23.11.2012 Views

Kinetics of defect creation in amorphous silicon thin film transistors

Kinetics of defect creation in amorphous silicon thin film transistors

Kinetics of defect creation in amorphous silicon thin film transistors

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 9 1 MAY 2003<br />

<strong>K<strong>in</strong>etics</strong> <strong>of</strong> <strong>defect</strong> <strong>creation</strong> <strong>in</strong> <strong>amorphous</strong> <strong>silicon</strong> th<strong>in</strong> <strong>film</strong> <strong>transistors</strong><br />

R. B. Wehrspohn a)<br />

Max-Planck-Institute <strong>of</strong> Microstructure Physics, We<strong>in</strong>berg 2, D-06120, Halle, Germany<br />

M. J. Powell and S. C. Deane<br />

Philips Research Laboratories, Redhill, Surrey, RH1 5HA, United K<strong>in</strong>gdom<br />

�Received 25 September 2002; accepted 12 February 2003�<br />

We have developed a theoretical model to account for the k<strong>in</strong>etics <strong>of</strong> <strong>defect</strong> state <strong>creation</strong> <strong>in</strong><br />

<strong>amorphous</strong> <strong>silicon</strong> th<strong>in</strong> <strong>film</strong> <strong>transistors</strong>, subjected to gate bias stress. The <strong>defect</strong> form<strong>in</strong>g reaction is<br />

a transition with an exponential distribution <strong>of</strong> energy barriers. We show that a s<strong>in</strong>gle-hop limit for<br />

these transitions can describe the <strong>defect</strong> <strong>creation</strong> k<strong>in</strong>etics well, provided the backward reaction and<br />

the charge states <strong>of</strong> the formed <strong>defect</strong>s are properly taken <strong>in</strong>to account. The model predicts a rate <strong>of</strong><br />

<strong>defect</strong> <strong>creation</strong> given by (N BT) � (t/t 0) (��1) , with the key result that ��3�. The time constant t0 is<br />

also found to depend on band-tail carrier density. Both results are <strong>in</strong> excellent agreement with<br />

experimental data. The t0 dependence means that compar<strong>in</strong>g <strong>defect</strong> <strong>creation</strong> k<strong>in</strong>etics for different<br />

th<strong>in</strong> <strong>film</strong> <strong>transistors</strong> can only be done for the same value <strong>of</strong> band-tail carrier density. Normalization<br />

<strong>of</strong> bias stress data on different th<strong>in</strong> <strong>film</strong> <strong>transistors</strong> made at different band-tail densities is not<br />

possible. © 2003 American Institute <strong>of</strong> Physics. �DOI: 10.1063/1.1565689�<br />

I. INTRODUCTION<br />

A. Threshold voltage <strong>in</strong>stability<br />

Amorphous <strong>silicon</strong> th<strong>in</strong> <strong>film</strong> <strong>transistors</strong> �TFT� were first<br />

proposed more than 20 years ago, 1 and soon after it was<br />

reported that these TFT’s showed a threshold voltage<br />

<strong>in</strong>stability. 2 The application <strong>of</strong> a gate voltage to the TFT for<br />

a prolonged period <strong>of</strong> time results <strong>in</strong> a shift <strong>of</strong> the TFT<br />

threshold voltage. This phenomenon has been widely <strong>in</strong>vestigated<br />

and is the subject <strong>of</strong> this article. Experimental measurements<br />

<strong>of</strong> the threshold voltage shift are usually carried<br />

out under one <strong>of</strong> two experimental conditions. Most commonly,<br />

there is constant bias stress, where a constant gate<br />

voltage is applied to the TFT and the threshold voltage shift<br />

with time is measured. Dur<strong>in</strong>g the bias stress, the TFT oncurrent<br />

decreases, and this affects the further rate <strong>of</strong> threshold<br />

voltage shift. Alternatively, experiments can be performed<br />

under constant current stress, where the applied gate<br />

bias to the TFT is cont<strong>in</strong>ually adjusted <strong>in</strong> time to keep the<br />

TFT on-current constant. Keep<strong>in</strong>g the TFT on-current constant<br />

is equivalent to keep<strong>in</strong>g the band-tail electron density<br />

constant, dur<strong>in</strong>g the stress<strong>in</strong>g experiment. This means that to<br />

first approximation the Fermi level at the semiconductor–<br />

gate <strong>in</strong>sulator <strong>in</strong>terface rema<strong>in</strong>s constant. Constant current<br />

stress can give additional <strong>in</strong>formation on the k<strong>in</strong>etics <strong>of</strong> the<br />

underly<strong>in</strong>g mechanism. From a practical po<strong>in</strong>t <strong>of</strong> view, this<br />

situation occurs when a constant current is switched for example<br />

dur<strong>in</strong>g active-matrix address<strong>in</strong>g <strong>of</strong> light emitt<strong>in</strong>g diodes.<br />

Reasons for the threshold voltage shift have been discussed<br />

<strong>in</strong> literature: Initially, charge trapp<strong>in</strong>g <strong>in</strong> the <strong>in</strong>sulator<br />

was proposed as the <strong>in</strong>stability mechanism. 2 However, measurements<br />

on ambipolar TFT’s, 3 and the fact that the <strong>in</strong>sta-<br />

a� Electronic mail: wehrspoh@mpi-halle.de<br />

bility does not depend on the <strong>in</strong>sulator (a-Si:N x :H), 4 have<br />

unambiguously shown that the threshold voltage shift <strong>in</strong> the<br />

low voltage stress region is due to metastable <strong>defect</strong> <strong>creation</strong><br />

<strong>in</strong> the <strong>amorphous</strong> <strong>silicon</strong> layer. For high biases typically<br />

larger than 2 MV/cm or low-quality SiN gate <strong>in</strong>sulators,<br />

charge trapp<strong>in</strong>g dom<strong>in</strong>ates. 4 Metastable <strong>defect</strong> <strong>creation</strong> has<br />

been studied extensively for light-<strong>in</strong>duced <strong>defect</strong>s �Staebler-<br />

Wronski effect�. However, there is still no consensus about<br />

the nature <strong>of</strong> the light-<strong>in</strong>duced <strong>defect</strong>s and the exact description<br />

<strong>of</strong> the k<strong>in</strong>etics. 5 Two ma<strong>in</strong> differences exist between<br />

carrier-<strong>in</strong>duced <strong>defect</strong> <strong>creation</strong> and light-<strong>in</strong>duced <strong>defect</strong> <strong>creation</strong>.<br />

First, one type <strong>of</strong> carrier is present only �either electrons<br />

or holes depend<strong>in</strong>g on the type <strong>of</strong> the device�. Second,<br />

a thermal barrier for <strong>defect</strong> <strong>creation</strong> exists. For light-<strong>in</strong>duced<br />

<strong>defect</strong> <strong>creation</strong> the recomb<strong>in</strong>ation <strong>of</strong> an electron-hole pair<br />

provides the bond break<strong>in</strong>g energy and the <strong>defect</strong> <strong>creation</strong><br />

process is essentially temperature <strong>in</strong>dependent, provid<strong>in</strong>g no<br />

<strong>in</strong>formation about the energy barrier. These two additional<br />

characteristics facilitate the model<strong>in</strong>g <strong>of</strong> carrier-<strong>in</strong>duced <strong>defect</strong><br />

<strong>creation</strong> irrespective <strong>of</strong> the exact knowledge <strong>of</strong> the microscopic<br />

<strong>defect</strong> <strong>creation</strong> reaction.<br />

B. Semiempirical models for threshold voltage shifts<br />

The first publications fitted the threshold voltage shift<br />

�V t by a logarithmic behavior 2<br />

�V t�V 0 log�1�t/t 0� �1�<br />

with V 0 the <strong>in</strong>itial gate bias over threshold, V g�V ti , and<br />

t 0�� c �1 exp(EA /kT) where E A is the activation energy and � c<br />

the attempt frequency. This model was based on the assumption<br />

that charge <strong>in</strong>jection <strong>in</strong>to the <strong>silicon</strong> nitride gate <strong>in</strong>sulator<br />

is the dom<strong>in</strong>ant mechanism for <strong>defect</strong> <strong>creation</strong>. 3 However,<br />

as mentioned above, it turned out that additional <strong>defect</strong><br />

state <strong>creation</strong> dom<strong>in</strong>ates for moderate biases <strong>in</strong> high-quality<br />

