03.07.2013 Views

Station blackout at Browns Ferry Unit One - Oak Ridge National ...

Station blackout at Browns Ferry Unit One - Oak Ridge National ...

Station blackout at Browns Ferry Unit One - Oak Ridge National ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ond<br />

0/JJ< H'DGE NATIONAL LABORATORY LIBRARY<br />

3 4i45b DDSllflfi 4 NUREG/CR-2182<br />

(ORNL/NUREG/TM-455/V1)<br />

<strong>St<strong>at</strong>ion</strong> Blackout <strong>at</strong> <strong>Browns</strong><br />

<strong>Ferry</strong> <strong>Unit</strong> <strong>One</strong>—Accident<br />

Sequence Analysis<br />

D. H. Cook S. R. Greene<br />

R. M. Harrington S. A. Hodge<br />

D. D. Yue<br />

OAK RIDGE NATIONAL LABORATORY<br />

CENTRAL RESEARCH LIBRARY<br />

CIRCULATION SECTION<br />

4500N ROOM 175<br />

LIBRARY LOAN COP<br />

DO NOT TRANSFER TO ANOTHER PERSON<br />

If you wish someone else to see this<br />

report, send in name with report and<br />

the library will arrange a loan.<br />

Prepared for the U.S. Nuclear Regul<strong>at</strong>ory Commission<br />

Office of Nuclear Regul<strong>at</strong>ory Research<br />

Under Interagency Agreements DOE 40-551-75 and 40-552-75


Printed in the <strong>Unit</strong>ed St<strong>at</strong>es of America. Available from<br />

N<strong>at</strong>ional Technical Inform<strong>at</strong>ion Service<br />

U.S. Department of Commerce<br />

5285 Port Royal Road, Springfield, Virginia 22161<br />

Available from<br />

GPO Sales Program<br />

Division of Technical Inform<strong>at</strong>ion and Document Control<br />

U.S. Nuclear Regul<strong>at</strong>ory Commission<br />

Washington, D.C. 20555<br />

This report was prepared as an account of work sponsored by an agency of the<br />

<strong>Unit</strong>edSt<strong>at</strong>es Government. Neitherthe<strong>Unit</strong>edSt<strong>at</strong>esGovemment noranyagency<br />

thereof, nor any of their employees, makes any warranty,express or implied,or<br />

assumes any legal liability or resoonsibility for the accuracy, completeness, or<br />

usefulness of any inform<strong>at</strong>ion, appar<strong>at</strong>us, product, or process disclosed, or<br />

represents th<strong>at</strong> its use would not infringe priv<strong>at</strong>ely owned rights. Reference herein<br />

to any specific commercial product, process, or service by trade name, trademark,<br />

manufacturer, or otherwise, does not necessarily constitute or imply its<br />

endorsement, recommend<strong>at</strong>ion, or favoring by the <strong>Unit</strong>ed St<strong>at</strong>es Government or<br />

any agency thereof. The views and opinions of authors expressed herein do not<br />

necessarily st<strong>at</strong>e or reflect those of the <strong>Unit</strong>ed St<strong>at</strong>es Government or any agency<br />

thereof.


Contract No. W-7405-eng-26<br />

Engineering Technology Division<br />

STATION BLACKOUT AT BROWNS FERRY UNIT ONE<br />

ACCIDENT SEQUENCE ANALYSIS<br />

D. H. Cook S. R. Greene<br />

R. M. Harrington S. A. Hodge<br />

D. D. Yue<br />

Manuscript Completed — October 6, 1981<br />

D<strong>at</strong>e Published — November 1981<br />

NUREG/CR-2182, Vol. I<br />

ORNL/NUREG/TM-455/VI<br />

Dist. C<strong>at</strong>egory RX, IS<br />

Notice: This document contains inform<strong>at</strong>ion of a preliminary<br />

n<strong>at</strong>ure. It is subject to revision or correction and therefore<br />

does not represent a final report.<br />

Prepared for the<br />

U. S. Nuclear Regul<strong>at</strong>ory Commission<br />

Office of Nuclear Regul<strong>at</strong>ory Research<br />

Under Interagency Agreements DOE 40-551-75 and 40-552-75<br />

NRC FIN No. B0452<br />

Prepared by the<br />

OAK RIDGE NATIONAL LABORATORY<br />

<strong>Oak</strong> <strong>Ridge</strong>, Tennessee 37830<br />

oper<strong>at</strong>ed by<br />

UNION CARBIDE CORPORATION<br />

for the<br />

DEPARTMENT OF ENERGY<br />

OAK RIDGE NATIONAL LABORATORY LIBRARY<br />

3 445b DDEllfifl 4


XXI<br />

CONTENTS<br />

SUMMARY v<br />

ABSTRACT 1<br />

1. INTRODUCTION 1<br />

2. DESCRIPTION OF STATION BLACKOUT 5<br />

3. NORMAL RECOVERY 7<br />

4. COMPUTER MODEL FOR SYSTEM BEHAVIOR PRIOR TO LOSS OF<br />

INJECTION CAPABILITY 17<br />

5. INSTRUMENTATION AVAILABLE DURING STATION BLACKOUT AND<br />

NORMAL RECOVERY 30<br />

6. OPERATOR ACTIONS DURING STATION BLACKOUT AND NORMAL<br />

RECOVERY 33<br />

7. COMPUTER PREDICTION OF THERMAL-HYDRAULIC PARAMETERS FOR<br />

NORMAL RECOVERY 36<br />

7.1 Introduction 36<br />

7.2 Conclusions 36<br />

7.2.1 Normal recovery — conclusions 36<br />

7.2.2 Loss of 250 vdc — conclusions 37<br />

7.3 Normal Recovery 37<br />

7.3.1 Normal recovery — assumptions 37<br />

7.3.2 Normal recovery — results 38<br />

7.4 Loss of 250 vdc B<strong>at</strong>teries 50<br />

7.4.1 Loss of 250 vdc b<strong>at</strong>teries —assumptions 50<br />

7.4.2 Loss of 250 vdc b<strong>at</strong>teries — results 50<br />

8. FAILURES LEADING TO A SEVERE ACCIDENT 59<br />

8.1 Induced Failure of the HPCI and RCIC Systems 62<br />

8.2 Stuck-Open Relief Valve 65<br />

8.3 Loss of 250-Volt DC Power 68<br />

9. ACCIDENT SEQUENCES RESULTING IN CORE MELTDOWN 71<br />

9.1 Introduction 71<br />

9.2 Accident Phenomenology 71<br />

9.2.1 Accident progression resulting in core<br />

melt 71<br />

9.2.2 Containment failure modes 72<br />

9.3 Event Trees 74<br />

9.3.1 Event trees for accident sequences resulting<br />

in core melt 74<br />

9.3.2 Core damage event tree 74<br />

9.3.3 Containment event tree 74<br />

9.4 Accident Sequences 78<br />

9.4.1 MARCH computer code 78<br />

9.4.2 Accident progression sign<strong>at</strong>ures 78<br />

9.5 Containment Responses 123<br />

9.5.1 Drywell responses 123<br />

9.5.2 Wetwe 11 responses 149<br />

10. PLANT STATE RECOGNITION AND OPERATOR MITIGATING<br />

ACTION 161<br />

10.1 Introduction 161<br />

10.2 Plant St<strong>at</strong>e Recognition 161<br />

Page


10.3 Oper<strong>at</strong>or Key Action Event Tree<br />

10.4 Oper<strong>at</strong>or Mitig<strong>at</strong>ing Actions<br />

11. INSTRUMENTATION AVAILABLE FOLLOWING LOSS OF 250 VOLT<br />

DC POWER<br />

12. IMPLICATIONS OF RESULTS<br />

12.1 Instrument<strong>at</strong>ion<br />

12.2 Oper<strong>at</strong>or Preparedness<br />

12.3 System Design<br />

13. REFERENCES<br />

ACKNOWLEDGEMENT<br />

APPENDIX A. Computer Code used for Normal Recovery<br />

XV<br />

APPENDIX B. Modific<strong>at</strong>ions to the March Code<br />

APPENDIX C. March Code Input (TB')<br />

APPENDIX D. Pressure Suppression Pool Model<br />

D.l Introduction<br />

D.2 Purpose and Scope<br />

D.3 Description of the System<br />

D.4 Identific<strong>at</strong>ion of the Phenomena<br />

D.5 Pool Modeling Consider<strong>at</strong>ions<br />

APPENDIX E. A Compendium of Inform<strong>at</strong>ion Concerning the<br />

<strong>Browns</strong> <strong>Ferry</strong> <strong>Unit</strong> 1 High-Pressure Cooling<br />

Injection System<br />

E.l Purpose<br />

E.2 System Description<br />

E.3 HPCI Pump Suction<br />

E.4 System Initi<strong>at</strong>ion<br />

E.5 Turbine Trips<br />

E.6 System Isol<strong>at</strong>ion<br />

E.7 Technical Specific<strong>at</strong>ions<br />

APPENDIX F. A Compendium of Inform<strong>at</strong>ion Concerning the<br />

<strong>Unit</strong> 1 Reactor Core Isol<strong>at</strong>ion Cooling System<br />

F.l Purpose<br />

F.2 System Description<br />

F.3 RCIC Pump Suction<br />

F.4 System Initi<strong>at</strong>ion<br />

F.5 Turbine Trips<br />

F.6 System Isol<strong>at</strong>ion<br />

F.7 Technical Specific<strong>at</strong>ions<br />

APPENDIX G. Effect of TVA-Estim<strong>at</strong>ed Seven Hour B<strong>at</strong>tery<br />

Life on Normal Recovery Calcul<strong>at</strong>ions<br />

Page<br />

163<br />

163<br />

165<br />

167<br />

167<br />

170<br />

172<br />

173<br />

177<br />

179<br />

197<br />

199<br />

205<br />

205<br />

205<br />

206<br />

207<br />

211<br />

217<br />

217<br />

217<br />

219<br />

220<br />

221<br />

221<br />

222<br />

223<br />

223<br />

223<br />

225<br />

225<br />

226<br />

227<br />

228<br />

229


SUMMARY<br />

This study describes the predicted response of <strong>Unit</strong> 1 <strong>at</strong> the <strong>Browns</strong><br />

<strong>Ferry</strong> Nuclear Plant to a hypothetical <strong>St<strong>at</strong>ion</strong> Blackout. This accident<br />

would be initi<strong>at</strong>ed by a loss of offsite power concurrent with a failure of<br />

all eight of the onsite diesel-gener<strong>at</strong>ors to start and load; the only re<br />

maining electrical power <strong>at</strong> this three-unit plant would be th<strong>at</strong> derived<br />

from the st<strong>at</strong>ion b<strong>at</strong>teries. It is assumed th<strong>at</strong> the <strong>St<strong>at</strong>ion</strong> Blackout occurs<br />

<strong>at</strong> a time when each of the <strong>Browns</strong> <strong>Ferry</strong> units is oper<strong>at</strong>ing <strong>at</strong> 100% power<br />

so th<strong>at</strong> there is no opportunity for use of the b<strong>at</strong>teries for units 2 or 3<br />

in support of unit 1.<br />

The design basis for the 250 volt DC b<strong>at</strong>tery system <strong>at</strong> <strong>Browns</strong> <strong>Ferry</strong><br />

provides th<strong>at</strong> any two of the three unit b<strong>at</strong>teries can supply the electri<br />

cal power necessary for shutdown and cooldown of all three units for a<br />

period of 30 minutes with a design basis accident <strong>at</strong> any one of the units.<br />

It is further provided th<strong>at</strong> the system voltage <strong>at</strong> the end of the 30 minute<br />

period will not be less than 210 volts, and th<strong>at</strong> all DC equipment supplied<br />

by this system must be operable <strong>at</strong> potentials as low as 200 volts.<br />

It is clear th<strong>at</strong> the 250 volt system was not designed for the case of<br />

a prolonged <strong>St<strong>at</strong>ion</strong> Blackout, and the period of time during which the DC<br />

equipment powered by this system could remain oper<strong>at</strong>ional under these con<br />

ditions can only be estim<strong>at</strong>ed. It would certainly be significantly longer<br />

than 30 minutes since all three b<strong>at</strong>teries would be available, the equip<br />

ment is certified to be operable <strong>at</strong> 200 volts, and there would be no de<br />

sign basis accident. In response to AEC inquiry in 1971, during the pe<br />

riod of plant construction, TVA estim<strong>at</strong>ed th<strong>at</strong> the steam-driven High Pres<br />

sure Coolant Injection (HPCI) and Reactor Core Isol<strong>at</strong>ion Cooling (RCIC)<br />

systems, which use DC power for turbine control and valve oper<strong>at</strong>ion, could<br />

remain oper<strong>at</strong>ional for a period of four to six hours. A period of four<br />

hours has been assumed for this study.*<br />

Within 30 seconds following the inception of a <strong>St<strong>at</strong>ion</strong> Blackout, the<br />

reactor would have scrammed and the reactor vessel would be isol<strong>at</strong>ed be<br />

hind the closed main steam isol<strong>at</strong>ion valves (MSIV's). The initial phase<br />

of the <strong>St<strong>at</strong>ion</strong> Blackout extends from the time of reactor vessel isol<strong>at</strong>ion<br />

until the time <strong>at</strong> which the 250 volt DC system fails due to b<strong>at</strong>tery ex<br />

haustion. During this period, the oper<strong>at</strong>or would maintain reactor vessel<br />

w<strong>at</strong>er level in the normal oper<strong>at</strong>ing range by intermittent oper<strong>at</strong>ion of the<br />

RCIC system, with the HPCI system available as a backup. Each of these<br />

w<strong>at</strong>er-injection systems is normally aligned to pump w<strong>at</strong>er from the conden<br />

s<strong>at</strong>e storage tank into the reactor vessel via a feedw<strong>at</strong>er line.<br />

*It should be noted th<strong>at</strong> the events subsequent to failure of the 250<br />

volt DC system are rel<strong>at</strong>ively insensitive to the time <strong>at</strong> which this fail<br />

ure occurs. This is because the only parameter affecting the subsequent<br />

events which is dependent upon the time of failure is the slowly-varying<br />

decay he<strong>at</strong>.<br />

As part of a requested review of the results of this study, TVA per<br />

formed a b<strong>at</strong>tery capacity calcul<strong>at</strong>ion which shows th<strong>at</strong> the unit b<strong>at</strong>teries<br />

can be expected to last as long as seven hours under <strong>blackout</strong> conditions.<br />

In Appendix G, the effect of a b<strong>at</strong>tery lifetime of seven vice four hours<br />

upon study results is shown to be limited to timing.


vx<br />

The oper<strong>at</strong>or would also take action during the initial phase to con<br />

trol reactor vessel pressure by means of remote-manual oper<strong>at</strong>ion of the<br />

primary relief valves; sufficient stored control air would remain avail<br />

able to permit the desired remote-manual valve oper<strong>at</strong>ions for well over<br />

four hours. The Control Room instrument<strong>at</strong>ion necessary to monitor reactor<br />

vessel level and pressure and for oper<strong>at</strong>ion of the RCIC and HPCI systems<br />

would also remain available during this period.<br />

There is no Emergency Oper<strong>at</strong>ing Instruction for a <strong>St<strong>at</strong>ion</strong> Blackout <strong>at</strong><br />

<strong>Browns</strong> <strong>Ferry</strong>. However, the existing written procedure for oper<strong>at</strong>or action<br />

following reactor isol<strong>at</strong>ion behind closed MSIV's provides for the reactor<br />

vessel level control and pressure control described above. The primary<br />

relief valves would actu<strong>at</strong>e autom<strong>at</strong>ically to prevent vessel over pressuriz<strong>at</strong>ion<br />

if the oper<strong>at</strong>or did not act; the purpose of pressure control by<br />

remote-manual oper<strong>at</strong>ion is to reduce the total number of valve actu<strong>at</strong>ions<br />

by means of an increased pressure reduction per valve oper<strong>at</strong>ion and to<br />

permit the steam entering the pressure suppression pool to be passed by<br />

different relief valves in succession. This provides a more even spacial<br />

distribution of the transferred energy around the circumference of the<br />

pressure suppression pool.<br />

The initial phase of a <strong>St<strong>at</strong>ion</strong> Blackout has been analyzed in this<br />

study by use of a rel<strong>at</strong>ively simple computer code developed specifically<br />

for this purpose. This coding uses the Continuous Systems Modeling Pro<br />

gram (CSMP) language of the IBM computer system to simul<strong>at</strong>e the response<br />

of <strong>Browns</strong> <strong>Ferry</strong> <strong>Unit</strong> 1 to postul<strong>at</strong>ed oper<strong>at</strong>or actions. The analysis<br />

shows, because of the loss of the drywell coolers, th<strong>at</strong> it is necessary<br />

for the oper<strong>at</strong>or to begin to reduce the reactor vessel pressure to about<br />

0.791 MPa (100 psig) within one hour of the inception of the <strong>St<strong>at</strong>ion</strong><br />

Blackout. This depressuriz<strong>at</strong>ion reduces the temper<strong>at</strong>ure of the s<strong>at</strong>ur<strong>at</strong>ed<br />

fluid within the reactor vessel and thereby decreases the driving poten<br />

tial for he<strong>at</strong> transfer into the drywell, yet keeps the vessel pressure<br />

high enough for continued oper<strong>at</strong>ion of the RCIC system steam turbine.<br />

With this action, the drywell average ambient temper<strong>at</strong>ure can be kept be<br />

low 149°C (300°F) throughout the initial phase of a <strong>St<strong>at</strong>ion</strong> Blackout;<br />

tests have shown th<strong>at</strong> both the drywell structure and the equipment loc<strong>at</strong>ed<br />

therein can be expected to survive temper<strong>at</strong>ures of this magnitude.<br />

The analysis also reveals an important second reason for oper<strong>at</strong>or ac<br />

tion to depressurize the reactor vesel early in the initial phase of a<br />

<strong>St<strong>at</strong>ion</strong> Blackout. This depressuriz<strong>at</strong>ion removes a gre<strong>at</strong> deal of steam and<br />

the associ<strong>at</strong>ed stored energy from the reactor vessel <strong>at</strong> a time when the<br />

RCIC system is available to inject replacement w<strong>at</strong>er from the condens<strong>at</strong>e<br />

storage tank and thereby maintain the reactor vessel level. Subsequently,<br />

when w<strong>at</strong>er injection capability is lost for any reason, remote-manual re<br />

lief valve oper<strong>at</strong>ion would be termin<strong>at</strong>ed and there would be no further<br />

w<strong>at</strong>er loss from the reactor vessel until the pressure has been restored to<br />

the setpoint [7.72 MPa (1105 psig)] for autom<strong>at</strong>ic relief valve actu<strong>at</strong>ion.<br />

Because of the large amount of w<strong>at</strong>er to be rehe<strong>at</strong>ed and the reduced level<br />

of decay he<strong>at</strong>, this repressuriz<strong>at</strong>ion would require a significant period of<br />

time. In addition, the subsequent boiloff* would begin from a very high<br />

*The term "boiloff" is used to signify a monotonic decrease in re<br />

actor vessel w<strong>at</strong>er level due to intermittent loss of fluid through the<br />

primary relief valves without replacement.


vxx<br />

vessel level because of the increase in the specific volume of the w<strong>at</strong>er<br />

as it is he<strong>at</strong>ed and repressurized. Thus, an early depressuriz<strong>at</strong>ion will<br />

provide a significant period of valuable additional time for prepar<strong>at</strong>ive<br />

and possible corrective action before core uncovery after injection capa<br />

bility is lost.<br />

<strong>One</strong> design fe<strong>at</strong>ure of the HPCI system logic was brought into question<br />

by the analysis. The existing logic provides for the suction of the HPCI<br />

system pump to be autom<strong>at</strong>ically shifted from the condens<strong>at</strong>e storage tank<br />

to the pressure suppression pool upon high sensed suppression pool level.<br />

During a <strong>St<strong>at</strong>ion</strong> Blackout, this would occur after about three hours when<br />

the average suppression pool temper<strong>at</strong>ure has reached about 71°C (160°F).*<br />

Since the lubric<strong>at</strong>ing oil for the HPCI turbine Is cooled by the w<strong>at</strong>er be<br />

ing pumped, this would thre<strong>at</strong>en the viability of the HPCI system.<br />

The r<strong>at</strong>ionale for the autom<strong>at</strong>ic shift in HPCI pump suction on high<br />

sensed pool level is not explained in the liter<strong>at</strong>ure available to this<br />

study. There is no corresponding provision for a shift of the RCIC pump<br />

suction on high pool level, and a separ<strong>at</strong>e logic is provided for an auto<br />

m<strong>at</strong>ic shift of the HPCI pump suction should the supply of w<strong>at</strong>er from the<br />

condens<strong>at</strong>e storage tank become exhausted. For these reasons, it is recom<br />

mended th<strong>at</strong> the desirabilty of the autom<strong>at</strong>ic shift of HPCI pump suction on<br />

high sensed suppression pool level be reexamined.<br />

The plant response during the initial phase of a <strong>St<strong>at</strong>ion</strong> Blackout can<br />

be summarized as an open cycle. W<strong>at</strong>er would be pumped from the condens<strong>at</strong>e<br />

storage tank into the reactor vessel by the RCIC system as necessary to<br />

maintain level in the normal oper<strong>at</strong>ing range. The injected w<strong>at</strong>er would be<br />

he<strong>at</strong>ed by the reactor decay he<strong>at</strong> and subsequently passed to the pressure<br />

suppression pool as steam when the oper<strong>at</strong>or remote-manually opens the re<br />

lief valves as necessary to maintain the desired reactor vessel pressure.<br />

Stable reactor vessel level and pressure control is maintained during this<br />

period, but the condens<strong>at</strong>e storage tank is being depleted and both the<br />

level and temper<strong>at</strong>ure of the pressure suppression pool are increasing.<br />

However, without question, the limiting factor for continued removal of<br />

decay he<strong>at</strong> and the prevention of core uncovery is the available of DC<br />

power.<br />

The sequence of events used for the fission product release analysis<br />

for a prolonged <strong>St<strong>at</strong>ion</strong> Blackout was established by this study under the<br />

assumption th<strong>at</strong> no independent secondary equipment failures would occur.<br />

Dependent secondary failures, i.e., those caused by the conditions of a<br />

<strong>St<strong>at</strong>ion</strong> Blackout, were included in the development of the sequence, but<br />

with the assumption th<strong>at</strong> the oper<strong>at</strong>or does take action to depressurize the<br />

reactor vessel and thereby prevent drywell temper<strong>at</strong>ures of the magnitude<br />

th<strong>at</strong> could severely damage the equipment therein. The point is important<br />

because the oper<strong>at</strong>or would probably be reluctant to depressurize; current<br />

training stresses concern for high suppression pool temper<strong>at</strong>ures (based on<br />

LOCA consider<strong>at</strong>ionst) and the oper<strong>at</strong>or would recognize th<strong>at</strong> suppression<br />

pool cooling is not available during a <strong>St<strong>at</strong>ion</strong> Blackout.<br />

*It is expected th<strong>at</strong> any accident sequence resulting in high sup<br />

pression pool level would also produce an associ<strong>at</strong>ed high pool tempera<br />

ture.<br />

Blackout.<br />

tThere is currently no written procedure for the case of <strong>St<strong>at</strong>ion</strong>


viii<br />

This study has established th<strong>at</strong> the possible dependent secondary<br />

failure of a stuck-open relief valve would not reduce the reactor vessel<br />

pressure below th<strong>at</strong> necessary for oper<strong>at</strong>ion of the RCIC steam turbine dur<br />

ing the period in which DC power would remain available. However, during<br />

this period all of the energy transferred to the pressure suppression pool<br />

would pass through the tailpipe of this one relief valve and would be con<br />

centr<strong>at</strong>ed near its terminus. This would reduce the steam-quenching capac<br />

ity of the pool to th<strong>at</strong> provided by the effective volume of w<strong>at</strong>er sur<br />

rounding this one tailpipe. Local boiling in this area would pass most of<br />

the relief valve discharge directly to the pool surface and could result<br />

in early containment failure by overpressuriz<strong>at</strong>ion.<br />

The question of suppression pool effectiveness in quenching relief<br />

valve steam discharge in cases which involve highly localized energy<br />

transfer from the reactor vessel is important to a complete analysis of<br />

any severe accident in which the pressure suppression pool is used as a<br />

he<strong>at</strong> sink. This question has not been resolved, <strong>at</strong> least in the non-pro<br />

prietary liter<strong>at</strong>ure, and has been recently adopted as a dissert<strong>at</strong>ion topic<br />

for a University of Tennessee doctorial candid<strong>at</strong>e working with the Severe<br />

Accident Sequence Analysis (SASA) project. Pending the results of this<br />

work, pool-averaged temper<strong>at</strong>ures are used in this study.<br />

The MARCH code has been used in support of the analysis of the second<br />

phase of a <strong>St<strong>at</strong>ion</strong> Blackout, i.e., the period after the 250 volt DC system<br />

fails because of b<strong>at</strong>tery exhaustion. The existing versions of MARCH are<br />

too crude to permit modeling plant response to a series of postul<strong>at</strong>ed op<br />

er<strong>at</strong>or actions such as those previously discussed for the initial phase of<br />

a <strong>St<strong>at</strong>ion</strong> Blackout. Therefore, in the event sequence modeled by the MARCH<br />

code, the reactor vessel remains pressurized with pressure control by<br />

autom<strong>at</strong>ic relief valve actu<strong>at</strong>ion and level control by autom<strong>at</strong>ic oper<strong>at</strong>ion<br />

of the HPCI system. As before, averaged suppression pool temper<strong>at</strong>ures are<br />

used, and it is assumed th<strong>at</strong> injection capability is lost after four<br />

hours, when the unit b<strong>at</strong>tery is exhausted.<br />

In the MARCH event sequence, the reactor vessel w<strong>at</strong>er level is in the<br />

normal oper<strong>at</strong>ing range and the vessel is pressurized <strong>at</strong> the four-hour<br />

point when boiloff begins due to loss of injection capability.* The MARCH<br />

results predict core uncovery 62 minutes after the beginning of boiloff,<br />

followed by the inception of core melting 53 minutes l<strong>at</strong>er. The model<br />

provides th<strong>at</strong> the melted core slumps down to the bottom of the reactor<br />

vessel and this results in a predicted failure of the reactor vessel bot<br />

tom head <strong>at</strong> approxim<strong>at</strong>ely three hours after injection capability is lost.<br />

The subsequent breaching of the primary containment because of failure of<br />

the electrical penetr<strong>at</strong>ion modules by overtemper<strong>at</strong>ure is predicted <strong>at</strong><br />

about four and one-half hours after the inception of boiloff. The detailed<br />

*These conditions <strong>at</strong> the beginning of boiloff are similar to those<br />

predicted by the previously discussed sequence which models the plant re<br />

sponse to oper<strong>at</strong>or actions during the initial phase because in th<strong>at</strong> sequ<br />

ence, the reactor vessel would have to repressurize before boiloff could<br />

begin. The difference is in the timing. If injection capability were<br />

lost <strong>at</strong> the four-hour point, the boiloff would begin immedi<strong>at</strong>ely if the<br />

vessel is pressurized, but would be delayed if the vessel were depressur-<br />

ized.


ix<br />

thermo-hydraulic parameters needed for the analysis of fission product re<br />

lease from the fuel rods and the subsequent transport of fission products<br />

to the environment were taken from the MARCH results for this sequence.<br />

An estim<strong>at</strong>e of the magnitude and timing of the release of the noble<br />

gas, cesium, and iodine-based fission products to the environment is pro<br />

vided in Volume 2 of this study. Under the conditions of a <strong>St<strong>at</strong>ion</strong> Black<br />

out, fuel rod cladding failure would occur while the reactor vessel was<br />

pressurized. The distribution of both solid and gaseous fission products<br />

within the <strong>Browns</strong> <strong>Ferry</strong> <strong>Unit</strong> 1 core <strong>at</strong> the present time has been obtained<br />

through use of the 0RIGEN2 code; the results show th<strong>at</strong> internal gas pres<br />

sure under <strong>St<strong>at</strong>ion</strong> Blackout conditions could not increase to the magni<br />

tude necessary to cause cladding failure by rod burst. Accordingly, the<br />

cladding has been assumed to fail <strong>at</strong> a temper<strong>at</strong>ure of 1300°C.


STATION BLACKOUT AT BROWNS FERRY UNIT ONE -<br />

ACCIDENT SEQUENCE ANALYSIS<br />

D. H. Cook S. R. Greene<br />

R. M. Harrington S. A. Hodge<br />

D. D. Yue<br />

ABSTRACT<br />

This study describes the predicted response of <strong>Unit</strong> 1 <strong>at</strong><br />

the <strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant to <strong>St<strong>at</strong>ion</strong> Blackout, defined as<br />

a loss of offsite power combined with failure of all onsite<br />

emergency diesel-gener<strong>at</strong>ors to start and load. Every effort<br />

has been made to employ the most realistic assumptions during<br />

the process of defining the sequence of events for this hypo<br />

thetical accident. DC power is assumed to remain available<br />

from the unit b<strong>at</strong>teries during the initial phase and the oper<br />

<strong>at</strong>or actions and corresponding events during this period are<br />

described using results provided by an analysis code developed<br />

specifically for this purpose. The <strong>St<strong>at</strong>ion</strong> Blackout is as<br />

sumed to persist beyond the point of b<strong>at</strong>tery exhaustion and<br />

the events during this second phase of the accident in which<br />

DC power would be unavailable were determined through use of<br />

the MARCH code. Without DC power, cooling w<strong>at</strong>er could no<br />

longer be injected into the reactor vessel and the events of<br />

the second phase include core meltdown and subsequent contain<br />

ment failure. An estim<strong>at</strong>e of the magnitude and timing of the<br />

concomitant release of the noble gas, cesium, and iodine-based<br />

fission products to the environment is provided in Volume 2 of<br />

this report.<br />

1. INTRODUCTION<br />

The Tennessee Valley Authority (TVA) oper<strong>at</strong>es three nearly identical<br />

reactor units <strong>at</strong> the <strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant loc<strong>at</strong>ed on the Tennessee<br />

River approxim<strong>at</strong>ely midway between Athens and Dec<strong>at</strong>ur, Alabama. The Gen<br />

eral Electric Company and the Tennessee Valley Authority jointly partici<br />

p<strong>at</strong>ed in the design; TVA performed the construction of each unit. <strong>Unit</strong> 1<br />

began commercial oper<strong>at</strong>ion in August 1974, <strong>Unit</strong> 2 in March 1975, and <strong>Unit</strong><br />

3 in March 1977.<br />

Each unit comprises a boiling w<strong>at</strong>er reactor steam supply system fur<br />

nished by the General Electric Company. Each reactor is designed for a<br />

power output of 3440 MWt, for a corresponding gener<strong>at</strong>ed 1152 MWe; the<br />

maximum power authorized by the oper<strong>at</strong>ing license is 3293 MWt, or 1067<br />

net MWe. The primary containments are of the Mark I pressure suppres<br />

sion pool type; the drywells are light bulb shape and both torus and drywell<br />

are of steel vessel construction. The three units share a reactor


uilding-secondary containment of the controlled leakage, elev<strong>at</strong>ed release<br />

type.<br />

Safety systems for each unit include a Reactor Protection System, a<br />

Standby Liquid Control System for Poison injection, and the Emergency Core<br />

Cooling Systems: High-Pressure Coolant Injection (HPCI), Autom<strong>at</strong>ic De<br />

pressuriz<strong>at</strong>ion (ADS), Residual He<strong>at</strong> Removal (RHR), and Core Spray (CS).<br />

The Reactor Core Isol<strong>at</strong>ion Cooling (RCIC) system is also provided for the<br />

removal of post-shutdown reactor decay he<strong>at</strong> as a consequence limiting sys<br />

tem.<br />

Several components and systems are shared by the three <strong>Browns</strong> <strong>Ferry</strong><br />

units. A complete description of these shared fe<strong>at</strong>ures is given in the<br />

Final Safety Analysis Report;! the shared Safeguards systems and their<br />

supporting auxiliary equipment are listed in Table 1.1. With the assumption<br />

th<strong>at</strong> the interfaces with the other two units do not interfere with the op<br />

er<strong>at</strong>ion of any shared system as applied to the needs of the unit under<br />

study, the existence of the shared systems does not significantly compli<br />

c<strong>at</strong>e the analysis of an accident sequence <strong>at</strong> any one unit.<br />

The results of a study of the consequences <strong>at</strong> <strong>Unit</strong> 1 of a <strong>St<strong>at</strong>ion</strong><br />

Blackout (loss of all AC power) <strong>at</strong> the <strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant are pre<br />

sented in this report. Section 2 provides a description of the event and<br />

discussion of the motiv<strong>at</strong>ion for consider<strong>at</strong>ion of this event. The normal<br />

recovery from a <strong>St<strong>at</strong>ion</strong> Blackout is described in Sect. 3, the computer<br />

model used for the normal recovery analysis is discussed in Sect. 4, and<br />

the instrument<strong>at</strong>ion available to the oper<strong>at</strong>or is described in Sect. 5.<br />

The actions which the oper<strong>at</strong>or should take to prolong the period of decay<br />

he<strong>at</strong> removal are discussed in Sect. 6, and computer predictions of the be<br />

havior of the thermal-hydraulics parameters during the period when a nor<br />

mal recovery is possible are displayed in Sect. 7.<br />

A Severe Accident by definition proceeds through core uncovery, core<br />

meltdown, and the release of fission products to the surrounding <strong>at</strong>mo<br />

sphere. The equipment failures which have the potential to extend a Sta<br />

tion Blackout into a Severe Accident are discussed in Sect. 8, and the<br />

Severe Accident sequences which would follow during a prolonged <strong>St<strong>at</strong>ion</strong><br />

Blackout are presented in Sect. 9. The consequences of each of these se<br />

quences after the core is uncovered differ only in the timing of events;<br />

the actions which might be taken by the oper<strong>at</strong>or to mitig<strong>at</strong>e the conse<br />

quences of the Severe Accident are discussed in Sect. 10. The instrumenta<br />

tion available following the loss of injection capability during the pe<br />

riod in which severe core damage occurs is described in Sect. 11.<br />

The conclusions of this <strong>St<strong>at</strong>ion</strong> Blackout analysis and the implica<br />

tions of the results are discussed in Sect. 12. This includes considera<br />

tion of the available instrument<strong>at</strong>ion, the level of oper<strong>at</strong>or training, the<br />

existing emergency procedures, and the overall system design.<br />

Appendix A contains a listing of the computer program developed to<br />

model oper<strong>at</strong>or actions and the associ<strong>at</strong>ed system response during the per<br />

iod when normal recovery is possible. The MARCH code was used for analy<br />

ses of the severe accident sequences; the modific<strong>at</strong>ions made to this code<br />

are described in Appendix B and an input listing is provided in Appendix<br />

C.<br />

The pressure suppression pool is the key to the safe removal of decay<br />

he<strong>at</strong> from an isol<strong>at</strong>ed Boiling W<strong>at</strong>er Reactor, but no s<strong>at</strong>isfactory method


Table 1.1 Shared safeguards systems and their auxiliary support systems<br />

System Quantity Function<br />

Standby AC Power Supply System Four diesel gener<strong>at</strong>ors each cou<br />

pled as an altern<strong>at</strong>e source of<br />

power to four Independent shutdown<br />

boards for <strong>Unit</strong>s 1 and 2. Four<br />

additional dtesel gener<strong>at</strong>ors serve<br />

as altern<strong>at</strong>e power sources to four<br />

<strong>Unit</strong> 3 shutdown boards.<br />

250V DC Power Supply System Three b<strong>at</strong>teries, one per unit.<br />

The 250V DC power supplies for the<br />

DC-powered redundant services of<br />

each unit are normally derived<br />

from separ<strong>at</strong>e b<strong>at</strong>teries. A fourth<br />

b<strong>at</strong>tery is provided for common<br />

st<strong>at</strong>ion service.<br />

Control Rod Drive Hydraulic<br />

System<br />

Reactor Building Closed Cooling<br />

W<strong>at</strong>er System<br />

Gaseous Radwaste System<br />

A spare control rod drive hydrau<br />

lic pump Is shared between <strong>Unit</strong>s 1<br />

and 2.<br />

Two pumps and two he<strong>at</strong> exchangers<br />

per unit with one common spare<br />

pump and he<strong>at</strong> exchanger for all<br />

three units<br />

System is unitized except for a<br />

common discharge plenum, ducting,<br />

and the 600-ft stack<br />

<strong>St<strong>at</strong>ion</strong> Drainage System<br />

<strong>One</strong> common drain header Into which<br />

each of the three unit reactor<br />

Standby Coolant Supply System<br />

building floor drainage pumps dis<br />

charge<br />

Completely shared system<br />

RHR Service W<strong>at</strong>er System<br />

Emergency Equipment Cooling<br />

W<strong>at</strong>er System<br />

Standby Gas Tre<strong>at</strong>ment System<br />

Completely shared system<br />

Completely shared system<br />

Completely shared system used only<br />

when an abnormal activity release<br />

occurs<br />

Supply emergency power during loss of<br />

offsite power conditions<br />

Supply DC power when b<strong>at</strong>tery chargers<br />

are not functioning<br />

Provide driving force for normal rod<br />

movement<br />

Provide cooling w<strong>at</strong>er to reactor<br />

auxiliary equipment<br />

Obtain elev<strong>at</strong>ed discharge from the<br />

Standby Gas Tre<strong>at</strong>ment System<br />

Pass reactor building drainage to re<br />

ceiver tanks<br />

Provide means for core cooling fol<br />

lowing a complete failure of the Re<br />

sidual He<strong>at</strong> Removal (RHR) cooling<br />

complex<br />

Provide an assured he<strong>at</strong> sink for<br />

long-term removal of decay he<strong>at</strong> when<br />

the main condensers are not available<br />

for any reason<br />

Distribute raw cooling w<strong>at</strong>er to equip<br />

ment and auxiliary systems which are<br />

required for shutdown of all three<br />

units<br />

Filter and exhaust the air from a<br />

unit zone and the refueling zone, the<br />

refueling zone only, or the entire<br />

secondary containment<br />

for the analysis of the response of the torus and pool under severe acci<br />

dent conditions currently exists, <strong>at</strong> least in the non-proprietary litera<br />

ture. The n<strong>at</strong>ure of the problem and the measures being taken <strong>at</strong> ORNL to<br />

improve the analysis capability are discussed in Appendix D.<br />

In the event of a <strong>St<strong>at</strong>ion</strong> Blackout, the reactor vessel will be iso<br />

l<strong>at</strong>ed behind the closed Main Steam Isol<strong>at</strong>ion Valves (MSIVs) with pressure<br />

maintained by periodic blowdowns through the relief valves to the pressure<br />

suppression pool. Makeup w<strong>at</strong>er to maintain the reactor vessel level must<br />

be injected either by the High Pressure Coolant Injection (HPCI) or the<br />

Reactor Core Isol<strong>at</strong>ion Cooling (RCIC) systems. The oper<strong>at</strong>ion of these im<br />

portant systems is discussed in Appendices E and F.


As a portion of their review of the draft of this report, the Elec<br />

trical Engineering Branch <strong>at</strong> TVA performed a b<strong>at</strong>tery capacity calcul<strong>at</strong>ion<br />

which shows th<strong>at</strong> the unit b<strong>at</strong>teries <strong>at</strong> the <strong>Browns</strong> <strong>Ferry</strong> plant can be ex<br />

pected to provide power for as long as seven hours under st<strong>at</strong>ion <strong>blackout</strong><br />

conditions. Since a b<strong>at</strong>tery life of four hours was assumed for the calcu<br />

l<strong>at</strong>ions of this work, a new Appendix G has been added in which all of the<br />

possible failure modes other than b<strong>at</strong>tery exhaustion th<strong>at</strong> were considered<br />

in Sections 3, 7, and 8 are re-examined for applicability to the period<br />

between four and seven hours after the inception of a <strong>St<strong>at</strong>ion</strong> Blackout.<br />

The magnitude and timing of the release of the fission product noble<br />

gases and various forms of iodine to the <strong>at</strong>mosphere are discussed in<br />

Volume 2. This includes the development of release r<strong>at</strong>e coefficients for<br />

the escape of these fission products from fuel as a function of tempera<br />

ture, specific<strong>at</strong>ion of the various chemical forms, determin<strong>at</strong>ion of the<br />

optimum str<strong>at</strong>egy for the modeling of precursor/daughter exchange, and the<br />

study of the particular auxiliary systems involved to determine the appli<br />

cable fission product release p<strong>at</strong>hways. These results are incorpor<strong>at</strong>ed<br />

into a vehicle for the calcul<strong>at</strong>ion of the transport of the individual fis<br />

sion products from the reactor core, through the primary and secondary<br />

containments to the <strong>at</strong>mosphere, control volume by control volume.<br />

The primary sources of inform<strong>at</strong>ion used in the prepar<strong>at</strong>ion of this<br />

report were the <strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant (BFNP) Final Safety Analysis<br />

Report (FSAR), the Nuclear Regul<strong>at</strong>ory Commission BWR Systems Manual, the<br />

BFNP Hot License Training Program Oper<strong>at</strong>or Training Manuals, the BFNP <strong>Unit</strong><br />

1 Technical Specific<strong>at</strong>ions, the BFNP Emergency Oper<strong>at</strong>ing Instructions, and<br />

various other specific drawings, documents, and manuals obtained from the<br />

Tennessee Valley Authority*. Additional inform<strong>at</strong>ion was g<strong>at</strong>hered by means<br />

of one visit to the BFNP and several visits to the TVA Power Oper<strong>at</strong>ions<br />

Training Center <strong>at</strong> Soddy-Daisy, Tennessee. The excellent cooper<strong>at</strong>ion and<br />

assistance of Tennessee Valley Authority personnel in the g<strong>at</strong>hering of in<br />

form<strong>at</strong>ion necessary to this study are gr<strong>at</strong>efully acknowledged.<br />

*The setpoints for autom<strong>at</strong>ic action used in this study are the<br />

safety limits as given in the FSAR. In many cases these differ slightly<br />

from the actual setpoints used for instrument adjustment <strong>at</strong> the BFNP be<br />

cause the instrument adjustment setpoints are established so as to provide<br />

margin for known instrument error.


2. DESCRIPTION OF STATION BLACKOUT<br />

A <strong>St<strong>at</strong>ion</strong> Blackout is defined as the complete loss of AC electrical<br />

power to the essential and nonessential switchgear buses in a nuclear<br />

power plant.2 At the <strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant, a <strong>St<strong>at</strong>ion</strong> Blackout<br />

would be caused by a loss of offsite power concurrent with the tripping of<br />

the turbine gener<strong>at</strong>ors and a subsequent failure of all onsite diesel gen<br />

er<strong>at</strong>ors to start and load. After these events, the only remaining sources<br />

of electrical power would be the b<strong>at</strong>tery-supplied 250 volt, 48 volt, and<br />

24 volt DC electrical distribution systems; AC power would be limited to<br />

the instrument<strong>at</strong>ion and control circuits derived from the feedw<strong>at</strong>er in<br />

verter or the unit-preferred and plant-preferred motor- gener<strong>at</strong>or sets<br />

which are driven by the DC systems.<br />

The reliability of offsite power <strong>at</strong> <strong>Browns</strong> <strong>Ferry</strong> has been excellent.<br />

There are two independent and separ<strong>at</strong>ed sources of 161 KV offsite power to<br />

the plant, each from a different nearby hydroelectric st<strong>at</strong>ion. In the<br />

near future, offsite power will become even more reliable. System modifi<br />

c<strong>at</strong>ions will permit any of the three reactor units <strong>at</strong> <strong>Browns</strong> <strong>Ferry</strong>, in the<br />

event of a gener<strong>at</strong>or trip, to receive reverse power from the TVA 500 KVA<br />

grid which these units normally feed.<br />

However, should all offsite power be lost together with the tripping<br />

of the turbine gener<strong>at</strong>ors, there remain eight diesel gener<strong>at</strong>ors <strong>at</strong> <strong>Browns</strong><br />

<strong>Ferry</strong> which are designed to autom<strong>at</strong>ically start and load whenever normal<br />

AC power is lost. By design, all equipment required for the safe shutdown<br />

and cooldown of the three <strong>Browns</strong> <strong>Ferry</strong> units can be powered by six* of<br />

these diesel units, even with the assumption of a design basis accident on<br />

any one unit.3<br />

Therefore, a <strong>St<strong>at</strong>ion</strong> Blackout is an extremely unlikely event. Never<br />

theless, the consequences of a <strong>St<strong>at</strong>ion</strong> Blackout should be studied. It is<br />

important to recall th<strong>at</strong> one <strong>Browns</strong> <strong>Ferry</strong> unit suffered a loss of electri<br />

cal power to all of its emergency core-cooling systems during the March<br />

22, 1975 electrical cable tray fire.4* To determine if <strong>Browns</strong> <strong>Ferry</strong> and<br />

similar nuclear plants can recover from the loss of other combin<strong>at</strong>ions of<br />

AC powered machinery, it will prove most efficient to first consider the<br />

plant response to a loss of all AC powered equipment, as in a <strong>St<strong>at</strong>ion</strong><br />

Blackout.<br />

This study considers the effect on <strong>Unit</strong> 1 <strong>at</strong> <strong>Browns</strong> <strong>Ferry</strong> of a Sta<br />

tion Blackout which begins with a loss of offsite power, associ<strong>at</strong>ed tur<br />

bine gener<strong>at</strong>or trip, and failure of all diesels to start. Barring further<br />

equipment failures, the b<strong>at</strong>tery powered systems have the capability to<br />

supply the power necessary to oper<strong>at</strong>e the high-pressure w<strong>at</strong>er injection<br />

systems to maintain the reactor in a stable cooled st<strong>at</strong>e for several<br />

hours. The first seven sections of this report pertain to the methods<br />

which can be used to prolong this period of w<strong>at</strong>er injection capability and<br />

decay he<strong>at</strong> removal for as long as possible.<br />

*With oper<strong>at</strong>or action, any six diesel gener<strong>at</strong>ors would be s<strong>at</strong>isfac<br />

tory. However, for adequ<strong>at</strong>e short term shutdown and cooldown response<br />

without oper<strong>at</strong>or action, the six operable diesel gener<strong>at</strong>ors would have to<br />

comprise three of the four provided for the <strong>Unit</strong> 1/<strong>Unit</strong> 2 complex and<br />

three of the four provided for <strong>Unit</strong> 3.


However, injection capability would ultim<strong>at</strong>ely be lost during an ex<br />

tended <strong>St<strong>at</strong>ion</strong> Blackout, either through exhaustion of the installed b<strong>at</strong><br />

tery capacity or earlier, through secondary failures of vital equipment.<br />

Once injection capability is lost, the <strong>St<strong>at</strong>ion</strong> Blackout would become a<br />

Severe Accident with inevitable core uncovery. The remainder of this re<br />

port proceeds from an assumption th<strong>at</strong> the Blackout does develop into a<br />

Severe Accident, involving core meltdown and subsequent fission product<br />

release to the <strong>at</strong>mosphere.


cfl fi s rH CU > CJ >. 1-1 XI CU cu MH CO ^ cu CM CU cu u CU cu CD u Sh •H •H rH 3 •H cfl CD iH cfl > > CO O<br />

3 0 > M CU CJ CO CO O a CU > CO 3 > •H B CD 4-1 cu a. > 4-1 4-1 CU X X CU CD Ph a<br />

H o cu O cu iH u cu )-l > •H •H S-l M CO CU a* cu rH r-i o CU CO 4-1 a. cfl cfl cfl > u 4-1 Sh Sh 0) B cfl CU CU G Qh •H<br />

O w XI Sh XI O o XI cu o s 4H M XI CO cu Sh cu •fi C XI CO CU Sh U CU<br />

§ 3 U CM axi CO i-H XI CD rH 4-1 4-1 B 4-> 4-1<br />

H CO 60 CO •t CO B G B 4-1 4-1 CO 3 rH 4-1 4-1 B cfl XI o u 3 CO XI 60 cu c CJ . CJ CJ < MH a CD 3 CD c M cu CO m 4-1 •H 4-1 cu H B 60 0 ^ cfl u fi B 3 C cu CU rH >M iH<br />

cj cO o /^ o CJ o CO •r-l O 0 4-1 M 3 4H •H cfl XI o Sh X3 Sh X CU B cfl > XI CU CU 4-1 4H 3 cfl cfl C B •H • 4-1 % CU N--' •H B CO CU CU CU B ^h 3 >, CU MH #H CU X B 4-1 . XI o<br />

J<br />

S-l o a 4-1 U i-H cfl 4-1<br />

s<br />

XI CM 4-1 w u 4J CO O •H B Sh CO XI s 3 CU C X) (U 4-1 C CO Sh ^ CD CU CD CU CN a -H H 4-1<br />

XI c 4-1 4-1 •H CD CU -) CJ u CU CO B CO > fa e i-H CO o •H 4-1 O Sh CU 4-1 C O CU 4-1 O XI B 4-> • B CU 3 c >-> 4-1 rH O 4-1 ^-> • CU<br />

o C 3 cu o X> a M 4-1 XI •H CO cu cfl i? X) m cfl rH CJ 4-1 CD •H B a. rl cfl 3 CU fi rH CU 4-1 o CO •H CD Cfl 4-1 CO CU CD<br />

2; •H Pi •H CU •H cj B 4-1 CU CU B o 4-1 CJ B CO 6 cfl CJ 4-1 4-1 X CU O X) cfl a, -h X CO u •H B u •H<br />

H<br />

4J B pd O o o TJ r-i •H CO 01 4J o •H c rH •H 4-i 4J CU O rH B 3 4-1 CU 4-1 CU •H u-| CJ<br />

. o •H x; cu CU 4J XI CU B O CO 4-1 CU u o •H r-H <br />

4-) m >~> r-i 3 V4 CJ XI B o Cfl O 4-1 •H c CU 4-1 O c CU B c >. 4J B B Sh CO XI CJ CU u CJ rH 4J CU<br />

u o X CO CO B rH CU CO Cfl CU 4-1 o rH 3 2 3 60 Sh 4-1 O •H Sh o 3 CD rH 60 CO CU •H cfl 4-1 4-1 • cu CJ •H rH<br />

CU 4-> •H 60 Cfl cfl cu a. •H CU 3 . cfl O . #. S B 3 O 4-1 60 a. 4-1 •iH CU Sh •H Sh CJ CD rH CU 4H CU 4-1 UH B<br />

•I-) XI T3 c a a > T3 r-t B O 4J CO CU<br />

•H •H 13 t-H 3 rH B rH rH XI CU >S CO 3 4-J 4J B o 4-1 o cu X3 a, CU B CO o •H CU cu £2 X H c CD cfl a. rH o rH rH 4-1<br />

)-l •H o O O O cu 4-1 >-l r^ XI O e a O B • «\ CU •H s O CU 4-1 CU CU<br />

O (U > o ^ u Cfl CU CU 60 J4 Xl cfl cfl CJ XI c rH a Sh CO CU O 4J CO •rl Sh CJ CD CO c o 4-1 > 3 > 3 g<br />

4J a O cj CJ CJ X 4-1 CJ a o XI 60 rH O B > •H 4H tH rH rH rH<br />

>v 4-1 a. CU rH CU cfl •H rH u T-f CO<br />

s cfl 4-1 cu cr 3 H C 3 4-1 cfl C XI o •H >-, 3 M CD CO CU CD<br />

4-1 c H" PQ CO M 3 h Xt •H X) XI PQ M CU o • cO >, CO cu O u o •H rH a •H B Sh 4-1 rH Q. co CD U B u •H 60 > CD<br />

•H cfl CO 3 cu CU CU 3 •H 4-i e 4-1 CU B XI ro 4J XI rH CO u 3 o 4-1 60 o CO cO c V4 cfl 4-1 CJ B 22 CU CU O CD XI B -H CO<br />

iH o •H CO C XI CO 4-1 u-i T3 CO rH Cfl B 3 •H 4-1 u cu CO CU CU 4-1 • CU o 4-1 cu CD CJ rH u X a c u •H 3 rH O •r-l CD CU O, a) 4-1 cfl 4-1 CJ ><br />

43 XI a. 3 CJ 3 Cfl Cfl<br />

cfl •H u H 4J MH CJ i-H a, 4-1 CO 4-1 CD X! CO •H CU •H u CO > cu o 4H XI c > cu Cfl a> U •H U •H 4-1 3 CD . U CU<br />

c u CM cfl o cu rH o 4-1 XI B B Cfl Xl o CU cr o CU O CO CO O 4-1<br />

s<br />

w 4-1 o >-. CO CD CO XI PQ 4-1 4-1 O XI cfl CU 3 O CO XI CO XI XI CJ M o Cfl X1 B x; CU s CO C •H CU CO CU >s 4J CO a CJ rH rH u /-N •H u a M CJ 4J CO 4-1 4J • •* CU Jrf 4-1 cu 4-1 CO Sh a o 4J CU CU ^-^ 4-1 Sh r^<br />

o •H 4-1 u S-i CO M 4J a G XI o CO O CU CU cu Sh CJ CJ CU u S O o rl CO Sh 60 XJ a '-n 3 .<br />

C iH B u cfl u CO •H B >. CO B CU CO Cfl . B 4-1 * Cfl X) o XI CO Oh X CO •H rH 4-1 •H o s-^ w 4J .<br />

cfl u O o o CO a •H •H Cfl 3 CU CO cu rH •H B 4J cfl 4-1 o X U rH •H CU a CU o fi<br />

rH 3 c ~, 4-1 B<br />

CO -*i •rH o a •H<br />

4-1 w CXXI •rH M cu rH B T-{<br />

e<br />

3 XI O CJ CJ o CU B 3 XI 3 CU CO cfl •rl rH B o /—N v£> in q CN<br />

•H o 4J . •H cu 3 Cfl 4-1 B CO u o CU a, B 4-1 a, fi O 4-> CD CU C CJ CO c rH B f=j rH tH 4-1 . .—1 o> -H 00<br />

cfl cfl CO 4-1 •»» e o XI O CJ H S 3 CO 60 8 B O cfl 4-1 •H CO 4-1 c 4J CU O CJ o • cfl M cu O B Cfl 3 B . . CO<br />

C rH rH a cfl CO cu B 4-1 J4 • 60 cfl CD •H 1 o O CJ CU CU CD o CU Sh CJ o rH X) CU CJ CO •H cu cfl B J«S cfl •H CN CN CO s-^<br />

CO PQ o cu u B 4-1 o a B B CU U O rH CJ •H XI CO CU cfl X XI CU CU CJ CU B fa CO 4-1 XI CD Sh c cu<br />

>u CO 4-1 o cu CO B 4-1 cfl o O -H x> a r-t X) CU CD 4-1 Sh c XI X! 4-1 rH > XI cu cfl 4-1 4-> O cfl CD vX CO xi a B<br />

04 O c M CO 4-> 4-) kS •H O ^H H •H 3 CO CJ B CO cfl CO 3 >. CU 3 CU cu o 4J 4J 3 rH (U o cu > Sh CO C 4J Sh r^ •H B "H<br />

sh TJ •H Cfl •3 X Cfl CU CJ 4-1 X3 cu CU XI 4-1 CJ •H C cu CU CU 4J CD CJ A 0, B cfl CU Sh rH 4-1 •H >><br />

u CO y O XI >H }-4 o 3 •H CD O U CM XI 4J rH X! I-H B CM X) CO cfl XI cfl CJ (U CU a. 3 CO B •H Sh 4-1 4-) CU cfl<br />

o a pi o Sh CU 4-1 SQ a i-H T) iH 4-1 cu O 4-1 PQ 4-1<br />

crt Cfl CO XI 4-1 CU •H rH Sh > CO •H Sh O •H O X CO<br />

4J o 3 \s CU cu 60 60 •H XI B rH B >-. -l «. 3 2 B Sh Sh < 1 cfl •H > XI a •rH CO<br />

o 1 CO X) , am 1 X> CU rH •H CU XI<br />

0) C 1 CJ . V4 CU TJ O CO 1 4J 1 CO •rl XI iH 3 O rH Sh >^Xl CU X CU m XI 4-1<br />

CO cfl 1-1 a Cfl CO co cu i-H o CJ 3 X 3 i-H cu 4-1 CO o O * CO •H X) 1 1 4-1 CO XI o 4J<br />

CO >» o •H cu 4-1 CO rH CO CO u cu . a CO rH •H B Oh CD CU CU rH<br />

CD 4-1 ^-s U •H u •H B cfl CO 3 co rH o XI o CO ^i CO CJ u CJ cu CU CO a. rH CU C CU > • cfl 3 o cu cu 4-1 e s > rH<br />

> cfl cj a. •H cu •H o E H CO CJ 4-1 cfl Si o cfl CU rH >.4H tH 3 C CU c cfl CJ CO u Sh 4-1 60 c 4-1 •H 4-1 rH X 3


a r-. 3 CD B rl •H cfl 43 > O (U fa CO 44 a rH 3 CU Cfl -tf 3 60 cu c 3 u CO CO o 3 a Sh P 60 4H s CU CD O fi a C C<br />

0) CJ 4-1 4-1 CU X 4-1 o rH a CU cO O cu CO rH > rH P C 44 •H CO cu r->X> C XJ cu . CD P •H CU ^ XI •> tH •H P (U<br />

4-1 cu 4-1 CO 4-1 CO rl Sh cu >. 44 43 CM cu MH CO o cfl U<br />

S CO 44 M rH CU P a 44 44 44 CU o-o CU Sh > cfl m tH XI<br />

CO CM Xi c rS CD iH 3 O CO rH cu 3 U 44 U en XI CU CO C<br />

>> o iH CO >^ 4-1 Oh cu a CO > CTl CO >> Cfl o 43 fi 44 o 44 CU • S fi c c 44 P CU >> cfl CO 44 c o U xi CU CO CD 43 w CO 3 cu y<br />

CD 60 O. •U O CU •H 44 3 a CD « • 44 Cfl CU rH > •H rH U rH C P cu i-H rH 44 u Cfl p CD B •H m CO OJ cu a 44 CO CO rl<br />

rH rH fi C CJ -rl 43 CD o CO O CU u 44 CO 44 CJ rH . P rH rH 44 CO Sh a CO 60 fi fa 44 c TH Oh O rH<br />

m CD a<br />

s, XI CO rH 3 fi rH 43 cu a fa fi u CO 44 P 3 rH CO 44 4a cfl 60 Oh «t (U 44 X) 44 •H 03 cu 43 XI -H . U<br />

rH > C en o cfl •H rH 44 rH CD CU 0 O a c CU CO X Sh CO B cfl co 3 fi a >s > 44 fi CD a o rH MH XI 44 B 44 t U O<br />

PO CU c tH CD O Sh •H • •H 44 43 O •H •H c 44 CJ CD rl fi •H 3 rH o •H P u cfl 9! 2 p CU o c<br />

C O MH<br />

. rH o CO 0. • 4J 4-1 rH 3 > CN CO 43 Oh 43 CD 43 fi CU CO Oh 43 B 3 CO m fi cfl 44 44 H « y 44 CO u CO CO B CO XI<br />

Sh 4-1 XI < o fi cfl •H a co —' 44 44 O XI 44 I-H U >> p r XI CO •H U rH CO CO m Oh OJ r U CU<br />

> 43 CM . —i y P 3 43 •H 43 a 44 0.-H<br />

CO 4-1 43 tH rH rH XI 44 43 Sh rH cu o . CU c •H > C p CJ 43 3 p . 44 •H P 43 cu cu 60 P CO n-' a MH Oh 44 Oh 44 3 P P Cfl<br />

(r. 3 •H H >-. CD<br />

CO CO CD c o 44 CO 60 43 cfl X) O a P •H rH M 44 P a<br />

S<br />

r^ fi 44 U •H 3 rH 3 u cu XJ Oh a MH<br />

4-1 fi rH 4-1 > C >> Oh CO Oh CO • fi 44 •H Oh o X 44 CJ CJ 3 CD cu CO y Sh Q o<br />

g 3f0-H 60X1 > O rH CO •H S Oh<br />

O XI U O XI H X «t M O ••> CO 44 tH 44 fi > CO CO 44 o CD 44 iH •H p 13 Sh CD rH P P y a M CD P Cfl Sh CU 44 P CO<br />

in 4-1 x) CD l£> 4-1 CO •H cu O a CU CU 3 •H rt rH CM 43 X><br />

§ 44 •H P rH 44 X 3 44 44 cfl ^\ cu a 44 44 44 MH 3 cO<br />

\^r fi a. ^-^ CJ XI 44 44 u C 44 44 CO q u PQ MH 44 fi rH cfl 44 CJ H fi p Oh CO 44 XJ cu CO C U iH (U<br />

O XI 4-1 CO >Mfa •rl > CU 44 CO a Sh CO 60 44 CU P S. 3 44 fi CD CD H M Sh 44 44 CO M 60 cfl 44 fi y XI rH C<br />

O cu 4-1 cfl O tH rH CO CD CO M CJ CU S CJ 43 Sh 43 44 fi P fi CJ X 0 XI •H tH CO CJ rl tH fi cfl CO CD 3 O<br />

«t a M MH CD o CJ -* 3 O o o iH p rH MH 43 43 1 a rH CD Oh CJ O • 4-1 rH 44 fa •* 44 U CJ CJ | XI 44 CD rH CO Oh CO •H >. >. 44 43 cm CU rl<br />

Oh V0 93 fi a >> CU * CO CO O Sh 92 CO i-H O 44 CD B Sh CU fi 0 CD rH c •H P rH S3 cfl rH y 43 Oh CD cfl 3 c CU CU 44 XI<br />

CN cu tH O . • CU 43 44 Oh 44 44 CD CO CU o •H Oh u CO PQ M CD 44 CD 43 rS N-' CJ 0) 60 ••> y 43 XI<br />

a M 00<br />

CU<br />

U 1<br />

CU<br />

u 13 1 m cu CD<br />

XI<br />

CU X" 1<br />

1<br />

CO<br />

1<br />

fi 44<br />

CU<br />

CU 43 CU 60


CTi<br />

XI XI 1 1 CO<br />

1 ^N fi 1 fi CU 1 CO | fi . •h y<br />

y y<br />

co r^ >s CD U 0) XI u CO CO fi 1 N CO P tH co p CO 1 rH CO !>> 3<br />

1 •H r^ 43 1 1<br />

cu X 44 o Oh CU 1 o 3 •H U tH fi H 43 cu •H c M y o •H MH 43 XI 4-1 CD 44 ^-\ 44 >> Oh p o.<br />

u fi Cfl 44 •H 44 P 44 44 •> y cu u CD Oh 44 u 44 CO fi •H 44 CD CU X rl . P CD y MH fi CO 60 rH P 44 3<br />

0. p XI CD y o. CO 44 y y .*> tH Oh a 3 CD 0. Oh CO cfl 44 3 43 43 cfl tH 44 CO Sh • * p y y a tH y a CO<br />

tH CU M rt rH u 3 co Cfl 60 44 p P CO 43 P CO fi 44 0> 44 CO 44 •H CO fi >* 01 P B 0> u tH y p co y o y Sh<br />

CU 44 rH 43 CD MH tH p cfl cu •H<br />

CO 44 •H tH 0) CO 43<br />

g£<br />

1 44 rH CU rH > 44 01 > OhiH 3 44 Oh c 43 O y<br />

xi y P 44 u 0> cfl rH u y co >> cu 43 43 Sh P O 44 P 0) i-H a PmrH CO 44 •H y 44 3 •H CO 44 44 sh<br />

44 CU P •H 44 MH •H Oh p rH U CO y C CO 44 MH % XI rH CU P fi 44 44 P p a Cfl O tH cu y CU tH 44 44<br />

J cfl Q C 44 •H >> cfl 44 c rH y a > cn y cfl CO<br />

MH 44<br />

s<br />

60 43 OhiH CU MH fa a x> 0) XI • > P 43 XI CO rl 43 CO CM cfl CO 44 P<br />

•H 44 44 CD Sh rl rH • a 01 Cfl > tH Sh rH U 44 44 c 44 c •H co CD p<br />

£ 2 P 43 tH CO 44 rH r^ y fi T) w<br />

3 H CO 44 3 CO cfl 44 CT\ /~\<br />

22 rl rH rH P P Cfl tH p 3 tH XI 0.X) 43 43 •H 44 44 CO y co . y > p 3<br />

r-H tH Sh y 43 CD 3 cu i-~ 60 in tH 2 C 44 > CO >> C y X 0) 43 60 P 01 44 44 tH 44<br />

CO CD y<br />

> rH tH C xi<br />

• rH O XI P P tH 43 XI P CO . •rl. -3" OJ Cfl > 0> cfl U CU CD 44 y fi •> r. > -d •H t u > 44 CO 43 rH CO 44 y y<br />

44 iH rH MH Oh U H c Oh r^ CO CO 43 > rH u MH P CO 0) CD 01 rH rt •H tH C O 3 3 CO 0 X) V CO y H 2 > 0. Sh<br />

3 60 3 44 cfl 0) Oh ' cfl MH P cu CD 3 co 3 43 rH 43 tH •5 U > 3 u<br />

o co a P C 44 CO MH u u o p 0) CO Oh tH 44 CO 44 44 43 cfl y 3 3 y 0. XI CO P c cfl CD o o 0) 44 y 44 xj y<br />

44 cfl tH 3 P CU tH • CO P cfl P m CO CU •H P rH CD 01 cfl rH p XJ a o> c tH 0) 44 44 Oh y • a MH tH y C MH<br />

y n-* 44 •H 60X1 rH •- MH CM cfl rH 43 rH cu cu CU U X Sh u •rl CO M<br />

p 44 01 rt 01 u P 43 /-n tH y 44 cfl Cfl CO<br />

rt rt CO 44 Sh P > CD CO rH Cfl 44 01 43 1) U 43 0) CU CD Cfl CO B 0) I^S •H tH 44 ^ tH > cfl 44 60 P •H<br />

C<br />

rH 44 y tH y Cfl rH P rH y CU 44 rH 60 Sh 44 > H fi CO XI Oh > m 0> Sh 01 Sh tH 44 XI u y rH y >^ tH OnrH 1 MH « cfl<br />

PQ P tH 43 cu H cfl a CO M > CU w c fi CO rH rH 44 C p cfl 44 3 44 P MH Cfl C tH p cfl u rH y CO 44 y P P C U<br />

43 U 44 . 44 tH a 3 rH CD tH Cfl 0) 0> MH 2 rt CO fi 13 c CD CD CO CO fa SH P 43 . CO > rH rH Oh y u 44 y 44<br />

B X CO o CU 44 fi P Cfl co 3 y rl 43 p > 3 • CO cfl tH Sh Sh >^ CO >. CO 0) y 44 CO Cfl XI CO y co 3 u On<br />

OPS • «* a Sh 60 fi p cu CO > 0) fa p tH 44 fi B 44 •H cfl CO CD CO tH Oh u cfl O . 01 3 >^o MH cfl y p >><br />

tH CO rH 44 0) a cfl CU •H 43 rl a rH co 3 c MH<br />

IS >» . CD rt SH /TS P 44 rH cu CO CU 44 B y o 44 p 43 60<br />

44 CO 44 44 Sh CO 44 rH 01 Cfl rH CD CT MH p cu rH rl s~\ 43 CO CO 0. C • CO 3 rH > CO > CO 2 CTi CO fi a J^ u<br />

Cfl 0) CD CD CO CU CO CD CO CO CO o p > 01 P tH •H 1 CO 44 CU 60 XJ cu tH O 44 CU 01 q co •H CD 44 r^ rH a p y Sh CO 3 y y<br />

44 43 fi 43 >, Sh ' ** CD MH C CU U v© MH rH U 4-1 rH CU >% c > •H X) cu > 43 rH •H 3 > > 44 CU > Cfl P r 44 XJ 3 y c •H c<br />

CO tH Sh CO 3 rl 2 s p Sh XI 3 00 2 c CJ 44 CO 0) tH CO rH N rH H CD 4 OH rH y Sh y rH > CO 01 B P 43 43 44 y<br />

XJ X CD CO 3 3 a 01 44 P • 44 > CO p 3 rl P 44 01 Oh 3 •H 2 >-' CO y 44 co cfl CO o 0) Cfl 1 tH 44 >> Cfl rH a 44 y CO<br />

C0 rH U > cu CO 44 y o. 44 MH r~~ Cfl •H tH 44 B rl 44 y P Sh > CO cu y > > rH MH Sh > y CO P U *—' 3<br />

I * 43 44<br />

3 3 P CO 01 u 3 X MH 01 MH 43 44 y CU<br />

O 3 3 CD •>-i P - Sh CO 0) H CO cfl 43 z$ o CO MH • > C H MH CU XI g X fi CU CD tH rH Sh HIH ]| rH XI 60 43<br />

a rH 44 Sh cu CD 44 P Sh 60MH Sh rH CD Sh U rH 4) /—\ u cu tH CO Sh tH H O X) 44 CO rH Sh MH CD rH > CO y fi y<br />

CO rl 0) 3 0> 44 fi u CO fi 3 tH 01 . a P P P P I4(n XI p u rH<br />

0) C rH MH •H tH CO<br />

32 * y P P U v^ i-H 44 44 •H > >*<br />

Sh CD 44 P MH Sh CU 3 0. P CO 44 rH r< a p MH 44 MH Sh fi 44 13 CO Oh 0) Sh P 01 44 > >> CD 0. 44 y co o CO Sh rH Cfl<br />

3 44 CO 3 P s<br />

Ifi I CO 3 60 fa Oh CU rH p 44 •H MH Cfl CO u w y 3 -H rl 44 Cfl P CO 43 rH fi cfl > 44 tH 22 cfl y<br />

o rt >><br />

CO C<br />

. p rH U Sh u c 0) XI cfl CO 44 •H 44 Sh 44 CD CO P u fa y 3 > y<br />

43 3 co A c 44 cu CO •H in "t u o2 rt 22 •H tH P 0) (^ m u 01 >, a CD CO cfl to a co a Sh fi fi U o CO a MH y p P XI<br />

X) p . S*. Sh 0) U . o 0) Cfl y 3 cfl CO CJ 44 m oo Oh u u CD U y 44 q u tH rl P p 44 44 rt y 43 CO rH MH<br />

CD rH M 0) tH rH rSrH 0. c tH CU rH U 0) B ^ tH P Cfl >~* n en tH P CO an XJ rH rl p 44 a CO CU 0. 0H CU tH MH CO 44 P U C O rH cfl tH 43<br />

rl P fa a cfl u 60 cu rH cr 3 > P CU rH 01 CO cfl u CO •H >S43 1 a X X) rH Cfl y o> p co y CO . rH 44<br />

43 0.33 3 U 44 X) 3 43 cu CO CU cfl Oh 44 43<br />

H Sh N CU a a fa rl CO 44 3 tH p fi U 0 XI >-» rl OntH • M y fi •~N y<br />

44 o. 0) c OJ P 44 a u CO cfl > > c o. 44 tH 3 o a Sh MH 0. O 60 CO 44 3 tH Sh CD rH y CD P CO vX y p •H u y<br />

fi r. 0. p XJ rl cfl CU fa tH . y p C rl rS rH tH P C 01 rH C rt 44 XJ 0. Oh Sh co y 3 •H CO 44<br />

44 O P 60 P CJ tH P CU fi ri a MH 43 CD 43 CJ M MH o 3 rl >-.vO CO Cfl 01 p y tH CU XI «t c •H 0. P 3 0) y XI 43 X) 44 Oh cfl 3<br />

CO tH fi > CO 44 44 p o. y U 44 P P y co a i-H • CTl >>43 tH 3 * rl 43 cu 0) rH o > 3 CO 43 y B 4J y y 43 •<br />

rl CO CJ tH XI CU P fi CO tH


10<br />

As in the case of reactor vessel level control, it is intended th<strong>at</strong><br />

the most realistic assumptions concerning pressure control be used in this<br />

study. Accordingly, it will be assumed th<strong>at</strong> the oper<strong>at</strong>or does take the<br />

actions in regard to pressure control as described above. However, it<br />

should be noted th<strong>at</strong> without oper<strong>at</strong>or action, the pressure would cycle be<br />

tween the limits of 7.377 and 7.722 MPa (1055 and 1105 psig); unfortun<strong>at</strong>e<br />

ly, it is probable th<strong>at</strong> this would occur through the repe<strong>at</strong>ed oper<strong>at</strong>ion of<br />

the same relief valve causing severe localized he<strong>at</strong>ing in the vicinity of<br />

the tailpipe discharge in the suppression pool.<br />

Short-term Plant St<strong>at</strong>us. Within minutes after the inception of a<br />

<strong>St<strong>at</strong>ion</strong> Blackout, both reactor vessel level control and pressure control<br />

will be achieved with or without oper<strong>at</strong>or action. An open cycle will<br />

exist, with w<strong>at</strong>er pumped from the condens<strong>at</strong>e storage tank into the reactor<br />

vessel, converted to steam there by reactor decay he<strong>at</strong>, and subsequently<br />

passed to the pressure suppression pool and condensed. S<strong>at</strong>isfactory re<br />

actor cooling is provided, but both the pressure suppression pool level<br />

and temper<strong>at</strong>ure are increasing, as is the drywell ambient temper<strong>at</strong>ure due<br />

to loss of the drywell coolers. The reserve DC power stored in the b<strong>at</strong><br />

teries is being dissip<strong>at</strong>ed.<br />

There is a 250V DC b<strong>at</strong>tery for each unit <strong>at</strong> <strong>Browns</strong> <strong>Ferry</strong>, plus a sta<br />

tion b<strong>at</strong>tery for common loads. Each unit b<strong>at</strong>tery is designed to provide a<br />

guaranteed supply of direct current for the first 30 minutes of a design<br />

basis accident. Under the less severe conditions of a <strong>St<strong>at</strong>ion</strong> Blackout,<br />

and assuming prudent actions by the oper<strong>at</strong>or to conserve b<strong>at</strong>tery poten<br />

tial, DC power should be available for the first 4-6 hours of a <strong>St<strong>at</strong>ion</strong><br />

Blackout.<br />

Long-Term Consider<strong>at</strong>ions. Once DC power is lost, the HPCI and RCIC<br />

systems will be inoperable and cooling w<strong>at</strong>er can no longer be injected<br />

into the reactor vessel. With prudent and realistic oper<strong>at</strong>or actions,<br />

this should not occur until 4-6 hours* after the inception of a <strong>St<strong>at</strong>ion</strong><br />

Blackout. However, there are other consider<strong>at</strong>ions which must be properly<br />

addressed during this 4-6 hour period during which all efforts would be<br />

made to accomplish the restor<strong>at</strong>ion of AC power.<br />

First, since all plant ventil<strong>at</strong>ion is stopped during a <strong>St<strong>at</strong>ion</strong> Black<br />

out, the ambient temper<strong>at</strong>ure near the RCIC turbine may reach 93.3°C<br />

(200°F), causing an autom<strong>at</strong>ic isol<strong>at</strong>ion of the RCIC system. This is un<br />

likely since the RCIC system will be oper<strong>at</strong>ed only intermittently, and the<br />

turbine is not loc<strong>at</strong>ed in a closely confined space. If isol<strong>at</strong>ion does oc<br />

cur, the isol<strong>at</strong>ion signal can be overridden by the placing of rubber insu<br />

l<strong>at</strong>ion between the appropri<strong>at</strong>e relay contacts in the auxiliary instrumen<br />

t<strong>at</strong>ion room, or the HPCI system can be used as a backup.<br />

Second, a relief valve might stick open although it should be noted<br />

th<strong>at</strong> the currently installed two-stage Target Rock valves are much less<br />

prone to this malfunction than their three-stage predecessors. A stuckopen<br />

relief valve would produce difficulties with localized suppression<br />

pool he<strong>at</strong>ing, but reactor vessel pressure would not decrease to the point<br />

th<strong>at</strong> the HPCI or RCIC system turbines could not be used. This eventuality<br />

is discussed in more detail in Section 8.2.<br />

*Recent b<strong>at</strong>tery capacity calcul<strong>at</strong>ions have indic<strong>at</strong>ed th<strong>at</strong> DC power<br />

may remain available for as long as seven hours.


