<br />

20<br />

603.30<br />

345.07<br />

827.52<br />

1<strong>08</strong>8.34<br />

859.53<br />

1105.56 1361 .71 1601.85<br />

1332 .52<br />

1233.69<br />

1491.61<br />

1070.57<br />

1199.39<br />

1574.61<br />

1817.71<br />

1800 .74<br />

Time (min) m/z<br />

0<br />

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100<br />

Time (min)<br />

100<br />

50<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160<br />

Time (min)<br />

100<br />

50<br />

0<br />

0 10 20 30 40 50<br />

100<br />

50<br />

0<br />

40 m M<br />

150 160<br />

0 10 20 30 40 50 60 70 80<br />

Time (min)<br />

90 100 110 120 130 140<br />

100<br />

50<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160<br />

Time (min)<br />

100<br />

50<br />

80 m M<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160<br />

Time (min)<br />

100<br />

50<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160<br />

Time (min)<br />

100<br />

50<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160<br />

Time (min)<br />

100<br />

50<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160<br />

Time (min)<br />

100<br />

50<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160<br />

Time (min)<br />

100<br />

50<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160<br />

Time (min)<br />

100<br />

50<br />

(Shows<br />

neutral loss)<br />

0 m M<br />

10 m M<br />

20 m M<br />

60 m M<br />

100 m M<br />

120 m M<br />

150 m M<br />

200 m M<br />

400 m M<br />

800 m M<br />

0<br />

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160<br />

Time (min)<br />

Relative Abundance<br />

40 0 60 0 80 0 1000 1200 1400 1600 1800 2000<br />

Analysis of a beta casein digest, showing base peak LC/MS analysis, MS spectrum, MS/MS spectrum showing neutral loss<br />

indicative of a phosphopeptide, MS 3 spectrum showing excellent fragmentation, and definitive identification by SEQUEST.<br />

FQS*EEQQQTEDELQDK<br />

Multidimensional Protein ID (MudPIT)<br />

Analyze complicated protein digest mixtures with automated, on-line multidimensional LC/MS analysis. Peptides<br />

are retained on a strong cation exchange column, desalted and concentrated on peptide traps, then resolved on a<br />

high-performance C18 column and extensively mined for peptides by the Finnigan LTQ. Results from all salt steps<br />