TFT’s. 4 In the follow<strong>in</strong>g, we suppose that we work only<br />

0021-8979/2003/93(9)/5780/9/$20.00 5780<br />

© 2003 American Institute <strong>of</strong> Physics<br />

Downloaded 20 Jul 2004 to 195.37.184.165. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


J. Appl. Phys., Vol. 93, No. 9, 1 May 2003 Wehrspohn, Powell, and Deane<br />

under moderate bias where state <strong>creation</strong> is dom<strong>in</strong>ant. Then,<br />

the threshold voltage shift �V t is proportional to the number<br />

<strong>of</strong> created <strong>defect</strong>s �N D(t) <strong>in</strong> a TFT under gate bias stress<br />

due to the capacitor equation C�V t�q�N D(t) with C the<br />

capacitance <strong>of</strong> the TFT. The first fit for <strong>defect</strong> state <strong>creation</strong><br />

k<strong>in</strong>etics was based on a stretched exponential 6<br />

0<br />

�N D�t��N BT�1�exp���t/t0�<br />

� �� �2�<br />

�1 0<br />

with ��T/T 0 , t0�� c exp(EA /kT), and NBT the <strong>in</strong>itial<br />

band-tail carrier density. This two-parameter fit (E A ,kT 0)is<br />

currently the most used fit to describe threshold voltage<br />

shifts <strong>in</strong> a-Si:H TFT’s. Jackson et al. 7 argued that a stretched<br />

exponential time behavior is obta<strong>in</strong>ed for the diffusion <strong>of</strong> a<br />

particle <strong>in</strong> a medium with randomly distributed traps. These<br />

systems are generally described by a Smoluchowski-type<br />

reaction-diffusion equation: 8<br />

�N<br />

�t �D�2 N�kN, �3�<br />

where k is the reaction rate constant and D the diffusion<br />

constant. This k<strong>in</strong>d <strong>of</strong> rate equation also applies to <strong>defect</strong><br />

<strong>creation</strong> <strong>in</strong> a-Si:H if one assumes that hydrogen motion is<br />

the precursor for <strong>defect</strong> <strong>creation</strong> 7 and k is the rate constant<br />

for <strong>defect</strong> <strong>creation</strong>. Assum<strong>in</strong>g a time-dependent diffusion<br />

constant, the diffusion term <strong>in</strong> Eq. �3� can be neglected and<br />

the change <strong>in</strong> the flux <strong>of</strong> hydrogen arriv<strong>in</strong>g at the <strong>defect</strong><br />

<strong>creation</strong> site is <strong>in</strong>tegrated <strong>in</strong> the rate constant k, read<strong>in</strong>g<br />

k�D��t� ��1 . �4�<br />

This is called dispersive transport and has been experimentally<br />

observed dur<strong>in</strong>g hydrogen diffusion experiments <strong>in</strong><br />

<strong>amorphous</strong> <strong>silicon</strong>. 9 Solv<strong>in</strong>g Eq. �3� <strong>in</strong> comb<strong>in</strong>ation with Eq.<br />

�4�, one obta<strong>in</strong>s a stretched exponential time behavior. However,<br />

several groups have observed a significant deviation <strong>of</strong><br />

this stretched exponential time dependence. 10–12 In particular,<br />

the dependence <strong>of</strong> the <strong>defect</strong> <strong>creation</strong> rate dN D(t)/dt on<br />

the number <strong>of</strong> band-tail carriers, N BT , was not correctly described<br />

by Eq. �2�. Recently, we presented an improved,<br />

semiempirical k<strong>in</strong>etic equation for <strong>defect</strong> <strong>creation</strong>: 12<br />

dND�t� dt �� dNBT dt �k�N t��1<br />

�<br />

BT� �<br />

t0 with � <strong>in</strong> the range <strong>of</strong> 1.5 to 1.9, k�const, and t 0<br />

�� c �1 exp(EA /kT), where E A is related to the most probable<br />

energy barrier for <strong>defect</strong> <strong>creation</strong> and � c is the attempt frequency<br />

for <strong>defect</strong> <strong>creation</strong>. An analytic solution is possible<br />

for 1���2 which yields a ‘‘stretched hyperbola’’ <strong>of</strong> the<br />

form<br />

1<br />

0<br />

�N D�t��N BT�<br />

1�<br />

�1��t/t 0� 1/� �6�<br />

��<br />

with ����1. We have shown 12 that the three-parameter<br />

(E A ,T 0 ,�) stretched hyperbola fit is an improvement compared<br />

to the commonly used two-parameter stretched expo-<br />

nential fit, 6 s<strong>in</strong>ce it takes <strong>in</strong>to account the superl<strong>in</strong>ear bias<br />

�<br />

dependence NBT �Eq. �5��. Jackson already proposed a similar<br />

k<strong>in</strong>d <strong>of</strong> equation <strong>in</strong> 1990. 13 He realized <strong>in</strong> his 1989<br />

article 7<br />

that there is a problem with the standard<br />

�5�<br />

FIG. 1. Typical threshold voltage shift �V t <strong>of</strong> a bottom gate TFT S30L<br />

dur<strong>in</strong>g bias stress (V g�30 V) for T�383 K. The SiN thickness is 300 nm<br />

and the <strong>in</strong>itial threshold voltage is V ti�3 V; thus the bias over threshold is<br />

V 0�27 V.<br />

Smoluchowski-type reaction-diffusion equation �Eq. �3��. It<br />

is normally solved for static traps. In the case <strong>of</strong> <strong>defect</strong> <strong>creation</strong>,<br />

the first arriv<strong>in</strong>g hydrogen atom neutralizes the trap<br />

and creates a <strong>defect</strong>. In the Jackson 1990 article, 13 he proposed<br />

therefore a carrier-density-dependent hydrogen diffusion<br />

coefficient to modify the analytical approximation �Eq.<br />

�4��,<br />

D�D 0�N BT� � , �7�<br />

where D0 is the hydrogen diffusion prefactor. Insert<strong>in</strong>g Eq.<br />

�7� <strong>in</strong>to the time-dependent rate constant �Eq. �4��, one obta<strong>in</strong>s<br />

a similar stretched hyperbola relationship as <strong>in</strong> Eq. �6�.<br />

Note that this hydrogen diffusion model takes <strong>in</strong>to account<br />

the forward reaction rate only.<br />

So far, all models are based on at least some empirical<br />

observation and are not ab <strong>in</strong>itio models. There is no physical<br />

explanation for the parameter �. Furthermore, the rate<br />

equations <strong>in</strong>volv<strong>in</strong>g Eqs. �3�–�7� consider only the forward<br />

reaction rate. The backward reaction has been neglected. It<br />

will become evident <strong>in</strong> Sec. III that the backward reaction is<br />

crucial to the understand<strong>in</strong>g <strong>of</strong> the physics <strong>of</strong> <strong>defect</strong> <strong>creation</strong>.<br />

It is the key to understand<strong>in</strong>g the high value <strong>of</strong> �. It is also<br />

the key to understand<strong>in</strong>g the dependence <strong>of</strong> t0 on the <strong>in</strong>itial<br />

0<br />

number <strong>of</strong> band-tail electrons NBT . This latter experimental<br />

result cannot be modeled with any <strong>of</strong> the semiempirical models<br />

published up to now. 13,14<br />

In the follow<strong>in</strong>g we summarize the most relevant experimental<br />

results on threshold voltage shifts <strong>in</strong> <strong>amorphous</strong> <strong>silicon</strong><br />

TFT’s, which any model has to consider. We then develop<br />

an ab <strong>in</strong>itio physical model, which fits all the key<br />

experimental results and which gives <strong>in</strong>sight <strong>in</strong>to the bias<br />

stress<strong>in</strong>g.<br />

II. EXPERIMENTS<br />

5781<br />

Experimentally, the <strong>defect</strong> <strong>creation</strong> k<strong>in</strong>etics are strongly<br />

nonexponential and even nonstretched exponential. 12 Figure<br />

1 shows the threshold voltage shift �V t(t) <strong>of</strong> an <strong>amorphous</strong><br />

Downloaded 20 Jul 2004 to 195.37.184.165. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


5782 J. Appl. Phys., Vol. 93, No. 9, 1 May 2003 Wehrspohn, Powell, and Deane<br />

FIG. 2. Threshold voltage shift �V t as a function <strong>of</strong> gate bias over <strong>in</strong>itial<br />

threshold voltage V 0 for two samples ��: ��0.2 cm 2 V �1 s �1 ; �: �<br />

�1.3 cm 2 V �1 s �1 ). The constant-current stress<strong>in</strong>g time was 1000 s at<br />