11<br />

A third consider<strong>at</strong>ion would be the continued availability of conden<br />

s<strong>at</strong>e storage tank w<strong>at</strong>er for injection into the reactor vessel. As previ<br />

ously discussed, there is a guaranteed minimum stored supply of 511.0 m3<br />

(135,000 gallons) available to the HPCI or RCIC systems. As illustr<strong>at</strong>ed<br />

in Section 7, only about 359.6 m3 (95,000 gallons) would be used during<br />

the first five hours of a <strong>St<strong>at</strong>ion</strong> Blackout. It can be concluded th<strong>at</strong> an<br />

adequ<strong>at</strong>e supply of condens<strong>at</strong>e storage tank w<strong>at</strong>er is provided for injection<br />

during the period in which DC power will remain available.<br />

A fourth consider<strong>at</strong>ion is the availability of sufficient stored drywell<br />

control air to permit the desired number of remote-manual relief<br />

valve actu<strong>at</strong>ions during the period of <strong>St<strong>at</strong>ion</strong> Blackout. The accumul<strong>at</strong>ors<br />

provided for the six relief valves associ<strong>at</strong>ed with the ADS system are<br />

sized to permit five oper<strong>at</strong>ions per valve, or a total of 30 actu<strong>at</strong>ions.<br />

As illustr<strong>at</strong>ed in Section 7, less than 25 relief valve actu<strong>at</strong>ions will be<br />

required during the first five hours of a <strong>St<strong>at</strong>ion</strong> Blackout. It can be<br />

concluded th<strong>at</strong> there is enough stored air in the ADS relief valve accumu<br />

l<strong>at</strong>ors alone to permit the desired number of relief valve oper<strong>at</strong>ions dur<br />

ing the period in which DC power is available. In addition, the stored<br />

air in the Drywell Control Air system receivers provides an ample backup<br />

to the accumul<strong>at</strong>or supply.<br />

A fifth consider<strong>at</strong>ion concerns the steady he<strong>at</strong>up of the pressure sup<br />

pression pool w<strong>at</strong>er with no means of pool cooling available during <strong>St<strong>at</strong>ion</strong><br />

Blackout. The pressure suppression pool of approxim<strong>at</strong>ely 3785 m3 (one<br />

million gallons) of w<strong>at</strong>er is contained within a torus of 33.99 m (111.5<br />

ft) major diameter and 9.45 m (31.0 ft) minor diameter. The torus sur<br />

rounds the drywell and reactor vessel as shown in Fig. 3.1.<br />

The large he<strong>at</strong> sink afforded by the pressure suppression pool w<strong>at</strong>er<br />

can be effectively utilized during a <strong>St<strong>at</strong>ion</strong> Blackout only as long as the<br />

steam being discharged into the pool via the relief valves is condensed.<br />

If the local temper<strong>at</strong>ure of the w<strong>at</strong>er surrounding the relief valve<br />

tailpipe terminus in the pool is excessive, condens<strong>at</strong>ion oscill<strong>at</strong>ions may<br />

occur causing gross unstable vibr<strong>at</strong>ions of the torus assembly and pressuriz<strong>at</strong>ion<br />

of the torus airspace due to the escape of s<strong>at</strong>ur<strong>at</strong>ed steam from<br />

the w<strong>at</strong>er surface. This effect is discussed in detail in Appendix D. For<br />

the "T-quencher" type of discharge header which is installed <strong>at</strong> the ter<br />

minus of each relief valve tailpipe <strong>at</strong> <strong>Browns</strong> <strong>Ferry</strong> <strong>Unit</strong> 1, the condensa<br />

tion oscill<strong>at</strong>ions are not expected to occur if the local pool temper<strong>at</strong>ure<br />

is limited to 93.3°C (200°F) or equivalent to 87.8°C (190°F) average pool<br />

temper<strong>at</strong>ure.6<br />

The T-quencher dischargers on the tailpipes of the thirteen primary<br />

relief valves are distributed approxim<strong>at</strong>ely evenly around the torus, as<br />

shown in Fig. 3.2. This diagram is posted on the <strong>Browns</strong> <strong>Ferry</strong> <strong>Unit</strong> 1 con<br />

trol room panel which contains the relief valve oper<strong>at</strong>ing switches. Dur<br />

ing a <strong>St<strong>at</strong>ion</strong> Blackout, it would be incumbent on the oper<strong>at</strong>or in his ef<br />

forts to manually control reactor vessel pressure to ensure th<strong>at</strong> oppo<br />

sitely loc<strong>at</strong>ed primary relief valves are oper<strong>at</strong>ed in turn so th<strong>at</strong> the<br />

energy input to the pressure suppression pool is evenly distributed.<br />

As illustr<strong>at</strong>ed in Section 7, the average pressure suppression pool<br />

temper<strong>at</strong>ure will have reached approxim<strong>at</strong>ely 82.2°C (180°F) five hours<br />

after the inception of a <strong>St<strong>at</strong>ion</strong> Blackout. It can be concluded th<strong>at</strong> with<br />

oper<strong>at</strong>or action to altern<strong>at</strong>e the relief valve discharges, the pressure<br />

suppression pool temper<strong>at</strong>ure will not reach the point when condens<strong>at</strong>ion


DRYWELL<br />

12<br />

Fig. 3.1 Arrangement of drywell and torus.<br />

ORNL-DWG 81-8602 ETD<br />

REACTOR VESSEL<br />

oscill<strong>at</strong>ions might occur during the first five hours of a <strong>St<strong>at</strong>ion</strong> Black<br />

out.<br />

As a rel<strong>at</strong>ed m<strong>at</strong>ter, the HPCI system is equipped with logic which<br />

will autom<strong>at</strong>ically shift the suction of the HPCI pump to the pressure sup<br />

pression pool if the indic<strong>at</strong>ed pressure suppression pool level increases<br />

to a certain point, as discussed in Appendix E. Depending on the initial<br />

w<strong>at</strong>er level in the pool, this will occur following an increase in pool<br />

volume of between 257.4 and 370.9 m3 (68,000 and 98,000 gallons), or<br />

sometime between two and four hours into the <strong>St<strong>at</strong>ion</strong> Blackout. As previ<br />

ously discussed, the HPCI system is not expected to be utilized but merely<br />

to serve as a backup to the RCIC system. However, to preserve the HPCI


259°<br />

PCV 1-19 pcv l-»<br />

PCV 1-22 KV 1-30<br />

PCV 1-31<br />

1<br />

PCV 1-34<br />

Pnl 9-3 Controls<br />

1<br />

191°<br />

13<br />

180°<br />

Fig. 3.2 <strong>Unit</strong> 1 relief valve discharges.<br />

RELIEF VALVE POSITIONS<br />

OPPOSITE VALVES<br />

PCV 1-42 PCV 1-18<br />

PCV 1-41 PCV 1-22<br />

PCV 1-34 PCV 1-4<br />

PCV 1-30 PCV 1-5<br />

PCV 1-31 PCV 1-2<br />

PCV 1-19<br />

PCV 1-180 PCV 1-179<br />

ORNL-DWG 81-8603 ETD<br />

system as a viable backup, the oper<strong>at</strong>or should take action to maintain the<br />

pump suction on the condens<strong>at</strong>e storage tank. This can be done by racking<br />

out the motor-oper<strong>at</strong>ed breakers for the suction valves, arid will prevent<br />

the excessive HPCI system lubric<strong>at</strong>ing oil temper<strong>at</strong>ures which would result<br />

from the pumping of the hot pressure suppression pool w<strong>at</strong>er.<br />

The sixth and most important consider<strong>at</strong>ion for long term stability<br />

following a <strong>St<strong>at</strong>ion</strong> Blackout is the he<strong>at</strong>up of the drywell <strong>at</strong>mosphere. The<br />

ten drywell coolers immedi<strong>at</strong>ely fail on loss of AC power, while the r<strong>at</strong>e


14<br />

of he<strong>at</strong> transfer to the drywell <strong>at</strong> th<strong>at</strong> instant from the hot [287.8°C<br />

(550°F)] reactor vessel and associ<strong>at</strong>ed piping is about 0.98 MW (3.35 x<br />

10° Btu/h). Under this impetus, the drywell temper<strong>at</strong>ure rapidly in<br />

creases. After a few minutes, the drywell temper<strong>at</strong>ure will have signifi<br />

cantly increased so th<strong>at</strong> the r<strong>at</strong>e of he<strong>at</strong> transfer from the reactor vessel<br />

is reduced while a substantial r<strong>at</strong>e of he<strong>at</strong> transfer from the drywell <strong>at</strong><br />

mosphere to the rel<strong>at</strong>ively cool drywell liner has been established, as<br />

discussed in Section 4.<br />

The design temper<strong>at</strong>ure for the drywell structure and the equipment<br />

loc<strong>at</strong>ed therein is 138.3°C (281°F). The response of this structure and of<br />

certain safety components within the drywell to higher temper<strong>at</strong>ures has<br />

been previously investig<strong>at</strong>ed7 and the results are summmarized below:<br />

It was determined th<strong>at</strong> the drywell liner will not buckle under liner<br />

temper<strong>at</strong>ures as high as 171.1°C (340°F) nor would this temper<strong>at</strong>ure produce<br />

higher than allowable stress intensity.<br />

The drywell electrical penetr<strong>at</strong>ions were purchased with a specified<br />

short term (15 min) temper<strong>at</strong>ure r<strong>at</strong>ing of 162.8°C (325°F) and a long term<br />

r<strong>at</strong>ing of 138.3°C (281°F).<br />

It was determined th<strong>at</strong> the stresses in the drywell piping penetra<br />

tions would not exceed the allowable stress intensities <strong>at</strong> a temper<strong>at</strong>ure<br />

of 171.1°C (340°F).<br />

A DC solenoid control valve used for the remote-manual oper<strong>at</strong>ion of<br />

the primary relief valves was tested <strong>at</strong> 148.9°C (300°F) for ten hours with<br />

118 actu<strong>at</strong>ions during the test period. An AC-DC solenoid control valve<br />

for the Main Steam Isol<strong>at</strong>ion valves was tested <strong>at</strong> 148.9°C (300°F) for 7<br />

hours with 83 actu<strong>at</strong>ions each on AC, DC, and the AC-DC combin<strong>at</strong>ion. The<br />

maximum temper<strong>at</strong>ure achieved during each of these solenoid tests was<br />

153.3°C (308°F).<br />

The electrical cable which feeds the safety equipment inside the drywell<br />

has a 600-V r<strong>at</strong>ing with cross-linked polyethelene insul<strong>at</strong>ion. It has<br />

seven conductors of number 12 wire with no she<strong>at</strong>h. It is estim<strong>at</strong>ed th<strong>at</strong><br />

the ten-hour temper<strong>at</strong>ure r<strong>at</strong>ing is in excess of 160.0°C (320°F).7<br />

The results of these tests and investig<strong>at</strong>ions indic<strong>at</strong>e th<strong>at</strong> it can be<br />

confidently predicted th<strong>at</strong> the primary relief valves will remain operable<br />

and the drywell penetr<strong>at</strong>ions will not fail if the drywell ambient tempera<br />

ture is prevented from exceeding 148.9°C (300°F) during the normal recov<br />

ery phase of a <strong>St<strong>at</strong>ion</strong> Blackout.<br />

With the oper<strong>at</strong>or acting to maintain reactor vessel level by use of<br />

the RCIC system and to control vessel pressure between 7.688 and 6.309 MPa<br />

(1100 and 900 psig) by remote-manual relief valve actu<strong>at</strong>ion as previously<br />

discussed, the drywell ambient temper<strong>at</strong>ure would reach 148.9°C (300°F) in<br />

one hour (curve A of Fig. 3.3). Before this occurs, the oper<strong>at</strong>or should<br />

act to reduce the reactor vessel pressure by blowdown to the pressure sup<br />

pression pool. This will reduce the temper<strong>at</strong>ure of the s<strong>at</strong>ur<strong>at</strong>ed liquid<br />

within the reactor vessel and thereby reduce the driving potential for<br />

he<strong>at</strong> transfer into the drywell.<br />

The vessel pressure reduction would be by remote-manual actu<strong>at</strong>ion of<br />

the primary relief valves, and should proceed <strong>at</strong> the <strong>Browns</strong> <strong>Ferry</strong> Techni<br />

cal Specific<strong>at</strong>ions limit of a r<strong>at</strong>e equivalent to a 55.6°C/h (100°F/h) de<br />

crease in s<strong>at</strong>ur<strong>at</strong>ed liquid temper<strong>at</strong>ure. The response of the drywell ambi<br />

ent temper<strong>at</strong>ure to such a reactor vessel depressuriz<strong>at</strong>ion begun <strong>at</strong> one<br />

hour after the inception of a <strong>St<strong>at</strong>ion</strong> Blackout is shown by curve B of Fig.<br />

3.3.


DRYWELL AMBIENT TEMPERATURE (°F)<br />

03 P<br />

3 13<br />

0. (D<br />

Oh 03 13<br />

rl 00 fD<br />

rt p.<br />

(D 3<br />

03 H<br />

Hi fD<br />

Oh CO<br />

Cd P<br />

^g<br />

3 m<br />

CD fa<br />

fi<br />

H<br />

fD<br />

03 rf<br />

o<br />

o<br />

CJ<br />

CJ1<br />

o<br />

^ (D °<br />

1-t<br />

03 -<br />

rj fD<br />

£<br />

fD<br />

°<br />

3*<br />

rj 3<br />

OQ<br />

O<br />

3<br />

o<br />

(D<br />

O &)<br />

• rt<br />

cr» o<br />

ro H<br />

ro co p.<br />

H» rt<br />

I-h rt<br />

a o<br />

03 i-J o<br />

cr ro pi<br />

h X o<br />

O O rt<br />

c ro o<br />

OQ H- H<br />

CO O<br />

141 r-i B<br />

5 fB Cd On rt H- <<br />

rt 3 cr I-1 . (D rt (D<br />

fa on rt CD<br />

& _H O<br />

fo cr e o o 3 rt co<br />

vj rt *• n 03 rjH (D<br />

p --, rt (D H<br />

<<br />

fi rr<br />

/-\ fD e j> rt < B fa<br />

« rj H.<br />

fD Co (D<br />

H. [U < s3 h- H !>< 13<br />

rt oo fD o o<br />

a4 ro<br />

c o tJ 03 5 CD<br />

rj O /-n<br />

rt v< Hi Nj m a^ 0. P) rl<br />

2 5 oo fD <br />

MOO Tl rt fD (D CD ft<br />

oo CO 00<br />

pa ««• rt fi W m m<br />

3)<br />

8 V)<br />

O c C ><br />

z 33 31<br />

H<br />

— N N<br />

H±<br />

O<br />

> ><br />

_, H H<br />

o<br />

O O<br />

3 z z<br />

3 Cfl Cfl<br />

-H H<br />

> ><br />

H<br />

3) 3)<br />

><br />

-H -1<br />

3J<br />

-H Z Z<br />

a o<br />

Z<br />

O > ><br />

Tl Tl<br />

> H H<br />

m m<br />

-1<br />

3) 3)<br />

m<br />

OJ<br />

3"<br />

fD<br />

03 a<br />

03<br />

r>Hl<br />

r- |-H fD<br />

rovj pj<br />

Ui O<br />

O rt<br />

01 o P<br />

rl<br />

rt It 3<br />

O CD •<br />

rt 43<br />

fD C P<br />

M H-fl<br />

O- (D<br />

l-l<br />

crop<br />

CD 3 H<br />

ro<br />

n<br />

o><br />

oo<br />

ro<br />

|-H fB<br />

On rt<br />

0.<br />

H<br />

Oh rt<br />

i-l <<br />

MO It<br />

«H NJ<br />

H" O<br />

p<br />

Ul |-H CD<br />

CD<br />

13 rt (D<br />

M P"H<br />

pi p.<br />

rt a<br />

n> a<br />

H- fD<br />

00<br />

x-' < CO<br />

• fD<br />

CO fa<br />

CD fD<br />

a1<br />

fD<br />

P <<br />

SI 03 o<br />

M 03<br />

1—0 0<br />

r-' CD<br />

ui cr<br />

• P CD<br />

On rt)<br />

o CO<br />

O — fD<br />

oj n><br />

-tn oo a<br />

N5 •<br />

P- OJ rt<br />

o o jr<br />

O O 03<br />

*l rt<br />

s<br />

m<br />

13<br />

ro<br />

rl<br />

03<br />

rt<br />

fi<br />

rl<br />

ro<br />

ID<br />

CO<br />

CO<br />

a<br />

H<br />

H~<br />

N<br />

fD<br />

Oh<br />

H-<br />

CO TJ<br />

n<br />

13 ID<br />

rl CO<br />

(D CD<br />

CO B<br />

CD l-(<br />

a fD<br />

fD r- (S<br />

I-" ~j n<br />

Q O M<br />

33 o O<br />

O<br />

r- CO<br />

H>^-\"^j<br />

oo oj co<br />

• oj rt<br />

VO 00 fD<br />

o o B<br />

• ho rt<br />

00 rf<br />

r- fD<br />

o<br />

fa<br />

fi<br />

rl<br />

H><br />

3<br />

00<br />

>*• l-t<br />

» V,<br />

S3<br />

-»<br />

33 ro<br />

o<br />

ro cr<br />

CO 3<br />

13 O<br />

fD fD<br />

O >o<br />

H- rt<br />

Hi Hi<br />

lt ©<br />

O 3<br />

03<br />

rt p<br />

H- Hi<br />

P<br />

3 rt<br />

co -r<br />

fD<br />

a m<br />

01 |-H<br />

-T<br />

IS)<br />

O d<br />

3 3<br />

3<br />

rl rf<br />

03 33<br />

a .. fD . H-<br />

oq ro co<br />

ro a<br />

n<br />

H- rt (D<br />

to JfO<br />

_ ro p<br />

a* s<br />

^-M i>- (U<br />

rt rt<br />

o<br />

3)<br />

H-<br />

P<br />

3<br />

ro<br />

3<br />

Oh<br />

ID<br />

fa<br />

00 p.<br />

a- B<br />

00 CO<br />

3*13<br />

P<br />

«S i-J<br />

(D fD<br />

r-1<br />

(D<br />

r- I<br />

VJ


16<br />

The curves of Fig. 3.3 show th<strong>at</strong> the maximum drywell average temper<br />

<strong>at</strong>ure can be kept below 148.9°C (300°F) provided th<strong>at</strong> the oper<strong>at</strong>or takes<br />

action to depressurize within one hour following the loss of drywell cool<br />

ers concomitant with a <strong>St<strong>at</strong>ion</strong> Blackout.* A depressuriz<strong>at</strong>ion <strong>at</strong> the<br />

Technical Specific<strong>at</strong>ions limit of 55.6°C/h (100°F/h) will produce a grad<br />

ual reduction of the drywell ambient temper<strong>at</strong>ure; a rapid depressuriza<br />

tion will produce a faster drywell temper<strong>at</strong>ure reduction, but is probably<br />

not necessary. Certainly, if the oper<strong>at</strong>or perceives developing difficul<br />

ties with the in-drywell equipment such as the relief valve solenoids, he<br />

should convert an ongoing 55.6°C/h (100°F/h) depressuriz<strong>at</strong>ion into a more<br />

rapid one.<br />

Summary. Assuming no independent secondary failures of equipment,<br />

reactor vessel level control and pressure control can be maintained during<br />

a <strong>St<strong>at</strong>ion</strong> Blackout for as long as the DC power supplied by the unit b<strong>at</strong><br />

tery lasts. This is expected to be a period of from four to six hours,<br />

and this portion of the <strong>St<strong>at</strong>ion</strong> Blackout severe accident sequence is<br />

graphically displayed with commentary in Section 7. If AC power is re<br />

gained <strong>at</strong> any time during this period, a completely normal recovery would<br />

follow.<br />

If AC power is not regained, and DC power is lost, remote-manual op<br />

er<strong>at</strong>ion of the primary relief valves would no longer be possible and the<br />

reactor vessel pressure would increase to 7.722 MPa (1105 psig), the low<br />

est setpoint for autom<strong>at</strong>ic actu<strong>at</strong>ion of the relief valves. Thereafter,<br />

the reactor vessel pressure would cycle between 7.722 and 7.377 MPa (1105<br />

and 1055 psig) while the vessel level steadily decreased because injection<br />

capability would be lost as well. The sequence of events following the<br />

loss of injection capability is described in Sections 9 through 11.<br />

*If the backup HPCI system were used for injection, the average re<br />

actor vessel pressure after depressuriz<strong>at</strong>ion would have to be maintained<br />

<strong>at</strong> about 1.14 MPa (150 psig), which corresponds to an average s<strong>at</strong>ur<strong>at</strong>ed<br />

liquid temper<strong>at</strong>ure of 185°C (365°F). This is only 15°C (25°F) higher than<br />

the average temper<strong>at</strong>ure associ<strong>at</strong>ed with RCIC oper<strong>at</strong>ion and would not<br />

significantly increase the drywell temper<strong>at</strong>ures shown in Fig. 3.3.


17<br />

4. COMPUTER MODEL FOR SYSTEM BEHAVIOR<br />

PRIOR TO LOSS OF INJECTION CAPABILITY<br />

The purpose of this chapter is to describe the BWR-LACP (BWR-Loss of<br />

AC Power) computer code th<strong>at</strong> was developed to calcul<strong>at</strong>e the effects of<br />

oper<strong>at</strong>or actions prior to loss of injection capability after <strong>St<strong>at</strong>ion</strong><br />

Blackout. Topics covered include: general fe<strong>at</strong>ures, simplifying assump<br />

tions, solutions to more important modeling problems, and model valid<strong>at</strong>ion<br />

efforts.<br />

BWR-LACP is a digital computer code written specifically to predict<br />

general <strong>Browns</strong> <strong>Ferry</strong> thermal-hydraulic behavior following a <strong>St<strong>at</strong>ion</strong> Black<br />

out event (defined in Sect. 2). The code consists of the differential and<br />

algebraic equ<strong>at</strong>ions of mass and energy conserv<strong>at</strong>ion and equ<strong>at</strong>ions of st<strong>at</strong>e<br />

for the reactor vessel and containment. The code was written in the IBM<br />

CSMP (Continuous System Modeling Program)8 Language to minimize program<br />

ming and debugging time. The listing in Appendix A specifies all required<br />

input parameters.<br />

Some of the important variables calcul<strong>at</strong>ed by the BWR-LACP code in<br />

clude:<br />

1. Reactor vessel levels (above the fuel as well as in the downcomer<br />

annulus),<br />

2. Reactor vessel pressure,<br />

3. Total injected w<strong>at</strong>er volume,<br />

4. Safety-relief valve (SRV) flow r<strong>at</strong>es,<br />

5. Containment pressures and temper<strong>at</strong>ures, and<br />

6. Suppression pool w<strong>at</strong>er level and temper<strong>at</strong>ure.<br />

These variables may be calcul<strong>at</strong>ed for arbitrary time periods follow<br />

ing the loss of AC power — typically several hours. Run specific in<br />

put includes:<br />

1. Injection flow vs time or a law to represent oper<strong>at</strong>or control of re<br />

actor vessel level with injection flow.<br />

2. SRV opening(s) vs time or a law to represent oper<strong>at</strong>or control of re<br />

actor vessel pressure with SRV opening,<br />

3. Initializ<strong>at</strong>ion parameters: initial time elapsed since reactor trip,<br />

initial reactor vessel pressure and level, and initial containment<br />

pressures, temper<strong>at</strong>ures, and suppression pool level.<br />

Specific characteristics of the <strong>St<strong>at</strong>ion</strong> Blackout event allowed sim<br />

plifying assumptions to be made, or required specific assumptions for ade<br />

qu<strong>at</strong>e description of system response. These assumptions are discussed be<br />

low:<br />

1. Reactor trip <strong>at</strong> time zero: he<strong>at</strong> input from the reactor is as<br />

sumed to consist of decay he<strong>at</strong> and is calcul<strong>at</strong>ed from the ANS standard9.<br />

2. No fuel temper<strong>at</strong>ure calcul<strong>at</strong>ion: the fuel remains covered for<br />

transients considered here and 100% of the decay he<strong>at</strong> is assumed to be<br />

transferred directly to w<strong>at</strong>er.


18<br />

3. Density of steam-w<strong>at</strong>er mixture calcul<strong>at</strong>ed by drift-flux correla<br />

tion: the low steaming r<strong>at</strong>e of decay he<strong>at</strong> oper<strong>at</strong>ion requires a model,<br />

such as the drift-flux model10 th<strong>at</strong> can allow rel<strong>at</strong>ive slip between<br />

steam and w<strong>at</strong>er.<br />

4. Phase separ<strong>at</strong>ion is likely in the standpipes: the low steaming<br />

r<strong>at</strong>es of decay he<strong>at</strong> oper<strong>at</strong>ion allow phase separ<strong>at</strong>ion to occur11 if the<br />

2-phase level is below the steam separ<strong>at</strong>ors (in standpipes or core outlet<br />

plenum).<br />

5. Recircul<strong>at</strong>ion pumps trip <strong>at</strong> time zero: these pumps require AC<br />

power for oper<strong>at</strong>ion. During the loss of AC power transients, the w<strong>at</strong>er in<br />

the recircul<strong>at</strong>ion piping is tre<strong>at</strong>ed as an inactive volume.<br />

6. Steam flow through the SRV's is calcul<strong>at</strong>ed by r<strong>at</strong>ioing the flc Low<br />

<strong>at</strong> r<strong>at</strong>ed conditions:<br />

where,<br />

W =Wr ^(pP)/(pr Pr)<br />

Wr = r<strong>at</strong>ed SRV flow <strong>at</strong> pressure Pr and density pr<br />

W = SRV flow <strong>at</strong> pressure, P, and density p.<br />

This rel<strong>at</strong>ionship is rigorously true for choked flow of an ideal gas with<br />

constant Cp/Cv r<strong>at</strong>io12 and should give reasonable results for choked<br />

flow of dry steam.<br />

7. A realistic estim<strong>at</strong>e of SRV relieving capacity is calcul<strong>at</strong>ed by<br />

taking into account the ASME code rule which requires nominal valve flow<br />

to be only 90% of the flow measured <strong>at</strong> 103% of the nominal actu<strong>at</strong>ion pres<br />

sure. For the two-stage Target Rock SRV's <strong>at</strong> <strong>Browns</strong> <strong>Ferry</strong>, the resulting<br />

estim<strong>at</strong>e of actual valve capacity is:<br />

Wr = 121.2 kg/s @ 7.79 MPa<br />

(= 960,000 lb/h @ 1115.0 psig).<br />

8. Steam flowing to RCIC and HPCI turbines is calcul<strong>at</strong>ed by r<strong>at</strong>io<br />

ing the steam flowing <strong>at</strong> r<strong>at</strong>ed conditions;<br />

where,<br />

W = Wr*(P/Pr)*(AHr/AH)<br />

Wr = turbine flow required <strong>at</strong> conditions Pr and Allr<br />

(available enthalpy difference for isentropic expansion<br />

between Pr and Pexhaust) Lo PumP r<strong>at</strong>ed injection flow.<br />

W = turbine flow required <strong>at</strong> conditions P and AH (isen<br />

tropic expansion between P and Pexhaust) to PumP the same<br />

(r<strong>at</strong>ed) injection flow.


19<br />

This equ<strong>at</strong>ion predicts a. linear rel<strong>at</strong>ionship between steam pressure and<br />

turbine flow providing steam pressure is high enough to establish choked<br />

flow across the turbine nozzles. Turbine steam flow is zeroed when the<br />

turbine is tripped.<br />

Several modeling problems had to be solved in order to adequ<strong>at</strong>ely<br />

simul<strong>at</strong>e behavior of the system following loss of AC power:<br />

1. Reactor vessel steaming r<strong>at</strong>e,<br />

2. Reactor vessel n<strong>at</strong>ural circul<strong>at</strong>ion flow,<br />

3. Suppression pool w<strong>at</strong>er temper<strong>at</strong>ure(s), and<br />

4. Drywell air temper<strong>at</strong>ure.<br />

These particular problems are highlighted because of their importance in<br />

determining the overall results and to point out approxim<strong>at</strong>ions th<strong>at</strong> were<br />

made in formul<strong>at</strong>ing the solutions.<br />

Reactor vessel steaming r<strong>at</strong>e is defined here as the r<strong>at</strong>e <strong>at</strong> which<br />

steam flows from the liquid regions in the reactor vessel into the steam<br />

volume in the upper part of the vessel. When pressure is constant the<br />

steaming r<strong>at</strong>e equals steam production r<strong>at</strong>e in the reactor core which is a<br />

function of core inlet enthalpy, flow, and pressure. However, when pres<br />

sure is changing, the steaming r<strong>at</strong>e is influenced by the significant<br />

amount of w<strong>at</strong>er th<strong>at</strong> normally exists in the steam-w<strong>at</strong>er mixture above the<br />

core in the core outlet plenum, standpipes and steam separ<strong>at</strong>ors. This<br />

w<strong>at</strong>er adds to the steaming r<strong>at</strong>e when pressure is decreasing by flashing.<br />

It is assumed to subtract from the steaming r<strong>at</strong>e when pressure is increas<br />

ing by condensing part of the core steam production. In modeling this ef<br />

fect, it was assumed th<strong>at</strong> this w<strong>at</strong>er remains <strong>at</strong> s<strong>at</strong>ur<strong>at</strong>ion <strong>at</strong> all times.<br />

The net effect on the steaming r<strong>at</strong>e was calcul<strong>at</strong>ed using the following re<br />

l<strong>at</strong>ionship:<br />

where<br />

dP dhf lf M,<br />

w<br />

Wn = Wc - —- *<br />

dt dP (hK - hf)<br />

Wn = net steam production r<strong>at</strong>e<br />

Wc = core steam production r<strong>at</strong>e<br />

P = reactor vessel pressure<br />

hf = s<strong>at</strong>ur<strong>at</strong>ed fluid enthalpy<br />

hg = s<strong>at</strong>ur<strong>at</strong>ed vapor enthalpy<br />

Mj, = mass of w<strong>at</strong>er in core boiling region and above the core in<br />

outlet plenum, standpipes, and steam separ<strong>at</strong>ors.<br />

The inherent n<strong>at</strong>ural circul<strong>at</strong>ion capability of BWRs is an important<br />

fe<strong>at</strong>ure th<strong>at</strong> should be considered even in calcul<strong>at</strong>ion of thermal-hydraulic<br />

transients <strong>at</strong> decay he<strong>at</strong> level. The n<strong>at</strong>ural circul<strong>at</strong>ion flow p<strong>at</strong>h is from<br />

the area outside the standpipes and steam separ<strong>at</strong>ors (referred to here as<br />

the downcomer annulus), down through the jet pump diffusers into the lower<br />

plenum and then into the reactor. As it flows up through the core the<br />

fluid becomes s<strong>at</strong>ur<strong>at</strong>ed and begins to boil. The steam/w<strong>at</strong>er mixture flows<br />

up through the outlet plenum and standpipes to the steam separ<strong>at</strong>ors, where<br />

the w<strong>at</strong>er is returned to the downcomer annulus and the steam flows through


20<br />

the steam dryers to the steam dome. The n<strong>at</strong>ural circul<strong>at</strong>ion r<strong>at</strong>e is de<br />

pendent on a number of variables including: w<strong>at</strong>er level in the downcomer<br />

annulus, w<strong>at</strong>er-steam level above the core, core steaming r<strong>at</strong>e, and density<br />

of the w<strong>at</strong>er-steam mixture in and above the core. <strong>One</strong> phenomenon th<strong>at</strong><br />

makes the calcul<strong>at</strong>ion more difficult is th<strong>at</strong> when w<strong>at</strong>er level gets low<br />

enough the recircul<strong>at</strong>ion of w<strong>at</strong>er from the steam separ<strong>at</strong>ors ceases and<br />

w<strong>at</strong>er flows from the downcomer annulus only as required to counter-balance<br />

w<strong>at</strong>er lost by boil-off from the core.<br />

The equ<strong>at</strong>ion used to calcul<strong>at</strong>e core inlet flow is:<br />

where<br />

KfWci2 = Pdc*Ldc - Ptp * Ltp<br />

Kf = empirically determined friction coefficient<br />

wci = core inlet tiow<br />

Pdc = downcomer w<strong>at</strong>er density<br />

Ldc = downcomer w<strong>at</strong>er level (ref. to zero <strong>at</strong> bottom of active<br />

fuel)<br />

Jt = elev<strong>at</strong>ion-averaged density of w<strong>at</strong>er-steam mixture in and<br />

above core<br />

LtD = level of steam-w<strong>at</strong>er mixture above bottom of active fuel.<br />

The value of the friction coefficient, Kf, was calcul<strong>at</strong>ed from the<br />

n<strong>at</strong>ural circul<strong>at</strong>ion curve on Fig. 3.7-1 of the BFNP FSAR by forcing agree<br />

ment with the predictions of this equ<strong>at</strong>ion <strong>at</strong> the 30% thermal power point.<br />

This procedure resulted in a reasonably good approxim<strong>at</strong>ion of the flow <strong>at</strong><br />

other points, as shown on Fig. 4.1. _<br />

The r<strong>at</strong>e of recircul<strong>at</strong>ion of w<strong>at</strong>er back to the downcomer annulus is<br />

calcul<strong>at</strong>ed as a function of the w<strong>at</strong>er-steam mixture level in the steam<br />

separ<strong>at</strong>ors:<br />

where<br />

wrecir = * f


100<br />

90<br />

£ 80<br />

o<br />

Q- 70<br />

<<br />

2<br />


22<br />

proportional to the difference between reactor coolant temper<strong>at</strong>ure (Trc)<br />

and drywell <strong>at</strong>mosphere temper<strong>at</strong>ure (Tdw). Therefore,<br />

Qdw " 980*(Trc - Tdw)/(Trc - Tdw)0 .<br />

To test the validity of the 980 kW he<strong>at</strong> load, an independent calcu<br />

l<strong>at</strong>ion was performed under the following assumptions:<br />

1. Total he<strong>at</strong>ed surface area is 1115 m**2 (12,000 sq ft). This includes<br />

539 m**2 (5800 sq ft) for the reactor vessel, 372 m**2 (4000 sq ft)<br />

for the steam lines, and 204 m**2 (2200 sq ft) for other he<strong>at</strong>ed pip<br />

ing inside the drywell.<br />

2. 90% of the he<strong>at</strong>ed surface is insul<strong>at</strong>ed. This is a rough estim<strong>at</strong>e to<br />

account both for uninsul<strong>at</strong>ed piping and for imperfectly installed<br />

insul<strong>at</strong>ion.<br />

3. Total he<strong>at</strong> loss through insul<strong>at</strong>ed surfaces is 0.25 kW/m**2 (80 Btu/h<br />

sq ft). This is a good nominal estim<strong>at</strong>e for MIRROR insul<strong>at</strong>ion when<br />

total hot surface to ambient temper<strong>at</strong>ure difference is about 220°C<br />

(400°F).<br />

4. Radiant he<strong>at</strong> loss from uninsul<strong>at</strong>ed surface is figured using emmissivity<br />

=0.8 (i.e., unpolished surface)<br />

5. Convective he<strong>at</strong> loss from uninsul<strong>at</strong>ed surface figured using the rela<br />

tion Nu = 0.13 (Gr*Pr)**0.3333 (as discussed in a following para<br />

graph).<br />

The results were as follows:<br />

Qins,total " 281 kW<br />

Qunins,convective = 170 kW<br />

Qunins,radiant = 375 kW<br />

Qtotal - 826 kW<br />

This shows th<strong>at</strong> the he<strong>at</strong> losses assumed here for <strong>Unit</strong> 1 are realistic and<br />

perhaps slightly conserv<strong>at</strong>ive. The <strong>St<strong>at</strong>ion</strong> Blackout analysis presented in<br />

the <strong>Browns</strong> <strong>Ferry</strong> FSAR (response to AEC Question 14.2) assumes a much more<br />

conserv<strong>at</strong>ive he<strong>at</strong> loss of 2000 kW.<br />

In addition to he<strong>at</strong> transfer from hot surfaces, the r<strong>at</strong>e of steam es<br />

caping directly to the drywell must be known in order to calcul<strong>at</strong>e drywell<br />

pressure and temper<strong>at</strong>ure. Figure 9.2-2 of the <strong>Browns</strong> <strong>Ferry</strong> FSAR<br />

specifies a total drywell drain sump input during normal power oper<strong>at</strong>ion<br />

of 22 m**3 (5800 gallons) per day or 4 gpm as measured <strong>at</strong> the normal sump<br />

temper<strong>at</strong>ure of about 38°C (100°F). Recircul<strong>at</strong>ion pump seals and control<br />

rod drive flange seals are identified as the major source of this leakage.<br />

This 4 gpm leak r<strong>at</strong>e is believed to be realistic for <strong>Browns</strong> <strong>Ferry</strong> <strong>Unit</strong> 1<br />

during a <strong>St<strong>at</strong>ion</strong> Blackout. The fraction of the leak th<strong>at</strong> flashes to steam<br />

was calcul<strong>at</strong>ed in terms of s<strong>at</strong>ur<strong>at</strong>ion properties:<br />

Xflash -


23<br />

<strong>at</strong>mosphere, to cold surfaces (such as the drywell liner). Such n<strong>at</strong>ural<br />

circul<strong>at</strong>ion probably exists in the lower part of the drywell where the<br />

main steam isol<strong>at</strong>ion valves and drywell coolers are loc<strong>at</strong>ed. However it<br />

is likely th<strong>at</strong> temper<strong>at</strong>ures in certain areas near the top of the drywell<br />

could be much hotter than the single <strong>at</strong>mosphere temper<strong>at</strong>ure this model<br />

calcul<strong>at</strong>es.<br />

He<strong>at</strong> transfer between drywell <strong>at</strong>mosphere and liner was calcul<strong>at</strong>ed<br />

using the rel<strong>at</strong>ion<br />

where<br />

Nu = 0.13*(Gr*Pr)**0.333<br />

Nu = Nusselt Number (hL/k)<br />

Gr = Grashof Number (p2ggL3AT/p:,d)<br />

Pr = Prandtl Number (u C /K) .<br />

This formula is also used for the same purpose in the MARCH and CONTEMPT-<br />

LT codes.13>1H<br />

Internal he<strong>at</strong> transfer resistance of the steel drywell liner is low<br />

rel<strong>at</strong>ive to the resistance between liner and the <strong>at</strong>mosphere. This allows<br />

the use of one temper<strong>at</strong>ure to represent the whole thickness and it also<br />

means th<strong>at</strong> the entire ~364,000 kg (800,000 lbs) of drywell metal is ef<br />

fectively available as a he<strong>at</strong> sink during drywell he<strong>at</strong>-up. The he<strong>at</strong> sink<br />

effect of the drywell liner is important because without this he<strong>at</strong> sink<br />

the drywell <strong>at</strong>mosphere would very quickly approach primary coolant tem<br />

per<strong>at</strong>ure after loss of the drywell coolers.<br />

Various code comparison activities were pursued in order to test the<br />

validity of the BWR-LACP simul<strong>at</strong>ion:<br />

1. Comparisons of BWR-LACP results to calcul<strong>at</strong>ions reported in the FSAR.<br />

2. Comparison to results computed by the RELAP-IV computer code.<br />

The first FSAR comparison was the "Loss of Auxiliary Power — All<br />

Grid Connections" transient reported on Figs. 14.5—12 and 14.5—13<br />

of the BFNP FSAR. Plant conditions assumed by the FSAR analysis include:<br />

1. Loss of all external grid connections <strong>at</strong> time = 0.<br />

2. All pumps tripped <strong>at</strong> time = 0.<br />

3. Reactor trip and main steam isol<strong>at</strong>ion <strong>at</strong> about time = 2 s.<br />

The BWR-LACP calcul<strong>at</strong>ion was started <strong>at</strong> time equals 20 s with reactor<br />

vessel level and pressure equal to those shown for t = 20 s on FSAR Figs.<br />

14.5-12 and 14.5-13. Figure 4.2 compares the code and FSAR<br />

predictions of reactor vessel pressure and core inlet flow between 20 and<br />

50 s. During this period the core inlet flow is decreasing because steam<br />

production is falling off rapidly; reactor vessel pressure is being con<br />

trolled between the assumed 7.59 MPa (1100 psia) and 7.41 (1075 psia) SRV<br />

set and reset points. Results are reasonably close. Figure 4.3 shows<br />

BWR-LACP and FSAR calcul<strong>at</strong>ions of reactor vessel level from 20 to 2200 s.<br />

During this period, the vessel level decreases slowly until the mass addi<br />

tion r<strong>at</strong>e of the 0.0378 m**3/s (600 gpm) injection flow exceeds the mass<br />

loss r<strong>at</strong>e due to steam produced by decay he<strong>at</strong>. The results show similar<br />

behavior. The FSAR minimum level is 11.76 m (463 in.) <strong>at</strong> time equals 1600<br />

s and the BWR-LACP predicted minimum level is 11.56 m (455 in.) <strong>at</strong> time<br />

equals 1200 s.


(MPa) (psi)<br />

100<br />

UJ<br />

O<br />

< 0.6 i-<br />

X<br />

o<br />

_ 75<br />

g 0.5<br />

Z3<br />

$ 0.4<br />

rr<br />

a. 50<br />

w 0.3<br />

00<br />

CO<br />

UJ<br />

> 0.2<br />

rr 25<br />

O<br />

o 0.1<br />

<<br />

UJ<br />

rr<br />

0L 0<br />

5 50<br />

O<br />

UJ<br />

CURVE A<br />

CURVE B<br />

L<br />

24<br />

ORNL-DWG 81-8605 ETD<br />

TAKEN DIRECTLY FROM FSAR<br />

FIGURE 14.5-12<br />

BWR-LACP RESULTS USING FSAR<br />

INPUT ASSUMPTIONS<br />

TAKEN DIRECTLY FROM FSAR FIGURE 14.5-12<br />

BWR-LACP RESULTS USING FSAR INPUT<br />

ASSUMPTIONS<br />

TIME (s)<br />

Fig. 4.2 Comparison of FSAR and BWR-LACP results for loss of<br />

auxiliary power transients.<br />

±<br />

50


00<br />

00<br />

(m)<br />

14<br />

13<br />

><br />

z 12<br />

I"<br />

LU 10<br />

> UJ<br />

(in.)<br />

570<br />

520<br />

470<br />

420<br />

370<br />

320<br />

I I |llll|—| I I Mill —<br />

LEVEL REFERENCED TO BOTTOM OF VESSEL<br />

DIRECTLY FROM FSAR<br />

FIGURE 14.5-13<br />

O CALCULATED BY BWR-LACP<br />

USING FSAR INPUT<br />

TOP OF ACTIVE FUEL<br />

ORNL-DWG 81-7858 ETD<br />

| I I |llll| 1 I I | Mil<br />

I I I I Mill I I I I Mill I I I I Mill I I I I INI<br />

10 5 100 2<br />

TIME (s)<br />

1000 2<br />

Fig. 4.3 Comparison of FSAR and BWR-LACP results for reactor<br />

vessel level.<br />

5 10,000<br />

ro


26<br />

Comparison of FSAR and BWR-LACP calcul<strong>at</strong>ions of drywell temper<strong>at</strong>ure<br />

was performed for the "Loss of All AC Power" results shown on Fig.<br />

Q.14.2-1 of the BFNP FSAR. Plant conditions assumed by the FSAR calcula<br />

tions include:<br />

1. Initial power = 100%.<br />

2. Loss of all AC power <strong>at</strong> time = 0.<br />

3. Drywell perfectly insul<strong>at</strong>ed on outside.<br />

4. He<strong>at</strong> capacity of interior equipment and structures is negligible.<br />

5. Energy input from primary surfaces is initially 2000 kW.<br />

6. He<strong>at</strong> transfer coefficient between <strong>at</strong>mosphere and wall is 11.36<br />

w/m**2°C (2 Btu/h ft2 °F) without steam condens<strong>at</strong>ion.<br />

7. Drywell coolers lost <strong>at</strong> time = 0 and not restarted.<br />

8. Steam leak = 0<br />

The conditions assumed for this analysis are of the same order as those<br />

assumed for the "Normal Recovery" part of the <strong>St<strong>at</strong>ion</strong> Blackout as dis<br />

cussed in this report. Comparisons of various predictions of drywell<br />

<strong>at</strong>mosphere temper<strong>at</strong>ure to the FSAR result are shown on Fig. 4.4. The drywell<br />

temper<strong>at</strong>ure climbs rapidly during the first 5 to 10 min, before he<strong>at</strong><br />


27<br />

transfer to the drywell liner is established. After the first 10 min, the<br />

temper<strong>at</strong>ure climbs much more slowly, with the metal liner acting as the<br />

he<strong>at</strong> sink. Curve 2 on Fig. 4.4 was calcul<strong>at</strong>ed using as input to the con<br />

tainment model the FSAR assumptions as listed above. The resulting curve<br />

is similarly shaped, but about 17°C (30°F) above the FSAR prediction. In<br />

order to estim<strong>at</strong>e the possible magnitude of input parameter difference,<br />

the calcul<strong>at</strong>ion was repe<strong>at</strong>ed with identical input except a 40% increase in<br />

drywell liner area. Results are shown on Curve 3 and are very close to<br />

the FSAR prediction.<br />

A boil-off transient was selected for comparison to RELAP-IV and<br />

BWR-LACP predictions. The RELAP-IV calcul<strong>at</strong>ion was prepared and run by<br />

Idaho N<strong>at</strong>ional Engineering Labor<strong>at</strong>ory. It starts <strong>at</strong> nominal full power<br />

plant conditions. During the first several seconds the reactor trips and<br />

the main steam isol<strong>at</strong>ion valves close. Initially, several SRVs are re<br />

quired to control vessel pressure, but after about 40 seconds one SRV is<br />

sufficient. Injection flow is zero throughout. The BWR-LACP calcul<strong>at</strong>ion<br />

was intialized <strong>at</strong> 30 seconds because it is programmed only for decay he<strong>at</strong><br />

oper<strong>at</strong>ion. Figure 4.5 compares the results of the calcul<strong>at</strong>ions of reactor<br />

><br />

ui<br />

(m) (in.)<br />

15 i—<br />

14<br />

13<br />

12<br />

11<br />

_i<br />

Ui<br />

OJ<br />

CO<br />

UI<br />

> 10<br />

600<br />

— 550<br />

500<br />

450<br />

400<br />

350<br />

300<br />

250<br />

500<br />

BWR-LACP<br />

O RELAP-IV RESULTS<br />

1000 1500<br />

TIME (s)<br />

ORNL-DWG 81-7859 ETD<br />

STEAM/WATER ABOVE CORE<br />

2000 2500<br />

Fig. 4.5 Comparison of RELAP-IV and BWR-LACP results for reactor<br />

vessel level.


28<br />

vessel level. The steam/w<strong>at</strong>er level above the core is shown for both<br />

codes. Results are very similar, with RELAP predicting 33 minutes and<br />

BWR-LACP predicting 30 minutes to begin uncovering active fuel. Figure<br />

4.6 shows RELAP and BWR-LACP results for reactor steam pressure control.<br />

Results are similar although RELAP predicts a longer SRV cycle (about 60<br />

seconds) than BWR-LACP (about 38 seconds).<br />

Results presented in this Section show th<strong>at</strong> the BWR-LACP code is cap<br />

able of providing reasonable predictions of overall thermal-hydraulic<br />

UJ<br />


29<br />

variables such as reactor vessel levels and pressure and containment tem<br />

per<strong>at</strong>ure for extended periods after reactor trip prior to system damage<br />

due to loss of injection capability. Fe<strong>at</strong>ures of the code th<strong>at</strong> have con<br />

tributed to its utility in the analysis of the Normal Recovery portion of<br />

<strong>St<strong>at</strong>ion</strong> Blackout include:<br />

1. The code is specifically designed for BWRs; therefore, parameter<br />

changes are straightforward and easily made.<br />

2. The code is designed for flexibility to model the plant response to<br />

different oper<strong>at</strong>or actions.<br />

3. It is locally available and has quick turnaround time.


30<br />

5. INSTRUMENTATION AVAILABLE DURING STATION BLACKOUT<br />

AND NORMAL RECOVERY<br />

For some time following a <strong>St<strong>at</strong>ion</strong> Blackout, the reactor vessel w<strong>at</strong>er<br />

level can be maintained in the normal range by oper<strong>at</strong>ion of the HPCI and/<br />

or RCIC systems, and the pressure can be maintained in any desired range<br />

by remote-manual relief valve oper<strong>at</strong>ion. Restor<strong>at</strong>ion of AC power <strong>at</strong> any<br />

time during this period of stable level and pressure control would permit<br />

complete and normal recovery without core damage. The Control Room in<br />

strument<strong>at</strong>ion available and necessary to monitor the plant st<strong>at</strong>us during<br />

the period of stable control following the inception of a <strong>St<strong>at</strong>ion</strong> Blackout<br />

is discussed in the following paragraphs.<br />

1. Electrical system st<strong>at</strong>us. The <strong>St<strong>at</strong>ion</strong> Blackout would be clearly<br />

discernible by the loss of much of the control room indic<strong>at</strong>ion and the<br />

loss of normal Control Room lighting. Emergency Control Room lighting is<br />

available. Numerous instruments would indic<strong>at</strong>e the loss of voltage, am<br />

perage, and frequency on the electrical supply and distribution boards.<br />

2. Reactor vessel w<strong>at</strong>er level. Two channels of Control Room instru<br />

ment<strong>at</strong>ion would provide indic<strong>at</strong>ion of the reactor vessel w<strong>at</strong>er level over<br />

a range between 13.41 and 14.94 m (528 and 588 in.) above the bottom of<br />

the vessel. This range includes the normal oper<strong>at</strong>ing level of 14.15 m<br />

(561 in.) and extends over the upper portion of the steam separ<strong>at</strong>ors, a<br />

distance of 4.27 to 5.79 m (14 to 19 ft) above the top of the active fuel.<br />

Mechanical Yarway indic<strong>at</strong>ion available outside of the Control Room would<br />

provide an additional range from the low point of the Control Room indica<br />

tion, 13.41 m (528 in.) above vessel zero down to a point 9.47 m (373 in.)<br />

above vessel zero, which is 0.33 m (13 in.) above the top of the active<br />

fuel in the core.<br />

The level instrument<strong>at</strong>ion derives the reactor w<strong>at</strong>er level by compar<br />

ing the head of w<strong>at</strong>er within the downcomer region of the reactor vessel to<br />

the head of w<strong>at</strong>er within a reference leg installed in the drywell. With<br />

the loss of the drywell coolers, the drywell ambient temper<strong>at</strong>ure will in<br />

crease significantly, he<strong>at</strong>ing the reference leg w<strong>at</strong>er to above-normal tem<br />

per<strong>at</strong>ures. This will reduce the density of the w<strong>at</strong>er in the reference<br />

leg, causing an error in the indic<strong>at</strong>ed w<strong>at</strong>er level, which will be too<br />

high. For example, if the drywell ambient temper<strong>at</strong>ure increases from its<br />

normal range of 57.2 to 63.6°C (135 to 150°F) to 171.1°C (340°F), the in<br />

dic<strong>at</strong>ed level can be as much as 0.76 m (30 in.) too high.15 As dis<br />

cussed in Sect. 3, the drywell ambient temper<strong>at</strong>ure is expected to reach<br />

about 148.9°C (300°F). However, the lower boundary of reactor vessel<br />

level indic<strong>at</strong>ion is 4.27 m (168 in.) above the top of the active fuel.<br />

Therefore, if the oper<strong>at</strong>or maintains the level in the indic<strong>at</strong>ing range, a<br />

0.76 m (30 in.) error is not significant as far as the goal of keeping the<br />

core covered is concerned.<br />

3. Reactor vessel pressure. Two channels of pressure instrumenta<br />

tion would provide indic<strong>at</strong>ion of reactor vessel pressure over a range of<br />

8.274 MPa (0 to 1200 psig).<br />

4. Main steamline flow. Two channels of steam flow instrument<strong>at</strong>ion<br />

with a range of 2016 kg/s (0 to 16 x 106 lbs/h) would provide verifica<br />

tion th<strong>at</strong> steam flow had ceased following Main Steam Isol<strong>at</strong>ion Valve<br />

(MSIV) closure.


31<br />

5. Feedw<strong>at</strong>er flow. <strong>One</strong> channel of flow instrument<strong>at</strong>ion with a range<br />

of 1008 kg/s (0 to 8 x 106 lbs/h) for each of the three feedw<strong>at</strong>er pumps<br />

would indic<strong>at</strong>e the decay of feedw<strong>at</strong>er flow following loss of steam to the<br />

feedw<strong>at</strong>er turbines.<br />

6. Neutron flux. The power range meters fail on loss of AC power.<br />

The source range and intermedi<strong>at</strong>e range monitors remain oper<strong>at</strong>ional, but<br />

the detectors for these systems are withdrawn from the reactor core during<br />

power oper<strong>at</strong>ion and could not be reinserted under <strong>St<strong>at</strong>ion</strong> Blackout condi<br />

tions. Nevertheless, the oper<strong>at</strong>or could verify the reactor scram which<br />

occurs when the <strong>St<strong>at</strong>ion</strong> Blackout is initi<strong>at</strong>ed by observing the decay of<br />

the indic<strong>at</strong>ed levels on these monitors.<br />

7. Control rod position indic<strong>at</strong>ion. The control rod position indi<br />

c<strong>at</strong>ion system remains oper<strong>at</strong>ional so th<strong>at</strong> the oper<strong>at</strong>or could verify th<strong>at</strong><br />

the control rods had inserted with the scram.<br />

8. Relief valve position. There is no provision for direct indica<br />

tion of the actual position of any primary relief valve, even under normal<br />

oper<strong>at</strong>ing conditions. Thus the oper<strong>at</strong>or has no indic<strong>at</strong>ion of autom<strong>at</strong>ic<br />

actu<strong>at</strong>ion of a specific relief valve other than the recorded tailpipe tem<br />

per<strong>at</strong>ures available on charts behind the control room panels, or the re<br />

lief valve acoustic monitors, all of which would be inoperable under Sta<br />

tion Blackout conditions. However, remote-manual actu<strong>at</strong>ion of a relief<br />

valve is accomplished by energizing its DC solenoid oper<strong>at</strong>or; lights on<br />

the control panel for each valve indic<strong>at</strong>e whether or not these solenoids<br />

are energized, and this capability is maintained during <strong>St<strong>at</strong>ion</strong> Blackout.<br />

9. RCIC instrument<strong>at</strong>ion and controls. The RCIC system can be oper<br />

<strong>at</strong>ed and monitored under <strong>St<strong>at</strong>ion</strong> Blackout conditions.<br />

10. HPCI instrument<strong>at</strong>ion and controls. The HPCI system can be oper<br />

<strong>at</strong>ed and monitored under <strong>St<strong>at</strong>ion</strong> Blackout conditions.<br />

11. Condens<strong>at</strong>e Storage Tank Level. The condens<strong>at</strong>e storage tank<br />

level indic<strong>at</strong>ion [range: 9.75 m (0 to 32 ft)] remains oper<strong>at</strong>ional so th<strong>at</strong><br />

the oper<strong>at</strong>or can determine the remaining amount of w<strong>at</strong>er available for re<br />

actor vessel injection via the RCIC (or HPCI) system.<br />

12. Drywell Pressure. Drywell pressure instrument<strong>at</strong>ion [range:<br />

0.55 MPa (0 to 80 psia)] remains oper<strong>at</strong>ional so th<strong>at</strong> the oper<strong>at</strong>or can mon<br />

itor the increase in drywell pressure due to the ambient temper<strong>at</strong>ure in<br />

crease following loss of the drywell coolers.<br />

13. Pressure Suppression Pool W<strong>at</strong>er Level. Indic<strong>at</strong>ion of torus<br />

level [range: —0.63 to 0.63 m (—25 to +25 in.)] remains available allow<br />

ing the oper<strong>at</strong>or to monitor the increasing pool level caused by both the<br />

relief valve blowdowns and the increasing pool temper<strong>at</strong>ure.<br />

The above instrument<strong>at</strong>ion is powered during <strong>St<strong>at</strong>ion</strong> Blackout either<br />

by DC power directly from the installed b<strong>at</strong>teries or by AC power indi<br />

rectly obtained from the b<strong>at</strong>tery systems. The sources of AC power during<br />

<strong>St<strong>at</strong>ion</strong> Blackout are the feedw<strong>at</strong>er inverter and the unit-preferred and<br />

plant-preferred systems where single-phase 120V AC power is provided by<br />

gener<strong>at</strong>ors driven by emergency b<strong>at</strong>tery-powered DC motors.<br />

It is important to note th<strong>at</strong> Control Room temper<strong>at</strong>ure instrument<strong>at</strong>ion<br />

for the drywell and the pressure suppression pool does not remain opera<br />

tional under <strong>St<strong>at</strong>ion</strong> Blackout conditions. However, the ambient tempera<br />

tures <strong>at</strong> various points in the drywell would be available <strong>at</strong> an indic<strong>at</strong>ormeter<br />

and a recorder mounted on panel 9-47, which is loc<strong>at</strong>ed on the back<br />

of the Control Room panels and is accessible from outside of the Control


32<br />

Room. Also, Using a portable self-powered potentiometer, st<strong>at</strong>ion person<br />

nel can monitor local pressure suppression chamber and drywell tempera<br />

tures which are sensed by installed thermocouple elements.<br />

Following the restor<strong>at</strong>ion of normal AC power, either by recovery of<br />

the offsite power sources or by the delayed but finally successful loading<br />

of the onsite diesel-gener<strong>at</strong>ors, the Instrument<strong>at</strong>ion and Control buses<br />

would be re-energized, restoring all normal Control Room instrument<strong>at</strong>ion<br />

for use in monitoring the normal recovery.


