03.06.2013 Views

Josiah Willard Gibbs and his Ensembles - Indian Academy of Sciences

Josiah Willard Gibbs and his Ensembles - Indian Academy of Sciences

Josiah Willard Gibbs and his Ensembles - Indian Academy of Sciences

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

GENERAL ARTICLE<br />

<strong>Josiah</strong> <strong>Willard</strong> <strong>Gibbs</strong> <strong>and</strong> <strong>his</strong> <strong>Ensembles</strong><br />

K P N Murthy is currently<br />

a pr<strong>of</strong>essor at the School <strong>of</strong><br />

Physics, University <strong>of</strong><br />

Hyderabad. His main<br />

research interests are in<br />

statistical physics, Monte<br />

Carlo methods, molecular<br />

Keywords<br />

dynamics, radiation<br />

transport, r<strong>and</strong>om walks,<br />

regular <strong>and</strong> anomalous<br />

diffusion <strong>and</strong> non-linear<br />

dynamics <strong>and</strong> chaos.<br />

<strong>Gibbs</strong>, thermodynamics, statis-<br />

tical mechanics, <strong>Gibbs</strong> en-<br />

sembles, vector algebra.<br />

P r o lo g u e<br />

K P N Murthy<br />

J o sia h W illa rd G ib b s w a s a m o n g st th e la st o f th e in -<br />

te llec tu a l g ia n ts o f th e cla ssic a l era o f p h y sic a l sc ie n c es.<br />

H e w a s b o rn in N e w H a v en , C o n n e cticu t, U S A , w h ere<br />

h is fa th e r w a s a p ro fe sso r a t Y a le U n iv e rsity 's D iv in ity<br />

sch o o l.<br />

G ib b s stu d ied a t Y a le a n d o b ta in e d h is d o c to ra l d eg ree<br />

in th e y e a r 1 8 6 3 . H is th e sis w a s O n th e F o rm o f th e<br />

T eeth o f W h eels in S p u r G ea rin g . It is in d e ed re m a rk -<br />

a b le th a t th o u g h G ib b s k ick e d o ® h is c a re er w ith a p ra c -<br />

tic a l p ro b lem in e n g in e e rin g , in la te r y ea rs h e p u rsu e d<br />

a n d c o n trib u ted to so m e o f th e m o st a b stra c t id e a s in<br />

th e h isto ry o f sc ien c e . H is w a s th e ¯ rst to re c eiv e a d o c -<br />

to ra te in en g in e e rin g a n d th e se c o n d in sc ie n c e, a w a rd e d<br />

in th e U n ited S ta tes o f A m e ric a . H e th e n jo in e d Y a le<br />

C o lleg e a n d ta u g h t L a tin fo r tw o y e a rs a n d n a tu ra l p h ilo<br />

so p h y fo r o n e y ea r. In th e y e a r 1 8 6 6 , G ib b s w e n t to<br />

E u ro p e fo r stu d ies w h ere h e ca m e u n d er th e in ° u e n ce<br />

o f G u sto v R o b e rt K irch h o ® a n d H erm a n n L u d w ig F e rd<br />

in a n d v o n H e lm h o ltz. T h e th re e y e a rs h e sp e n t in E u -<br />

ro p e w ere a lm o st th e o n ly tim e h e ev e r sp e n t a w a y fro m<br />

h is h o m eto w n . O n re tu rn h e w a s a p p o in te d a p ro fe sso r<br />

o f m a th e m a tic a l p h y sic s; th is p o st w a s w ith o u t sa la ry<br />

p a rtly b e c a u se G ib b s h a d n ev e r p u b lish e d !<br />

G ib b s re m a in ed in Y a le u n til h is d ea th in th e y ea r 1 9 0 3 .<br />

H e led a n u n e v e n tfu l life . H e n e v e r m a rrie d a n d liv e d<br />

w ith h is siste r a n d b ro th er-in -la w ; h is b ro th er-in -la w w a s<br />

a lib ra ria n in Y a le . H e n e v e r tried to so c ia liz e. H e p u b -<br />

lish e d sp a rsely . T h is w a s ch ie ° y b e ca u se G ib b s w a s a<br />

p e rfe ctio n ist a n d stro v e h a rd fo r a v e ry h ig h d e g re e o f<br />

rig o u r, ec o n o m y o f w o rd s a n d c la rity in p resen ta tio n .<br />

12 RESONANCE July 2007


RESONANCE July 2007<br />

GENERAL ARTICLE<br />

A lso h e to o k g re a t ca re to tie u p , a s m u ch a s p o ssib le,<br />

a ll th e lo o se e n d s b e fo re e v e n th in k in g o f w ritin g u p h is<br />

w o rk fo r p u b lic a tio n .<br />

E a r ly W o r k o n T h e r m o d y n a m ic s<br />

T h e e a rly w o rk o f G ib b s w a s o n th e rm o d y n a m ic s. A s<br />

th e n a m e su g g e sts, th e rm o d y n a m ic s d e a ls w ith h e a t a n d<br />

w o rk . T h is su b je ct w a s ch ie ° y m o tiv a te d b y m a n 's d e -<br />

sire to ex tra c t w o rk fro m h e a t. M o re g e n era lly th e rm o -<br />

d y n a m ic s e x p la in s th e b eh a v io u r o f m a c ro sc o p ic sy ste m s<br />

o n th e b a sis o f e m p irica l la w s. T h e rm o d y n a m ic la w s a re<br />

d irec tly d e d u c ed fro m e x p e rim en ts. A sim p le ex a m p le is<br />

th e id e a l g a s la w , a lso k n o w n a s C h a rle s' la w o r B o y le's<br />

la w . A cc o rd in g to it, th e p ro d u ct o f p re ssu re a n d v o lu<br />

m e o f a g iv en q u a n tity o f a n id e a l g a s (a n y d ilu te g a s,<br />

sa y a ir, ca n b e c o n sid e red a s a n id e a l g a s) is a co n sta n t<br />

a t c o n sta n t te m p era tu re. (S ee a rtic le b y V K u m a ra n in<br />

th is issu e .)<br />

G ib b s' e a rly w o rk [1 ] w a s o n g eo m e trica l rep re se n ta tio n<br />

o f th e rm o d y n a m ic q u a n titie s su ch a s e n e rg y , v o lu m e a n d<br />

e n tro p y . T h e ch a n g e o f th e rm o d y n a m ic sta te o f th e sy ste<br />

m is g iv en b y a su rfa ce in th e se th re e d im e n sio n s. T h e<br />

ta n g en t a t a n y p o in t o n th e su rfa c e w ill in d ic a te th e te m -<br />

p e ra tu re a n d p re ssu re o f th e m a cro sc o p ic sy ste m w h e n it<br />

is in th e p a rtic u la r th e rm o d y n a m ic sta te re p re se n te d b y<br />

th e p o in t. F ro m th e sh a p e o f th e su rfa ce G ib b s d ed u ce d<br />

g e o m e tric a lly th e c o n d itio n s fo r eq u ilib riu m a n d c rite ria<br />

fo r sta b ility. J a m e s C lerk M a x w e ll w a s so fa sc in a te d b y<br />

th e sim p lic ity a n d eleg a n c e o f th e g e o m e tric a l m e th o d<br />

th a t h e co n stru c ted a m o d e l fo r th e th e rm o d y n a m ic su rfa<br />

c e fo r w a ter, a p la ste r ca st o f w h ich h e p resen te d to<br />

G ib b s. T h is p la ste r ca st is o n p e rm a n e n t e x h ib itio n a t<br />

th e S lo a n e P h y sics L a b o ra to ry in N e w H a v e n .<br />

T h e p a p e rs th a t G ib b s p u b lish ed d u rin g 1 8 7 6 { 1 8 7 8 , o n<br />

equ ilibriu m o f h ete rog en eo u s su b sta n ces [2 ] la id th e fo u n -<br />

d a tio n fo r ch e m ica l th e rm o d y n a m ic s. T h is w o rk is o n e<br />