350 K.<br />

<strong>silicon</strong> bottom gate TFT under 30 V gate bias stress, which<br />

corresponds to a field <strong>of</strong> about 1 MV/cm over threshold. The<br />

bias stress experiments were carried out on n-type, <strong>silicon</strong><br />

nitride gate <strong>in</strong>sulator a-Si:H TFT’s deposited at 300 °C on a<br />

crystall<strong>in</strong>e <strong>silicon</strong> wafer. The preparation and measurement<br />

conditions were reported elsewhere. 15 The TFT was annealed<br />

to 500 K for 1 h before the stress experiment.<br />

The second important characteristic <strong>of</strong> the threshold<br />

voltage shift �V t(t) is its nonl<strong>in</strong>ear behavior on the effective<br />

gate bias over threshold V 0,eff(t)�V g,eff(t)�V ti , i.e., nonl<strong>in</strong>ear<br />

dependence on the number <strong>of</strong> band-tail carriers N BT(t). This<br />

is manifested <strong>in</strong> Eq. �5� by the power �. 10–13 Experimentally,<br />

the power � can be accurately determ<strong>in</strong>ed by an experiment<br />

under constant current stress (N BT�const) for which the k<strong>in</strong>etics<br />

have a power-law behavior for short and medium<br />

stress<strong>in</strong>g times �Eq. �5��. Figure 2 shows �V t(t) dur<strong>in</strong>g constant<br />

current stress for short stress<strong>in</strong>g times as a function <strong>of</strong><br />

the applied gate bias over <strong>in</strong>itial threshold V 0 . 16 Two different<br />

TFT’s have been chosen, one with a very low mobility �<br />

<strong>of</strong> 0.2 cm 2 V �1 s �1 , the other with a high mobility � <strong>of</strong><br />

1.3 cm 2 V �1 s �1 . For both TFT’s, the threshold voltage shift<br />

�V t(t) dependence on the gate bias over <strong>in</strong>itial threshold V 0<br />

is superl<strong>in</strong>ear, with the power � ly<strong>in</strong>g typically between 1.5<br />

and 1.9.<br />

A third important feature, which has not been considered<br />

<strong>in</strong> detail up to now, is the dependence <strong>of</strong> t 0 and thereby E A<br />

on the applied gate bias over <strong>in</strong>itial threshold V0 , i.e., the<br />

0 14<br />

<strong>in</strong>itial band-tail carrier density NBT. For example, stress<strong>in</strong>g<br />

a TFT with a ten times higher V0 does not result <strong>in</strong> exactly<br />

ten times faster <strong>defect</strong> <strong>creation</strong>. In Fig. 3, a similar device as<br />

<strong>in</strong> Fig. 1 is stressed with 10, 20, and 30 V gate biases. The<br />

<strong>defect</strong> <strong>creation</strong> k<strong>in</strong>etics do not exactly scale, but the higher<br />

0<br />

the <strong>in</strong>itial band-tail carrier density NBT , the more easily <strong>defect</strong>s<br />

are created. Or <strong>in</strong> other words, t0 is shifted to lower<br />

values with <strong>in</strong>creased gate bias V0 .<br />

In summary, any model has to account for these three<br />

important experimental characteristics <strong>of</strong> <strong>defect</strong> <strong>creation</strong> k<strong>in</strong>etics<br />

dur<strong>in</strong>g gate-bias stress: nonexponential time behavior<br />

<strong>of</strong> <strong>defect</strong> <strong>creation</strong> ND(t); 7 superl<strong>in</strong>ear bias dependence <strong>of</strong><br />

ND(t); 10–13 0 14<br />

and dependence <strong>of</strong> t0 on <strong>in</strong>itial bias NBT. FIG. 3. �a� Threshold voltage shift for bottom gate TFT S30L for different<br />

gate biases V g <strong>of</strong> 10, 20, and 30 V measured for different temperatures <strong>in</strong> the<br />

range from 300 to 390 K. The stress<strong>in</strong>g times and temperatures have been<br />

unified by the thermalization energy E th�kT ln(� ft) with ��10 10 s �1 . �b�<br />

Derivative <strong>of</strong> �a� with respect to E th is plotted. It can be observed that the<br />

maximum <strong>of</strong> the probability distribution for <strong>defect</strong> <strong>creation</strong> shifts to lowerenergy<br />

E th with <strong>in</strong>creased gate bias V g , i.e., <strong>in</strong>creased band-tail carrier<br />

density N BT .<br />

III. MODELING<br />

A. Introduction<br />

We develop our model <strong>in</strong> three stages. We first recalculate<br />

carefully the previous approach for describ<strong>in</strong>g <strong>defect</strong><br />

<strong>creation</strong> <strong>in</strong> a-Si:H TFT’s, i.e., consider<strong>in</strong>g the forward reaction<br />

rate only and solv<strong>in</strong>g for the <strong>defect</strong> density <strong>in</strong> steady<br />

state. We show that, tak<strong>in</strong>g this approach, one does not obta<strong>in</strong><br />

the observed superl<strong>in</strong>ear band-tail carrier dependence,<br />

but a subl<strong>in</strong>ear band-tail carrier dependence. In a second<br />

step, we <strong>in</strong>clude the backward reaction dur<strong>in</strong>g <strong>defect</strong> <strong>creation</strong><br />

and show numerically that tak<strong>in</strong>g <strong>in</strong>to account the backward<br />

reaction <strong>in</strong>creases the band-tail carrier dependence to about<br />

��1. However, this does not lead to the observed superl<strong>in</strong>ear<br />

behavior <strong>of</strong> <strong>defect</strong> <strong>creation</strong> on the <strong>in</strong>itial band-tail carrier<br />

0<br />

density NBT . Only when we take <strong>in</strong>to account the charge<br />

states <strong>of</strong> the barrier and the f<strong>in</strong>al states are all features <strong>of</strong> the<br />

<strong>defect</strong> <strong>creation</strong> k<strong>in</strong>etics well described. In simple terms this<br />

is due to the quench<strong>in</strong>g <strong>of</strong> the backward reaction by the<br />

<strong>in</strong>creased number <strong>of</strong> band-tail carriers. Our model predicts a<br />

superl<strong>in</strong>ear dependence <strong>of</strong> the <strong>defect</strong> <strong>creation</strong> rate on the <strong>in</strong>itial<br />

band-tail carrier density and a stretched hyperbola time<br />

dependence for the total density <strong>of</strong> created <strong>defect</strong>s. We show<br />

that the stretched hyperbola characteristic time constant t0 is<br />

also found to depend on the band-tail carrier density, <strong>in</strong><br />

agreement with experimental results. Compar<strong>in</strong>g <strong>defect</strong> <strong>creation</strong><br />

k<strong>in</strong>etics for different TFT samples can only be done for<br />

the same value <strong>of</strong> band-tail carrier density. Normalization for<br />

different band-tail densities is not possible.<br />

Downloaded 20 Jul 2004 to 195.37.184.165. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


J. Appl. Phys., Vol. 93, No. 9, 1 May 2003 Wehrspohn, Powell, and Deane<br />

FIG. 4. Configurational diagram <strong>of</strong> the <strong>defect</strong> <strong>creation</strong> model. A is the <strong>in</strong>itial<br />

state, A* the barrier state, B* an <strong>in</strong>termediate <strong>defect</strong> state, and B the f<strong>in</strong>al<br />

<strong>defect</strong> state. It is assumed that the transition from B* to B is not rate<br />

limit<strong>in</strong>g and that the transmission probability � is sufficiently low so that it<br />

does not affect the k<strong>in</strong>etics. We assume <strong>in</strong> model III C an exponential barrier<br />

distribution exp(E*/kT 0) and a carrier-dependent forward reaction activation<br />

energy E*��. In addition, we assume <strong>in</strong> model III D a backward reaction<br />

activation energy <strong>of</strong> E*�E form and <strong>in</strong> model III E a backward reaction<br />

activation energy <strong>of</strong> E*�2E form��. AtE M the density <strong>of</strong> barrier states is<br />