33<br />

6. OPERATOR ACTIONS DURING STATION BLACKOUT<br />

AND NORMAL RECOVERY<br />

In the event of a <strong>St<strong>at</strong>ion</strong> Blackout, the immedi<strong>at</strong>e result would be a<br />

turbine trip, reactor scram, and Main Steam Isol<strong>at</strong>ion Valve (MSIV) clo<br />

sure, which would all occur autom<strong>at</strong>ically with no oper<strong>at</strong>or action; the re<br />

actor would be shut down and isol<strong>at</strong>ed behind the closed MSIVs within 30<br />

seconds following the initi<strong>at</strong>ing loss of offsite power. Immedi<strong>at</strong>ely fol<br />

lowing the isol<strong>at</strong>ion, the reactor vessel pressure would increase to the<br />

setpoints of as many relief valves as are required to termin<strong>at</strong>e the pres<br />

sure increase. The affected relief valves would open to pass steam di<br />

rectly from the reactor vessel to a terminus bene<strong>at</strong>h the w<strong>at</strong>er level in<br />

the pressure suppression pool so th<strong>at</strong> the released steam is condensed.<br />

The core w<strong>at</strong>er void collapse caused by both the scram and the pres<br />

sure increase following MSIV closure would result in a rapid drop in re<br />

actor vessel w<strong>at</strong>er level to some point below the lower limit of level in<br />

dic<strong>at</strong>ion available in the Control Room under <strong>St<strong>at</strong>ion</strong> Blackout conditions<br />

[13.41 m (528 in.) above vessel zero]. Standard <strong>Browns</strong> <strong>Ferry</strong> Emergency<br />

Oper<strong>at</strong>ing Instructions for immedi<strong>at</strong>e action following reactor scram and<br />

MSIV closure call for the oper<strong>at</strong>or to manually initi<strong>at</strong>e both the HPCI and<br />

the RCIC systems. The combined injection flow of 0.353 m3/s (5600 GPM)<br />

would rapidly restore the level into the indic<strong>at</strong>ing range and the oper<strong>at</strong>or<br />

would secure the HPCI system when the indic<strong>at</strong>ed level reached a point<br />

equivalent to about 13.72 m (540 in.) above vessel zero. The level would<br />

then continue to increase due to the remaining 0.038 m /s (600 GPM) of<br />

RCIC system flow and the he<strong>at</strong>up and expansion of the injected w<strong>at</strong>er, but<br />

<strong>at</strong> a slower r<strong>at</strong>e.<br />

For pressure control, standard procedure is for the oper<strong>at</strong>or to<br />

remote-manually oper<strong>at</strong>e the primary relief valves as necessary to cycle<br />

the reactor vessel pressure between 7.69 and 6.31 MPa (1100 and 900 psig).<br />

This prevents the autom<strong>at</strong>ic actu<strong>at</strong>ion of the relief valves [lowest setpoint:<br />

7.72 MPa (1105 psig)], and since the pressure reduction following<br />

autom<strong>at</strong>ic actu<strong>at</strong>ion is only 0.34 MPa (50 psi), gre<strong>at</strong>ly reduces the total<br />

number of relief valve actu<strong>at</strong>ions. The purpose is to decrease the oppor<br />

tunity for a relief valve to stick open, and to allow the oper<strong>at</strong>or to al<br />

tern<strong>at</strong>e the relief valves which are in effect passing the decay he<strong>at</strong><br />

energy to the pressure suppression pool; this more evenly distributes the<br />

pool he<strong>at</strong>up.<br />

Throughout the period of <strong>St<strong>at</strong>ion</strong> Blackout, the oper<strong>at</strong>or would oper<strong>at</strong>e<br />

the RCIC system intermittently as necessary to maintain the reactor vessel<br />

level in the indic<strong>at</strong>ing range, i.e., between 13.41 and 14.94 m (528 and<br />

588 in.) above vessel zero. Thus, it is expected th<strong>at</strong> the oper<strong>at</strong>or would<br />

turn on the RCIC system <strong>at</strong> an indic<strong>at</strong>ed level of about 13.61 m (538 in.)<br />

and turn the system off <strong>at</strong> about 14.68 m (578 in.). The periods of RCIC<br />

system oper<strong>at</strong>ion would become less frequent as the decay he<strong>at</strong> intensity<br />

subsides during a prolonged <strong>St<strong>at</strong>ion</strong> Blackout; after the first hour, the<br />

oper<strong>at</strong>or would find it necessary to run the RCIC system for only about<br />

one-third of the time. This is illustr<strong>at</strong>ed in Sect. 7.<br />

As previously discussed, the oper<strong>at</strong>or would control reactor vessel<br />

pressure by remote-manual oper<strong>at</strong>ion of the relief valves. It is important<br />

th<strong>at</strong> the oper<strong>at</strong>or take action to begin to lower the reactor vessel pres<br />

sure to about 0.79 MPa (100 psig) within 60 min following the inception of


CO O* cr o Cu CO CO H- cr 3" rt CO "3 VO g o rt rt CO CO rt £ rt o rt TJ rt H- Oh rt CO ~J co Hi rt Oh N rt H- Ul CO X-N rt ii O CU<br />

n> c fD *< *o pJ fD pJ 3 fD cu ZT V! ro u> fD o 3d H- 3 rt l-l H- H- Hi cr CO 3 3 i-J O CO . o 11 3 tl CU H- 3 UI CU OJ ro O<br />

sf<br />

01 e< rt fD rt Oh cu CO < ro CO l-l . 3 3 fD O fD O M o ro H- tl 00 >< rt o rt o H ^< rt o O . 11 o cu g O on<br />

CO fD sS P- 11 *< n c fD fD CO rt CO U) rt CO 3 O cu (-" M 3 o 00 3d « OJ 3 o 3 B ro H- 3 H as ^ 00 Cu rt "C rt Co n M 3 O CU n Hi Tl rt fD 3 rt<br />

CO 3 fD O c rt rt H- O CO CO i-l 3 3 n rt i-i o cr O I-1 -^4 (D to fD ro i-j o rt O 3d H- o h-1 Hi CO ^^ o v-x 3d i 00 prt<br />

e i-( rH rt rt P- I—1 »< ro •—s cr fD M 3 fD rt CU H 3 TJ H- ro O CD 1* 3 H- ro 3d H ro O<br />

g §<br />

fD Hi o<br />

3 XT p. O ^ rt CO CU N3 o 3 CD CO o rt o CU CO Cl H- en cu ^H> O O 3 3 CO h-1 CO rt H- CD O 3<br />

g . p.<br />

Mi CO p- CU CO 3 cu rt l-l B O cu rt cu 3d fD rt 3d O t-t ?r 3 rt CO rt s **• . 3 Hi Oh Oj 3d rt X-N rt Hi Cu 3 O<br />

TJ p. o> rt XT CO CO rt Oh X* fD fD H- o ti r-> 3 O CL 3d cu X) fD o Cl O H- CU cl -~J rt CD fD fD 3 fD 3d 1—H cr < C 3 CO<br />

fD n ro rt O P- cr o fD B 00 o CL V< a 3 fD rt ro J-i 3 ft CO o H rt rt U3 3d o rt o CO fD fD o ro rt ro Co O M<br />

rt p. cu e g<br />

CO CO 3 fD 3 CO o \T Tl M H H i-j 3 rt O CO H- H-J cr fD fD M "~< CO H- n 1 o cr 1 M O Co<br />

CU fD cu 3 i—1<br />

1 fD I-l "3 rt fD CU 3 rt s_^ CO CO r* Cl fD s rt CO H- . rt O TJ O H- H- g s fD 3 00 fD fD O o o H- Co<br />

O<br />

H.<br />

rr 3 3 rt a. o o O s3 O I-"- fD 3 3d n h-1 H- 3d rt 11 -3 cr> O Hi CU 3 a CD TJ TJ O 3 CD CO 3 CO M O Tl o CO 00 Cu ?r<br />

c rr a. I-l rt l-l ro H- rt CO i-l cr cu Cl C M cr H- CO ro O fD 3d KJ rt cr H- fD CU TJ O rt ro fD CO H- O *-^» o ro O rt o<br />

rl o a ^< P- M<br />

rt fD 3 H- cu fD 3 rt n ro ro ro H H- CO ro i-1 CO rt n H •« ro H- Cu Oj cu ro h-1 cr M CO rt rt 3<br />

— (0 TJ o Tl cu O cu 3 O n rt O- O Hi %» CO CU h-1 S O 3 fD I-" CD fD CO H CL 3 CD H Hi Oj N—^ Oj o Co 3 CO rt<br />

i-i . fD P- 3 CO 3 rt 3 M ro l-l 3 Oh rt ti 0 g 3 ro TJ rt CO CL rt ^"N CU CD CL fD Hi < 3 fD X < p* CL CL 3d ro fD o CO h-1 CO o UI to 3 fD CO rt H- TJ o rt »* 00 H CD rt fD rt CO O 3d CD<br />

i-l CO xr O B H- fD n O 3 fD CD Cl g n H- rt CO s3 3 CL H rt X 3d rt CO rt 3d Co . ro fD Cu ro Cl Hi<br />

cu rt •->* O fD 3* o O rt TJ 1—' l-l o 3 Cu O OJ CO P CU O fD H- fD CU 3 fD CU O H- ro 3d H» CD ro sS 3 OJ o cu D rt •1 Cu P-<br />

CO O ^4 I-h Cu o CO c ro fD H- i-i 3 rt 3 rt rt fD s; rt ^ h-> 3 H < 11 3 CO H rt B H- 00 O Oh o i-1 H H- rt rt Co *< rt CO<br />

Ul O £ fD i-( i-i CU H- Hi i-i ro 3" 3d 3 ro CL M H- CU 3 Oh 3 rt H- 3 n 3 fD Hi O O ?r XT C/3<br />

%<br />

TJ !-( rt rr i-l rt cu l-l Oh H- cr H- 3 CD CO H- CO cr s "3 Co H M rt O cr g H rt O 3 I-- fD Oh ii fD fD fD rt 3<br />

o c cu 3" O rt p. ro XT rt "^ fD 3 rD 3 3 0 "< 0 rt fD cu O rt 3 fD •^xS cr 3 o H- rt O rt CL X X^s ro TJ rt ro 3 H" Co fD<br />

OJ<br />

M<br />

CO 5 3 fD i-l p* 3 3 cu c fD 3 00 i-i CD cr n rt O fD C B Ul fD 3 Cl fD fD < X rt O<br />

1—1 "^<br />

CO a. 5 On rt rt i-l H- rt o. fD ro CO rt rt o fD M g CU O CO s3 rt H H- ro H- ro 00 rt fD 00 CO H B fD n<br />

1 P- ro<br />

5.<br />

P- rr ?o < rt p. pj ft> 3 ZT . Hi CO CO c fD CO 3d S i-l rt cr H- TJ O ro H- •~< 3 O On H 3d 3 K- 3 O TJ CO fD rt H> O CD<br />

cr 3- 3<br />

h- O fD o VT, 3 1 CO ro H* CO Xi<br />

1 i-i fD fD s 3d fD 3 CO 3 rt i- « 00 < o 3 H- H CO o m fD CO ro rt fD CD<br />

i cu<br />

i—' fD ro 1—| CO CX CU O pi rt CO rt 3 o Xi m i-i rt Cu fD H CO H> rt o 3d h> ro fD o rt fD H- Tl fD H* •1 fD Oj 3d B CO<br />

fD Ui o CO e rt fD n i-l ro 1—i i-i 3 M fD rt fD rt 00<br />

H,<br />

H o 00 h"0 CO TJ fD *< Cu < '^w' X < cu 1—' H- TJ 1 co 1<br />

fD fD x ro rt c rt) O O Co V3 cr CL O g fD l-l o Co w O 3 CU • H- O CO CO rt fD<br />

o<br />

. O fD rt rt 3 fD "-< 1—' ^^<br />

rr "3 CO pj p. O. p. B I-j. i CO Hl I-1 cr V! ro CU O -3 •I fD Hi < M CL 3 VO rt fD H- rt O fD ro Cl 3 o 3d tl Co<br />

o 1—1 CO "-< a CO fD < ro ^H rt O i-1 H- CD l-l ro M cu Oh H- O CU fD H-00 3d Hi 3 CL CO . 1 o fD O CO 1 n cr<br />

CJ p. CO p.i no cr rt l-i cu 3 CD 3d CO 3 ro CO o H- fD 3d H P- H- l-l H- 3 < rt H- n < 3 s—^ ro JU W CO fD o 3 rt fD CO H- Oh S2 3d O Hi «. CO<br />

S cr cu i-i fD H v; i-i o H- o C/3 CO H- H •3 Hi fD ro CU Hi fD m . o ro 11 O TJ TJ CO CO CO 3 3 3 3 s ro<br />

p. p. H 3<br />

& O xr fD a CO o n rt •<br />

3 O fD rt fD o 3 M<br />

CO TJ o Hi o o rt h H rt H* B, O ** H- H H- cu<br />

. ^<br />

N 3 3* Dh (—i O ro TJ H-1 o C o CU 00 3 0 l-l l-l CO M < < TJ tl Tl Co O g o O H- H- O < cr 11 fD O h-1 Co 3 o<br />

fD fD P- rt O i-i cu cr M i-i o rt 00 O Co 3 V5 CD CU TJ H M ro w B 11 ti H B B fD H- fD Oj a" cu M M Oj Hi<br />

«# CO CO 3d 3 Ipy o O ^ *<br />

p.i fD fD rt l—l O fD cu X) CO cu Co to . H fD H- H- Cl rt H- fD ro o rt rt K3 Oj M 3 H r-1 h-1 B < fD H- O X<br />

O<br />

p.i £T<br />

fD n cu *rt I-h 3 3 p. P- cu O CO O 3 (D 3" o rt H M ro O *< l-l rt CO TJ rt o o H TJ 3 00 11 H- Hi ,Q cu ii CD fD n CL ro 1—'<br />

fD CO rt Cu O CO o l-l . fD Co l-t O c 3d 3d H- CO H CO rt H- . 3d fD 3 3 O fD CO rt fD 3 3 g CO fD sS 11 cu cu °- "!? o<br />

cu o n p. 3 rt 3 1—' (U c rt H- fD g 3 CO rt 3d rt 3 O O tl ro CO •^j H Hi O H CD B


p TJ Cu rt rt rt Oj cr rt CO B n Co o rt pj r1 Oj »i M rt rt CO TJ P- O co Oh P- rt O rr 3 o rt O rt r> rt CU Hi < p. Hi<br />

O 3 cr cr •I ro XT Co CO fD P.<br />

8 3 o Cu o o H fD O cr p- n •1 CO n p- P- 3 O Hi fD O CU p. 3 p. XT XT 3 O p. a O<br />

fD p- 3<br />

to •1 rt CO On o<br />

3 n<br />

ft ro<br />

3 1 rt p- fD rt pj ro ^ > rt<br />

XT ^ O 3 fD O rt O to Cu X O<br />

3 rr TJ rt O Co fD O- 3 OjOO n<br />

o 00<br />

3 p- < O Co o<br />

h rt rt<br />

CU ro 3 rj rt fD<br />

1 rt o 00 TJ to CU CO p-1 pj O rt cu CO < - ro 00 1 o CO o P- O 03 -«r m fD XT XT o cr O Co CO 00 TJ rt Oj CO p.<br />

. 3d TJ H s M XT -< -< ii XT 3 to rt M 3 rt S . o<br />

Pi<br />

S" 3 Cl O fD o . Cu fD to cu fD Pi u p- ii H fD O 3- XT a H<br />

sf fD to XT p- 3 P1 fD •<br />

3<br />

fD to rt cu CO p. cr pj P- ro XT<br />

fD pj Oh 3 CO 3 rt c 3 fD O cr CD p. to O rt CO LJ- XT<br />

rt CO 11 to CD TJ 3 rr NJ CL n CO • fD N<br />

B<br />

§ to rt ro rt ro Tj CC 3 VJ rt O Hi ro 3 3 XT rt to ro<br />

rt fD CO CU 01 . . TJ O n M rt ro ro Co fD 3 o H O Co Cl rt i. H CO 11 TJ cr 01 P- pj CO cr rt TJ rt Co co 0 hj<br />

fD fD 3 rt 3 rt tl 3d Hi H NJ o 3 p- p-> • H rt rt XT 3 O XT ro O ro fD p- 3 3 XT rl i-i fD 11 03 rt rt rt ro<br />

t-( TJ O O XT o ro * O P- TJ cr S3 P- rt co M CL CO 00 CL O fD rD 00 ro i. p. p.<br />

H* > TJ H<br />

§•<br />

i Cu Cu CO P- 1—' H fD fD 3 TJ CL o XT o n tl 01 tl P- ^< CO XT CO O 03 3 . fD pJ-O p. 03 p-<br />

fD<br />

O O Co<br />

TJ 11 rt 3 01 rt XT CO XT O i cr 3 CO Cu o 1 fD 3 cr to 3 TJ 01 CO rt CL 3 P- 3 3 fD CO rt 3 3 3 hi<br />

CO TJ ro XT Co 3 XT to B to CO rt rt fD P- O TJ rt MTJ o o < CU rt o 3 M CU H 3 rD CC 3 XT ro p. CO H 3 3* Oh ro<br />

fD CD CU P-1 rt cr •I to CO Hi UJCD TJ P- O oi oo rt XT P- o TJ cu to CL XT 3 fD 3 fD 3 CL & Hi to P- O Hi r| ro t-i fD fD<br />

H- 3 CO CO<br />

01 XT ro ro CL P* --— to tl O CO XT P- to rt 3 3 fD 3 3 fD to rt rt < TJ s3 Hi 3 3 fD rr fD *3 1—1 Co<br />

CO<br />

CU<br />

CL p" •1 to O O CO CU 3 TJ 3 O H XT 00 fD H rt .O XT ro Pi 01 CO rS P- TJ < Oj O rt CO fD Co 3<br />

P*<br />

o<br />

B<br />

cu<br />

TJ<br />

X<br />

3 g ro rr CD TJ o S3 01 *< tl H O 3 ro fD 11 PJ cr 3 K -^j to M 3 3<br />

CD < n ro CO rt CO XT CO < 3 0 Oj<br />

o O 3 p- ro Hi s~^ >«", /—N to fD O Hi rt to rt Co CO h- OjTJ ft to p- H fD cr pj Hi 3d to 3 CO Oj •r h-1<br />

CO 3 o TJ 1 00 ii S OJ CO CO r1 < 3 O Hi P- O P- fD XT rt rt . TJ «3 P- TJ M cu H ro pi n ro rt *< TJ to i—i rt Hi o 3 1 CO CL o- P- fD ro K- H pi O 1 pJ i. 3 o rt fD fD CD TJ pj 3 3 XT<br />

3 o TJ to ii ro cu rt cr 3 »• ro CD O 3 01 CO M O o 01 H O ro P1 Cu fD cr rt Oh P- TJ CD X3 p. 3 rj Co rr rt to CO<br />

g Hi o 3


36<br />

7. COMPUTER PREDICTION OF THERMAL-HYDRAULIC<br />

PARAMETERS FOR NORMAL RECOVERY<br />

7.1 Introduction<br />

The purpose of this chapter is to present the results of BWR-LACP<br />

calcul<strong>at</strong>ions (see Sect. 4) of system behavior for two different portions<br />

of the <strong>St<strong>at</strong>ion</strong> Blackout:<br />

1. Normal Recovery: DC power from the unit b<strong>at</strong>tery remains available<br />

during this period; therefore RCIC and HPCI injection flows are assumed<br />

available throughout, and<br />

2. Loss of 250 vdc B<strong>at</strong>teries: The b<strong>at</strong>teries are assumed to fail after<br />

four hours, causing failure of RCIC and HPCI injection, ultim<strong>at</strong>ely leading<br />

to uncovering of the core about eight hours after the <strong>blackout</strong>.<br />

The normal recovery portion of the <strong>St<strong>at</strong>ion</strong> Blackout is discussed in<br />

detail in Sects. 3 and 6. Oper<strong>at</strong>or actions assumed here are consistent<br />

with those sections. Results were calcul<strong>at</strong>ed to five hours* for normal<br />

recovery in order to provide some overlap with the MARCH code severe ac<br />

cident calcul<strong>at</strong>ions (see Sects. 9 and 10), which assume th<strong>at</strong> the boil-off<br />

begins after four hours from a fully pressurized condition. The Loss of<br />

250 vdc B<strong>at</strong>teries results are given in this section in order to provide an<br />

estim<strong>at</strong>e of system behavior possible after loss of dc power if the plant<br />

is depressurized during the normal recovery period.<br />

7.2 Conclusions<br />

Major conclusions drawn from the calcul<strong>at</strong>ed results are given below,<br />

succeeded by a detailed discussion of code input assumptions and transient<br />

results.<br />

7.2.1 Normal Recovery — Conclusions<br />

If power were recovered within five hours of the inception of the<br />

<strong>St<strong>at</strong>ion</strong> Blackout, a normal recovery would be possible. System parameters<br />

are within acceptable ranges after five hours:<br />

1. The 250 vdc b<strong>at</strong>teries, by assumption, last the full five hours.<br />

2. Reactor vessel level is within the normal control range, about 5.08 m<br />

(200 in.) above the top of active fuel.<br />

3. Reactor vessel pressure is being controlled <strong>at</strong> about 0.69 MPa (100<br />

psia).<br />

4. About 354 m3 (93,500 gal.) of w<strong>at</strong>er have been pumped from the Con<br />

dens<strong>at</strong>e Storage Tanks, which had an assured capacity of 511 m3<br />

(135,000 gal.) before the <strong>blackout</strong>.<br />

5. Suppression pool temper<strong>at</strong>ure is about 82°C (180°F), but this should<br />

not be a problem for the T-quencher type of SRV discharge header pip<br />

ing.<br />

6. Containment pressures are elev<strong>at</strong>ed to about 0.17 MPa (25 psia), well<br />

below the 0.53 MPa (76.5 psia) design pressure.<br />

*These results are extended to seven hours in Appendix G.


37<br />

7. Drywell <strong>at</strong>mosphere temper<strong>at</strong>ure is below the 138°C (281°F) design tem<br />

per<strong>at</strong>ure.<br />

7.2.2 Loss of 250 vdc B<strong>at</strong>teries — Conclusions<br />

The results of this transient show very clearly how fuel damage is<br />

postponed because the reactor vessel was depressurized early in the Sta-t<br />

tion Blackout:<br />

1. The repressuriz<strong>at</strong>ion time after loss of the 250 vdc b<strong>at</strong>teries is<br />

gre<strong>at</strong>er than one hour, during which time there is no significant<br />

coolant loss from the reactor vessel.<br />

2. When the boil-off does begin, it takes a much longer time to uncover<br />

fuel because of the higher starting inventory of w<strong>at</strong>er.<br />

Although fuel damage is significantly delayed, the ability to avoid<br />

ultim<strong>at</strong>e fuel damage is compromised because of the elev<strong>at</strong>ed drywell tem<br />

per<strong>at</strong>ure experienced after loss of the 250 vdc b<strong>at</strong>teries. As discussed in<br />

Sect. 3, a containment temper<strong>at</strong>ure of 149°C (300°F) would not prevent nor<br />

mal recovery. This temper<strong>at</strong>ure is reached about 40 min. after loss of the<br />

b<strong>at</strong>teries. At about four hours after the b<strong>at</strong>tery loss, the fuel is begin<br />

ning to be uncovered, and the drywell temper<strong>at</strong>ure is above 191°C (375°F).<br />

This elev<strong>at</strong>ed temper<strong>at</strong>ure may cause failure of the drywell electrical pen<br />

etr<strong>at</strong>ions and may fail the solenoid oper<strong>at</strong>ors necessary for oper<strong>at</strong>ion of<br />

the SRVs, inner isol<strong>at</strong>ion valves, and containment cooler dampers (which<br />

fail closed on loss of AC power). Even if electrical power were fully re<br />

stored <strong>at</strong> this point, considerable oper<strong>at</strong>or ingenuity would be required to<br />

effect a normal recovery if the MSIV and SRV solenoid oper<strong>at</strong>ors have<br />

failed.<br />

In addition, the chances for a normal recovery are compromised by the<br />

elev<strong>at</strong>ed suppression pool temper<strong>at</strong>ures experienced <strong>at</strong> the end of the tran<br />

sient. Condens<strong>at</strong>ion oscill<strong>at</strong>ion during SRV discharge (see Appendix D),<br />

which can damage the suppression pool pressure boundary, becomes more<br />

likely <strong>at</strong> higher pool temper<strong>at</strong>ures. Steam discharge without oscill<strong>at</strong>ion<br />

from the <strong>Browns</strong> <strong>Ferry</strong> T-quencher type discharge piping is assured up to<br />

88°C (190°F), but average pool temper<strong>at</strong>ure <strong>at</strong> the end of the Loss of 250<br />

vdc B<strong>at</strong>teries calcul<strong>at</strong>ion is above 93°C (200°F).<br />

7.3.1 Normal Recovery — Assumptions<br />

7.3 Normal Recovery<br />

Assumptions specific to programming and input prepar<strong>at</strong>ion for the<br />

normal recovery calcul<strong>at</strong>ion include:<br />

1. The calcul<strong>at</strong>ion begins 30 s following the <strong>St<strong>at</strong>ion</strong> Blackout initi<strong>at</strong>ion<br />

with the reactor tripped and the main steam isol<strong>at</strong>ion valves closed.<br />

Values for system parameters <strong>at</strong> the 30-s point are taken from the re<br />

sults reported by Sect. 14.5.4.4 of the <strong>Browns</strong> <strong>Ferry</strong> FSAR. The cal<br />

cul<strong>at</strong>ion ends <strong>at</strong> the 5 hour point.<br />

2. The RCIC system is used in an on-off mode to control vessel level be<br />

tween 13.7 m (538 in.) and 14.7 m (578 in.) above vessel zero. The


38<br />

HPCI system is actu<strong>at</strong>ed only when level is more than 0.25 m (10 in.)<br />

below the 13.4-m (528-in.) lower limit of control room indic<strong>at</strong>ion<br />

under <strong>St<strong>at</strong>ion</strong> Blackout conditions. Suction for both systems is from<br />

the condens<strong>at</strong>e storage tank (CST). The oper<strong>at</strong>ors actu<strong>at</strong>e HPCI and<br />

RCIC 1 min. after the <strong>blackout</strong>.<br />

3. Following 1 min. of autom<strong>at</strong>ic SRV actu<strong>at</strong>ion, reactor pressure is con<br />

trolled by remote-manual actu<strong>at</strong>ion of the SRVs. Control range dur<br />

ing the first hour is 7.52 MPa (1090 psia) to 6.31 MPa (915 psia).<br />

After 1 hour the reactor is depressurized to about 0.79 MPa (115<br />

psia) <strong>at</strong> a r<strong>at</strong>e consistent with the 55.6°C/h (100°F/h) cooldown r<strong>at</strong>e<br />

limit. After depressuriz<strong>at</strong>ion, pressure is controlled between 0.62<br />

MPa (90 psia) and 0.86 MPa (125 psia).<br />

Manual sequential SRV action is used to spread SRV discharge around<br />

the suppression pool and thereby avoid localized he<strong>at</strong>ing of the pool.<br />

4. The assumed reactor system leakage into the drywell is 0.0089 m /s<br />

(4 gpm).<br />

7.3.2 Normal Recovery — Results<br />

Results for normal recovery are shown on Figs. 7.1 through 7.9.<br />

Each system variable is discussed below.<br />

7.3.2.1 Reactor vessel pressure. Figure 7.1 shows reactor vessel<br />

pressure. During the first minute, reactor pressure cycles between 7.72<br />

MPa (1120 psia) and 7.38 MPa (1070 psia) on autom<strong>at</strong>ic SRV actu<strong>at</strong>ion.<br />

After 1 min. the oper<strong>at</strong>or opens one SRV to lower pressure to 6.31 MPa (915<br />

psia). Since the HPCI is running, pressure continues to decrease to below<br />

6.21 MPa (900 psia) until the HPCI is shut down. During the first hour a<br />

single SRV is cycled open and shut seven times to keep pressure in the de<br />

sired range.<br />

After one hour, the depressuriz<strong>at</strong>ion begins. Initially, intermittent<br />

oper<strong>at</strong>ion of one SRV is sufficient to meet the target depressuriz<strong>at</strong>ion<br />

r<strong>at</strong>e [i.e., 55.6°C (100°F)/h], As pressure decreases, the r<strong>at</strong>e of de<br />

crease begins to slow until finally an additional SRV is opened. For<br />

choked flow of dry steam, the mass flow r<strong>at</strong>e is linearly proportional to<br />

reactor pressure . Therefore an extra valve is required <strong>at</strong> the lower pre<br />

ssure. When depressuriz<strong>at</strong>ion is complete, the oper<strong>at</strong>or controls pressure<br />

between 0.62 and 0.86 MPa (90 and 125 psia).<br />

After depressuriz<strong>at</strong>ion, the steam flow through one SRV is nearly<br />

equal to the core steaming r<strong>at</strong>e, resulting in much slower pressure change.<br />

Under these conditions, the most rapid pressure change is caused by the<br />

RCIC system. When RCIC comes on the 600 gpm injection of cold w<strong>at</strong>er tends<br />

to lower the core steaming r<strong>at</strong>e, causing pressure to decrease. This ef<br />

fect can be seen in Fig. 7.1. At 256 min., the RCIC comes on, reducing<br />

pressure until the open SRV is shut. When the RCIC is shut off 23 min.<br />

l<strong>at</strong>er, pressure increases rapidly until the SRV is reopened.<br />

Steam flow from the reactor vessel is shown in Fig. 7.2. The large<br />

spikes are due to SRV actu<strong>at</strong>ion. Also included in the total steam flow<br />

are the smaller amounts of steam flowing to the RCIC and HPCI turbines<br />

when they are running.


UJ<br />

rr<br />

UJ<br />

cc<br />

a.<br />

S<br />

< to-<br />

Pig.<br />

pressure.<br />

150<br />

TIME (min)<br />

ORNL-DWG 81-8489 ETD<br />

7.1 Normal recovery after st<strong>at</strong>ion <strong>blackout</strong> - reactor vessel<br />

300<br />

OJ


5 O<br />

co 9-<br />

LLI<br />

CO<br />

CO<br />

UJ<br />

><br />

.*> 10<br />

< 2<br />

UJ<br />

Ico<br />

uis-fi<br />

co —<br />

CO<br />

LL!<br />

><br />

M<br />

flow.<br />

o<br />

rr<br />

X<br />

o<br />

o<br />

tr<br />

I<br />

r-<br />

o<br />

30<br />

—P"<br />

60<br />

7<br />

U —r~<br />

so<br />

ORNL-DWG 81-8490 ETD<br />

LARGE SPIKES DUE TO INTERMITTENT OPERATOR ACTUATION<br />

OF A SINGLE SRV DURING DEPRESSURIZATION<br />

N<br />

150<br />

TIME (min)<br />

I—OPERATOR OPENS SECOND SRV TO<br />

SPEED DEPRESSURIZATION<br />

LLI<br />

z<br />

CD<br />

CC<br />

I-<br />

O<br />

CJ<br />

CC<br />

X<br />

C5<br />

o<br />

cr<br />

x<br />

H<br />

VESSEL IS<br />

DEPRESSURIZED<br />

FLOW THROUGH<br />

ONE SRV<br />

Fig. 7.2 Normal recovery after st<strong>at</strong>ion <strong>blackout</strong> - vessel steam<br />

270 300<br />

o


41<br />

7.3.2.2 Reactor vessel level — normal recovery. Figure 7 .3 shows<br />

vessel w<strong>at</strong>er level (distance above vessel zero) in the region outside the<br />

core outlet plenum, standpipes, and steam separ<strong>at</strong>ors. This is the level<br />

measured by vessel level instrument<strong>at</strong>ion and available in the control<br />

room. As discussed in Sect. 4, there is a corresponding level of twophase<br />

mixture in and above the core. For an undamaged core in a mild<br />

transient such as <strong>St<strong>at</strong>ion</strong> Blackout, the level of steam/w<strong>at</strong>er mixture in<br />

and above the core will be higher than the downcomer level whenever down<br />

comer level is below the top of the steam separ<strong>at</strong>ors.<br />

Downcomer level is initialized <strong>at</strong> 12.7 m (500 in.) and, <strong>at</strong> first, de<br />

creases rapidly until the oper<strong>at</strong>or initi<strong>at</strong>es injection via the RCIC and<br />

HPCI systems. When level recovers to 13.7 m (540 in.), the oper<strong>at</strong>or shuts<br />

off the HPCI system, and when level reaches 14.7 m (578 in.), the RCIC<br />

injection is shut off. Level continues to increase due to the continuing<br />

he<strong>at</strong>up of the large quantity of cold w<strong>at</strong>er injected by the RCIC and HPCI<br />

systems and due to form<strong>at</strong>ion of additional voids in and above the core as<br />

the steaming r<strong>at</strong>e increases. The level peaks <strong>at</strong> 15.2 m (600 in.). This is<br />

about 0.30 m (12 in.) above the top of the range of level indic<strong>at</strong>ion<br />

available in the control room during <strong>St<strong>at</strong>ion</strong> Blackout.<br />

Control Room level indic<strong>at</strong>ion during a <strong>St<strong>at</strong>ion</strong> Blackout is limited to<br />

a range of 3.66 m (0 to 60 in.) with instrument zero corresponding to<br />

13.41 m (528 in.) above vessel zero, which is the bottom of the reactor<br />

vessel. The basic cycle of RCIC actu<strong>at</strong>ion by the oper<strong>at</strong>or when level<br />

reaches an indic<strong>at</strong>ed 0.25 m (10 in.) and shut-off when level reaches an<br />

indic<strong>at</strong>ed 1.27 m (50 in.) is repe<strong>at</strong>ed eight times on Fig. 7.3. The fine<br />

structure is caused by action of the SRVs. When the SRV opens, vessel<br />

level first swells due to increased steaming, but then begins to decrease<br />

due to inventory loss. When the SRV shuts, level <strong>at</strong> first continues to<br />

decrease due to decrease in steaming r<strong>at</strong>e, but then begins to recover due<br />

to he<strong>at</strong>up of subcooled liquid still within the downcomer.<br />

Injection flow from the CST to the reactor vessel is shown in Fig.<br />

7.4. The oper<strong>at</strong>or controls the RCIC and HPCI systems in an off-on mode in<br />

order to maintain vessel level within the desired control band as speci<br />

fied in Para. 7.3.1.2. The HPCI system is only run during the initial few<br />

minutes. The periods of RCIC system oper<strong>at</strong>ion become less frequent as the<br />

decay he<strong>at</strong> subsides with time. Total injected flow (i.e., total amount of<br />

w<strong>at</strong>er taken from the CST) is shown in Fig. 7.5. The injected total in<br />

creases rapidly <strong>at</strong> first during the brief period of combined HPCI and RCIC<br />

oper<strong>at</strong>ion; the increase is much slower during the subsequent intermittent<br />

periods of RCIC oper<strong>at</strong>ion.<br />

7.3.2.3 Suppression pool level — normal recovery. When steam flows<br />

from the reactor vessel to the suppression pool, it is condensed by the<br />

colder pool w<strong>at</strong>er. Suppression pool level increases both because of the<br />

extra mass of the condensed steam and because of the temper<strong>at</strong>ure increase<br />

of the original pool w<strong>at</strong>er. Suppression pool level is shown in Fig. 7.6,<br />

referenced to instrument zero of the torus. The torus has a 9.45 m (31<br />

ft) inside diameter and instrument zero is 0.1 m (4 in.) below the midplane.<br />

(A zero level indic<strong>at</strong>es the torus is about half filled with<br />

w<strong>at</strong>er.) The pool level is normally maintained between -0.051 and -0.152 m<br />

(—2 and —6 in.) indic<strong>at</strong>ed; an initial pool level of -0.102 m (—4 in.)<br />

was assumed for this analysis. The pool condenses steam both from the


120 150 180<br />

TIME (min)<br />

ORNL-DWG 81-8491 ETD<br />

210 240 270 300<br />

Fig. 7.3 Normal recovery after st<strong>at</strong>ion <strong>blackout</strong> - reactor vessel<br />

level.<br />

ro


8<br />

8-<br />

* o. —' o<br />

u- o.<br />

o<br />

Q to<br />

UJ —^<br />

r-<br />

-? «N.<br />

5000 gpm HPCI PLUS 600 gpm RCIC<br />

TOTAL INJECTED FLOW<br />

HPCI OFF<br />

RCIC OFF<br />

30<br />

—r<br />

60<br />

—r-<br />

90 120<br />

RCIC<br />

ON OFF ON OFF<br />

{ \ { \<br />

150<br />

TIME (min)<br />

—T-<br />

180 210<br />

Fig. 7.4 Normal recovery after st<strong>at</strong>ion <strong>blackout</strong> - injection flow.<br />

ORNL-DWG 81-8492 ETD<br />

240 270 300


O<br />

><br />

Q<br />

UJ<br />

r-<br />

CJ<br />

UJ<br />

<<br />

t °<br />

S-><br />

a<br />

QJ oo<br />

o<br />

><br />

Ch-<br />

ID<br />

ra<br />

UJ<br />

5°<br />

OS<br />

I- -r<br />

flow.<br />

RCIC<br />

OFF ON<br />

4=4 /<br />

30<br />

HPCI OFF<br />

RCIC IS OFF DURING PERIODS WHEN<br />

•INDICATED VESSEL LEVEL IS ABOVE"<br />

DESiRED LOWER LIMIT<br />

/<br />

INJECTION BY COMBINED HPCI<br />

AND RCIC SYSTEMS<br />

T<br />

60 90 120 150<br />

TIME (min)<br />

OFF-<br />

RCIC<br />

ORNL-DWG 81-8493 ETD<br />

180 210 240 270 300<br />

Fig. 7.5 Normal recovery after st<strong>at</strong>ion <strong>blackout</strong> - total injected<br />

4>


o<br />

X<br />

E<br />

^<br />

c<br />

_J<br />

UJ<br />

_l ><br />

UJ UJ<br />

>


46<br />

SRVs and the RCIC and HPCI turbine exhaust. The effect of RCIC turbine<br />

exhaust shows up in Fig. 7.6 as a very slow background r<strong>at</strong>e of increase<br />

against the dominant effect of the SRVs.<br />

7.3.2.4 Suppression chamber temper<strong>at</strong>ures — normal recovery. Sup<br />

pression chamber temper<strong>at</strong>ures are shown in Fig. 7.7. For all practical<br />

purposes, the average pool temper<strong>at</strong>ure responds solely to condens<strong>at</strong>ion of<br />

reactor vessel steam. Therefore, this curve has almost the same shape as<br />

the pool level curve. The pool <strong>at</strong>mosphere can be influenced by mass and<br />

he<strong>at</strong> transfer from the pool w<strong>at</strong>er and by mass transfer from the drywell<br />

<strong>at</strong>mosphere.<br />

During the first 30 min. the suppression chamber <strong>at</strong>mospheric tempera<br />

ture increases rapidly because of mixing with the inflow of hotter gases<br />

from the expanding drywell <strong>at</strong>mosphere. Drywell temper<strong>at</strong>ure (Fig. 7.8) in<br />

creases rapidly <strong>at</strong> first due to loss of the drywell coolers. As a result,<br />

the drywell <strong>at</strong>mosphere expands into the suppression chamber <strong>at</strong>mosphere<br />

through the pool w<strong>at</strong>er via the eight vent pipes, the single ring header,<br />

and the 96 downcomer pipes.<br />

In the long term, mass transfer from the drywell ceases and the sup<br />

pression chamber temper<strong>at</strong>ure continues to increase due to he<strong>at</strong> transfer<br />

and evapor<strong>at</strong>ion from the suppression pool surface.<br />

7.3.2.5 Containment pressures — normal recovery. The suppression<br />

chamber and drywell pressures are shown in Fig. 7.9. The drywell and sup<br />

pression chamber <strong>at</strong>mospheres are coupled in the following manner:<br />

1. When suppression chamber pressure exceeds drywell pressure by 0.00345<br />

MPa (0.5 psi), the vacuum breaker valves will open and allow flow of<br />

suppression chamber <strong>at</strong>mosphere into the drywell.<br />

2. When drywell pressure exceeds suppression chamber pressure by more<br />

than about 0.0121 MPa (1.75 psi), this will clear the 1.22 m (4 ft)<br />

of w<strong>at</strong>er from the downcomer pipes and allow drywell <strong>at</strong>mosphere to<br />

bubble up through the pool w<strong>at</strong>er into the suppression chamber.<br />

Immedi<strong>at</strong>ely after the <strong>St<strong>at</strong>ion</strong> Blackout, drywell pressure increases<br />

rapidly due to the concurrent rapid he<strong>at</strong>up of the drywell <strong>at</strong>mosphere.<br />

Even after the drywell <strong>at</strong>mosphere reaches its peak temper<strong>at</strong>ure and starts<br />

down, the drywell pressure continues to increase under the influence of<br />

the assumed 0.0089 m3/s (4 gpm) leak of hot reactor coolant, some of<br />

which flashes to steam. Throughout the first 2 hours, conditions in the<br />

drywell bring the suppression chamber pressure up <strong>at</strong> about the same r<strong>at</strong>e<br />

by expansion (via the downcomers) into the suppression chamber. After the<br />

first two hours, suppression chamber pressure is increasing faster than<br />

dict<strong>at</strong>ed by the drywell because of increasing r<strong>at</strong>es of he<strong>at</strong> transfer and<br />

evapor<strong>at</strong>ion from the overhe<strong>at</strong>ed suppression pool. After about 190 min.<br />

the pressure is high enough to open the vacuum breakers and cause expan<br />

sion of suppression chamber <strong>at</strong>mosphere back into the drywell.<br />

7.3.2.6 Drywell temper<strong>at</strong>ure — normal recovery. Drywell <strong>at</strong>mosphere<br />

temper<strong>at</strong>ure response is shown in Fig. 7.8. The initial r<strong>at</strong>e of increase<br />

is very rapid because the drywell coolers are lost <strong>at</strong> time zero, and about<br />

half of the 100% power drywell he<strong>at</strong> load is assumed to remain. The r<strong>at</strong>e<br />

of increase becomes much slower when drywell temper<strong>at</strong>ure is high enough


SUPPRESSION CHAMBER TEMPERATURES (°C)<br />

110<br />

l<br />

50 60 70 80 90 100<br />

_l_ _i_ _1_ _1_<br />

40<br />

I<br />

30 L_<br />

SUPPRESSION CHAMBER TEMPERATURES (°F)<br />

130 150 170 190 210<br />

O<br />

-U<br />

z<br />

r-<br />

I<br />

o<br />

S<br />

o<br />

(O<br />

oi<br />

m<br />

H<br />

O<br />

L*i


O<br />

o__<br />

UJ<br />

cr<br />

<<br />

rr<br />

UJ<br />

o.<br />

UJ<br />

t-<br />

UJ<br />

rr<br />

UJ<br />

x<br />

o.<br />

co<br />

O<br />

< -<br />

UJ<br />

><br />

rr<br />

a<br />

o<br />

uv<br />

o<br />

•«r<br />

8r-><br />

r— DEPRESSURIZATION<br />

u. BEGINS<br />

1<br />

UJ<br />

rr i DRYWELL DESIGN TEMPERATURE<br />

P o /<br />

< M<br />

cr<br />

UJ /<br />

a.<br />

5<br />

UJ<br />

H<br />

UJ 0 >-<br />

UJ <br />

I<br />

a.<br />

CO<br />

O<br />

r-<br />

UJ<br />

><br />

cr<br />

Q<br />

o<br />

^ LO-jo ui uii j vvi_i_u<br />

cc;uLcri5<br />

DEPRESSURIZATION—^<br />

COMPLETED<br />

2- i<br />

30 60 90 120 150 180<br />

TIME (min)<br />

210 240<br />

Fig. 7.8 Normal recovery after st<strong>at</strong>ion <strong>blackout</strong> - drywell<br />

temper<strong>at</strong>ures.<br />

ORNL-DWG 81-8496 ETD<br />

270 300<br />

00


a.<br />

o<br />

o<br />

to<br />

LLI<br />

rr<br />

—^<br />

co<br />

CO<br />

UJ<br />


50<br />

to establish n<strong>at</strong>ural convection he<strong>at</strong> transfer to the drywell liner (see<br />

discussion in Sect. 4). Drywell temper<strong>at</strong>ure begins decreasing after about<br />

60 min. because a reactor coolant system (RCS) depressuriz<strong>at</strong>ion is begun<br />

<strong>at</strong> this point. The depressuriz<strong>at</strong>ion reduces s<strong>at</strong>ur<strong>at</strong>ion temper<strong>at</strong>ure within<br />

the RCS, hence surface temper<strong>at</strong>ures of the reactor vessel and piping.<br />

7.4 Loss of 250 vdc B<strong>at</strong>teries<br />

7.4.1 Loss of 250 vdc B<strong>at</strong>teries — Assumptions<br />

Assumptions specific to programming and input prepar<strong>at</strong>ion for the<br />

Loss of 250 vdc B<strong>at</strong>teries calcul<strong>at</strong>ion include:<br />

1. When the b<strong>at</strong>teries are lost, injection capability is lost; in addi<br />

tion, the SRVs can be opened only by autom<strong>at</strong>ic actu<strong>at</strong>ion.<br />

2. Under autom<strong>at</strong>ic actu<strong>at</strong>ion, the lowest set SRV will open <strong>at</strong> about 7.72<br />

MPa (1120 psia) and close <strong>at</strong> about 7.38 MPa (1070 psia).<br />

3. The calcul<strong>at</strong>ion begins 4 h after the <strong>St<strong>at</strong>ion</strong> Blackout and proceeds to<br />

about 8 h.<br />

4. Initial values of system parameters, except reactor vessel level, are<br />

equal to those calcul<strong>at</strong>ed <strong>at</strong> the 4 h point in the normal recovery re<br />

sults (see Figs. 7.1 through 7.9). Reactor vessel level is assumed<br />

to begin <strong>at</strong> 14.2 m (558 in.), the midpoint of the control range as<br />

sumed for the normal recovery calcul<strong>at</strong>ion.<br />

7.4.2 Loss of 250 vdc B<strong>at</strong>teries — Results<br />

Results for the Loss of 250 vdc B<strong>at</strong>teries case are shown in Figs.<br />

7.10 through 7.16. Each system variable is discussed below.<br />

7.4.2.1 Reactor vessel pressure. Reactor vessel pressure is shown<br />

in Fig. 7.10. During the first 90 min., pressure climbs slowly from the<br />

0.86 MPa (125 psia) initial value to the 7.72 MPa (1120 psia) actu<strong>at</strong>ion<br />

point of the lowest set SRV. The r<strong>at</strong>e of increase is slow because the de<br />

cay he<strong>at</strong> after 4 hours is small compared to the thermal inertia of liquid<br />

w<strong>at</strong>er within the vessel.<br />

After repressuriz<strong>at</strong>ion, the pressure is controlled between 7.72 MPa<br />

(1120 psia) and 7.38 MPa (1070 psia) by one SRV, actu<strong>at</strong>ing autom<strong>at</strong>ically.<br />

As shown in Fig. 7.11, no steam flows from the vessel until pressure re<br />

aches the SRV autom<strong>at</strong>ic actu<strong>at</strong>ion setpoint.<br />

7.4.2.2 Reactor vessel level. Reactor vessel level is shown in Fig.<br />

7.12. No injection is provided <strong>at</strong> any time in this transient, since DC<br />

power is assumed lost.<br />

The initial response of level is a brief but rapid decrease caused by<br />

closing of the previously open SRV <strong>at</strong> time zero. Within several minutes<br />

level begins slowly rising and peaks <strong>at</strong> about 15.88 m (625 in.). Level<br />

swells during repressuriz<strong>at</strong>ion because the large mass of w<strong>at</strong>er in the ves<br />

sel is he<strong>at</strong>ed from about 165°C (330°F) to about 288°C (550°F) with about a<br />

25% increase in specific volume, and there is no coolant loss (other than<br />

the assumed leakage) during repressuriz<strong>at</strong>ion.


360 390 420<br />

TIME (min)<br />

Fig. 7.10 Loss of 250 VDC b<strong>at</strong>teries - reactor vessel pressure.<br />

ORNL-DWG 81-8498 ETD<br />

ij.


i. o. =<br />

•? 5<br />

o o<br />

_l _l<br />

LL o<br />

(O<br />

?<br />

u.<br />

S<br />

< < —<br />

11J LU<br />

1-<br />

CO<br />

in<br />

H<br />

co<br />

in<br />

in-<br />

_1 _l o<br />

UI LU o<br />

'<br />

"0 CO *<br />

CO<br />

CO<br />

LU<br />

><br />

JT<br />

LU<br />

><br />

NO STEAM FLOW FROM<br />

VESSEL DUE TO LOSS<br />

OF RCIC TURBINE AND<br />

REMOTE-MANUAL SRV<br />

CAPABILITY<br />

240 270<br />

—I—<br />

300<br />

AUTOMATIC ACTUATION OF<br />

LOWEST SET SRV<br />

330 360 390 420<br />

TIME (min)<br />

450<br />

ORNL-DWG 81-8499 ETD<br />

CALCULATIONS<br />

STOPPED<br />

Fig. 7.11 Loss of 250 VDC b<strong>at</strong>teries - vessel steam flow.<br />

480 51C 540<br />

ro


240 270 300 330 360 390 420<br />

TIME (min)<br />

Fig. 7.12 Loss of 250 VDC b<strong>at</strong>teries - vessel level.<br />

ORNL-DWG 81-8500 ETD<br />

450 480 510 540<br />

OJ


54<br />

After repressuriz<strong>at</strong>ion, the SRVs begin to discharge steam so level<br />

decreases throughout the remainder of the transient. Fuel is beginning to<br />

be uncovered <strong>at</strong> the end of the transient.<br />

7.4.2.3 Suppression pool level. The suppression pool level is shown<br />

in Fig. 7.13. During the first 90 min., there is no SRV discharge, so<br />

pool level is constant. After SRV discharge resumes, the pool level be<br />

gins increasing steadily.<br />

7.4.2.4 Suppression chamber temper<strong>at</strong>ures. Figure 7.14 shows sup<br />

pression pool and suppression chamber <strong>at</strong>mosphere temper<strong>at</strong>ure. Pool tem<br />

per<strong>at</strong>ure, like pool level, is constant for the first 90 min. and then be<br />

gins a steady increase. Atmosphere temper<strong>at</strong>ure continues to rise during<br />

the first hour due to he<strong>at</strong> transfer and evapor<strong>at</strong>ion from the pool sur<br />

face. Atmosphere temper<strong>at</strong>ure rise acceler<strong>at</strong>es slightly between the first<br />

and second hours due to an influx from the expanding drywell <strong>at</strong>mosphere.<br />

After about 2 hours, the mass interchange ceases, and the suppression<br />

chamber <strong>at</strong>mosphere temper<strong>at</strong>ure is responding solely to the increasing pool<br />

temper<strong>at</strong>ure.<br />

7.4.2.5 Containment pressures. Figure 7.15 shows containment pre<br />

ssures. During the first 90 min., drywell pressure increases rapidly due<br />

to he<strong>at</strong>up of the drywell <strong>at</strong>mosphere during repressuriz<strong>at</strong>ion. This brings<br />

drywell pressure from slightly below suppression chamber pressure to about<br />

0.0125 MPa (1.8 psi) above, allowing some drywell <strong>at</strong>mosphere to expand<br />

into the suppression chamber. After about 2 hours, the drywell and sup<br />

pression chamber pressures are increasing independently <strong>at</strong> about the same<br />

r<strong>at</strong>e, with little mass interchange.<br />

7.4.2.6 Drywell <strong>at</strong>mosphere temper<strong>at</strong>ure. Drywell <strong>at</strong>mosphere tempera<br />

ture is shown in Fig. 7.16. During the repressuriz<strong>at</strong>ion, the coolant tem<br />

per<strong>at</strong>ure within the reactor vessel increases by over 111 C° (200 F°),<br />

thereby increasing the drywell he<strong>at</strong> source. Atmosphere temper<strong>at</strong>ure rises<br />

to new quasi-equilibrium values, with increased n<strong>at</strong>ural circul<strong>at</strong>ion he<strong>at</strong><br />

transfer from the <strong>at</strong>mosphere to the drywell liner. After repressuriza<br />

tion, the coolant temper<strong>at</strong>ure becomes approxim<strong>at</strong>ely constant, and the tem<br />

per<strong>at</strong>ure of the drywell <strong>at</strong>mosphere rises more slowly <strong>at</strong> a r<strong>at</strong>e limited by<br />

the thermal inertia of the liner.


o<br />

X<br />

o<br />

o<br />

a.<br />

z<br />

o<br />

LU<br />

cc<br />

a.<br />

a.<br />

3<br />

to<br />

.= o<br />

-I<br />

UJ<br />

><br />

LU<br />

_l<br />

_l<br />

o<br />

0D_<br />

O to<br />

rs. ^<br />

Z<br />

o<br />

to<br />

t/><br />

LU<br />

CC<br />

a.<br />

0- o,.<br />

3 <br />

CO<br />

OJi<br />

i<br />

"'<br />

i—- NO DISCHARGE<br />

INTO POOL ^<br />

\— INTERMITTENT SRV DISCHARGE<br />

INTO POOL BEGINS WHEN VESSEL<br />

PRESSURE REACHES SETPOINT<br />

OF LOWEST SET SRV<br />

240 270 300 330 360 390 420 450<br />

TIME (min)<br />

Fig. 7.13 Loss of 250 VDC b<strong>at</strong>teries - suppression pool level.<br />

ORNL-DWG 81-8501 ETD<br />

460 510 540<br />

UI<br />

Ln


to<br />

UJ<br />

rr<br />

5 LU<br />

I— O<br />

rr<br />

LU<br />

m<br />

< <<br />

X t^- I<br />

o O<br />

z z<br />

o o<br />

8<br />

to<br />

o_ (O<br />

UJ UJ<br />

cc rr<br />

Q_ Q.<br />

CL. a.<br />

D D<br />

CO to<br />

o_<br />

•—CONTINUED HEATUP BY HEAT<br />

AND MASS TRANSFER FROM<br />

HOTTER POOL<br />

8- 240 270 300 330 360 390 420<br />

-POOL TEMPERATURE INCREASES WHEN<br />

SRV DISCHARGE RESUMES<br />

HEATUP ACCELERATES DUE TO INFLUX<br />

"OF HOTTER DRYWELL ATMOSPHERE<br />

VIA DOWNCOMERS<br />

TIME (min)<br />

450 480<br />

Fig. 7.14 Loss of 250 VDC b<strong>at</strong>teries - suppression chamber<br />

temper<strong>at</strong>ures.<br />

ORNL-DWG 81-8502 ETD<br />

510 540<br />

Ln<br />

ON


Fig. 7.15 Loss of 250 VDC b<strong>at</strong>teries - containment pressures.<br />

ORNL-DWG 81-8503 ETD<br />

510 540<br />

Ui<br />

--J


o<br />

o__<br />

UJ<br />

cc<br />

o<br />

o-<br />

(N<br />

ATMOSPHE100 1<br />

07<br />

o_<br />

UJ<br />

cc<br />

^H<br />

o<br />

in<br />

to<br />

SRV DISCHARGE BEGINS<br />

SLOWER INCREASE BECAUSE REACTOR<br />

VESSEL TEMPERATURE APPROXIMATELY<br />

CONSTANT __j^<br />

1— lt>-<br />

< —<br />

CC<br />

UJ<br />

0.<br />

<br />

cc<br />

o<br />

o<br />

o<br />

\—DR<br />

VWELL TE VIPERATU RE INCRE/ \SES<br />

AS REACTOR VESSEL COOLANT<br />

TEI\ /IPERATUR E INCREASES<br />

240 270 300 330 360 390 420<br />

TIME (min)<br />

DRYWELL DESIGN TEMPERATURE<br />

450 480<br />

Fig. 7.16 Loss of 250 VDC b<strong>at</strong>teries - drywell <strong>at</strong>mosphere<br />

temper<strong>at</strong>ure.<br />

ORNL-DWG 81-8504 ETD<br />

510 540<br />

en<br />

oo


59<br />

8. FAILURES LEADING TO A SEVERE ACCIDENT<br />

As discussed in Sect. 3, control can be maintained over reactor ves<br />

sel pressure and w<strong>at</strong>er level <strong>at</strong> <strong>Browns</strong> <strong>Ferry</strong> <strong>Unit</strong> 1 for a significant<br />

period of time during a <strong>St<strong>at</strong>ion</strong> Blackout provided the installed equipment<br />

oper<strong>at</strong>es as designed and the oper<strong>at</strong>or takes the required actions. The<br />

first objective of this Section is to briefly discuss the other sequences<br />

which might occur given significant secondary independent equipment fail<br />

ures or improper oper<strong>at</strong>or actions. Subsequently, the equipment failures<br />

which have the potential to directly convert the rel<strong>at</strong>ively stable period<br />

of level and pressure control of the isol<strong>at</strong>ed reactor vessel during the<br />

early stages of a <strong>St<strong>at</strong>ion</strong> Blackout into a Severe Accident will be dis<br />

cussed in detail.<br />

The several sequences which are considered most probable in a <strong>St<strong>at</strong>ion</strong><br />

Blackout during the period in which DC power remains available are dis<br />

played in the "event tree" of Fig. 8.1. Each of these sequences is dis<br />

cussed below.<br />

Sequence 1; Following the complete loss of AC power, the oper<strong>at</strong>or<br />

takes remote-manual control of the RCIC system and maintains the reactor<br />

vessel w<strong>at</strong>er level within the limits of the available Control Room indica<br />

tion. Since the RCIC System is being used for level control, the st<strong>at</strong>us<br />

of the HPCI system is not a factor in this sequence. The oper<strong>at</strong>or also<br />

controls the reactor vessel pressure by remote-manual oper<strong>at</strong>ion of the<br />

primary relief valves and takes action to begin depressuriz<strong>at</strong>ion of the<br />

reactor vessel within one hour; this lowers the temper<strong>at</strong>ure of the s<strong>at</strong>u<br />

r<strong>at</strong>ed liquid within the vessel and thereby decreases the driving potential<br />

for he<strong>at</strong> transfer into the drywell <strong>at</strong>mosphere. As a result of this de<br />

pressuriz<strong>at</strong>ion, the maximum average ambient temper<strong>at</strong>ure in the drywell is<br />

limited to 148.9°C (300°F), as discussed in Sect. 3. The oper<strong>at</strong>or will be<br />

able to maintain reactor vessel level and pressure control for as long as<br />

DC power is available from the <strong>Unit</strong> B<strong>at</strong>tery. This is considered to be the<br />

most realistic sequence should a <strong>St<strong>at</strong>ion</strong> Blackout occur, and served as the<br />

basis for the plots of thermohydraulic parameters as functions of time<br />

which were presented in Sect. 7. This sequence will also serve as the<br />

starting point for the degraded accident behavior discussed in Section 9<br />

in which the <strong>St<strong>at</strong>ion</strong> Blackout develops into a Severe Accident when DC<br />

power is lost so th<strong>at</strong> cooling w<strong>at</strong>er can no longer be injected into the re<br />

actor vessel.<br />

Sequence 2; This sequence differs from Sequence 1 only in th<strong>at</strong> the<br />

oper<strong>at</strong>or does not act to depressurize the reactor vessel. The average<br />

ambient drywell temper<strong>at</strong>ure continues to increase beyond the one-hour<br />

point, reaching 176.7°C (350°F) about four hours after the inception of<br />

the <strong>St<strong>at</strong>ion</strong> Blackout (cf. Curve A of Fig. 3.3). This excessive tempera<br />

ture existing over a period of several hours can cause serious damage to<br />

the equipment loc<strong>at</strong>ed within the drywell and a breaching of the primary<br />

containment due to failure of the drywell electrical penetr<strong>at</strong>ion assembly<br />

seals. If the DC solenoid oper<strong>at</strong>ors for the primary relief valves fail<br />

because of the excessive temper<strong>at</strong>ure, the oper<strong>at</strong>or will lose remote-manual<br />

relief valve control. If the solenoid oper<strong>at</strong>ors for the inboard Main<br />

Steam Isol<strong>at</strong>ion Valves also fail, the oper<strong>at</strong>or will be unable to depres<br />

surize the reactor vessel through the primary relief valves even after AC


COMPLETE LOSS<br />

OF AC POWER<br />

OPERATOR ACTION<br />

TO CONTROL LEVEL<br />

AND RCIC OPERABLE<br />

HPCI OPERABLE<br />

OPERATOR ACTION<br />

TO DEPRESSURIZE<br />

WITHIN 1 h<br />

ORNL-DWG 81-1544A ETD<br />

HPCI SUCTION SHIFTS TO PSP AT<br />

PSP LEVEL = +7"<br />

Fig. 8.1 Event tree for initial phase of a st<strong>at</strong>ion <strong>blackout</strong> in<br />

which DC power remains available.<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

©<br />

ON<br />

o


61<br />

power is restored. There is no reason to accept these risks to the drywell<br />

integrity and installed equipment; the oper<strong>at</strong>or should take action to<br />

depressurize, as in Sequence 1.<br />

Sequence 3; Either the RCIC system is inoperable or the oper<strong>at</strong>or<br />

does not choose to employ it for long-term reactor vessel level control.<br />

The HPCI System is operable, and either autom<strong>at</strong>ically functions as neces<br />

sary to cycle the reactor vessel level between 12.1 and 14.8 m (476 and<br />

582 in.) above vessel zero, or is remote-manually controlled by the oper<br />

<strong>at</strong>or to maintain the w<strong>at</strong>er level within the indic<strong>at</strong>ing range, 13.4 to 14.9<br />

m (528 to 588 in.). The oper<strong>at</strong>or controls the reactor vessel pressure by<br />

remote-manual oper<strong>at</strong>ion of the relief valves and takes action to begin depressur<strong>at</strong>ion<br />

within one hour. Up to this point, this sequence is similar<br />

to Sequence 1, except th<strong>at</strong> the injection of condens<strong>at</strong>e storage tank w<strong>at</strong>er<br />

into the reactor vessel is by the HPCI System instead of the RCIC System.<br />

When the indic<strong>at</strong>ed w<strong>at</strong>er level in the pressure suppression pool in<br />

creases to 0.18 m (+7 in.), the HPCI pump suction is autom<strong>at</strong>ically shifted<br />

from the condens<strong>at</strong>e storage tank to the pressure suppression pool. De<br />

pending on the initial suppression pool level, the necessary amount of<br />

w<strong>at</strong>er to cause this shift will have been transferred from the reactor ves<br />

sel via the primary relief valves <strong>at</strong> some time between two and four hours<br />

after the inception of a <strong>St<strong>at</strong>ion</strong> Blackout. Since the lubric<strong>at</strong>ing oil for<br />

the HPCI turbine is cooled by the w<strong>at</strong>er being pumped, and the average sup<br />

pression pool temper<strong>at</strong>ure will be about 71.1°C (160°F) <strong>at</strong> this point, an<br />

early failure of the HPCI system is thre<strong>at</strong>ened.<br />

Sequence 4; This sequence is the same as Sequence 3, except th<strong>at</strong> the<br />

oper<strong>at</strong>or has recognized the difficulties with the elev<strong>at</strong>ed suppression<br />

pool temper<strong>at</strong>ure and has taken action to prevent the shift in HPCI pump<br />

suction. The oper<strong>at</strong>or will be able to maintain reactor vessel level and<br />

pressure control for as long as DC power remains available from the <strong>Unit</strong><br />

B<strong>at</strong>tery. The continuing increase in suppression pool level will not cause<br />

any significant problems during the remaining period in which DC power<br />

would remain available.<br />

It should be noted th<strong>at</strong> pressure suppression pool temper<strong>at</strong>ure instru<br />

ment<strong>at</strong>ion would be inoperable during a <strong>St<strong>at</strong>ion</strong> Blackout. Oper<strong>at</strong>or train<br />

ing and the <strong>St<strong>at</strong>ion</strong> Blackout Emergency Oper<strong>at</strong>ing Instruction (which does<br />

not now exist) must provide for oper<strong>at</strong>or understanding of the need to pre<br />

vent a shift of the HPCI pump suction to the overhe<strong>at</strong>ed pressure suppres<br />

sion pool.<br />

Sequence 5: This sequence represents the case of <strong>St<strong>at</strong>ion</strong> Blackout<br />

with no oper<strong>at</strong>or action and no secondary independent equipment failures.<br />

The HPCI System autom<strong>at</strong>ically cycles the reactor vessel w<strong>at</strong>er level be<br />

tween the HPCI system initi<strong>at</strong>ion point of 12.1 m (476 in.) and the HPCI<br />

turbine trip point of 14.8 m (582 in.) above vessel zero. Over the long<br />

term, one primary relief valve would repe<strong>at</strong>edly oper<strong>at</strong>e as necessary to<br />

maintain the reactor vessel pressure between about 7.722 and 7.377 MPa<br />

(1105 and 1055 psig).<br />

There are three problem areas with this case of no oper<strong>at</strong>or action:<br />

1. the difficulties with high drywell ambient temper<strong>at</strong>ure as discussed in<br />

connection with Sequence 2,<br />

2. the increased probability of loss of injection capability after the<br />

undesirable shift of the HPCI pump suction to the overhe<strong>at</strong>ed pressure<br />

suppression pool as discussed in connection with Sequence 3, and


62<br />

3. the decrease in suppression pool effectiveness caused by the highly<br />

localized he<strong>at</strong>ing of the pool w<strong>at</strong>er surrounding the discharge of the<br />

one repe<strong>at</strong>edly oper<strong>at</strong>ing relief valve. The possible consequences are<br />

discussed in Appendix D.<br />

Sequence 6: This sequence differs from Sequence 5 only in th<strong>at</strong> the<br />

HPCI pump suction is maintained on the condens<strong>at</strong>e storage tank, either by<br />

oper<strong>at</strong>or action, or by fortuitous failure of the pertinent HPCI system<br />

logic. This reduces the probability of HPCI system failure due to inade<br />

qu<strong>at</strong>e lube oil cooling during the period of <strong>St<strong>at</strong>ion</strong> Blackout in which DC<br />

power is still available. The difficulties with high drywell ambient tem<br />

per<strong>at</strong>ure and localized suppression pool he<strong>at</strong>ing as discussed in connec<br />

tion with Sequence 5 remain.<br />

Sequence 7: The RCIC system is not available because of equipment<br />

failure, or lack of oper<strong>at</strong>or action. The HPCI system has failed because<br />

of a system malfunction. The represents the worst case of loss of injec<br />

tion capability while DC power remains available. A boiloff of the ini<br />

tial reactor vessel w<strong>at</strong>er inventory begins immedi<strong>at</strong>ely after the complete<br />

loss of AC power, leading to a rel<strong>at</strong>ively quick core uncovery and subse<br />

quent meltdown. In this sequence, the core uncovery is hastened by a de<br />

pressuriz<strong>at</strong>ion of the reactor vessel either by means of a stuck-open re<br />

lief valve or because of inappropri<strong>at</strong>e oper<strong>at</strong>or action; the depressuriza<br />

tion increases the r<strong>at</strong>e of loss of the irreplaceable reactor vessel w<strong>at</strong>er<br />

inventory.<br />

Sequence 8: This sequence is the same as Sequence 7, except th<strong>at</strong><br />

there is no reactor vessel depressuriz<strong>at</strong>ion. The uncovery of the core<br />

would begin about one-half hour after the loss of AC power. The plant re<br />

sponse to Sequences 7 and 8 will be discussed further in Section 9.<br />

The preceding discussion of altern<strong>at</strong>e sequences again shows th<strong>at</strong> a<br />

<strong>St<strong>at</strong>ion</strong> Blackout <strong>at</strong> the <strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant will not evolve into a<br />

Severe Accident as long as reactor vessel w<strong>at</strong>er injection capability is<br />

maintained. The remainder of this section contains a discussion of the<br />

methods by which this injection capability might be lost. There are three<br />

main areas of concern for the viability of the injection systems: <strong>St<strong>at</strong>ion</strong><br />

Blackout induced direct failure of the HPCI and RCIC systems, a stuck-open<br />

relief valve which might reduce reactor vessel pressure below th<strong>at</strong> neces<br />

sary for HPCI and RCIC turbine oper<strong>at</strong>ion, and the ultim<strong>at</strong>e loss of DC<br />

power. Each of these will be discussed in turn.<br />

8.1 Induced Failure of the HPCI and RCIC Systems<br />

The design and the principles of oper<strong>at</strong>ion of the HPCI and RCIC sys<br />

tems are discussed in Appendices E and F, respectively. Each of these<br />

systems has the capacity to provide the necessary reactor vessel w<strong>at</strong>er<br />

level control during a <strong>St<strong>at</strong>ion</strong> Blackout; both must fail to cause a total<br />

loss of injection capability.<br />

The failure modes considered in this Section will be limited to those<br />

induced by the conditions of a <strong>St<strong>at</strong>ion</strong> Blackout. Independent secondary<br />

failures, whose occurrence during a <strong>St<strong>at</strong>ion</strong> Blackout would be purely coin<br />

cidental, have been considered in other studies16 and will not be dis<br />

cussed here.