are compiled in a final Multiple File Consensus Report by BioWorks.<br />

Neurofilament triple-m protein (125 ng/L in normal CSF)<br />

present at < 1 fmol in this analysis<br />

Partial list of<br />

proteins found<br />

ProteomeX<br />

Methods<br />

Accession Unique Coverage<br />

Number Protein Peptides Percentage<br />

P02763 ALPHA-1-ACID GLYCOPROTEIN 2 PRECURSOR 5 18<br />

P19652 ALPHA-1-ACID GLYCOPROTEIN 2 PRECURSOR 8 28<br />

P04217 ALPHA-1B-GLYCOPROTEIN 12 25<br />

P01009 Alpha-1-antitrypsin precursor 10 26<br />

P02765 ALPHA-2-HS-GLYCOPROTEIN PRECURSOR 10 31<br />

P01023 ALPHA-2-MACROGLOBULIN PRECURSOR 35 48<br />

P01011 ALPHA-1-ANTICHYMOTRYPSIN PRECURSOR 25 84<br />

P43652 AFAMIN PRECURSOR (ALPHA-ALBUMIN) 3 25<br />

P02768 SERUM ALBUMIN PRECURSOR 67 58<br />

P01876 IG ALPHA-1 CHAIN C REGION 2 25<br />

P01019 ANGIOTENSINOGEN PRECURSOR 11 25<br />

P010<strong>08</strong> ANTITHROMBIN-III PRECURSOR (ATIII) 3 24<br />

P02647 APOLIPOPROTEIN A-I PRECURSOR (APO-AI) 6 16<br />

P02652 APOLIPOPROTEIN A-II PRECURSOR (APO-AII) 5 20<br />

P06727 APOLIPOPROTEIN A-IV PRECURSOR (APO-AIV) 4 15<br />

P06727 APOLIPOPROTEIN A-IV PRECURSOR (APO-AIV) 7 25<br />

P05090 APOLIPOPROTEIN D PRECURSOR 8 49<br />

P02649 APOLIPOPROTEIN E PRECURSOR (APO-E) 11 32<br />

P02749 Beta-2-glycoprotein I precursor (Apolipopro 5 12<br />

P32247 BOMBESIN RECEPTOR SUBTYPE-3 (BRS-3) 5 24<br />

P09871 COMPLEMENT C1S COMPONENT PRECURSOR 2 35<br />

P49454 CENP-F KINETOCHORE PROTEIN 3 45<br />

P00450 CERULOPLASMIN PRECURSOR (FERROXIDASE) 4 25<br />

P00751 COMPLEMENT FACTOR B PRECURSOR 23 37<br />

P<strong>08</strong>603 COMPLEMENT FACTOR H PRECURSOR 15 42<br />

P10909 Clusterin precursor (Complement-associated 15 25<br />

P09871 Complement C1s component precursor 2 24<br />

P01024 COMPLEMENT C3 PRECURSOR 38 37<br />

P01028 COMPLEMENT C4 PRECURSOR 32 23<br />

Q12860 CONTACTIN PRECURSOR (GLYCOPROTEIN GP135) 6 16<br />

P11532 DYSTROPHIN 5 25<br />

P02671 FIBRINOGEN ALPHA/ALPHA-E CHAIN PRECURSOR 13 34<br />

P02751 FIBRONECTIN PRECURSOR (FN) (COLD-INSOLUBLE 3 24<br />

P01857 IG GAMMA-1 CHAIN C REGION 21 60<br />

P01859 IG GAMMA-2 CHAIN C REGION 14 30<br />

P01860 IG GAMMA-3 CHAIN C REGION (HEAVY CHAIN DISEA 13 34<br />

P01861 CHAIN C REGION 3 15<br />

P01777 HAIN V-III REGION TEI 3 14<br />

P01834 HAIN C REGION 3 50<br />

P80362 HAIN V-I REGION WAT 7 21<br />

P18136 HAIN V-III REGION HIC PRECURSOR 6 16<br />

P06396 GELSOLIN PRECURSOR, PLASMA 16 27<br />

P02023 HEMOGLOBIN BETA CHAIN 32 23<br />

P02790 HEMOPEXIN PRECURSOR (BETA-1B-GLYCOPROTEIN) 12 25<br />

P00738 HAPTOGLOBIN-2 PRECURSOR 15 25<br />

P00739 HAPTOGLOBIN-RELATED PROTEIN PRECURSOR 2 24<br />

P01042 Kininogen Alpha-2-thiol proteinase inhibitor 38 37<br />

P01597 KAPPA CHAIN V-I REGION DEE 32 23<br />

P01842 IG LAMBDA CHAIN C REGIONS 3 50<br />

Q92876 KALLIKREIN 6 PRECURSOR (PROTEASE M) (NEURO 2 23<br />

P29622 Kallistatin precursor (Kallikrein inhibitor) 2 25<br />

Q9UM88 Beta 2-microglobulin protein 9 70<br />

P36955 MENT EPITHELIUM-DERIVED FACTOR PRECURSOR 6 23<br />

P05155 PLASMA PROTEASE C1 INHIBITOR PRECURSOR (C1 I 13 34<br />

P00747 PLASMINOGEN PRECURSOR 33 44<br />

P02787 SEROTRANSFERRIN PRECURSOR 34 44<br />

P05452 TETRANECTIN PRECURSOR (TN) (PLASMINOGEN-KRI 6 16<br />

P07477 TRYPSINOGEN I PRECURSOR 15 33<br />

P02766 Transthyretin precursor (Prealbumin) (TBPA) 6 16<br />

P02774 VITAMIN D-BINDING PROTEIN PRECURSOR (DBP) 7 18<br />

P04004 TRONECTIN PRECURSOR (SERUM SPREADING FACTOR) 2 35<br />

11


Powerful Bio-Software Solutions<br />

Achieve Dramatic Productivity Gains<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

60<br />

40<br />

20<br />

0<br />

100<br />

80<br />

13 .1 9<br />

Efficiently turn data into information,<br />

and then into knowledge, with<br />

Thermo’s solutions:<br />

BioWorks–Protein identification<br />

software, based on SEQUEST<br />

SEQUEST Cluster–Parallel<br />

processing for accelerated database<br />

searching<br />

DeNovoX–Automated de novo<br />

sequencing software<br />

SALSA–Spectral pattern<br />

recognition software<br />

Starting with MudPIT data, BioWorks identifies and highlights the b- and y-ions<br />

matched within the peptide chain of the first identified protein candidate.<br />