N 0 . The situation for model III E is shown.<br />

B. Microscopic models for <strong>defect</strong> <strong>creation</strong><br />

Similarly to other authors, we apply an exponential barrier<br />

model for carrier-<strong>in</strong>duced <strong>defect</strong> <strong>creation</strong>. For all three<br />

stages <strong>of</strong> our model discussed <strong>in</strong> this article, the exact microscopic<br />

reactions are not important s<strong>in</strong>ce the <strong>defect</strong> k<strong>in</strong>etics<br />

holds for most possible rate-limit<strong>in</strong>g steps. In particular,<br />

break<strong>in</strong>g <strong>of</strong> a <strong>silicon</strong>-<strong>silicon</strong> bond, or emission <strong>of</strong> hydrogen<br />

out <strong>of</strong> a s<strong>in</strong>gle hydrogenated <strong>silicon</strong> bond �Si–H�, a double<br />

hydrogenated <strong>silicon</strong> bond �SiHHSi or H 2 *) will exhibit the<br />

same <strong>defect</strong> <strong>creation</strong> k<strong>in</strong>etics. The only two <strong>in</strong>gredients required<br />

are an exponential distribution <strong>of</strong> barrier states and a<br />

barrier lower<strong>in</strong>g due to the band-tail carriers. We therefore<br />

refer to the <strong>in</strong>itial bond as the precursor bond. Depend<strong>in</strong>g on<br />

the specific microscopic reactions, this precursor bond might<br />

be �a� a Si–Si bond 14,16–18<br />

Si– Si→D�D, �8�<br />

where D is a <strong>silicon</strong> dangl<strong>in</strong>g bond; �b� a Si–H bond 19<br />

Si– H→H i�D, �9�<br />

where H i is a mobile hydrogen <strong>in</strong>terstitial; or �c� a SiHHSi or<br />

H 2 * bond 20,21<br />

SiHHSi→Hi�SiHD �10�<br />

where SiHD represents neighbor<strong>in</strong>g <strong>silicon</strong> dangl<strong>in</strong>g and<br />

<strong>silicon</strong>-hydrogen bonds.<br />

C. Forward reaction rate and Boltzmann<br />

approximation<br />

1. Forward reaction rate<br />

We def<strong>in</strong>e a general three-state configuration coord<strong>in</strong>ate<br />

diagram <strong>of</strong> <strong>defect</strong> <strong>creation</strong> �Fig. 4�. State A is the <strong>in</strong>itial state,<br />

A* is the barrier state, and B* is the f<strong>in</strong>al state, i.e., the<br />

5783<br />

FIG. 5. Effect <strong>of</strong> charge state on the <strong>defect</strong> formation energy: schematic<br />

diagram <strong>of</strong> formation energy for <strong>defect</strong> <strong>creation</strong> vs Fermi-level position �Ref<br />

22�. E form is the formation energy for the neutral <strong>defect</strong> and � the barrier<br />

lower<strong>in</strong>g energy due to the formation <strong>of</strong> charged <strong>defect</strong>s.<br />

<strong>defect</strong> state. Accord<strong>in</strong>g to the Eyr<strong>in</strong>g theory, the forward reaction<br />

rate <strong>of</strong> an activated reaction from a state A to a state<br />

B* over a barrier A* is<br />

� dNA dt �R fN A<br />

�11�<br />

with NA the number <strong>of</strong> precursor bonds <strong>in</strong> state A and R f the<br />

forward reaction rate, def<strong>in</strong>ed as<br />

R f�� f exp��E*/kT� �12�<br />

with E* be<strong>in</strong>g the energetic barrier for the forward reaction<br />

rate and � f the attempt frequency for the forward reaction.<br />

The energy needed to break a strong precursor bond located<br />

<strong>in</strong> the extended states is def<strong>in</strong>ed as E M . We assume that the<br />

b<strong>in</strong>d<strong>in</strong>g energy lower<strong>in</strong>g <strong>of</strong> a weak precursor bond <strong>in</strong> the<br />

band tails is proportional to its one-electron energy lower<strong>in</strong>g,<br />

i.e., the energy from the mobility edge to the weak bond<br />

energy. Therefore, we assume an exponential barrier distribution<br />

<strong>of</strong> states A* with a characteristic energy kT0 �Fig. 4�.<br />

At the energy E M the density <strong>of</strong> states N0 equals that at the<br />

mobility edge. Thus NA *(E*) reads<br />

NA *�E*��N 0 exp���E M�E*�/kT0�. �13�<br />

The driv<strong>in</strong>g forces for the forward reaction are band-tail<br />

carriers, 13 so Eq. �12� has to be modified to<br />

R f�� f exp���E*���/kT�, �14�<br />

where � is the carrier-<strong>in</strong>duced lower<strong>in</strong>g <strong>of</strong> the barrier for<br />

<strong>defect</strong> <strong>creation</strong>. � is def<strong>in</strong>ed <strong>in</strong> l<strong>in</strong>e with the <strong>defect</strong> pool<br />

model for positive bias 13,22 �Fig. 5� as<br />

��E form�kT ln�n BT�, �15�<br />

where Eform is the formation energy <strong>of</strong> the neutral <strong>defect</strong><br />

level �Fig. 5� and nBT is the normalized band-tail carrier<br />

density NBT /N c with Nc the density <strong>of</strong> states at the mobility<br />

edge. 29 Here we implicitly assume that nBT is spatially constant<br />

<strong>in</strong> a TFT. Due to the band bend<strong>in</strong>g near the Si/SiN<br />

<strong>in</strong>terface, a spatially <strong>in</strong>homogeneous distribution would be<br />

more realistic. However, <strong>defect</strong> pool model<strong>in</strong>g has shown<br />

Downloaded 20 Jul 2004 to 195.37.184.165. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


5784 J. Appl. Phys., Vol. 93, No. 9, 1 May 2003 Wehrspohn, Powell, and Deane<br />

that a constant Fermi level describes reasonably well the<br />

equilibrium <strong>defect</strong> distribution. 23 We therefore assume <strong>in</strong> the<br />

follow<strong>in</strong>g that this is also the case for nonequilibrium <strong>defect</strong><br />

<strong>creation</strong>.<br />

Insert<strong>in</strong>g Eqs. �13� and �14� <strong>in</strong> Eq. �11� and consider<strong>in</strong>g<br />

that the total number <strong>of</strong> sites N A is constant �N A *�N D(t)<br />

�N A(t)�, we obta<strong>in</strong> for the forward reaction rate per energy<br />

<strong>in</strong>terval dE*<br />

� dN A<br />

dt � dN D<br />

dt �� f exp� ��E*���<br />

kT<br />

�<br />

�� N0 exp ��E M�E*�<br />

�N<br />

kT D� . �16�<br />

0<br />

This equation is correct for one-electron barrier lower<strong>in</strong>g,<br />

i.e., � is due to one electron. If one assumes two-electron<br />

barrier lower<strong>in</strong>g, � has to be replaced by 2�.<br />

2. Boltzmann approximation<br />

To solve Eq. �16�, one has to <strong>in</strong>tegrate over all times dt<br />

and all energy barriers dE*. However, these two <strong>in</strong>tegrals<br />

are not separable s<strong>in</strong>ce the energy an electron needs to overcome<br />

the barrier depends on the time t it attempts to escape.<br />

In order to solve this problem analytically, we neglect the<br />

depletion <strong>of</strong> precursor states ND on the right side <strong>of</strong> Eq. �16�<br />

and approximate the steady-state distribution by apply<strong>in</strong>g the<br />

Boltzmann distribution, tak<strong>in</strong>g carefully <strong>in</strong>to account the barrier<br />

lower<strong>in</strong>g. Then, all weak bonds which are below the<br />

thermalization energy Eth ,<br />

Eth�kT ln�� ft���, �17�<br />

have been completely converted to <strong>defect</strong>s. Note that <strong>in</strong> the<br />

case <strong>of</strong> electron accumulation the energy barrier is lowered<br />

by �; thus the thermalization energy has to be raised by the<br />

amount <strong>of</strong> barrier lower<strong>in</strong>g �. All weak bonds that are above<br />

E th convert only partially, approximately the Boltzmann<br />

fraction <strong>of</strong> the weak bonds. Thus, the total number <strong>of</strong> <strong>defect</strong>s<br />

is<br />

N D�N 0kT 0 exp� � E M�E th<br />

kT 0<br />

� � ��Eth t dN � dtdE*. �18�<br />

0 dt<br />

Here we have set the upper limit <strong>of</strong> the <strong>in</strong>tegral over E* to<br />