13


Physicists were<br />

familiar with the role <strong>of</strong><br />

temperature in<br />

establishing thermal<br />

equilibrium <strong>and</strong> <strong>of</strong><br />

pressure in<br />

establishing<br />

mechanical<br />

equilibrium. <strong>Gibbs</strong><br />

showed that equality<br />

<strong>of</strong> chemical potential<br />

establishes diffusional<br />

equilibrium.<br />

GENERAL ARTICLE<br />

o f th e g re a te st a ch ie v e m en ts in th e p h y sica l sc ien c e s<br />

o f th e n in e tee n th c en tu ry . In th e se p a p ers G ib b s a n -<br />

n o u n ce d h is in v e n tio n o f th e c o n c e p t o f ch em ica l p o -<br />

te n tia l. P h y sic ists w e re th en fa m ilia r w ith th e ro le o f<br />

te m p era tu re in esta b lish in g th erm a l e q u ilib riu m a n d o f<br />

p re ssu re in e sta b lish in g m e ch a n ic a l e q u ilib riu m . G ib b s<br />

sh o w e d th a t eq u a lity o f ch e m ica l p o te n tia l e sta b lish e s<br />

d i® u sio n a l e q u ilib riu m . H e a lso w ro te o f w h a t w e n o w<br />

c a ll `G ib b s' p h a se ru le ' fo r d escrib in g eq u ilib ria a m o n g st<br />

d i® e ren t p h a se s o f m a tter.<br />

V e c t o r A lg e b r a , O p t ic s , a n d F o u r ie r S e r ie s<br />

In th e y ea rs 1 8 8 0 { 1 8 8 4 G ib b s w o rk e d o n v e cto r a n a ly -<br />

sis. T h e d o t a n d cro ss p ro d u cts th a t w e a re fa m ilia r<br />

w ith w e re in v e n ted b y G ib b s. H e co m b in e d th e id ea s o f<br />

W illia m R o w a n H a m ilto n o n q u a te rn io n s a n d th o se o f<br />

H e rm a n n G Äu n th e r G ra ssm a n o n th e th e o ry o f e x te n sio n ,<br />

to p ro d u c e th e m a th e m a tic a l ¯ e ld o f v e c to r a n a ly sis. H e<br />

rig h tly h e ld th e m o d ern v ie w th a t a v ec to r is a n en tity<br />

b y itse lf a n d sh o u ld n e v e r b e c o n fu se d fo r its c o m p o -<br />

n e n ts. G ib b s' E lem en ts o f vecto r a n a lysis w a s p rin te d<br />

p riv a te ly in N ew H a v en in 1 8 8 1 a n d 1 8 8 4 .<br />

E a rly in h is ca ree r G ib b s re co g n ize d a n d a sse rte d th a t<br />

p h a se tra n sitio n o c cu rs tru ly in in ¯ n ite sy stem s. A n -<br />

o th e r in tere stin g p ie c e o f m a th e m a tica l w o rk th a t G ib b s<br />

d id re la te th e c o n v e rg e n c e o f a F o u rie r se rie s fo r a p iec e -<br />

w ise c o n tin u o u s a n d d i® e ren tia b le fu n c tio n . T h e F o u rie r<br />

se rie s a p p ro x im a tio n d isp la y s a n o v e rsh o o t in th e le ftsid<br />

ed in te rv a l a n d a sy m m e tric u n d e rsh o o t in th e rig h tsid<br />

ed in terv a l. T h e h e ig h t o f th e o v e rsh o o t o r th e d e p th<br />

o f th e u n d e rsh o o t d o e s n o t d ec re a se w ith in c re a se o f th e<br />

n u m b e r o f te rm s in th e su m m a tio n , a co u n ter-in tu itiv e<br />

re su lt. T h is b e h a v io u r, n o w k n o w n a s G ib b s p h e n o m -<br />

e n o n , is d e scrib e d in th e tw o b rie f le tte rs th a t G ib b s<br />

su b m itte d to th e e d ito r o f N a tu re in D e c em b e r 1 8 9 8<br />

a n d A p ril 1 8 9 9 . B e tw e e n 1 8 8 2 a n d 1 8 8 9 , G ib b s p u b -<br />

lish e d ¯ v e p a p e rs [3 ] co m p a rin g e le ctro m a g n e tic th e o ry<br />

14 RESONANCE July 2007


RESONANCE July 2007<br />

GENERAL ARTICLE<br />

w ith e la stic th eo rie s a n d sh o w ed u n a m b ig u o u sly th a t th e<br />

e m p iric a l p h e n o m e n a in o p tic s c a n b e e x p la in e d o n th e<br />

b a sis o f e lec tro m a g n e tic th eo ry o f M a x w e ll a n d n o t b y<br />

th e e la stic th e o rie s.<br />

A s p o in te d o u t ea rlier G ib b s w a s ex tre m e ly c a re fu l w h e n<br />

it c a m e to p u b lic a tio n . H e in sisted o n rig o u r a n d c o m -<br />

p letio n so m u ch so th a t h is m o n u m e n ta l w o rk o n E lem<br />

en ta ry p rin cip les in sta tistica l m ech a n ics [4 ] w a s p u b -<br />

lish e d ju st o n e y ea r b e fo re h is d e a th . It c o n ta in s th e<br />

re su lts o f h is re se a rch ca rrie d o v e r a p e rio d o f n ea rly<br />

th irty y e a rs.<br />

G ib b s { T h e F o u n d e r o f S t a t is t ic a l M e c h a n ic s<br />

W e c a n sa y th a t G ib b s a lo n g w ith B o ltz m a n n , M a x w e ll<br />

a n d E in ste in fo u n d e d th e su b je ct o f S ta tistica l M ech a n -<br />

ics.<br />

S ta te d in sim p le te rm s, S ta tistic a l M e ch a n ic s h elp s u s<br />

c a lcu la te th e m a c ro sc o p ic p ro p e rtie s o f a n o b jec t fro m<br />

th o se o f its m icro sco p ic c o n stitu e n ts { a to m s a n d m o le -<br />

c u le s { a n d th e ir in tera c tio n s. T o th e stu d e n ts o f sta tistic<br />

a l m ech a n ics G ibbs is a h o u se -h o ld n a m e. T h e y co m e<br />

to k n o w o f h im th ro u g h G ib b s' en sem b le s u p o n w h ich<br />

is b a se d th e e n tire e d i¯ ce o f sta tistic a l m ech a n ics. T o<br />

a p p re c ia te G ib b s' c o n trib u tio n to w a rd fo u n d in g o f sta -<br />

tistic a l m e ch a n ic s w e h a v e to sta rt w ith m a n k in d 's ea rly<br />

e ® o rts to u n d ersta n d th e n a tu re o f m a tte r a n d o f h ea t.<br />