63<br />

The first thre<strong>at</strong> to the continued oper<strong>at</strong>ion of the HPCI and RCIC sys<br />

tems under <strong>St<strong>at</strong>ion</strong> Blackout conditions is due to the loss of the Reactor<br />

Building cooling and ventil<strong>at</strong>ion systems. The major components of the<br />

HPCI and RCIC systems are loc<strong>at</strong>ed in the basement of the Reactor Building,<br />

where the average temper<strong>at</strong>ures during a <strong>St<strong>at</strong>ion</strong> Blackout would be signif<br />

icantly affected by the temper<strong>at</strong>ure of the pressure suppression pool. The<br />

HPCI and RCIC systems are designed for continuous oper<strong>at</strong>ion <strong>at</strong> an ambient<br />

temper<strong>at</strong>ure of 64.4°C (148°F). As was shown in Section 7, the average<br />

pressure suppression pool temper<strong>at</strong>ure would reach 71.1°C (160°F) after<br />

about three hours under <strong>St<strong>at</strong>ion</strong> Blackout conditions. However, it is ex<br />

pected th<strong>at</strong> the ambient temper<strong>at</strong>ure in the vicinity of the HPCI and RCIC<br />

systems would significantly lag the increasing suppression pool tempera<br />

ture; it is estim<strong>at</strong>ed th<strong>at</strong> the design temper<strong>at</strong>ure of 64.4°C (148°F) would<br />

not be exceeded for <strong>at</strong> least four hours. In any event, exceeding the de<br />

sign ambient temper<strong>at</strong>ure would not assure failure of the HPCI and RCIC<br />

systems.<br />

A more probable cause of HPCI or RCIC system failure is the autom<strong>at</strong>ic<br />

isol<strong>at</strong>ion of these systems due to the tripping of the temper<strong>at</strong>ure sensing<br />

circuits designed to detect steam leaks in the system piping. As des<br />

cribed in Appendices E and F, each of these systems has a set of four trip<br />

logics with four temper<strong>at</strong>ure sensors per logic. The 16 sensors are physi<br />

cally arranged in four groups placed near the HPCI or RCIC equipment, with<br />

the four sensors in each group arranged in a one-out-of-two taken twice<br />

trip logic. If the trip setpoint of 93.3°C (200°F) is reached, an auto<br />

m<strong>at</strong>ic closure signal is sent to the RCIC or HPCI primary containment in<br />

board and outboard steam supply valves, and the system turbine is tripped.<br />

Since the inboard steam supply valve for each of these systems is ACmotor-oper<strong>at</strong>ed,<br />

it would not close, but the system would be effectively<br />

isol<strong>at</strong>ed due to closure of the outboard (DC-motor-oper<strong>at</strong>ed) steam supply<br />

valve.<br />

As shown in Section 7, it is expected th<strong>at</strong> the RCIC turbine would be<br />

oper<strong>at</strong>ed only intermittently during a <strong>St<strong>at</strong>ion</strong> Blackout, while the HPCI<br />

system would serve only as a backup in the event of RCIC system failure.<br />

Also, the RCIC equipment is not loc<strong>at</strong>ed in a closely confined space, and<br />

some n<strong>at</strong>ural convection within the reactor building will certainly occur.<br />

Nevertheless, it is conceivable th<strong>at</strong> the local temper<strong>at</strong>ure in the vicinity<br />

of the steam leak detection sensors could reach 93.3°C (200°F) during RCIC<br />

system oper<strong>at</strong>ion after the average space temper<strong>at</strong>ure has increased to over<br />

60°C (140CF). If this occurs, the resulting RCIC system isol<strong>at</strong>ion signal<br />

can be overriden in the auxiliary instrument<strong>at</strong>ion room and the steam sup<br />

ply valves reopened and the turbine trip reset. Thereafter, the HPCI sys<br />

tem and the RCIC system, which are loc<strong>at</strong>ed on opposite sides of the sup<br />

pression pool torus, might be altern<strong>at</strong>ely used for reactor vesssel level<br />

control so as to reduce the he<strong>at</strong>up in the vicinity of the RCIC system.*<br />

Thus, the tripping of the temper<strong>at</strong>ure sensing circuits is not expected to<br />

lead to a total loss of injection capability.<br />

*The HPCI room has not been designed to permit n<strong>at</strong>ural circul<strong>at</strong>ion<br />

and the HPCI system has much more surface area for he<strong>at</strong> transfer Into its<br />

surrounding space. Therefore, it is expected th<strong>at</strong> the he<strong>at</strong>up associ<strong>at</strong>ed<br />

with HPCI oper<strong>at</strong>ion would be more severe than th<strong>at</strong> associ<strong>at</strong>ed with RCIC<br />

oper<strong>at</strong>ion.


64<br />

Another challenge to the viability of the HPCI and RCIC systems would<br />

be posed by the loss of control air pressure during a prolonged <strong>St<strong>at</strong>ion</strong><br />

Blackout. The plant control air system is supplied from three air receiv<br />

ers with a combined capacity of 22.60 m3 (798.0 ft3). Under <strong>St<strong>at</strong>ion</strong><br />

Blackout conditions, the air compressors which normally run intermittently<br />

as necessary to maintain the receiver pressure in the range of 0.66 to<br />

0.86 MPa (80 to 105 psig) would be inoperable; the stored inventory of<br />

pressurized air would gradually be lost due to valve oper<strong>at</strong>ions and leak<br />

age.<br />

Control air is used in the HPCI and RCIC systems to oper<strong>at</strong>e the steam<br />

supply line drain isol<strong>at</strong>ion valves. In each of these systems, the two<br />

primary containment isol<strong>at</strong>ion valves in the steam line to the turbine are<br />

normally open so th<strong>at</strong> the steam supply piping is kept <strong>at</strong> elev<strong>at</strong>ed tempera<br />

tures; this permits rapid turbine startup on demand. The w<strong>at</strong>er formed by<br />

the steam which condenses in this line when the turbine is not oper<strong>at</strong>ing<br />

is removed to the main condenser via a thermost<strong>at</strong>ic steam trap. The two<br />

air-oper<strong>at</strong>ed drain isol<strong>at</strong>ion valves close to prevent the flow of w<strong>at</strong>er<br />

from the steam trap to the main condenser when the primary containment is<br />

to be isol<strong>at</strong>ed; the closing signal is autom<strong>at</strong>ically gener<strong>at</strong>ed on low re<br />

actor w<strong>at</strong>er level [12.10m (476.5 in.) above vessel zero].<br />

The steam supply line drain isol<strong>at</strong>ion valves fail closed on loss of<br />

control air, which would eventually occur during a prolonged <strong>St<strong>at</strong>ion</strong><br />

Blackout. This should not cause serious difficulties for the RCIC system<br />

which would be run intermittantly so th<strong>at</strong> the accumul<strong>at</strong>ion of w<strong>at</strong>er in the<br />

steam supply piping between runs would not be excessive. However, a sub<br />

stantial amount of w<strong>at</strong>er would collect in the HPCI steam supply piping if<br />

this system is not oper<strong>at</strong>ed over a long period following the loss of con<br />

trol air pressure. Subsequent initi<strong>at</strong>ion of the HPCI system might cause<br />

turbine damage. However, it should be noted th<strong>at</strong> the HPCI and RCIC tur<br />

bines are two-stage, non-condensing Terry turbines, which are of very rug<br />

ged construction and are designed for use under emergency conditions, and<br />

the oper<strong>at</strong>or could take action to run the HPCI turbine for short periods<br />

to clear the lines of w<strong>at</strong>er as necessary. Thus the loss of control air<br />

during a prolonged <strong>St<strong>at</strong>ion</strong> Blackout should not lead to a total loss of in<br />

jection capability.<br />

A third challenge to the viability of the w<strong>at</strong>er injection systems<br />

should affect the HPCI system only. This challenge would occur because of<br />

the HPCI system logic which provides for an autom<strong>at</strong>ic shifting of the HPCI<br />

pump suction from the condens<strong>at</strong>e storage tank to the pressure suppression<br />

pool when the indic<strong>at</strong>ed pressure suppression pool level reaches 0.18 m (+7<br />

in.). As previously discussed, this would occur between two and four<br />

hours after the inception of a <strong>St<strong>at</strong>ion</strong> Blackout, when the pressure sup<br />

pression pool temper<strong>at</strong>ure has increased to about 71.1°C (160°F). Since<br />

the turbine lubric<strong>at</strong>ing oil is cooled by the w<strong>at</strong>er being pumped, and the<br />

oil cooler is designed for a maximum inlet w<strong>at</strong>er temper<strong>at</strong>ure of 60.0°C<br />

(140°F), the oil would become overhe<strong>at</strong>ed, possibly leading to failure of<br />

the turbine bearings. This can be avoided if the oper<strong>at</strong>or takes action to<br />

maintain suction on the condens<strong>at</strong>e storage tank for any HPCI system oper<br />

<strong>at</strong>ion. There is an ample supply of condens<strong>at</strong>e storage tank w<strong>at</strong>er avail<br />

able for injection, and the continuing increase in pressure suppression<br />

pool level will in no way thre<strong>at</strong>en the continued oper<strong>at</strong>ion of the


p- rt o rt rt p- co rr O CO CD h- ft n TO O O 1 H H 00 5 H CO 1 P- CC Pi O Pi s CO Hi .o C JO P" O Cfl rt t* Pi P-<br />

3 XT TJ XT XT 3 G ro fu ro Xi CO XT (0 rt |"d *o ro P> CO H ro ro M ro co hfl 3 Hi C p. C H C 1 o O Hi rt cr o G 3* TO P- G O 00 rt to o cr p. • o. •- •< rt ro M h cr ro P- c ro 3 TO ro M H ro p- o<br />

tj 1 o •.. oj TO (0 3 *- B 0 CO CO rt 3d 3 PJ o Oj o pi V£> PI cr p. O O P1 O cr rt p. CO cr ro 3<br />

ro xr co co CO 3d 3 \~s rt 3 rt 3 O ro •-< H G i Co c r-> P- H OJ H p. pj >a pi Xi Oj H ro ro ro 3 Cfl P"0 p- ro •<br />

i-l O 00 rt rt B O O 00 rt . ro o o 00 o ro H ro r-> pj < 3 ro . 3 ro<br />

to pj to ro B L-l. rt 3 Hi TO<br />

* S<br />

h- c to ro G O § o ro 3d M XT m ro cr O Hi O to P- pi CO CO to pi oj rt ro H cr pi cr Xi CO ro CO o S ro Hi -<<br />

o i p- o. n i-i 3 o » ro VS . H X) o TO 3 n O rt<br />

n o O rt 3 •-< PI ro o o H w o rt TTXi TO ro TO<br />

Cl 3 pr ro G CD rt P- to rt pj ro 00 rt ro M 1- rt O P> G rt rt rt rt ro rt p. O v o rt<br />

co tj i-i 1 o i-i rt r-l Xi I-1 G 3 n cr o. o G o. P- P- o rt a h p. p. H- o cr a cr P- o G TO rt ro<br />

ro rt ro O CD 3 TO XT to H o n o 00 pj ro p- p) H TO Hi O H /-n XT Oj cr rt to O 1 H pi C O 3 rt C o TO B<br />

«; i-i c co Tj rt to CO o -,3 3 rt SJ CD cr ro G rt cr ro Pi p- H- O 3 p. rt H rt 3 1 O Hi CO<br />

XT P- i-i o ro ro tj PI O XI ro co o rt O CC P> o < a. TO P- < O rt O 3 (D p" 3 < cr ro CO O rt o<br />

ro O 3 rt 3 to p- rt o rt o r-l ro XT H « rt CL c ro P- 3 o ro O • ro TO pi O rt ro ro Oj rt O P1 o p. rt Hi Cu<br />

3 Oj CO O B oo a o r-l o ro o ro G rt TO p- 3 00 3 CO o K rt Hi CO TO XT CO pi 3 O XT G<br />

i-i i-i • co ro r-l rt H Hi rt C M H to TO 3 00 CD ro CO *i XT H^- o ro p- TO ?o rt to 3 o O. 3 to P- H<br />

rt CO O ro p- c ii P- CO Hi p* H CO rt ro ro v—- P- 00 rt Hi rt 3 ro n o Pi 7? P- 3 p.<br />

3d XT Xi < M CO 00 O CO < O rt ro ro ro co hi cr 3d h-1 rt rt P- H P1 ro XT o cr ro p- M o zT O rt rt rH O 3<br />

£ rt CO ro cr ro rt o CO pi • XT P> o Oh O rt CO to ro P"0 TO i-d rt TO Pi to P1 rt O CO ro<br />

pd 3 XT TO mi ro i-l CO P1 ro ro rt a- S XT Hi rt TO p- H O Pi rt ro pj ro p- >a pi oo<br />

H P- 1 3 Co CO pi rt<br />

o ro ro p- p- ro . ro < O o po p- ro Oh o cr ro ro TJ O H PI o 3 c 3 g* CO rt P- TO 3 TO cr<br />

M H- M < 3 CD >£> rt M rt h-s xa to H rt O rt rt H S ro o o Hi CO H O ^^ P- B € p- ro Oh ro rt V! 3 O ro ro<br />

O 3 pd Co 00 G O h m p cr m xr O TO s CO p- x> o e ro pr TO CO H < P- Hi TO H 3 3 o. ?S vo ro h C O G ro o ro H ro Oj h O. rt<br />

cl ro ro > & < to TO rt G a" a. rt Co CO rt 3 P- o cr • ro O OJ ro O H Hi h ro X ro cr P-<br />

CO X) Oj rt v: ro rt B ro 00 CD p- co ro oo P1 XT 00 H ro Co O rQ M rr » w 7? * cr H o n X) p- O ro 3<br />

G. B Cu TO (0 GO 3 TO 3" ro p- 3 co ro < to "3 c p- TO Hi G o 3 cr co pi 1 XT p- < ro Hi rt to 3 TO Hi<br />

fD rt rt CO 3* CO rt ^*. ro TO rQ 3 rt o ro P- H O* Xi p- h3 1 c o O to 3 pi o D G < «<br />

O xi rr O zT to to P- TO CO 3 rt C rt O co Hi rt zn oo ro to o to rt -a rt pi O H XT Xi rt ro p- rt rt Hi rt rt tj PI p- cr<br />

r-t i-t to O (I H O i H 3* ro O XT 0! CO rt . TO Oj p- P- S C G to ro XT TO < P- XT pi ro cr tj 3 n pro<br />

ro i-t rt G rr 3 ^ ro ro 3 rt O o 3 3 pi 3 H B ro 1 /-^ 00 o 3 ro ro < to p- o. P- H H- o<br />

» TO 3 XT rt xi o> rt O ro CO to Xi to On a" rt O ro o c o. 3 On rt rt ro ro ro pi o H o TO CO rt rt a<br />

CO I-i CO Xi P- rt co V TO M H o P- OJVJ O 3 P1 Cfl Hi M G TO ro xr -a cr M 3 o rt ro G H- O V! o<br />

ro o B XT TO ro o rt p- ro o o 3 - Oj c ro o rt H •o • 13 ro h ro P- O o- rt ro P1 0- o S<br />

hS (IP- ro p- c J-T TJ O ro ro cd x> 3 B rr rt Cd ro o. o H P- CO TO ro TO ro c H p- 3 o ro TO 3 Pi O TJ<br />

XT P- O 3 3 r-l O SXl X h> co ro rt *! coCT cr M o ro rt O 3 o P-OO < ro H!00 p- o rt Hi to ro rt Hi o<br />

ro 3 3 rt .o ro C N-' Xi G 1 H p-—. ro ro P> H o- . rt Hi 00 ro H Pi m ro cr < 3 P- o. (1 TJ P- «<br />

3 O rt 00 rr rt o I-1 < H P> O 00 TO O ro cr 3-w Pi 3 CO < ro TO Co rt rt O ro rt ro<br />

H P- SI XT cr • Pd i-n CO pi ro rt h-> • O p- ?r ft) p- H> p- rt Co rt ro 3 rt ro o p. M P- p> ro p. ro rt TO c p- P- to Pi 3d p1 ro O •a rt H Hi M O z ro M P-<br />

M O. < XT TO (T> rt 11 TO 3 3 TO Co 3 p. CO Oj o H . i H rt O rt rt ro TO TO s H ro ro Co rt O H O 3<br />

o c ro ro ><br />

On


CL<br />

s<br />

LU<br />

cr<br />

w ^<br />

to<br />

LU<br />

CC<br />

o.<br />

S<br />

< „<br />

o<br />

o.<br />

o<br />

o<br />

01<br />

o<br />

— o<br />

F<br />

oo<br />

LU<br />

c 8-<br />

3 S<br />

LU<br />

rr o<br />

<<br />

IT)<br />

r- 8-<br />

(fl §<br />

o<br />

M<br />

O<br />

r\i<br />

L<br />

\<br />

n<br />

CICO N r~H<br />

'<br />

\<br />

o<br />

o-<br />

-RCIC OFF<br />

i L<br />

"-RCIC OFF<br />

1<br />

rR CICON<br />

30 60 90 120 150 180<br />

TIME (min)<br />

ORNL-DWG 81-8505 ETD<br />

210 240 270<br />

Fig. 8.2 Reactor vessel pressure response to a stuck-open relief<br />

valve during a st<strong>at</strong>ion <strong>blackout</strong>.<br />

300<br />

en


S<br />

8<br />

5<br />

o<br />

CO-<br />

Q co J<br />

UJ -H<br />

I-<br />

? CM<br />

E<br />

a<br />

o><br />

O -I o<br />

O<br />

o<br />

o.<br />

5600 gpm COMBINED HPCI AND RCIC INJECTION<br />

T"<br />

30<br />

HPCI OFF<br />

60<br />

RCIC<br />

OFF ON<br />

/ V<br />

-1—<br />

90<br />

—p-<br />

120<br />

-600 gpm RCIC INJECTION FLOW<br />

T —T"<br />

150 180<br />

TIME (min)<br />

Fig. 8.3 Reactor vessel w<strong>at</strong>er injection with a stuck-open relief<br />

valve during a st<strong>at</strong>ion <strong>blackout</strong>.<br />

—r-<br />

210<br />

ORNL-DWG 81-8506 ETD<br />

—r—<br />

240<br />

—r—<br />

270<br />

300


9 i-J 0) Cfl TJ iH u tj<br />

B tJi 3 O 4-1<br />

CO cfl O. 4-1 o •H Cfl rH /-N<br />

cu cu o •H u u O 4-1<br />

CO « 4-1 4H 4-J CU CU I-l CO<br />

cfl co co B O cfl Oh O. 4-1 O<br />

cu cu cu In o C rH<br />

I-l CO rH 4-J TO cu CO o<br />

a ca cu co >-i Oh tH CO u to<br />

cu cu co >*> 3 o X tH •H<br />

TJ In CO CO O 4-1 rH<br />

O CU X G 0 CU u<br />

CU CU > rH tH oo S > s O 33 4J cu H >> o. ><br />

CO rH 4J h xi co rH rH<br />

0) 3 CJ TJ 4J TJ CU CJ cfl<br />

U O cfl CU 3 TJ CJ co Q ><br />

0.rH tH CU<br />

CCJ 4-1 CU 4-1 X o Cfl 4-1 •H<br />

CU cfl 00 C »-i CO cO O. 4.) u<br />

0) 4-1 1 CJ W<br />

0) >i > (U cfl 4-J 0) CO in a o G<br />

00 cfl cfl In TO U CO \0 1 4-1<br />

TO X &n o 4H o o 3 cu IH l-l 4-1 PQ rH ^ £ q H-J 3 cu cu CU 3 XI rH >1 3 cu U rH cO<br />

-5 •H CJ CN TO 3 o XI G o CU 9 a CO 4-1 CO CJ 4J Oh 0 o 4-1 O rH 3<br />

9 T3 CU CO u CJ •H CO CO CO cu o. cfl X! cfl 4J 01 "3 •H<br />

O iH a<br />

. 4-1 XI TO 4-1 CU •H cj o 1 U TO cfl TJ •H >> 3 rH X o 3 4J In O 9 3<br />

I-i u 4-1 rH H •H 4-1 CU 3 CO 3 cu •H o CU TJ rH CO O rH 4-1 4J CO 4-1 •H a> CO cfl In<br />

03 cfl 3 o B rH XI OJ o XI 4-> 4-1 CN 4H Cfl PQ 4J cu CO •H cfl 9 Oj CU CO 01<br />

1 cu > CO O H a cu a 4-1 •H CO rH cu o rH m c -h 9 3 m In XI o In cfl 3 4-1<br />

CU TJ a 1 . c > OjX! 3 4J U rH 3 o 01 O TJ cu cu 01 4-1 A **<br />

XI cfl o. o 4-1 cfl 1 •H 4-1 TO 4H 3 CO cfl Q. o > XI -H 4-1 9 CO o 0) 4-1 o rH<br />

S s<br />

4-> CU tH vO 3 In O . 3 cfl o cj •H 1 4-1 4-1 CO iH 9 O o o cu 4-1 3 3 Tj cfl<br />

l-l rH xi 1—1 o 4-1 CN 4-1 cr « 00 IH CO in 4J Q 4-1 o 3 a 3 o. Ph TO 4-1 o cu 4-1 3<br />

TJ 3<br />

cu 4J cr-* M 1—1 3 cu a cu o o •H cd m 4-1 X 3 CU >-. iH 4H<br />

o rH l-l cfl C cfl M 4-> 4-1 CJ o c 3 rH CO X In CO XI •H O Q 4-1 •H In B cj TO<br />

a<br />

cfl<br />

O. TO 01 G 3 rH cfl CJ 3 CO cfl 1-4 iH In O CU 4J >> CJ 4-1 In 1 cd •H cd cj<br />

3 cfl<br />

a cj o o PQ l-l cfl cfl >i 4-1 TJ cu u cu CJ > cfl X » CO TO cfl 4-1 > 3 CU<br />

CJ cu tH 4-1 4J O rH rH TO CO CU 9 3 9 < 1 4-1 >> iH CU 01 3 o cr i_> a" 3 4n Xi<br />

Q 4J O 4_l c G 4-1 PQ Oh TJ O Q o o oo Mfl >> XI o m cu d CU O TO cfl +J<br />

CO CN 3 cu o cfl 3 CU •H o. a 4-1 m 3 TJ CU In 4J 4-1 CJ CM T3 In •H CO<br />

4-J >1 rH Xi XI •H rH I-l c 3 O XI > rH CN H cu 4J 4J 01 cfl 1 cfl In CO CO<br />

B cfl<br />

rH CO •H 4J 4-1 o. cu o O -H 4-1 o 4H • cu o u CU 4-> T-I 4-1 4-1 0) >1 O In cu<br />

XI<br />

o cfl l-l cfl 9 •H a 4J 1-4 O CO > > rJ 3 4-1 cd 3 4-> >1 cfl > In 01 4H cu CU X 05<br />

> 9<br />

>1 4-1 o 4-> G O 4J a cj 3 Oh TJ •H 1 o TJ X 3 cfl <br />

1<br />

CO 3<br />

U MH CO 4J to o o. cfl o cu 3 CU cfl In O •"-) o X •H 4-J Cfl cu >1 o trH<br />

o cu o •H 4-1 CJ 4-1 cfl CO cj O TJ CN cfl CO 4-1 - cu rH 3 > CXI rH rH Oj >i 00 In<br />

ui 4J -d tH cfl B cu CO o •H 1-4 rH rH a cu CO X 4-1 •H o rH Oj TO TH o<br />

M<br />

CN 4-1 CO cu o > CU u 3 cu •H cu 4-1 4-> 3 X -Sri "3 TO<br />

Cl, (_; CO 4H<br />

cfl 4-1 J TJ 9 00 CJ -H cfl T3 O. Jri CO O I-i TJ CU 01 In rH •H Cfl cfl CJ 3 3 3 (H TO CU o<br />

,3<br />

4H X CO cu o c u 3 CJ 4-1 CO o •H XI X! cu X 3 4H rH O. CO cfl 9 TO TO TJ Tj TJ<br />

CU<br />

o •H 4-1 a. tH U T3 00 rH CU o •H 4J > H H 4-1 •H 3 O Oh cfl rH o ^ cu In 4-J<br />

CJ CO cfl S-l o c O I-i rH 3 cfl O o 4-1 CO CJ PQ cj u —1 >1 3 X cd cd In s<br />

CO Q C •H rH 3 4H >-, •H 3 iH CJ 3 a l-l cfl CO u >, u •H • PQ •• 4J cfl 4-1 3 tH In .<br />

CO o CJ o XI rH l-l •H 4H CO o. . . X o CU 3 O c 3 O0T3 4-J iH CJ 00 4H xi CU TO<br />

o 4J CJ o u I-i o. 3 I-l >1 Cfl CJ 4J —1 O. X cd o o o CU cu<br />

rS CJ M cu o W X 4-J<br />

l_J rH CO 4J TJ CU O. T3 CO CN CU l-l Q o cu . 4-1 4-1 U •H •H -H 4J X cd TO 0) 4H 0) 4-1 rH<br />

o a CO c CU 9 xi TJ O 4-1 1-4 TO CO TO 00 •H TO O O CU 4-1 4-1 CO 4-1 4-1 Oh 0) rH Cd 4-1 u o o<br />

> cu cfl o TO O TO 4-1 cfl O 3 cu a 4-i rH 3 iH C 4J s CJ co u 3 cd •H X co 3 ><br />

C"> 1 4J a 3 Oj cu o O. Cu CU iH cfl m cu 3 cfl 3 O cu 4-1 Q CO In CO u In cfl cu In 0)<br />

. O CO cu TJ CO rH CU a 4-1 3 O rH 4-1 •H O- •r-l CO XI o CU cu rH TJ > X o<br />

s<br />

00 u~l >i X cu cu CO rH XI o CO co 3 TJ 4J X 0) M a 3 4-J X 4H TJ >1 4-1 •H 01 01 9 4-1 -H<br />

CN CO 4J TJ Xi CU 3 l-l a *-' CJ 3 >1 rH CO CO X O In rH •H -3 rH 01 •H In 4-1 cfl In o CM<br />

•H TJ O o 5) 3 co 3 3 m h 4-1 In CU O 0) o CO > cu cfl > 01 0) On MH<br />

4J XI T3 > 4-1 •H 9 4J 4-> * CU o •H O CU . 4-1 9 U . 4H oo > TO •H o U X cd 0) X o 4H<br />

x cj c o o > cfl TO S XI u<br />

9 3 3 m CN O 4J XI o 3 cu TO In 4-1 3 4J<br />

o<br />

00 CO cfl u 3 O TJ I-l >i o 4-1 M &2 CU -H o • 4J O- C o. o o a cfl o. cd 4-1 CO iH X 3<br />

•H W Oj M 3 cu CO o CU In 00 00 •H O cd CO rH m o X 0Q •H In 00 3 3 cu<br />

M<br />

cu<br />

TJ Oh CO 3 l-l A cu 4-1 CU t: 1 TJ X^<br />

In CO O CN a<br />

§B ° § : 3 01 3 iH cu o 00<br />

In CO rH cu X) 1-4 X 4-1 O CU u cu CJ CU 00 o In CU 3 3 00 CU X TJ cfl<br />

cu • cu a 3 a co 00 CU CO cu 4-1 cfl 4-1 O 4J cO rH TJ cd rH O. CO X 00 4J In 4-1 4-1 rH 4-1<br />

l-l 4-1 00 cu o CU 3 1 1-4 3 TJ xi m 4-1 4J CO cu X CU 00 In In cu iH TO g CU tH o rH<br />

2<br />

cfl S l-l 4-1 3 4-1 O l-l IH O l-l 4-1 o cfl O iH cfl 3 3 cd cd rH Cfl tH TO >. 9 X X 3 TO o o<br />

cfl cfl TO TO -H o CU iH o o O 4H XI B rH >iH O iH O o, cd rH i 0) CO IH V 4-1 3 CO CJ ><br />

CU rH .3 >iTJ ;>. 4J 4J 4H 4-1 CJ Q X >iX 4-1 00 O. 0) TJ<br />

U 0-i CJ CO G CO o o CU CO cu XI TJ 4-1 TJ CU 3 4H rH 00 O G O- 4-1 3<br />

cu cfl c a 1-4 CJ 1-4 CJ 4-1 3 •H CU In TJ •H O CL C 3 4-1 •H 3 TO 0) o<br />

XI M >1 >» CJ 3 O. tH cfl rH CO 3 IH Cfl CU O. 9 •H In CO r>ix •H<br />

H cfl M l-l TO a 4h TJ 3 TO w o 3 m •H TJ a 3 o TJ < 3 CO EH 4-><br />

cu cu cu TJ cu 4J 3 4-1 > TO CU CO rH cu cu co -o cu T3 X 3<br />

rH 4-) 4-1 l-l 4J rH l-l c a 3 1 3 X 4H TJ Oh 4-1 4J 4J CJ CJ M X<br />

CJ 4-1 4-1 cfl rH O 1-4 co a cu O O CJ cu eg Oj TO TO In 3 01 M TH CJ •H<br />

3 cfl cfl O O l-l cu rH O > m in cd U O 3 •H >i O XI In 3 X cu In<br />

55 XI Xi XI > 4-1 4-1 o. cj cu CN 4-1 cu an CO rH TO 14H CO a CJ 5 cc 4-J


69<br />

Table 8.1 <strong>Unit</strong> preferred system loads<br />

1. Containment Isol<strong>at</strong>ion panel<br />

2. Feedw<strong>at</strong>er Control panels<br />

3. Reactor Manual Control panel<br />

4. Drywell Ventil<strong>at</strong>ion and Reactor Building Closed<br />

Cooling W<strong>at</strong>er System Control panel<br />

5. Feedpump Turbine Control panels<br />

6. Rod Position Inform<strong>at</strong>ion System<br />

7. EHC Control <strong>Unit</strong><br />

8. <strong>Unit</strong> Computer and Rodworth Minimizer panels<br />

9. Reactor W<strong>at</strong>er Cleanup panel<br />

Table 8.2 Major unit 250-volt DC loads<br />

1. Turbine Building Distribution Board<br />

2. 480-volt Shutdown Board Control Power<br />

3. Emergency DC Lighting<br />

4. <strong>Unit</strong> Preferred AC Motor-Gener<strong>at</strong>or<br />

5. Circuit Breaker Board 9-9 (Feedpump Turbine<br />

Controls)<br />

6. Reactor Motor-Oper<strong>at</strong>ed Valve Boards<br />

a) Primary Relief Valve DC Solenoids<br />

b) Main Steam Isol<strong>at</strong>ion Valve DC Solenoids<br />

c) Recircul<strong>at</strong>ion Motor-Gener<strong>at</strong>or Set Emergency Oil<br />

Pumps<br />

d) Backup Scram Valves<br />

e) RHR Shutdown Isol<strong>at</strong>ion Valves<br />

f) Engineered Safeguards Logic Power Supplies<br />

g) HPCI System Controls, Valves, and Auxiliaries<br />

h) RCIC System Controls, Valves, and Auxiliaries


70<br />

"The engineered safeguards systems th<strong>at</strong> are sup<br />

plied from the 250 volt DC system shall be designed to<br />

oper<strong>at</strong>e <strong>at</strong> a minimum of 200 volts."<br />

It has previously been estim<strong>at</strong>ed5 th<strong>at</strong> under the less severe con<br />

ditions of a <strong>St<strong>at</strong>ion</strong> Blackout, with all unit b<strong>at</strong>teries avaiable, and as<br />

suming prudent actions by a well-trained oper<strong>at</strong>or to conserve b<strong>at</strong>tery po<br />

tential by minimizing DC loads, the necessary 250 volt DC power for HPCI<br />

or RCIC system oper<strong>at</strong>ion would remain available during the first four to<br />

six hours of a <strong>St<strong>at</strong>ion</strong> Blackout.<br />

In summary, it is reasonable to expect th<strong>at</strong> control can be maintained<br />

over reactor vessel pressure and w<strong>at</strong>er level <strong>at</strong> each of the <strong>Browns</strong> <strong>Ferry</strong><br />

<strong>Unit</strong>s during a <strong>St<strong>at</strong>ion</strong> Blackout for as long as the 250 volt DC power re<br />

mains available. This period will depend on the oper<strong>at</strong>or's ability to<br />

conserve the unit b<strong>at</strong>tery potential by minimizing the DC loads, but is ex<br />

pected to last from four to six hours.* During this period the oper<strong>at</strong>or<br />

may have to take other actions to maintain the operability of the HPCI and<br />

RCIC systems as -Hscussed in subsection 8.1.<br />

*A b<strong>at</strong>tery life of seven hours is considered in Appendix G.


71<br />

9.0 ACCIDENT SEQUENCES RESULTING IN CORE MELTDOWN<br />

9.1 Introduction<br />

This section deals with the various accident sequences which might<br />

occur during a complete <strong>St<strong>at</strong>ion</strong> Blackout (CSB) <strong>at</strong> the <strong>Browns</strong> <strong>Ferry</strong> Nuclear<br />

Plant which can lead to core meltdown.18 Event trees are presented for<br />

wh<strong>at</strong> are considered to be the six most probable sequences. The character<br />

istics and event timing for each of these sequences were determined by use<br />

of the MARCH code, and include consider<strong>at</strong>ion of the oper<strong>at</strong>or's role in re<br />

actor vessel pressure and level control. The progression of core damage<br />

and containment failure following core uncovery will be discussed in this<br />

section; an event tree for oper<strong>at</strong>or key actions in mitig<strong>at</strong>ing the accident<br />

progression will be discussed in Sect. 10.<br />

Of the sequences modelled by MARCH and presented in this section, the<br />

sequence TB'* is deemed to be most represent<strong>at</strong>ive of the events which<br />

would occur after core uncovery following a four-hour period during which<br />

the availability of DC power permitted reactor vessel level and pressure<br />

control. For this analysis, it is assumed th<strong>at</strong> no independent secondary<br />

equipment failures occur, and this sequence was chosen to serve as the<br />

basis for the fission product transport analysis discussed in Volume 2 of<br />

this report.<br />

9.2 Accident Phenomenology<br />

9.2.1 Accident Progression Resulting in Core Melt<br />

Upon a loss of offsite and onsite AC power, a number of reactor<br />

safety systems respond immedi<strong>at</strong>ely and autom<strong>at</strong>ically. First of all, a<br />

full load rejection (i.e., fast closure of the turbine control valves) oc<br />

curs, followed by the tripping of the recircul<strong>at</strong>ion pumps and the main<br />

condenser cooling w<strong>at</strong>er pumps. With the load rejection, the scram pilot<br />

valve solenoids are deenergized and the control rods start to move toward<br />

the fully inserted position. The main steam isol<strong>at</strong>ion valves (MSIVs) be<br />

gin to close, resulting in a rapid reactor vessel pressure increase. The<br />

se events are closely followed by a main turbine trip (i.e., closure of<br />

the turbine stop valves) and the tripping of the feedw<strong>at</strong>er turbines.<br />

After the autom<strong>at</strong>ic actions described above, core flow is provided by<br />

n<strong>at</strong>ural circul<strong>at</strong>ion and excess reactor vessel pressure is relieved by<br />

steam blowdown through the safety/relief valves (SRVs) into the pressure<br />

suppression pool. If any SRV fails to reclose after actu<strong>at</strong>ion, the reac<br />

tor vessel will continue to depressurize with an accompanying loss of<br />

*The nomencl<strong>at</strong>ure TB' follows th<strong>at</strong> used in the Reactor Safety<br />

Study,19 where T denotes a transient event and B' denotes failure to<br />

recover either offsite or onsite AC power within about 1 to 4 hours. In<br />

effect, TB' is a loss of decay he<strong>at</strong> removal (TW) sequence with the loss<br />

of both offsite and onsite AC power as an initi<strong>at</strong>ing event.


72<br />

w<strong>at</strong>er inventory similar to th<strong>at</strong> occurring in a small break LOCA. Accord<br />

ing to the Reactor Safety Study,ly the probability of a stuck-open re<br />

lief valve (SORV) event is estim<strong>at</strong>ed to be 0.10 with an error spread of 3.<br />

However, this estim<strong>at</strong>e was based upon consider<strong>at</strong>ion of three-stage SRVs<br />

such as those originally installed <strong>at</strong> the <strong>Browns</strong> <strong>Ferry</strong> site, with the<br />

two-stage relief valves of improved design which have a recently been in<br />

stalled <strong>at</strong> the <strong>Browns</strong> <strong>Ferry</strong> Plant, the probability of a SORV event is sub<br />

stantially reduced and is estim<strong>at</strong>ed to be less than 10-z. The occur<br />

rence of a sequence involving a SORV, design<strong>at</strong>ed sequence TPB', is in<br />

cluded in the event trees of this section.<br />

The reactor vessel w<strong>at</strong>er level decreases rapidly during the initial<br />

moments of a <strong>St<strong>at</strong>ion</strong> Blackout due both to the void collapse caused by the<br />

increased pressure and to the w<strong>at</strong>er inventory lost through the SRVs. When<br />

the w<strong>at</strong>er level sensed by the wide range detector reaches the low w<strong>at</strong>er<br />

level setpoint (Level 2), the DC-powered HPCI and RCIC systems are auto<br />

m<strong>at</strong>ically initi<strong>at</strong>ed, with their turbine-driven pumps supplied by steam<br />

gener<strong>at</strong>ed by the decay he<strong>at</strong>. The HPCI and RCIC systems are assumed to re<br />

main oper<strong>at</strong>ional until the unit b<strong>at</strong>tery is exhausted <strong>at</strong> four hours into<br />

the <strong>St<strong>at</strong>ion</strong> Blackout. Following the loss of these injection systems, the<br />

reactor vessel level decreases until the core is uncovered about one hour<br />

l<strong>at</strong>er. Subsequently, the core begins to melt.<br />

The failure probability for HPCI has been estim<strong>at</strong>ed19 to be 9.8 x 10~2<br />

with an error spread of 3 and for RCIC has been estim<strong>at</strong>ed to be 8 x 10~2<br />

with an error spread of 3. The overall failure probability of both HPCI<br />

and RCIC to provide makeup w<strong>at</strong>er during the sequence TB', is design<strong>at</strong>ed<br />

TUB' and has been estim<strong>at</strong>ed19 to be 2 x 10-3 with an error spread of about<br />

4. The failure of both HPCI and RCIC together with a SORV occurrence is<br />

design<strong>at</strong>ed TUPB'.* Sequences TUB' and TUPB' have been included in the<br />

event trees of this section.<br />

9.2.2 Containment Failure Modes<br />

Any sequence resulting in core melt will eventually lead to contain<br />

ment failure if electrical power is not restored before the reactor vessel<br />

fails. According to the Reactor Safety Study,19 BWR containment failure<br />

could occur in the following c<strong>at</strong>egories:<br />

a — Containment failure due to steam explosion in vessel,<br />

0 — Containment failure due to steam explosion in containment,<br />

Y — Containment failure due to overpressure - release through reactor<br />

building,<br />

Y' — Containment failure due to overpressure-release direct to <strong>at</strong>mos<br />

phere,<br />

j — Containment isol<strong>at</strong>ion failure in drywell,<br />

e — Containment isol<strong>at</strong>ion failure in wetwell,<br />

5 — Containment leakage gre<strong>at</strong>er than 2400 volume percent per day.<br />

Containment failure by overpressuriz<strong>at</strong>ion was considered to be the<br />

dominant failure mode for a BWR inerted containment in the Reactor Safety<br />

*TUB' and TUPB' are in effect TQUV and TPQUV sequences with the<br />

loss of both offsite and onsite AC power as an initi<strong>at</strong>ing event.


lU S rMU<br />

TJ CU CU TJ u<br />

Xi B CU 3 3<br />

4-1 iH 3 4-1 CO<br />

CO rH 4-1 TO TO<br />

TJ<br />

o-> B<br />

rH Cd<br />

TJ Cfl<br />

rH TJ Mn<br />

CU 01<br />

•H TJ «<br />

>» iH<br />

> cu<br />

cu o<br />

X U tH<br />

4-> O.^<br />

TJ O<br />

CU<br />

4-> U<br />

Cfl 0)<br />

rH >1<br />

3 Cfl<br />

4-1 rH<br />

TO<br />

O U<br />

Oh 01<br />

B<br />

TO B<br />

Cfl tH<br />

9<br />

cu<br />

4J X<br />

3 M<br />

3<br />

S rH<br />

CO iH<br />

o. cu<br />

m<br />

cu<br />

Oj<br />

TO<br />

3<br />

4-> TJ<br />

rH B<br />

3 Cfl<br />

4H<br />

4-1<br />

CU<br />

a<br />

3<br />

TO<br />

CO<br />

Cfl<br />

B<br />

4-1 iH<br />

m<br />

CU TJ<br />

cd<br />

9 4J<br />

3<br />

cu cu<br />

XI TJ<br />

00 cu<br />

•H In<br />

x B<br />

rH CU<br />

3 CU<br />

CO X<br />

CU<br />

In >,<br />

rH<br />

CO rH<br />

CU Cfl<br />

TJ rj<br />

2 •H<br />

a In<br />

O<br />

CU 4-1<br />

In TO<br />

3 iH<br />

• rH XI<br />

r—i tH<br />

/-n cd cu<br />

CO 4H ><br />

•H CO<br />

CO In Xi<br />

Oj CU<br />

XI 4-1<br />

in 4J b<br />

r-. o oj<br />

- §<br />

X) tH<br />

B cd<br />

Cd 4-1<br />

3 cd<br />

•H iH r4<br />

o cd<br />

O. 4-> XI<br />

TJ fi CU<br />

BO,-*!<br />

cO cj cfl<br />

4-1 OJ<br />

TO CO rH<br />

CO<br />

0) O 0J<br />

XI U X<br />

00 4-1<br />

TJ<br />

B<br />

cd<br />

-H 3<br />

00 In •H<br />

CJ cd co<br />

C O Mn 01<br />

TO<br />

X * cd<br />

O TJ 01<br />

4-1 CU 3 rH<br />

X<br />

CU J 2<br />

3 r-s<br />

3 rH m cu<br />

•H rH oi xi<br />

4-1 CO XI 4-1<br />

3 3 4-1<br />

O -H o a<br />

B O Mn o<br />

01<br />

0) In<br />

> TJ O XI 4H<br />

01 H 4J 4-1<br />

u a<br />

TO<br />

O. O XI 0 01<br />

3 3 O CJ<br />

B<br />

« oi<br />

MH 3<br />

M Cr<br />

TJ 4J<br />

OJ<br />

CO<br />

CO<br />

m<br />

S<br />

cu _ o<br />

Oh O o<br />

4-1<br />

c<br />

§ -a<br />

MH 4-J Cd<br />

O B O<br />

CU iH<br />

M MH 4-1<br />

a<br />

O TJ<br />

cd<br />

O >i 3<br />

•H X O<br />

oo 3<br />

O cu<br />

rH U >,<br />

O 3 4-1<br />

•H rH T-I<br />

TJ -H ><br />

cd cd in<br />

m oi x<br />

><br />

CJ TO<br />

O<br />

0)<br />

TJ M<br />

rH CU<br />

3 9<br />

g<br />

In<br />

3<br />

CJ<br />

cu<br />

co<br />

TO<br />

cu<br />

In<br />

4-1<br />

in cd co<br />

4-1 •<br />

3 -i<br />

• o<br />

X! CJ B<br />

4-> CU<br />

oo i<br />

TJ fd XI<br />

rH 3<br />

3 TJ<br />

O 4-1 CU<br />

<br />

B<br />

• co<br />

cu cd u<br />

U iH<br />

0) rH X<br />

X tH 4-1<br />

Oh Cd<br />

TO MH TJ<br />

O 3<br />

a TJ Cd<br />

4-1 iH<br />

cfl 3 •><br />

O 00<br />

3 3<br />

u<br />

OJ<br />

%<br />

>»<br />

u<br />

TJ<br />

cu oi<br />

In rl<br />

xi xi<br />

4-1 CO<br />

Cd TO<br />

In 01<br />

01 U<br />

Oj O.<br />

a<br />

TO 4-1<br />

B 3<br />

O cd<br />

•H B<br />

4-1 iH<br />

u a<br />

0 o<br />

o-tj<br />

o<br />

In CU<br />

O.XI<br />

4-1<br />

CU<br />

In TO<br />

3 CO<br />

rH<br />

iH XI<br />

cd CU<br />

MH iH<br />

MH<br />

XI iH<br />

01 4J<br />

XI B<br />

CJ cu<br />

Cfl TJ<br />

CU iH<br />

In<br />

„ 3<br />

o. cu<br />

3 01<br />

•W X<br />

cfl<br />

O) TO<br />

X! cd<br />

X<br />

rH<br />

O 3<br />

O O<br />

O-T-l<br />

•U<br />

B cd<br />

O In<br />

iH O<br />

CO iH<br />

CO In<br />

OJ OJ<br />

In 4-1<br />

O- 01<br />

O.TJ<br />

3<br />

CO rH<br />

td<br />

r*. cu<br />

x co<br />

cu cu<br />

0) ><br />

4-1 CU<br />

CO rH<br />

3 cu cd<br />

O U Pj<br />

TO 3 S<br />

cd rH<br />

CU iH rH<br />

U cd CM<br />

cu<br />

X!<br />

O 4J cd<br />

4-i m<br />

TJ 4-1<br />

TJ 0) rH<br />

cd > -H<br />

01 0) MH<br />

rH .rl<br />

rH CU<br />

4-1 CU XI<br />

I<br />

CU B XI<br />

00 O rH 4J 4-1<br />

O 3 •• rH B O<br />

o<br />

CO CU CU 00<br />

cd TO 3<br />

CJ U<br />

cu cu<br />

cu cu<br />

cj a 10 tl WT)<br />

B CU 4-1 oi otj<br />

B 3 TO M CJ B<br />

• cu cr >,<br />

cd<br />

a S 0) TO TO 00 00<br />

CU B TO<br />

B BO<br />

4J iH<br />

•H iHCM<br />

TO Cd<br />

3 3 "To<br />

rS 4J 3 CU O O 4J 01<br />

CO S q a rH rH B O<br />

o .M 4-1<br />

cd TJ<br />

4J O CJ Cfl . O<br />

B cfl CU In Mn 4H O,<br />

cu rH rH In CU<br />

a cd 0Q 4-> 3 cu B<br />

O XI o u<br />

Cd 4-1 B co Oh 4-1 iH iH O<br />

CU iH o cd<br />

tl) N O<br />

In B iH &0 CJ In O<br />

4J iH 4J i 4H O.XI<br />

TO XI 4J X MH X 4J .8*<br />

CO 00 co x) O TJ CU<br />

TO<br />

00 tH B cu 4J 3 3<br />

X cu cd<br />

a * b o o<br />

>1 XI 4J<br />

cd 3 •H T-I<br />

X 00 4J TO<br />

01 >* O 4-1 CO<br />

TJ 3<br />

O 4-J rH X a o<br />

B -H In CU a CO 0) TO Cd rH<br />

cfl > O XI cu to M In O.<br />

4J rH XI iH cd tH..<br />

cu cu X<br />

CO O<br />

4-1 TJ rH > 4-1 CU<br />

> 4J XI<br />

B cd 3<br />

CU B B O MH CO 3 XI<br />

X tH cd tH O iH •* %<br />

4-1<br />

cu >n 3 cu<br />

^ -5<br />

TO m 3 01 01 3 rHCM O 4-1<br />

MH 0J o CJ In TJ X < Oj TO<br />

O XI Oh b B 3 OOM 3<br />

B -h OJ III 01 H Q o<br />

. a •H 3 co In X 2; TO 4J<br />

4-1<br />

cr cu 3<br />

B<br />

iH CU 0» >> CU U.<br />

CU CO o cu<br />

CJ In X TJ OjiH X •H 3<br />

CO 3 3<br />

4J TO TJ<br />

OhiH O 4-1<br />

4H O Cd o<br />

cd iH 4-1 CO<br />

4-1 H CU<br />

CJ Cfl<br />

4-1 TO O. In<br />

MH TJ TO Cd C TJ 4-1 X 3<br />

B B iH O 01 C B 0) rH<br />

O •» 3 .3 CO 4-1 3 CU •H<br />

•H m O 4J cd g O S 4-1 Cd<br />

4-1 cu<br />

cu<br />

C MH<br />

Oh > B 01 3<br />

CU<br />

In CU S -H rH tj<br />

rH 4-1<br />

O 9 CU X<br />

O fi<br />

CO O 01 TJ cd cu<br />

•H 01<br />

x W X 0) In m cj x a<br />

cd<br />

In OJ 3-<br />

CU CU OnrH<br />

> TJ OH ><br />

Cfl iH fi Cd rH<br />

X) CO<br />

3 O<br />

B<br />

§<br />

B<br />

•H<br />

cd<br />

4-1<br />

B<br />

• o<br />

> CJ<br />

TJ<br />

3 OJ<br />

4-> XI<br />

TO H<br />

§ cd<br />

N<br />

r>» in<br />

rH In<br />

XI 3<br />

00 TO<br />

•H TO<br />

CU<br />

In<br />

O.<br />

U<br />

OJ<br />

><br />

O<br />

•2 °<br />

a tj<br />

01 4-1<br />

TO rH<br />

CO 01<br />

cd e<br />

01 01<br />

3<br />

TO Cd MH 01 CJ<br />

c§<br />

XI<br />

3 O<br />

4J X!<br />

Cfl<br />

01<br />

00 X X)<br />

-i In<br />

co<br />

. 01<br />

3<br />

On Oh O rH O<br />

O 01<br />

m TO Oh 3<br />

3 O<br />

rH TO<br />

iH CO<br />

Cd iH<br />

MH TJ<br />

H OJ<br />

n3<br />

4J<br />

CO<br />

r- fi<br />

01<br />

x:<br />

X XI<br />

CJ o<br />

OJ<br />

CO rl<br />

B<br />

o<br />

CJ<br />

4-1<br />

cd<br />

0 o<br />

X)<br />

CU<br />

In<br />

01<br />

TJ<br />

•H<br />

CO<br />

3<br />

O<br />

CJ<br />

/"N Tj<br />

< r-j<br />

On 3<br />

W O<br />

w 3<br />

In<br />

O<br />

XI<br />

TO<br />

cu<br />

3<br />

•H<br />

TO U<br />

rH X3<br />

cd cj<br />

cu o<br />

TO O<br />

In 3<br />

O<br />

MH TJ<br />

B<br />

•> cd<br />

TO cd<br />

OJ MH<br />

O<br />

In MH<br />

O O<br />

Mn<br />

01<br />

0) CO<br />

. co cd<br />

TO<br />

cd o<br />

Oj<br />

01 01<br />

TO T3<br />

3<br />

01<br />

X<br />

TO<br />

CO<br />

01<br />

In<br />

O.<br />

Oj<br />

3<br />

TO<br />

4-1 01<br />

O XI<br />

Cd 4-1<br />

In<br />

MH fi<br />

•H<br />

01<br />

00 TJ<br />

m cu<br />

Cfl 4-1<br />

o<br />

XI<br />

TO<br />

o<br />

m<br />

PQ<br />

TJ<br />

cu<br />

CO<br />

3<br />

. cd<br />

CJ<br />

XI<br />

4-1<br />

cu<br />

TJ<br />

X<br />

0 01<br />

4-i m<br />

o<br />

01 MH<br />

3 oi<br />

tj x<br />

•H Cfl<br />

1<br />

X<br />

00 0)<br />

dX •cl 4-><br />

01 TJ<br />

> 0><br />

•H 00<br />

TO In<br />

to cd<br />

OJ x<br />

CJ CJ<br />

X co<br />

0) iH<br />

TJ<br />

X<br />

cj cu<br />

•H m<br />

XI cd<br />

3<br />

co<br />

B cu<br />

•H rH<br />

X<br />

TO T-I<br />

0) TO<br />

CJ C<br />

C CU<br />

01 TJ<br />

3 B<br />

cr o<br />

01 CJ<br />

TO<br />

fl) B<br />

3 Oi<br />

a<br />

01 01<br />

X 00<br />

4-> B<br />

•H<br />

•> Oh<br />

oi a<br />

a -h<br />

•H<br />

4J 4-1<br />

01<br />

MH Tl<br />

O<br />

a<br />

TJ Cd<br />

o cu<br />

•H 4-1<br />

In TO<br />

CU<br />

O. 4h<br />

O<br />

CJ 4n<br />

O<br />

rH TJ<br />

rH B<br />

> cy<br />

rH Pi<br />

01<br />

4-1 01<br />

cd x:<br />

a 4-><br />

•H<br />

X fi<br />

0 iH<br />

m<br />

Oh OJ<br />

Oj In<br />

cd 3<br />

rH<br />

01 iH<br />

In cd<br />

3 MH<br />

TO<br />

TO 4-1<br />

CU 3<br />

In OI<br />

Oh a fi<br />

CO iH<br />

cd<br />

4-1 4-1<br />

cd c<br />

o<br />

m u<br />

3<br />

CJ In<br />

CJ O<br />

O MH<br />

3 01<br />

cd W fi<br />

MH tH<br />

01 Cfl<br />

4J X 4J<br />

C 4-i B<br />

CU O<br />

a oo o<br />

fi 3<br />

H H CJ<br />

cd co X<br />

4-13 4-1<br />

n cfl<br />

3 4J<br />

•H<br />

TO<br />

TJ CO<br />

01 01<br />

In rH<br />

3<br />

U 01<br />

CJ X<br />

O<br />

TJ<br />

CU rH<br />

M 3<br />

cd cd<br />

4-1 TO<br />

B<br />

4-1 OJ<br />

X TJ<br />

00 B<br />

•H O<br />

a a<br />

X 4-1<br />

•H -H<br />

TJ fi<br />

B -H<br />

CU<br />

o. cu<br />

c*x<br />

< 4-1<br />

rH < CU<br />

3 -- c<br />

-H Oh 0<br />

3 01<br />

4-1 TO<br />

0) O<br />

3 XI<br />

4-1<br />

CU<br />

X! 3<br />

U g<br />

cd cd<br />

x<br />

H<br />

CJ<br />

iH<br />

U<br />

4-1<br />

CJ<br />

CU<br />

O 3<br />

O !H,<br />

cu<br />

co xi<br />

4-1 4-1<br />

3<br />

3 O<br />

0 4-1<br />

a s<br />

cd iH<br />

B<br />

o<br />

rH iH Q cd<br />

0)<br />

X<br />

0) O<br />

XI 4-J •<br />

H rH<br />

CO rH<br />

rH Cd<br />

• cd 3<br />

cu cu<br />

In CO 4J<br />

in a<br />

TJ<br />

In 0><br />

13 §<br />

TO CO<br />

rH 0><br />

00 TJ<br />

S3<br />

cu I m<br />

I X cu en<br />

0) 4J In rH<br />

X O.V-T<br />

I<br />

3<br />

O<br />

CJ<br />

X4<br />

3 o<br />

•H<br />

cu<br />

X<br />

TO<br />

CO<br />

c<br />

cd<br />

cu<br />

4-1 a<br />

4H 0)<br />

o -o<br />

Q<br />

I<br />

cd<br />

u<br />

4-1<br />

cu<br />

B<br />

01<br />

Oh<br />

TJ<br />

a CU<br />

O<br />

rH U<br />

rH MH<br />

cu I<br />

xi cd<br />

cu<br />

00<br />

JS<br />

cd<br />

CU<br />

rH m<br />

rH 0)<br />

01 X<br />

CO<br />

CJ iH<br />

•H rH<br />

00 01<br />

I<br />

m<br />

h I<br />

OJ 0)<br />

4-1 T3<br />

T-)<br />

B OJ<br />

0) CO<br />

cu cd<br />

X O)<br />

rH<br />

01 OJ<br />

> u<br />

cd<br />

XI 4J<br />

o<br />

TJ fi<br />

rH<br />

3 01<br />

O u<br />

9 O<br />

MH<br />

TO 01<br />

4-> U<br />

CJ CU<br />

3 X!<br />

XI 4J<br />

O<br />

In tj<br />

Oh 0<br />

cd<br />

B<br />

O rH<br />

•H O<br />

TO O<br />

TO O.<br />

•H<br />

MH B<br />

O<br />

I XI<br />

OJ rH<br />

TJ 3<br />

o<br />

rS 3<br />

X<br />

00<br />

01 B<br />

U tH<br />

xi -u<br />

rH Cd<br />

iH 01<br />

co xi<br />

Mn In<br />

CU<br />

><br />

B o<br />

OJ<br />

a o<br />

B 4-><br />

•H<br />

cd 01<br />

4-1 3<br />

B TJ<br />

O<br />

U CO<br />

rH<br />

MH Cd<br />

O OJ<br />

TO<br />

cu<br />

TJ fi<br />

2 a -H °<br />

4-1<br />

TJ CO<br />

OJ In<br />

4-> 4-1<br />

cfl 01<br />

m<br />

O<br />

x r>*<br />

4-1 4-1<br />

01<br />

TO Mn<br />

to cd<br />

oi co<br />

3 CO<br />

2 TJ<br />

3<br />

CO<br />

c<br />

o<br />

OCT)<br />

TJ<br />

01<br />

In<br />

(U<br />

TJ<br />

In<br />

cd<br />

TO<br />

CO<br />

CU<br />

CJ<br />

CU<br />

fi


74<br />

9.3 Event Trees<br />

9.3.1 Event Trees for Accident Sequences Resulting in Core Melt<br />

It has been concluded in this study th<strong>at</strong> the sequence of events dur<br />

ing a prolonged complete <strong>St<strong>at</strong>ion</strong> Blackout (CSB) <strong>at</strong> the <strong>Browns</strong> <strong>Ferry</strong> Nu<br />

clear Plant (BFNP) would most probably be described by one of the follow<br />

ing titles:<br />

1. CSB + HPCI/RCIC (TB')<br />

2. CSB + HPCI/RCIC + SORV (TPB')<br />

3. CSB + Manual RCIC & SRV (TyB')<br />

4. CSB + Manual RCIC & SRV + SORV (TVPB")<br />

5. CSB + No HPCI/RCIC (TUB')<br />

6. CSB + No HPCI/RCIC + SORV (TUPB')<br />

As indic<strong>at</strong>ed in this listing, a stuck-open relief valve (SORV) corresponds<br />

to a small break LOCA. The terminology "Manual RCIC & SRV" refers to the<br />

assumption th<strong>at</strong> the oper<strong>at</strong>or controls level and pressure by remote-manual<br />

oper<strong>at</strong>ion of the RCIC system and the relief valves, respectively. The<br />

phrase "No HPCI/RCIC" means th<strong>at</strong> both of these w<strong>at</strong>er-injection systems are<br />

assumed to be unavailable due to mechanical failure.<br />

The event tree identifying these six accident sequences is shown in<br />

Fig. 9.1. Sequence No. 1, traced by the dotted line in this figure, is<br />

the sequence TB' which involves no independent secondary equipment fail<br />

ures and was selected as the basis for the fission product transport anal<br />

ysis discussed in Volume 2. Other possible but much less likely sequences<br />

such as failure of reactor scram are shown on Fig. 9.1 but were not con<br />

sidered in this study.<br />

9.3.2 Core Damage Event Tree<br />

Without restor<strong>at</strong>ion of offsite or onsite AC power and with the con<br />

sequent inevitable loss of DC power, any of the numbered sequences shown<br />

on Fig. 9.1 will lead to core uncovery and subsequent core melting, reac<br />

tor vessel failure, and corium-concrete interaction. A tree for the<br />

events subsequent to core uncovery is shown in Fig. 9.2, with the p<strong>at</strong>h<br />

used for the fission product transport analysis of Vol. 2 identified by a<br />

dotted line.<br />

9.3.3 Containment Event Tree<br />

A containment event tree for the occurrences following core melt is<br />

given in Fig. 9.3. The particular p<strong>at</strong>h which has been chosen for the fis<br />

sion product transport studies is again indic<strong>at</strong>ed by the dotted line p<strong>at</strong>h.<br />

It should be noted th<strong>at</strong> if AC power is restored after core, melt, but<br />

before a failure of the reactor vessel occurs, the low-pressure Emergency<br />

Core Cooling Systems (ECCS) would function and a breach of the containment<br />

in the drywell or wetwell areas may be averted.