<strong>in</strong>f<strong>in</strong>ity s<strong>in</strong>ce the Boltzmann fraction <strong>of</strong> broken strong precursor<br />

bonds is negligible for kT�kT0 . In a schematic picture,<br />

the total number <strong>of</strong> weak precursor bonds converted to<br />

<strong>defect</strong>s after a time t is illustrated <strong>in</strong> Fig. 6. Energetically<br />

below Eth �the first term� all precursors have converted to<br />

<strong>defect</strong> states whereas above Eth �second term� only the Boltzmann<br />

fraction converts to <strong>defect</strong> states. Solv<strong>in</strong>g Eq. �18�<br />

�see the Appendix�, one obta<strong>in</strong>s for the <strong>defect</strong> <strong>creation</strong> rate<br />

dND dt �� fN 0� kT�2kT0�kT� kT �<br />

0�kT<br />

�exp� � E M�E form � ��1<br />

kT � nBT��t� �19�<br />

0<br />

with ��kT/kT0 . Equation �19� represents the <strong>defect</strong> <strong>creation</strong><br />

rate if we assume an exponential distribution <strong>of</strong> barriers,<br />

a barrier lower<strong>in</strong>g energy �, and the Boltzmann approxi-<br />

FIG. 6. Density <strong>of</strong> precursor states N(E) that contribute to <strong>defect</strong> <strong>creation</strong>.<br />

The schematic diagram shows the density <strong>of</strong> converted dangl<strong>in</strong>g bonds for a<br />

thermalization energy E th�kT ln(�t)��. Energetically below E th , all precursors<br />

have completely converted to <strong>defect</strong> states, whereas above E th only<br />

the Boltzmann fraction converts to <strong>defect</strong> states.<br />

mation for the steady-state situation. The last but one factor<br />

<strong>of</strong> Eq. �19� shows that the band-tail carrier dependence varies<br />

as a power <strong>of</strong> �. Thus, tak<strong>in</strong>g <strong>in</strong>to account only the forward<br />

reaction and the Boltzmann approximation for steady state<br />

leads to a subl<strong>in</strong>ear band-tail carrier dependence ��� with<br />

� typically 0.4 to 0.5 �Fig. 7�, <strong>in</strong> contradiction to the observed<br />

dependence <strong>in</strong> the range <strong>of</strong> 1.5 to 1.9 �Fig. 2�. Even if<br />

one considers two electrons <strong>in</strong>volved <strong>in</strong> the barrier lower<strong>in</strong>g,<br />

� is 2� and therefore <strong>in</strong> the range <strong>of</strong> 0.8 to 1, still not <strong>in</strong> l<strong>in</strong>e<br />

with the experiments. Moreover, E M has no dependence on<br />

0<br />

the <strong>in</strong>itial band-tail carrier density NBT, <strong>in</strong> contradiction to<br />

the observed band-tail carrier dependence <strong>of</strong> t0 . Note that<br />

previous calculations based on the forward reaction rate yield<br />

only ��1, 24,25 due to a mistake <strong>in</strong> the lower bound <strong>of</strong> the<br />

first <strong>in</strong>tegral <strong>of</strong> Eq. �18�, which we show depends on nBT due<br />

to Eq. �17�.<br />

FIG. 7. Numerical simulation <strong>of</strong> the normalized number <strong>of</strong> <strong>defect</strong>s N D as a<br />

function <strong>of</strong> the gate bias for model III C based on Eq. �19� ���, for model III<br />

D based on Eq. �23� ��� and for model III E based on Eq. �25� ���. The<br />

band-tail carrier dependence <strong>of</strong> the <strong>defect</strong> <strong>creation</strong> rate varies as the power<br />

<strong>of</strong> � shown next to the curves. Parameters: kT�30.4 meV, kT 0�62 meV,<br />

t�1000 s.<br />

Downloaded 20 Jul 2004 to 195.37.184.165. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


J. Appl. Phys., Vol. 93, No. 9, 1 May 2003 Wehrspohn, Powell, and Deane<br />

D. Forward and backward reactions<br />

To <strong>in</strong>clude the backward reaction, the reaction from B*<br />

over the barrier A* to the state A has also to be considered <strong>in</strong><br />

the three-state configuration coord<strong>in</strong>ate diagram <strong>of</strong> <strong>defect</strong><br />

<strong>creation</strong> �Fig. 4�. We assume the same situation as <strong>in</strong> the<br />

previous stage: exponential barrier distribution <strong>of</strong> the states<br />

A* �Eq. �13�� and an activation energy lower<strong>in</strong>g � for the<br />

forward reaction rate �Eq. �15��. The site B* is also lowered<br />

by � s<strong>in</strong>ce the <strong>defect</strong> stays negatively charged. The rate <strong>of</strong><br />

<strong>creation</strong> <strong>of</strong> <strong>defect</strong>s dN D /dt for an energy barrier E* is<br />

dN D�E*,t�<br />

dtdE* �R f�E*,t�N A�E*,t��R b�E*,t�N D�E*,t�<br />

�20�<br />

with R f and Rb are the forward and backward reaction rates,<br />

respectively. The forward reaction rate R f for the energy<br />

barrier E* is given by the activation energy, tak<strong>in</strong>g <strong>in</strong>to account<br />

the barrier lower<strong>in</strong>g ��see also Eq. �15��:<br />

R f�t��� f exp� � E*��<br />

kT � �� fn BT exp� � E*�E form<br />

kT � .<br />

�21�<br />

If there were no barrier distribution, then the <strong>defect</strong> <strong>creation</strong><br />

k<strong>in</strong>etics would be dom<strong>in</strong>ated for short times by the forward<br />

reaction rate only. However, s<strong>in</strong>ce there is an exponential<br />

distribution <strong>of</strong> barriers, the backward reaction is important<br />

for all times. For example, <strong>defect</strong>s with barriers E*<br />

�kT ln(� ft)�� have completely equilibrated and <strong>defect</strong>s<br />

with E*�kT ln(� ft)���kT have a significant component <strong>of</strong><br />

the backward reaction. The backward reaction rate is related<br />

to the activation energy from the <strong>defect</strong> site B* to the activated<br />

complex A*. We assume for the site B* a s<strong>in</strong>gle barrier<br />

lower<strong>in</strong>g similar to the barrier state:<br />

R b�t��� b exp� � E*�E form<br />

kT � , �22�<br />

where � b is the attempt frequency for the backward reaction<br />

rate. Insert<strong>in</strong>g Eqs. �13�, �21�, and �22� <strong>in</strong> Eq. �20�, and consider<strong>in</strong>g<br />

that the total number <strong>of</strong> sites N A is constant �N A *<br />

�N D(t)�N A(t)�, one obta<strong>in</strong>s for the rate <strong>of</strong> <strong>defect</strong> <strong>creation</strong><br />

per energy barrier E*<br />

dN D�E*,t�<br />

dtdE* �� f exp� � E*�E form<br />

kT<br />

�� nBTN0 exp� E*�E M<br />

kT0 �<br />

�N D�E*,t�� n BT� � b<br />

� f�� . �23�<br />

We numerically modeled Eq. �23� for typically 30 energy<br />

levels for a constant-voltage stress situation, i.e., NBT(t) 0 30<br />

�N BT��i�1<br />

ND(E i * ,t). The key parameters are shown <strong>in</strong><br />

Table I. We set � f�� b based on Eyr<strong>in</strong>g theory. For short<br />

time stress<strong>in</strong>g <strong>of</strong> about 1000 s, we obta<strong>in</strong> ��2� by vary<strong>in</strong>g<br />

0<br />

the <strong>in</strong>itial band-tail carrier density NBT �Fig. 7� and we ob-<br />

0<br />

serve no dependence <strong>of</strong> EA on NBT . Thus, these results are<br />

�<br />

TABLE I. Default parameters used <strong>in</strong> the numerical and analytical calcula-<br />

0<br />

tion. N0 has been normalized to 1. NI is the normalized value <strong>of</strong> NBT .<br />

Parameter Model III D Model III E Stretched hyperbola fit<br />

��T/T 0 0.53 0.53 0.53<br />

E A or E M 1.045 eV (E M) 1.045 eV (E M) 1.015 eV (E A)<br />

� f (�� b) 10 10 Hz 10 10 Hz 10 10 Hz<br />

E form 0 0 0<br />

N 0 1 1 1<br />

N I N I�N 0 N I�N 0 N I�N 0<br />

still <strong>in</strong> contradiction to the experimental observations 2 and 3<br />

