01.06.2013 Views

Ultra fast ADC - University of Cambridge

Ultra fast ADC - University of Cambridge

Ultra fast ADC - University of Cambridge

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

LAB : Laboratoire d’Astrophysique de Bordeaux<br />

Fast Analog to Digital Converter<br />

Developments<br />

Stephane GAUFFRE, Philippe CAÏS, Benjamin Quertier<br />

Laboratoire d’Astrophysique de Bordeaux<br />

AAVP workshop 8-10 December 2010, <strong>University</strong> Of <strong>Cambridge</strong>


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

Outline<br />

<strong>ADC</strong> designed by LAB<br />

Herschel<br />

ALMA<br />

<strong>Ultra</strong> <strong>fast</strong> <strong>ADC</strong><br />

Current Design<br />

Future Design<br />

AAVP context<br />

Low Power <strong>ADC</strong><br />

AAVP workshop 8-10 December 2010, <strong>University</strong> Of <strong>Cambridge</strong>


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

• <strong>ADC</strong> designed by LAB:<br />

– Flash architecture used for our applications.<br />

<strong>Ultra</strong> <strong>fast</strong> <strong>ADC</strong> (>1GS/s)<br />

Large analog bandwith (≥1 octave)<br />

Low resolution (≤6-bit)<br />

AAVP workshop 8-10 December 2010, <strong>University</strong> Of <strong>Cambridge</strong>


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

• <strong>ADC</strong> designed by LAB: Herschel Space Observatory (HiFi)<br />

– Cooperation between three groups from Bordeaux (LAB, IMS) and Toulouse<br />

(CESR), 2002<br />

– 2-bit <strong>ADC</strong> at 500MS/s designed in 0.8µm BiCMOS Technology from AMS for ESA<br />

space program (HSO).<br />

– Flash architecture<br />

– Power consumption: ≈280mW<br />

AAVP workshop 8-10 December 2010, <strong>University</strong> Of <strong>Cambridge</strong>


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

• <strong>ADC</strong> designed by LAB: ALMA<br />

2-4 GHz<br />

4 GHz<br />

0 dBm<br />

– Cooperation between two groups from Bordeaux (LAB, IMS), 2005<br />

– 3-bit <strong>ADC</strong> at 4GS/s designed in 0.25µm SiGe BiCMOS Technology from STm<br />

– Flash architecture<br />

– Power consumption: ≈1.45W<br />

VH<br />

Amplifier<br />

VL<br />

OTA<br />

Bandgap<br />

Adaptater<br />

amplifier<br />

Clock<br />

buffer<br />

+<br />

-<br />

+<br />

-<br />

+<br />

-<br />

+<br />

-<br />

+<br />

-<br />

+<br />

-<br />

+<br />

-<br />

D<br />

D<br />

D<br />

D<br />

D D<br />

D<br />

D<br />

D<br />

D<br />

D<br />

D<br />

D<br />

D<br />

FDL<br />

encoder<br />

D-Latch<br />

D-Latch<br />

D-Latch<br />

Output<br />

buffer<br />

Output<br />

buffer<br />

Output<br />

buffer<br />

AAVP workshop 8-10 December 2010, <strong>University</strong> Of <strong>Cambridge</strong><br />

D0<br />

D1<br />

D2


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

• <strong>ADC</strong> designed by LAB: ALMA<br />

– The 4GS/s 3-bit <strong>ADC</strong> runs with 3 1:16 DMUX circuits designed by LAB with STm<br />

0.25µm SiGe BiCMOS technology.<br />

– Total power consumption: 1.45+0.7×3=3.55W (power supply at 2.5V)<br />

– Wafers specialy manufactured for the ALMA project (>800 sampler chips and<br />

>2000 DMUX chips)<br />

– Around 300 Digitizer modules assembled, tested and validated to equip 66<br />

antennas<br />

AAVP workshop 8-10 December 2010, <strong>University</strong> Of <strong>Cambridge</strong>


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

• <strong>Ultra</strong> <strong>fast</strong> <strong>ADC</strong>:<br />

– To design an ultra <strong>fast</strong> <strong>ADC</strong>, we must find a finer technology.<br />