INITIATING EVENT<br />

LOSS OF OFFSITE<br />

AND ONSITE<br />

ac POWER<br />

YES<br />

A<br />

V<br />

NO<br />

SYSTEM<br />

AUTOMATIC<br />

RESPONSES<br />

r-<br />

I<br />

STUCK OPEN<br />

RELIEF VALVE<br />

HPCI AND<br />

RCIC<br />

OPERABLE<br />

MANUAL SRV<br />

DEPRESSURIZATION<br />

WITHIN 15 min.<br />

LOSS OF dc POWER -<br />

HPCI/RCIC INOPERABLE<br />

ORNL-DWG 81-8164A ETD<br />

SEQUENCE CONSEQUENCE<br />

•© ITVPB') CORE MELT<br />

POTENTIAL DELAYED<br />

CORE DAMAGE<br />

(?) (TPB'l CORE MELT<br />

POTENTIAL DELAYED<br />

CORE DAMAGE<br />

.(6) (TUPB) CORE MELT<br />

•(5)


INITIATING EVENT -<br />

CORE UNCOVERY<br />

YES<br />

REACTOR VESSEL<br />

DEPRESSURIZED<br />

dc POWER RESTORED<br />

BEFORE EXTENSIVE<br />

CORE DAMAGE -<br />

HPCI/RCIC OPERABLE<br />

OFFSITE ac POWER RESTORED<br />

BEFORE EXTENSIVE<br />

CORE DAMAGE-<br />

LOW PRESSURE ECCS<br />

OPERABLE<br />

dc POWER RESTORED<br />

AFTER SIGNIFICANT<br />

CORE MELT, BUT<br />

BEFORE VESSEL<br />

FAILURE -<br />

HPCI/RCIC OPERABLE<br />

OFFSITE ac POWER RESTORED<br />

AFTER SIGNIFICANT<br />

CORE MELT, BUT<br />

BEFORE VESSEL<br />

FAILURE-<br />

LP ECCS OPERABLE<br />

Fig. 9.2 Core damage event tree.<br />

ORNL-DWG 81-8200 ETD<br />

OFFSITE ac POWER RESTORED AFTER VESSEL<br />

FAILURE - LP ECCS OPERABLE<br />

SLIGHT CORE DAMAGE,<br />

LITTLE OR NO CORE MELT<br />

CORE MELT, DEBRIS<br />

CONTAINED IN VESSEL<br />

CORE MELT, RPV<br />

FAILURE, NO CONCRETE<br />

ATTACK<br />

CORE MELT, RPV<br />

FAILURE, AND CONCRETE<br />

ATTACK<br />

SLIGHT CORE DAMAGE,<br />

LITTLE OR NO CORE MELT<br />

CORE MELT, DEBRIS<br />

CONTAINED IN VESSEL<br />

CORE MELT, RPV<br />

FAILURE, NO CONCRETE<br />

ATTACK<br />

CORE MELT, RPV<br />

FAILURE, AND CONCRETE<br />

ATTACK<br />

C*


INITIATING EVENT<br />

-CORE MELT<br />

YES<br />

A<br />

LARGE AMPLITUDE<br />

CONOENSTION<br />

OSCILLATIONS IN<br />

WETWELL<br />

T-QUENCHER<br />

FAILURE<br />

WETWELL<br />

RUPTURE<br />

FAILURE<br />

VESSEL<br />

FAILURE<br />

77<br />

DRYWELL DRYWELL<br />

EPA VENTING EPA FAILURE<br />

DRYWELL<br />

RUPTURE<br />

FAILURE<br />

Fig. 9.3 Containment event tree.<br />

ORNL-DWG 81-0201 ETD<br />

HIGH RELEASE (WETWELL FAILUREl<br />

VERY HIGH RELEASE (DRYWELL FAILUREl<br />

SOME RELEASE (DRYWELL VENTINGI<br />

VERY HIGH RELEASE (DRYWELL FAILUREl<br />

NO CONTAINMENT FAILURE<br />

NO VESSEL FAILURE. NO CONTAINMENT<br />

FAILURE<br />

HIGH RELEASE (WETWELL FAILUREl<br />

VERY HIGH RELEASE (DRYWELL FAILUREl<br />

SOME RELEASE (ORYWELL VENTING I<br />

VERY HIGH RELEASE (DRYWELL FAILUREl<br />

NO CONTAINMENT FAILURE<br />

NO VESSEL FAILURE, NO CONTAINMENT<br />

FAILURE<br />

VERY HIGH RELEASE (DRYWELL FAILUREl<br />

SOME RELEASE (DRYWELL VENTINGI<br />

VERY HIGH RELEASE (DRYWELL FAILUREl<br />

NO CONTAINMENT FAILURE<br />

NO VESSEL FAILURE. NO CONTAINMENT<br />

FAILURE<br />

VERY HIGH RELEASE IDRYWELL FAILUREl<br />

SOME RELEASE (DRYWELL VENTINGI<br />

VERY HIGH RELEASE (DRYWELL FAILUREl<br />

NO CONTAINMENT FAILURE<br />

— NO VESSEL FAILURE, NO CONTAINMENT<br />

FAILURE


9.4.1 MARCH computer code<br />

78<br />

9.4 Accident Sequences<br />

Detailed calcul<strong>at</strong>ions for the accident sequences have been performed<br />

with the MARCH computer code , version 1.4B. This version is based on<br />

version 1.4 <strong>at</strong> Brookhaven N<strong>at</strong>ional Labor<strong>at</strong>ory, but contains a different<br />

subroutine ANSQ for the decay he<strong>at</strong> power calcul<strong>at</strong>ions and modific<strong>at</strong>ions to<br />

the subroutine HEAD which were necessary to improve the prediction of ves<br />

sel failure time. 18<br />

In the MARCH code, the fission product decay he<strong>at</strong> source term is<br />

based on ANS Standard ANS-5.1 (1973)za which does not account for the<br />

decay of U-239 or Np-239. The new standard ANS-5.1 (1979) zl* provides<br />

decay parameters for U-239 and Np-239, but does not account for the decay<br />

power gener<strong>at</strong>ed from these or the numerous other heavy nuclides (actinides)<br />

which exist in power reactors. The new subroutine ANSQ used in<br />

this study (Cf. Appendix B) is based on the actinide decay he<strong>at</strong> source in<br />

a BWR following a depletion of 34,000 MWd/t. The actinide he<strong>at</strong>ing calcu<br />

l<strong>at</strong>ions Zb were performed using the EPRI-CINDER code and include all sig<br />

nificant actinides from Tl-208 through Cm-246. Furthermore, the initial<br />

fission energy release from the fuel is assumed to last 3 seconds r<strong>at</strong>her<br />

than 5 seconds as used originally in the MARCH code. This has been found<br />

to yield better agreement with test d<strong>at</strong>a in implementing the REDY code <strong>at</strong><br />

GE.2b<br />

A comparison of MARCH calcul<strong>at</strong>ions for the sequence TB " as per<br />

formed by versions 1.4 and 1.4B are given in Figs. 9.4 through 9.11 for<br />

the time- dependence of (1) the maximum core temper<strong>at</strong>ure, (2) the w<strong>at</strong>ersteam<br />

mixture level, (3) the containment wall temper<strong>at</strong>ure, and (4) the<br />

containment volumetric leak r<strong>at</strong>e. It should be noted th<strong>at</strong> the times pre<br />

dicted by version 1.4B for core uncovery and core melt are less by approx<br />

im<strong>at</strong>ely 18 and 26%, respectively, and th<strong>at</strong> the maximum containment wall<br />

temper<strong>at</strong>ure is increased by more than 120%. Other comparisons have shown<br />

th<strong>at</strong> the 1.4B version produces results in better agreement with the core<br />

uncovery time calcul<strong>at</strong>ed by the RELAP4/Mod 7 Code for the sequence TUB "<br />

<strong>at</strong> INEL. 2/<br />

9.4.2 Accident progression sign<strong>at</strong>ures<br />

This section contains the accident progression sign<strong>at</strong>ures for the<br />

six most probable sequences following complete st<strong>at</strong>ion <strong>blackout</strong> (CSB).<br />

The early part of the plant transient characteristics follow th<strong>at</strong> con<br />

tained in the <strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant Final Safety Analysis Report.<br />

All other accident sign<strong>at</strong>ures have been based on the results calcul<strong>at</strong>ed by<br />

the MARCH computer code.13<br />

9.4.2.1 CSB + HPCI (TB'). The accident progression sign<strong>at</strong>ure for<br />

the sequence TB' is given in Table 9.1. This sequence has been chosen<br />

for the fission product transport studies presented in Volume 2.<br />

9.4.2.2 CSB + HPCI + SORV (TPB'). The accident progression signa<br />

ture for the sequence TPB' is given in Table 9.2. The SORV event has<br />

the same effect as a small break LOCA, ensuring th<strong>at</strong> the reactor vessel


3000.0<br />

2500.0-<br />

3 2000.0<br />

\-<br />

<<br />

cc<br />

H 1500.0<br />

UJ<br />

cc<br />

o<br />

o<br />

I 1000.0<br />

<<br />

2<br />

500.0-<br />

0.0<br />

0.0<br />

DECREASE FOLLOWING SCRAM<br />

50.0<br />

CORE UNCOVERY BEGINS<br />

CORE MELTING BEGINS<br />

dc POWER LOST<br />

1 —I 1 I<br />

100.0 150.0 200.0 250.0 300.0<br />

TIME (min)<br />

Fig. 9.4 Maximum core temper<strong>at</strong>ure (MARCH/MOD 1.4B).<br />

ORNL-DWG 81-8515 ETD<br />

I<br />

350.0 400.0


3000.0<br />

2500.0-<br />

LU<br />

3 2000.0<br />

<<br />

rr<br />

LU<br />

a.<br />

2<br />

h 1500.0<br />

UJ<br />

cc<br />

O o<br />

<<br />

1000.0<br />

500.0-<br />

0.0<br />

0.0<br />

DECREASE FOLLOWING SCRAM<br />

dc POWER LOST<br />

CORE UNCOVERY BEGINS<br />

CORE MELTING BEGINS<br />

T T 1 T T<br />

50.0 100.0 150.0 200.0 250.0 300.0<br />

TIME (min)<br />

Fig. 9.5 Maximum core temper<strong>at</strong>ure (MARCH/MOD 1.4)<br />

ORNL-DWG 81-8516 ETD<br />

350.0 400.0 450.0 500.0<br />

os<br />

o


12.0<br />

10.0<br />

3 8.0-<br />

><br />

UJ<br />

_J<br />

UJ<br />

cc<br />

6.0<br />

9 4.0-<br />

2<br />

<<br />

UJ<br />

k i<br />

tr<br />

UJ<br />

h-<br />

<<br />

2.0-<br />

0.0-<br />

-2.0-<br />

-4.0<br />

0.0 50.0<br />

T T<br />

100.0 150.0<br />

1<br />

200.0<br />

TIME (min)<br />

Fig. 9.6 W<strong>at</strong>er-steam mixture level (MARCH/MOD 1.4B)<br />

LOSS OF dc POWER<br />

BOILOFF BEGINS<br />

ORNL-DWG 81-8517 ETD<br />

CORE SLUMPS-<br />

—I 1 1<br />

250.0 300.0 350.0 400.0<br />

oo


12.0-1<br />

10.0<br />

1 8.0-<br />

><br />

UJ<br />

_l<br />

UJ<br />

cc<br />

6.0-<br />

r-<br />

* 4.0<br />

<<br />

UJ<br />

fc 2.0<br />

i<br />

cc<br />

UJ<br />

<<br />

5 0.0<br />

-2.0-<br />

LOSS OF dc POWER<br />

BOILOFF BEGINS<br />

-4.0 | | 1 I i 1 1 r<br />

T T<br />

0.0 50.0 100.0 150.0 200.0 250.0<br />

TIME (min)<br />

300.0 350.0 400.0 450.0 500.0<br />

Fig. 9.7 W<strong>at</strong>er-steam mixture level (MARCH/MOD 1.4)<br />

ORNL-DWG 81-8518 ETD<br />

CORE SLUMPS-<br />

oo<br />

t-o


1400.0<br />

— 1200.0<br />

«—<br />

Q<br />

O<br />

Z<br />

UJ<br />

cc 1000.0<br />

D<br />

r-<br />

<<br />

CC<br />

UJ<br />

O.<br />

2<br />

UJ 800.0<br />

r-<br />

-1<br />

_l<br />

<<br />

5<br />

r-<br />

Z<br />

UJ<br />

2 Z<br />

600.0<br />

<<br />

H<br />

Z<br />

o 400.0<br />

o<br />

200.0-<br />

0.0<br />

VESSEL BOTTOM HEAD FAILS<br />

T<br />

T 1 1<br />

100.0 200.0 300.0 400.0 500.0 600.0<br />

TIME (min)<br />

GROSS EPA FAILURE<br />

EPA VENTING<br />

I I<br />

700.0 800.0<br />

Fig. 9.8 Containment wall temper<strong>at</strong>ure (MARCH/MOD 1.4B).<br />

ORNL-DWG 81-8519 ETD<br />

—I 1^ 1<br />

900.0 1000.0 1100.0<br />

oo


600.0 -r<br />

£ 550.0-<br />

o<br />

o<br />

z<br />

cc 500.0-<br />

D<br />

r-<br />

< CC<br />

UJ<br />

a.<br />

uj 450.0<br />

<<br />

z 400.0<br />

UJ<br />

2<br />

z<br />

< r-<br />

o 350.0-<br />

VESSEL BOTTOM HEAD FAILS<br />

300.0 H 1 1 1 I 1 I i i 1 1 r<br />

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0 1100.0 1200.0<br />

TIME (min)<br />

Fig. 9.9 Containment wall temper<strong>at</strong>ure (MARCH/MOD 1.4)<br />

ORNL-DWG 81-8520 ETD<br />

HEATUP DURING<br />

CORIUM-CONCRETE<br />

REACTION<br />

oo


400.0<br />

350.0-<br />

"E 300.0-<br />

<<br />

QC<br />

*<br />

<<br />

UJ<br />

-1<br />

250.0<br />

o 200.0<br />

CC<br />

r-<br />

UJ<br />

2 Z><br />

_l<br />

o<br />

><br />

1-<br />

o<br />

o<br />

150.0<br />

100.0<br />

50.0-<br />

0.0-<br />

0.0 100.0 200.0 300.0 400.0 500.0 600.0<br />

TIME (min)<br />

Fig. 9.10 Containment leak r<strong>at</strong>e (MARCH/MOD 1.4B)<br />

ORNL-DWG 81-8521 ETD<br />

700.0 800.0 900.0 1000.0 1100.0<br />

00


E<br />

UJ<br />

400.0-1<br />

350.0-<br />

300.0<br />

r-<br />

<<br />

CC 250.0<br />

< LU<br />

_l<br />

o 200.0<br />

cc<br />

K-<br />

LU<br />

2<br />

-J<br />

O<br />

><br />

1-<br />

o o<br />

150.0<br />

100.0<br />

50.0-<br />

0.0 -J<br />

0.0 100.0<br />

ORNL-DWG 81-8522 ETD<br />

200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0 1100.0 1200.0<br />

TIME (min)<br />

Fig. 9.11 Containment leak r<strong>at</strong>e (MARCH/MOD 1.4).<br />

oo<br />

o>


87<br />

Table 9.1<br />

<strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant: Complete <strong>St<strong>at</strong>ion</strong> Blackout<br />

Sequence of Events<br />

CSB + HPCI/RCIC<br />

(TB')<br />

Time<br />

(sec) Event<br />

0.0 Loss of all AC power and diesel gener<strong>at</strong>ors. The plant<br />

is initially oper<strong>at</strong>ing <strong>at</strong> 100% power.<br />

Initial drywell temper<strong>at</strong>ure = 66°C (150°F)<br />

Initial wetwell temper<strong>at</strong>ure = 35°C (95°F)<br />

0.2 Full load rejection (i.e., fast closure of turbine<br />

control valves) occurs.<br />

0.2 Recircul<strong>at</strong>ion pumps and condenser circul<strong>at</strong>ory w<strong>at</strong>er<br />

pumps trip off. Loss of condenser vacuum occurs.<br />

Core flow is provided by n<strong>at</strong>ural circul<strong>at</strong>ion.<br />

0.2 Reactor pressure increases suddenly due to load rejec<br />

tion.<br />

0.3 Scram pilot valve solenoids are deenergized due to<br />

load rejection. Control rod motion begins.<br />

0.5 Turbine bypass valves start to open due to load rejec<br />

tion.<br />

1.0 Neutron flux starts to decrease after an initial in<br />

crease to over 100% r<strong>at</strong>ed power level.<br />

1.0 Reactor power starts to decrease slowly after an ini<br />

tial rise.<br />

2.0 Control rods are 40% inserted from fully withdrawn<br />

position.<br />

2.0 Main steamline isol<strong>at</strong>ion valves (MSIVs) start to close<br />

(relay-type reactor trip system), resulting in a rapid<br />

steam-line pressure rise.<br />

2.0 Turbine bypass valves are tripped to close.<br />

3.0 Control rods are 75% inserted from fully withdrawn<br />

position.


88<br />

Time<br />

(sec) Event<br />

3.0 Turbine trips off (turbine stop valves fully closed).<br />

3.5 Power gener<strong>at</strong>ion due to delayed neutrons and fission<br />

product decay drops to 10% of initial r<strong>at</strong>ed power gen<br />

er<strong>at</strong>ion.<br />

4.0 Feedw<strong>at</strong>er turbines trip off.<br />

5.0 MSIVs are fully closed, resulting in a momentary 0.69<br />

MPa (100 psi) pressure increase and 1.02 m (40-in.)<br />

drop of w<strong>at</strong>er-steam mixture level due to collapsing of<br />

voids.<br />

5.0 All control rods are fully inserted.<br />

5*0 Reactor vessel pressure exceeds the lowest setpoint <strong>at</strong><br />

7.52 MPa (1090 psi) of safety/relief valves (S/RVs).<br />

5.0 Seven (7) out of thirteen (13) S/RVs start to open in<br />

response to pressure rise above the setpoint.<br />

5.2 W<strong>at</strong>er-steam mixture level recovers 0.51 m (20 in.)<br />

from the previous momentary 1.02 m (40-in.) drop.<br />

5.5 S/RV steam blowdowns into the pressure suppression<br />

pool through the T-quenchers begin.<br />

7.5 Feedw<strong>at</strong>er flow drops below 20%.<br />

9.0 Feedw<strong>at</strong>er flow decreases to zero.<br />

10.0 Power gener<strong>at</strong>ion due to fission product decay drops to<br />

approxim<strong>at</strong>ely 7.2% of r<strong>at</strong>ed power gener<strong>at</strong>ion.<br />

15.0 All 7 S/RVs are completely closed.<br />

15.7 Four out of 13 S/RVs start to open.<br />

17.0 Neutron flux drops below 1% of initial full power<br />

level.<br />

21.0 Narrow range (NR) sensed w<strong>at</strong>er level reaches low alarm<br />

(Level 4), i.e., 5.98 m (235.50 in.) above Level 0, or<br />

5.00 m (196.44 in.) above TAF.<br />

22.0 Suppression pool w<strong>at</strong>er average temper<strong>at</strong>ure rises<br />

to 35.13°C (95.24°F) in response to the first S/RV<br />

pops.<br />

29.0 All 4 S/RVs are completely closed.


89<br />

Time<br />

(sec) Event<br />

29.7 Two out of 13 S/RVs start to open.<br />

47.0 All 2 S/RVs are completely closed.<br />

47.7 <strong>One</strong> out of 13 S/RVs starts to open.<br />

56.0 Suppression pool w<strong>at</strong>er average temper<strong>at</strong>ure is approxi<br />

m<strong>at</strong>ely 35.3°C (95.54°F).<br />

56.0 NR sensed w<strong>at</strong>er level reaches low level alarm (Level<br />

3), i.e., 5.50 m (216.00 in.) above Level 0, or 4.50 m<br />

(176.94 in.) above TAF.<br />

90.0 Suppression pool w<strong>at</strong>er average temper<strong>at</strong>ure is approxi<br />

m<strong>at</strong>ely 35.4°C (95.72°F).<br />

101.0 The S/RV is completely closed. The same S/RV contin<br />

ues to cycle on and off on setpoints throughout the<br />

subsequent cyclings of HPCI and RCIC injections.<br />

625 Wide range sensed w<strong>at</strong>er level reaches low w<strong>at</strong>er level<br />

setpoint (Level 2), i.e., 4.18 m (164.50 in.) above<br />

Level 0 <strong>at</strong> 2/3 core height, or 2.96 m (116.50 in.)<br />

above TAF.<br />

625 HPCI and RCIC systems are autom<strong>at</strong>ically turned on.<br />

The HPCI and RCIC turbine pumps are driven by steam<br />

gener<strong>at</strong>ed by decay he<strong>at</strong>. System auxiliaries are<br />

powered by the 250 V dc system.<br />

655 HPCI and RCIC flows enter the reactor pressure vessel<br />

<strong>at</strong> 315 Jt/s (5000 gpm) and 38 £/s (600 gpm), re<br />

spectively, drawing w<strong>at</strong>er from the condens<strong>at</strong>e storage<br />

tank.<br />

12.5 min. Narrow range sensed w<strong>at</strong>er level reaches Level 8 setpoint,<br />

i.e., 6.86 m (270.00 in.) above Level 0, or<br />

5.64 m (222.00 in.) above TAF.


Time<br />

(sec)<br />

12,>5 min.<br />

20 min.<br />

26..5 min.<br />

HPCI and RCIC trip off.<br />

90<br />

Event<br />

Drywell and wetwell temper<strong>at</strong>ures exceed 70°C (158°F) and<br />

42°C (108°F), respectively.<br />

Wide range sensed w<strong>at</strong>er level reaches Level 2 setpoint and<br />

HPCI autom<strong>at</strong>ically restarts. (RCIC does not autom<strong>at</strong>ically<br />

restart.)<br />

27.0 min. HPCI flow enters the RPV.<br />

29.0 min. Narrow range sensed w<strong>at</strong>er level reaches Level 8 setpoint and<br />

HPCI trips off again. The HPCI system, driven by steam gen<br />

er<strong>at</strong>ed by decay he<strong>at</strong>, turns on and off autom<strong>at</strong>ically between<br />

sensed Levels 2 and 8 until the b<strong>at</strong>teries run out.<br />

80 min. Auto-isol<strong>at</strong>ion signal initi<strong>at</strong>es as increase of drywell<br />

pressure exceeds 13.8 KPa (2.0 psi). The HPCI/ RCIC systems<br />

are not isol<strong>at</strong>ed.<br />

240 min. The HPCI pump stops when the b<strong>at</strong>teries run out.<br />

260 min. Wide range sensed w<strong>at</strong>er level reaches Level 2 setpoint.<br />

Drywell and wetwell temper<strong>at</strong>ures are 85°C (185°F) and 87°C<br />

(188°F), respectively. Mass and energy addition r<strong>at</strong>es into<br />

the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 27.82 3.68 * 103 7.68 * 107 4.37 x 106<br />

Hydrogen 0 0 0 0<br />

302 min. Core uncovery time. Steam-w<strong>at</strong>er mixture level is <strong>at</strong> 3.58 m<br />

(11.73 ft) above bottom of the core.<br />

320 min. Average gas temper<strong>at</strong>ure <strong>at</strong> top of core is 485°C (904°F).<br />

Drywell and wetwell temper<strong>at</strong>ures and pressures are 101°C<br />

(213°F) and 0.21 MPa (31 psia), respectively. Mass and<br />

energy addition r<strong>at</strong>es into the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 18.75 2.48 x io3 5.40 * 107 3.07 x io6<br />

Hydrogen 6.65 x io"7 8.80 x i(f5 3.34 1.90 x io"1


91<br />

Time<br />

(sec) Event<br />

340 min. Average gas temper<strong>at</strong>ure <strong>at</strong> top of core is 821°C (1509°F).<br />

Drywell and wetwell temper<strong>at</strong>ures and pressures are 103°C<br />

(218°F) and 0.23 MPa (33 psia), respectively. Mass and<br />

energy addition r<strong>at</strong>es into the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 11.75 1.56 x 103 3.76 x IO7 2.14 x ify*<br />

Hydrogen 1.52 x io"3 2.00 x io"1 1.10 x io*1 6.25 x io2<br />

355 min. Core melting starts.<br />

389 min. W<strong>at</strong>er level in vessel drops below bottom grid elev<strong>at</strong>ion.<br />

390 min. Bottom grid fails and temper<strong>at</strong>ure of structures in bottom<br />

head is above w<strong>at</strong>er temper<strong>at</strong>ure.<br />

392 min. The corium slumps down to vessel bottom.<br />

394 min. Debris starts to melt through the bottom head.<br />

426 min. Vessel bottom head fails, resulting in a pressure increase<br />

of 0.34 MPa (49 psia).<br />

426.04 min. Debris starts to melt the concrete floor of the containment<br />

building. Temper<strong>at</strong>ure of debris is 1433°C (2611°F) initial<br />

ly. Internal he<strong>at</strong> gener<strong>at</strong>ion in metals and oxides are 1.05<br />

x IO7 and 1.95 x io' w<strong>at</strong>ts, respectively.<br />

503.27 min. Drywell electric penetr<strong>at</strong>ion assembly seals have failed as<br />

the containment temper<strong>at</strong>ure exceeds 204°C (400°F) and start<br />

to vent through the primary containment <strong>at</strong> a leak r<strong>at</strong>e of<br />

118 SL/s (250 ft3/min).<br />

513.59 min. Containment failed as the containment temper<strong>at</strong>ure exceeds<br />

260°C (500°F) and all electric penetr<strong>at</strong>ion modules are blown<br />

out of the containment. Mass and energy addition r<strong>at</strong>es into<br />

the drywell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s (lb/min) (w) (Btu/min)<br />

Steam 4.61 610 1.59 x io5 9052<br />

Hydrogen 0.11 15 0 0<br />

C02 1.01 133<br />

CO 2.35 311<br />

The leak r<strong>at</strong>e through the drywell penetr<strong>at</strong>ion seals is<br />

-3.04 x io1* jt/s (6.44 x 104* ft3/min).


92<br />

Time<br />

(sec) Event<br />

613 min. Drywell and wetwell pressures are <strong>at</strong> 0.10 MPa (~14.7 psia)<br />

and temper<strong>at</strong>ures are 661°C (~1222°F) and 98°C (~209°F),<br />

respectively. The leak r<strong>at</strong>e through the containment failed<br />

area is ~2.96 x 101* A/s (~6.27 x io** ft3/min).<br />

695 min. Drywell and wetwell temper<strong>at</strong>ures are 623°C (1154°F) and 97°C<br />

(207°F), respectively. The leak r<strong>at</strong>e through the contain<br />

ment failed area is ~6.47 x io1* i/s (~1.37 x io5<br />

ft3/min).<br />

1028 min. Drywell and wetwell temper<strong>at</strong>ures are 614°C (~1138°F) and<br />

97°C (~207°F), respectively. The leak r<strong>at</strong>e through the<br />

containment failed area is ~1.34 x io3 l/s (~2.83 x<br />

IO3 ft3/min).


93<br />

Table 9.2<br />

<strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant: Complete <strong>St<strong>at</strong>ion</strong> Blackout<br />

Sequence of Events<br />

CSB + HPCI/RCIC + SORV (Small Break LOCA)<br />

(TPB')<br />

Time<br />

(sec) Event<br />

0.0 Loss of all AC power and diesel gener<strong>at</strong>ors. The plant<br />

is initially oper<strong>at</strong>ing <strong>at</strong> 100% power.<br />

Initial drywell temper<strong>at</strong>ure - 66°C (150°F)<br />

Initial wetwell temper<strong>at</strong>ure - 35°C (95°F)<br />

0.2 Full load rejection (i.e., fast closure of turbine<br />

control valves) occurs.<br />

0.2 Recircul<strong>at</strong>ion pumps and condenser circul<strong>at</strong>ory w<strong>at</strong>er<br />

pumps trip off. Loss of condenser vacuum occurs.<br />

Core flow is provided by n<strong>at</strong>ural circul<strong>at</strong>ion.<br />

0.2 Reactor pressure increases suddenly due to load rejec<br />

tion.<br />

0.3 Scram pilot valve solenoids are deenergized due to<br />

load rejection. Control rod motion begins.<br />

0.5 Turbine bypass valves start to open due to load rejec<br />

tion.<br />

1.0 Neutron flux starts to decrease after an initial in<br />

crease to over 100% r<strong>at</strong>ed power level.<br />

1.0 Reactor power starts to decrease slowly after an ini<br />

tial rise.<br />

2.0 Control rods are 40% inserted from fully withdrawn<br />

position.<br />

2.0 Main steamline isol<strong>at</strong>ion valves (MSIVs) start to close<br />

(relay-type reactor trip system), resulting in a rapid<br />

steam-line pressure rise.<br />

2.0 Turbine bypass valves are tripped to close.<br />

3.0 Control rods are 75% inserted from fully withdrawn<br />

position.


94<br />

Time<br />

(sec) Event<br />

3.0 Turbine trips off (turbine stop valves fully closed).<br />

3.5 Power gener<strong>at</strong>ion due to delayed neutrons and fission<br />

product decay drops to 10% of initial r<strong>at</strong>ed power gen<br />

er<strong>at</strong>ion.<br />

4.0 Feedw<strong>at</strong>er turbines trip off.<br />

5.0 MSIVs are fully closed, resulting in a momentary 0.69<br />

MPa (100 psi) pressure increase and 1.02 m (40-in.)<br />

drop of w<strong>at</strong>er-steam mixture level due to collapsing of<br />

voids.<br />

5.0 All control rods are fully inserted.<br />

5.0 Reactor vessel pressure exceeds the lowest setpoint <strong>at</strong><br />

7.52 MPa (1090 psi) of safety/relief valves (S/RVs).<br />

5.0 Seven (7) out of thirteen (13) S/RVs start to open in<br />

response to pressure rise above the setpoint.<br />

5.2 W<strong>at</strong>er-steam mixture level recovers 0.51 m (20 in.)<br />

from the previous momentary 1.02 m (40-in.) drop.<br />

5.5 S/RV steam blowdowns into the pressure suppression<br />

pool through the T-quenchers begin.<br />

7.5 Feedw<strong>at</strong>er flow drops below 20%.<br />

9.0 Feedw<strong>at</strong>er flow decreases to zero.<br />

10.0 Power gener<strong>at</strong>ion due to fission product decay drops to<br />

approxim<strong>at</strong>ely 7.2% of r<strong>at</strong>ed power gener<strong>at</strong>ion.<br />

15.0 All 6 S/RVs are completely closed. <strong>One</strong> S/RV is stuck<br />

open (SORV); this has the same effect as a small break<br />

LOCA of equivalent break area of 0.015 m2 (0.1583<br />

ft2).<br />

15.7 Four out of 13 S/RVs start to open.<br />

17.0 Neutron flux drops below 1% of initial full power<br />

level.<br />

21.0 Narrow range (NR) sensed w<strong>at</strong>er level reaches low alarm<br />

(Level 4), i.e., 5.98 m (235.50 in.) above Level 0, or<br />

5.00 m (196.44 in.) above TAF.


95<br />

Time<br />

(sec) Event<br />

22.0 Suppression pool w<strong>at</strong>er average temper<strong>at</strong>ure rises<br />

to 35.13°C (95.24°F) in response to the first S/RV<br />

pops.<br />

29.0 All 4 S/RVs are completely closed.<br />

29.7 Two out of 13 S/RVs start to open.<br />

47.0 All 2 S/RVs are completely closed.<br />

47.7 <strong>One</strong> out of 13 S/RVs starts to open.<br />

56.0 Suppression pool w<strong>at</strong>er average temper<strong>at</strong>ure is approxi<br />

m<strong>at</strong>ely 35.3°C (95.54°F).<br />

56.0 NR sensed w<strong>at</strong>er level reaches low level alarm (Level<br />

3), i.e., 5.50 m (216.00 in.) above Level 0, or 4.50 m<br />

(176.94 in.) above TAF.<br />

90.0 Suppression pool w<strong>at</strong>er average temper<strong>at</strong>ure is approxi<br />

m<strong>at</strong>ely 35.4°C (95.72°F).<br />

101.0 The S/RV is completely closed. The same S/RV contin<br />

ues to cycle on and off on setpoints throughout the<br />

subsequent cyclings of HPCI and RCIC injections.<br />

625 Wide range sensed w<strong>at</strong>er level reaches low w<strong>at</strong>er level<br />

setpoint (Level 2), i.e., 4.18 m (164.50 in.) above<br />

Level 0 <strong>at</strong> 2/3 core height, or 2.96 m (116.50 in.)<br />

above TAF.<br />

625 HPCI and RCIC systems are autom<strong>at</strong>ically turned on.<br />

The HPCI and RCIC turbine pumps are driven by steam<br />

gener<strong>at</strong>ed by decay he<strong>at</strong>. System auxiliaries are<br />

powered by the 250 V dc system.<br />

655 HPCI and RCIC flows enter the reactor pressure vessel<br />

<strong>at</strong> 315 l/s (5000 gpm) and 38 l/s (600 gpm), re<br />

spectively, drawing w<strong>at</strong>er from the condens<strong>at</strong>e storage<br />

tank.<br />

12.5 min. Narrow range sensed w<strong>at</strong>er level reaches Level 8 setpoint,<br />

i.e., 6.86 m (270.00 in.) above Level 0, or<br />

5.64 m (222.00 in.) above TAF.<br />

12.5 min. HPCI and RCIC trip off.


96<br />

Time<br />

(sec) Event<br />

20 min. Drywell and wetwell temper<strong>at</strong>ures exceed 70°C (158°F) and<br />

50°C (122°F), respectively.<br />

Mass and energy addition r<strong>at</strong>es into the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 35.04 4.63 x io3 9.87 x io7 5.61 x io6<br />

Hydrogen 0 0 0 0<br />

25.5 min. Auto-isol<strong>at</strong>ion signal initi<strong>at</strong>es as increase of drywell pres<br />

sure exceeds 13.8 KPa (2.0 psi). The HPCI/ RCIC systems are<br />

not isol<strong>at</strong>ed.<br />

26.5 min. Wide range sensed w<strong>at</strong>er level reaches Level 2 setpoint and<br />

HPCI autom<strong>at</strong>ically restarts. (RCIC does not autom<strong>at</strong>ically<br />

restart.)<br />

27.0 min. HPCI flow enters the RPV.<br />

29.0 min. Narrow range sensed w<strong>at</strong>er level reaches Level 8 setpoint and<br />

HPCI trips off again. The HPCI system, driven by steam gen<br />

er<strong>at</strong>ed by decay he<strong>at</strong>, turns on and off autom<strong>at</strong>ically between<br />

sensed Levels 2 and 8 until the b<strong>at</strong>teries run out.<br />

240 min. The HPCI pump stops when the b<strong>at</strong>teries run out.<br />

261 min. Wide range sensed w<strong>at</strong>er level reaches Level 2 setpoint.<br />

Drywell and wetwell temper<strong>at</strong>ures are 100°C (212°F) and 96°C<br />

(205°F), respectively. Mass and energy addition r<strong>at</strong>es into<br />

the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 10.45 1.38 x io3 2.92 x io7 1.66 x io6<br />

Hydrogen 0 0 0 0<br />

315.07 min. Core uncovery time. Steam-w<strong>at</strong>er mixture level is <strong>at</strong> 3.53 m<br />

(11.58 ft) above bottom of the core.<br />

321.5 min. Average gas temper<strong>at</strong>ure <strong>at</strong> top of core is 211°C (412°F).<br />

Drywell and wetwell temper<strong>at</strong>ures and pressures are 106°C<br />

(223°F) and 0.24 MPa (35 psia), respectively. Mass and<br />

energy addition r<strong>at</strong>es into the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 22.66 3.00 x io3 6.33 x io7 3.60 x io6<br />

Hydrogen 0 0 0 0


97<br />

Time<br />

(sec) Event<br />

384 min. Average gas temper<strong>at</strong>ure <strong>at</strong> top of core is 1046°C (1915°F).<br />

Drywell and wetwell temper<strong>at</strong>ures and pressures are 1148C<br />

(237°F) and 0.28 MPa (41 psia), respectively. Mass and<br />

energy addition r<strong>at</strong>es into the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 2.46 325.0 8.30 x io6 4.72 x IO5<br />

Hydrogen 0.021 2.78 1.14 x io5 8.19 x io3<br />

387.77 min. Core melting starts.<br />

418.77 min. W<strong>at</strong>er level in vessel drops below bottom grid elev<strong>at</strong>ion.<br />

420.77 min. Bottom grid fails and temper<strong>at</strong>ure of structures in bottom<br />

head is above w<strong>at</strong>er temper<strong>at</strong>ure.<br />

421.67 min. The corium slumps down to vessel bottom.<br />

422.12 min. Debris starts to melt through the bottom head.<br />

515.18 min. Vessel bottom head fails, resulting in a pressure increase<br />

of 0.34 MPa (49 psia).<br />

515.20 min. Debris starts to boil w<strong>at</strong>er from containment floor.<br />

515.20 min. Drywell electric penetr<strong>at</strong>ion assembly seals have failed as<br />

the containment temper<strong>at</strong>ure exceeds 204°C (400°F) and start<br />

to vent through the primary containment <strong>at</strong> a leak r<strong>at</strong>e of<br />

105 i/a (222 ft3/min).<br />

515.21 min. Debris starts to melt the concrete floor of the containment<br />

building. Temper<strong>at</strong>ure of debris is 1771°C (3219°F) initial<br />

ly. Internal he<strong>at</strong> gener<strong>at</strong>ion in metals and oxides are 1.01<br />

x IO7 and 1.86 x IO7 w<strong>at</strong>ts, respectively.<br />

579.24 min. Containment failed as the containment temper<strong>at</strong>ure exceeds<br />

260°C (500°F) and all electric penetr<strong>at</strong>ion modules are blown<br />

out of the containment. Mass and energy addition r<strong>at</strong>es into<br />

the drywell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s (lb/min) (w) (Btu/min)<br />

Steam 0.63 83.33 1.59 x io5 9052<br />

Hydrogen 0.22 29.10 0 0<br />

C02 2.08 275.13<br />

CO 4.63 612.44<br />

The leak r<strong>at</strong>e through the drywell penetr<strong>at</strong>ion seals is<br />

~2.53 x 105 i/s (5.35 x IO5 ft3/min).


98<br />

Time<br />

(sec) Event<br />

681.88 min. Drywell and wetwell pressures are <strong>at</strong> 0.10 MPa (~14.7 psia)<br />

and temper<strong>at</strong>ures are 674°C (~1245°F) and 98°C (~209°F),<br />

respectively. The leak r<strong>at</strong>e through the containment failed<br />

area is ~3.61 x IO4 n/s (-7.65 x 10^ ft3/min).<br />

810 min. Drywell and wetwell temper<strong>at</strong>ures are 1006°C (1843°F) and<br />

97°C (207°F), respectively. The leak r<strong>at</strong>e through the<br />

containment failed area is ~3.10 x io1* SL/s (~6.57 x<br />

IO4 ft3/min).<br />

1128 min. Drywell and wetwell temper<strong>at</strong>ures are 591°C (~1095°F) and<br />

97°C (~207°F), respectively. The leak r<strong>at</strong>e through the<br />

containment failed area is ~1.27 x io3 X./s (~2.70 x<br />

103 ft3/min).


99<br />

is depressurized during core uncovery and melt. However, the pressure re<br />

mains high enough so th<strong>at</strong> the HPCI turbine can be oper<strong>at</strong>ed for as long as<br />

the b<strong>at</strong>tery lasts. Compared with the sequence TB', the SORV results in<br />

a ~30 min. delay in the core melt, ~90 min. delay in vessel failure, and<br />

~65 min. delay in the containment failure.<br />

9.4.2.3 CSB + Manual RCIC & SRV (TVB'). The accident progression<br />

sign<strong>at</strong>ure for the sequence TVB' is given in Table 9.3. In this sequ<br />

ence, it is assumed th<strong>at</strong> the HPCI system is inoperable. The oper<strong>at</strong>or remote-manually<br />

opens one SRV after 15 minutes of <strong>St<strong>at</strong>ion</strong> Blackout to de<br />

pressurize the vessel in order to lower the vessel temper<strong>at</strong>ure and to pre<br />

pare for use of the low pressure ECCS injection systems upon restor<strong>at</strong>ion<br />

of AC power. At the same time, the oper<strong>at</strong>or <strong>at</strong>tempts to maintain a con<br />

stant vessel w<strong>at</strong>er level by manually controlling the RCIC injection. It<br />

is noted th<strong>at</strong> the fluid loss through the SRV causes the core to become<br />

momentarily uncovered, but it refloods immedi<strong>at</strong>ely with the continued RCIC<br />

w<strong>at</strong>er injection. This short period of core uncovery is believed not to<br />

cause any core damage <strong>at</strong> th<strong>at</strong> stage.<br />

9.4.2.4 CSB + Manual RCIC & SRV + SORV (T„PB"). The accident pro<br />

gression sign<strong>at</strong>ure for the sequence TVPB' is given in Table 9.4. In<br />

this sequence, it is assumed th<strong>at</strong> an SORV event occurs <strong>at</strong> the beginning of<br />

the transient, and the oper<strong>at</strong>or remote-manually opens a SRV which causes<br />

the reactor vessel to depressurize <strong>at</strong> a faster r<strong>at</strong>e. Compared with the<br />

sequence TVB', the two sequences have produced very similar results<br />

with respect to the times of core melt, vessel failure, and containment<br />

failure.<br />

9.4.2.5 CSB + No HPCI/RCIC (TUB"). The accident progression signa<br />

ture for the sequence TUB' is given in Table 9.5. The events of this<br />

sequence as calcul<strong>at</strong>ed by MARCH have been compared with results from the<br />

RELAP4/MOD7 code2/ up to the time of core uncovery. With the modifica<br />

tions incorpor<strong>at</strong>ed in MARCH version 1.4B, the core uncovery times pre<br />

dicted by the two codes are in agreement.<br />

9.4.2.6 CSB + No HPCI/RCIC & SORV (TUPB"). The accident progression<br />

sign<strong>at</strong>ure for the sequence TUPB' is given in Table 9.6. This is the<br />

severest of the six <strong>St<strong>at</strong>ion</strong> Blackout sign<strong>at</strong>ures studied, and includes a<br />

prediction of core uncovery <strong>at</strong> 17 minutes after the initi<strong>at</strong>ing loss of AC<br />

power. The mitig<strong>at</strong>ing action which might be taken by the oper<strong>at</strong>or in re<br />

sponse to this and the other accident progression sign<strong>at</strong>ures will be dis<br />

cussed in Section 10.<br />

9.4.2.7 Summary of key events. A comparison of the predicted times<br />

to key events following core uncovery for each of the six sequences as<br />

calcul<strong>at</strong>ed by MARCH version 1.4B is given in Table 9.7.<br />

9.4.2.8 Key results for sequence TB '. Key results from the MARCH<br />

calcul<strong>at</strong>ions for the sequence TB1 which is used as the base case for the<br />

fission product transport calcul<strong>at</strong>ions in Volume 2 are presented in Figs.<br />

9.12 through 9.21.


100<br />

Table 9.3<br />

<strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant: Complete <strong>St<strong>at</strong>ion</strong> Blackout<br />

Sequence of Events<br />

CSB + Manual RCIC & SRV<br />

(TVB-)<br />

Time<br />

(sec) Event<br />

0.0 Loss of all AC power and diesel gener<strong>at</strong>ors. The plant<br />

is initially oper<strong>at</strong>ing <strong>at</strong> 100% power.<br />

Initial drywell temper<strong>at</strong>ure - 66°C (150°F)<br />

Initial wetwell temper<strong>at</strong>ure - 35°C (95°F)<br />

0.2 Full load rejection (i.e., fast closure of turbine<br />

control valves) occurs.<br />

0.2 Recircul<strong>at</strong>ion pumps and condenser circul<strong>at</strong>ory w<strong>at</strong>er<br />

pumps trip off. Loss of condenser vacuum occurs.<br />

Core flow is provided by n<strong>at</strong>ural circul<strong>at</strong>ion.<br />

0.2 Reactor pressure increases suddenly due to load rejec<br />

tion.<br />

0.3 Scram pilot valve solenoids are deenergized due to<br />

load rejection. Control rod motion begins.<br />

0.5 Turbine bypass valves start to open due to load rejec<br />

tion.<br />

1.0 Neutron flux starts to decrease after an initial in<br />

crease to over 100% r<strong>at</strong>ed power level.<br />

1.0 Reactor power starts to decrease slowly after an ini<br />

tial rise.<br />

2.0 Control rods are 40% inserted from fully withdrawn<br />

position.<br />

2.0 Main steamline isol<strong>at</strong>ion valves (MSIVs) start to close<br />

(relay-type reactor trip system), resulting in a rapid<br />

steam-line pressure rise.<br />

2.0 Turbine bypass valves are tripped to close.<br />

3.0 Control rods are 75% inserted from fully withdrawn<br />

position.


101<br />

Time<br />

(sec) Event<br />

3.0 Turbine trips off (turbine stop valves fully closed).<br />

3.5 Power gener<strong>at</strong>ion due to delayed neutrons and fission<br />

product decay drops to 10% of initial r<strong>at</strong>ed power gen<br />

er<strong>at</strong>ion.<br />

4.0 Feedw<strong>at</strong>er turbines trip off.<br />

5.0 MSIVs are fully closed, resulting in a momentary 0.69<br />

MPa (100 psi) pressure increase and 1.02 m (40-in.)<br />

drop of w<strong>at</strong>er-steam mixture level due to collapsing of<br />

voids.<br />

5.0 All control rods are fully inserted.<br />

5.0 Reactor vessel pressure exceeds the lowest setpoint <strong>at</strong><br />

7.52 MPa (1090 psi) of safety/relief valves (S/RVs).<br />

5.0 Seven (7) out of thirteen (13) S/RVs start to open in<br />

response to pressure rise above the setpoint.<br />

5.2 W<strong>at</strong>er-steam mixture level recovers 0.51 m (20 in.)<br />

from the previous momentary 1.02 m (40-in.) drop.<br />

5.5 S/RV steam blowdowns into the pressure suppression<br />

pool through the T-quenchers begin.<br />

7.5 Feedw<strong>at</strong>er flow drops below 20%.<br />

9.0 Feedw<strong>at</strong>er flow decreases to zero.<br />

10.0 Power gener<strong>at</strong>ion due to fission product decay drops to<br />

approxim<strong>at</strong>ely 7.2% of r<strong>at</strong>ed power gener<strong>at</strong>ion.<br />

15.0 All 6 S/RVs are completely closed. <strong>One</strong> S/RV is stuck<br />

open (SORV); this has the same effect as a small break<br />

LOCAL of equivalent break area of 0.015 m2 (0.1583<br />

ft2).<br />

15.7 Four out of 13 S/RVs start to open.<br />

17.0 Neutron flux drops below 1% of initial full power<br />

level.<br />

21.0 Narrow range (NR) sensed w<strong>at</strong>er level reaches low alarm<br />

(Level 4), i.e., 5.98 m (235.50 in.) above Level 0, or<br />

5.00 m (196.44 in.) above TAF.<br />

22.0 Suppression pool w<strong>at</strong>er average temper<strong>at</strong>ure rises<br />

to 35.13°C (95.24°F) in response to the first S/RV<br />

pops.


102<br />

Time<br />

(sec) Event<br />

29.0 All 4 S/RVs are completely closed.<br />

29.7 Two out of 13 S/RVs start to open.<br />

47.0 All 2 S/RVs are completely closed.<br />

47.7 <strong>One</strong> out of 13 S/RVs starts to open.<br />

56.0 Suppression pool w<strong>at</strong>er average temper<strong>at</strong>ure is approxim<strong>at</strong>ely<br />

35.3°C (95.54°F).<br />

56.0 NR sensed w<strong>at</strong>er level reaches low level alarm (Level 3),<br />

i.e., 5.50 m (216.00 in.) above Level 0, or 4.50 m (176.94<br />

in.) above TAF.<br />

90.0 Suppression pool w<strong>at</strong>er average temper<strong>at</strong>ure is approxim<strong>at</strong>ely<br />

35.4°C (95.72°F).<br />

101.0 The S/RV is completely closed. The same S/RV continues to<br />

cycle on and off on setpoints throughout the subsequent RCIC<br />

injections.<br />

625 Wide range sensed w<strong>at</strong>er level reaches low w<strong>at</strong>er level setpoint<br />

(Level 2), i.e., 4.18 m (164.50 in.) above Level 0 <strong>at</strong><br />

2/3 core height, or 2.96 m (116.50 in.) above TAF.<br />

625 Oper<strong>at</strong>or manually controls RCIC injection to maintain con<br />

stant vessel w<strong>at</strong>er level. The RCIC turbine pump is driven<br />

by steam gener<strong>at</strong>ed by decay he<strong>at</strong>. System auxiliaries are<br />

powered by the 250 V dc system.<br />

655 RCIC flows enter the reactor pressure vessel <strong>at</strong> 38 H/s<br />

(600 gpm) drawing w<strong>at</strong>er from the condens<strong>at</strong>e storage tank.<br />

15 min. Oper<strong>at</strong>or manually opens one SRV to depressurize the vessel.<br />

20 min. Drywell and wetwell temper<strong>at</strong>ures exceed 76°C (169°F) and<br />

50°C (122°F), respectively. Mass and energy addition r<strong>at</strong>es<br />

into the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 829.75 1.10 x 105 2.32 x IO8 1.32 x IO7<br />

Hydrogen 0 0 0 0


103<br />

Time<br />

(sec) Event<br />

21.14 min. Core uncovery time.<br />

22.0 min. Core refloods.<br />

30 min. Auto-isol<strong>at</strong>ion signal initi<strong>at</strong>es as increase of drywell<br />

pressure exceeds 13.8 KPa (2.0 psi). The RCIC system is not<br />

isol<strong>at</strong>ed.<br />

240 min. The RCIC pump stops when the b<strong>at</strong>teries run out.<br />

266.3 min. Wide range sensed w<strong>at</strong>er level reaches Level 2 setpoint.<br />

Drywell and wetwell temper<strong>at</strong>ures are 99°C (210°F) and 100°C<br />

(212°F), respectively. Mass and energy addition r<strong>at</strong>es into<br />

the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 19.16 2.53 x IO3 5.20 x IO7 2.96 x io6<br />

Hydrogen 0 0 0 0<br />

347 min. Core uncovers again.<br />

366 min. Average gas temper<strong>at</strong>ure <strong>at</strong> top of core is 491°C (916°F).<br />

Drywell and wetwell temper<strong>at</strong>ures and pressures are 113°C<br />

(236°F) and 0.28 MPa (40 psia), respectively. Mass and<br />

energy addition r<strong>at</strong>es into the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 9.26 1.22 x 103 2.97 x IO7 1.69 x io6<br />

Hydrogen 4.09 x io"5 5.41 x io"3 222.28 12.64<br />

386 min. Average gas temper<strong>at</strong>ure <strong>at</strong> top of core is 855°C (1571°F).<br />

Drywell and wetwell temper<strong>at</strong>ures and pressures are 115°C<br />

(239°F) and 0.29 MPa (41 psia), respectively. Mass and<br />

energy addition r<strong>at</strong>es into the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 5.05 6.68 x io2 1.81 x IO7 1.03 x IO6<br />

Hydrogen 1.68 x IO-2 2.23 1.35 x IO5 7.70 x 103


Time<br />

(sec)<br />

395.3 min.<br />

449.3 min.<br />

451,.2 min.<br />

452 min.<br />

452.,9 min.<br />

539..3 min.<br />

539.,3 min.<br />

539.,3 min.<br />

Core melting starts.<br />

104<br />

Event<br />

W<strong>at</strong>er level in vessel drops below bottom grid elev<strong>at</strong>ion.<br />

Bottom grid fails and temper<strong>at</strong>ure of structures in bottom<br />

head is above w<strong>at</strong>er temper<strong>at</strong>ure.<br />

The corium slumps down to vessel bottom.<br />

Debris starts to melt through the bottom head.<br />

Vessel bottom head fails, resulting in a pressure increase<br />

of 0.0047 MPa (0.68 psia).<br />

Debris starts to boil w<strong>at</strong>er from containment floor.<br />

Drywell electric penetr<strong>at</strong>ion assembly seals have failed as<br />

the containment temper<strong>at</strong>ure exceeds 204°C (400°F) and start<br />

to vent through the primary containment <strong>at</strong> a leak r<strong>at</strong>e of<br />

118 Z/s (250 ft3/min).<br />

539.3 m^n. Debris starts to melt the concrete floor of the containment<br />

building. Temper<strong>at</strong>ure of debris is 1750°C (3182°F) initial<br />

ly. Internal he<strong>at</strong> gener<strong>at</strong>ion in metals and oxides are 9.99<br />

x 10° and 1.84 x io7 w<strong>at</strong>ts, respectively.<br />

601.05 min. Containment failed as the containment temper<strong>at</strong>ure exceeds<br />

260°C (500°F) and all electric penetr<strong>at</strong>ion modules are blown<br />

out of the containment. Mass and energy addition r<strong>at</strong>es into<br />

the drywell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s (lb/min) (w) (Btu/min)<br />

Steam 4.70 621.51 1.59 x io5 9052<br />

Hydrogen 0.14 18.27 0 0<br />

C02 1.29 170.23<br />

CO 2.88 381.21<br />

The leak r<strong>at</strong>e through the drywell penetr<strong>at</strong>ion seals is<br />

-5.33 x io* X,/s (1.13 x io5 ft3/min).<br />

718.8 min. Drywell and wetwell pressures are <strong>at</strong> 0.10 MPa (-14.7 psia)<br />

and temper<strong>at</strong>ures are 700°C ( 1293°F) and 98°C (~209°F),<br />

respectively. The leak r<strong>at</strong>e through the containment failed<br />

area is -5.18 x io4 l/s (-1.10 x io5 ft3/min).


105<br />

Time<br />

(sec) Event<br />

821.5 min. Drywell and wetwell temper<strong>at</strong>ures are 737°C (1359°F) and 93°C<br />

(199°F), respectively. The leak r<strong>at</strong>e through the contain<br />

ment failed area is -4.23 x io4* Jl/s (-8.96 x io1*<br />

ft3/min).<br />

1127.5 min. Drywell and wetwell temper<strong>at</strong>ures are 468°C (~875°F) and<br />

86°C (~188°F), respectively. The leak r<strong>at</strong>e through the<br />

containment failed area is -4.79 x io1* SL/b (-1.02 x<br />

IO1* ft3/min).


0.0<br />

106<br />

Table 9.4<br />

<strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant: Complete <strong>St<strong>at</strong>ion</strong> Blackout<br />

Sequence of Events<br />

CSB + Manual RCIC & SRV + SORV (Small Break LOCA)<br />

(TVPB')<br />

Time<br />

(sec) Event<br />

Loss of all AC power and diesel gener<strong>at</strong>ors. The plant<br />

is initially oper<strong>at</strong>ing <strong>at</strong> 100% power.<br />

Initial drywell temper<strong>at</strong>ure - 66°C (150°F)<br />

Initial wetwell temper<strong>at</strong>ure = 35°C (95°F)<br />

°«2 Full load rejection (i.e., fast closure of turbine<br />

control valves) occurs.<br />

0.2 Recircul<strong>at</strong>ion pumps and condenser circul<strong>at</strong>ory w<strong>at</strong>er<br />

pumps trip off. Loss of condenser vacuum occurs.<br />

Core flow is provided by n<strong>at</strong>ural circul<strong>at</strong>ion.<br />

0*2 Reactor pressure increases suddenly due to load rejec<br />

tion.<br />

0.3 Scram pilot valve solenoids are deenergized due to<br />

load rejection. Control rod motion begins.<br />

0.5 Turbine bypass valves start to open due to load rejec<br />

tion.<br />

1*0 Neutron flux starts to decrease after an initial in<br />

crease to over 100% r<strong>at</strong>ed power level.<br />

1«° Reactor power starts to decrease slowly after an ini<br />

tial rise.<br />

2.0 Control rods are 40% inserted from fully withdrawn<br />

position.<br />

2*0 Main steamline isol<strong>at</strong>ion valves (MSIVs) start to close<br />

(relay-type reactor trip system), resulting in a rapid<br />

steam-line pressure rise.<br />

2.0 Turbine bypass valves are tripped to close.<br />

3.0 Control rods are 75% inserted from fully withdrawn<br />

position.


107<br />

Time<br />

(sec) Event<br />

3.0 Turbine trips off (turbine stop valves fully closed).<br />

3.5 Power gener<strong>at</strong>ion due to delayed neutrons and fission<br />

product decay drops to 10% of initial r<strong>at</strong>ed power gen<br />

er<strong>at</strong>ion.<br />

4.0 Feedw<strong>at</strong>er turbines trip off.<br />

5.0 MSIVs are fully closed, resulting in a momentary 0.69<br />

MPa (100 psi) pressure increase and 1.02 m (40-in.)<br />

drop of w<strong>at</strong>er-steam mixture level due to collapsing of<br />

voids.<br />

5.0 All control rods are fully inserted.<br />

5.0 Reactor vessel pressure exceeds the lowest setpoint <strong>at</strong><br />

7.52 MPa (1090 psi) of safety/relief valves (S/RVs).<br />

5.0 Oper<strong>at</strong>or manually opens one S/RV to depressurize the<br />

vessel.<br />

5.5 S/RV steam blowdowns into the pressure suppression<br />

pool through the T-quenchers begin.<br />

7.5 Feedw<strong>at</strong>er flow drops below 20%.<br />

9.0 Feedw<strong>at</strong>er flow decreases to zero.<br />

10.0 Power gener<strong>at</strong>ion due to fission product decay drops to<br />

approxim<strong>at</strong>ely 7.2% of r<strong>at</strong>ed power gener<strong>at</strong>ion.<br />

15.0 All 6 S/RVs are completely closed. <strong>One</strong> S/RV is stuck<br />

open (SORV). This has the same effect as a small<br />

break LOCA of equivalent break area of 0.0147 m<br />

(0.1583 ft2).<br />

17.0 Neutron flux drops below 1% of initial full power<br />

level.<br />

30 Oper<strong>at</strong>or manually controls RCIC injection to maintain<br />

constant vessel w<strong>at</strong>er level. The RCIC turbine pump is<br />

driven by steam gener<strong>at</strong>ed by decay he<strong>at</strong>. System<br />

auxiliaries are powered by the 250 V dc system.<br />

60 RCIC flows enter the reactor pressure vessel <strong>at</strong> 38<br />

l/s (600 gpm) drawing w<strong>at</strong>er from the condens<strong>at</strong>e<br />

storage tank.


108<br />

Time<br />

(sec) Event<br />

10.52 min. Core uncovery time. Steam-w<strong>at</strong>er mixture level is <strong>at</strong> 3.56 m<br />

(11.68 ft) above bottom of the core.<br />

11.52 min. Core refloods.<br />

20 min. Auto-isol<strong>at</strong>ion signal initi<strong>at</strong>es as increase of drywell<br />

pressure exceeds 13.8 KPa (2.0 psi). The RCIC system is<br />

not isol<strong>at</strong>ed.<br />

240 min. The RCIC pump stops when the b<strong>at</strong>teries run out.<br />

270 min. Wide range sensed w<strong>at</strong>er level reaches Level 2 setpoint.<br />

Drywell and wetwell temper<strong>at</strong>ures are 100°C (212°F) and 102°C<br />

(216°F), respectively. Mass and energy addition r<strong>at</strong>es into<br />

the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 19.50 2.58 x io3 5.29 x io7 3.01 x io6<br />

Hydrogen 0 0 0 0<br />

337 min. Core uncovers again.<br />

356 min. Average gas temper<strong>at</strong>ure <strong>at</strong> top of core is 313°C (595°F).<br />

Drywell and wetwell temper<strong>at</strong>ures and pressures are 113°C<br />

(236°F) and 0.28 MPa (40 psia), respectively. Mass and<br />

energy addition r<strong>at</strong>es into the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 12.25 1.62 x io3 3.64 x io7 2.07 x io6<br />

Hydrogen 3.05 x io~8 4.03 x io~6 0.115 6.53 x io"3<br />

376.4 min. Average gas temper<strong>at</strong>ure <strong>at</strong> top of core is 650°C (1202°F).<br />

Drywell and wetwell temper<strong>at</strong>ures and pressures are 115°C<br />

(239°F) and 0.29 MPa (41 psia), respectively. Mass and<br />

energy addition r<strong>at</strong>es into the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 7.20 9.52 x io2 2.43 x io7 1.38 x io6<br />

Hydrogen 1.60 x io~3 0.21 1.07 x up 6.09 x io2


109<br />

Time<br />

(sec) Event<br />

396.36 min. Core melting starts.<br />

450.4 min. W<strong>at</strong>er level in vessel drops below bottom grid elev<strong>at</strong>ion.<br />

452.3 min. Bottom grid fails and temper<strong>at</strong>ure of structures in bottom<br />

head is above w<strong>at</strong>er temper<strong>at</strong>ure.<br />

453.1 min. The corium slumps down to vessel bottom.<br />

454. min. Debris starts to melt through the bottom head.<br />

542.5 min. Vessel bottom head fails, resulting in a pressure increase<br />

of 0.005 MPa (0.7 psia).<br />

542.5 min. Debris starts to boil w<strong>at</strong>er from containment floor.<br />

542.5 min. Drywell electric penetr<strong>at</strong>ion assembly seals have failed as<br />

the containment temper<strong>at</strong>ure exceeds 240°C (400°F) and start<br />

to vent through the primary containment <strong>at</strong> a leak r<strong>at</strong>e of<br />

104 i/s (221 ft3/min).<br />

542.5 min. Debris starts to melt the concrete floor of the containment<br />

building. Temper<strong>at</strong>ure of debris is 1766°C (3210°F) initial<br />

ly. Internal he<strong>at</strong> gener<strong>at</strong>ion in metals and oxides are 1.00<br />

x IO7 and 1.83 x io' w<strong>at</strong>ts, respectively.<br />

596.4 min. Containment failed as the containment temper<strong>at</strong>ure exceeds<br />

260°C (500°F) and all electric penetr<strong>at</strong>ion modules are blown<br />

out of the containment. Mass and energy addition r<strong>at</strong>es into<br />

the drywell are:<br />

Steam<br />

Hydrogen<br />

co2<br />

CO<br />

Mass<br />

(kg/s<br />

7.69<br />

0.038<br />

2.58<br />

0.80<br />

R<strong>at</strong>e<br />

(lb/min)<br />

1017<br />

342<br />

160<br />

5.08<br />

Energy<br />

(w)<br />

1.59 x io5<br />

0<br />

R<strong>at</strong>e<br />

(Btu/min)<br />

9052<br />

The leak r<strong>at</strong>e through the drywell penetr<strong>at</strong>ion seals is<br />

-9.20 x io1* SL/s (1.95 x io5 ft3/min).<br />

0


0.0<br />

110<br />

Table 9.5<br />

<strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant: Complete <strong>St<strong>at</strong>ion</strong> Blackout<br />

Sequence of Events<br />

CSB + No HPCI/RCIC<br />

(TUB*)<br />

Time<br />

(sec) Event<br />

Loss of all AC power and diesel gener<strong>at</strong>ors. The plant<br />

is initially oper<strong>at</strong>ing <strong>at</strong> 100% power.<br />

Initial drywell temper<strong>at</strong>ure = 66°C (150°F)<br />

Initial wetwell temper<strong>at</strong>ure - 35°C (95°F)<br />

0*2 Full load rejection (i.e., fast closure of turbine<br />

control valves) occurs.<br />

0*2 Recircul<strong>at</strong>ion pumps and condenser circul<strong>at</strong>ory w<strong>at</strong>er<br />

pumps trip off. Loss of condenser vacuum occurs.<br />

Core flow is provided by n<strong>at</strong>ural circul<strong>at</strong>ion.<br />

0*2 Reactor pressure increases suddenly due to load rejec<br />

tion.<br />

0*3 Scram pilot valve solenoids are deenergized due to<br />

load rejection. Control rod motion begins.<br />

0*5 Turbine bypass valves start to open due to load rejec<br />

tion.<br />

!*0 Neutron flux starts to decrease after an initial in<br />

crease to over 100% r<strong>at</strong>ed power level.<br />

i'O Reactor power starts to decrease slowly after an ini<br />

tial rise.<br />

2.0 Control rods are 40% inserted from fully withdrawn<br />

position.<br />

2.0 Main steamline isol<strong>at</strong>ion valves (MSIVs) start to close<br />

(relay-type reactor trip system), resulting in a rapid<br />

steam-line pressure rise.<br />

2.0 Turbine bypass valves are tripped to close.<br />

3.0 Control rods are 75% inserted from fully withdrawn<br />

position.<br />

3.0 Turbine trips off (turbine stop valves fully closed).


Ill<br />

Time<br />

(sec) Event<br />

3»5 Power gener<strong>at</strong>ion due to delayed neutrons and fission<br />

product decay drops to 10% of initial r<strong>at</strong>ed power gen<br />

er<strong>at</strong>ion.<br />

4.0 Feedw<strong>at</strong>er turbines trip off.<br />

5.0 MSIVs are fully closed, resulting in a momentary 0.69<br />

MPa (100 psi) pressure increase and 1.02 m (40-in.)<br />

drop of w<strong>at</strong>er-steam mixture level due to collapsing of<br />

voids.<br />

5.0 All control rods are fully inserted.<br />

5.0 Reactor vessel pressure exceeds the lowest setpoint <strong>at</strong><br />

7.52 MPa (1090 psi) of safety/relief valves (S/RVs).<br />

5.0 Seven (7) out of thirteen (13) S/RVs start to open in<br />

response to pressure rise above the setpoint.<br />

5.2 W<strong>at</strong>er-steam mixture level recovers 0.51 m (20 in.)<br />

from the previous momentary 1.02 m (40-in.) drop.<br />

5.5 S/RV steam blowdowns into the pressure suppression<br />

pool through the T-quenchers begin.<br />

7.5 Feedw<strong>at</strong>er flow drops below 20%.<br />

9.0 Feedw<strong>at</strong>er flow decreases to zero.<br />

10.0 Power gener<strong>at</strong>ion due to fission product decay drops to<br />

approxim<strong>at</strong>ely 7.2% of r<strong>at</strong>ed power gener<strong>at</strong>ion.<br />

15.0 All 7 S/RVs are completely closed.<br />

15.7 Four out of 13 S/RVs start to open.<br />

17.0 Neutron flux drops below 1% of initial full power<br />

level.<br />

21.0 Narrow range (NR) sensed w<strong>at</strong>er level reaches low alarm<br />

(Level 4), i.e., 5.98 m (235.50 in.) above Level 0, or<br />

5.00 m (196.44 in.) above TAF.<br />

22.0 Suppression pool w<strong>at</strong>er average temper<strong>at</strong>ure rises to<br />

35.13°C (95.24°F) in response to the first S/RV pops.<br />

29.0 All 4 S/RVs are completely closed.<br />

29.7 Two out of 13 S/RVs start to open.


112<br />

Time<br />

(sec) Event<br />

47.0 All 2 S/RVs are completely closed.<br />

47.7 <strong>One</strong> out of 13 S/RVs starts to open.<br />

56.0 Suppression pool w<strong>at</strong>er average temper<strong>at</strong>ure is approxim<strong>at</strong>ely<br />

35.3°C (95.54°F).<br />

56.0 NR sensed w<strong>at</strong>er level reaches low level alarm (Level 3),<br />

i.e., 5.50 m (216.00 in.) above Level 0, or 4.50 m (176.94<br />

in.) above TAF.<br />

90.0 Suppression pool w<strong>at</strong>er average temper<strong>at</strong>ure is approxim<strong>at</strong>ely<br />

35.4°C (95.72°F).<br />

101.0 The S/RV is completely closed. The same S/RV continues to<br />

cycle on and off on setpoints throughout the sequence.<br />

625 Wide range sensed w<strong>at</strong>er level reaches low w<strong>at</strong>er level<br />

set-point (Level 2), i.e., 4.18 m (164.50 in.) above Level 0<br />

<strong>at</strong> 2/3 core height, or 2.96 m (116.50 in.) above TAF.<br />

625 HPCI and RCIC systems are not turned on because they are<br />

assumed to be unavailable.<br />

20 min. Suppression pool w<strong>at</strong>er average temper<strong>at</strong>ure reaches 46°C<br />

(114°F).<br />

33 min. Core uncovery time. Steam-w<strong>at</strong>er mixture level is <strong>at</strong> 3.54 m<br />

(11.61 ft) above bottom of the core.<br />

40 min. Auto-isol<strong>at</strong>ion signal initi<strong>at</strong>es as increase of drywell<br />

pressure exceeds 13.8 KPa (2.0 psi). The HPCI/RCIC systems<br />

are not affected. Drywell and wetwell temper<strong>at</strong>ure are 72°C<br />

(162°F) and 55°C (130°F), respectively. Mass and energy<br />

addition r<strong>at</strong>es into the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 33 4.36 x io3 9.25 x io7 5.26 x io6<br />

Hydrogen 6 x 10 9 8.62 x io-7 2.92 x io~2 1.66 x io"3<br />

60 min. Mass and energy addition r<strong>at</strong>es into the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 15.6 2.07 x io3 5.06 x 107 2.88 x 106<br />

Hydrogen 2.8 x io~3 3.76 x io"1 2.15 x iq1* 1.22 x io3


70<br />

80<br />

Time<br />

(sec)<br />

min.<br />

min.<br />

Core melting starts.<br />

113<br />

Event ^^^^<br />

Drywell and wetwell temper<strong>at</strong>ures are 75°C (167°F) and 63°C<br />

(145°F), respectively. Mass and energy addition r<strong>at</strong>es into<br />

the wetwell are:<br />

Mass R<strong>at</strong>e<br />

(kg/s) (lb/min)<br />

Steam 5.68 7.51 x io2<br />

Hydrogen 0.19 2.53 x io1<br />

Energy R<strong>at</strong>e<br />

(w) (Btu/min)<br />

2.22 x io7 1.26 x io6<br />

2.29 x io6 1.30 x io5<br />

96 min. W<strong>at</strong>er level in vessel drops below bottom grid elev<strong>at</strong>ion.<br />

97 min. Bottom grid fails and temper<strong>at</strong>ure of structures in bottom<br />

head is above w<strong>at</strong>er temper<strong>at</strong>ure.<br />

99 min. The corium slumps down to vessel bottom.<br />

101 min. The debris is starting to melt through the bottom head.<br />

Drywell and wetwell temper<strong>at</strong>ures are 97°C (207°F) and 71°C<br />

(159°F), respectively. Meanwhile, local pool w<strong>at</strong>er tempera<br />

ture <strong>at</strong> the discharging bay exceeds 149°C (300°F). Steam<br />

condens<strong>at</strong>ion oscill<strong>at</strong>ions could acceler<strong>at</strong>e due to the con<br />

tinuous discharge of superhe<strong>at</strong>ed noncondensable gases into<br />

the suppression pool. Mass and energy addition r<strong>at</strong>es into<br />

the wetwell are;<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 18.6 5.46 x io3 5.42 x io7 3.08 x io6<br />

Hydrogen 6.8 x io-2 8.93 3.59 x io5 2.04 x io**<br />

129 min. Vessel bottom head fails, resulting in a pressure increase<br />

of 0.34 MPa (49 psia).<br />

129.03 min. Debris starts to melt the concrete floor of the containment<br />

building. Temper<strong>at</strong>ure of debris is 1546°C (2815°F) ini<br />

tially. Internal he<strong>at</strong> gener<strong>at</strong>ion in metals and oxides are<br />

1.36 x 107 and 2.50 x io7 w<strong>at</strong>ts, respectively.


114<br />

Time<br />

(sec) Event<br />

165 min. Drywell and wetwell temper<strong>at</strong>ures are 141°C (286°F) and 74°C<br />

(166°F), respectively. Mass and energy addition r<strong>at</strong>es into<br />

the drywell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 5.46 722.83 1.59 x io5 9052<br />

Hydrogen 3.3 x io-2 4.38 0 0<br />

CO2 2.58 341.88<br />

CO 0.69 91.35<br />

190 min. Drywell electric penetr<strong>at</strong>ion assembly seals have failed as<br />

the containment temper<strong>at</strong>ure exceeds 204°C (400°F) and start<br />

to vent through the primary containment.<br />

193 min. Containment failed as the containment temper<strong>at</strong>ure exceeds<br />

260°C (500°F) and all electric penetr<strong>at</strong>ion modules are blown<br />

out of the containment.<br />

219 min. Drywell and wetwell pressures are <strong>at</strong> 0.10 MPa (14.7 psia).<br />

Drywell and wetwell temper<strong>at</strong>ures are 598°C (1109°F) and 78°C<br />

(173°F), respectively. Mass and energy addition r<strong>at</strong>es into<br />

the drywell are:<br />

Steam<br />

Hydrogen<br />

CO2<br />

CO<br />

Mass<br />

(kg/s)<br />

0.70<br />

0.24<br />

2.32<br />

5.03<br />

R<strong>at</strong>e<br />

(lb/min)<br />

92<br />

32<br />

307<br />

666<br />

Energy R<strong>at</strong>e<br />

(w) (Btu/min)<br />

1.59 x IO5 9052<br />

0 0<br />

The leak r<strong>at</strong>e through the containment failed areas is<br />

-2.90 x io5 X./b (-6.15 x io5 ft3/min).<br />

250 min. Drywell and wetwell temper<strong>at</strong>ures are 675°C (1247°F) and 78°C<br />

(173°F), respectively. Mass and energy addition r<strong>at</strong>es into<br />

the drywell are:<br />

Steam<br />

Hydrogen<br />

C02<br />

CO<br />

Mass<br />

(kg/s)<br />

6.84<br />

0.25<br />

1.53<br />

5.25<br />

R<strong>at</strong>e<br />

(lb/min)<br />

905<br />

33<br />

203<br />

695<br />

Energy R<strong>at</strong>e<br />

(w) (Btu/min)<br />

1.59 x 105 9052<br />

0 0


115<br />

Time<br />

(sec) Event<br />

The leak r<strong>at</strong>e through the containment failed area is<br />

-4.91 x io4* l/s (-1.04 x io5 ft3/min).<br />

309 min. R<strong>at</strong>e of concrete decomposition is -4.65 x io1* gm/s.<br />

R<strong>at</strong>e of he<strong>at</strong> added to <strong>at</strong>mosphere is -1.20 x 10* kW.<br />

367 min. Drywell and wetwell pressures are <strong>at</strong> 0.10 MPa (-14.7 psia)<br />

and temper<strong>at</strong>ures are 854°C (1570°F) and 77°C (171°F), re<br />

spectively. The leak r<strong>at</strong>e through the containment failed<br />

area is -3.94 x \if i/s (~8.35 x io4* ft3/min).<br />

733 min. Drywell and wetwell temper<strong>at</strong>ures are 546°C (~1014°F) and<br />

77°C (170°F), respectively. The leak r<strong>at</strong>e through the con<br />

tainment failed area is -2.12 x io3 A/s (-4.50 x<br />

103 ft3/min).