<strong>in</strong> Sec. II. In the next stage, the effect <strong>of</strong> the charge state <strong>of</strong><br />

the created <strong>defect</strong> is <strong>in</strong>cluded.<br />

E. Charge states<br />

The <strong>defect</strong> <strong>creation</strong> event is triggered by the band-tail<br />

carrier density because the activation energy for the forward<br />

reaction rate is lowered by �. It is rather unlikely that two<br />

electrons will exit on one precursor bond, so that the activation<br />

energy has only once the barrier lower<strong>in</strong>g energy �.<br />

However, <strong>in</strong> the f<strong>in</strong>al state, one precursor bond will always<br />

create two <strong>defect</strong>s, which under electron accumulation are<br />

charged. Thus, the site B* is lowered twice �2��. Notice that<br />

one <strong>defect</strong> <strong>creation</strong> site, B*, corresponds to two electronically<br />

active states. Thus, we obta<strong>in</strong> for the backward reaction<br />

Rb�t��� b exp� � E*�2E form��<br />

kT �<br />

�1<br />

�� bn BT exp� � E*�E form<br />

kT � . �24�<br />

Insert<strong>in</strong>g Eqs. �13�, �24�, and �22� <strong>in</strong> Eq. �20�, and consider<strong>in</strong>g<br />

that the total number <strong>of</strong> sites NA is constant �N A *<br />

�N D(t)�N A(t)�, one obta<strong>in</strong>s for the rate <strong>of</strong> <strong>defect</strong> <strong>creation</strong><br />

per energy barrier E*<br />

dN D�E*,t�<br />

dtdE* �� f exp� � E*�E form<br />

kT<br />

�� nBTN0 exp� E*�E M<br />

kT0 �N D�E*,t�� nBT� �b . �25�<br />

� fn BT��<br />

We have numerically modeled Eq. �25� for 30 energy<br />

levels for a constant-voltage stress situation, i.e., NBT(t) 0<br />

�N BT��i�1<br />

30 ND(E i * ,t). The parameters used <strong>in</strong> the calcu-<br />

lation are summarized <strong>in</strong> Table I. To check the calculation,<br />

we first varied only E M based on Eq. �25� �Fig. 8�. As expected,<br />

we obta<strong>in</strong> a l<strong>in</strong>ear shift <strong>of</strong> the <strong>defect</strong> <strong>creation</strong> k<strong>in</strong>etics<br />

toward higher thermalization energy Eth with <strong>in</strong>creas<strong>in</strong>g E M .<br />

In a next step, we calculated � from the threshold voltage<br />

shift for different biases <strong>in</strong> the short time stress<strong>in</strong>g regime<br />

(t�1000 s). We obta<strong>in</strong> a superl<strong>in</strong>ear band-tail carrier dependence<br />

for <strong>defect</strong> <strong>creation</strong> <strong>of</strong> ��1.5 �Fig. 7�, <strong>in</strong> excellent<br />

agreement with the experimental data. In addition, we calculated<br />

for different <strong>in</strong>ital biases the whole k<strong>in</strong>etics until satu-<br />

0<br />

ration as a function <strong>of</strong> Eth �Fig. 9�. With <strong>in</strong>creas<strong>in</strong>g NBT ,we<br />

Downloaded 20 Jul 2004 to 195.37.184.165. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp<br />

�<br />

�<br />

5785


5786 J. Appl. Phys., Vol. 93, No. 9, 1 May 2003 Wehrspohn, Powell, and Deane<br />

FIG. 8. Numerical simulation <strong>of</strong> the <strong>defect</strong> <strong>creation</strong> k<strong>in</strong>etics for different<br />

barrier heights E M�0.95, 1, 1.05, and 1.1 eV based on Eq. �25�. Parameters:<br />

kT�30.4 meV, kT 0�62 meV. The <strong>in</strong>crease <strong>of</strong> E M leads to a parallel shift<br />

<strong>of</strong> the <strong>defect</strong> <strong>creation</strong> k<strong>in</strong>etics.<br />

clearly observe a shift <strong>of</strong> the maximum <strong>of</strong> the probability<br />

distribution <strong>of</strong> <strong>defect</strong> <strong>creation</strong>, which is related to E A , toward<br />

lower thermalization energies. Simultaneously, the distribution<br />

broadens slightly. Both facts are <strong>in</strong> very good agreement<br />

with the experimental data �Fig. 3�.<br />

IV. DISCUSSION<br />

In the last section, we discussed the three stages <strong>of</strong> our<br />

model for <strong>defect</strong> <strong>creation</strong>. First, we considered the forward<br />

reaction only and <strong>in</strong>cluded the backward reaction by steadystate<br />

considerations based on the Boltzmann approximation<br />

FIG. 9. �a� Numerical simulation <strong>of</strong> the <strong>defect</strong> <strong>creation</strong> k<strong>in</strong>etics for different<br />

<strong>in</strong>itial band-tail carrier concentrations based on Eq. �25�. A shift <strong>of</strong> the<br />

k<strong>in</strong>etics toward lower thermalization energies is observable for a relative<br />

<strong>in</strong>crease <strong>of</strong> the band-tail carrier density by a factor <strong>of</strong> 1, 2, and 3, similar to<br />

Fig. 3. �b� Derivative <strong>of</strong> �a� with respect to the thermalization energy. Note<br />

that the maximum <strong>of</strong> the probability distribution <strong>of</strong> <strong>defect</strong> <strong>creation</strong> decreases<br />

with decreas<strong>in</strong>g band-tail carrier density <strong>in</strong> a similar way as the experimental<br />

data <strong>in</strong> Fig. 3.<br />

FIG. 10. Comparison <strong>of</strong> experimental threshold voltage shift dur<strong>in</strong>g gate<br />

bias stress<strong>in</strong>g at V g�30 V at T�383 K, empirical stretched hyperbola fit<br />

�Eq. �6��, and numerically calculated data �Eq. �25��. For parameters, see<br />

Table I.<br />

�Sec. III C�. This allowed us to make an analytical solution<br />

for the <strong>defect</strong> <strong>creation</strong> k<strong>in</strong>etics. In terms <strong>of</strong> the configuration<br />

diagram �Fig. 4�, the barrier lower<strong>in</strong>g and the steady-state<br />

Boltzmann approximation lead to an activation energy lower<strong>in</strong>g<br />

<strong>of</strong> the forward reaction rate and backward reaction, i.e.,<br />

a barrier lower<strong>in</strong>g for the state A* �Fig. 4�. Note that for a<br />

s<strong>in</strong>gle barrier the steady-state <strong>defect</strong> density would not<br />

change. However, due to the exponential distribution <strong>of</strong> barriers,<br />

a lower<strong>in</strong>g <strong>of</strong> A* does lead to an <strong>in</strong>creased <strong>defect</strong> density.<br />

The <strong>defect</strong> <strong>creation</strong> rate is proportional to (n BT) � due to<br />

the Boltzmann approximation. The barrier lower<strong>in</strong>g <strong>in</strong> Eq.<br />

�19� is �/kT0 and � is proportional to kT ln(nBT) �Eq. �15��.<br />

Thus, the impact <strong>of</strong> nBT on the <strong>defect</strong> <strong>creation</strong> rate is modified<br />

by the power ��T/T 0 .<br />

In the second stage �Sec. III D�, we <strong>in</strong>cluded the forward<br />

and backward reactions numerically and assumed that the<br />

barrier state A* and the f<strong>in</strong>al state B* are lowered by �.<br />

Thus, the forward reaction rate is <strong>in</strong>creased whereas the<br />

backward reaction is unchanged �Fig. 4�. This leads to an<br />

<strong>in</strong>creased dependence <strong>of</strong> the <strong>defect</strong> <strong>creation</strong> rate on the bandtail<br />

carrier density. The <strong>defect</strong> <strong>creation</strong> rate is then proportional<br />

to (n BT) 2� , <strong>in</strong> l<strong>in</strong>e with our model<strong>in</strong>g �Fig. 7�.<br />