A t o m is m o f E a r ly T im e s<br />

A n cien t m a n , irresp e ctiv e o f w h ich c iv iliz a tio n h e b e -<br />

lo n g e d to { th e In d ia n o r th e G re e k , th e M o h ist o r th e<br />

M a y a n { m u st h a v e d e¯ n ite ly sp ec u la te d o n th e p o ssib ility<br />

o f tin y in v isib le a n d in d iv isib le p a rticles a sse m b lin g<br />

in v e ry la rg e n u m b ers in to a v isib le c o n tin u u m o f so lid s<br />

a n d liq u id s a n d a n in v isib le co n tin u u m o f a ir th a t su rro<br />

u n d u s. T h e In d ia n s h a d a n a m e fo r it: A n u 1 . T h e<br />

G re ek s c a lled it a to m { th a t w h ich c a n n o t b e cu t. T itu s<br />

1 The <strong>Indian</strong> school <strong>of</strong> atomism,<br />

dating back to 600 BC, talks <strong>of</strong><br />

attribute-less particles combin-<br />

ing in pairs to form dyads. A<br />

dyad is also imperceptible,<br />

though it has acquired an at-<br />

tribute <strong>of</strong> two-ness. It requires<br />

three dyads to combine <strong>and</strong><br />

form a triad. The triad is percep-<br />

tible; it has attributes that can<br />

be observed <strong>and</strong> measured.<br />

15


Bernoulli rightly<br />

concluded that<br />

pressure is the force<br />

exerted (per unit<br />

area) by a very large<br />

number <strong>of</strong> r<strong>and</strong>omly<br />

moving molecules<br />

bouncing <strong>of</strong>f the wall.<br />

GENERAL ARTICLE<br />

L u c re tiu s C a ru s (9 4 { 5 5 B C ) m u se d o n th e n a tu re o f<br />

th in g s a n d w ro te a six -b o o k lo n g p o e m c a lle d D e R eru<br />

n m N a tu ra . In it, h e w rite s o f m a tte r, m a d e o f a to m s<br />

th a t o n e c a n n o t se e. A c c o rd in g to h is v erse s a ll th e n a tu<br />

ra l p h en o m en a w e se e a ro u n d a re c a u sed b y in v isib le<br />

a to m s m o v in g a ro u n d ra n d o m ly h ith e r a n d th ith e r, try -<br />

in g o u t a ll p o ssib le fo rm s a n d m o v e m en t in th e c o u rse o f<br />

in ¯ n ite tim e a n d e v e n tu a lly se ttlin g d o w n in to a d isp o -<br />

sitio n th a t w e se e n o w . T h ere w a s n o ro le fo r G o d in th e<br />

sch em e o f th in g s. A to m ism o f th e v e ry e a rly tim e s w a s<br />

in h ere n tly a n d ¯ e rc ely a th e istic . P erh a p s th is ex p la in s<br />

w h y it lo st fa v o u r a n d la n g u ish e d in to o b liv io n fo r o v e r<br />

tw o th o u sa n d y e a rs.<br />

R e v iv a l o f K in e t ic T h e o r y<br />

T h e rev iv a l c a m e p erh a p s in th e se v e n te e n th c en tu ry<br />

w ith th e w o rk o f G a lile o , T o rric elli, P a sc a l, B o y le , D a n ie l<br />

B e rn o u lli, C h a rle s, G a y -L u ssa c , J o se p h B la ck , J a m e s<br />

W a tt, a n d J o h n D a lto n a n d sev era l o th ers. R o b e rt B o y le<br />

m o d e led a ir a s a co llec tio n o f sp rin g s in ¯ x ed p o sitio n s;<br />

th e sp rin g s re sist c o m p ressio n (w h ich e x p la in s a ir p ressu<br />

re ) a n d e x p a n d in to a v a ila b le sp a ce . D a n ie l B e rn o u lli<br />

w en t a step fu rth e r a n d p ro p o se d a b illia rd b a ll a to m<br />

m o d e l. B e rn o u lli's b illia rd b a ll a to m m o v e s fre ely in<br />

sp a ce a n d w h e n it b o u n ce s o ® th e w a ll o f th e co n ta in e r<br />

it e x erts a tin y fo rc e . B ern o u lli rig h tly c o n c lu d e d th a t<br />

p re ssu re is th e fo rc e ex e rted (p e r u n it a rea ) b y a v ery<br />

la rg e n u m b e r o f ra n d o m ly m o v in g m o lec u les b o u n c in g<br />

o ® th e w a ll. It is n o t d i± c u lt to u n d ersta n d su ch a k in<br />

e tic th eo ry in th e c o n te x t o f a to m ic m o tio n s g iv in g rise<br />

to p re ssu re. B u t p h y sicists h a d d i± c u lty in c o m p re h e n d -<br />

in g k in etic th eo ry o f h e a t: a to m ic m o tio n s g iv in g rise to<br />

h e a t { b e it u n d u la tin g m o tio n a b o u t ¯ x e d p o sitio n s lik e<br />

B o y le im a g in e d o r free m o tio n in th e a v a ila b le sp a c e o f<br />

th e co n ta in e r lik e B ern o u lli m o d e le d . T h is d i± cu lty is<br />

p e rfe ctly u n d e rsta n d a b le sin c e it w a s k n o w n th a t h e a t<br />

c o u ld b e tra n sm itte d th ro u g h v a c u u m { lik e th e h e a t<br />

fro m th e su n . H e n c e h ea t c a n n o t b e a p ro p e rty o f a<br />

16 RESONANCE July 2007


RESONANCE July 2007<br />

GENERAL ARTICLE<br />

su b sta n c e; it h a s to b e a su b sta n c e b y itse lf. A n to in e -<br />

L a u ren t d e L a v o isie r c a lled th e su b sta n ce `C a lo ric'. It<br />

w a s fo u n d th a t C a lo ric ° u id a lw a y s ° o w e d fro m h ig h e r<br />

to lo w er tem p e ra tu re s. H ea t e n g in es th a t p ro d u c e d lo -<br />

c o m o tio n fro m b u rn in g o f co a l sta rte d d o ttin g th e E u -<br />

ro p ea n c o u n try sid e in th e la te e ig h tee n th c en tu ry .<br />

C a r n o t a n d H is H e a t E n g in e<br />

S a d i C a rn o t w a s in trig u e d b y th e v ery id e a o f a h e a t<br />

e n g in e th a t m a n a g e d to d o so m e th in g th a t e v e n th e<br />

a lm ig h ty n a tu re c o u ld n o t d o . A h e a t e n g in e c o n v e rts<br />

h e a t in to m o v e m en t. In n a tu re w e ¯ n d th a t it is th e<br />

m o v e m e n t w h ich d u e to fric tio n g en e ra te s h ea t a n d n o t<br />

th e o th e r w a y . T h e re is n o p h en o m en o n lik e u n -frictio n<br />

o r a n ti-fric tio n w h ich w o u ld sp o n ta n eo u sly re -a ssem b le<br />

h e a t b a ck in to a m o v em e n t. C a rn o t c a m e to th e b rillia n t<br />

c o n c lu sio n th a t m e re p ro d u ctio n o f h ea t is n o t su ± cien t<br />

to giv e birth to th e im pellin g po w er; it is n ecessa ry th a t<br />

th ere sh o u ld be co ld ; w ith o u t it, h ea t is u seless. C a rn o t<br />

a rg u ed th a t if a c erta in q u a n tity q o f c a lo ric su b sta n ce<br />

fa lls fro m a b so lu te te m p e ra tu re T 1 to z e ro th e n th e w o rk<br />