– We can have access to the 65nm CMOS technology from STm via the broker in<br />

IC, the CMP.<br />

⇒ multi-projects wafer<br />

– Ft=210GHz<br />

⇒ high speed component<br />

– CMOS tech. & Power supply=1.2V<br />

⇒ low power consumption<br />

AAVP workshop 8-10 December 2010, <strong>University</strong> Of <strong>Cambridge</strong>


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

• <strong>Ultra</strong> <strong>fast</strong> <strong>ADC</strong>: Track And Hold Circuit (65nm CMOS techn.)<br />

– Cooperation between three groups from Bordeaux (LAB, IMS, CENBG), 2010<br />

– 8GS/s Track and Hold circuit with an analog bandwith <strong>of</strong> 7.5GHz (0.5-8GHz)<br />

– Designed with 65nm CMOS technology from STm<br />

– ENOB≈4.5bit, Input Refllexion


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

• <strong>Ultra</strong> <strong>fast</strong> <strong>ADC</strong>: 8GS/s 3-bit <strong>ADC</strong> (65nm CMOS techn.)<br />

– 8GS/s 3-bit flash <strong>ADC</strong> with an analog bandwith <strong>of</strong> 8GHz and internal 1:4 DMUX.<br />

– Designed with 65nm CMOS technology from STm<br />

– Chip-On-Board<br />

– Power consumption: ≈500mW (simulated result)<br />

⇒ The layout drawing files were sent to STm foundry last week.<br />

AAVP workshop 8-10 December 2010, <strong>University</strong> Of <strong>Cambridge</strong>


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

• <strong>Ultra</strong> <strong>fast</strong> <strong>ADC</strong>: 8GS/s 3-bit <strong>ADC</strong> (65nm CMOS techn.)<br />

– The outputs speed rate is too high (2GS/s) to capture the synchronous digital data<br />

with standard FPGA<br />

⇒ External DMUX circuits are needed to use this ultra <strong>fast</strong> <strong>ADC</strong><br />

⇒ Total power consumption increases (>3W)<br />

Internal<br />

DMUX DMUX<br />

AAVP workshop 8-10 December 2010, <strong>University</strong> Of <strong>Cambridge</strong>


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

• <strong>Ultra</strong> <strong>fast</strong> <strong>ADC</strong>: Future design in 65nm CMOS Technology<br />

– In 2011, a new 8GS/s Track and Hold circuit will be designed to improve the<br />

linearity in order to obtain an ENOB superior to 6 bits.<br />

– This new Track and Hold circuit will be:<br />

designed with 65nm CMOS technology from STm.<br />

used in a new ultra <strong>fast</strong> <strong>ADC</strong>.<br />

• A 8GS/s 6-bit flash <strong>ADC</strong> (2012): prototype version in which will be<br />

implemented<br />

Calibration circuit to compensate the comparator <strong>of</strong>fsets deviation<br />

due to the small size <strong>of</strong> the NMOS transistor<br />

Add scrambler circuit to mix a pseudo random pattern to digital<br />

data in order to capture <strong>ADC</strong> outputs using high speed receivers <strong>of</strong><br />

standard FPGA (6.5GS/s)<br />

⇒ Internal 1:4 DMUX will be replaced by 1:2 DMUX<br />

⇒ No need <strong>of</strong> external DMUX<br />

Chip-On-Board<br />

• A 8GS/s 6-bit flash <strong>ADC</strong> (2013): Final version<br />

Packaged version (fcBGA)<br />

AAVP workshop 8-10 December 2010, <strong>University</strong> Of <strong>Cambridge</strong>


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

• <strong>Ultra</strong> <strong>fast</strong> <strong>ADC</strong>: 8GS/s 6-bit <strong>ADC</strong> (65nm CMOS techn.)<br />

– Rough estimation <strong>of</strong> power consumption if 6-bit designed with the same flash<br />

architecture as 3-bit <strong>ADC</strong> (with scrambler circuit and internal1:2 DMUX circuits)<br />