In the third stage �Sec. III E�, we assume one barrier<br />

lower<strong>in</strong>g for the state A* and twice the barrier lower<strong>in</strong>g for<br />

the f<strong>in</strong>al state. Thus, the forward reaction rate is <strong>in</strong>creased<br />

and the backward reaction is quenched by the band-tail carrier<br />

density. A possible microscopic reaction represent<strong>in</strong>g<br />

these k<strong>in</strong>etics would be Si–Si (A)→D 0�D � (A*)→D �<br />

�D � (B*). This <strong>in</strong>creases the efficiency <strong>of</strong> the band-tail carrier<br />

density on the <strong>defect</strong> <strong>creation</strong> rate to a superl<strong>in</strong>ear value<br />

(n BT) 3� .<br />

Only model<strong>in</strong>g <strong>of</strong> the third stage is <strong>in</strong> l<strong>in</strong>e with all key<br />

experimental observations, namely, the stretched hyperbola<br />

time dependence, the superl<strong>in</strong>ear bias dependence <strong>of</strong> ND(t), 0<br />

and the t0 dependence on <strong>in</strong>itial bias NBT . For example, <strong>in</strong><br />

Fig. 10, the experimental threshold voltage shift, the numerical<br />

data based on Eq. �25�, and a stretched hyperbola fit �Eq.<br />

�6�� are shown. Table I shows the parameters used for the<br />

numerical fit and the stretched hyperbola fit. There is agreement<br />

between these three curves with<strong>in</strong> a few percent, un-<br />

Downloaded 20 Jul 2004 to 195.37.184.165. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


J. Appl. Phys., Vol. 93, No. 9, 1 May 2003 Wehrspohn, Powell, and Deane<br />

derl<strong>in</strong><strong>in</strong>g the numerical fit. Moreover, for a high-mobility<br />

TFT with kT0 <strong>of</strong> typically 50 meV, 15 we obta<strong>in</strong> for kT<br />

�30 meV a power ��3��1.8, whereas for a low-mobility<br />

TFT with typically kT0�60 meV, a power ��3��1.5 is<br />

obta<strong>in</strong>ed, <strong>in</strong> very good agreement with our experimental data<br />

�Fig. 2�.<br />

In summary, there is a superl<strong>in</strong>ear dependence <strong>of</strong> the<br />

band-tail carrier density on <strong>defect</strong> <strong>creation</strong> rate due to the<br />

double impact <strong>of</strong> band-tail carriers: lower<strong>in</strong>g <strong>of</strong> the forward<br />

reaction rate and quench<strong>in</strong>g <strong>of</strong> the backward reaction. Due to<br />

the quench<strong>in</strong>g <strong>of</strong> the backward reaction rate by the band-tail<br />

carrier density, the probability distribution <strong>of</strong> <strong>defect</strong> <strong>creation</strong><br />

barriers is also changed, thus lead<strong>in</strong>g to a lower t 0 with N BT<br />

�Fig. 9�. This is <strong>in</strong> very good agreement with the experimental<br />

data <strong>in</strong> Fig. 3. This effect is not <strong>in</strong>cluded <strong>in</strong> the steadystate<br />

approach described <strong>in</strong> Sec. III C �and also not <strong>in</strong> Sec.<br />

III D� and not <strong>in</strong> the stretched hyperbola equation �Eq. �6��. 12<br />

Nevertheless, as shown <strong>in</strong> Fig. 10 and Ref. 16, the stretched<br />

hyperbola is a useful fit. The effect <strong>of</strong> the backward reaction<br />

could be implemented by a dependence <strong>of</strong> E A on the bandtail<br />

carrier density. Neglect<strong>in</strong>g this dependence leads to differences<br />

<strong>in</strong> the fit parameter E A and kT 0 for different <strong>in</strong>itial<br />

biases over threshold V 0 . Therefore, it has to be taken care<br />

that the parameters extracted by the stretched hyperbola fit<br />

are comparable only if different TFT’s are stressed with the<br />

same <strong>in</strong>itial bias over threshold V 0 . For example, for the<br />

values <strong>of</strong> Fig. 3, the difference between stress<strong>in</strong>g the TFT<br />

with 10 or 30 V yields a shift <strong>of</strong> 4% <strong>in</strong> E A obta<strong>in</strong>ed by the<br />

stretched hyperbola fit. In units <strong>of</strong> �V t , this corresponds to a<br />

difference <strong>of</strong> 25% <strong>in</strong> �V t /V 0 at E th�1 eV.<br />

F<strong>in</strong>ally, the impact <strong>of</strong> the f<strong>in</strong>d<strong>in</strong>gs above on the configurational<br />

diagram <strong>in</strong> Fig. 4 is discussed. The activation energy<br />

gave us <strong>in</strong>formation on the state A* and the band-tail carrier<br />

dependence allowed us to ga<strong>in</strong> <strong>in</strong>formation on state B*. This<br />

is a unique possibility for TFT’s <strong>in</strong> contrast to the Staebler-<br />

Wronski effect <strong>in</strong> solar cells, where <strong>in</strong>formation neither on<br />

A* nor B* can be ga<strong>in</strong>ed.<br />

Consider<strong>in</strong>g the three possible microscopic models <strong>in</strong><br />

Sec. III B, we might expect kT 0 , the characteristic energy for<br />

the exponential distribution <strong>of</strong> energy barriers, to be related<br />

to the characteristic energy <strong>of</strong> the valence band tail E v0 .In<br />

the absence <strong>of</strong> any network stra<strong>in</strong>, kT 0 would be 2E v0 for<br />

reaction �a� �the break<strong>in</strong>g <strong>of</strong> a Si–Si bond� but zero for reactions<br />

�b� and �c� �break<strong>in</strong>g <strong>of</strong> Si–H bonds�. In reality, we<br />

expect network stra<strong>in</strong> to play a significant role. 20 This will<br />

reduce the characteristic energy for reaction �a� but <strong>in</strong>crease<br />

the characteristic energy for reactions �b� and �c�. In particular,<br />

for reaction �c� we expect a characteristic energy <strong>of</strong><br />

2E v0 . 20 For reaction �b�, we expect the characteristic energy<br />

to be much lower. For reaction �a�, we expect the characteristic<br />

energy to be <strong>in</strong> the range <strong>of</strong> E v0 to 2E v0 . Experimentally,<br />

we f<strong>in</strong>d kT 0 to be <strong>in</strong> the range (1 – 1.5)kT 0 . This favors<br />

reaction �a�, although this is probably not sufficient to dist<strong>in</strong>guish<br />

between different models.<br />

The state B* represents two charged dangl<strong>in</strong>g bonds.<br />

The <strong>defect</strong> pool model has shown that the f<strong>in</strong>al thermal equilibrium<br />

state is two charged SiHD <strong>defect</strong>s. 20,26 The state B*<br />

may not be the f<strong>in</strong>al state <strong>of</strong> the reaction. There can be a<br />

transmission from state B* to state B. In particular, state B*<br />

0<br />

can be two charged dangl<strong>in</strong>g bonds (D � �D � ), orig<strong>in</strong>at<strong>in</strong>g<br />

from one broken Si–Si bond, while state B can be two isolated<br />

charged SiHD <strong>defect</strong>s, formed as a result <strong>of</strong> subsequent<br />

hydrogen motion. Possible microscopic reactions for this<br />

process are discussed <strong>in</strong> detail elsewhere. 27 If the transmission<br />

probability from state B* to state B is low, then the<br />

k<strong>in</strong>etics <strong>of</strong> <strong>defect</strong> <strong>creation</strong> will be dom<strong>in</strong>ated by the reaction<br />

A to B*. For the forward and backward reactions, A↔B*,<br />

we have set the attempt frequencies � f and � b to be equal.<br />

This is correct <strong>in</strong> the s<strong>in</strong>gle-hop limit <strong>of</strong> the Eyr<strong>in</strong>g theory.<br />

This is <strong>in</strong> contrast to the attempt frequency for any reactions<br />

from state B, which can be quite different. These are the<br />

<strong>defect</strong> anneal<strong>in</strong>g reactions. Recently, we reported that the<br />

attempt frequencies for <strong>defect</strong> <strong>creation</strong> and <strong>defect</strong> anneal<strong>in</strong>g<br />

differ by three orders <strong>of</strong> magnitude, 12,14 which is <strong>in</strong> l<strong>in</strong>e with<br />

earlier measurements. 13 This is consistent with the <strong>defect</strong><br />