12<br />

RT: 0.00 - 147.01<br />

Relative Abundance<br />

25 .6 3<br />

43 .98<br />

43 .1 0<br />

BioWorks Protein<br />

Identification Software<br />

Use the most-cited protein identification<br />

algorithm in the scientific<br />

literature–SEQUEST–to correctly<br />

match MS, MS/MS, and MS n<br />

spectra with protein databases.<br />

Renowned for its sensitivity and its<br />

ability to identify PTMs, the power<br />

of BioWorks is amplified by:<br />

3. 85<br />

45 .49 48 .38<br />

53 .4 2 62 .96 79 .4 8 97 .29 11 1.60 12 1.87<br />

13 0.22<br />

27 .6 7<br />

23 .3 0<br />

43 .0 8<br />

19 .68 39 .16 29 .3 4<br />

18 .10<br />

14 .07 51 .0 5<br />

53 .6 7<br />

61 .2 6 75 .8 2 94 .59 1 04. 07<br />

11 6.91<br />

12 8. 6 6 13 2. 90<br />

13 5. 25<br />

28 .2 3<br />

24 .11<br />

33 .86<br />

23 .2 1 36 .15<br />

16 .50<br />

44 .1 4 57 .31<br />

14 .6 5<br />

10 .12<br />

62 .0 0<br />

75 .8 4<br />

97 .1 4 10 2. 90 12 2. 3 7 13 0. 0 0<br />

38. 40 46 .50<br />

29 .91<br />

57 .2 1<br />

60<br />

25 .0 2<br />

40<br />

20<br />

0<br />

15 .27 19 .7 9<br />

1.30<br />

58. 33<br />

75 .9 5 98 .8 4 101 .2 1<br />

12 4.47 13 2. 44<br />

0 20 40 60 80 100 12 0 14 0<br />

Time (min)<br />

Post-Translational<br />

Modification Searches<br />

Automatically set up and execute<br />

searches for static and dynamic<br />

modifications such as phosphorylation<br />

and oxidation<br />

Protein Quantitation<br />

using XPRESS Automatically generate relative<br />

quantitation levels in peptides<br />

tagged with any label such as<br />

ICAT reagent labeled peptides<br />

Multiple File Consensus<br />

Consolidate and sort results from<br />

a number of SEQUEST searches<br />

–essential for MudPIT analyses<br />

Customized Results<br />

Filtering and Sorting<br />

Incorporate XCorr vs. Charge State<br />

filter to automatically eliminate<br />

low-scoring peptides and proteins,<br />

and reduce the amount of time<br />

spent verifying results<br />

Database Management<br />

Automatically <strong>download</strong> protein<br />

database updates from public web<br />

sites, index them to increase their<br />

specificity, and create customized<br />

databases with proprietary proteins<br />

SALSA<br />

Mine MS/MS spectra for unexpected<br />

post-translational modifications<br />

or mutations with this spectral<br />

matching tool


SEQUEST Cluster<br />

SEQUEST searching speed can<br />

be scaled to the needs of each<br />

individual lab. As overall throughput<br />

and data processing needs<br />

increase, computational capacity<br />

can be easily added. The SEQUEST<br />

Cluster creates a parallel processing<br />

software architecture to distribute<br />

searches across many<br />

individual processors, greatly<br />

reducing search times.<br />

Absolute and relative probabilities of partial and<br />

completed sequences are sorted and displayed<br />

in this colorful results table.<br />

Singly and doubly-charged b- and y-ions are highlighted in the spectral<br />

display, while amino acid positions are annotated individually.<br />

DeNovoX—the “One-Click”<br />

Solution to Automated<br />

de novo Sequencing<br />

Use this software to sequence<br />

a novel protein or confirm the<br />

identity of a protein candidate<br />

from a BioWorks database search.<br />

DeNovoX uses a rigorous, probability-based<br />

algorithm to derive<br />

sequences for peptides from the<br />

information contained in their<br />

MS/MS spectra.<br />

Interactive and intuitive graphics<br />

guide a user through a list of possible<br />

peptide tags, their b- and y-ion<br />

series, and fragment assignments.<br />

Sequence gaps are automatically<br />

revealed to help assign PTMs.<br />

This Cluster has the ability to search 20,000 spectra against<br />

the human database in just a few minutes to dramatically<br />

streamline the protein identification process.<br />

13


Complete <strong>Proteomics</strong> Workflow<br />

Effective Analysis of Proteins<br />

14<br />

Sample Preparation<br />

Effective analysis of proteins<br />

requires a strategy for reduction<br />

of sample complexity using gels,<br />

chromatography, or affinity-based<br />

separations. A strategic <strong>Proteomics</strong><br />

Alliance with GE Healthcare gives<br />

Thermo customers direct access<br />

to GE Healthcare technologies and<br />

support. You can call upon us to<br />

help solve your most challenging<br />

separations needs utilizing Ettan<br />

gels, CyDye reagents, DeCyder <br />

software, and AKTA and Ettan chromatography<br />

systems and supports.<br />

Sample<br />

preparation<br />

Protein Identification<br />

using MALDI<br />

