28.06.2013 Views

Structural reorganisation of vicinal surfaces on 6H-SiC(0001 ...

Structural reorganisation of vicinal surfaces on 6H-SiC(0001 ...

Structural reorganisation of vicinal surfaces on 6H-SiC(0001 ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

252 W. Wulfhekel et al. / Applied Surface Science 234 (2004) 251–255<br />

films is <str<strong>on</strong>g>of</str<strong>on</strong>g> great importance for both, fundamental<br />

aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>SiC</strong> growth and for technological applicati<strong>on</strong>s<br />

[2]. For example, the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrides like GaN<br />

<strong>on</strong> <str<strong>on</strong>g>vicinal</str<strong>on</strong>g> <strong>SiC</strong> <str<strong>on</strong>g>surfaces</str<strong>on</strong>g> can be performed without the<br />

formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> detrimental screw-dislocati<strong>on</strong>s [3]. The<br />

c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate step density by adjusting the<br />

<str<strong>on</strong>g>vicinal</str<strong>on</strong>g> surface orientati<strong>on</strong> allows the growth <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>SiC</strong><br />

films with <strong>on</strong>e defined crystallographic structure (single<br />

polytype) via the so called ‘‘step c<strong>on</strong>trolled epitaxy’’<br />

[4].<br />

In previous experiments <strong>on</strong> silic<strong>on</strong>, a universal<br />

sample for the study <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>vicinal</str<strong>on</strong>g> <str<strong>on</strong>g>surfaces</str<strong>on</strong>g> has been<br />

obtained, by transforming c<strong>on</strong>cave-shaped <str<strong>on</strong>g>surfaces</str<strong>on</strong>g><br />

into an extended set <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>vicinal</str<strong>on</strong>g>s through thermal<br />

treatment [5,6]. In the case <str<strong>on</strong>g>of</str<strong>on</strong>g> Si(111) these curved<br />

<str<strong>on</strong>g>surfaces</str<strong>on</strong>g> split up into terraces. Surface morphology<br />

and step orientati<strong>on</strong> reflect the threefold symmetry <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the crystal. In extensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our previous work <strong>on</strong> Si,<br />

our objective is to investigate the influence <str<strong>on</strong>g>of</str<strong>on</strong>g> a locally<br />

varying surface orientati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a <strong>SiC</strong> sample <strong>on</strong> the<br />

final morphology after hot hydrogen etching. In preliminary<br />

experiments [7] we have observed the morphological<br />

<str<strong>on</strong>g>reorganisati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cave-shaped <str<strong>on</strong>g>surfaces</str<strong>on</strong>g><br />

due to hydrogen etching at 1700 8C. The resulting<br />

morphology was still rough, with a preferential step<br />

alignment in (1120) directi<strong>on</strong>s. Here, we present<br />

successful hydrogen etching experiments which lead<br />

to a regular and smooth structural <str<strong>on</strong>g>reorganisati<strong>on</strong></str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

the initially rough <str<strong>on</strong>g>surfaces</str<strong>on</strong>g>.<br />

2. Experimental<br />

The samples (4 mm 15 mm) were cut from an <strong>on</strong>axis,<br />

nitrogen doped, n-type (resistivity 0.03–<br />

0.12 O cm) <strong>6H</strong>-<strong>SiC</strong>(<strong>0001</strong>) wafer [8]. A c<strong>on</strong>caveshaped<br />

surface depressi<strong>on</strong> was created in the middle<br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> the sample by a dimple grinder, using diam<strong>on</strong>d<br />

paste with a grain size <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 mm. Grinding was stopped<br />

when a depth <str<strong>on</strong>g>of</str<strong>on</strong>g> about 30 mm was obtained in the<br />

middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the dimple. The diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the dimple was<br />

about 1.5 mm, as checked by scanning electr<strong>on</strong> microscopy<br />

(SEM). For the given geometry, the in-plane<br />

azimuthal angle j varied for all samples from 0 < j <<br />

3608 and the out-<str<strong>on</strong>g>of</str<strong>on</strong>g>-plane polar angle y varied for the<br />

analysed samples from 08 in the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the dimple<br />

to about maximum 2–48 as determined through geometrical<br />

c<strong>on</strong>siderati<strong>on</strong>s. Prior to hydrogen (H2) etch-<br />

ing, the samples were cleaned in an ultras<strong>on</strong>ic bath <str<strong>on</strong>g>of</str<strong>on</strong>g><br />

trichlorethylene, then acet<strong>on</strong>e, and finally methanol.<br />

H2 etching was performed in a horiz<strong>on</strong>tal graphite hotwall<br />

chemical vapour depositi<strong>on</strong> (CVD) reactor [9] at<br />

an H 2 pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> 13 mbar. The etching temperature<br />

was varied between 1700 and 1800 8C, and the etching<br />

time, i.e. the time <str<strong>on</strong>g>of</str<strong>on</strong>g> exposure <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample at high<br />

temperature to H2 was varied between 20 min and 1 h.<br />

The resulting structural reorganizati<strong>on</strong> is compared to<br />

our previous experiments, which were performed at an<br />

etching temperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 1700 8C and equal etching<br />

times [7]. The etched samples were subsequently<br />

characterised by SEM. The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrogen etching<br />

<strong>on</strong> the various <strong>SiC</strong> surface orientati<strong>on</strong>s as prepared by<br />

dimple grinding was investigated. For comparis<strong>on</strong>,<br />

SEM images were also taken <strong>on</strong> the flat parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the<br />

<strong>SiC</strong> substrate outside the dimple area.<br />

3. Results and discussi<strong>on</strong><br />

A c<strong>on</strong>cave-shaped surface was obtained <strong>on</strong> a flat<br />

<strong>6H</strong>-<strong>SiC</strong>(<strong>0001</strong>) sample by dimple grinding. Fig. 1<br />

shows a schematic view <str<strong>on</strong>g>of</str<strong>on</strong>g> a typical sample. Images<br />

were taken <strong>on</strong> different areas <strong>on</strong> the c<strong>on</strong>cave-shaped<br />

surface within the dimple area and, for comparis<strong>on</strong>,<br />

also <strong>on</strong> the adjacent flat parts outside the dimple area.<br />

The hydrogen etching c<strong>on</strong>diti<strong>on</strong>s required to remove<br />

the initial roughness <strong>on</strong> flat <strong>SiC</strong> <str<strong>on</strong>g>surfaces</str<strong>on</strong>g> are well<br />

known in the literature [10,11]. When etched for<br />

30 min at 1550 8C under a hydrogen flux at atmospheric<br />

pressure [10] all scratches are removed from<br />

the flat parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the substrate. A well-defined distributi<strong>on</strong><br />

<str<strong>on</strong>g>of</str<strong>on</strong>g> flat terraces and steps is created. These steps are<br />

very straight and their heights is 0.75 or 1.5 nm<br />

corresp<strong>on</strong>ding to half or a complete lattice distance<br />

in the c-axis (three or six <strong>SiC</strong> bilayers).<br />

Fig. 1. Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>cave-shaped surface (called ‘‘dimple’’)<br />

produced in a <strong>6H</strong>-<strong>SiC</strong>(0 0 0 1) surface using a dimple grinder (see<br />

text for details).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!