116<br />

Table 9.6<br />

<strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant: Complete <strong>St<strong>at</strong>ion</strong> Blackout<br />

Sequence of Events<br />

CSB + No HPCI/RCIC & SORV (Small Break LOCA)<br />

(TUPS' )<br />

Time<br />

(sec) Event<br />

0.0 Loss of all AC power and diesel gener<strong>at</strong>ors. The plant<br />

is initially oper<strong>at</strong>ing <strong>at</strong> 100% power.<br />

Initial drywell temper<strong>at</strong>ure = 66°C (150°F)<br />

Initial wetwell temper<strong>at</strong>ure = 35°C (95°F)<br />

0.2 Full load rejection (i.e., fast closure of turbine<br />

control valves) occurs.<br />

0.2 Recircul<strong>at</strong>ion pumps and condenser circul<strong>at</strong>ory w<strong>at</strong>er<br />

pumps trip off. Loss of condenser vacuum occurs.<br />

Core flow is provided by n<strong>at</strong>ural circul<strong>at</strong>ion.<br />

0.2 Reactor pressure increases suddenly due to load rejec<br />

tion.<br />

0.3 Scram pilot valve solenoids are deenergized due to<br />

load rejection. Control rod motion begins.<br />

0.5 Turbine bypass valves start to open due to load rejec<br />

tion.<br />

1.0 Neutron flux starts to decrease after an initial in<br />

crease to over 100% r<strong>at</strong>ed power level.<br />

1.0 Reactor power starts to decrease slowly after an ini<br />

tial rise.<br />

2.0 Control rods are 40% inserted from fully withdrawn<br />

position.<br />

2.0 Main steamline isol<strong>at</strong>ion valves (MSIVs) start to close<br />

(relay-type reactor trip system), resulting in a rapid<br />

steam-line pressure rise.<br />

2.0 Turbine bypass valves are tripped to close.<br />

3.0 Control rods are 75% inserted from fully withdrawn<br />

position.<br />

3.0 Turbine trips off (turbine stop valves fully closed).


117<br />

Time<br />

(sec) Event<br />

3.5 Power gener<strong>at</strong>ion due to delayed neutrons and fission<br />

product decay drops to 10% of initial r<strong>at</strong>ed power gen<br />

er<strong>at</strong>ion.<br />

4.0 Feedw<strong>at</strong>er turbines trip off.<br />

5.0 MSIVs are fully closed, resulting in a momentary 0.69<br />

MPa (100 psi) pressure increase and 1.02 m (40-in.)<br />

drop of w<strong>at</strong>er-steam mixture level due to collapsing of<br />

voids.<br />

5.0 All control rods are fully inserted.<br />

5.0 Reactor vessel pressure exceeds the lowest setpoint <strong>at</strong><br />

7.52 MPa (1090 psi) of safety/relief valves (S/RVs).<br />

5.0 Seven (7) out of thirteen (13) S/RVs start to open in<br />

response to pressure rise above the setpoint.<br />

5.2 W<strong>at</strong>er-steam mixture level recovers 0.51 m (20 in.)<br />

from the previous momentary 1.02 m (40-in.) drop.<br />

5.5 S/RV steam blowdowns into the pressure suppression<br />

pool through the T-quenchers begin.<br />

7.5 Feedw<strong>at</strong>er flow drops below 20%.<br />

9.0 Feedw<strong>at</strong>er flow decreases to zero.<br />

10.0 Power gener<strong>at</strong>ion due to fission product decay drops to<br />

approxim<strong>at</strong>ely 7.2% of r<strong>at</strong>ed power gener<strong>at</strong>ion.<br />

15.0 All 6 S/RVs are completely closed. <strong>One</strong> S/RV is stuck<br />

open (SORV); this has the same effect as a small break<br />

LOCA of equivalent break area of 0.015 m2 (0.1583<br />

ft2).<br />

15.7 Four out of 13 S/RVs start to open.<br />

17.0 Neutron flux drops below 1% of initial full power<br />

level.<br />

21.0 Narrow range (NR) sensed w<strong>at</strong>er level reaches low alarm<br />

(Level 4), i.e., 5.98 m (235.50 in.) above Level 0, or<br />

5.00 m (196.44 in.) above TAF.<br />

22.0 Suppression pool w<strong>at</strong>er average temper<strong>at</strong>ure rises to<br />

35.13°C (95.24°F) in response to the first S/RV pops.<br />

29.0 All 4 S/RVs are completely closed.<br />

29.7 Two out of 13 S/RVs start to open.


118<br />

Time<br />

(sec) Event<br />

47.0 All 2 S/RVs are completely closed.<br />

47.7 <strong>One</strong> out of 13 S/RVs starts to open.<br />

56.0 Suppression pool w<strong>at</strong>er average temper<strong>at</strong>ure is approxim<strong>at</strong>ely<br />

35.3°C (95.54°F).<br />

56.0 NR sensed w<strong>at</strong>er level reaches low level alarm (Level 3),<br />

i.e., 5.50 m (216.00 in.) above Level 0, or 4.50 m (176.94<br />

in.) above TAF.<br />

90.0 Suppression pool w<strong>at</strong>er average temper<strong>at</strong>ure is approxim<strong>at</strong>ely<br />

35.4°C (95.72°F).<br />

101.0 The S/RV is completely closed. The same S/RV continues to<br />

cycle on and off on setpoints throughout the sequence.<br />

625 Wide range sensed w<strong>at</strong>er level reaches low w<strong>at</strong>er level<br />

set-point (Level 2), i.e., 4.18 m (164.50 in.) above Level 0<br />

<strong>at</strong> 2/3 core height, or 2.96 m (116.50 in.) above TAF.<br />

625 HPCI and RCIC systems are not turned on because they are<br />

assumed to be unavailable.<br />

17.2 min. Core uncovery time. Steam-w<strong>at</strong>er mixture level is <strong>at</strong> 3.62 m<br />

(11.88 ft) above bottom of the core.<br />

20 min. Auto-isol<strong>at</strong>ion signal initi<strong>at</strong>es as increase of drywell<br />

pressure exceeds 13.8 KPa (2.0 psi). The HPCI/RCIC systems<br />

are not affected. Drywell and wetwell temper<strong>at</strong>ure are 73°C<br />

(163°F) and 55°C (130°F), respectively. Mass and energy<br />

addition r<strong>at</strong>es into the wetwell are:<br />

Mass r<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 60 7.94 x io3 1.69 x io8 9.61 x io6<br />

Hydrogen 8.53 x io-13 1.13 x io~10 3.19 x io"6 1.81 x io~7<br />

40 min. Mass and energy addition r<strong>at</strong>es into the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 10.30 1.36 * 103 3.41 x io7 1.94 x io6<br />

Hydrogen 2.38 x IO-1* 3.15 x io"2 1.61 x io3 91.56


119<br />

Time<br />

(sec) Event<br />

56.6 min. Core melting starts.<br />

60 min. Drywell and wetwell temper<strong>at</strong>ures are 75°C (167°F) and 63°C<br />

(145°F), respectively. Mass and energy addition r<strong>at</strong>es into<br />

the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 2.73 3.61 x io2 1.23 x io7 6.99 x io5<br />

Hydrogen 0.49 6.48 x io1 7.05 x io6 4.01 x io5<br />

78 min. W<strong>at</strong>er level in vessel drops below bottom grid elev<strong>at</strong>ion.<br />

79 min. Bottom grid fails and temper<strong>at</strong>ure of structures in bottom<br />

head is above w<strong>at</strong>er temper<strong>at</strong>ure.<br />

81 min. The corium slumps down to vessel bottom.<br />

81.5 min. The debris is starting to melt through the bottom head.<br />

Drywell and wetwell temper<strong>at</strong>ures are 82°C (180°F) and 71°C<br />

(159°F), respectively. Meanwhile, local pool w<strong>at</strong>er tempera<br />

ture <strong>at</strong> the discharging bay exceeds 149°C (300°F). Steam<br />

condens<strong>at</strong>ion oscill<strong>at</strong>ions could acceler<strong>at</strong>e due to the con<br />

tinuous discharge of superhe<strong>at</strong>ed noncondensable gases into<br />

the suppression pool.<br />

101 min. Mass and energy addition r<strong>at</strong>es into the wetwell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 1.25 165.35 3.47 x io6 1.97 x io5<br />

Hydrogen 4.45 x io"* 0.06 1.03 x io3 58.58<br />

142.5 min. Vessel bottom head fails, resulting in a pressure increase<br />

of 0.34 MPa (49 psia).<br />

152.5 min. Debris starts to boil w<strong>at</strong>er from containment floor.<br />

162.5 min. Debris starts to melt the concrete floor of the containment<br />

building. Temper<strong>at</strong>ure of debris is 2013°C (3655°F) ini<br />

tially. Internal he<strong>at</strong> gener<strong>at</strong>ion in metals and oxides are<br />

2.43 x io7 and 1.26 x io7 w<strong>at</strong>ts, respectively.


120<br />

Time<br />

(sec) Event<br />

162.5 min. Drywell and wetwell temper<strong>at</strong>ures are 128°C (262°F) and 74°C<br />

(166°F), respectively. Mass and energy addition r<strong>at</strong>es into<br />

the drywell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 0.057 7.54 1.59 x io5 9052<br />

Hydrogen 0 0 0 0<br />

167.8 min. Drywell electric penetr<strong>at</strong>ion assembly seals have failed as<br />

the containment temper<strong>at</strong>ure exceeds 204°C (400°F) and start<br />

to vent through the primary containment.<br />

175.2 min. Containment failed as the containment temper<strong>at</strong>ure exceeds<br />

260°C (500°F) and all electric penetr<strong>at</strong>ion modules are blown<br />

out of the containment.<br />

185.3 min. Drywell and wetwell pressures are <strong>at</strong> 0.10 MPa (14.7 psia).<br />

Drywell and wetwell temper<strong>at</strong>ures are 314°C (598°F) and 78°C<br />

(173°F), respectively. Mass and energy addition r<strong>at</strong>es into<br />

the drywell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

Steam 1.65 218.26 1.59 x io5 9052<br />

Hydrogen 0.025 3.31 0 0<br />

C02 5.79 765.88<br />

CO 0.526 69.58<br />

The leak r<strong>at</strong>e through the containment failed areas is<br />

~3.00 x io* A/s (-6.36 x io* ft3/min).<br />

206 min. Drywell and wetwell temper<strong>at</strong>ures are 610°C (1130°F) and 78°C<br />

(173°F), respectively. Mass and energy addition r<strong>at</strong>es into<br />

the drywell are:<br />

Mass R<strong>at</strong>e Energy R<strong>at</strong>e<br />

(kg/s) (lb/min) (w) (Btu/min)<br />

C02 1.83 242<br />

Hydrogen 0.20 26 0 0<br />

Steam 1.36 180 1.59 x io5 9052<br />

CO 4.15 549


121<br />

Time<br />

(sec) Event<br />

The leak r<strong>at</strong>e through the containment failed area is<br />

-2.94 x 10* A/s (-6.24 x io* ft3/min).<br />

222.5 min. R<strong>at</strong>e of concrete decomposition is -4.46 x io* gm/s.<br />

R<strong>at</strong>e of he<strong>at</strong> added to <strong>at</strong>mosphere is -3.71 x 10* kW.<br />

254.5 min. Drywell and wetwell pressures are <strong>at</strong> 0.10 MPa (-14.7 psia)<br />

and temper<strong>at</strong>ures are 746°C (1375°F) and 77°C (171°F), re<br />

spectively. The leak r<strong>at</strong>e through the containment failed<br />

area is -5.54 x io* A/s (-1.17 x io5 ft3/min).<br />

501 min. Drywell and wetwell temper<strong>at</strong>ures are 815°C (-1500°F) and<br />

77°C (170°F), respectively. The leak r<strong>at</strong>e through the con<br />

tainment failed area is -2.34 x io* A/s (-4.96 x<br />

10* ft3/min).


Sequence Event<br />

1 CSB + HPCI/RCIC<br />

2 CSB + HPCI/RCIC + SORV<br />

3 CSB + Manual RCIC/SRV<br />

4 CSB + Manual RCIC/SRV + SORV<br />

5 CSB + iNo HPCI/RCIC<br />

6 CSB + No HPCI/RCIC + SORV<br />

Table 9.7. Predicted times to key events<br />

Core Core<br />

uncover reflood<br />

302<br />

315<br />

21 22<br />

11 12<br />

33<br />

17<br />

Core<br />

uncover<br />

again<br />

347<br />

337<br />

Accident progression time<br />

(min)<br />

Start<br />

melt<br />

355<br />

388<br />

395<br />

396<br />

69<br />

57<br />

Core<br />

slump<br />

392<br />

419<br />

449<br />

453<br />

95<br />

78<br />

Vessel<br />

failure<br />

426<br />

515<br />

539<br />

543<br />

128<br />

143<br />

Wetwell<br />

failure<br />

130<br />

145 '/<br />

Drywell<br />

EPA vent<br />

503<br />

515<br />

539<br />

543<br />

190<br />

168<br />

Drywell<br />

failure<br />

Wetwell failure is due to forces of steam jet impingement and condens<strong>at</strong>ion oscill<strong>at</strong>ions resulting from excessive thermal<br />

str<strong>at</strong>ific<strong>at</strong>ion in the suppression pool.<br />

Drywell electric penetr<strong>at</strong>ion assembly seals start to vent when the ambient temper<strong>at</strong>ure exceeds 204°C (400°F).<br />

Drywell electric penetr<strong>at</strong>ion assembly seals become decomposed and are<br />

per<strong>at</strong>ure exceeds 260°C (500°F).<br />

blown out of the containment when the ambient tem<br />

TJest estim<strong>at</strong>e value.<br />

Containment would fail <strong>at</strong> 288 min. using WASH-1400 failure criterion of st<strong>at</strong>ic pressuriz<strong>at</strong>ion <strong>at</strong> 190 psia.<br />

/, Best estim<strong>at</strong>e value.<br />

514<br />

580<br />

601<br />

596<br />

e<br />

193<br />

175<br />

to<br />

ro


123<br />

Figure 9.12 shows the reactor vessel pressure distribution; it re<br />

mains approxim<strong>at</strong>ely constant during the first 240 minutes when the steam<br />

mass flow through the SRV discharge into the suppression pool (Fig. 9.13)<br />

is balanced by HPCI injection (Fig. 9.14). The pressure increases after<br />

the HPCI injection has stopped upon the assumed loss of dc power <strong>at</strong> 4 h<br />

into the transient.<br />

The mass of w<strong>at</strong>er and the mass of steam within the reactor vessel are<br />

shown in Figs. 9.15 and 9.16 respectively. The rel<strong>at</strong>ively rapid decrease<br />

in steam inventory beginning <strong>at</strong> about 305 minutes as shown in Fig. 9.16 is<br />

due to depletion in the production of hydrogen (Fig. 9.17) by the<br />

Zirconium-w<strong>at</strong>er reaction (Fig. 9.18) before the onset of core melting<br />

(Fig. 9.19). The large amount of energy released by the Zr-H20 reaction<br />

(Fig. 9.20) before the core slumps into the lower head causes an increase<br />

in the steaming r<strong>at</strong>e and the reactor vessel pressure.<br />

The large amount of energy release in the predicted corium-w<strong>at</strong>er in<br />

teraction after reactor vessel failure would cause a significant contain<br />

ment pressure spike. The vertical concrete penetr<strong>at</strong>ion resulting from<br />

corium <strong>at</strong>tack is shown in Fig. 9.21.<br />

9.5 Containment Responses<br />

As previously discussed, containment failure could occur either in<br />

the drywell or in the wetwell if a core meltdown accident were to occur <strong>at</strong><br />

the <strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant. The radiological consequences of a wet<br />

well failure would be less severe than those of a drywell failure, because<br />

a significant fraction of the released fission products would be dissolved<br />

or deposited in the suppression pool.<br />

9.5.1 Drywell Response<br />

Drywell failure would occur in the EPA when the elastomeric sealing<br />

m<strong>at</strong>erials undergo degrad<strong>at</strong>ion and lose sealing integrity <strong>at</strong> ambient tem<br />

per<strong>at</strong>ures gre<strong>at</strong>er than 204°C (400°F)i8» 22. This does not preclude the<br />

possibility of an earlier failure of the wetwell by overpressuriz<strong>at</strong>ion.<br />

An EPA typical of those installed in the <strong>Browns</strong> <strong>Ferry</strong> unit 1 drywell liner<br />

is shown in Fig. 9.22.<br />

The masses of steam and hydrogen accumul<strong>at</strong>ed in the drywell and wet<br />

well following core melt in the base case TB' are shown in Figs. 9.23<br />

through 9.26. For this case, wetwell failure by overpressuriz<strong>at</strong>ion is not<br />

preducted to occur.<br />

The drywell temper<strong>at</strong>ure responses for the sequences TB' and TUB ' are<br />

shown in Figs. 9.27 and 9.28 respectively; the general trends are very<br />

similar in the two sequences, except th<strong>at</strong> high temper<strong>at</strong>ures are reached<br />

much sooner in sequence TUB', as would be expected.* The corresponding<br />

drywell pressure responses for these two sequences are shown in Figs. 9.29<br />

through 9.36.<br />

*In sequence TUB', it is assumed th<strong>at</strong> the HPCI and RCIC systems<br />

are unavailable from the inception of the <strong>St<strong>at</strong>ion</strong> Blackout. Thus boiloff,<br />

core uncovery, and the subsequent events would occur sooner.


(x 105)<br />

77.0-<br />

76.0-<br />

S 75.0<br />

ui<br />

cc<br />

w 74.0<br />

CO<br />

CC<br />

a.<br />

><br />

CO<br />

73.0-<br />

> 72.0 H<br />

<<br />

2<br />

cc<br />

a.<br />

71.0-<br />

70.0<br />

69.0<br />

0.0<br />

PRESSURE INCREASE FOLLOWING MSIV CLOSURE<br />

50.0 100.0<br />

150.0<br />

dc POWER LOST ,<br />

I<br />

200.0<br />

TIME (min)<br />

250.0<br />

Fig. 9.12 Reactor vessel pressure.<br />

300.0<br />

ORNL-DWG 81-8523 ETD<br />

r-CORE UNCOVERY<br />

—I<br />

350.0 400.0<br />

ro


~r3><br />

600.0 -r<br />

500.0<br />

w 400.0<br />

Q.<br />

o cc<br />

UJ<br />

r-<br />

<<br />

CC<br />

<<br />

UJ<br />

to<br />

300.0-<br />

200.0-<br />

100.0-<br />

0.0<br />

dc POWE R LOST<br />

SRV FLOW AND HPCI INJECTION<br />

BECOME BALANCED<br />

100.0<br />

HPCI INJECTION STOPS-,<br />

—I<br />

150.0 200.0<br />

TIME (min)<br />

CORE SLUMPS INTO LOWER PLENUM<br />

250.0<br />

Fig. 9.13 Steam mass flow r<strong>at</strong>e from primary system.<br />

300.0<br />

ORNL-DWG 81-8524 ETD<br />

CORE UNCOVERY<br />

T<br />

350.0<br />

400.0<br />

to


120.0<br />

100.0-<br />

> 80.0-<br />

cc<br />

D<br />

V)<br />

V)<br />

UJ<br />

cc<br />

CL<br />

o<br />

r-<br />

60.0-<br />

< 40.0<br />

o<br />

§ 20.0<br />

0.0<br />

0.0 50.0<br />

SRV FLOW AND HPCI INJECTION<br />

BECOME BALANCED<br />

100.0 150.0<br />

I<br />

200.0<br />

TIME (min)<br />

250.0<br />

Fig. 9.14 HPCI flow r<strong>at</strong>e into pressure vessel.<br />

-dc POWER LOST<br />

HPCI INJECTION STOPS<br />

300.0 350.0<br />

ORNL-DWG 81-8525 ETD<br />

—f<br />

400.0<br />

ro<br />

as


CT><br />

(x 104)<br />

30.0<br />

25.0-<br />

a 20.0<br />

<<br />

cc<br />

a.<br />

rr 15.0<br />

UJ<br />

<<br />

u.<br />

O<br />

to<br />

to<br />

<<br />

10.0-<br />

5.0-<br />

0.0<br />

0.0 50.0 100.0 150.0<br />

I<br />

200.0<br />

TIME (min)<br />

I<br />

250.0<br />

Fig. 9.15 Mass of w<strong>at</strong>er in primary system.<br />

LOSS OF dc POWER<br />

BOILOFF BEGINS<br />

I<br />

300.0<br />

ORNL-DWG 81-8526 ETD<br />

CORE SLUMPS-<br />

I<br />

350.0 400.0<br />

IO<br />

~4


S<br />

UJ<br />

(x 103)<br />

20.0-<br />

18.0<br />

16.0<br />

<br />

CO<br />

> rr<br />

<<br />

2<br />

cc<br />

0_<br />

z<br />

12.0<br />

10.0<br />

CO<br />

CO<br />

<<br />

s 8.0<br />

S<br />

<<br />

UJ<br />

CO<br />

6.0-<br />

4.0-<br />

2.0<br />

0.0 50.0 100.0<br />

dc POWER LOST<br />

BOILOFF BEGINS<br />

150.0<br />

I<br />

200.0<br />

TIME (min)<br />

CORE UNCOVERY<br />

—I<br />

250.0<br />

Fig. 9.16 Steam mass in primary system.<br />

300.0<br />

ORNL-DWG 81-8527 ETD<br />

CORE SLUMPS-<br />

—T—<br />

350.0 400.0<br />

ro<br />

oo


* »<br />

300.0<br />

250.0-<br />

o> 200.0<br />

CO<br />

a!<br />

Z<br />

z 150.0<br />

UJ<br />

O<br />

O<br />

cc<br />

Q<br />

>x<br />

100.0<br />

50.0-<br />

0.0<br />

0.0 50.0<br />

100.0 150.0<br />

H2 BUILDUP DUE TO Zr-H20 REACTION<br />

200.0<br />

TIME (min)<br />

CORE UNCOVERY<br />

Fig. 9.17 Hydrogen mass in primary system.<br />

1<br />

I<br />

250.0 300.0<br />

ORNL-DWG 81-8528 ETD<br />

CORE-J<br />

SLUMPS<br />

350.0 400.0<br />

ro


Q<br />

UJ<br />

I-<br />

O<br />

<<br />

UJ<br />

cc<br />

Q<br />

<<br />

0.20<br />

0.15-<br />

o0.10- r-<br />

<<br />

CC<br />

u_<br />

0.05-<br />

0.00<br />

0.0 50.0 100.0 150.0 200.0<br />

TIME (min)<br />

250.0<br />

Fig. 9.18 Fraction of clad reacted.<br />

ORNL-DWG 81-8529 ETD<br />

300.0 350.0 400.0<br />

o


00 50.0 100.0 150.0 200.0 250.0<br />

TIME (min)<br />

Fig. 9.19 Fraction of core melted.<br />

300.0<br />

ORNL-DWG 81-8530 ETD<br />

350.0 400.0<br />

00


(x 107)<br />

10.0<br />

o 8.0-<br />

Io<br />

<<br />

UJ<br />

CC<br />

o<br />

CN<br />

X<br />

I<br />

N<br />

5<br />

O CC<br />

U_<br />

6.0-<br />

Q<br />

£ 4.0<br />

<<br />

cc<br />

UJ<br />

z<br />

UJ<br />

o<br />

S 2.0<br />

UJ<br />

Z<br />

UJ<br />

0.0 +<br />

0.0 50.0 100.0 150.0<br />

HIGH INITIAL REACTION RATE<br />

200.0<br />

TIME (min)<br />

CORE UNCOVERY<br />

250.0 300.0<br />

Fig. 9.20 Energy gener<strong>at</strong>ed from Zr-^O reaction.<br />

ORNL-DWG 81-8531 ETD<br />

350.0 400.0<br />

OJ<br />

to


800.0 -T<br />

700.0-<br />

E<br />

^ 600.0<br />

o<br />

r-<br />

<<br />

£E 500.0-<br />

UJ<br />

Q.<br />

£ 400.0-1<br />

cc<br />

o<br />

g 300.0<br />

<<br />

o<br />

rcc<br />

UJ<br />

><br />

200.0-<br />

100.0-<br />

0.0 +<br />

0.0<br />

CORE UNCOVERY-<br />

VESSEL BOTTOM<br />

HEAD FAILS-<br />

T T<br />

100.0 200.0 300.0 400.0 500.0 600.0<br />

TIME (min)<br />

Fig. 9.21 Vertical concrete penetr<strong>at</strong>ion.<br />

ORNL-DWG 81-8532 ETD<br />

CONCRETE PENETRATION COMPLETED<br />

I I<br />

700.0 800.0<br />

—I 1 !<br />

900.0 1000.0 1100.0<br />

OJ<br />

OJ


END SHIELD<br />

FOR RADIATION<br />

PROTECTION<br />

FIELD WELD<br />

SHIELD<br />

SUPPORT<br />

FIELD WELD<br />

PRIOR TO<br />

INSTALLATION<br />

CONTAINMENT<br />

HEADER PLATES<br />

FIELD WELD<br />

Fig. 9.22 Typical electrical penetr<strong>at</strong>ion assembly canister.<br />

ORNL-DWG 81-8533 ETD<br />

CONNECTOR<br />

MOUNTING<br />

HOLES<br />

VALVE AND<br />

PRESSURE TAP<br />

OJ


(x 103)<br />

18.0<br />

16.0<br />

14.0<br />

_ 12.0 H<br />

O)<br />

25 looH<br />

r-<br />

S 80H<br />

CO<br />

<<br />

6.0-<br />

VESSEL BOTTOM HEAD FAILS<br />

CORE UNCOVERY<br />

DRYWELL VENTING THROUGH<br />

FAILED EPA SEALS<br />

—\r\l\ JL<br />

T T<br />

100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0 1100.0<br />

TIME (min)<br />

Fig. 9.23 Mass of steam in drywell.<br />

DRYWELL EPA SEALS FAIL<br />

ORNL-DWG 81-8534 ETD<br />

H<br />

OJ<br />

On


250.0<br />

200.0-<br />

5 150.0<br />

o<br />

o<br />

cc<br />

Q<br />

>-<br />

CO<br />

CO<br />

<<br />

100.0-<br />

50.0<br />

DRYWELL H2 SWEPT INTO WETWELL<br />

AS VESSEL BOTTOM HEAD FAILS<br />

Zr-H20 REACTION BEGINS-<br />

0.0- T T<br />

0.0 100.0 200.0 300.0 400.0<br />

500.0 600.0<br />

TIME (min)<br />

Fig. 9.24 Mass of hydrogen in drywell.<br />

ORNL-DWG 81-8535 ETD<br />

-SPIKE DUE TO H2 RETURN FROM WETWELL<br />

FAILURE OF DRYWELL EPA SEALS<br />

i<br />

700.0 800.0 900.0 1000.0 1100.0<br />

OJ<br />

ON


9000.0<br />

8000.0<br />

7000.0<br />

_ 6000.0-<br />

< 5000.0<br />

H<br />

C/3<br />

O 4000.0co<br />

CO<br />

<<br />

3000.0-1<br />

2000.0-<br />

1000.0<br />

0.0<br />

VESSEL BOTTOM HEAD FAILS<br />

CONTINUED RELIEF<br />

VALVE ACTUATION<br />

0.0 100.0 200.0<br />

CORE SLUMPS<br />

I CORE UNCOVERY<br />

I I<br />

300.0 400.0 500.0 600.0 700.0<br />

TIME (min)<br />

Fig. 9.25 Mass of steam in wetwell.<br />

-FAILURE OF DRYWELL EPA SEALS<br />

—I 1<br />

800.0 900.0<br />

ORNL-DWG 81-8536 ETD<br />

-n<br />

1000.0 1100.0<br />

OJ<br />

^J


UJ<br />

O<br />

O<br />

CC<br />

Q<br />

><br />

I<br />

u.<br />

o<br />

CO<br />

800.0<br />

700.0-<br />

600.0-<br />

500.0<br />

400.0<br />

< 300.0<br />

200.0-<br />

100.0-<br />

0.0<br />

DRYWELL H2 SWEPT INTO<br />

WETWELL AS VESSEL<br />

BOTTOM HEAD FAILS<br />

Zr-H20 REACTION BEGINS-<br />

1 I<br />

0.0 100.0 200.0 300.0 400.0<br />

M<br />

T<br />

500.0<br />

TIME (min)<br />

H, RETURNED TO DRYWELL AS EPA<br />

SEALS FAIL AND CONTAINMENT VENTS<br />

I I<br />

600.0 700.0<br />

Fig. 9.26 Mass of hydrogen in wetwell.<br />

—I I<br />

800.0 900.0<br />

ORNL-DWG 81-8537 ETD<br />

1<br />

1000.0 1100.0<br />

OJ<br />

oo


1600.0<br />

1400.0-<br />

~ 1200.0<br />

cc<br />

D<br />

r-<br />

<<br />

£ iooo.o<br />

s<br />

UJ<br />

UJ<br />

S<br />

800.0-<br />

cc<br />

<<br />

| 600.0<br />

o o<br />

400.0-<br />

200.0-<br />

0.0<br />

INCREASE DURING<br />

CORIUM-CONCRETE<br />

REACTION<br />

VESSEL BOTTOM HEAD FAILS<br />

T T<br />

FAILURE OF DRYWELL EPA SEALS<br />

T T T T T<br />

ORNL-DWG 81-8538 ETD<br />

100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0 1100.0<br />

TIME (min)<br />

Fig. 9.27 Drywell temper<strong>at</strong>ure distribution (TB').<br />

r-1<br />

OJ<br />

VO


1600.0-1<br />

1400.0-<br />

uT 1200.0 H<br />

cc<br />

I-<br />

<<br />

£ 1000.0-1<br />

UJ<br />

UJ<br />

GC<br />

<<br />

o.<br />

800.0-<br />

1 600.0o<br />

o<br />

400.0-<br />

200.0-<br />

VESSEL BOTTOM<br />

HEAD FAILS-<br />

0.0<br />

INCREASE DURING CORIUM<br />

CONCRETE REACTION<br />

T<br />

h-vT<br />

FAILURE OF DRYWELL EPA SEALS<br />

T I<br />

600.0<br />

TIME (min)<br />

100.0 200.0 300.0 400.0 500.0<br />

Fig. 9.28 Drywell temper<strong>at</strong>ure distribution (TUB')<br />

ORNL-DWG 81-8539 ETD<br />

700.0 800.0<br />

o


s.<br />

cc<br />

UJ<br />

cc<br />

Q.<br />

r-<br />

Z<br />

UJ<br />

cc<br />

<<br />

S<br />

o o<br />

(x 105)<br />

10.0<br />

9.0-<br />

80<br />

7.0-<br />

6.0-<br />

5.0<br />

^ 4.0-<br />

<<br />

io<br />

3.0-<br />

2.0-<br />

VESSEL BOTTOM HEAD FAILS-<br />

100.0<br />

ORE UNCOVERY<br />

—T r 1 i ^ 1 1—<br />

200.0 300.0 400.0 500.0 600.0 700.0<br />

TIME (min)<br />

Fig. 9.29 Drywell total pressure (TB'),<br />

FAILURE OF DRYWELL EPA SEALS<br />

ORNL-DWG 81-8540 ETD<br />

T T<br />

800.0 900.0 1000.0 1100.0


CO<br />

0.<br />

UJ<br />

CC<br />

3<br />

CO<br />

CO<br />

UJ<br />

cc<br />

Q.<br />

(x 105)<br />

8.0<br />

7.0-<br />

6.0-<br />

5.0-<br />

< 4.0-<br />

cc<br />

<<br />

Q.<br />

<<br />

UJ<br />

r-<br />

CO<br />

3.0-<br />

2.0-<br />

1.0-<br />

0.0<br />

VESSEL BOTTOM HEAD FAILS<br />

100.0<br />

CORE UNCOVERY<br />

i r Ti<br />

i^ i r<br />

200.0 300.0 400.0 500.0 600.0 700.0 800.0<br />

TIME (min)<br />

FAILURE OF DRYWELL EPA SEALS<br />

Fig. 9.30 Drywell steam partial pressure (TB').<br />

ORNL-DWG 81-8541 ETD<br />

I I I<br />

900.0 1000.0 1100.0<br />

ro


CO<br />

Q.<br />

(x 104)<br />

10.0<br />

8.0-<br />

uj6.0rr a.<br />

r-<br />

CC<br />

<<br />

Q.<br />

o<br />

o<br />

cc<br />

Q<br />

>-<br />

I<br />

4.0<br />

2.0<br />

0.0<br />

H, SWEPT INTO WETWELL AS<br />

VESSEL BOTTOM HEAD FAILS-<br />

Zr-H20 REACTION BEGINS-<br />

FAILURE OF DRYWELL EPA SEALS<br />

0.0 1000 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0<br />

TIME (min)<br />

Fig. 9.31 Drywell hydrogen partial pressure (TB').<br />

ORNL-DWG 81-8542 ETD<br />

1000.0<br />

-I<br />

1100.0<br />

H><br />

OJ


(x 104)<br />

30.0-<br />

« 25.0<br />

0-<br />

0.0<br />

NON-CONDENSABLES SWEPT INTO WETWELL<br />

AS VESSEL BOTTOM HEAD FAILS<br />

I 1 I I<br />

0.0 100.0 200.0 300.0 400.0<br />

I I<br />

500.0 600.0<br />

TIME (min)<br />

•FAILURE OF DRYWELL EPA SEALS<br />

Fig. 9.32 Drywell non-condensables partial pressure (TB')<br />

ORNL-DWG 81-8543 ETD<br />

700.0 800.0 900.0 1000.0 1100.0<br />

*»<br />

*•


(ed) sansssad iNswiavdwoo nvioi<br />

in<br />

O O<br />

"~ r-*<br />

X<br />

I I I I<br />

q o<br />

Oo<br />

o<br />

«b io IO -^ o<br />

frj<br />

00<br />

CO<br />

CO<br />

cc<br />

3<br />

l u<br />

rH<br />

cc<br />

Q<br />

UJ<br />

8<br />

c<br />

1<br />

co<br />

_i<br />

<<br />

UJ<br />

CO<br />

<<br />

o.<br />

UJ<br />

cu<br />

u<br />

3<br />

CO<br />

co<br />

OJ<br />

M<br />

f-HJ<br />

VESSEL BOTTOM HEAD FAILS—<br />

rr<br />

O<br />

00<br />

O<br />

5<br />

Q<br />

I<br />

145


CO<br />

(x 105)<br />

6.0<br />

5.0-<br />

uj 4.0<br />

cc<br />

3<br />

CO<br />

CO<br />

UJ<br />

cc<br />

-J 3.0-1<br />

<<br />

ioc<br />

<<br />

Q.<br />

< 2.0<br />

UI<br />

co<br />

1.0-<br />

0.0<br />

0.0<br />

VESSEL<br />

BOTTOM<br />

HEAD<br />

FAILS-<br />

^<br />

100.0 200.0<br />

-FAILURE OF DRYWELL EPA SEALS<br />

300.0 400.0<br />

TIME (min)<br />

500.0 600.0<br />

Fig. 9.34 Drywell steam partial pressure (TUB'),<br />

ORNL-DWG 81-8545 ETD<br />

700.0 800.0<br />

H><br />

ON


o<br />

Q_<br />

UJ<br />

CC<br />

3<br />

UJ<br />

IX<br />

a.<br />

(x 104)<br />

8.0<br />

7.0-<br />

6.0<br />

5.0-<br />

3 4.0<br />

cc<br />

<<br />

a.<br />

Z<br />

UJ<br />

a<br />

o<br />

cc<br />

a<br />

>x<br />

3.0-<br />

2.0-<br />

1.0-<br />

0.0-f<br />

H2 SWEPT INTO<br />

WETWELL AS<br />

VESSEL BOTTOM<br />

HEAD FAILS-<br />

Zr-H20<br />

REACTION<br />

BEGINS<br />

200.0<br />

FAILURE OF DRYWELL EPA SEALS<br />

300.0 400.0<br />

TIME (min)<br />

500.0 600.0<br />

Fig. 9.35 Drywell hydrogen partial pressure (TUB').<br />

ORNL-DWG 81-8546 ETD<br />

700.0 800.0<br />

•vj


(x 104)<br />

25.0<br />

£ 20.0-<br />

3<br />

CO<br />

CO<br />

UJ<br />

cc<br />

Q.<br />

^ 150<br />

cc<br />

<<br />

CO<br />

UJ<br />

_l<br />

<<br />

CO<br />

z<br />

o<br />

u<br />

I<br />

z<br />

o<br />

z<br />

10.0-<br />

5.0<br />

0.0 -f<br />

Zr-H20<br />

REACTION/<br />

BEGINS-<br />

VATMOSPHERIC<br />

PRESSURE<br />

0.0 100.0<br />

I<br />

200.0<br />

-NON-CONDENSABLES SWEPT INTO WETWELL<br />

AS VESSEL BOTTOM HEAD FAILS<br />

FAILURE OF DRYWELL EPA SEALS<br />

300.0 400.0<br />

TIME (min)<br />

I<br />

500.0<br />

—T<br />

600.0<br />

Fig. 9.36 Drywell non-condensables partial pressure (TUB'),<br />

ORNL-DWG 81-8547 ETD<br />

I<br />

700.0 800.0<br />

oo


149<br />

As the drywell ambient temper<strong>at</strong>ure exceeds 204°C (400°F), the EPA<br />

elastomeric sealing m<strong>at</strong>erials start to deterior<strong>at</strong>e and venting of the<br />

drywell begins. When the ambient temper<strong>at</strong>ure has exceeded 260°C (500°F),<br />

the EPA elastomeric sealing m<strong>at</strong>erials have decomposed to such an extent<br />

th<strong>at</strong> the EPA seals are blown out of the containment wall by the elev<strong>at</strong>ed<br />

pressure within the drywell. This gre<strong>at</strong>ly increases the containment leak<br />

age (Fig. 9.10).<br />

9.5.2 Wetwell response<br />

The condens<strong>at</strong>ion of the SRV steam discharge within the pressure sup<br />

pression pool is generally accomplished without undue pressure stresses on<br />

the containment wall. If, however, conditions are such th<strong>at</strong> complete con<br />

dens<strong>at</strong>ion of the steam discharge does not occur, pressure loads signifi<br />

cantly in excess of design limits can result, leading eventually to wet<br />

well rupture.<br />

Relief valve steam discharge into the pressure suppression pool is<br />

accompanied by pressure oscill<strong>at</strong>ions of varying characteristics which are<br />

functions of the steam mass flux and local pool w<strong>at</strong>er temper<strong>at</strong>ures as well<br />

as the type of sparger device installed <strong>at</strong> the discharge line terminus.<br />

It has been observed th<strong>at</strong> condens<strong>at</strong>ion instability can occur when a<br />

submerged pipe vent discharges steam <strong>at</strong> flow r<strong>at</strong>es higher than critical<br />

(sonic discharge) with a sufficiently high ambient pool temper<strong>at</strong>ure- the<br />

so-called "Wurgassen effect". The threshold of instability is character<br />

ized by an increase in the amplitude of pressure oscill<strong>at</strong>ions which nor<br />

mally accompany condens<strong>at</strong>ion <strong>at</strong> supercritical flow r<strong>at</strong>es.<br />

At present, ramshead-type sparger devices are installed on the relief<br />

valve tail pipe discharge lines <strong>at</strong> the <strong>Browns</strong> <strong>Ferry</strong> Plant. The ramshead<br />

device consists of two 90° elbows welded back-to-back to form a modified<br />

T-junction, and provides an improvement in condens<strong>at</strong>ion performance over<br />

th<strong>at</strong> of a straight vertical pipe. The horizontal discharge from the ram<br />

shead allows the rising convection currents and induced secondary flows to<br />

circul<strong>at</strong>e cooler w<strong>at</strong>er around the steam plumes r<strong>at</strong>her than stagn<strong>at</strong>e<br />

against a downward flow of steam. However, small scale tests have shown<br />

th<strong>at</strong> it also has the potential to produce unstable condens<strong>at</strong>ion and con<br />

comitant large pressure stresses when sufficiently high pool w<strong>at</strong>er temper<br />

<strong>at</strong>ure is reached during supercritical (sonic) discharge. For this reason,<br />

certain limit<strong>at</strong>ions on plant oper<strong>at</strong>ion are established in the <strong>Browns</strong> <strong>Ferry</strong><br />

Technical Specific<strong>at</strong>ions to preclude any possible steam discharge through<br />

the ramshead devices <strong>at</strong> pool temper<strong>at</strong>ures gre<strong>at</strong>er than 77°C (170°F).<br />

In the near future, the ramshead devices <strong>at</strong> the <strong>Browns</strong> <strong>Ferry</strong> Plant<br />

will be replaced by T-quencher sparger devices similar to th<strong>at</strong> shown in<br />

Fig. D-2 of Appendix D. Tests have shown th<strong>at</strong> the T-quencher spargers<br />

produce lower loads during the initial air-clearing upon relief valve ac<br />

tu<strong>at</strong>ion and permit smooth condens<strong>at</strong>ion of the steam discharge <strong>at</strong> pool tem<br />

per<strong>at</strong>ures up to 93°C (200°F). For this study, it was assumed th<strong>at</strong> the SRV<br />

discharge lines termin<strong>at</strong>e in T-quencher spargers.<br />

Although the use of T-quenchers considerably improves the steam con<br />

dens<strong>at</strong>ion characteristics rel<strong>at</strong>ed to SRV steam discharges, the constricted<br />

flows introduced by the T-quencher have caused insufficient thermal mixing<br />

in the suppression pool. The resultant thermal str<strong>at</strong>ific<strong>at</strong>ion in the pool


150<br />

can produce much higher local w<strong>at</strong>er temper<strong>at</strong>ure in the vicinity of the Tquenchers<br />

although the average pool temper<strong>at</strong>ure remains quite low.<br />

The problem of thermal str<strong>at</strong>ific<strong>at</strong>ion has been found to be signific<br />

ant for the sequences TUB' and TUPB', in which the HPCI and RCIC sys<br />

tems are assumed inoper<strong>at</strong>ive. Without injection capability, core uncovery<br />

and subsequent degrad<strong>at</strong>ion occur early in the <strong>St<strong>at</strong>ion</strong> Blackout when the<br />

level of decay he<strong>at</strong> is rel<strong>at</strong>ively high so th<strong>at</strong> a large amount of super<br />

he<strong>at</strong>ed steam and noncondensibles is discharged from the T-quenchers into<br />

the suppression pool in a short period of time. The average suppression<br />

pool temper<strong>at</strong>ure is plotted as a function of time for sequences TB' and<br />

TUB* in Figs. 9.37 and 9.38 respectively.<br />

In sequence TUB', it is realistically assumed th<strong>at</strong> without oper<strong>at</strong>or<br />

action, reactor vessel pressure control over the long term would be by re<br />

pe<strong>at</strong>ed cycling of the same relief valve.* Because of the high steam mass<br />

flux into the suppression pool bay in which the discharging T-quencher is<br />

loc<strong>at</strong>ed, significant thermal str<strong>at</strong>ific<strong>at</strong>ion would be expected. MARCH com<br />

put<strong>at</strong>ions show th<strong>at</strong> the difference between the local and average suppres<br />

sion pool temper<strong>at</strong>ures can be estim<strong>at</strong>ed to increase from about 5°C <strong>at</strong> the<br />

beginning of the transient to about 40°C 100 minutes l<strong>at</strong>er. This means<br />

th<strong>at</strong> the suppression pool would lose its condens<strong>at</strong>ion effectiveness; the<br />

resulting pressure loads from the SRV discharge of steam and noncondensi<br />

bles would rapidly increase, leading to a possible rupture of the wetwell<br />

which could occur before the overtemper<strong>at</strong>ure-induced failure of the dry-<br />

well.<br />

The drywell pressure sign<strong>at</strong>ures for the sequences TB' and TUB' are<br />

shown in Figs. 9.29 through 9.36. The general trends are again very sim<br />

ilar, except for the timing of events. The pressure peaks for the sequence<br />

TB' are generally higher than those for the sequence TUB'; this is <strong>at</strong>tri<br />

buted to the presence of a larger w<strong>at</strong>er inventory as a result of the fourhour<br />

period of HPCI injection during sequence TB'.<br />

The wetwell temper<strong>at</strong>ure sign<strong>at</strong>ures are given in Figs. 9.37 and 9.38,<br />

and the average pressure distributions are given in Figs. 9.39 through<br />

9.46 for sequences TB-* and TUB'. The plotted pressures do not include the<br />

effect of pressure waves resulting from condens<strong>at</strong>ion instabilities or the<br />

vapor jet plumes eman<strong>at</strong>ing from the T-quencher spargers.<br />

*A1though four of the thirteen SRVs share the lowest nominal setpoint<br />

of 7.72 MPa (1105 psig), practical consider<strong>at</strong>ions dict<strong>at</strong>e th<strong>at</strong> there<br />

would be one lowest-set valve.


UJ<br />

cc<br />

3<br />

r-<br />

550.0<br />

500.0-<br />

cc 450.0<br />

ui<br />

a.<br />

UJ<br />

r-<br />

2 400.0 H<br />

r-<br />

CC<br />

<<br />

a.<br />

O<br />

o<br />

350.0-<br />

300.0<br />

FAILURE OF VESSEL BOTTOM HEAD<br />

Zr-H20 REACTION BEGINS<br />

CORE UNCOVERY<br />

-VENTING BY FAILURE OF<br />

DRYWELL EPA SEALS<br />

-i 1 1 1 1 I 1<br />

0.0 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0<br />

TIME (min)<br />

Fig. 9.37 Wetwell temper<strong>at</strong>ure distribution (TB').<br />

ORNL-DWG 81-8548 ETD<br />

900.0 1000.0 1100.0


UJ<br />

cc<br />

3<br />

r-<br />

550.0 -r<br />

500.0<br />

cc 450.0<br />

UJ<br />

o.<br />

UJ<br />

UJ<br />

H<br />

CC<br />

<<br />

a.<br />

O O<br />

400.0-<br />

350.0-<br />

300.0<br />

0.0<br />

FAILURE OF VESSEL BOTTOM HEAD<br />

Zr-H20 REACTION BEGINS<br />

100.0 200.0<br />

-VENTING BY FAILURE OF DRYWELL EPA SEALS<br />

—1<br />

300.0<br />

1<br />

400.0<br />

TIME (min)<br />

500.0<br />

Fig. 9.38 Wetwell temper<strong>at</strong>ure distribution (TUB').<br />

—I<br />

600.0<br />

ORNL-DWG 81-8549 ETD<br />

700.0 800.0<br />

to


(x 105)<br />

10.0-<br />

9.0<br />

« CD 8(H<br />

Q.<br />

UJ<br />

CC<br />

3<br />

CO<br />

CO<br />

UJ<br />

cc<br />

Q.<br />

UJ<br />

5<br />

rcr<br />

<<br />

o.<br />

5<br />

O<br />

o<br />

7.0-<br />

6.0-<br />

5.0-<br />

4.0-<br />

3.0-<br />

2.0-<br />

FAILURE OF VESSEL BOTTOM HEAC<br />

Zr-H20 REACTION BEGINS<br />

1.0-<br />

0.0 100.0 200.0 300.0 400.0<br />

500.0 600.0<br />

TIME (min)<br />

-VENTING BY FAILURE OF<br />

DRYWELL EPA SEALS<br />

Fig. 9.39 Wetwell total pressure (TB'),<br />

ORNL-DWG 81-8550 ETD<br />

T<br />

T T<br />

700.0 800.0 900.0 1000.0 1100.0<br />

0/1<br />

OJ


CD<br />

Q.<br />

(x 104<br />

25.0-1<br />

20.0-<br />

UJ<br />

CC<br />

| 15.0<br />

UJ<br />

cc<br />

Ol<br />

r-<br />

CC<br />

<<br />

Q.<br />

<<br />

UJ<br />

I-<br />

10.0-<br />

5.0-<br />

0.0<br />

FAILURE OF VESSEL BOTTOM HEAD-<br />

CORE UNCOVERY<br />

T<br />

100.0 200.0 300.0 400.0<br />

—I I<br />

500.0 600.0<br />

TIME (min)<br />

VENTING BY FAILURE OF<br />

DRYWELL EPA SEALS<br />

ATMOSPHERIC PRESSURE<br />

—I 1<br />

700.0 800.0<br />

Fig. 9.40 Wetwell steam partial pressure (TB')<br />

ORNL-DWG 81-8551 ETD<br />

1 I<br />

900.0 1000.0 1100.0<br />

On


CD<br />

Ch<br />

(x 104)<br />

25.0<br />

20.0-<br />

oi<br />

cc<br />

3<br />

CO<br />

£ 15.0cc<br />

r-<br />

0C<br />

<<br />

CL<br />

UJ<br />

o<br />

O<br />

cc<br />

a<br />

>x<br />

10.0-<br />

5.0-<br />

0.0<br />

FAILURE OF VESSEL BOTTOM HEAD<br />

Zr-H20 REACTION BEGINS<br />

0.0 100.0 200.0 300.0<br />

400.0 500.0<br />

TIME (min)<br />

-VENTING BY FAILURE OF<br />

DRYWELL EPA SEALS<br />

T<br />

600.0<br />

Fig. 9.41 Wetwell hydrogen partial pressure (TB'),<br />

ORNL-DWG 81-8552 ETD<br />

—I 1 I I<br />

700.0 800.0 900.0 1000.0 1100.0<br />

On


CD<br />

Ql<br />

CC<br />

(x 105)<br />

7.0<br />

6.0<br />

w 5.0<br />

CO<br />

UJ<br />

cc<br />

CL<br />


200.0 300.0 400.0<br />

TIME (min)<br />

500.0<br />

Fig. 9.43 Wetwell total pressure (TUB').<br />

ORNL-DWG 81-8554 ETD<br />

600.0 700.0 800.0


CO<br />

Q.<br />

(x 104)<br />

6.0<br />

5.0-<br />

m 4.0<br />

cc<br />

3<br />

CO<br />

CO<br />

UJ<br />

cc<br />

Q.<br />

rcc<br />

<<br />

3.0-<br />

< 2.0 H<br />

UJ<br />

rco<br />

1.0-<br />

0.0<br />

FAILURE OF<br />

VESSEL<br />

BOTTOM<br />

HEAD<br />

0.0 100.0 200.0<br />

VENTING BY FAILURE<br />

OF DRYWELL EPA SEALS<br />

WETWELL ATMOSPHERE IS NOT PURE STEAM<br />

T I<br />

T<br />

300.0 400.0<br />

TIME (min)<br />

500.0 600.0<br />

Fig. 9.44 Wetwell steam partial pressure (TUB').<br />

ORNL-DWG 81-8555 ETD<br />

I<br />

700.0 800.0<br />

on<br />

CO


(x 104)<br />

20.0<br />

£ 15.0-<br />

UJ<br />

cc<br />

3<br />

UJ<br />

cc<br />

Cl<br />

j* 10.0-<br />

oc<br />

< CL<br />

z<br />

UJ<br />

(J<br />

O<br />

CC<br />

Q<br />

£ 5.0-1<br />

0.0<br />

FAILURE OF<br />

VESSEL<br />

BOTTOM<br />

HEAD<br />

0.0<br />

II<br />

100.0 200.0 300.0 400.0<br />

TIME (min)<br />

VENTING BY FAILURE OF DRYWELL EPA SEALS<br />

SOME HYDROGEN REMAINS IN WETWELL ATMOSPHERE<br />

500.0 600.0<br />

Fig. 9.45 Wetwell hydrogen partial pressure (TUB')<br />

ORNL-DWG 81-8556 ETD<br />

I<br />

700.0 800.0<br />

On


(x 105)<br />

6.0<br />

_ 5.0-<br />

CO<br />

Cu<br />

CC<br />

3<br />

CO<br />

J2 4.0<br />

cc<br />

CL<br />

rcc<br />

<<br />

a.<br />

CO<br />

CO<br />

<<br />

CO<br />

z<br />

UJ<br />

Q<br />

z<br />

o o<br />

I<br />

z<br />

o<br />

z<br />

3.0-<br />

2.0-<br />

1.0-<br />

0.0<br />

FAILURE OF<br />

VESSEL<br />

BOTTOM<br />

HEAD<br />

0.0 100.0 200.0<br />

VENTING BY FAILURE OF DRYWELL EPA SEALS<br />

ORNL-DWG 81-8557 ETD<br />

SOME NON-CONDENSABLES REMAIN IN WETWELL ATMOSPHERE<br />

300.0<br />

I<br />

400.0<br />

TIME (min)<br />

Fig. 9.46 Wetwell non-condensables partial pressure (TUB')<br />

500.0 600.0 700.0 800.0<br />

o><br />

o


161<br />

10. PLANT STATE RECOGNITION AND OPERATOR MITIGATING ACTIONS<br />

10.1 Introduction<br />

The accident sign<strong>at</strong>ures developed in Sect. 9 provide baseline infor<br />

m<strong>at</strong>ion for six possible sequences leading to core meltdown th<strong>at</strong> might oc<br />

cur during a <strong>St<strong>at</strong>ion</strong> Blackout. The objectives of this chapter are to ex<br />

amine these same sequences from the oper<strong>at</strong>or's standpoint in order to<br />

identify and evalu<strong>at</strong>e potential preventive and corrective actions keyed to<br />

the time windows available.<br />

As discussed in Sect. 9, a number of plant safety systems would func<br />

tion autom<strong>at</strong>ically during a <strong>St<strong>at</strong>ion</strong> Blackout. The autom<strong>at</strong>ic safety system<br />

responses include reactor scram, vessel pressure control by SRV oper<strong>at</strong>ion,<br />

and level control through cycling of the HPCI system. Thus, assuming no<br />

independent secondary failures, the reactor could be maintained in a safe<br />

stable st<strong>at</strong>e without oper<strong>at</strong>or action until DC power is lost <strong>at</strong> an assumed<br />

four hours into the <strong>blackout</strong>. After the loss of DC power, oper<strong>at</strong>or action<br />

would be crucial in <strong>at</strong>tempting to avert the impending core degrad<strong>at</strong>ion.<br />

10.2 Plant St<strong>at</strong>e Recognition<br />

To enable the oper<strong>at</strong>or to better identify and evalu<strong>at</strong>e potential<br />

mitig<strong>at</strong>ing actions during a <strong>St<strong>at</strong>ion</strong> Blackout, the accident progression is<br />

c<strong>at</strong>egorized into a number of plant st<strong>at</strong>es. The available time windows for<br />

each plant st<strong>at</strong>e are determined from the baseline inform<strong>at</strong>ion provided in<br />

Sect. 9. The loc<strong>at</strong>ion of the plant st<strong>at</strong>es within each sequence is shown<br />

in Fig. 10.1, with the sequence chosen for the fission product transport<br />

analysis of Volume 2 indic<strong>at</strong>ed by a dashed line.<br />

Plant St<strong>at</strong>e 1 (0-s). This is the initial st<strong>at</strong>e <strong>at</strong> the moment of loss of<br />

offsite and onsite power, and is common to all of the <strong>blackout</strong> sequences.<br />

Plant St<strong>at</strong>e 2 (0-625 s). This st<strong>at</strong>e represents the period of autom<strong>at</strong>ic<br />

plant safety system response and is common to the six sequences considered<br />

in detail in this report.<br />

Plant St<strong>at</strong>e 3 (625 s-240 min). This st<strong>at</strong>e is applicable to sequences<br />

TB-* and TPB'. It is characterized by the availability of adequ<strong>at</strong>e de<br />

cay he<strong>at</strong> removal by relief valve oper<strong>at</strong>ion and the HPCI and RCIC injection<br />

systems, which are dependent on DC power from the unit b<strong>at</strong>tery.<br />

Plant St<strong>at</strong>e 3A (625 s-240 min). This st<strong>at</strong>e is applicable to' sequences<br />

TVB' and TVPB'. It is characterized by oper<strong>at</strong>or action to control level<br />

by oper<strong>at</strong>ion of the RCIC system (only) and to rapidly depressurize the re<br />

actor vessel by remote-manual relief valve actu<strong>at</strong>ion. The loss of fluid<br />

through the relief valve exceeds the capacity of the RCIC system for a<br />

short period of time, which causes a momentary core uncovery early in these<br />

sequences.<br />

Plant St<strong>at</strong>e 3B (625 s-28 min). This st<strong>at</strong>e is applicable to sequences TUB'<br />

and TUPB'. In these sequences, the HPCI and RCIC systems are assumed to be<br />

inoperable from the inception of the <strong>blackout</strong>, because of equipment fail<br />

ure. This st<strong>at</strong>e is characterized by decreasing w<strong>at</strong>er level.<br />

Plant St<strong>at</strong>e 4 (240-295 min). This st<strong>at</strong>e is applicable to sequences TB' and<br />

TPB'. This is the period immedi<strong>at</strong>ely following the loss of DC power,


INITIATING EVENT -<br />

LOSS OF OFFSITE<br />

AND ONSITE<br />

ac POWER<br />

YES<br />

A<br />

V NO<br />

SYSTEM<br />

AUTOMATIC<br />

RESPONSES<br />

HPCI AND<br />

RCIC<br />

OPERABLE<br />

ONLY RCIC<br />

OPERABLE<br />

STATE 3B<br />

MANUAL SRV<br />

DEPRESSURIZATION<br />

WITHIN 15 min.<br />

STATE 3A<br />

LOSS OF dc POWER -<br />

HPCI/RCIC INOPERABLE<br />

| STATE 4<br />

I<br />

STATE 4A<br />

SRV<br />

DEPRESSURIZATION<br />

BEFORE LP ECCS<br />

RESTORATION<br />

I STATE(<br />

STATE 5B<br />

LOW PRESSURE ECCS<br />

OPERABLE - OFFSITE<br />

ac POWER RESTORED<br />

STATE 8A<br />

STATE 7A<br />

STATE 8B<br />

Fig. 10.1 Oper<strong>at</strong>or key action event tree.<br />

ORNL-DWG 81-8163 ETD<br />

NO CORE DAMAGE (TPB')<br />

CORE MELT ITPB)<br />

CORE MELT (TB'l<br />

NO CORE DAMAGE<br />

NO CORE DAMAGE (T,B' AND T,PB')<br />

CORE MELT IT„B' ANDTVPB')<br />

NO CORE DAMAGE<br />

POTENTIAL CORE DAMAGE<br />

NO CORE DAMAGE (TUPB')<br />

CORE MELT (TUPB'I<br />

CORE MELT (TUB')<br />

POTENTIAL CORE DAMAGE


163<br />

power, characterized by the unavailability of the HPCI and RCIC systems<br />

and a steadily decreasing reactor vessel w<strong>at</strong>er level.<br />

Plant St<strong>at</strong>e 4A (240-305 min). This st<strong>at</strong>e is applicable to sequences<br />

TVB' and TVPB', and follows the loss of DC power. This st<strong>at</strong>e is char<br />

acterized by a depressurized reactor vessel, unavailability of the HPCI<br />

and RCIC systems, and a steadily decreasing vessel w<strong>at</strong>er level.<br />

Plant St<strong>at</strong>e 5 (295-305 min). This st<strong>at</strong>e is applicable to sequence TPB'<br />

and is characterized by a stuck-open relief valve, so th<strong>at</strong> the reactor<br />

vessel is depressurized.<br />

Plant St<strong>at</strong>e 5B (28-38 min). This st<strong>at</strong>e is applicable to sequence TUPB'.<br />

This sequence involves the combined secondary failures of inoper<strong>at</strong>ive HPCI<br />

and RCIC systems and a stuck-open relief valve (SORV) from the inception<br />

of the <strong>blackout</strong>. It is characterized by a rapidly decreasing w<strong>at</strong>er level.<br />

Plant St<strong>at</strong>e 6 (295-355 min). This st<strong>at</strong>e is applicable to sequence TB'<br />

only. It is characterized by boiloff of the reactor vessel w<strong>at</strong>er inven<br />

tory due to autom<strong>at</strong>ic relief valve actu<strong>at</strong>ion with the reactor vessel fully<br />

pressurized, and termin<strong>at</strong>es with the beginning of core melt.<br />

Plant St<strong>at</strong>e 6B (28-70 min). This st<strong>at</strong>e is applicable to sequence TUB'.<br />

It is characterized by a pressurized reactor vessel, core uncovery, and<br />

the beginning of core melt.<br />

Plant St<strong>at</strong>e 7 (305-360 min). This st<strong>at</strong>e is applicable to sequence TPB'.<br />

It is characterized by a depressurized reactor vessel, unavailability of<br />

the low pressure ECCS injection systems, decreasing w<strong>at</strong>er level, core un<br />

covery, and the beginning of core melt.<br />

Plant St<strong>at</strong>e 7A (305-360 min). This st<strong>at</strong>e is applicable to sequences<br />

TVB' and TVPB' is identical to st<strong>at</strong>e 7.<br />

Plant St<strong>at</strong>e 7B (38-360 min). This st<strong>at</strong>e is applicable to sequence TUPB'<br />

and is identical to st<strong>at</strong>e 7.<br />

Plant St<strong>at</strong>e 8 (305-360 min). This st<strong>at</strong>e is applicable to sequence TPB'.<br />

It is characterized by a depressurized reactor vessel and the recovery of<br />

AC power, which permits the restor<strong>at</strong>ion of normal vessel w<strong>at</strong>er level.<br />

Plant St<strong>at</strong>e 8A (305-360 min). This st<strong>at</strong>e is applicable to sequences<br />

TVB' and TVPB' and is identical to st<strong>at</strong>e 8.<br />

Plant St<strong>at</strong>e 8B (38-360 min). This st<strong>at</strong>e is applicable to sequence TUPB'<br />

and is identical to st<strong>at</strong>e 8.<br />

10.3 Oper<strong>at</strong>or Key Action Event Tree<br />

For sequences TUB' and TUPB', and after the loss of DC power in the<br />

case of sequences TB', TPB', TVB', and TVPB', mitig<strong>at</strong>ing action by the<br />

oper<strong>at</strong>or is essential if core degrad<strong>at</strong>ion is to be avoided and the plant<br />

brought to a safe stable st<strong>at</strong>e.<br />

Upon restor<strong>at</strong>ion of AC power, the oper<strong>at</strong>or's primary responsibility<br />

is to ensure vessel depressuriz<strong>at</strong>ion and oper<strong>at</strong>ion of the low pressure in<br />

jection systems.<br />

The oper<strong>at</strong>or key action event tree is shown in Fig. 10.1.<br />

10.4 Oper<strong>at</strong>or Mitig<strong>at</strong>ing Actions<br />

In addition to continued efforts to restore electrical power, the<br />

recommended actions after the loss of w<strong>at</strong>er injection capability when


164<br />

boiloff and core damage become inevitable include the use of portable<br />

pumps, perhaps provided by fire engines, to flood the drywell in an <strong>at</strong><br />

tempt to preclude melt-through of the reactor vessel. If successful, this<br />

would keep the degraded core inside the vessel and prevent gross contain<br />

ment failure and the corresponding major releases of radioactivity. For<br />

the sequences TUB' and TUPB', in which injection capability is assumed lost<br />

<strong>at</strong> the inception of the <strong>blackout</strong>, a drywell flooding r<strong>at</strong>e of 3,200 H/s<br />

(50,000 gpm) would be necessary to flood the drywell to the level of the<br />

reactor vessel core prior to reactor vessel melt-through.


165<br />

11. INSTRUMENTATION AVAILABLE FOLLOWING<br />

LOSS OF 250 VOLT DC POWER<br />

Reactor vessel level and pressure control can be maintained during a<br />

<strong>St<strong>at</strong>ion</strong> Blackout for as long as 250 volt DC power from the unit b<strong>at</strong>tery<br />

remains available, as discussed in Sect. 8. The instrument<strong>at</strong>ion available<br />

during this initial phase of a <strong>St<strong>at</strong>ion</strong> Blackout was discussed in Sect. 5.<br />

It is the purpose of this section to discuss the instrument<strong>at</strong>ion which<br />

would remain oper<strong>at</strong>ional after the unit b<strong>at</strong>tery is exhausted; this final<br />

phase of a <strong>St<strong>at</strong>ion</strong> Blackout would constitute a Severe Accident because<br />

there would be no means of injecting w<strong>at</strong>er into the reactor vessel to<br />

maintain a w<strong>at</strong>er level over the core.<br />

In addition to the 250 volt unit b<strong>at</strong>tery system, there are two smal<br />

ler b<strong>at</strong>tery systems which supply power to Control Room instrument<strong>at</strong>ion and<br />

alarm circuits. The first of these is a 24 volt DC system which supplies<br />

power to the Source Range and Intermedi<strong>at</strong>e Range neutron flux monitors as<br />

well as radi<strong>at</strong>ion monitors for the off-gas, RHR Service W<strong>at</strong>er, Liquid Radwaste,<br />

Reactor Building Closed Cooling W<strong>at</strong>er, and Raw Cooling W<strong>at</strong>er sys<br />

tems, none of which would be oper<strong>at</strong>ional during a <strong>St<strong>at</strong>ion</strong> Blackout. The<br />

24 volt b<strong>at</strong>teries for this system are designed to supply the connected<br />

loads for a period of 3 hours without recharging. Since the 250 volt sys<br />

tem b<strong>at</strong>teries are expected to last for a period of four to six hours, it<br />

is unlikely th<strong>at</strong> the 24 volt system would remain available after the 250<br />

volt DC unit distribution system has failed.<br />

The second of the smaller b<strong>at</strong>tery systems is a 48 volt DC power sup<br />

ply and distribution system for the oper<strong>at</strong>ion of the plant's communic<strong>at</strong>ion<br />

and annunci<strong>at</strong>or systems. This system comprises three b<strong>at</strong>teries, one of<br />

which supplies the plant communic<strong>at</strong>ions system while the remaining two<br />

b<strong>at</strong>teries are for the annunci<strong>at</strong>or system. However, the system design pro<br />

vides th<strong>at</strong> the total st<strong>at</strong>ion annunci<strong>at</strong>or load can be supplied from one<br />

b<strong>at</strong>tery. The 48 volt DC system b<strong>at</strong>teries are capable of supplying the<br />

connected loads for a period of eight hours without recharging. This is<br />

well beyond the period of expected oper<strong>at</strong>ion of the 250 volt DC systems<br />

and assures continued availability of the plant communic<strong>at</strong>ions system.<br />

The efficacy of the annunci<strong>at</strong>or system depends upon the availability of<br />

the power supplies to the signal transmission systems of the various sen<br />

sors as well as the 48 volt DC system. Most of the alarm annunci<strong>at</strong>or cap<br />

ability will be lost when the unit b<strong>at</strong>tery fails.<br />

There is reason to believe th<strong>at</strong> plant preferred 120 volt AC single<br />

phase power would remain available for a significant period of time after<br />

failure of the unit b<strong>at</strong>tery. Plant preferred power is obtained from the<br />

plant 250-volt DC system during a <strong>St<strong>at</strong>ion</strong> Blackout by means of a DC-motor,<br />

AC gener<strong>at</strong>or combin<strong>at</strong>ion. The plant b<strong>at</strong>tery is similar to each of the<br />

unit b<strong>at</strong>teries, but would be more lightly loaded during a <strong>St<strong>at</strong>ion</strong> Black<br />

out. The major loads on the plant b<strong>at</strong>tery are the turbo-gener<strong>at</strong>or oil<br />

pumps and seal-oil pumps for the three <strong>Browns</strong> <strong>Ferry</strong> <strong>Unit</strong>s. These pumps<br />

could be stopped within one hour after the inception of a <strong>St<strong>at</strong>ion</strong> Blackout<br />

since the turbo-gener<strong>at</strong>ors will have stopped rolling and there is no jack<br />

ing capability under <strong>St<strong>at</strong>ion</strong> Blackout conditions.<br />

Assuming th<strong>at</strong> plant preferred power does remain available during the<br />

period of core uncovery following the loss of the unit b<strong>at</strong>tery, two


166<br />

sources of valuable inform<strong>at</strong>ion powered by this system and loc<strong>at</strong>ed outside<br />

of the Control Room would remain. The first is an indic<strong>at</strong>ion of the tem<br />

per<strong>at</strong>ures <strong>at</strong> various points within the drywell provided both by a recorder<br />

and an indic<strong>at</strong>or-meter for which the displayed drywell temper<strong>at</strong>ure can be<br />

selected by a set of toggle-switches. *<br />

The second inform<strong>at</strong>ion source provided by plant-preferred power<br />

consists of the temper<strong>at</strong>ures <strong>at</strong> various points on the surface of the re<br />

actor vessel as provided by 46 <strong>at</strong>tached copper-constantan thermocouples.<br />

Unfortun<strong>at</strong>ely, the indic<strong>at</strong>ing range for the instruments reporting the<br />

thermocouple responses is only 315.6°C (0-600°F). However, when the in<br />

strument responses for the thermocouples <strong>at</strong>tached near or on the bottom of<br />

the reactor vessel are pegged <strong>at</strong> the high end, the oper<strong>at</strong>or can be sure<br />

th<strong>at</strong> the core is uncovered, and the only fluid within the vessel is super<br />

he<strong>at</strong>ed steam. Both the drywell temper<strong>at</strong>ure indic<strong>at</strong>ion and the reactor<br />

vessel thermocouple recorder are mounted on panel 9—47, which is loc<strong>at</strong>ed<br />

on the back of the Control Room Panels.<br />

Inform<strong>at</strong>ion concerning the reactor vessel w<strong>at</strong>er level would also be<br />

available outside the Control Room from the mechanical Yarway indic<strong>at</strong>ion<br />

(which requires no electrical power) loc<strong>at</strong>ed <strong>at</strong> the scram panels on the<br />

second floor of the reactor building; this would provide direct indic<strong>at</strong>ion<br />

of the reactor vessel w<strong>at</strong>er level over the range from 14.94 to 9.47 m (588<br />

to 373 in.) above vessel zero. The lower boundary of this Yarway indic<strong>at</strong><br />

ing range is 0.33 m (13 in;) above the top of the active fuel in the<br />

core.<br />

There would be no indic<strong>at</strong>ion of reactor vessel pressure after loss of<br />

the unit b<strong>at</strong>tery. However, it is expected th<strong>at</strong> the vessel pressure would<br />

be maintained in the range of 7.722 to 7.377 MPa (1105 to 1055 psig) by<br />

repe<strong>at</strong>ed autom<strong>at</strong>ic actu<strong>at</strong>ion of a primary relief valve for as long as the<br />

reactor vessel remains intact.<br />

It should be noted th<strong>at</strong> the emergency lighting for the Control Room<br />

is supplied from the 250 volt DC system; after failure of this system<br />

hand-held lighting for the Control Room would be necessary. The door se<br />

curity system is supplied by plant preferred power and would remain oper<br />

able as long as the plant 250 volt DC system is functional. The area<br />

radi<strong>at</strong>ion monitors loc<strong>at</strong>ed throughout the plant are powered from the<br />

Instrument<strong>at</strong>ion and Control buses and would not be oper<strong>at</strong>ional from the<br />

inception of a <strong>St<strong>at</strong>ion</strong> Blackout.