The Finnigan vMALDI source for<br />

the Finnigan LTQ creates a powerful<br />

new system for high-throughput<br />

protein ID using MALDI-MS/MS<br />

capability to provide protein ID<br />

based on peptide structure, not<br />

just peptide MW. This allows rapid<br />

identification of proteins by effective<br />

analysis of protein digest mixtures.<br />

2D gel<br />

electrophoresis<br />

Multidimensional<br />

liquid chromatography


Protein Identification<br />

using Electrospray<br />

The Finnigan LTQ is the ideal MS<br />

system for protein analysis. The<br />

sensitivity and rapid scanning of<br />

the LTQ are combined to provide the<br />

best possible protein coverage and<br />

PTM identification for both simple<br />

and complex samples.<br />

The Finnigan ProteomeX LTQ system<br />

provides an integrated, turnkey<br />

solution for most proteomics applications,<br />

including high throughput<br />

protein ID, phosphorylation site<br />

mapping, and MudPIT.<br />

Protein identification using<br />

mass spectrometry<br />

Where additional capability is<br />

required, the MDLC LTQ system<br />

delivers ultimate versatility and<br />

analytical performance.<br />

FT-MS<br />

The Finnigan LTQ FT Hybrid provides<br />

extraordinary mass accuracy and<br />

resolution for difficult challenges<br />

such as PTM characterization and<br />

complex sample analysis.<br />

Bioinformatics<br />

TurboSEQUEST, incorporated into<br />

BioWorks, is the most cited protein<br />

identification algorithm in the scien-<br />

tific literature, yielding highly<br />

sensitive and confident answers.<br />

Both false positive and false negative<br />

rates for incorrect protein identification<br />

have fallen dramatically,<br />

reducing the burden of manual,<br />

post-analysis data review.<br />

Where increased computational<br />

speed is required, the SEQUEST<br />

Cluster can apply the power of a<br />

supercomputer to the analysis of<br />

your data, scalable to the needs<br />

of your lab.<br />

Bioinformatics<br />

• Identification<br />

• Quantification<br />

• Characterization<br />

15


Laboratory Solutions Backed by<br />

Worldwide Service and Support<br />

State-of-the-art instruments are only the beginning with Thermo Electron.<br />

Comprehensive service and support programs are offered on our products<br />

worldwide by a network of factory trained and highly qualified scientists<br />

and engineers. Our experts help you choose the right instruments for your<br />

lab, then keep the instruments performing to specification.<br />

Contact us today for more information on how our specialized sales and<br />

service engineers can help you meet your laboratory needs.<br />

In addition to these offices,Thermo<br />

Electron Corporation maintains a<br />

network of representative<br />

organizations throughout the world.<br />

Australia<br />

+61 2 9898 1244 • analyze.au@thermo.com<br />

Austria<br />

+43 1 333 50340 • analyze.at@thermo.com<br />

Belgium<br />

+32 2 482 30 30 • analyze.be@thermo.com<br />

Canada<br />

+1 800 532 4752 • analyze.ca@thermo.com<br />

China<br />

+86 10 5850 3588 • analyze.cn@thermo.com<br />

France<br />

+33 1 60 92 48 00 • analyze.fr@thermo.com<br />

Germany<br />

+49 6103 4<strong>08</strong>0 • analyze.de@thermo.com<br />

Italy<br />

+39 02 950 591 • analyze.it@thermo.com<br />

Japan<br />

+81 45 453 9100 • analyze.jp@thermo.com<br />

Latin America<br />

+1 512 251 1503 • analyze.la@thermo.com<br />

Netherlands<br />

+31 76 587 98 88 • analyze.nl@thermo.com<br />

Nordic<br />

+46 8 556 468 00 • analyze.se@thermo.com<br />

South Africa<br />

+27 11 570 1840 • analyze.sa@thermo.com<br />

Spain<br />

+34 91 657 4930 • analyze.es@thermo.com<br />

Switzerland<br />

+41 61 48784 00 • analyze.ch@thermo.com<br />

UK<br />

+44 1442 233555 • analyze.uk@thermo.com<br />

USA<br />

+1 800 532 4752 • analyze.us@thermo.com<br />

www.thermo.com<br />

Thermo Finnigan LLC,<br />

San Jose, CA USA<br />

is ISO Certified.<br />

©2004 Thermo Electron Corporation. All rights reserved.<br />

ICAT and TurboSEQUEST are trademarks, and SEQUEST is<br />

a registered trademark of the University of Washington.<br />

Ettan, CyDye, and DeCyder are trademarks of GE Healthcare.<br />

IBM is a trademark of International Business Machines<br />

Corporation. All other trademarks are the property of<br />

Thermo Electron Corporation and its subsidiaries.<br />

Specifications, terms and pricing are subject to change.<br />

Not all products are available in all countries. Please<br />

consult your local sales representative for details.<br />

Printed in the USA.<br />

BR61592_E 07/04S

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!