p ro d u c ed w o u ld b e W = q . S in c e th e ca lo ric ° u id fa lls<br />

o n ly to a ¯ n ite te m p era tu re T 2 (0 < T 2 < T 1 ), o n ly th e<br />

p ro p o rtio n a l fra c tio n , (T 1 ¡ T 2 )= (T 1 ¡ 0 ), o f q sh o u ld<br />

e q u a l th e w o rk p ro d u c e d . H e n c e th e e ± cien cy o f a h e a t<br />

e n g in e c a n n o t e x ce e d 1 ¡ (T 2 = T 1 ), w h ere T 1 is th e te m -<br />

p e ra tu re o f th e h e a t so u rce (th e b o ile r) a n d T 2 th a t o f<br />

th e h e a t sin k (th e ra d ia to r). T h u s e v en a n id ea l h e a t<br />

e n g in e h a s a n e ± cie n cy le ss th a n u n ity .<br />

T h e K in d o f M o t io n W e C a ll H e a t<br />

V e ry so o n it w a s rea lize d th ro u g h th e m e ticu lo u s e x p e rim<br />

e n ts o f R u m fo rd , M a y e r a n d J o u le th a t h e a t is n o t<br />

a su b sta n c e . H e a t is a c tu a lly en erg y o r m o re p re cise ly<br />

e n erg y in tra n sit. It is lik e w o rk w h ich is a lso e n e rg y<br />

in tra n sit. O n c e w e id en tify h e a t w ith e n erg y, C a rn o t's<br />

¯ n d in g b ec o m e s in trig u in g . It a m o u n ts to sa y in g th a t<br />

Heat is actually<br />

energy or more<br />

precisely energy in<br />

transit.<br />

17


2 Extremely slow; the process<br />

looks almost static.<br />

3 A reversible process is one in<br />

which infinitesimal change in the<br />

external condition will cause a<br />

reversal <strong>of</strong> the process.<br />

GENERAL ARTICLE<br />

h e a t c a n n o t b e c o m p le te ly c o n v erte d in to w o rk w h e rea s<br />

w o rk c a n b e c o n v e rted co m p le tely in to h e a t { a n im -<br />

b a la n c e in n a tu re's sch e m e . T h is th e rm o d y n a m ic irre -<br />

v e rsib ility { th e o n e -w a y n a tu re o f en e rg y co n v e rsio n { is<br />

w h a t w e n o w c a ll th e S ec o n d L a w o f T h e rm o d y n a m ic s.<br />

R u d o lf C la u siu s c a m e to k n o w o f C a rn o t's w o rk a d e c a d e<br />

la ter. H e fe lt th a t C a rn o t's b a sic c o n c lu sio n a b o u t e x -<br />

tra c tin g w o rk fro m h e a t w a s c o rre ct a n d c o n sid e re d it a s<br />

o f g re a t fu n d a m e n ta l im p o rta n ce . H e c a lle d it C a rn o t's<br />

p rin cip le o r th e S e co n d la w o f th erm o d y n a m ic s. B u t<br />

th e n C la u siu s re je cte d C a rn o t's `c a lo ric ' re a so n in g . B y<br />

th e n h e k n ew th a t h e a t w a s a k in d o f m o tio n { ce a sele ss<br />

a n d ra n d o m { o f th e in v isib le a to m s a n d m o le cu le s. T o<br />

e x p la in C a rn o t's p rin cip le in th e c o n te x t o f th e em e rg in g<br />

p ictu re o f h e a t a s e n e rg y in tra n sit, C la u siu s in v e n te d<br />

a n e w th erm o d y n a m ic v a ria b le ca lled e n tro p y, d e n o te d<br />

b y th e sy m b o l S . H e rep h ra se d C a rn o t's p rin c ip le a s<br />

d S ¸ 0 in a n y th erm o d y n a m ic p ro c e ss. In th e a b o v e re -<br />

la tio n , e q u a lity o b ta in s w h e n th e p ro c ess is q u a si-sta tic 2<br />

a n d a lso re v e rsib le 3 . T h u s th e S e c o n d la w o f th e rm o d y -<br />

n a m ics ca p tu re s a n e sse n tia l tru th a b o u t m a c ro sco p ic<br />

b e h a v io u r { n a m e ly it is n o t tim e re v ersa l in v a ria n t.<br />

T h e re is a d e¯ n ite d irec tio n o f tim e { th e d ire ctio n o f<br />

in cre a sin g en tro p y .<br />

P h y sic ists a re p u z z le d b y th e S e c o n d la w . H o w d o es it<br />

a rise ? A n a to m , th e c o n stitu e n t o f a m a c ro sc o p ic o b -<br />

jec t, o b e y s N ew to n 's la w s. N ew to n ia n d y n a m ics is tim e<br />

re v e rsa l in v a ria n t: Y o u c a n n o t tell th e p a st fro m th e<br />

fu tu re ; th e re is th e d e te rm in ism { th e p re se n t h o ld in g<br />

b o th th e e n tire p a st a n d th e en tire fu tu re . T h e a to m s,<br />

in d iv id u a lly , o b ey th e tim e rev ersa l in v a ria n t N ew to n ia n<br />

d y n a m ic s; h o w e v er, th e ir co llec tiv e b eh a v io u r se em s to<br />

b re a k th e tim e sy m m e try .<br />

T h u s th e tw o p illa rs o f th eo retic a l p h y sic s { N ew to n ia n<br />

m ech a n ics a n d th e rm o d y n a m ic s se e m to sta n d in co n -<br />

tra d ic tio n . T h e fo rm er is tim e re v e rsa l in v a ria n t w h ile<br />

18 RESONANCE July 2007


RESONANCE July 2007<br />

GENERAL ARTICLE<br />

th e la tter is n o t. H o w d o w e co m p reh e n d th is m icro -<br />

m a c ro d ich o to m y ? In th e sy n th e sis o f a m a c ro sco p ic<br />

o b je ct fro m its m ic ro sco p ic c o n stitu e n ts w h e n a n d w h y<br />

d o es th e tim e -re v e rsa l in v a ria n c e b re a k d o w n ? T h is is<br />

a q u e stio n th a t h a u n ted th e sc ien tists th e n , h a u n ts u s<br />

n o w a n d m o st a ssu re d ly sh a ll h a u n t u s in th e fu tu re,<br />

n e a r a n d fa r.<br />

B o lt z m a n n a n d H is T r a n s p o r t E q u a t io n<br />

B o ltz m a n n h a d a n e x tra o rd in a ry c o u ra g e to su g g e st th a t<br />

th e tim e a sy m m e tric m a c ro sco p ic p h en o m e n a c a n b e e x -<br />

a c tly d e riv e d fro m th e tim e -sy m m etric m icro sc o p ic la w s.<br />