<strong>creation</strong> reaction be<strong>in</strong>g the break<strong>in</strong>g <strong>of</strong> a Si–Si bond, while<br />

the <strong>defect</strong> anneal<strong>in</strong>g reaction is due to the break<strong>in</strong>g <strong>of</strong> a Si–H<br />

bond. 28 The low attempt rate <strong>of</strong> 10 10 Hz <strong>of</strong> the <strong>defect</strong> <strong>creation</strong><br />

reaction is due to the modulation <strong>of</strong> the Si–Si phonon<br />

frequency by the probability that the bond is occupied by an<br />

electron and by the probability <strong>of</strong> a Si–H bond switch<strong>in</strong>g<br />

event from a nearby SiHHSi site �reaction B* to B). Defect<br />

anneal<strong>in</strong>g �from state B) does not <strong>in</strong>fluence the k<strong>in</strong>etics <strong>of</strong><br />

<strong>defect</strong> <strong>creation</strong>, under normal experimental conditions, while<br />

the backward reaction from state B*→A plays a significant<br />

role <strong>in</strong> modify<strong>in</strong>g the <strong>defect</strong> <strong>creation</strong> k<strong>in</strong>etics.<br />

V. CONCLUSION<br />

We have modeled the <strong>defect</strong> <strong>creation</strong> k<strong>in</strong>etics <strong>of</strong> <strong>amorphous</strong><br />

<strong>silicon</strong> th<strong>in</strong> <strong>film</strong> <strong>transistors</strong> dur<strong>in</strong>g gate-bias stress<br />

based on an exponential barrier model. The s<strong>in</strong>gle-hop limit<br />

over an exponentially distributed barrier can describe the <strong>defect</strong><br />

<strong>creation</strong> k<strong>in</strong>etics reasonably well, provided that the<br />

backward reaction and the charge states are taken <strong>in</strong>to account.<br />

As a consequence <strong>of</strong> <strong>in</strong>clud<strong>in</strong>g these terms, the experimentally<br />

observed superl<strong>in</strong>ear band-tail carrier dependence<br />

for <strong>defect</strong> <strong>creation</strong> and the band-tail carrier dependence <strong>of</strong><br />

the barrier height are <strong>in</strong> good agreement with experimental<br />

observations. The two-parameter stretched hyperbola approximation,<br />

which was recently proposed by us to describe<br />

<strong>defect</strong> <strong>creation</strong> k<strong>in</strong>etics, is a reasonable approximation <strong>of</strong> the<br />

numerical results provided that the <strong>in</strong>itial band-tail carrier<br />

density is the same <strong>in</strong> all devices be<strong>in</strong>g compared.<br />

VI. APPENDIX<br />

Insert<strong>in</strong>g the thermalization energy E th �Eq. �17�� <strong>in</strong>to<br />

Eq. �18� yields<br />

N D�N 0kT 0 exp� � E M<br />

kT 0� exp� � �<br />

kT 0� �� ft� kT/kT 0<br />

� t dN<br />

�� � dtdE*. �A1�<br />

Eth 0 dt<br />

Differentiat<strong>in</strong>g N D yields<br />

Downloaded 20 Jul 2004 to 195.37.184.165. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp<br />

5787


5788 J. Appl. Phys., Vol. 93, No. 9, 1 May 2003 Wehrspohn, Powell, and Deane<br />

dN D<br />

dt �N 0kT 0 exp� � E M<br />

kT 0� exp� � �<br />

kT 0� �� ft� ��1<br />

� dN �� dE*. �A2�<br />

Eth dt<br />

For partially converted <strong>defect</strong>s, one obta<strong>in</strong>s for the <strong>in</strong>tegral<br />

<strong>of</strong> Eq. �A2�<br />

or<br />

� dND �Eth dt dE*��<br />

�<br />

� fN 0 exp� �<br />

Eth<br />

E M�E*<br />

kT0 �exp� � E*��<br />

kT � dE* �A3�<br />

� dND �Eth dt dE*��<br />

�<br />

� fN 0 exp� �<br />

Eth<br />

E M<br />

kT0� exp� �<br />

kT�<br />

�exp� �� E*<br />

��1����dE*. �A4�<br />

kT�<br />

Integrat<strong>in</strong>g over all energy states E* reads<br />

dND dt �� fN 0� 1<br />

�1 1<br />

�<br />

kT kT0� exp� � E M<br />

kT0� �exp� �<br />

��<br />

kT<br />

ft� 0� (�1��) . �A5�<br />

Insert<strong>in</strong>g Eq. �A5� <strong>in</strong>to Eq. �A2� and replac<strong>in</strong>g � by n BT<br />

�Eq. �15�� yields<br />

�<br />

dN D<br />

dt �� fN 0� kT�2kT0�kT� kT0�kT �exp� � E M�E form<br />

kT � �n BT�<br />

0 � �� ft� (�1��) . �A6�<br />

1 A. J. Snell, K. D. Mackenzie, W. E. Spear, P. G. LeComber, and A. J.<br />

Hughes, Appl. Phys. Lett. 24, 357 �1981�.<br />

2 M. J. Powell, Appl. Phys. Lett. 43, 597�1983�.<br />

3 C. van Berkel and M. J. Powell, Appl. Phys. Lett. 51, 1094 �1987�.<br />

4 M. J. Powell, C. van Berkel, and J. R. Hughes, Appl. Phys. Lett. 54, 1323<br />

�1989�.<br />

5 M. Stutzmann, Mater. Res. Soc. Symp. Proc. 467, 37�1997�.<br />

6 W. B. Jackson and M. D. Moyer, Phys. Rev. B 36, 6217 �1987�.<br />

7 W. Jackson, C. C. Tsai, and R. Thomson, J. Non-Cryst. Solids 114, 396<br />

�1989�.<br />

8 P. Grassberger and I. Procaccia, J. Phys. Chem. 77, 6281 �1982�.<br />

9 R. A. Street, Physica B 170, 69�1991�.<br />

10 Y. Kaneko, A. Sasano, and T. Tsukada, J. Appl. Phys. 69, 7301�1991�.<br />

11 F. R. Libsch and J. Kanicki, Appl. Phys. Lett. 62, 1286 �1993�.<br />

12 S. C. Deane, R. B. Wehrspohn, and M. J. Powell, Phys. Rev. B 58, 12625<br />

�1998�.<br />

13 W. B. Jackson, Phys. Rev. B 41, 1059 �1990�.<br />

14 R. B. Wehrspohn, S. C. Deane, I. D. French, and M. J. Powell, J. Non-<br />

Cryst. Solids 266–269, 49�2000�.<br />

15 R. B. Wehrspohn, S. C. Deane, I. D. French, I. G. Gale, M. J. Powell, and<br />

R. Bruggemann, Appl. Phys. Lett. 74, 3374 �1999�.<br />

16 R. B. Wehrspohn, S. C. Deane, I. D. French, I. G. Gale, J. Hewitt, M. J.<br />

Powell, and J. Robertson, J. Appl. Phys. 87, 144 �2000�.<br />

17 M. Stutzmann, Philos. Mag. B 56, 63�1987�.<br />

18 K. Morigaki, Jpn. J. Appl. Phys., Part 1 27, 163 �1988�.<br />

19 H. M. Branz, Phys. Rev. B 59, 5498 �1999�.<br />

20 M. J. Powell and S. C. Deane, Phys. Rev. B 53, 10 121 �1996�.<br />

21 N. Kopidakis and E. A. Schiff, J. Non-Cryst. Solids 266, 415�2000�.<br />

22 H. M. Branz, Phys. Rev. B 39, 5107 �1989�.<br />

23 M. J. Powell, C. van Berkel, A. R. Frankl<strong>in</strong>, S. C. Deane, and W. I. Milne,<br />

Phys. Rev. B 45, 4160 �1992�.<br />

24 R. S. Crandall, Phys. Rev. B 43, 4057 �1991�.<br />

25 Y. F. Chen, S. F. Huang, and W. S. Chen, Phys. Rev. B 44, 12748�1991�.<br />

26 M. J. Powell and S. C. Deane, Phys. Rev. B 48, 10 815 �1993�.<br />

27 M. J. Powell, S. C. Deane, and R. B. Wehrspohn, Phys. Rev. B 66, 155212<br />

�2002�.<br />

28 R. B. Wehrspohn, M. J. Powell, S. C. Deane, I. D. French, and P. Roca I<br />

Cabarrocas, Appl. Phys. Lett. 77, 750 �2000�.<br />

29 The band-tail carrier density is def<strong>in</strong>ed as nBT�exp��(E c�E F /kT)�.<br />

Downloaded 20 Jul 2004 to 195.37.184.165. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp<br />

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!