04.06.2013 Views

Surface magneto-plasmons in magnetic multilayers - Walther ...

Surface magneto-plasmons in magnetic multilayers - Walther ...

Surface magneto-plasmons in magnetic multilayers - Walther ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Section 2.2<br />

Dispersion relation 11<br />

Further, it is noted that surface <strong>plasmons</strong> can only be excited by p-polarised light<br />

(electric field vector parallel to the <strong>in</strong>cident plane). This is obvious s<strong>in</strong>ce surface<br />

<strong>plasmons</strong> are longitud<strong>in</strong>al oscillations and therefore only an electric field which has a<br />

parallel component to the propagation direction, can excite those oscillations.<br />

ω [s -1 ]<br />

4x10 16<br />

3x10 16<br />

1x10 16<br />

2x10 16<br />

ω<br />

p<br />

ω<br />

sp<br />

0<br />

4x10 16<br />

3x10 16<br />

2x10 16<br />

1x10 16<br />

k<br />

(a)<br />

(c)<br />

k<br />

εprism θ<br />

εAu εdielectric kc/s<strong>in</strong>θ√ε prism<br />

0 5x10 7<br />

0<br />

Au-Air<br />

Au-Air<br />

c s<strong>in</strong>(θ)<br />

( )<br />

/ √ε 0<br />

( )<br />

c/√ε 0<br />

1x10 8<br />

(b)<br />

(d)<br />

k<br />

k<br />

k<br />

0 5x10 7<br />

k x [m -1 ]<br />

εAu εdielectric θ<br />

ε θ<br />

prism<br />

εAu εdielectric kc/s<strong>in</strong>θ√ε prism<br />

Au-Air<br />

/<br />

Au-Air<br />

c s<strong>in</strong>(θ)<br />

c s<strong>in</strong>(θ)<br />

c<br />

( )<br />

/ √ε 0<br />

( )<br />

c/√ε 0<br />

Au-Glass<br />

1x10 8<br />

4x10 16<br />

3x10 16<br />

2x10 16<br />

1x10 16<br />

0<br />

4x10 16<br />

3x10 16<br />

2x10 16<br />

1x10 16<br />

Figure 2.2: Dispersion relation of surface <strong>plasmons</strong>. The black l<strong>in</strong>e ( )is the dispersion<br />

relation for a gold-air <strong>in</strong>terface. The red l<strong>in</strong>e ( ) is the dispersion relation for<br />

light with k-vector parallel to the <strong>in</strong>terface. The dotted red l<strong>in</strong>e ( ) is the<br />

dispersion relation for light under the <strong>in</strong>cident angle θ. The blue l<strong>in</strong>es are the<br />

dispersion relations for light coupled through a prism, parallel to the <strong>in</strong>terface<br />

( ) and under the <strong>in</strong>cident angle θ ( ). And the magenta l<strong>in</strong>e ( ) is the<br />

dispersion relation for a glas-gold <strong>in</strong>terface. The <strong>in</strong>set <strong>in</strong> the upper left shows<br />

the Kretschmann configuration with the k vectors for the <strong>in</strong>cident light and<br />

the surface <strong>plasmons</strong>.<br />

2.2.1 Kretschmann-Raether configuration<br />

As mentioned above it is possible to excite surface <strong>plasmons</strong> when the light is coupled<br />

<strong>in</strong>to a prism before it is reflected at the metal <strong>in</strong>terface.<br />

This method was first <strong>in</strong>troduced by Erw<strong>in</strong> Kretschmann and He<strong>in</strong>z Raether <strong>in</strong> 1968<br />

0

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!