In d ee d h e d eriv e d a n o n lin e a r tra n sp o rt e q u a tio n sta rtin<br />

g fro m N e w to n 's e q u a tio n s o f m o tio n . T h e so lu tio n<br />

o f th e B o ltzm a n n tra n sp o rt eq u a tio n { th e so c a lle d<br />

H -fu n ctio n { is tim e a sy m m e tric . T h e n eg a tiv e o f H<br />

c a n b e id e n ti¯ e d w ith en tro p y . H a lw a y s d e c rea se s w ith<br />

tim e u n til it re a ch e s a m in im u m w h en th e sy ste m eq u ilib<br />

ra te s. T h e sta te m en t th a t th e d e riv a tiv e o f H w ith<br />

re sp e c t to tim e is a lw a y s le ss th a n o r e q u a l to ze ro is<br />

c a lle d `B o ltzm a n n H -th e o re m '. B u t v e ry so o n B o ltz -<br />

m a n n re a liz e d th a t th e sto ssza h la n sa tz { c o llisio n n u m -<br />

b e r a ssu m p tio n { o f M a x w e ll, w h ich h e em p lo y e d , sto le<br />

in a n elem e n t o f sto ch a stic ity in to h is o th erw ise p u re ly<br />

d y n a m ic a l d e riv a tio n o f th e tra n sp o rt e q u a tio n . B u t<br />

th e n h e co n te n d e d co rrec tly th a t h is H -th eo re m is v io -<br />

la ted o n ly w h e n th e m a cro sc o p ic sy ste m sta rts o ® fro m<br />

so m e sp e cia l in itia l co n d itio n w h ich a re e x trem e ly sm a ll<br />

in n u m b er. F o r a n o v erw h elm in g ly la rg e n u m b e r o f in itia<br />

l c o n d itio n s th e d y n a m ic a l e v o lu tio n d o e s o b e y th e<br />

H -th e o rem . In o th e r w o rd s th e ty p ica l b eh a v io u r o f a<br />

m a c ro sc o p ic sy stem is in v a ria b ly c o n siste n t w ith th e H<br />

th e o re m .<br />

S u b se q u e n tly , B o ltz m a n n fo rm u la ted th e en tire p ro b -<br />

le m in sta tistica l te rm s a n d g a v e a d e¯ n itio n o f en tro p y<br />

a s p ro p o rtio n a l to th e lo g a rith m o f th e n u m b e r o f m ic<br />

ro sta te s o f a m a c ro sc o p ic sy ste m . L e t u s d ig ress a little<br />

Boltzmann defined<br />

entropy as<br />

proportional to the<br />

logarithm <strong>of</strong> the<br />

number <strong>of</strong><br />

microstates <strong>of</strong> a<br />

macroscopic<br />

system.<br />

19


GENERAL ⎜ ARTICLE<br />

b it an d try to u n d erstan d w h at on e m ean s b y an en sem -<br />

b le, a m icrostate an d a m acrostate.<br />

G ibbs Ensem bles<br />

C onsider a sim ple experim ent <strong>of</strong> tossing <strong>of</strong> a coin. Let<br />

th e p rob ab ility <strong>of</strong> H eads be p <strong>and</strong> <strong>of</strong>Tailsbe q = 1 ¡ p.<br />

Thesamplespace− S fort<strong>his</strong>experim entconsists<strong>of</strong>two<br />

outcom es fH ;Tg. L et u s toss a coin M tim es an d collect<br />

the results in a set denoted by − . T hus M is th e<br />

num ber <strong>of</strong> elem ents <strong>of</strong> − . Let m H denote the num ber<br />

<strong>of</strong> tim es H eads appears in − . W e say th at th e set − is<br />

a n en sem b le if p = m H =M . In oth er w ord s an ou tcom e<br />

<strong>of</strong> the sam ple space appears in the ensem ble as <strong>of</strong>ten as<br />

to re° ect correctly its p rob ab ility. T h e size M <strong>of</strong> the<br />

en sem b le is taken to b e su ± cien tly large so th at each<br />

outcom e <strong>of</strong> the experim ent appears in the ensem ble a<br />

certain n u m b er <strong>of</strong> tim es p rop ortion al to its p rob ab ility.<br />

If p = 0:75 then an exam ple <strong>of</strong> an ensem ble <strong>of</strong> size four<br />

is − = fH ;T;H;Hg, w h ere th e ou tcom e Headsoccurs<br />

th ree tim es an d th e ou tcom e Tailsoccurs once consistent<br />

w ith th eir p rob ab ilities. − = fH ;T;H;H;T;H;H;Hg<br />

is also an en sem b le b u t <strong>of</strong> size eigh t. W e ¯ n d th at th reefou<br />

rth <strong>of</strong> − is H eads <strong>and</strong> one-fourth is tails. Noticewe<br />

do not really need to m ake any assum ption about how to<br />

con stru ct an en sem b le. W e can con stru ct it b y a d eterm<br />

in istic algorith m , a sto ch astic algorith m or b y actu ally<br />

carry in g ou t th e ex p erim en t a very large nu m b er tim es.<br />

L et u s n ow con sid er an ex p erim en t <strong>of</strong> tossin g N identical<br />

coin s. A n ou tcom e <strong>of</strong> th e ex p erim en t con sists <strong>of</strong> a strin g<br />

<strong>of</strong>H eads <strong>and</strong> Tails. T h e len gth <strong>of</strong> th e strin g is N .Letus<br />

calleach outcom e a m icrostate <strong>and</strong> denote it by the sym -<br />

bol! .Letn (! )bethenumber<strong>of</strong>H eads in m icrostate<br />

! . T he value <strong>of</strong>n d i® ers in gen eral from on e m icrostate<br />

to an oth er. In th e ex am p le con sid ered hn i = N p. If<br />

w e consider the case <strong>of</strong> p = 1=2, then all the 2 N microstates<br />

are equally probable <strong>and</strong> hn i = N=2. T hus<br />

in th e m ach in ery <strong>of</strong> statistical m ech an ics d evelop ed by<br />

20 RESONANCE ⎜ July 2007


RESONANCE ⎜ July 2007<br />

GENERAL ⎜ ARTICLE<br />

G ibbs,corresponding to each therm odynam ic variable,<br />

w e id en tify a statisticalm ech an icalran d om variab le. W e<br />

th en con stru ct a G ib b s en sem b le <strong>of</strong> realization s <strong>of</strong> th e<br />

r<strong>and</strong>om variable. T he average <strong>of</strong> the r<strong>and</strong>om variable<br />

calculated over the ensem ble gives the value <strong>of</strong> the corresponding<br />

therm odynam ic variable.<br />

T h e ab ove h as to b e con trasted w ith B oltzm an n 's form<br />

ulation. T o each value <strong>of</strong> the m acroscopic variable w e<br />

attach an en trop y d e¯ n ed as p rop ortion al to th e logarith<br />

m <strong>of</strong> th e n u m b er <strong>of</strong> m icrostates associated w ith th at<br />

v a lu e. F o r ex a m p le, in th e co in to ssin g p rob lem if th e<br />

m acroscopic variable denoting the num b er <strong>of</strong> H eads in<br />

a toss <strong>of</strong> N coins takes a value n th en th e nu m b er <strong>of</strong><br />

m icrostates associated w ith it is given b y<br />

− (n ;N )=<br />

N !<br />

n !(N ¡ n )!<br />

; (1)<br />

wherewehavetakenp = 1=2. In B oltzm ann's form ulation<br />

th e sy stem takes th at valu e <strong>of</strong> th e m acroscop ic<br />

variable n for w h ich en trop y is m axim u m . − (n ;N )is<br />

maximumforn = N=2. H ence in B oltzmann's formu lation also,N=2is the value <strong>of</strong>the corresponding therm<br />

odynam ic variable. W e can de¯ne B oltzmann entropy<br />

as<br />

S B = k B lo g<br />

·<br />

N !<br />

n !(N ¡ n )!<br />

¸<br />

(2)<br />

w h ich is d i® eren t fro m G ib b s en trop y S G = N lo g (2).<br />

A quick calculation w illshow that the probability <strong>of</strong>n<br />

di®ering from N=2 b y m ore th an an arb itrarily sm all<br />

fraction <strong>of</strong> N=2 goes to zero w hen N is la rg e. F o r ex -<br />