167<br />

12. IMPLICATIONS OF RESULTS<br />

The purpose of this section is to provide a discussion of the pre<br />

sent st<strong>at</strong>e of readiness <strong>at</strong> the <strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant to cope with a<br />

<strong>St<strong>at</strong>ion</strong> Blackout. The discussion will include consider<strong>at</strong>ion of the avail<br />

able instrument<strong>at</strong>ion, the level of oper<strong>at</strong>or training, the existing emer<br />

gency procedures, and the overall system design.<br />

12.1 Instrument<strong>at</strong>ion<br />

The availability of Control Room instrument<strong>at</strong>ion during the period of<br />

a <strong>St<strong>at</strong>ion</strong> Blackout in which 250 volt DC power remains available has been<br />

discussed in Sect. 5. The most important parameters while injection cap<br />

ability remains are the reactor vessel level and pressure, and these would<br />

be adequ<strong>at</strong>ely displayed in the Control Room during this period. This in<br />

strument<strong>at</strong>ion available after the loss of DC power was discussed in Sect.<br />

11.<br />

The existing instrument<strong>at</strong>ion <strong>at</strong> <strong>Browns</strong> <strong>Ferry</strong> <strong>Unit</strong> 1 which would be<br />

important during a <strong>St<strong>at</strong>ion</strong> Blackout is summarized below, with additional<br />

inform<strong>at</strong>ion concerning the power supplies. The instrument<strong>at</strong>ion is discus<br />

sed in the order given in reference 28, and is loc<strong>at</strong>ed in the Control Room<br />

unless otherwise indic<strong>at</strong>ed.<br />

I. Core<br />

A. Core Exit Temper<strong>at</strong>ure — not available <strong>at</strong> <strong>Browns</strong> <strong>Ferry</strong>.<br />

B. Control Rod Position— the rod position indic<strong>at</strong>ing system is<br />

powered by the 120V AC unit-preferred system, which would be<br />

available during a <strong>St<strong>at</strong>ion</strong> Blackout for as long as 250V-CC<br />

power remains available from the unit b<strong>at</strong>tery.<br />

C. Neutron Flux _ The Source Range and Intermedi<strong>at</strong>e Range moni<br />

tors are powered by the 24 volt DC b<strong>at</strong>tery system, which is de<br />

signed to supply the connected loads for a period of 3 hours<br />

under the conditions of a <strong>St<strong>at</strong>ion</strong> Blackout. The Source and In<br />

termedi<strong>at</strong>e Range detectors are withdrawn from the core during<br />

power oper<strong>at</strong>ion to a point 0.61 m (2 ft) below the bottom of the<br />

active fuel to increase their active life, and these detectors<br />

could not be reinserted during a <strong>St<strong>at</strong>ion</strong> Blackout. However, the<br />

rel<strong>at</strong>ive changes in neutron flux following reactor scram will<br />

produce a proportional change in Source Range meter (range: 0.1<br />

to IO6 CPS) response when the detector is fully withdrawn.<br />

II. Reactor Coolant System<br />

A. RCS Pressure — one channel of reactor vessel pressure powered<br />

by the feedw<strong>at</strong>er inverter and another channel powered by the<br />

unit-preferred system, each with a range of 8.274 MPa (0 to 1200<br />

psig), would be available during a <strong>St<strong>at</strong>ion</strong> Blackout for as long<br />

as the unit b<strong>at</strong>tery continues to supply 250 volt DC power.<br />

B. Coolant Level in the Reactor — two channels of reactor vessel<br />

level instrument<strong>at</strong>ion, one each powered by the feedw<strong>at</strong>er in<br />

verter and the unit-preferred system would be available during<br />

<strong>St<strong>at</strong>ion</strong> Blackout for as long as the 250 volt DC unit b<strong>at</strong>tery


168<br />

system remains functional. These two channels each have a range<br />

of 1.524 M (0 to 60 in.) and provide indic<strong>at</strong>ion of the reactor<br />

vessel w<strong>at</strong>er level between 13.41 and 14.94 m (528 and 588 in.)<br />

above the bottom of the vessel, a range which extends over the<br />

upper portion of the steam separ<strong>at</strong>ors. Additional level infor<br />

m<strong>at</strong>ion would be available outside of the Control Room, as fol<br />

lows:<br />

o Two channels of Yarway level indic<strong>at</strong>ion over the range from<br />

9.47 to 14.94 m (373 to 588 in.) above the bottom of the ves<br />

sel are available <strong>at</strong> the backup control panel loc<strong>at</strong>ed in the<br />

Backup Control Room. This instrument<strong>at</strong>ion is powered from<br />

the unit-preferred system; the lower limit of this indic<strong>at</strong>ion<br />

is 0.33 m (13 in.) above the top of the active fuel in the<br />

core.<br />

o The Yarway instruments are loc<strong>at</strong>ed <strong>at</strong> the scram panel on the<br />

second floor of the reactor building and mechanically display<br />

the reactor vessel w<strong>at</strong>er level over the same range as th<strong>at</strong><br />

electrically transmitted to the backup control panel. This<br />

level indic<strong>at</strong>ion <strong>at</strong> the Yarway instruments requires no elec<br />

trical power, and would remain available even after all DC<br />

power was lost.<br />

C. Main Steamline Flow — two channels of steam flow instrumenta<br />

tion powered by the feedw<strong>at</strong>er inverter would provide an indica<br />

tion of total steam flow [range: 2016 kg/s (0 to 16 x IO6<br />

lbs/h)] during a <strong>St<strong>at</strong>ion</strong> Blackout while the unit b<strong>at</strong>tery remains<br />

functional.<br />

D. Main Steamline Isol<strong>at</strong>ion Valves' Leakage Control System Pressure<br />

— not applicable to <strong>Browns</strong> <strong>Ferry</strong>.<br />

E. Primary System Safety Relief Valve Positons, Including ADS —<br />

There is no provision for indic<strong>at</strong>ion of the actual position of<br />

any primary relief valve, including those assigned to the ADS<br />

system. Under normal oper<strong>at</strong>ing conditions, the oper<strong>at</strong>or can<br />

identify a leaking relief valve by means of the recorded tail<br />

pipe temper<strong>at</strong>ures available on charts behind the Control Room<br />

panels, or by the recently installed (December, 1980) acoustic<br />

valve monitors. Both of these leakage detection systems would<br />

be inoperable under <strong>St<strong>at</strong>ion</strong> Blackout conditions.<br />

On the other hand, remote-manual actu<strong>at</strong>ion of a relief<br />

valve is accomplished by energizing the associ<strong>at</strong>ed DC solenoid<br />

oper<strong>at</strong>or, and each valve has lights on the control panel which<br />

indic<strong>at</strong>e whether or not the solenoid for th<strong>at</strong> valve is ener<br />

gized. The capability for this indirect indic<strong>at</strong>ion of success<br />

ful remote-manual valve actu<strong>at</strong>ion is maintained during the per<br />

iod of a <strong>St<strong>at</strong>ion</strong> Blackout in which 250 volt DC power is avail<br />

able from the unit b<strong>at</strong>tery.<br />

F. Radi<strong>at</strong>ion Level in Coolant — not available <strong>at</strong> <strong>Browns</strong> <strong>Ferry</strong>.<br />

III. Containment<br />

A. Primary Containment Pressure — Drywell pressure instrumenta<br />

tion with a range of 0.55 MPa (0-80 psia) powered by the<br />

unit-preferred system will be available during a <strong>St<strong>at</strong>ion</strong>


169<br />

Blackout while the unit b<strong>at</strong>tery remains functional. A set of 12<br />

vacuum breakers ensures th<strong>at</strong> the pressure in the pressure sup<br />

pression pool torus cannot exceed the drywell pressure by more<br />

than 0.003 MPa (0.5 psi).<br />

B. Containment and Drywell Hydrogen Concentr<strong>at</strong>ion — Instruments<br />

for this purpose are provided for each <strong>Browns</strong> <strong>Ferry</strong> <strong>Unit</strong>, but<br />

would not be available during a <strong>St<strong>at</strong>ion</strong> Blackout.<br />

C. Containment and Drywell Oxgyen Concentr<strong>at</strong>ion — Instruments<br />

for this purpose are provided, but as in the case of the hydro<br />

gen monitors, are powered from the Instrument<strong>at</strong>ion and Control<br />

buses which would not be available during a <strong>St<strong>at</strong>ion</strong> Blackout.<br />

D. Primary Containment Isol<strong>at</strong>ion Valve Position — During a Sta<br />

tion Blackout, valve position indic<strong>at</strong>ion is maintained for the<br />

Main Steam Isol<strong>at</strong>ion Valves (MSIV's) and for the systems which<br />

remain operable, i.e., the HPCI and the RCIC systems. However,<br />

valve position indic<strong>at</strong>ion for the primary containment isol<strong>at</strong>ion<br />

valves in the low-pressure injection systems which are powered<br />

by sources not available during a <strong>St<strong>at</strong>ion</strong> Blackout would be<br />

lost.<br />

E. Suppression Pool W<strong>at</strong>er Level — This instrument, powered by<br />

the unit-preferred system, would indic<strong>at</strong>e the w<strong>at</strong>er level in the<br />

torus with a range of 1.27 m (—25 to +25 in.) as long as the<br />

unit b<strong>at</strong>tery is functional.<br />

F. Suppression Pool W<strong>at</strong>er Temper<strong>at</strong>ure — This instrument<strong>at</strong>ion<br />

would not be available during a <strong>St<strong>at</strong>ion</strong> Blackout.<br />

G. Drywell Pressure — This is synonymous with "Primary Contain<br />

ment Pressure" — see "A" above.<br />

H. Drywell Drain Sumps Level — not indic<strong>at</strong>ed. The frequency of<br />

drain pump oper<strong>at</strong>ion for each of the two 1.893 m^ (500 gal.)<br />

drain sumps in the drywell is indic<strong>at</strong>ed in the Control Room<br />

under normal conditions, but would not be operable during a Sta<br />

tion Blackout.<br />

I. High-Range Containment Area Radi<strong>at</strong>ion — not available <strong>at</strong><br />

<strong>Browns</strong> <strong>Ferry</strong>.<br />

IV. Power Conversion Systems<br />

A. Main Feedw<strong>at</strong>er Flow — one channel of flow instrument<strong>at</strong>ion<br />

with a range of 1008 kg/s (0 to 8 x IO6 lbs/h) and powered<br />

by the unit-preferred system is provided for each of the three<br />

feedw<strong>at</strong>er pumps. This instrument<strong>at</strong>ion would remain operable as<br />

long as the unit b<strong>at</strong>tery is functional.<br />

B. Condens<strong>at</strong>e Storge Tank Level — The condens<strong>at</strong>e storage tank<br />

level indic<strong>at</strong>ion [range: 9.75 m (0 to 32 ft)] is powered by the<br />

unit-preferred system and would remain oper<strong>at</strong>ional until the<br />

unit b<strong>at</strong>tery is exhausted.<br />

V. Auxiliary Systems<br />

A. Steam Flow to RCIC — This instrument<strong>at</strong>ion is powered by the<br />

Instrument<strong>at</strong>ion and Control buses and would not be available<br />

during a <strong>St<strong>at</strong>ion</strong> Blackout.


170<br />

B. RCIC Flow — The RCIC pumped flow is indic<strong>at</strong>ed over a range<br />

of 0.044 m3/s (0-700 GPM) on the flow controller, which is<br />

powered by the unit-preferred system and would be available as<br />

long as the unit b<strong>at</strong>tery is functional.<br />

VI. Radi<strong>at</strong>ion Exposure R<strong>at</strong>es — The permanently-installed radi<strong>at</strong>ion<br />

monitors loc<strong>at</strong>ed throughout the plant are powered from the Instrument<strong>at</strong>ion<br />

and Control buses and would not be oper<strong>at</strong>ional during a <strong>St<strong>at</strong>ion</strong> Blackout.<br />

The available Control Room instrument<strong>at</strong>ion is adequ<strong>at</strong>e to monitor the<br />

plant response to a <strong>St<strong>at</strong>ion</strong> Blackout during the estim<strong>at</strong>ed four-hour period<br />

during which 250 volt DC power would remain available from the unit b<strong>at</strong><br />

tery. After the unit b<strong>at</strong>tery is exhausted, virtually all Control Room in<br />

strument<strong>at</strong>ion would be lost and w<strong>at</strong>er could no longer be injected into the<br />

reactor vessel to make up for th<strong>at</strong> lost to the pressure suppression pool<br />

through relief valve actu<strong>at</strong>ion. Consequently, the reactor vessel w<strong>at</strong>er<br />

level would slowly decrease until the core became uncovered.<br />

The most important single parameter during the period of decreasing<br />

w<strong>at</strong>er level following loss of the unit b<strong>at</strong>tery is the reactor vessel<br />

level, which could be monitored <strong>at</strong> the Yarway instruments on the second<br />

floor of the Reactor Building as described in part III B above. In addi<br />

tion, the drywell ambient temper<strong>at</strong>ures and the reactor vessel surface tem<br />

per<strong>at</strong>ures would remain available as long as the plant-preferred 250 volt-<br />

DC system is functional, as described in Sect. 11.<br />

12.2 Oper<strong>at</strong>or Preparedness<br />

There is currently no specific training provided <strong>Browns</strong> <strong>Ferry</strong> Oper<br />

<strong>at</strong>ors in regard to plant response or required oper<strong>at</strong>or actions in the ev<br />

ent of a complete <strong>St<strong>at</strong>ion</strong> Blackout.<br />

A <strong>St<strong>at</strong>ion</strong> Blackout casualty can be run <strong>at</strong> the TVA <strong>Browns</strong> <strong>Ferry</strong> <strong>Unit</strong> 1<br />

simul<strong>at</strong>or by selecting the pre-programmed loss-of-offsite-power casualty<br />

and then having the simul<strong>at</strong>or oper<strong>at</strong>or immedi<strong>at</strong>ely punch the diesel-gener<strong>at</strong>or<br />

manual trips in the control room. Since the instrument<strong>at</strong>ion in the<br />

simul<strong>at</strong>ed control room is powered from several diverse sources representa<br />

tive of those <strong>at</strong> the actual plant, the resulting effect closely models a<br />

<strong>St<strong>at</strong>ion</strong> Blackout. This procedure was developed and tested by TVA simula<br />

tor oper<strong>at</strong>ing personnel as an effort in cooper<strong>at</strong>ion with this study, but<br />

has not been used for oper<strong>at</strong>or training.<br />

There is no Emergency Oper<strong>at</strong>ing Instruction to cover a <strong>St<strong>at</strong>ion</strong> Black<br />

out <strong>at</strong> the <strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant, but there are Emergency Oper<strong>at</strong>ing<br />

Instructions for the loss of individual subsections of the overall AC sys<br />

tem.<br />

With two exceptions, the current level of oper<strong>at</strong>or training and the<br />

existing Emergency Oper<strong>at</strong>ing Instructions are believed adequ<strong>at</strong>e to prepare<br />

the oper<strong>at</strong>or to cope with a <strong>St<strong>at</strong>ion</strong> Blackout during the initial phase in<br />

which 250 volt-DC power would remain available. The first exception in<br />

volves the need to depressurize the reactor vessel within the first hour.<br />

The Technical Specific<strong>at</strong>ions provide th<strong>at</strong> the reactor vessel must be de<br />

pressurized to less than 1.48 MPa (200 psig) if the pressure suppression<br />

pool temper<strong>at</strong>ure exceeds 48.9°C (120°F); this is based on a maximum per<br />

missible temper<strong>at</strong>ure of 76.7°C (170°F) for the pool so th<strong>at</strong> complete con<br />

dens<strong>at</strong>ion of steam is ensured in the event of a LOCA. The Emergency


3 M O<br />

o ro 13<br />

rt X to<br />

C i-t<br />

P p. fu<br />

< p. It<br />

P rt p.<br />

B 3<br />

rt OQ<br />

3<br />

CT OQ rt M<br />

P1 3<br />

rt p O CO<br />

M It<br />

P CO rt l-j<br />

3 rt P 3<br />

Oj p i-I O<br />

to rt<br />

< o<br />

rt i-t<br />

1-1<br />

- <<br />

to<br />

Oh CO<br />

rt CO<br />

X) to<br />

rt I-h<br />

to »•<br />

CO<br />

o n<br />

Ml |-J<br />

3<br />

rt Oh<br />

XT to<br />

it H<br />

P- XT<br />

O rt<br />

3<br />

CO<br />

O fD<br />

P O<br />

O cd B<br />

O rH 0J<br />

O P CD<br />

pJ O CD<br />

p 7T<br />

3 o pit<br />

G co<br />

P- Ml<br />

CO CU<br />

rr Oj rt<br />

p. rt 3<br />

O "3 rt<br />

3 rt rt<br />

rt OQ<br />

CT CD ^<br />

rt CO<br />

Ml C l-l<br />

O M rt<br />

H-x<br />

rt " N C<br />

P<br />

XT<br />

to<br />

cr co<br />

P Vrr<br />

cd<br />

rt rt<br />

rt to<br />

XT<br />

to<br />

n><br />

rt<br />

XI<br />

-S "3<br />

P- l-l<br />

H-1 fD<br />

rH CO<br />

CD<br />

P.°<br />

rt w<br />

co B H<br />

rt XT<br />

rr i-t rt<br />

XT OQ<br />

rt ro co<br />

3 rt<br />

3 O O<br />

rt ^ o<br />

rt 3<br />

O- O Oj<br />

X)<br />

Mi ft rt<br />

O i-j X<br />

i-t p n<br />

rr rt<br />

rt p.-a<br />

3" 3 rr<br />

rt OQ P-<br />

H- XI<br />

3 O 3<br />

OQ XI i-l<br />

rt Xi<br />

rt i-t O<br />

3d fu CD<br />

rt rr rt<br />

_ O<br />

<br />

O 13<br />

H O<br />

O<br />

?o<br />

o<br />

O.<br />

Oj i-t<br />

p P- rt It<br />

CO It P rt<br />

P- O 3<br />

rt o It 13<br />

X 3 o rt<br />

-3 P 1-1 p.<br />

rt<br />

rt B<br />

XT CO<br />

rt<br />

cr m<br />

M Prt<br />

N<br />

P<br />

P It<br />

Oj P-<br />

O. O<br />

p- 3<br />

It •<br />

P*<br />

o<br />

P XT<br />

rH G<br />

CO<br />

It<br />

P- rt<br />

B p<br />

rt i-t<br />

\-H<br />

Ml Vho<br />

l-t l-l<br />

rt<br />

p<br />

o<br />

O<br />

c<br />

l-l<br />

M<br />

ro<br />

3<br />

prt<br />

o<br />

O 3<br />

CD<br />

i-i<br />

rt £<br />

Oj P-<br />

3 rt<br />

rt -T<br />

to<br />

rt P P<br />

CD CD<br />

X)<br />

C 1TJ<br />

fT O O<br />

rt O CD<br />

rt rt co<br />

CT Oh p.<br />

G<br />

i-l M<br />

rt ro<br />

3d a-<br />

H. fu<br />

O rt<br />

3- rt<br />

H<br />

i-I<br />

P<br />

P-<br />

3<br />

P-<br />

3<br />

OQ<br />

3 o<br />

O 3<br />

rt<br />

p -a<br />

3 o<br />

rr o<br />

° 3 rt 2<br />

P<br />

i-t rt<br />

rt rt <<br />

XT OQ rt<br />

« rt<br />

3d O<br />

Pn<br />

>c<br />

3d rt<br />

O<br />

rH i-H<br />

P- O<br />

CD 3<br />

rt OQ<br />

CO<br />

B i-t<br />

p ^<br />

-! o<br />

ro p.<br />

p pco<br />

3<br />

cd ro<br />

ro<br />

m cr<br />

«. «^<br />

p<br />

p- It<br />

3 p.<br />

ro B<br />

o. (D<br />

3 Hrt<br />

O<br />

rt 03<br />

3 a.<br />

^ rr<br />

H-<br />

O O<br />

•a 3<br />

rt CD<br />

M<br />

fu O<br />

rt 03<br />

P- 3<br />

O Oj<br />

m ro<br />

P<br />

ro m<br />

p<br />

i-t o<br />

M P<br />

rt<br />

P CO<br />

o p.<br />

0Q O H<br />

3 13 P<br />

ro cr<br />

r* _^ l-l I-<br />

Oj P- XC p rt<br />

ton' rt<br />

n fu s<br />

P 3 M 3 O<br />

rt p P<br />

i-t<br />

Oj O<br />

o<br />

P rt<br />

O. O o<br />

XI<br />

p rt<br />

1-1<br />

C/n P<br />

i-i<br />

O rt<br />

o.<br />

o<br />

H Ml<br />

3d<br />

fD rr<br />

P-<br />

T) B<br />

i-t rt<br />

fD<br />

co cr<br />

rt rt<br />

3 Ml<br />

rt O<br />

H<br />

o n><br />

"^ r.<br />

to o<br />

O<br />

cu rl<br />

rt rt<br />

So<br />

3<br />

rt r><br />

»-i O<br />

fu <<br />

p. rt<br />

3 H<br />

H-^<br />

3 „<br />

OQ O<br />

O<br />

H- O<br />

B C<br />

•a i-i<br />

rH CO<br />

cr xr<br />

h ro Cfl fD<br />

o> o 03 03 fD<br />

FT 13<br />

to to 2fD a O<br />

l-t M 2 B P- l-l<br />

CO P 3 pj -a 3<br />

rt<br />

M i-t o-<br />

rt O td o o> to<br />

O i-i<br />

oj It* > < 3 Xi<br />

n P- rr i-i<br />

n Oh p. fD<br />

3- CO 7?x> fD O CO<br />

fD O O Oh P. CD<br />

M, G -5 X> G<br />

P- 03 rr fD P p H<br />

fD O<br />

i-t CD rr P-<br />

CO fD P- O<br />

N<br />

CO CL CO M CD fD 03<br />

I<br />

c 3<br />

P-<br />

O X) fD P-<br />

rt 13 MOO<br />

I cr h 0Q Mi 3<br />

O<br />

fD >


172<br />

recommended order of removal of loads if the loss of AC power is per<br />

ceived to be long-term.<br />

3. Recovery procedures should be developed to provide a detailed method<br />

for recovery of vital power supplies and equipment in a safe, effi<br />

cient manner upon restor<strong>at</strong>ion of AC power following a <strong>St<strong>at</strong>ion</strong> Black<br />

out.<br />

12.3 System Design<br />

The existing system design provides sufficient instrument<strong>at</strong>ion and<br />

equipment to maintain decay he<strong>at</strong> removal capability for several hours dur<br />

ing a <strong>St<strong>at</strong>ion</strong> Blackout. The only questionable fe<strong>at</strong>ure of the existing de<br />

sign with regard to the <strong>St<strong>at</strong>ion</strong> Blackout sequence is the provision for<br />

autom<strong>at</strong>ic shifting of the HPCI pump suction to the pressure suppression<br />

pool on high sensed pool level. As discussed in Sect. 8.1, this can lead<br />

to failure of the HPCI system because of the high temper<strong>at</strong>ure of the pre<br />

ssure suppression pool w<strong>at</strong>er <strong>at</strong> the time the shift in pump suction oc<br />

curs.<br />

Separ<strong>at</strong>e provision is made for an autom<strong>at</strong>ic shift of the HPCI pump<br />

suction if the normal condens<strong>at</strong>e storage tank w<strong>at</strong>er source becomes ex<br />

hausted. Thus it appears th<strong>at</strong> the autom<strong>at</strong>ic high pool w<strong>at</strong>er level shift<br />

must have been straight-forwardly based on a concern for the effect of<br />

high w<strong>at</strong>er level in the pressure suppression pool. The basis is not given<br />

in the Technical Specific<strong>at</strong>ions, and it should be noted th<strong>at</strong> there is no<br />

corresponding provision for the RCIC system. It is recommended th<strong>at</strong> the<br />

desirability of an autom<strong>at</strong>ic shift in HPCI pump suction on high suppres<br />

sion pool w<strong>at</strong>er level be reexamined and if found necessary, th<strong>at</strong> the basis<br />

be included in oper<strong>at</strong>or training.


1. <strong>Browns</strong> <strong>Ferry</strong> FSAR, Appendix F.<br />

173<br />

13. REFERENCES<br />

2. Nuclear Regul<strong>at</strong>ory Commission Memorandum from H. R. Denton to Chair<br />

man Ahearne, d<strong>at</strong>ed September 26, 1980: Subject: STATION BLACKOUT.<br />

3. <strong>Browns</strong> <strong>Ferry</strong> FSAR, Paragraph 8.5.2.<br />

4. R. L. Scott, "<strong>Browns</strong> <strong>Ferry</strong> Nuclear Power-Plant Fire on March 22,<br />

1975," Nuclear Safety, 17-5, 592-611 (1976).<br />

5. <strong>Browns</strong> <strong>Ferry</strong> FSAR, Response to AEC Question 4.8.<br />

6. Staff Report, Anticip<strong>at</strong>ed Transients Without Scram for Light W<strong>at</strong>er<br />

Reactors, NUREG-0460, Vol. 2, p. XVI-74.<br />

7. <strong>Browns</strong> <strong>Ferry</strong> FSAR, Response to AEC Question 12.2.16.<br />

8. Continuous System Modeling Program III (CSMP III) Program Reference<br />

Manual, IBM Corpor<strong>at</strong>ion, 4th Ed. (December 1975).<br />

9. "Decay Energy Release R<strong>at</strong>es Following Shutdown of Uranium-Fueled<br />

Thermal Reactors," ANS-5.1, American N<strong>at</strong>ional Standards Institute<br />

(1971).<br />

10. R. T. Lahey, Jr. and P. S. Kam<strong>at</strong>h, "The Analysis of Boiling W<strong>at</strong>er Re<br />

actor Long-Term Cooling," Nuclear Technology, Vol. 49 (June 1980).<br />

11. J. F. Wilson, R. J. Grenda, and J. F. P<strong>at</strong>terson (A-C), "Steam-W<strong>at</strong>er<br />

Separ<strong>at</strong>ion Above a Two-Phase Interface," Trans, Am Nucl. Soa.,<br />

4,356 (1961).<br />

12. R. T. Lahey, Jr. and F. J. Moody, "The Thermal Hydraulics of a Boil<br />

ing W<strong>at</strong>er Nuclear Reactor," American Nuclear Society (1977).<br />

13. R. 0. Wooton and H. I. Avci, MARCH Code Description and User's Man<br />

ual, B<strong>at</strong>telle Columbus Labor<strong>at</strong>aories/USNRC Report NUREG/CR-1711 (Oc<br />

tober 1980).<br />

14. D. W. Hargroves and L. J. Metcalfe, CONTEMPT-LT/028: A Computer<br />

Program for Predicting Containment Pressure-Temper<strong>at</strong>ure Response to a<br />

Loss of Coolant Accident, EG&G Idaho, Inc./USNRC Report NUREG/CR-<br />

0255 (TREE-1279) (March 1979).<br />

15. <strong>Browns</strong> <strong>Ferry</strong> Emergency Oper<strong>at</strong>ing Instruction No. 36, Loss of CooTsant<br />

Accident inside Drywell*<br />

16. S. E. Mays, et al, Second IREP St<strong>at</strong>us Report, Risk Assessment for<br />

<strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant <strong>Unit</strong> 1, January 1981 (Preliminary).


17. <strong>Browns</strong> <strong>Ferry</strong> FSAR, Section 8.6.<br />

174<br />

18. D. D. Yue and W. A. Condon, "Severe Accident Sequence Assessment of<br />

Hypothetical Complete <strong>St<strong>at</strong>ion</strong> Blackout <strong>at</strong> the <strong>Browns</strong> <strong>Ferry</strong> Nuclear<br />

Plant," 1981 Intern<strong>at</strong>ional ANS/ENS Topical Meeting on Probabilistic<br />

Risk Assessment, Port Chester, N.Y., September 20-24, 1981.<br />

19. Reactor Safety Study, WASH-1400 (NUREG-75/014), U.S. Nuclear Regu<br />

l<strong>at</strong>ory Commission, 1975.<br />

20. F. E. Haskin, et al, "Analysis of a Hypothetical Core Meltdown Acci<br />

dent Initi<strong>at</strong>ed by Loss of Offsite Power for the Zion I PWR," NUREG/<br />

CR-1988, Sandia N<strong>at</strong>ional Labor<strong>at</strong>ories, 1981.<br />

21. M. L. Corradini, "Analysis and Modelling of Steam Explosion Experi<br />

ments," NUREG/CR-2072, Sandia N<strong>at</strong>ional Labor<strong>at</strong>ories, April 1981.<br />

22. D. D. Yue, "Electric Penetr<strong>at</strong>ion Assembly," U.S. P<strong>at</strong>ent 4, 168, 394,<br />

September 1979.<br />

23. American Nuclear Society Proposed Standard ANS-5.1, "Decay Energy<br />

Release R<strong>at</strong>es Following Shutdown of Uranium — Fueled Thermal<br />

Reactors," October 1971, revised October 1973.<br />

24. ANSI/ANS-5.1 (1979), "Decay He<strong>at</strong> Power in Light W<strong>at</strong>er Reactors,"<br />

August 1979.<br />

25. W. B. Wilson, et al, "Actinide Decay Power," LA-UR 79-283, Los Alamos<br />

Scientific Labor<strong>at</strong>ory, June 1979.<br />

26. T. E. Lobdell, "REDYV01 User Manual," NEDO-14580, August 1977.<br />

27. D. D. Christensen, "Interim <strong>Browns</strong> <strong>Ferry</strong> RELAP4/MOD7, <strong>St<strong>at</strong>ion</strong> Black<br />

out Calcul<strong>at</strong>ion," DDC-2-80 Idaho N<strong>at</strong>ional Engineering Labor<strong>at</strong>ory,<br />

October 31, 1980.<br />

28. Table 3, BWR VARIABLES, of Revision 2 to Regul<strong>at</strong>ory Guide 1.97, "In<br />

strument<strong>at</strong>ion for Light-W<strong>at</strong>er-Cooled Nuclear Power Plants to Access<br />

Plant and Environs Conditions During and Following an Accident"<br />

(December 1979).<br />

29. <strong>Browns</strong> <strong>Ferry</strong> FSAR, Paragraph 5.2.1.<br />

30. Safety Evalu<strong>at</strong>ion Report — Mark I Containment Long-Term Program,<br />

NUREG-0661, July 1980.<br />

31. Three Dimensional Pool Swell Modeling of a Mark I Suppression System,<br />

EPRI NP-906, October 1978.<br />

32. H. Nariai, I. Aya, M. Kobayaski, "Thermo-Hydraulic Behavior in a<br />

Model Pressure Suppression Containment During Blowdown," Topics in<br />

Two-Phase He<strong>at</strong> Transfer and Flow, pp. 89-98, Winter ASME Meeting,<br />

1978.


175<br />

33. W. G. Anderson, P. W. Huber, A. A. Sonin, "Small Scale Modeling of<br />

Hydrodynamic Forces in Pressure Suppression Systems," NUREG/CR-0003,<br />

March 1978.<br />

34. B. D. Nichols, C. W. Hirt, "Numerical Simul<strong>at</strong>ion of Boiling W<strong>at</strong>er<br />

Reactor Vent-Clearing Hydrodynamics," Nucl. Sci. &Engr., 73,<br />

196-209.<br />

35. D. Brosche, "Model for the Calcul<strong>at</strong>ion of Vent Clearing Transients in<br />

Pressure Suppression'System," Nucl, Engr. & Des., 38, 131-141,<br />

1976.<br />

36. J. S. Marks, G. B. Andeen, "Chugging and Condens<strong>at</strong>ion Oscill<strong>at</strong>ion<br />

Tests," EPRI NP-1167, September 1979.<br />

37. L. E. Stanford, C. C. Webster, "Energy Suppression and Fission Pro<br />

duct Transport in Pressure-Suppression Pools," ORNL-TM-3448, April<br />

1972.<br />

38. M. Okazaki, "Analysis for Pressure Oscill<strong>at</strong>ion Phenomena Induced by<br />

Steam Condens<strong>at</strong>ion in Containment with Pressure Suppression System,"<br />

Nucl. Sci. and Tech. iA» PP« 30-42, January 1979.<br />

39. J. S. Marks, G. B. Andeen, "Chugging and Condens<strong>at</strong>ion Oscill<strong>at</strong>ion,"<br />

Condens<strong>at</strong>ion He<strong>at</strong> Transfer, pp. 93-102, 18th N<strong>at</strong>ional He<strong>at</strong> Transfer<br />

Conference, San Diego, California, August 1979.<br />

40. W. Kowalchuk, A. A. Sonin, "A Model for Condens<strong>at</strong>ion Oscill<strong>at</strong>ions in<br />

a Vertical Pipe Discharging Steam into a Subcooled W<strong>at</strong>er Pool,"<br />

NUREG/CR-0221, June 1978.<br />

41. D. A. Sargis, J. H. Stubhmiller, S. S. Wang, "A Fundamental Thermal<br />

Hydraulic Model to Predict Steam Chugging Phenomena," Topic in Two-<br />

Phase He<strong>at</strong> Transfer and Flow, pp. 123-133, Winter ASME Meeting,<br />

1978.<br />

42. P. A. Sargis, et al., "Analysis of Steam Chugging Phenomena, Vol. 1,"<br />

EPRI-NP-1305, Janauary 1981.<br />

43. B. J. P<strong>at</strong>terson, "Mark I Containment Program: Montice-llo T-Quencher<br />

Thermal Mixing Test Final Report," NEDO-24542, August 1979.<br />

44. "TRAC-P1A An Advanced Best-Estim<strong>at</strong>e Computer Program for PWR LOCA<br />

Analysis," Los Alamos Scientific Labor<strong>at</strong>ory, NUREG/CR-0665, LA-7777-<br />

MS, May 1979.<br />

45. U.S. Roh<strong>at</strong>gi and P. Saha, "Constitutive Rel<strong>at</strong>ions in TRAC-P1A,"<br />

Brookhaven N<strong>at</strong>ional Labor<strong>at</strong>ory, NUREG/CR-1651, BNL-NUREG-51258,<br />

August 1980.


176<br />

46. "Applic<strong>at</strong>ion of the Coupled Fluid Structure Code PELE-IC to Pressure<br />

Suppression Analysis — Annual Report to NRC for 1979," Lawrence<br />

Livermore Labor<strong>at</strong>ory, NUREG/CR-1179, UCRL-52733.<br />

47. C. W. Hirt, B. D. Nichols, and N. C. Romero, "SOLA — A Numerical<br />

Solution Algorithm for Transient Fluid," Los Alamos Scientific<br />

Labor<strong>at</strong>ory, LA-5852 (1975).<br />

48. <strong>Browns</strong> <strong>Ferry</strong> Startup Test Instruction No. 15, High Pressure Injec<br />

tion System.<br />

49. Flow Diagram Condens<strong>at</strong>e Storage and Supply System, DWG No. 47W818-1<br />

RIO.<br />

50. <strong>Browns</strong> <strong>Ferry</strong> System Oper<strong>at</strong>ing Instruction No. 64, Primary Contain<br />

ment <strong>Unit</strong> I, II, or III.<br />

51. <strong>Browns</strong> <strong>Ferry</strong> FSAR Section 7.3, Primary Containment and Reactor<br />

Vessel Isol<strong>at</strong>ion Control System.<br />

52. <strong>Browns</strong> <strong>Ferry</strong> System Oper<strong>at</strong>ing Instruction No. 73, High Pressure<br />

Coolant Injection System <strong>Unit</strong> I, II, or III.<br />

53. <strong>Browns</strong> <strong>Ferry</strong> Startup Test Instruction No. 14, Reactor Core Isol<strong>at</strong>ion<br />

Cooling System.<br />

54. <strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant Hot License Training Program, Volume 4,<br />

Reactor Core Isol<strong>at</strong>ion Cooling System.<br />

55. <strong>Browns</strong> <strong>Ferry</strong> FSAR Section 4.7, Reactor Core Isol<strong>at</strong>ion Cooling Sys<br />

tem.<br />

56. <strong>Browns</strong> <strong>Ferry</strong> FSAR Figure 4.7-3, Reactor Core Isol<strong>at</strong>ion Cooling Sys<br />

tem Process Diagram.<br />

57. <strong>Browns</strong> <strong>Ferry</strong> System Oper<strong>at</strong>ing Instruction No. 71, Reactor Core Iso<br />

l<strong>at</strong>ion Cooling <strong>Unit</strong> I, II, or III.<br />

58. B. J. P<strong>at</strong>terson, "Mark I Containment Program: Monticello T-Quencher<br />

Thermal Mixing Test Final Report," NEDO-24542, August 1979.


177<br />

ACKNOWLEDGEMENT<br />

Mr. William A Condon made a significant contribution to this report by<br />

performing the MARCH code calcul<strong>at</strong>ions and preparing the associ<strong>at</strong>ed<br />

plots for the six st<strong>at</strong>ion <strong>blackout</strong> accident sequences discussed in<br />

Chapters 9 and 10. This accomplishment is especially noteworthy because<br />

all MARCH computer runs in support of this project were by necessity<br />

made remotely on the CDC computer facilities <strong>at</strong> Brookhaven N<strong>at</strong>ional<br />

Labor<strong>at</strong>ory. Mr. Condon's work was in partial fulfillment of the re<br />

quirements for the degree of Master of Science with major in Nuclear<br />

Engineering <strong>at</strong> the University of Tennessee, and his lone hours of<br />

dedic<strong>at</strong>ed effort are gr<strong>at</strong>efully acknowledged.


179<br />

APPENDIX A<br />

LISTING OF PLANT RESPONSE CODE BWR-LACP


181<br />

**$CONTINUOUS SYSTEM MODELING PROGRAM III V1M3 TRANSLATOR OUTPUT$*$<br />

*<br />

LABEL BWR-LACP CCJOE<br />

LABEL CONTAINMENT MODEL WITH i-NOOE POOL<br />

* MACRO SUBPROGRAM FOR POOL WATER TEMP CALCULATION<br />

MACRO XNQI,TI,WEI.MWI,LWI-«W(TL,TRILWL,LWR,TWIO,FWI,FSVI,FTEItFOI,FSIJ<br />

* MACRO TC CALCULATE MASS ENERGY BALANCES FOR SP WATER NOOE I<br />

* INPUTS :<br />

* TL»TR«TEMPS OF WATER IN ADJACENT NODES<br />

* LWL,LWR=LEVELS OF ADJACENT NODES<br />

* TWIO-INITIAL WATER TEMP CF NCDE I<br />

* FWl-FRACTION OF TOTAL SP WATER VOL IN NCDE I(CONSTANT)<br />

* FSVI-FRACTION OF SAFETY VALVE FLOW DIRECTED TO NODE I<br />

* FTEI"FRACTION OF TURBINE EXHAUST DIRECTED TO NOOE I<br />

* FDI-*FRACTION OF PUMP OUSCHARGE DIRECTED TG NODE I<br />

* FSI*FRACTlON OF PUMP SUCTION TAKEN FROM NODE I<br />

* MASS BALANCE<br />

*<br />

* WSSPW*PUMP SUCTION FLCWCTOTAL FROM SP)<br />

* WOSPW-PUMP OISCHARGE FLOWCTOTAL TO SP)<br />

* OUTPUTS:<br />

* XNQI»FRACTIN<br />

* XNQI-FRACTGON OF STM DISCH TC NOOE I NOT QUENCHED<br />

* XNQINFRACTION OF STM DISCH TO NOOE I NOT QUENCHED<br />

* TI*AVG. WATER TEMP OF NODE I (DEG-F)<br />

* WE I-RATE OF EVAPORATION FROM NOOE I (LB/SEC)<br />

* MWI»MASS OF WATER IN NODE I (LB)<br />

* LWI-WATER LEVEL OF NODE I (IN)<br />

*<br />

* VWSPOINITIAL TOTAL SP WATER VOLUME (CU. FT. )<br />

MWIO-»FWI*VWSPO*(63.9-.019*TWI0)<br />

CMWI-MNTGRL(0.,XQI*(FSVI«WSSV*FTEI*WSTE)*FINI-F$I*WSSPW-WEI)<br />

FINI*ta£CL+WEQR+FWI*WCSPG+FDI*WOSPW<br />

MWI-*MWIO+CMWI<br />

VWI*MWI/(63.9-.0l9*TI)<br />

LWI*AFGEN(SPLEV,VWI/FWI)<br />

*<br />

* CALC. QUENCH FRACTION FROM ASSUMPTION OF NO QUENCH WHEN NOOE VAPOR<br />

* PRESSURE EQUAL TC TOTAL GAS PRESSURE<br />

PVAPI-NLFGEN(SPFOT.TI)<br />

XQI*LIMIT(0.,l.,(PTSPG-PVAPI-OPQZ)/DPQR)<br />

XNQIM1.-XQI)<br />

* SPFOT(TI)=SAT. PRESS AS F OF Tl<br />

* DPQZ*DIFFERENCE(PSI) OF PTSPG OVER PVAPI REQUIRED FOR ANY<br />

* QUENCHING TO TAKE PLACE<br />

* DPZR»RANGE(PSI) CF PTSPG OVER PVAPI CVER WHICH QUENCHING<br />

* GOES FROM 0.0 TO 100PERCENT<br />

*<br />

* EVAPORATION RATE BASED ON ECUN.13-33, KREITH'S 'HEAT TRANSFER'<br />

* PSSPG=STM. PART PRESSURE ON SP GAS<br />

* ASSPW-SURF AREA OF SP WATER(FT.SQ)<br />

WEI*(WEIN/WEID>*CCMPAR(PVAPI,PSSPG)<br />

WEIN*ASSPW*FWI*HSI*12.3*(PVAPI-PSSPG)*PTSPG*VGSP<br />

WEID-(PNSPG*2.-PVAPI)*TGSPR*(MSSPG+MNSPG)<br />

HSI»5.83E-05*((ABS(TI-TGSP))**.333)<br />

*<br />

* EQUALIZATION FLOWS FROM ACJACENT NODE(S)<br />

* FWE«EQ. FLOW CONSTANT (LB/SEC/(INCH LEVEL DIFF) )<br />

WEQL~FWE*(LWL-LWI)<br />

WEQR-»FWE*(LWR-LWI )<br />

* ENERGY BALANCE<br />

* HEAT TRANSF RATES TO METAL ANO ATMCSPHERE NEGLEGIBLE


183<br />

* XL1=0=ZER0 PCINT FOR DC HEIGhT(FT ): COINCODES WITH BOAF<br />

* XL2=HEIGHT AT JET PUMP SUCTICN(FT)<br />

* XL3=HE1GHT AT TOP OF CORE OUTLET PLENUM(FT)<br />

* XL4-HEIGHT AT BOTTOM OF STEAM SEPARATORS!FT)<br />

CONSTANT ACCR=82., AC0P=234., ART=42.3<br />

CONSTANT CP0=3293., EQXO=.5, FFLASH=.001<br />

CONSTANT LHEDER=23.4, LOP=5.58, LRT=1C0<br />

CONSTANT LB0T=24.85<br />

CONSTANT PC0R=5518., PRATED=1095.<br />

CONSTANT TAULEN=.75, TCFUEL=9.5<br />

CONSTANT VFREE=13000., VCLP=3350., V1DC=192.,WRATED=259.<br />

*<br />

* CARD TO INITIALIZE AT ARBITRARY TIME POINT<br />

CONSTANT HC10=312.05,LDC0=28.63,PO=125.,T0=14430.,RH0G0=.2788<br />

* INITIAL CORE FLOW GUESS DEPENDS ON LCCO AND PRELO<br />

CONSTANT WGUESS=8310.<br />

* REFERENCE PARAMETERS FOR CALCULATION OF NATURAL CIRCULATION<br />

* FLOW RESISTANCE COEFFICIENT<br />

CONSTANT CPREF=3293., PRELR=.32, PRR=1020<br />

LDCR=27.58, XREF=.133, WREF=9111., HREF=522.<br />

* RUN CONTROL PARAMETERS<br />

CCNSTANT HINJIN=58.,RC ICMX=82.9876<br />

*<br />

* FUNCTION SUBPROGRAMS<br />

* CAVOID(XIN,XCUT,WTOTAL,TSAT,RHOF,RHOG)<br />

* DKFUN(T)=P/PO AS A FUNCTION OF TIME AFTER SHUTDOWN<br />

* QREGAVJBCTTGM,TOP,KAPPA,PEKAVG)=(AVG HT. FLUX FROM A TO B)/(CORE AVG)<br />

* RH0TP(RH0F,RHOG,V0ID)=2-PHASE DENSITY<br />

* XLENDC(V0L0CI=00WNC0MER LEVEL AS FUNCTICN OF LIQUID VOLUME<br />

* VOID(QUALITY,TOTAL FLOW,FLOW AREA,TSAT.RHOF,RHOG)=POINT VOID FRACTION<br />

* VOLDC(LCC)=DCWNCCMER HEIGHT ABOVE BOT CF ACT. FUEL<br />

*<br />

* STEAM TABLE CSMP INTERPOLATION FUNCTIONS<br />

* VSATF(PRESS)=SAT FLUIO SPECIFIC VOL(FT**3/LB )<br />

FUNCTICN VSATF=15.,.0167, 50.,.0173, 100.,.0177, 200.,.0184,...<br />

400.,.0193, 600.,.0201, 800.,.0209, 1000.,.0216, 1203 .,.0223,.. .<br />

1400.,.0231<br />

*<br />

* VSATG(PRESS)=SAT GAS SPECIFIC VCL(FT**3/LB)<br />

FUNCTION VSATG=15.,26.3, 50.,8.51, 75.,5.81,100.,4.43,...<br />

150.,3.01,200.,2.29,400.,1.16, 600.,.77,800.,.569,...<br />

1000.,.446,1200.,.362,1400...302<br />

*<br />

* HSATF(PRESSURE)-SAT FLUID ENTHALPY(BTU/LB)<br />

FUNCTION rSATF=15.,181., 50.,250., 100.,298., 2C0.,355.,...<br />

400. ,424., 600.,472., 800.,510., 1000.,543., 1200.,572.,...<br />

1400.,599.<br />

*<br />

* HSATG(PRESSURE) = SAT GAS ENTHALPY IBTU/LB)<br />

FUNCTION HSATG=15.,U51., 50.,1174., 100.,1187., 200.,1198. ,...<br />

400. ,1205., 600.,1204., 800.,1199., 1000.,1193., 1203 .»1185 . , . ..<br />

1400.,1175.<br />

*<br />

* TSATM(PRESSUREJ=SAT MIXTURE TEMPERATURE(DEG-F)<br />

FUNCTION TSATM=15.,213., 50.,281., 100.,328., 2C0.,382.,...<br />

400.,445., 600.,486., 800.,518., ICOO.,545., 1200.,567.....<br />

1400.,587.<br />

*<br />

* VSC(ENTHALPY)=SUBCOOLED FLUIC SPECIFIC VOL(FT**3/LB )<br />

FUNCTICN VSC=21.4,.016, 121.,.0163, 221., .0169, 272.,.0174,...<br />

376.,.0185, 431.,.0193, 488.,.0203, 549.,.0217, 562. , .0221,.. .<br />

575.,.0224<br />

* CALCULATION CF INITIAL SATURATION PROPERTIES<br />

RH0F0=1./(AFGEN(VSATF,P0))<br />

HFO=AFGEN1HSATF,PO)<br />

HGO=AFGEN(HSATG, PO)<br />

TSAT0=FUNGEN(TSATf,2,P0)<br />

* SUBCOOLED WATER DENSITY<br />

RHOSC0=l./(AFGEN(VSC,HCI0))


184<br />

* CALCULATION OF FLOW RESISTANCE COEFFICIENT<br />

* NEEDS: REFERENCE CONDITIONS FOR NATURAL CIRCULATION:CPREF,PRELR,PRR,XREF,<br />

* WREF, HREF, LDCR<br />

* RETURNS: LOSS COEFFICIENT: KLOSSU<br />

* CALCULATION OF REFERENCE DENSITIES AND SATURATION PROPERTIES<br />

HFR*AFGEN <br />

RHOSCR=l./(AFGEN(VSC,HREF))<br />

QT0TR=CPREF*PRELR*947.8<br />

* THIS EXP FOR LSC ASSUMES AVG POWER=CORE AVG IN SC REGION<br />

LSCR*12.*WREF*(HFR-HREF)/QT0TR<br />

LBR«12.-LSCR<br />

RSCAVR=RHOFR/2.+RHOSCR/2.<br />

* FUNCTION SUBPROGRAM CAVOIO RETURNS AVERAGE CORE BOILING REGION<br />

* VOID FRACTION FRCM THE GIVEN INPUTS<br />

CAVR-CAVOID(0..XREF,WREF,TSATR,RHOFR,RHOGR)<br />

RHOBR=RHOTP(RHOFR,RHOGR,CAVR)<br />

RCC0RR=RSCAVR*LSCR/12.+RHCBR*L8R/12.<br />

RHOPR=RHOTP(RHOFR,RHOGR,OPVR)<br />

* FUNCTION VOID RETURNS POINT VOID FRACTION FROM GIVEN INPUTS<br />

OPVR=»VCID(XREF,WREF, ACOP.TSATR, RHOFR, RHOGR)<br />

RGRTR=RHOTP(RHOFR,RHOGR,RTVR)<br />

RTVR*VOIDUREF, WREF, ART, TSATR, RHOFR, RHOGR)<br />

RDP*LCCR*RH0SCR/144.-R0RTR»LRT/144.-...<br />

RH0PR*L0P/144.-R0C0RR*12./144.<br />

KLOSSU=ROP/(WREF*WREF)<br />

*<br />

* INITIAL RELATIVE POWER<br />

*<br />

PREL0=(DKFUN(T0)*.94*EXP(-T0/TCFUEL))<br />

QT0T0=PREL0*CP0*947.8<br />

*<br />

* CALCULATION CF INITIAL TOTAL FLOW BY ITERATIVE SOLUTION, WITH<br />

* STARTING FLOW GUESS INPUT BY USER<br />

WCIQ-IMPHWGUESS, .OOl.WCAL)<br />

XOU»(CTOTO/WCIO+HCIO-HFO)/(HGO-HFO)<br />

XO*LIMIT(0.001,1.00O,X0U)<br />

* THIS EXP FOR LSC ASSUMES AVG POWER=CORE AVG IN SC REGION<br />

LSC0»LIMIT(0.,12.,12.*WCI0*IHF0-HCI0)/QT0T0)<br />

LBO-12.-LSCO<br />

* CALCULATION OF INITIAL DENSITIES<br />

RSCAV0=RHCFO/2.+RHOSCO/2.<br />

waoo~wcio*xo<br />

* VOID AT BOTTOM AND TOP OF BOILING REGION CALC. BY DFVOID<br />

* FUNCTION SUBPROGRAM, THEN AVERAGED TO GIVE CORE AVERAGE VOID<br />

CAVINO=DFVOID(ACOR,WCIO,0.,TSATO,RHOFO,RHOGO)<br />

CAVEXO=DFVOIO(ACOR,WCIO-WBOC,WBOO,TSATO,RHOFO,RHOGO)<br />

CAVO=(CAVINO+CAVEXO)/2.<br />

RHOBO=RHOTP(RHCFO,RHOG0,CAVO)<br />

ROC0RO=RSCAV0*LSC0/l2.'>RHCBO*LBO/12.<br />

ROPO-RHOTP(RHOFO.RHOGO.OPVO)<br />

OPVO=CFVOIO(ACOP,WCIO-WBOO,WBOO,TSATO,RHOFO,RHOGO)<br />

RCRT0=RHQTP(RHOFO,RHOGO,RTVO)<br />

RTVO-DFVOID(ART,WCIO-WBOO,WBOO,TSATO.RHOFO,RHOGO)<br />

* NET GRAVITY PRESS DROP!PSI) AVAILABLE FOR UNRECOV. DROP ACROSS CORE<br />

LDCX=LIMIT(0.,LOCR,LDCO)<br />

UNREC0=LDCX*RH0SC0/144. + (12.+LRT+L0P-LDCX)*RH0G0/144.-...<br />

RORT0*LRT/144.-R0P0-»LOP/l44.-ROCORC*12./l44.<br />

DPO=LIMIT(.0001,1000..UNRECO)<br />

WCAL-»SQRT(DP0*RHOB0/( KLOSSU*RHOBR) )<br />

* ENO ITERATIVE LOOP<br />

* OOWNCOMER AND LOWER PLENUM INITIALIZATION<br />

* VOLUME CF WATER IN DOWNCOMER NODE GIVEN BY FUNCTION


185<br />

* VOLDCl ) AS A FUNCTICN OF WATER LEVEL<br />

MOCO» VOLDC(LDCO)*RHOSCO<br />

MHOCO=MDCO*HCIO<br />

MLPO*VOLP*RHCSCO<br />

MHLPO=MLPO*HCIO<br />

*<br />

G=4.75*ART*RH0G0<br />

MTOTO*(LSCO*RSCAVO+LBO*RHOBO)*ACOR-t-LCP*ACCP*ROPO+LRT*ART*RORTO*G<br />

*<br />

* PRESSURE CALCULATION INITIALIZATION<br />

RHOSVR=l./FUNGEN(VSATG,2,PRATED)<br />

UCSRV»WRATED/SQRT(PRATED*RHOSVR)<br />

MSTO-IVFREE-VOLDCUDCO) )*RHOGO<br />

UMST0»MST0*(HG0-P0*144./(778.*RH0G0))<br />

*<br />

* INITIALIZATION FOR SUPPRESSION PCOL CALCULATION<br />

*<br />

*<br />

* CONSTANTS FCR CONTAINMENT MODEL<br />

*<br />

* AOMET=HEAT TRANS AREA BET DW MET AND CW ATMOS(FT**2J<br />

* APMET=HEAT TRANSF AREA BET SP MET AND SP ATMOS<br />

* ASSPW=AREA OF POOL WATER SURFACE(SQ.FT.)<br />

* BDWSPO*CU.FT/SEC/PSI FLOW WHEN DOWNCCMERS CLEARED<br />

* BSPDWOCU.FT/SEC/PSI OF FLOW WHEN VALVE OPEN<br />

* CDMET=MASS*SPEC HEAT OF OW METAL(BTU/DEG-F)<br />

* CPAIR=MASS*SPEC HEAT OF AIR IN SP CHAMBER ROOM<br />

* CPMET=MASS*SPEC HEAT OF SP METAL IN CONT WITH GAS<br />

* DM-AMOUNT OF STM. QUENCHED!UNIFORMLY ARCUNO POOL) IF THERE<br />

* IS ELAPSED TIME BETWEEN NOMINAL START AND INITIALIZATION OF THE RUN<br />

* DPQR=RANGE(PSI) OVER WHICH QUENCH FRACTION GOES FROM 1 TO 0.<br />

* WITH INCREASING VAPOR PRESSURE<br />

* DPQZ=MARGIN(PSI) ABOVE SATURATION FOR COMPLETE QUENCHING<br />

* FDI,FSI=FRACTION OF POOL COOLING DISCHARGE AND SUCTION TO POOL NODE I<br />

* FWE=FLOW BETWEEN S.P. NODES(LB/SEC) PER INCH OF WATER LEVEL OIFFEKENCE<br />

* FW INFRACT ION OF POOL WATER CONTAINED IN POOL NODE I<br />

* FSVI*FRACTIQN OF TOTAL SRV FLOW DISCHARGED TO POOL NODE I<br />

* FTEI=FRACTION OF TURBINE EXHAUST DISCHARGED TO POOL NODE I<br />

* FLSPG, FLOWG=FRACTION OF ATM. LEAKED TO RX-BLDG. PER SECOND<br />

* GCH=GAS CONSTANT OF H2<br />

* GCM*GAS CONSTANT OF MIMISC.)<br />

* GCN~GAS CONSTANT OF N2<br />

* GCS-GAS CONSTANT OF H20 VAP(PSI*FT**3/LB*DEG-R)<br />

* HSRREF=OELTA TO REREFERENCE STM ENTHALPY FROM ASME STEAM TABLES<br />

* TO PERFECT GAS EXP. THAT HAS H=0.0 AT 0 DEG-R<br />

* HSTE=ENTH OF TURBINE EXHAUSTIBTU/LB)<br />

* HJMDWO- INITIAL DW GAS HUMIDITY (PERCENT)<br />

* HUMSPO-INITIAL SP GAS HUMIDITY (PERCENT)<br />

* KMIX-EMPIRICLE CONSTANT FOR NAT. CIRC MIXING FLOW BET. POOL NODES<br />

* LBASE=»NCMINAL STARTING LEVEL OF POOLdN. FROM INST. 0.)<br />

* MHSPGO,MHOWGO=INITIAL MASSES OF H(LBS)<br />

* MMSPGO,MMOWG0=INITIAL MASSES OF M (LBS)<br />

* POCVP*PRESS. DIFF NECESSARY TO CLEAR THE VENT<br />

* PIPES FOR FLOW FRCM DW TO SP<br />

* PTDWGO- INITIAL TOTAL PRESS OF DW GAS (PSIA)<br />

* PTSPGO-INITIAL TOTAL PRESS OF SP GAS (PSIA)<br />

* QRVHLO=REACTCR(+PIPING) HEAT LOSSES (MW) FOR TEMP DIFF=OTRVHL(DEG-F)<br />

* TAUFDW=AVERAGE RESIDENCE TIME OF FOG IN DW(SEC)<br />

* TAUFSP=AVERAGE RES. TIME OF FOG IN SP<br />

* TAUVRV=TIME CONSTANT FOR SP VAC RELIEF VALVE TO LIFT(SEC)<br />

* TBASE-NCMINAL STARTING TEMP CF POOL(CEG-F)<br />

* TBII-PROVISION FOR BIASING STARTING TEMP CF POOL NODE I<br />

* TD=OISCH. TEMP(F) OF POOL COOLING FLOW<br />

* TDMETO-INITIAL DRYWELL METAL TEMP IF)<br />

* TGDWO*INITIAL DW GAS TEMPtDEG-F)<br />

* TGSPO*INITIAL SP GAS TEMP (DEG-F)<br />

* TPAIROMNITIAL SP CHAMBER ROOM TEMP


186<br />

* TPMETO=INITIAL TEMP : SP METAL IN CONTACT WITH SP GAS<br />

* VGOW=TOTAL FREE VOLUME OF DW (FT**3)<br />

* VTSP=TOTAL FREE VOLUME OF SP (FT**3)<br />

* WOLEAK=LEAK RATE(LB/SEC) OF SAT. WATER FROM RV TO DRYWELL<br />

* WDSPW=DISCHARGE FLOW OF POOL COOLING(LB/SEC)<br />

* WSSPW=SUCTION FLOW OF POOL COOL ING!LB/SEC)<br />

*<br />

*<br />

* GEOMETRY AND PHYSICAL CHARACTERISTICS<br />

CONSTANT ACMET=1.65E04,APMET=1.7E04,ASSPW=10860.<br />

CONSTANT BDWSP0=2500.,BSPDWO=2000.<br />

CONSTANT CDMET=8.33E04,CPAIR=3200.,CPMET=5.82E04<br />

CONSTANT DPQR=2. ,DPQZ=2.<br />

CONSTANT GCH=5.361,GCM=.2436,GCN=.3829,GCS=.5955<br />

CONSTANT HSTE=915.,HSRREF=-854.5,P0CVP=1.75<br />

CONSTANT TAUVRV=3.,TAUFDW=30.,TAUFSP=15.<br />

CONSTANT VGDW=159000.,VTSP=267600.<br />

*<br />

* POOL NQDALIZATICN<br />

CONSTANT FD1=1.,FS1=1.,FWI =1.,FSV1=1.,FTE1=1.,FWE=>5000.,KMIX=950.<br />

*<br />

* INITIALIZATION<br />

CONSTANT DM=0. ,HUMDW0=18. 4,HUMSP0=79.4 ,LBASE=1C23<br />

CONSTANT MHSPGO=0.,MHDWGO=0.,MMSPGO=0.,MHDWG0=0.<br />

CONSTANT PTDWG0=23.15,PTSPG0=23.65,TBASE=169.1,TBI1=0.<br />

CONSTANT TGDV«0=268. ,TGSP0=161.,TDMET0=212.,TPMET0=145.1,TPAIRO=155.<br />

»<br />

* RUN CONTROL<br />

CONSTANT FLDWG=0.,FLSPG=0.,TD=90.,GRVHL0=1.,DTRVHL=404.<br />

CONSTANT W0LEAK=.68,WSSPW=C.,W0SPW=0.<br />

HD=TC-32.<br />

* INITIALIZATION CALC. FOR DW AND SP MASS AND ENERGY BALANCES<br />

* ASSUME ZERO INITIAL HYDROGEN AND MISC. GAS<br />

*<br />

* FUNCTION TABLES<br />

* FUNCTION SPLEV : SP LEVEL!INCHES FROM INSTRUMENT ZERO) AS A FUNCTION A<br />

* FUNCTION CF VOLUME(CU.FT)<br />

FUNCTION SPLEV=0.,-182.,20222.,-134.,74646.,-62.,...<br />

117344.,-14.,130129.,0.,139300.,10<br />

182563.,58.,242176.,130.,267611.,190.<br />

*<br />

* FUNCTION STFOSV: SATURATION TEMP AS A FUNCTION OF SPECIFIC<br />

* VOLUME<br />

FUNCTION STF0SV=2.83,363.5,4.65 ,324.1,7.65,288.2,12.2,257.6, ...<br />

20.1,228.,31.2,204.,44.7,185.6,76.4,160.5,158.9,129.6,. ..<br />

333.6,101.7,641.5,79.6,1235.,59.3<br />

* FUNCTION SPFOT : SATURATION PRESSURE AS A FUNCTION OF TEMPERATURE<br />

FUNCTICN SPF0T=59.3,.25,79.6,.5,1C1.7,1.0,132.9,2.4,...<br />

160.5,4.8,185.6,8.5,203.9,12.5, ...<br />

228.,20.,250.34,30.,288.2,56.,324.1,95.,363.5,160.,...<br />

381.8,200.,417.3,300.,444.6,400.,467.,500.,486.,600.,...<br />

503.,700.,525.,850.,544.6,1000.,556.,1100.,567.,1200.<br />

* PRELIMINARY CALCULATIONS<br />

SPDWO=NLFGEN(SPFOT,TGDWO)<br />

SPSPO=NLFGEN(SPFOT,TGSPO)<br />

PSDWGO=(HUMDWO/100.)*SPDWO<br />

PSSPG0=(HUMSP0/100.)*SPSPO<br />

PNSPGO=PTSPGO-PSSPGO<br />

PNOWGO=PTDWGO-PSDWGO<br />

MNSPG0=PNSPG0*!VTSP-VWSP0)/(GCN*(TGSP0+460.) )<br />

MNDWG0=PNOWG0*(VG0W)/(GCN*(TG0W0+460.))


