18.06.2013 Views

A fast and accurate method for evaluating joint second-order PMD ...

A fast and accurate method for evaluating joint second-order PMD ...

A fast and accurate method for evaluating joint second-order PMD ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

FORESTIERI: A FAST AND ACCURATE METHOD FOR EVALUATING JOINT SECOND-ORDER <strong>PMD</strong> STATISTICS 2951<br />

letting , , <strong>and</strong> taking into account (9), it can<br />

be shown that<br />

where<br />

(C1)<br />

(C2)<br />

(C3)<br />

By the change of variable <strong>and</strong> using [20, eq. 6.677.6],<br />

in (C3) can be integrated in closed <strong>for</strong>m, <strong>and</strong> we see that it is<br />

independent from<br />

Substituting (C4) in (C2) <strong>and</strong>, in turn, this in (C1), we obtain<br />

where<br />

(C4)<br />

(C5)<br />

(C6)<br />

is as in (45) <strong>for</strong> , i.e., . Multiplying<br />

(C5) by the Maxwellian pdf finally gives<br />

(C7)<br />

where the integral can be evaluated as done in (33) with an initial<br />

step size of .<br />

Fig. 6 shows contour plots of the denormalized <strong>joint</strong> pdf<br />

(C8)<br />

<strong>for</strong> 3.257 ps, evaluated through (C7), <strong>and</strong> should be<br />

compared with Fig. 4 in [23], reporting the same quantity at the<br />

Fig. 6. Contour plots of the <strong>joint</strong> pdf of <strong>and</strong> <strong>for</strong> a mean DGD of<br />

3.257 ps. Starting from the inner, the contours are at IH with a 1.5, 1.75,<br />

2, 2.25, 2.5, 3, 4, 5, 6, 8, 10, 15, 20, 25, <strong>and</strong> 30.<br />

same contour levels. A close examination reveals that the accordance<br />

is excellent until , but afterwards, the <strong>joint</strong> pdf<br />

obtained through IS starts underestimating the true pdf progressively<br />

more as the contour level lowers. The contours below<br />

in Fig. 6 required quadruple precision to be computed<br />

(notice that (C6) can be used <strong>for</strong> values smaller than when<br />

using a higher precision arithmetic, but only about the first 16<br />

significant digits are correct).<br />

REFERENCES<br />

[1] C. D. Poole <strong>and</strong> D. L. Favin, “Polarization-mode dispersion measurements<br />

based on transmission spectra through a polarizer,” J. Lightwave<br />

Technol., vol. 12, pp. 917–929, June 1994.<br />

[2] D. Marcuse, C. R. Menyuk, <strong>and</strong> P. K. Wai, “Application of the manakov-<strong>PMD</strong><br />

equation to studies of signal propagation in optical fibers<br />

with r<strong>and</strong>omly varying birefringence,” J. Lightwave Technol., vol. 15,<br />

pp. 1735–1746, Sept. 1997.<br />

[3] R. Khosravani Jr, I. T. Lima, P. Ebrahimi, E. Ibragimov, A. E. Willner,<br />

<strong>and</strong> C. R. Menyuk, “Time <strong>and</strong> frequency domain characteristics of polarization-mode<br />

dispersion emulators,” IEEE Photon. Technol. Lett., vol.<br />

13, pp. 127–129, Feb. 2001.<br />

[4] A. O. Dal Forno, A. Paradisi, <strong>and</strong> J. P. von der Weid, “Experimental <strong>and</strong><br />

theoretical modeling of polarization-mode dispersion in single-mode<br />

fibers,” IEEE Photon. Technol. Lett., vol. 12, pp. 296–298, Mar. 2000.<br />

[5] G. Biondini, W. L. Kath, <strong>and</strong> C. R. Menyuk, “Importance sampling <strong>for</strong><br />

polarization-mode dispersion,” IEEE Photon. Technol. Lett., vol. 14, pp.<br />

310–312, Mar. 2002.<br />

[6] B. L. Heffner, “Accurate, automated measurement of differential group<br />

delay dispersion <strong>and</strong> principal state variation using Jones matrix eigenanalysis,”<br />

IEEE Photon. Technol. Lett., vol. 5, pp. 814–817, July 1993.<br />

[7] L. M. Gleeson, E. S. R. Sikora, <strong>and</strong> M. J. O. Mahoney, “Experimental<br />

<strong>and</strong> numerical investigation into the penalties induced by <strong>second</strong> <strong>order</strong><br />

polarization mode dispersion at 10 Gb/s,” in Proc. ECOC’97, vol. 1,<br />

1997, pp. 15–18.<br />

[8] D. Penninckx <strong>and</strong> F. Bruyère, “Impact of the statistics of <strong>second</strong>-<strong>order</strong><br />

polarization-mode dispersion on systems per<strong>for</strong>mance,” in OFC’98<br />

Tech. Dig., 1998, Paper ThR2, pp. 340–342.<br />

[9] L. E. Nelson, R. M. Jopson, H. Kogelnik, <strong>and</strong> G. J. Foschini, “Measurement<br />

of depolarization <strong>and</strong> scaling associated with <strong>second</strong>-<strong>order</strong> polarization<br />

mode dispersion in optical fibers,” IEEE Photon. Technol. Lett.,<br />

vol. 11, pp. 1614–1616, Dec. 1999.<br />

[10] S. L. Fogal, G. Biondini, <strong>and</strong> W. L. Kath, “Multiple importance sampling<br />

<strong>for</strong> first- <strong>and</strong> <strong>second</strong>-<strong>order</strong> polarization-mode dispersion,” IEEE Photon.<br />

Technol. Lett., vol. 14, pp. 1273–1275, Sept. 2002.<br />

[11] A. Eyal, W. K. Marshall, M. Tur, <strong>and</strong> A. Yariv, “Representation of<br />

<strong>second</strong>-<strong>order</strong> polarization mode dispersion,” Electron. Lett., vol. 35,<br />

no. 19, pp. 1658–1659, 1999.<br />

[12] H. Kogelnik, L. E. Nelson, J. P. Gordon, <strong>and</strong> R. M. Jopson, “Jones matrix<br />

<strong>for</strong> <strong>second</strong>-<strong>order</strong> polarization mode dispersion,” Opt. Lett., vol. 25, no.<br />

1, pp. 19–21, 2000.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!