am ple, the probability for n to lie ou tsid e th e interval<br />

N=2 ¡ ²;N =2+ ² is0.002 w hen ² is o n e p ercen t o f N=2for<br />

N = 10 5 . In the study <strong>of</strong>m acroscopic system s w e shall<br />

be dealing w ith N <strong>of</strong> th e ord er 10 25 .ThusforlargeN ,<br />

B oltzm an n en trop y an d G ib b s en trop y h ave for p ractical<br />

purposes the sam e value.<br />

The average <strong>of</strong> the<br />

r<strong>and</strong>om variable<br />

calculated over the<br />

ensemble gives<br />

the value <strong>of</strong> the<br />

corresponding<br />

thermodynamic<br />

variable.<br />

21


<strong>Gibbs</strong>’ approach to<br />

statistical mechanics<br />

was to generalize<br />

Newtonian<br />

mechanics to<br />

arbitrary, though<br />

strictly finite, number<br />

<strong>of</strong> degrees <strong>of</strong><br />

freedom.<br />

The energy <strong>of</strong> the<br />

system is a fluctuating<br />

quantity which when<br />

averaged over a <strong>Gibbs</strong><br />

ensemble <strong>of</strong><br />

microstates yields the<br />

corresponding<br />

thermodynamic<br />

energy.<br />

GENERAL ARTICLE<br />

G ib b s' a p p ro a ch to sta tistic a l m e ch a n ics w a s to g e n e ra<br />

liz e N ew to n ia n m e ch a n ic s to a rb itra ry , th o u g h stric tly<br />

¯ n ite, n u m b e r o f d eg re es o f fre e d o m . T o th is e n d h e k n it<br />

p o sitio n a n d m o m en tu m in to a sin g le fa b ric ca lled `p h a se<br />

sp a ce '. L et m e e x p la in th is b y co n sid erin g a n iso la te d<br />

sy ste m o f N m o le cu le s c o n ¯ n ed to a v o lu m e V w ith a<br />

to ta l en e rg y E . E a ch m o le c u le is sp e c i¯ e d b y th re e c o o rd<br />

in a te s o f p o sitio n a n d th re e co o rd in a te s o f m o m e n tu m .<br />

T h e sy ste m is th u s sp e c i¯ e d b y a p o in t in a 6 N d im e n -<br />

sio n a l p h a se sp a c e. S in ce th e m o le cu le s in th e sy ste m a re<br />

c o n sta n tly in m o tio n c o llid in g w ith e a ch o th e r a n d w ith<br />

th e w a lls o f th e c o n ta in er, th e p h a se sp a ce p o in t re p re -<br />

se n tin g th e sy stem is in ce ssa n tly in m o tio n . C o n sid e r<br />

a c o lle c tio n o f a la rg e n u m b er o f m e n ta l c o p ie s o f th e<br />

sy ste m , a ll id e n tic a l m a cro sc o p ica lly { h a v in g th e sa m e<br />

v a lu e o f E , V a n d N { b u t m a y d i® er in th e ir m ic ro sco p ic<br />

d e ta ils. T h is c o lle ctio n o f sy ste m s is c a lled a G ib b s e n -<br />

se m b le. T h e m e m b e rs o f th is e n se m b le a re re p re se n te d<br />

b y a d istrib u tio n o f p o in ts in th e p h a se sp a c e . E a ch<br />

p h a se sp a c e p o in t e v o lv es a s p er N ew to n ia n d y n a m ics.<br />

T h e n a sim p le c a lc u la tio n o f th e n u m b er sy ste m s ly in g<br />

w ith in in ¯ n ite sim a l lim its o f p h a se sp a c e y ie ld s th e b a sic<br />

e q u a tio n { th e L io u v ille's e q u a tio n { o f c la ssic a l sta tistic<br />

a l m e ch a n ic s.<br />

D e p e n d in g o n th e n a tu re o f th e co n stra in ts, w e g e t d iffere<br />

n t G ib b s e n se m b les. W e sa w a b o v e a n ex a m p le o f<br />

a G ib b s en sem b le d e sc rib in g a n iso la te d sy stem . T h is<br />

is c a lle d m ic ro ca n o n ic a l en sem b le , d e te rm in e d b y E , V<br />

a n d N . O n th e o th er h a n d if w e ¯ x th e te m p era tu re,<br />

v o lu m e a n d th e n u m b er o f p a rticle s w e g e t a ca n o n ic<br />

a l e n se m b le , w h ich d e scrib e s a c lo se d sy ste m . It is in<br />

th e rm a l co n ta c t w ith th e su rro u n d in g s { c a lle d th e h e a t<br />

b a th . It g iv e s en e rg y to th e h ea t b a th o r ta k es e n e rg y<br />

fro m it. T h u s th e e n e rg y o f th e sy ste m is a ° u c tu a tin g<br />

q u a n tity w h ich w h e n a v e ra g ed o v er a G ib b s en sem b le<br />

o f m icro sta te s y ield s th e c o rre sp o n d in g th erm o d y n a m ic<br />

e n erg y. T h e fra c tio n a l n u m b e r o f e n trie s in th e G ib b s'<br />

22 RESONANCE July 2007


RESONANCE July 2007<br />

GENERAL ARTICLE<br />

c a n o n ic a l en sem b le th a t a re in a m ic ro sta te ! is p ro -<br />

p o rtio n a l to e x p [¡ E (! )= k B T ] w h e re E (! ) is th e e n e rg y<br />

o f ! , T is th e te m p era tu re a n d k B is a c o n sta n t n a m e d<br />

a fte r B o ltzm a n n . T h is is c a lle d `c a n o n ic a l d istrib u tio n '.<br />

W e c a n c a lc u la te th e a v e ra g e o f e n erg y d e n o te d b y hE i<br />

o v e r a G ib b s en sem b le . T h e n hE i o f sta tistic a l m e ch a n -<br />

ic s g iv e s th e th e rm o d y n a m ic e n erg y, o fte n d en o te d b y<br />

U , i.e . U ´ hE i. O th e r th e rm o d y n a m ic p ro p erties c a n<br />

a lso b e c a lcu la te d b y a sim ila r a v e ra g in g o f th e ir sta -<br />

tistic a l m e ch a n ic a l c o u n te rp a rts o v e r a G ib b s' c a n o n ic a l<br />

e n se m b le.<br />

If w e a llo w b o th en e rg y a n d n u m b e r o f m o le cu le s o f th e<br />

sy ste m to ° u c tu a te (th e su rro u n d in g s co n stitu te a h e a t<br />

b a th a s w e ll a s p a rtic le b a th ) w e g e t a g ra n d c a n o n ic a l<br />

e n se m b le fo r w h ich th e v o lu m e , tem p era tu re a n d ch e m -<br />

ic a l p o te n tia l a re th e relev a n t v a ria b les.<br />

S t a t is t ic a l M e c h a n ic s o f M a x w e ll, B o lt z m a n n ,<br />

G ib b s a n d E in s t e in<br />

A n a tu ra l q u e stio n th a t a rise s re la te s to th e o rig in o f<br />

p ro b a b ility in G ib b s sta tistic a l m ech a n ic s. It is p re -<br />

c ise ly in th is c o n te x t th a t G ib b s fo rm u la tio n d i® ers fro m<br />