Power in mW<br />

1750<br />

1500<br />

1250<br />

1000<br />

750<br />

500<br />

250<br />

0<br />

2 3 4 5 6 7<br />

Resolution (Number <strong>of</strong> bit)<br />

AAVP workshop 8-10 December 2010, <strong>University</strong> Of <strong>Cambridge</strong>


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

• AAVP Context<br />

– <strong>ADC</strong> technical parameter requirements:<br />

Resolution : 4-6bit<br />

Sample rate: ≥3GS/s<br />

Bandwith:<br />

• AA-lo: 70MHz to 450MHz<br />

• AA-mid: 400MHz to 1.4GHz<br />

Power:


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

• AAVP Context: what could be done<br />

– Design an <strong>ADC</strong> for AAVP program<br />

Which <strong>ADC</strong> architecture is suitable for AAVP program?<br />

• Sampling rate: The flash achitecture is the <strong>fast</strong>est<br />

• Low power ⇒ state-<strong>of</strong>-the-art in 65nm CMOS technology<br />

« A 6-bit 5GS/s Nyquist A/D converter in 65nm CMOS<br />

technology », Choi, June 2008: flash architecture, analog BW:<br />

2.5GHz, power consumption: 320mW<br />

• The design <strong>of</strong> a low power 3GS/s 6-bit flash <strong>ADC</strong> is possible with the<br />

65nm CMOS technology.<br />

AAVP workshop 8-10 December 2010, <strong>University</strong> Of <strong>Cambridge</strong>


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

• AAVP Context: what could be done<br />

– Design an <strong>ADC</strong> for AAVP program<br />

Which <strong>ADC</strong> architecture is suitable for AAVP program?<br />

• Folding architecture?<br />

AAVP workshop 8-10 December 2010, <strong>University</strong> Of <strong>Cambridge</strong>


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

• AAVP Context: what could be done<br />

– Design an <strong>ADC</strong> for AAVP program<br />

Folding Architecture Number <strong>of</strong> comparator:<br />

Full Flash <strong>ADC</strong>: 2N-1 Folding <strong>ADC</strong>: ≈(2N-1)/2 3-bit flash <strong>ADC</strong><br />

⇒ 7 comparators<br />

3-bit folding <strong>ADC</strong><br />

⇒ 3 comparators<br />

The folding architecture<br />

seems to be the most relevant<br />

for AAVP<br />

AAVP workshop 8-10 December 2010, <strong>University</strong> Of <strong>Cambridge</strong>


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

• AAVP Context: what could be done<br />

– Design an <strong>ADC</strong> for AAVP program<br />

Which <strong>ADC</strong> architecture is suitable for AAVP program?<br />

• If the flash architecture is replaced by folding architecture, the power<br />

consumption <strong>of</strong> <strong>ADC</strong> can be reduced by about 30%<br />

• Folding ⇒ state-<strong>of</strong>-the-art in 45nm CMOS technology<br />

« Design <strong>of</strong> a 12.5GS/s 5-bit folding A/D converter », Surano, 2009:<br />

analog BW: 6GHz, power consumption: 53mW (simulated result)<br />

The design <strong>of</strong> a low power 3GS/s 6-bit <strong>ADC</strong> using a flash folding architecture<br />

is possible with 65nm CMOS technology<br />

LAB has access to the 65nm CMOS technology from STm<br />

The design <strong>of</strong> an <strong>ADC</strong> for AAVP could be included in our roadmap<br />

Funding:<br />

For design: 200k€ is needed to design such <strong>ADC</strong>: 3 FTE + 2 foundry<br />

runs (prototype and final version)<br />

For production: wafer cost: >250k€ (to be confirmed), depends on the<br />

number <strong>of</strong> <strong>ADC</strong> needed<br />

AAVP workshop 8-10 December 2010, <strong>University</strong> Of <strong>Cambridge</strong>


LAB : Laboratoire d’Astrophysique de Bordeaux<br />

Thank you for<br />

your<br />

ATTENTION<br />

AAVP workshop 8-10 December 2010, <strong>University</strong> Of <strong>Cambridge</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!