th a t o f M a x w ell, B o ltz m a n n a n d E in ste in . M a x w e ll<br />

w a s p erh a p s th e ¯ rst to re c o g n iz e th e n e e d fo r a sta -<br />

tistic a l a p p ro a ch to k in etic th eo ry. H is d e riv a tio n o f<br />

th e p ro b a b ility d istrib u tio n o f th e sp ee d o f m o n o a to m ic<br />

n o n -in te ra c tin g g a s m o lec u les is a n e x erc ise in in g e n u -<br />

ity a n d eleg a n c e . T h e p ro b a b ility is p ro p o rtio n a l to<br />

e x p o n e n tia l o f k in e tic e n e rg y . T h is w a s la ter g e n e ra liz<br />

e d b y B o ltz m a n n w h o in c lu d ed p o te n tia l e n e rg y a risin g<br />

d u e to e x te rn a l fo rc es a n d d u e to in te rn a l in te ra c tio n s<br />

a m o n g st th e m o le c u le s a n d sh o w e d th e p ro b a b ility o f a<br />

m ic ro sta te is p ro p o rtio n a l to e x p [¡ E = k B T ], w h ere E is<br />

th e to ta l en erg y o f th e m ic ro sta te, T is th e te m p era -<br />

tu re a n d k B is th e B o ltz m a n n c o n sta n t. T h e p ro b a b ility<br />

d istrib u tio n is n o w k n o w n a s M a x w e ll{ B o ltzm a n n d istrib<br />

u tio n . M a x w e ll c a te g o ric a lly sta ted th a t th e S e co n d<br />

<strong>Gibbs</strong> formulation<br />

differs from that <strong>of</strong><br />

Maxwell, Boltzmann,<br />

<strong>and</strong> Einstein in the<br />

context <strong>of</strong> probability<br />

in statistical<br />

mechanics.<br />

23


4 For an interesting account <strong>of</strong><br />

Maxwell’s demon <strong>and</strong> other de-<br />

mons see [6].<br />

5 Boltzmann was perhaps the<br />

lone champion <strong>of</strong> molecular kinetic<br />

theory <strong>of</strong> heat. He had to<br />

contend with the criticism <strong>and</strong><br />

ridicule from the most influential<br />

<strong>and</strong> vociferous <strong>of</strong> the German<br />

speaking community – the so<br />

called energeticists led by Ernst<br />

Mach <strong>and</strong> Wilhelm Ostwald. The<br />

energeticists did not approve <strong>of</strong><br />

molecular composition <strong>of</strong> matter<br />

<strong>and</strong> the kinetic theory. For<br />

them energy was the only fundamental<br />

entity. They dismissed<br />

with contempt any attempts to<br />

describe energy or energy transformation<br />

in more fundamental<br />

atomistic terms or kinetic picture.<br />

Only in the year 1905, the<br />

reality <strong>of</strong> atoms <strong>and</strong> molecules<br />

was established unambiguously<br />

by Einstein in <strong>his</strong> work on Brownian<br />

motion.<br />

GENERAL ARTICLE<br />

la w o f th e rm o d y n a m ic s is sta tistic a l in n a tu re a n d h e n ce<br />

th e re is a n o n -z ero p ro b a b ility o f it b ein g co n tra v e n ed .<br />

In fa c t h e co n stru c ted a d e m o n { n o w ca lle d M a x w e ll's<br />

d e m o n { th a t v io la tes th e S e co n d la w 4 . T h u s fo r M a x w ell,<br />

p ro b a b ility a rises a s a n ex tra a ssu m p tio n in sta tistic a l<br />

m ech a n ics, fo r d e sc rib in g m a cro sco p ic b e h a v io u r.<br />

F o r B o ltz m a n n th e p ro b a b ility is o f d y n a m ic a l o rig in .<br />

A sin g le d y n a m ic a l tra jec to ry o f a n e q u ilib riu m iso la te d<br />

sy ste m v isits a ll th e p h a se sp a c e p o in ts ly in g o n a co n -<br />

sta n t en e rg y su rfa c e . T h e p ro b a b ility o f ¯ n d in g th e sy ste<br />

m in a re g io n o f its p h a se sp a c e is th e fra ctio n o f o b -<br />

se rv a tio n tim e th e d y n a m ica l tra je c to ry sp e n d s in th a t<br />

re g io n .<br />

E in ste in 's fo rm u la tio n fo llo w s th e m e th o d s o f k in e tic<br />

th e o ry o f g a se s. In E in ste in 's sta tistic a l m e ch a n ic s, th e<br />

sy ste m m u st n e c essa rily b e fo rm e d b y a v ery la rg e n u m -<br />

b e r o f m o lec u les. T h e re su lt o f a m e a su rem e n t m u st b e<br />

id en ti¯ ed w ith tim e a v e ra g e. T h ere fo re h e c o n stru cts a<br />

tim e -e n se m b le. T h e a v e ra g e o v e r th e tim e e n se m b le is<br />

e q u a ted to p h a se a v era g e .<br />

In G ib b s fo rm u la tio n , p ro b a b ility en te rs n o t a s a n a d -<br />

d itio n a l h y p o th e sis n o r a s a c o n seq u e n c e o f th e fo rm u -<br />

la tio n b u t a s a p a rt o f th e d a ta o n in itia l c o n d itio n s o f<br />

a n e n se m b le o f m e ch a n ic a l sy stem s. W h e n a p p lie d to a<br />

sy ste m o f a la rg e n u m b e r o f m o le c u le s, G ib b s fo rm u la -<br />

tio n re d u c es to th o se b a se d o n k in etic th e o ry . S tric tly<br />

h is fo rm u la tio n d o es n o t req u ire a n y a ssu m p tio n o n th e<br />

m o le c u la r co m p o sitio n o f m a tte r. W e sh o u ld re a liz e th a t<br />

in th e tim e s o f G ib b s, k in e tic th e o ry d id n o t re ce iv e g e n -<br />

e ra l a c c ep ta n c e 5 . G ib b s fo rm u la tio n h in g e s o n co m b in -<br />

in g th e c o n ¯ g u ra tio n a n d m o m e n tu m in to a sin g le p h a se<br />

a n d in te g ra tin g o v e r a p h a se -sp a c e d e n sity d escrib in g<br />

e q u ilib riu m G ib b s e n se m b le. T h e p h a se sp a c e d e n sity is<br />

u n ifo rm o n a c o n sta n t e n e rg y su rfa c e fo r a m icro c a n o n -<br />

ic a l e n se m b le a n d is a n e x p o n e n tia l fu n ctio n o f e n e rg y<br />

fo r a c a n o n ic a l e n se m b le, a s w e h a v e see n e a rlie r.<br />

24 RESONANCE July 2007


E p ilo g u e<br />

Suggested Reading<br />

RESONANCE July 2007<br />

GENERAL ARTICLE<br />

T h e rig o u r, ec o n o m y , g e n e ra lity a n d e le g a n c e o f G ib b s<br />

fo rm u la tio n o f sta tistic a l m ech a n ics is b o rn e o u t b y th e<br />

fa c t th a t th e en tro p y ° u c tu a tio n th e o re m 6 d e riv e d b y<br />

G a lla v o tti a n d C o h e n [7 ] h a s b e e n sh o w n a s a G ib b s<br />

p ro p erty .<br />

F o r G ib b s, sc ien ti¯ c re c o g n itio n w a s slo w in co m in g .<br />

T h is w a s m a in ly b ec a u se G ib b s w a s n o t a p ro p a g a n d ist<br />

fo r h is o w n w o rk ; n o r, fo r th a t m a tte r, w a s h e o n e , fo r<br />

sc ie n c e. B u t e v e n tu a lly h is w o rk sp o k e fo r h im a n d h is<br />

fa m e g re w slo w ly a n d ste a d ily. H e w a s ele cte d a m e m b e r<br />

o f se v era l im p o rta n t sc ien ti¯ c a c a d e m ie s o f th e w o rld lik e<br />

th e A m e rica n P h ilo so p h ic a l S o c iety , th e D u tch S o cie ty<br />

o f S cien ce s in H a a rle m , th e R o y a l S o c ie ty o f S c ien c e s in<br />

G Äo ttin g en , th e R o y a l In stitu tio n o f G re a t B rita in , th e<br />

C a m b rid g e P h ilo so p h ic a l S o c ie ty a n d th e R o y a l S o cie ty<br />

o f L o n d o n , to n a m e o n ly a fe w . T h e A m erica n A ca d -<br />

e m y o f B o sto n a w a rd e d h im th e R u m fo rd m e d a l in 1 9 0 1<br />

a n d th e R o y a l S o cie ty g a v e h im th e C o p ley m e d a l in<br />

1 9 0 1 , `th e h ig h est h o n o u r E n g lish S c ie n c e h a s to b e -<br />

sto w '. W h en E in stein w a s a sk e d w h o m h e c o n sid e red to<br />

b e th e m o st p o w e rfu l th in k ers h e h a d k n o w n , h e rep lied ,<br />

\ .....L o ren z...bu t I n ever m et W illa rd G ibb s; perh a p s,<br />

h a d I d o n e so , I m igh t h a ve p la ced h im besid e L o ren z" .<br />

L e t m e e n d b y q u o tin g M a x P la n ck : \ ... G ibb s w ill ever<br />

be recko n ed a m o n g th e m o st ren o w n ed th eo retica l p h y sicists<br />

o f a ll tim es" .<br />

[1] <strong>Gibbs</strong> first two papers were entitled ‘Graphical methods in thermody-<br />

namics <strong>of</strong> fluids’ <strong>and</strong> ‘A method <strong>of</strong> Geometrical Representation <strong>of</strong> the<br />

Thermodynamic Properties <strong>of</strong> Substances by means <strong>of</strong> Surfaces’, in The<br />

Scientific papers <strong>of</strong> J. <strong>Willard</strong> <strong>Gibbs</strong>, (2 vols); edited by H A Bumstead<br />

<strong>and</strong> R <strong>Gibbs</strong> Van Name, Longmans, Green <strong>and</strong> Co., New York, 1906;<br />

Dover Reprint, New York, 1961.<br />

6 The fluctuation theorem <strong>of</strong><br />

Cohen <strong>and</strong> Gallavotti arises in<br />

the context <strong>of</strong> nonequilibrium<br />

steady systems. The entropy<br />

refers to phase space contrac-<br />

tion rate.<br />

25


Address for Correspondence<br />

K P N Murthy*<br />

School <strong>of</strong> Physics<br />

University <strong>of</strong> Hyderabad<br />

Hyderabad 500 046<br />

Andhra Pradesh, India.<br />

Email:<br />

kpnmsp@uohyd.ernet.in<br />

* On deputation from<br />

Materials Science Division<br />

Indira G<strong>and</strong>hi Centre for<br />

Atomic Research<br />

Kalpakkam 603 102<br />

Tamilnadu, India<br />

GENERAL ARTICLE<br />

[2] J W <strong>Gibbs</strong>, Trans. Conn. Acad., Vol.III, p.108, Oct. 1875–May 1876;<br />

p.343, May 1877–July 1878.<br />

[3] J W <strong>Gibbs</strong>, Note on the Electromagnetic Theory <strong>of</strong> Light, Am. J. Sci.,<br />

Vol.23, p.262, p.460, 1882; Vol.25, p.107, 1883; Vol.35, p.467, 1888;<br />

Vol.37, p.129, 1889.<br />

[4] J W <strong>Gibbs</strong>, Elementary principles in statistical mechanics, Yale Uni-<br />

versity Press, 1902.<br />

[5] M Guillen, An unpr<strong>of</strong>itable experience: Rudolf Clausius <strong>and</strong> the<br />

Second law <strong>of</strong> thermodynamics in Five Equations that changed the<br />

world: the power <strong>and</strong> poetry <strong>of</strong> Mathematics, Hyperion, New York,<br />

p.165, 1995.<br />

[6] H S Leff <strong>and</strong> A F Rex (Eds), Maxwell’s Demon: Entropy, Information<br />

<strong>and</strong> Computing, Adam Higler, Bristol, 1990.<br />

H S Leff <strong>and</strong> A F Rex (Eds.), Maxwell’s Demon, Princeton Univ. Press,<br />

Princeton, 1990.<br />

H S Leff <strong>and</strong> A F Rex (Eds.), Maxwell’s Demon 2: Entropy, Classical<br />

<strong>and</strong> Quantum Information, Computing, Institute <strong>of</strong> Physics, 2003.<br />

J D Collier, Two faces <strong>of</strong> Maxwell’s demon reveal the nature <strong>of</strong><br />

irreversibility, Studies in History <strong>and</strong> Philosophy <strong>of</strong> Science, p.257,<br />

June 1990.<br />

D L Hogenboon, Maxwell’s Demon: Entropy, Information, Comput-<br />

ing, American Journal <strong>of</strong> Physics, p.282, March 1992.<br />

H S Leff, Maxwell’s Demon, Power <strong>and</strong> Time, American Journal <strong>of</strong><br />

Physics, pp.135–142, Feb. 1990.<br />

[7] G Gallavotti <strong>and</strong> E G D Cohen, Dynamical ensembles in non-equilib-<br />

rium statistical mechanics, Phys. Rev. Lett., Vol.74, p.2694, 1995.<br />

G Gallavotti <strong>and</strong> E G D Cohen, Dynamical ensembles in stationary<br />

states, J. Stat. Phys., Vol.80, p.931, 1995.<br />

D Ruelle, Smooth dynamics <strong>and</strong> new theoretical ideas in non-equilib-<br />

rium statistical mechanics, J. Stat. Phys., Vol.95, p.393, 1999.<br />

[8] http://www.mlahanas.de/Physics/Bios/<strong>Willard</strong>J<strong>Gibbs</strong>.html<br />

[9] H A Bumstead, ‘<strong>Josiah</strong> <strong>Willard</strong> <strong>Gibbs</strong>’, American Journal <strong>of</strong> Science,<br />

XVI(4), 1903.<br />

[10] R C Cantelo, ‘J <strong>Willard</strong> <strong>Gibbs</strong>, a brief biography <strong>and</strong> a summary <strong>of</strong><br />

<strong>his</strong> contributions to chemistry’, Can. Chem. Metallurgy, Vol.8, p.215,<br />

1924.<br />

[11] L P Wheeler, <strong>Josiah</strong> <strong>Willard</strong> <strong>Gibbs</strong>, The History <strong>of</strong> a Great Mind, Yale<br />

University Press, 1952.<br />

[12] R J Seeger, J <strong>Willard</strong> <strong>Gibbs</strong>, American mathematical physicist par<br />

excellence, Pergamon Press, 1974.<br />

[13] Jagdish Mehra, <strong>Josiah</strong> <strong>Willard</strong> <strong>Gibbs</strong> <strong>and</strong> the Foundations <strong>of</strong> Statis-<br />

tical Mechanics, Foundations <strong>of</strong> Physics, Vol.28, p.1785, 1998.<br />

26 RESONANCE July 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!