*<br />

* VWSPO=INITIAL TOTAL WATER VOL IN SP<br />

*<br />

187<br />

MSSPG0=PSSPG0*(VTSP-VWSPO)/(GCS*(TGSPO+46O.))<br />

MSDWG0=PSDWG0*VGDW/(GCS*(TGDW0+460.))<br />

UMSPG0=(TGSPO+460.)*(MNSPGO*(.2475-.1851*GCN)+...<br />

MSSPG0*(.45-4.89/(TGSP0+460.)-.1851*GCS) )<br />

UMDWGO=(TGOWO*460.)*(MNDWGO*(.2475-.1851*GCN)+...<br />

MSDWGO*(.45-4.89/(TGDWO+460.J-.1851*GCS) )<br />

*<br />

* DEPTH LBASE SPECIFIED: INCHES FROM INST ZER0(4 IN BELOH CENTER)<br />

* TBASE IS NOMINAL STARTING TEfP CF PCOL<br />

* TBKI) PROVIDES FOR BIASING INITIAL TEMPS IN MULTI-NODE MODEL<br />

VII=2.462*AII<br />

AII=(LBASE-4.)*SQRT(34580.-LBASE*LBASE+8.*LBASE)*...<br />

34596.*ARSIN( (LBASE-4. )/186. ) + 54343.<br />

MW1II=FW1*VII*(63.9-.019*(TBASE*TBU))<br />

MII=MW1II<br />

DTBASE=(1190.-(TBASE-32.))*0M/(MII+0M)<br />

TIC1=TBASE+0TBASE+TBI1<br />

VWSP0=(MWlII+FWl*0M)/(63.9-.019*TICl)<br />

VGSPO=VTSP-VWSPO<br />

DYNAMIC<br />

* DYNAMIC PORTION OF REACTCR VESSEL CALCULATION<br />

#<br />

* RUN CONTROLS FOR INJECTION CONTROL<br />

LDCVZ=L0C*12.+216.<br />

LDDEL=REALPL(500.,2.OO.LDCVZ)<br />

RCICC=0.0<br />

HPCID=0.0<br />

WINJ=RCICMX*(RCICD*8.33*HPCID)*STEP(30.)<br />

* RUN CONTROLS FOR VESSEL PRESSURE CONTROL<br />

P0PEN=1120.<br />

PSHUT*1080.<br />

* CALCULATION OF DYNAMIC SATURATION PROPERTIES<br />

RH0F=1./(AFGEN(VSATF.P))<br />

RhOG=l./(FUNGEN(VSATG,2,P)»<br />

HF=AFGEN(HSATF,P)<br />

HG=AFGEN(HSATG,P)<br />

TSAT=FUNGEN(TSATM,2,P)<br />

* INTERMEDIATE CALCULATIONS: AVERAGE HEAT FLUXES<br />

* 'DKFUN' RETURNS DECAY HEAT AS A FUNCTION OF TIME SINCE SCRAM<br />

* 'QREGAV RETURNS AVERAGE NORMALIZED POWER, GIVEN LOCATION OF TOP<br />

* AND BOTTCM OF REGION<br />

T=TO+TIME<br />

TMIN=T/60.<br />

PREL=(DKFUN(T)+.94*EXP(-T/TCFUEL) )<br />

QT0T=PREL*CP0*947.8<br />

QFCCR=QTOT/(12.*PCOR1<br />

AVMSC=QREGAV(0.,LSCD)<br />

AVMB=QREGAV(LSCD,LSCD+LBD)<br />

QFSC=AVMSC*QFCOR<br />

QFB=AVMB*QFCOR<br />

LSCD=REALPL!LSCO,TAULEN,LSC)<br />

L8D=REALPL(LB0,TAULEN,LB)<br />

* DOWNCOMER ANNULUS CALCULATION<br />

* NEEDS: CENSITIES: RHCOCRHOLP<br />

* FLOWS INTO DCWNCOMER: WINJ, WRECIR, WINJAS<br />

* INJECTION ENTHALPY: HINJIN<br />

* FLOWS OUT OF DOWNCOMER: WCI, WFLDC, WFLLP<br />

* REACTCR VESSEL PRESSURE: P


188<br />

* RETURNS: DOWNCOMER HEIGHT!ABOVE BOTTCM CF ACTIVE FUEL) : LDC<br />

* ENTHALPY INTO LOWER PLENUM: HDC<br />

* INTERMEDIATE CALCULATIONS: MASS RATE OF ASPIRATION FROM STEAM SPACE<br />

* DUE TO INJECTION FLOW; FLASHING RATE FRCM DC MASS; RECIRC FLOW RATE<br />

EQXX=EQXO*(LHEDER-LDC)/LHEDER<br />

EQX=LIMIT(0.,1.,ECXX)<br />

HINJFI*HINJIN+(HF-HINJIN)*EQX<br />

GP=7.23*WINJ<br />

WINTCT=INTGRL(0.,WINJ)<br />

GT=(WINT0T*7.481)/62.11<br />

WINJAS=(HF-HINJIN)*EQX*WINJ/(HG-HF)<br />

WFLDCX=MOC*FFLASH*(HDC-HF)<br />

WFLDC=LIMIT(0.,9999..WFLDCX)<br />

*<br />

* MASS AND ENERGY BALANCES(81 IS A LOGIC SIGNAL TO STOP THE<br />

* INTEGRATION WHEN LDC.LT.O(BELOW BCTTCM OF ACTIVE FUEL)<br />

CMDC=INTGRL(0.,DMOC)<br />

MOC=MCCO*CMOC<br />

DMDC*Bl*(WRECIR*WINJ+WINJAS-RHOCC*(WCI*WFLLP)/RHOLP-WFLDC)+WEXPC<br />

CMHDC=INTGRL(0.,DMHOC)<br />

MHDC=MHDCO*CMHDC<br />

DMHOC*Bl*(HF *WRECIR*W INJ*HINJIN+HG*WINJAS-...<br />

HDC*(WCI+WFLLP)*RHODC/RHOLP-WFLCC*FG)<br />

HDC=MHDC/MDC<br />

RHOOC=l./AFGEN(VSC,HDC)<br />

* DC LEVEL IS CALCULATED BY FUNCTION SUBPROGRAM XLENOCIVOLUME)<br />

VOC-»MCC/RK)OC<br />

LDC=XLENDC(VOC)<br />

LDL=LIMIT!0.,LDCR,LDC)<br />

* LOWER PLENUM CALCULATION<br />

* NEEDS: SAME AS DCWNCCMER<br />

* RETURNS: ENTHALPY AT CORE INLET(HLP)<br />

* INTERMEDIATE CALCULATIONS: LOWER PLENUM FLASHING RATE, LP WATER VOL<br />

* (VOLPW—USED FOR LOGIC CONTROL ONLY SINCE THE LOWER PLENUM IS<br />

* MODELED AS A CONSTANT VOLUME UNLESS COWNCOMER IS EMPTY) :<br />

HLP=MHLP/MLP<br />

VOLPW=MLP/RHOLP<br />

RHOLP=l./AFGEN(VSC,HLP)<br />

XWFLLP*(HLP-HF)*MLP*FFLASH<br />

WFLLP=LIMIT(0.,9999.,XWFLLP)<br />

* LOGIC CCNTROL<br />

*<br />

*<br />

X1B1=LDC-.001<br />

X2Bl"«V0LPW-l.01*VCLP<br />

B1N=N0R(X1B1.X281)<br />

B1=N0T(B1N><br />

* MASS AND ENERGY BALANCES<br />

*<br />

DMLP-*(WCI +WFLLP)*{RHOCC/RhOLP)*(Bl)-WCI-WFLLP*...<br />

B1N*(WINJ+WINJAS><br />

CMLP*INTGRL(0., OMLP)<br />

MLP=MLPO+CMLP<br />

DMHLP=H0C*(WCI+WFLLP)*RH0DC*B1/RH0LP+...<br />

BlN*(WINJ*HINJIN*HG*WINJAS)-WCI*HLP-WFLLP*HG<br />

CMHLP=INTGRL(0.,DMHLP)<br />

MHLP=MHLPO+CMHLP<br />

* CORE INLET FLOW CALC.(FORCE BALANCE)<br />

* NEEDS: DENSITIES: RHODC,RHOLP,RSCAV,RHCB,ROP, RORT<br />

* REACTOR VESSEL PRESSURE : P<br />

* FLOW OUT OF BOILING REGION: W80<br />

* REGION LENGTHS: LDC,LSC,LB<br />

* RETURNS: FLOW INTO CCRE: WCI<br />

*<br />

CMTOT«INTGRL(0. ,(WCI-WRECIR-WTOST+WFLLP))<br />

MTOT-MTOTO+CMTOT<br />

WB0=(QFB*PCOR*LBD)/(HG-HF)


*<br />

WPOO=MPOO*DHF/(HG-HF)<br />

HFD=REALPL(HF0,2.0,HF)<br />

DHF=(hF-HFD)/2.<br />

VST=VFREE-V0C<br />

DVST=CERIV(O..VST)<br />

VSVST=VST/MST<br />

* VST=T0TAL VAPOUR SPACE VOLUME<br />

* VSVST=SPECIFIC VOLUME OF STEAM<br />

*<br />

*<br />

190<br />

* TOTAL ENERGY BALANCE<br />

CUMT 0= IN T GRL 10.. DUMTO )<br />

UMT0=UMST0+CUMTO<br />

DUMTO=WTOST*HG+(WFLDC+WEVAPJ*HG-...<br />

WEXPC*HF-WC0N0*HG-WINJAS*HST-WSTC*HST-0VST*P*144./778.<br />

HST=UMT0/MST+PSTG*VSVST*144./778.<br />

* STEAM PRESSURE CALCULATED BY FUNCTICN SUBPROGRAM PFVH--STEAM PRESSURE<br />

* AS A FUNCTION OF SPECIFIC VOLUME AND ENTHALPY<br />

* PFVH REQUIRES AN INITIAL GUESS OF PRESSURE, PSTG<br />

PST=PFVH(HST,VSVST,PSTG)<br />

PSTG=REALPL(P0,2.0,PST)<br />

P=PST<br />

*<br />

* SAFETY RELIEF VALVE MODEL—TWO VALVES MCDELED~WSSV=TOTAL SRV FLOW<br />

L0GREL=L0GV1+L0GV2<br />

LOGVl=REALPLI0.,.62,L0GPVl)<br />

L0GV2=REALPL(0.,.62,L0GPV2)<br />

LCGPV1=RST(X1V1,X2V1,0.)<br />

LCGPV2=RST(X1V2,X2V2,0.)<br />

XIV1=C0MPAR(PSHUT, P)<br />

X1V2=C0MPAR(P0PEN-25.,P)<br />

X2V1-CCMPAR1P.P0PEN)<br />

X2V2=C0MPAR(P,P0PEN*25.)<br />

WSSV=UCSRV*SQRT(PSTG/VSVST)*LOGREL<br />

* WSTE=STEAM TURB EXHAUST FLOW(RCIC)<br />

* ENTHALPY IS ASSUMED=915. BUU/LB<br />

WSTE=(RCICD*(.00613*PST+1.1)+HPCI0*(.0387*PST*7.81))*STEP130.)<br />

* WSTC IS TOTAL STEAM FLOW RATE FROM REACTOR VESSEL TO CONTAINMENT<br />

WSTC=WSTE*WSSV<br />

* CYNAMIC PORTION OF CONTAINMENT CALCULATION<br />

*<br />

* CALLS TO SP WATER MACRO—ONLY ONE NECESSARY FUR THE SINGLE NOOE PCOL MODEL<br />

XNQ1 ,TP1 ,WE1 ,MWl ,LW1 =W(TP1,...<br />

TP1 ,LW1,LW1 ,TIC1 ,FW1 ,FSV1 ,FTE1 ,FD1 ,FS1 I<br />

VWSP=MWl/(63.9-.019*TPl)<br />

MWSP=MW1<br />

GWSP=7.481*VWSP<br />

TWSPAV=(63.9-MWSP/VWSP)/.019<br />

LWSPAV=AFGEMSPLEV,VWSP)<br />

* INTERFACE THE SP WATER TO THE SP GAS<br />

*<br />

*<br />

XNQDW=XNQ1<br />

WSSVNQ=WSSV*FSV1*XNQ1<br />

WSTENC=WSTE*FTE1*XNQ1<br />

WTESPW=WE1<br />

* INTERFACE VARIABLES : RV TO SUPPRESSION POOL<br />

* WSSV=STM. FLOW FROM RV THRU RELIEF VALVES(LB/SEC)<br />

* WSTE=STM FLOW FROM RV THRU TURBINES!RCIC+HPCI)<br />

* WHSV=HYDROGEN FLOW FROM RV ThRU RELIEF VALVES!LB/SEC)<br />

* HHM=HYDRCGEN ENTHALPY AT MIXED RV TEMP(BTU/LB) (REF TO 0. DEG R)<br />

* HSTE=ENTHALPY OF TURBINE EXHAUSE(ASME)<br />

* TM=MIXTURE TEMP OF RV STEAM SPACE


*<br />

*<br />

*<br />

191<br />

INTERFACE VARIABLES : RV TO DRYWELL<br />

WSDWR=STEAM FLOW, RELEASE TO DRYWELL(LB/SEC)<br />

HSDWR=ENTHALPY OF WSDWR(ASME)<br />

WHDWR-HYDROGEN FLOW, RELEASE TO DRYWELL!LB/SEC)<br />

HHDWR-ENTHALPY OF WHOWRIREF TO 0.0 DEG R)<br />

WMDWR=MISC. FLOW RELEASEO TO DRYWELL<br />

HMDHR-*ENTHALPY OF WMDWRIO.O DEG R)<br />

INTERFACE VARIABLES : SP WATER TO SP GAS<br />

WSSVNQ-TCTAL NCN-QUENCHED RELIEF VALVE FLOW FROM RV TO SP VIA RV'S<br />

WSTENQ-TOTAL NON-QUENCHED TURBINE EXHAUST FLOW<br />

WCSPG=TCTAL CONSECSATE FLOW, SPG TO SPW<br />

WTESPW-TOTAL EVAPORATION RATE, SPW TC SPG<br />

HSTSPW-ENTHALPY OF STEAM(REF 0. AT 0. OEG) AT MASS-WEIGHTED SP WATER<br />

TEMP, TWSP<br />

HCSPG*ENTHALPY OF CONDENSED SP STEAM(ASME)<br />

MASS BALANCES FOR SP GAS AND DW GAS<br />

INPUT FROM OTHER CALCULATIONS:<br />

VWSP*SP TITAL WATER VOL (FT**3> (VARIABLE)<br />

WSSNQ* TCTAL NON-QUENCHED STEAM FLOW (LE/SEC)<br />

WHSV- H FLOW FROM THE RV (THROUGH RELIEFS)<br />

WSOWR* FLOW RATE OF STEAM RELEASED DIRECT TO DRYWELL<br />

WHDWR- FLOW RATE CF HYDROGEN RELEASED TO DRYWELL<br />

WMDWR* FLOW RATE UF MISC. RELEASED OIRECT TO DRYWELL<br />

DEFINITIONS<br />

MS SPG<br />

MHSPG<br />

MASS STM IN SPG<br />

MASS H IN SPG<br />

MNSPG= MASS N IN SPG<br />

MMSPG'MASS M IN SPG<br />

FLOWS » LB/SEC UNLESS OTHERWISE SPECIFIED<br />

WSSVNG* TOTAL NON-QUENCHED STM FROM SV'S ANT TURB, EXHAUST<br />

WHSV- TCTAL HYDRCGEN FLOW FRCM RELIEF VALVES<br />

DWSP* DESIGNATES FLOW FROM DW TO SP<br />

SPOW- DESIGNATES FLOW FROM SP TO DW<br />

SPL» SP GAS LEAKAGE<br />

B* BULK FLOW RATE (FT**3/SEC)<br />

WCSPG- TOTAL CONDENSATE FLOW FROM SP GAS<br />

WCOWG* TOTAL CONDENSATE FLOW FROM DW GAS<br />

SP GAS MASS BALANCE:<br />

MSSPG«INTGRL(MSSPGO,WSSVNQ+WSDWSP*WSTENQ+WTESPW-WSSPDW-WSSPL-WCSPG)<br />

MHSPG=INTGRL (MHSPGO.WHSV+WHOWSP-WHSPDW-WHSPL)<br />

MNSPG- INTGRL(MNSPGO.WNDWSP-WNSPL-WNSPDW)<br />

MMSPG=INTGRL (MMSPGO.WMDWSP-WMSPL-WMSPDW)<br />

BSPL=VGSP*FLSPG<br />

WSSPL *BSP L*(MSS PG/VGSP)<br />

WHSPL'BSPL*(MHSPG/VGSP)<br />

WNSPL=BSPL*(MNSPG/VGSP)<br />

WMSPL=BSPL*(MMSPG/VGSP)<br />

BSPL*BULK LEAKAGE FRCM SP GAS<br />

FLSPG-FRACTION OF TOTAL SP GAS VOLUMES LEAKED PER SECONO<br />

VGSP»VOLUME OF SP GAS, VWSP-SP WATER VOLUME<br />

VGSP-VTSP-VHSP<br />

NOTE: 0.5 PSI IS NECESSARY TO OPEN VAC RELIEF VALVE<br />

BSPCWX=LIMIT(0.,1.E06,BSPDW0*(PTSPG-PTDWG-.5)I<br />

8SPDW-


* VAC RELIEF VALVE IS OPEN<br />

192<br />

BOWSPX=LIMIT (0.,l.E06,BDWSPO*(PTOWG-PTSPG-PDCVP))<br />

BOWSP-«REALPL(0.,TAUVRV,BOwSPX)<br />

WSDHSP»BDWSP*(MSDWG/VGDH)*XNQDW<br />

WHDWSP=BDWSP*(MHOWG/VGDH)<br />

WNDWSP-BOWSP*(MNDWG/VGDH)<br />

WMDWSP=BDWSP*(MMDWG/VGDW)<br />

* 80WSP0»(FT**3/SEC)/PSI WHEN DW PRESS IS GREAT ENOUGH<br />

* TO CLEAR THE VENT PIPE DOWNCOMERS<br />

* POCVP«PRESS DIFF. NECESSARY TO CLEAR THE VENT PIPES<br />

*<br />

WCSPG«WWCSPG+WVCSPG<br />

WVCSPG»(MSSPG/TAUFSP)*(1.-100./HUMSP)*C0MPAR(HUMSP,100.)<br />

* WWCSPG'RATE OF CQND. ON SPG WALL<br />

* WVCSPG-RATE OF COND. FROM SPG VOLUME<br />

*<br />

* DRYWELL MASS BALANCE:<br />

MSOWGMNTGRL(MSDWGO,WSDWR+WSSPDW-WSDWSP-WSDWL-WCDWG)<br />

MHOWG-INTGRL(MHOWGO.WHOWR-tWHSPCW-WHDWL-WHDWSP)<br />

MNDWG-*INTGRL(MNOWGO.WNSPOW-WNOWSP-WNDWL><br />

MMDWG*INTGRL(MMDWGO,WMDWR*WMSPOW-WMDWSP-WMDWL)<br />

*<br />

*<br />

WCDWG*WWCDWG*HVCDWG<br />

WVCDWG»(MSDWG/TAUFDW)*(1.-100./HUMOW)*COMPAR(HUMOW,100.)<br />

* HYDROGEN AND MISC RELEASES SET TO ZERO<br />

* FFRACT=FRACTION OF HOT LIQUID LEAK THAT FLASHES TO STEAM<br />

FFRACT-{AFGEN(HSATF.PST)-AFGEN(HSATF,PTOWG))/...<br />

(AFGEN(HSATG,PTDWGI-AFGEN(HSATF.PTDWG))<br />

WSDWR»WDLEAK*FFRACT<br />

HSDWR*AFGEN(HSATG,PTDWG)<br />

WHDWR=0.<br />

WMDWR«0.<br />

HHOWR-0.<br />

HMDWR-O.<br />

WWCDW&*RATE OF COND. ON DWG WALL<br />

WVCOWG-fRATE OF VOLUME COND. IN DRYWELL<br />

ENERGY BALANCES FOR CW AND SP GAS<br />

INPUT FRCM OTHER CALCULATIONS:<br />

HMDWR=ENTHALPY OF MISC. RELEASED DIRECT TO DRYWELL<br />

HHOWR'ENTHALPY OF HYOROGEN RELEASED OIRECT TO DRYWELL<br />

HHRV=ENTHALPY OF HYDROGEN IN REACTOR VESSEL<br />

HSRV*ENTHALPY OF STEAM IN REACTOR VESSEL<br />

HSDWR-ENTHALPY OF STEAM RELEASED DIRECT TO DRYWELL<br />

HSTE=ENTHALPY OF STEAM FROM TURBINE EXHAUST<br />

NOTE THAT THE ABOVE 3 ARE REF. TO ZERO AT 32.F WATER<br />

(ASME STM TABLES), BUT ARE RE-REF TO ZERO<br />

AT ZERO DEG-R FOR CONTAINMENT CALC.<br />

QVSPG,QVCWG*VOLUME HEAT SOURCE (FROM F.P.'S)<br />

QRVHL-HEAT LOSS (THROUGH INSULATION) FRCM RV TO SP GAS<br />

QLSPG=HEAT LOSS FROM SP GAS TO SP LINER<br />

QLDWG-HEAT LOSS FROM OW GAS TO DW LINER<br />

DEFINITIONS:<br />

TGSP-TEMF OF HOMOGENIZED SP GAS (DEF-F)<br />

TGDW«TEMP OF HOMOGENIZED DW GAS (DEG-F)<br />

UMSPG"TOTAL INTERNAL ENERGY OF SP GAS (BTU)<br />

UMDWG=TCTAL INTERNAL ENERGY OF DH GAS (BTU)<br />

MASS FLOWS DEFINED IN MASS BALANCE SECTION<br />

SP GAS ENERGY BALANCE:<br />

CUMSPG=INTGRL(0.0,DUMSPG)<br />

UMSPG»UMSPGO->CUMSPG


193<br />

DUMSPG-EPSSP-t-EPHSP+EPNSP-e-EPMSP+QVSPG-QLSPG-MWORK-t-QSSPG<br />

EPSSP*WSSVNQ*(HSSVNQ)*WSTENQ*(HSTE+HSRREF)+...<br />

WSOWSP*! HSTGDW )-( WSSPDW-t-WSSPL )*HSTGSP-. . .<br />

WCSPG*(HFGSP*HSRREF)+WTESPW*HSTSPW<br />

MWORK«DVOTPG*PTSPG*.1851<br />

DVDTPG-»(VGSP-VGSP0)/5.<br />

VGSPD«REALPL(VGSP0,5.,VGSP)<br />

* WSSVNQ-TQTAL SRV FLOH THAT EXITS SURFACE OF POOL<br />

* WSTENQ-TOTAL NON-QUENCHED STM FROM TURBINE EXHAUST<br />

* HSRREF»OELTA-H TO REREF. STEAM ENTHALPY<br />

* HFGOW»SAT FLUID ENTH AT DW TEMP(ASME)<br />

* HFGSP»SAT FLUID ENTH AT SP TEMPIASME)<br />

* HSSVNQ*ENTHALPY OF NON-QUENCHED STEAM ENTERING SP GASJREF TO 0.<br />

* AT 0. CEG-R)<br />

HSSVNC-HST+HSRREF<br />

HSTGSP».45*TGSPR-4.89<br />

HSTSPW*.45*(TWSPAV->460.)-4.89<br />

HSTGDW-.45* TGDWR-4.89<br />

*<br />

*<br />

*<br />

*<br />

*<br />

HFGSP-TGSP-32.<br />

HFGDW-TGDW-32.<br />

EPHSP«WHDWSP*HHTGCW+WHSV*HHRV-(HHSPOW->WHSPL)*HHTGSP<br />

HHTGSP-«3.466*TGSPR-40.<br />

HHTGDH«3.466*TGDWR-40.<br />

EPNSP«HNTGDW*WNDWSP-(WNSPCW+WNSPL)*HNTGSP<br />

HNTGSP-.2475*TGSPR<br />

HNTG0W«.2475*TGDWR<br />

EPMSP«HMTGOW*WMDWSP-(WMSPOW-i-WMSPL)*HMTGSP<br />

HMTGSP«.21*TGSPR-20.8<br />

HMTGDW».21*TGCWR-20.8<br />

* DRYWELL ENERGY BALANCE<br />

CUMDWG»INTGRL(0.0,OUMDWG)<br />

UMDWG«CUMDWG*UMOWGO<br />

DUMDWG-EPSDW+EPHDW+EPNDW+EPMOW+QVOWG*...<br />

QRVHL-QLOWG<br />

*<br />

*<br />

QSSPG»(TWSPAV-TGSP)*ASSPW*5.3E-05*((ABS(TWSPAV-TGSP))**.33><br />

QLSPG-QPMWET+QPHORY<br />

QVDWG=0.<br />

QVSPG»0.<br />

QRVHL«QRVHL0*948.*(TSAT-TGDW)/DTRVHL<br />

QLDWG»CDM<br />

EPSDW»(HSOWR*HSRREF)*WSDWR+HSTGSP*WSSPOW-HSTGOW*(WSDWSP-fWSOWL>-<br />

HFGOW*WCOWG<br />

EPHDW=HHDWR*WHDWR+HHTGSP*WHSPDW-HHTGDW*!WHDWSP*WHOWL)<br />

EPNDW«HNTGSP*WNSP0W-HNTGDW*(WNCWSP->WNOWL)<br />

EPMDW*HMDWR*W.-'DWR-t-HMTGSP*WMSPOW-HMTGCW*(WMDWSP+WMDWL)<br />

*<br />

* SOLUTION FOR DW AND SP GAS TEMPERATURES<br />

* ITERATION IS NOT NECESSARY SINCE THE S,N,H,ANO M<br />

* ENTHALPIES ARE ASSUMED LINEAR WITH TEMP:<br />

* H(N2)*.2475T, H(H20)*.45T-4.89, H(M)».21T-20.8, H(H)*3.466T-40.<br />

*<br />

TGSPR*(UMSPG+4.89*MSSPG+20.8*MMSPG+40.0*MHSPG)/...<br />

(MNSPG*(.2475-.1851*GCN)*MSSPG*(.45-.1851*GCS)


END<br />

STOP<br />

CALL DEBUG!1,0.0)<br />

CALL CEBUGd,3600.)<br />

CALL DEBUG(1,7600.)<br />

CALL DEBUG!1.1C80C.)<br />

CALL DEBUG!1,14400.)<br />

CALL CEBUGd,17999.)<br />

195


197<br />

APPENDIX B<br />

MODIFICATION TO MARCH SUBROUTINE ANSQ<br />

In the MARCH code, the calcul<strong>at</strong>ion of decay he<strong>at</strong>ing is carried<br />

out in subroutine ANSQ. For this study, the calcul<strong>at</strong>ion was modified<br />

to include the actinide decay he<strong>at</strong> source in a BWR following a burnup<br />

of 34,000 MWd/x. A listing of the revised subroutine follows:<br />

Subroutine ANSQ (ANS-TIME-TAP)<br />

C<br />

C ANSQ calcul<strong>at</strong>es the decay he<strong>at</strong> using ANS correla-<br />

C tions.<br />

ANS1=ANS2=0.0<br />

TVAR=TIME*60.0<br />

IF (TVAR-GT-10.0) GO TO 10<br />

ANS1=0.06950-0.001592*(ALOG(TVAR))<br />

IF (TVAR-LT-3.) ANS1=1.<br />

GO TO 40<br />

10 IF (TVnAJi.GT. 150.0) GO TO 20<br />

ANS1=0.069241-0.0069355*(ALOG(TVAR))<br />

GO TO 40<br />

20 IF (TVAR-GT.4.E6) GO TO 30<br />

ANS1=4.0954E-2-2.8324E-3*(ALOG(TVAR))<br />

GO TO 40<br />

30 ANS1=4.6893E-3-2.3800E-4*(ALOG(TVAR))<br />

40 TVAR=(TIME+TAP)*60.0<br />

IF (TV.AJi-GT-10.0) GO TO 50<br />

ANS2=6.950E-2-1.592E-3*(ALOG(TVAR))<br />

GO TO 80<br />

50 IF (TVhAhR-GT-150.0) GO TO 60<br />

ANS2=6.9241E-2-6.9355E-3*(ALOG(TVAR))<br />

GO TO 80<br />

60 IF (TVAR.GT-4.E6) GO TO 70<br />

ANS2=4.0954E-2-2.8324E-3*(ALOG(TVAR))<br />

GO TO 80<br />

70 ANS2=4.6893E-3-2.3800E-4*(ALOG(TVAR))<br />

80 ANS-ANS1-ANS2<br />

RETURN<br />

END


199<br />

APPENDIX C<br />

MARCH INPUT FOR ACCIDENT SEQUENCE TB'


SNLCOOL<br />

SEND<br />

202<br />

INDUCE<br />

NC0B*2,<br />

NHPV1=2,<br />

NRPV2*1,<br />

ICEC0B*-1,<br />

DTPNT=20.0,<br />

IDRY=-1,<br />

I«ET*2,<br />

RPOOL*7.801E06,<br />

TPOOL*95.0,<br />

VDRX=3.839E03,<br />

VTOROS=257700.0,<br />

BVNAX=5. 146E05,<br />

HSHP=-2,<br />

NSHP2*2,<br />

NCAV=-1,<br />

VCAV*4789.1,<br />

VFLR=15.0,<br />

AVBRK*292.0,<br />

CVBRK*4.04,<br />

VC(1)*159000.0,257700.0,<br />

AREA{1)=1.6399E03,1.098E04,<br />

HOH(1)*0.2.1.0,<br />

TEHPO(1)*150.,95.,<br />

N=10,<br />

NS


203<br />

DP ART=0.0208333,<br />

FZHCR*0.05,<br />

FZOCR*0.08.<br />

FZOS1=0. 1,<br />

WFE2*7992.,<br />

TFEO0=546.,<br />

FOLSG*0.0,<br />

PVSL=1000.,<br />

TCAV=1210.,<br />

ABRK*0.0,<br />

TBRK=45.0,<br />

DTPNTB*5.0,<br />

DTPN=-5.,<br />

VOLP*2.459E04,<br />

VOLS=9.638E03,<br />

WCST*3.11E06,<br />

F


205<br />

Appendix D<br />

PRESSURE SUPPRESSION POOL MODEL<br />

D.l Introduction<br />

The primary containment of each of the <strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant<br />

units is a Mark I pressure suppression pool system. The safety objective<br />

of the Mark I containment is to provide the capability, in the event of an<br />

accident, to limit the release of fission products to the environment.29<br />

The key to the safety objective of this system lies in the performance<br />

of the pressure suppression pool (PSP). The PSP is designed to rapidly<br />

and completely condense steam released from the reactor pressure vessel,<br />

to contain fission products released from the vessel, and to serve as a<br />

source of w<strong>at</strong>er for the emergency core cooling systems. If the PSP should<br />

fail to properly perform during an accident sequence, then there is a high<br />

probability th<strong>at</strong> fission products will be released to the environment.<br />

In the past few years, a major concern of the NRC, the BWR vendor,<br />

and the utilities who oper<strong>at</strong>e the early gener<strong>at</strong>ion BWRs has been scenar<br />

ios30 where it has not been conclusively shown th<strong>at</strong> the PSP will meet<br />

the performance requirements st<strong>at</strong>ed above. Specifically, there is a lack<br />

of inform<strong>at</strong>ion on condens<strong>at</strong>ion oscill<strong>at</strong>ions and the resulting loads they<br />

place on the PSP. In addition, there is the question of pressure suppres<br />

sion pool thermal str<strong>at</strong>ific<strong>at</strong>ion and the resulting impact of this phenome<br />

non on the condensing ability of the PSP.<br />

The problem of condens<strong>at</strong>ion oscill<strong>at</strong>ions* includes the analysis of<br />

both loads which origin<strong>at</strong>e <strong>at</strong> the downcomer exit during a large break loss<br />

of coolant accident (LOCA) and loads derived from the safety relief valve<br />

(SRV) discharge during normal blowdown to the PSP. The condens<strong>at</strong>ion os<br />

cill<strong>at</strong>ion problem involves coupling an analysis of the momentum trans<br />

port within the PSP to a stress analysis of the torus walls.<br />

The problem of pool thermal str<strong>at</strong>ific<strong>at</strong>ion is of interest because<br />

thermal layering of the w<strong>at</strong>er near a SRV discharge point can limit the<br />

ability of the PSP to condense the steam. Subsequently, this can lead to<br />

increased intensity of the condens<strong>at</strong>ion oscill<strong>at</strong>ion loads and possibly to<br />

overpressuriz<strong>at</strong>ion of the torus. Furthermore, the temper<strong>at</strong>ure distribu<br />

tion in the torus determines (to some extent) the distribution of fission<br />

products in the PSP during an accident. Thus, an analysis of fission pro<br />

duct transport to the environment will depend on an analysis of the tem<br />

per<strong>at</strong>ure distribution in the PSP.<br />

D.2 Purpose and Scope<br />

The purpose of this work is to study the dynamics of the Mark I pre<br />

ssure suppression pool (PSP). Knowledge of the response of the PSP is<br />

*In the liter<strong>at</strong>ure, when the condens<strong>at</strong>ion instability occurs outside<br />

the relief valve tailpipe it is termed "condens<strong>at</strong>ion oscill<strong>at</strong>ion." If it<br />

occurs inside the pipe, the phenomenon is called "chugging." Here, "con<br />

dens<strong>at</strong>ion oscill<strong>at</strong>ions" includes both of these effects.


206<br />

desired for transients ranging from a normal SRV discharge to a full<br />

blown, large break LOCA. The primary objective of this study is to im<br />

prove the available BWR pressure suppression pool analysis techniques. A<br />

secondary objective is to learn as much as possible about the complex<br />

phenomena involved in each of the transients (phenomena such as pool<br />

swell, condens<strong>at</strong>ion oscill<strong>at</strong>ion, chugging, and thermal str<strong>at</strong>ific<strong>at</strong>ion).<br />

An analysis of the PSP dynamics will necessarily involve accounting<br />

for the two phase flow of steam jets into subcooled w<strong>at</strong>er and the ensuing<br />

transport of mass, momentum, and energy by the mechanism of condens<strong>at</strong>ion.<br />

Because of the complex geometry of the PSP, (toroidal geometry plus large,<br />

submerged, complic<strong>at</strong>ed flow obstructions plus an air-w<strong>at</strong>er interface) the<br />

analysis tool used in this study will be a st<strong>at</strong>e-of-the-art, 3-D thermal<br />

hydraulics code.<br />

Pending completion of this work, it will be necessary to assume<br />

pool-averaged conditions for accident analyses.<br />

D.3 Description of the System<br />

The Mark I containment system consists of the drywell, the pressure<br />

suppression pool, the vent system connecting the drywell and PSP, a con<br />

tainment cooling system, isol<strong>at</strong>ion valves, and various service equipment.<br />

Figure D-l shows the arrangement of the drywell, PSP, and vent system<br />

within the Reactor Building.<br />

The drywell is a steel pressure vessel with a spherical lower portion<br />

and a cylindrical upper portion. It is designed for an internal pressure<br />

of 0.531 MPa (62 psig) <strong>at</strong> a temper<strong>at</strong>ure of 138°C (281°F). Normal environ<br />

ment in the drywell during plant oper<strong>at</strong>ion is an inert <strong>at</strong>mosphere of ni<br />

trogen <strong>at</strong> <strong>at</strong>mospheric pressure and a temper<strong>at</strong>ure of about 57°C (135°F).<br />

The vent system consists of 8 circular vent pipes which connect the<br />

drywell to the PSP. The vent pipes are designed to conduct flow from the<br />

drywell to the PSP (in the event of a LOCA) with minimum resistance, and<br />

to distribute this flow uniformly in the pool. The vent pipes are de<br />

signed for an internal pressure of 0.531 MPa (62 psig) with a temper<strong>at</strong>ure<br />

of 138°C (281°F); they are also designed to withstand an external pressure<br />

of 0.014 MPa (2 psi) above internal pressure.<br />

The pressure suppression pool is a toroidal shaped steel pressure<br />

vessel loc<strong>at</strong>ed below the drywell. The PSP contains about 3823 m3<br />

(135,000 ft3) of w<strong>at</strong>er and has an air space above the w<strong>at</strong>er pool of 3370<br />

m3 (119,000 ft3). Inside the PSP, extending around the circumference<br />

of the torus, is a 1.45 m (4.75 ft) diameter vent header. The 8 drywell<br />

vents connect to this vent header. Projecting down from the vent header<br />

are 96 downcomer pipes which termin<strong>at</strong>e 1.22 m (4 ft) below the surface of<br />

the w<strong>at</strong>er. At 13 unevenly distributed positions around the PSP, discharge<br />

lines from the safety relief valves extend through the vent pipes and ter<br />

min<strong>at</strong>e in a T-quencher device loc<strong>at</strong>ed near the bottom of the pool. Figure<br />

D-2 shows a cross section of the PSP and the rel<strong>at</strong>ive loc<strong>at</strong>ions of the<br />

vent pipe, vent header, downcomer, SRV discharge line, and the T-quencher,<br />

which has been rot<strong>at</strong>ed 90° for the purpose of illustr<strong>at</strong>ion. Near the<br />

bottom of the PSP, a 0.762 m (30-in.) suction header (ring header) cir<br />

cumscribes the torus and connects to the pool <strong>at</strong> four loc<strong>at</strong>ions. At<br />

<strong>Browns</strong> <strong>Ferry</strong>, the RHR, HPCI, core spray, and RCIC systems are supplied<br />

from this header.


SUPPRESSION<br />

CHAMBER<br />

TOROIDAL<br />

HEADER<br />

enclosed.<br />

207<br />

ORNL-DWG 79-7611A ETD<br />

DRYWELL<br />

REACTOR VESSEL<br />

REACTOR BUILDING<br />

Fig. D.l BWR reactor building showing primary containment system<br />

The torus which contains the pressure suppression pool is designed to<br />

essentially the same requirements as the drywell liner, i.e., a maximum<br />

internal pressure of 0.531 MPa (62 psig) <strong>at</strong> 138°C (281°F), but neither the<br />

drywell nor the torus is designed to withstand the stresses which would be<br />

cre<strong>at</strong>ed by a significant internal vacuum. To ensure th<strong>at</strong> a significant<br />

vacuum can not occur in the drywell, vacuum breaker valves are installed,<br />

which will open to permit flow from the PSP airspace into the drywell<br />

whenever the suppression pool pressure exceeds the drywell pressure by<br />

more than 3447 Pa (0.5 psi). Additional vacuum breaker valves with the<br />

same setpoints are installed to permit flow from the Reactor Building into<br />

the PSP airspace, to prevent a significant vacuum there.<br />

D.4 Identific<strong>at</strong>ion of the Phenomena<br />

The thermal hydraulic phenomena associ<strong>at</strong>ed with a BWR pressure sup<br />

pression pool are mainly those dealing with the PSP response during two


RING GIRDER<br />

ECCS<br />

SUCTION<br />

LINE<br />

t = 0.756 in.<br />

MAIN VENT-<br />

BELLOWS<br />

Fig. D.2 <strong>Browns</strong> <strong>Ferry</strong> Mark I containment pressure suppression<br />

pool.<br />

ORNL-DWG 81-8567 ETD<br />

SAFETY RELIEF VALVE<br />

DISCHARGE LINE<br />

ro<br />

o<br />

oo


209<br />

types of transients: (1) LOCA-rel<strong>at</strong>ed phenomena and (2) SRV-discharge<br />

phenomena.<br />

A. LOCA — Rel<strong>at</strong>ed Phenomena<br />

Immedi<strong>at</strong>ely following the pipe break in a LOCA, the drywell pressure<br />

and temper<strong>at</strong>ure increase very quickly. The pressure increase forces w<strong>at</strong>er<br />

standing in the downcomer to acceler<strong>at</strong>e rapidly into the PSP and impinge<br />

on the torus wall. Following the slug of w<strong>at</strong>er, air th<strong>at</strong> was in the vent<br />

pipes and drywell is forced into the PSP. This forms a bubble of air <strong>at</strong><br />

the downcomer exit which expands into the suppression chamber and causes<br />

the pool to swell. As the air bubble rises into the torus airspace, the<br />

w<strong>at</strong>er will experience a gravity-induced fallback and phase separ<strong>at</strong>ion will<br />

again occur.<br />

The pool swell transient described above lasts on the order of 3 to 5<br />

s.30 It has been studied by several authors, both experimentally31-33 and<br />

numerically.3•+,35 The consensus is th<strong>at</strong> pool swell impingement and drag<br />

loads induced during a LOCA are conserv<strong>at</strong>ively estim<strong>at</strong>ed and acceptable.<br />

Immedi<strong>at</strong>ely following the pool swell transient, an air/steam mixture<br />

will flow into the PSP. Early in this process, when the mass flow r<strong>at</strong>e is<br />

high, the injected steam condenses <strong>at</strong> an unsteady r<strong>at</strong>e causing periodic<br />

oscill<strong>at</strong>ions in the pressure and flow. However, since the mass flux is<br />

high enough to maintain the steam/w<strong>at</strong>er interface outside the downcomer,<br />

the overall condens<strong>at</strong>ion proceeds <strong>at</strong> a regular r<strong>at</strong>e. This phenomenon is<br />

known as condens<strong>at</strong>ion oscill<strong>at</strong>ion. It is characterized by a steady, peri<br />

odic vari<strong>at</strong>ion in the pressure which forces local structures within the<br />

torus to vibr<strong>at</strong>e in phase with the oscill<strong>at</strong>ions. Condens<strong>at</strong>ion oscill<strong>at</strong>ion<br />

has been studied experimentally36»37 and analytically;37>38 however,<br />

the basic driving mechanism for the pressure resonance has not been iden<br />

tified.39<br />

When the air/steam flow through the downcomer decreases to the point<br />

where the condens<strong>at</strong>ion r<strong>at</strong>e outside the pipe exceeds the steam flow exit<br />

ing the pipe, the steam bubble collapses very rapidly. This results in a<br />

large drop in the steam pressure and the steam-w<strong>at</strong>er interface rushes up<br />

into the downcomer. Once there, the interface is warmed by condensing<br />

steam and the condens<strong>at</strong>ion r<strong>at</strong>e begins to decrease. At some point, the<br />

steam pressure will rise, and the interface is pushed out of the downcomer<br />

to form an irregularly shaped bubble <strong>at</strong> the pipe exit. The bubble begins<br />

to collapse; and the entire process, known as chugging, repe<strong>at</strong>s. Chugg<br />

ing is characterized by rapid, irregular interface acceler<strong>at</strong>ions and pres<br />

sure oscill<strong>at</strong>ions th<strong>at</strong> cause large loads on the torus structure.<br />

The chugging phenomenon is very similar to the condens<strong>at</strong>ion oscilla<br />

tion problem. It has also been studied in detail, with analysis methods<br />

which range from manometer-like models th<strong>at</strong> <strong>at</strong>tempt to predict the gross<br />

motion of the interface, to probabilistic models th<strong>at</strong> <strong>at</strong>tempt to predict<br />

internal chugging."40"1*2 The central problems which plague analysis of<br />

the chugging phenomenon are (1) high uncertainty in the basic condens<strong>at</strong>ion<br />

r<strong>at</strong>es involved and (2) lack of understanding of the triggering mechanism<br />

for bubble collapse.<br />

Both of the condens<strong>at</strong>ion phenomena (chugging and condens<strong>at</strong>ion oscil<br />

l<strong>at</strong>ion) involve transient, stochastic, turbulent, two phase flow. Because


210<br />

of the complexity of these problems, no accur<strong>at</strong>e assessment has been made<br />

of the loads involved.30 Consequently, the analysis of PSP response to<br />

condens<strong>at</strong>ion oscill<strong>at</strong>ions must rely on d<strong>at</strong>a from experiments which model<br />

plant behavior. Thus, there is a need for improvement of the analysis<br />

capability in this area.<br />

B. SRV — Discharge Phenomena<br />

When a SRV actu<strong>at</strong>es, w<strong>at</strong>er and air initially in the discharge line<br />

are immedi<strong>at</strong>ely acceler<strong>at</strong>ed into the PSP. This results in air-clearing<br />

loads much the same as the pool swell loads discussed earlier. These<br />

loads are of no major consequence because they can be adequ<strong>at</strong>ely "scaled"<br />

from the results of labor<strong>at</strong>ory experiments.<br />

Following the air-clearing phase, steam is injected <strong>at</strong> high velocity<br />

into the PSP. Experience has shown th<strong>at</strong>, depending on the discharge de<br />

vice used, condens<strong>at</strong>ion oscill<strong>at</strong>ions can occur as steam bubbles exit the<br />

pipe and collapse in the bulk fluid. As the steam bubbles collapse,<br />

severe pressure oscill<strong>at</strong>ions are induced on the surrounding structures.<br />

Current practice is to limit the severity of these oscill<strong>at</strong>ions by using a<br />

T-quencher device.^3 The T-quencher is a section of pipe (in the form<br />

of a "T") with holes str<strong>at</strong>egically drilled in the arms to enhance local<br />

mixing. The T-quencher has been shown to be very effective in elimin<strong>at</strong>ing<br />

the severity of the pressure pulses, provided the local bulk fluid temper<br />

<strong>at</strong>ure is sufficiently low.<br />

This is the factor th<strong>at</strong> establishes a limit on the effectiveness of<br />

the T-quencher — the local fluid temper<strong>at</strong>ure. If it becomes too high,<br />

the PSP will not be able to rapidly condense all the steam. Some of it<br />

will escape into the air space above the pool and pressurize the torus.<br />

When the suppression pool pressure becomes 3447 Pa (0.5 psi) gre<strong>at</strong>er than<br />

the drywell, the vacuum breakers will open and steam will escape into the<br />

drywell (forcing the temper<strong>at</strong>ure and pressure up). As more steam is dis<br />

charged to the PSP, the drywell and torus pressure will continue to in<br />

crease.<br />

It is concern for this increase in drywell pressure (possibly result<br />

ing in overpressuriz<strong>at</strong>ion) th<strong>at</strong> has led to the establishment of strict<br />

procedures for the sequential ordering of SRV blowdowns to the PSP. Cur<br />

rent practice involves sequentially venting SRVs on opposite sides of the<br />

torus; this prevents excessive local temper<strong>at</strong>ures near any discharge<br />

point.<br />

More recently, concern has been expressed over the long term response<br />

of the PSP during a prelonged <strong>St<strong>at</strong>ion</strong> Blackout. During part of this<br />

scenario, the oper<strong>at</strong>or loses manual control of the SRVs. The long term<br />

result is th<strong>at</strong> a single SRV will continually open into the PSP. The local<br />

fluid temper<strong>at</strong>ure will monotonically rise, resulting in pressuriz<strong>at</strong>ion of<br />

the torus and possible condens<strong>at</strong>ion oscill<strong>at</strong>ions. The potential exists<br />

for rupture of the torus due to overpressure coupled with violent pressure<br />

oscill<strong>at</strong>ions.<br />

For example, this potential exists in the particular case of a Sta<br />

tion Blackout with loss of the HPCI and RCIC systems. At about 100 min<br />

into the transient, local pool temper<strong>at</strong>ures <strong>at</strong> the discharge bay are post<br />

ul<strong>at</strong>ed (c.f. Section 9) to be gre<strong>at</strong>er than 149°C (300°F). At th<strong>at</strong> time,


211<br />

steam condens<strong>at</strong>ion oscill<strong>at</strong>ions are expected to acceler<strong>at</strong>e due to the ex<br />

cessive temper<strong>at</strong>ure and the continuous discharge of superhe<strong>at</strong>ed, non-condensible<br />

gases (from hydrogen gener<strong>at</strong>ed in the melting core) into the PSP.<br />

These extreme conditions in the PSP yield a high probability for rupture<br />

of the torus.<br />

Along with the temper<strong>at</strong>ure rise assoc<strong>at</strong>ed with SRV discharge comes a<br />

gravity induced thermal str<strong>at</strong>ific<strong>at</strong>ion of the pool. This phenomenon is of<br />

interest because the layering tends to remain long after SRV discharge is<br />

complete. Since the str<strong>at</strong>ific<strong>at</strong>ion remains for a significant period of<br />

time, the validity of the current design basis for Mark I PSPs becomes<br />

questionable. This is because a fundamental assumption in virtually all<br />

the transient analyses is th<strong>at</strong> the pool is thoroughly mixed and <strong>at</strong> a uni<br />

form temper<strong>at</strong>ure following SRV blowdown. The impact of thermal str<strong>at</strong>ifi<br />

c<strong>at</strong>ion on the performance of the PSP remains to be evalu<strong>at</strong>ed.<br />

Thermal str<strong>at</strong>ific<strong>at</strong>ion is also of interest because the temper<strong>at</strong>ure<br />

distribution in the PSP affects the fission product distribution in the<br />

torus. Should a breach of primary containment occur, transport of the fis<br />

sion products to the environment will depend, to some extent, on the the<br />

rmal str<strong>at</strong>ific<strong>at</strong>ion in the torus. Thus, an analysis of fission product<br />

transport is coupled with the thermal str<strong>at</strong>ific<strong>at</strong>ion problem.<br />

To the best of our knowledge, no inform<strong>at</strong>ion is available in the open<br />

liter<strong>at</strong>ure concerning system<strong>at</strong>ic analysis of the thermal str<strong>at</strong>ific<strong>at</strong>ion<br />

problem. There is therefore the need for research in this area.<br />

Model requirements<br />

D.5 Pool Modeling Consider<strong>at</strong>ions<br />

The prediction of suppression pool system behavior during the course<br />

of a Severe Accident is an exceedingly difficult task. The previously de<br />

scribed phenomena comprise a complex set of physical processes for which<br />

few detailed analytical models currently exist. These phenomena can be<br />

roughly divided into two types, i.e., thermal hydraulic phenomena and<br />

fluid-structure interaction phenomena. The initial efforts <strong>at</strong> ORNL are<br />

directed toward the development of the thermal hydraulic model. A brief<br />

survey was conducted to identify existing multi-dimensional thermal hy<br />

draulic analysis codes which might be applied to the problem. The re<br />

sults of the survey are shown in Table Dl which presents a brief summary<br />

of the candid<strong>at</strong>e codes.<br />

Due to the n<strong>at</strong>ure of the previously described phenomena, it was felt<br />

th<strong>at</strong> any model employed for suppression pool analysis should possess the<br />

following characteristics:<br />

1. Appropri<strong>at</strong>e hydrodynamics<br />

a. two phase<br />

b. non-equilibrium<br />

c. free field form<strong>at</strong> (equ<strong>at</strong>ions and constitutive rel<strong>at</strong>ionships<br />

independent of hydraulic diameter)<br />

d. incorpor<strong>at</strong>e a non-condensable gas field<br />

e. employ multi-dimensional geometry (3 dimensions desirable)<br />

2. Employ appropri<strong>at</strong>e constitutive rel<strong>at</strong>ionships<br />

3. Utilize efficient solution techniques<br />

4. Readily accessable to ORNL staff.


212<br />

Table Dl. Candid<strong>at</strong>e suppression pool analysis codes<br />

Code Developer Geometry T-H characteristics<br />

TRAC LANL 3D cylindrical 2 fluid<br />

(PIA, PD2) nonequilibrium<br />

COBRA-TF BPNL 3D cartesian 3 field<br />

nonequlibrium<br />

CCMMIX-2 ANL 3D 2 fluid<br />

BEAC0N/Mod2 INEL 2D cartesian<br />

cylindrical<br />

spherical<br />

nonequilibrium<br />

2 component vapor<br />

2 phase<br />

nonequilibrium<br />

Requirements l.a and l.b are imposed by the complex n<strong>at</strong>ure of the conden<br />

s<strong>at</strong>ion processes involved in SRV discharge and LOCA blowdown transients.<br />

Requirement l.c is a result not only of the n<strong>at</strong>ure of the SRV discharge<br />

process, but of the geometric dimensions of the suppression pool. The en<br />

ormous size and complex structural design of the suppression pool system<br />

virtually mand<strong>at</strong>es th<strong>at</strong> free field hydrodynamics be employed. Requirement<br />

l.d is imposed because significant amounts of non-condensable gases will<br />

be released from the fuel and gener<strong>at</strong>ed in metal-w<strong>at</strong>er reactions during<br />

Severe Accidents. Requirement I.e. is imposed by the n<strong>at</strong>ure of the hydrodynamic<br />

phenomena and the complex structural rel<strong>at</strong>ionship of the SRV<br />

discharge lines, vent downcomers, and ring header suction system. Appro<br />

pri<strong>at</strong>e constitutive rel<strong>at</strong>ionships (requirement 2) are needed for closure<br />

of the hydrodynamic field equ<strong>at</strong>ions. Many of the rel<strong>at</strong>ionships employed<br />

in existing thermo-hydraulic codes may be invalid for use in the present<br />

problem. Requirement 3 is imposed by the fact th<strong>at</strong> it will be necessary<br />

to predict the behavior of the suppression pool for periods of time rang<br />

ing from a few minutes to several hours. It is, therefore, important th<strong>at</strong><br />

all codes employ fast solution techniques in order to minimize computing<br />

costs. The fourth characteristic is desired because the computer code<br />

selected for the analysis will require local modific<strong>at</strong>ion as necessary to<br />

reflect the unique characteristics of the suppression pool problem.<br />

We are unaware of any existing computer code or model which pos<br />

sesses all of the desirable characteristics outlined above. The initial<br />

effort <strong>at</strong> ORNL is directed toward development of a pool model utilizing<br />

the TRAC-PIA"*1* vessel module. TRAC (Transient Reactor Analysis Code)<br />

— PIA is a best estim<strong>at</strong>e computer code developed <strong>at</strong> Los Alamos Na<br />

tional Labor<strong>at</strong>ory for analysis of large break PWR loss of coolant acci<br />

dents. Although more recent versions of TRAC are available (i.e., PD2,<br />

PF1, and BD1), TRAC-PIA was chosen for this applic<strong>at</strong>ion because it is in<br />

stalled and oper<strong>at</strong>ional on ORNL's computer system.<br />

While TRAC-PIA does employ a full three dimensional, two fluid, non<br />

equlibrium approach to reactor vessel hydrodynamics, it does not account<br />

for free flow or non-condensable gas fields. Additionally, the constitu<br />

tive rel<strong>at</strong>ionships employed In TRAC-PIA are based upon d<strong>at</strong>a which was


213<br />

originally developed for vertical pipe flow and may not be valid for ap<br />

plic<strong>at</strong>ion to steam jet discharge phenomena.1*5 Though these limit<strong>at</strong>ions<br />

are significant, it is felt th<strong>at</strong> our access to TRAC-PIA will allow us to<br />

implement any changes in the constitutive rel<strong>at</strong>ionship package which might<br />

be necessary to reflect the characteristics of the suppression pool<br />

phenomena. LANL is currently modifying TRAC to include non-condensable<br />

gas field hydrodynamics (TRAC-PF1). ORNL's utiliz<strong>at</strong>ion of TRAC-PIA will<br />

allow us to quickly implement this modified version when it becomes avail<br />

able.<br />

We have tent<strong>at</strong>ively chosen the PELE-IC1*6 code for future use in an<br />

alysis of the fluid-structure interaction within the suppression pool.<br />

PELE-IC (developed by LLL) couples a two dimensional Eulerian fluid dy<br />

namics algorithm to a Lagrangian finite element shell algorithm. The code<br />

can couple either a one dimensional or a lumped parameter description of<br />

compressible gases, and can employ either cartesian or cylindrical coordi<br />

n<strong>at</strong>es. PELE-IC employs the basic semi-implicit solution algorithm con<br />

tained in the SOLA code.1*7 The movement of free surfaces is tre<strong>at</strong>ed in<br />

a full donar cell fashion based on a combin<strong>at</strong>ion of void fractions and<br />

interface orient<strong>at</strong>ion. The structural motion is calcul<strong>at</strong>ed by a finite<br />

element method, from the applied fluid pressure <strong>at</strong> the fluid structure in<br />

terface. The finite element shell structure algorithm uses conventional<br />

thin shell theory with transverse shear and provides the fluid module with<br />

the resultant position and velocity of the interface. The code is capable<br />

of analyzing both vent clearing and condens<strong>at</strong>ion rel<strong>at</strong>ed phenomena.<br />

TRAC suppression pool model description<br />

A block diagram of the ORNL-TRAC suppression pool model is shown in<br />

Fig. D-3. The model is comprised of the TRAC VESSEL module which repre<br />

sents the pool hydrodynamics, and two FILL and PIPE modules, which repre<br />

sent the SRV discharge flow and T-quencher assembly. A detailed view of<br />

ORNL-DWG 81-8150 ETD<br />

FILL<br />

PIPE PIPE<br />

1<br />

VESSEL<br />

Fig. D.3 Suppression pool model block diagram.<br />

1


214<br />

the pool model is shown in Figs. D-4 and D-5. The pool is represented as<br />

112 cells in cylindrical geometry, loc<strong>at</strong>ed <strong>at</strong> five axial, four azimuthal,<br />

and eight radial regions. SRV discharge is assumed to occur as shown in<br />

Figs. D-4 and D-5. Half of the SRV discharge flow is directed radially<br />

inward from the fifth radial zone, while the other half is directed ra<br />

dially outward. It should be noted th<strong>at</strong> the T-quencher is not modeled in<br />

a strictly physical fashion, since the discharge is assumed to occur<br />

through a single open ended pipe with a flow area approxim<strong>at</strong>ely equal to<br />

th<strong>at</strong> of the T-quencher device. This approach was chosen for the initial<br />

model due to the significant reduction in input prepar<strong>at</strong>ion time and<br />

model complexity associ<strong>at</strong>ed with this approach. The initial w<strong>at</strong>er level<br />

is assumed to be 4.47 meters above the pool bottom (i.e., <strong>at</strong> level 4 in<br />

0, = 0.0165689 rad<br />

62 = 2.1053743 rad<br />

03 = 4.1942798 rad<br />

04 = 6.2831853 rad<br />

Fig. D.4 Suppression pool model top view.<br />

ORNL-DWG 81-8151 ETD<br />

TOP VIEW<br />

R, = 12.3901 m<br />

R2 = 12.9311 m<br />

R3 = 13.5239 m<br />

R4 = 14.7035 m<br />

16.9926 m<br />

19.2877 m<br />

R7 = 20.4643 m<br />

R8 = 21.0601 m<br />

R9 = 21.6011 m


VESSEL<br />

CENTER<br />

R6 R7 R8 Rg<br />

Fig. D.5 Suppression pool model cross section.<br />

ORNL-DWG 81-8152 ETD<br />

HALF CROSS SECTION VIEW AT AA<br />

B8 NO FLOW REGION<br />

INITIAL FLUID CELLS<br />

M INITIAL VAPOR CELLS<br />

|S3<br />

H


216<br />

Fig. D-5) with all cells in level 5 occupied by vapor. Internal struc<br />

tures (vent header, down comers, etc.) are not modeled.<br />

Current st<strong>at</strong>us of suppression pool model<br />

Several preliminary computer runs have been made in which TRAC d<strong>at</strong>a<br />

base errors have been identified and elimin<strong>at</strong>ed. We are currently exper<br />

iencing problems rel<strong>at</strong>ed to the limit<strong>at</strong>ions of TRAC-PIA in accounting for<br />

the simultaneous existence of steam (vapor) and perfect gas (nitrogen)<br />

within the vessel. The TRAC user must specify th<strong>at</strong> either vapor or air<br />

properties be used everywhere within the code. In terms of the pressure<br />

suppression pool, this means th<strong>at</strong> the nitrogen gas (which is loc<strong>at</strong>ed in<br />

the space above the pool) must be tre<strong>at</strong>ed as subcooled vapor if one is to<br />

inject steam into the pool. It is also possible th<strong>at</strong> the constitutive re<br />

l<strong>at</strong>ionships within TRAC are producing instabilities in the solution due to<br />

their dependence upon hydraulic diameter and fluid property inform<strong>at</strong>ion.<br />

We are currently working closely with the TRAC User Liaison Section <strong>at</strong><br />

LANL in an effort to determine whether these problems can be overcome. In<br />

the event these problems prove to be insurmountable, we will re-evalu<strong>at</strong>e<br />

the remaining code candid<strong>at</strong>es and select an altern<strong>at</strong>ive program for the<br />

suppression pool thermal hydraulic analysis.


217<br />

APPENDIX E<br />

A COMPENDIUM OF INFORMATION CONCERNING THE BROWNS FERRY<br />

UNIT 1 HIGH-PRESSURE COOLANT INJECTION SYSTEM<br />

E.1 Purpose<br />

The High-Pressure Coolant Injection (HPCI) System is designed to en<br />

sure adequ<strong>at</strong>e core cooling to prevent damage to fuel in the event of a<br />

loss of coolant accident th<strong>at</strong> does not result in rapid depressuriz<strong>at</strong>ion of<br />

the reactor vessel. The HPCI System provides w<strong>at</strong>er to make up for th<strong>at</strong><br />

which is lost through steam gener<strong>at</strong>ed by decay he<strong>at</strong>.1*8<br />

E.2 System Description<br />

The HPCI System (Fig. E-l) consists of a steam turbine driven booster<br />

pump — main pump combin<strong>at</strong>ion and the associ<strong>at</strong>ed piping and valves.<br />

The booster pump can take suction from either the condens<strong>at</strong>e storage tank<br />

or the pressure suppression pool. The HPCI pumped flow enters the reactor<br />

vessel feedw<strong>at</strong>er line "A" via a thermal sleeve connection. A test line<br />

permits testing of the HPCI System <strong>at</strong> full flow while the reactor is <strong>at</strong><br />

power, with the main pump discharge routed to the condens<strong>at</strong>e storage tank.<br />

A minimum flow line connects the main pump discharge to the pressure sup<br />

pression pool, as a means of ensuring a flow of <strong>at</strong> least 0.038 m3/s (600<br />

GPM) through the pumps. The normal setpoint for HPCI pumped flow is<br />

18.93 m3/s (5000 GPM).<br />

The HPCI turbine is driven by steam extracted from main steam line<br />

"B" upstream of the main steam line isol<strong>at</strong>ion valves. The two primary<br />

containment isol<strong>at</strong>ion valves in the steam line to the HPCI turbine are<br />

normally open to keep the piping to the turbine <strong>at</strong> elev<strong>at</strong>ed temper<strong>at</strong>ures<br />

to permit rapid system startup (within 25 s of receipt of an initi<strong>at</strong>ion<br />

signal). The normally closed DC-motor-oper<strong>at</strong>ed steam supply valves up<br />

stream of the HPCI turbine will open against full system pressure within<br />

20 s after receipt of a system initi<strong>at</strong>ion signal. Signals from the con<br />

trol system open or close the turbine stop valve. The turbine control<br />

valve is physically <strong>at</strong>tached to the HPCI turbine and is positioned by the<br />

turbine governor as necessary to maintain the pumped flow <strong>at</strong> the level set<br />

by the oper<strong>at</strong>or, normally 0.315 m3/s (5000 GPM). The turbine exhaust<br />

steam is discharged to the pressure suppression pool. The turbine gland<br />

seals are vented to a gland seal condenser. A small w<strong>at</strong>er flow diverted<br />

from the booster pump discharge is used to cool both the turbine lubric<strong>at</strong><br />

ing oil cooler and the gland seal condenser. This cooling flow is re<br />

turned, together with the gland seal condens<strong>at</strong>e, to the booster pump suc<br />

tion. Noncondensible gases from the gland seal condenser are removed via<br />

a DC-motor-oper<strong>at</strong>ed blower to the Standby Gas Tre<strong>at</strong>ment System.<br />

A vacuum breaker line (not shown on Fig. E-l) is installed between<br />

the torus airspace and the HPCI turbine exhaust line. Its purpose is to<br />

prevent w<strong>at</strong>er from the pressure suppression pool from being drawn up into<br />

the turbine exhaust line as the steam condenses in this line following<br />

turbine oper<strong>at</strong>ion.


ELEVATION 577 ft<br />

6<br />

CONDENSATE<br />

RETURN<br />

HEADER<br />

SUPPRESSION<br />

POOL<br />

SUPPRESSION<br />

CHAMBER<br />

HEADER<br />

CONDENSATE<br />

STORAGE<br />

TANK<br />

CONDENSATE<br />

SUPPLY O<br />

HEADER ^<br />

WATER<br />

LEVEL<br />

ELEVATION<br />

536 ft<br />

•hJvi-<br />

PUMP


219<br />

E.3 HPCI Pump Suction<br />

The HPCI pump can take suction either from the condens<strong>at</strong>e storage<br />

header or from the pressure suppression pool via the suppression pool ring<br />

header. The normal lineup is for suction of the reactor-grade w<strong>at</strong>er in<br />

the condens<strong>at</strong>e storage header.<br />

Each <strong>Browns</strong> <strong>Ferry</strong> unit is provided with a 1419.4 m3 (375,000 gal<br />

lon) condens<strong>at</strong>e storage tank, which provides a w<strong>at</strong>er head to the storage<br />

header for th<strong>at</strong> unit. The storage header, which taps into the bottom of<br />

the storage tank, feeds the suctions of the high-pressure ECCS Systems,<br />

specifically, the pumps for the HPCI and the RCIC systems. The core spray<br />

pumps and the RHR pumps can be fed from this source, but are not normally<br />

aligned to it. All other demand for condens<strong>at</strong>e storage tank w<strong>at</strong>er is fed<br />

via a standpipe within the tank; the standpipe height is such th<strong>at</strong> 511.0<br />

m3 (135,000 gallons) of w<strong>at</strong>er is reserved for the ECCS Systems.<br />

It is important to note th<strong>at</strong> the local-manual opening of one normally<br />

locked-shut valve will cross-connect the <strong>Unit</strong> 3 and the <strong>Unit</strong> 1 condens<strong>at</strong>e<br />

storage header; the opening of a second such valve will cross-connect all<br />

three condens<strong>at</strong>e storage headers.1*9 Thus the <strong>Unit</strong> 1 ECCS Systems have a<br />

minimum of 511.0 and a maximum of 1419.4 m3 (135,000 to 375,000 gallons)<br />

available through normally open valves from the <strong>Unit</strong> 1 storage tank and<br />

these limits can be increased three-fold by manually opening two normally<br />

locked-closed valves. Two additional condens<strong>at</strong>e storage tanks, each of<br />

1892.5 m3 (500,000 gallon) capacity, have recently been installed <strong>at</strong> the<br />

<strong>Browns</strong> <strong>Ferry</strong> Nuclear Plant. Thus it is unlikely th<strong>at</strong> HPCI System opera<br />

tion will ever be limited by the availability of condens<strong>at</strong>e storage header<br />

w<strong>at</strong>er.<br />

The HPCI booster pump suction will be autom<strong>at</strong>ically shifted from the<br />

condens<strong>at</strong>e storage header to the suppression pool ring header if either:<br />

1. The w<strong>at</strong>er level above the booster pump suction falls to an elev<strong>at</strong>ion<br />

of 168.4 m (551 ft). This would mean th<strong>at</strong> the condens<strong>at</strong>e storage tank<br />

had completely drained and there remained just sufficient w<strong>at</strong>er in the<br />

condens<strong>at</strong>e storage header to effect a transfer before losing net posi<br />

tive suction head (NPSH).<br />

or<br />

2. The pressure suppression pool level increases to an indic<strong>at</strong>ed level of<br />

0.18 m (+7 in). Since the normal pool level is maintained between<br />

0.05 and 0.15 m ( 2 and 6 in.),50 this implies the addition of<br />

between 257.4 and 371.0 m3 (68,000 and 98,000 gallons) of w<strong>at</strong>er to<br />

the pool.<br />

The 0.76 m (30 in.) diameter suppression pool ring header lies parallel to<br />

and bene<strong>at</strong>h the suppression pool. W<strong>at</strong>er flow from the suppression pool to<br />

the ring header is via four 0.76 m (30 in.) diameter downcomer pipes<br />

spaced <strong>at</strong> irregular intervals around the torus. Each downcomer is capped<br />

with strainers <strong>at</strong> the torus end.<br />

The change in HPCI pump suction lineup is accomplished by the opening<br />

of two DC-motor-oper<strong>at</strong>ed valves in the line from the pressure suppression<br />

pool to the HPCI booster pump suction followed by the closing of the DCmotor-oper<strong>at</strong>ed<br />

valve in the suction line from the condens<strong>at</strong>e storage<br />

header. A check valve in the line from the suppression pool prevents<br />

backflow from the condens<strong>at</strong>e storage tank into the suppression pool during<br />

the change.


220<br />

Two pressure switches are used to determine the w<strong>at</strong>er head from the<br />

condens<strong>at</strong>e storage tank above the booster pump suction and two level<br />

switches monitor the suppression pool level. In either case, just one of<br />

the two available signals is sufficient to initi<strong>at</strong>e the shift in HPCI<br />

booster pump suction. Once the booster pump suction has been autom<strong>at</strong>i<br />

cally shifted to the pressure suppression pool, the oper<strong>at</strong>or cannot re<br />

position the valves back to the condens<strong>at</strong>e header suction lineup.<br />

The minimum required net positive suction head (NPSH) for the HPCI<br />

booster pump is 6.40 m (21 ft). This requirement is easily s<strong>at</strong>isfied when<br />

suction is taken from the condens<strong>at</strong>e storage header which is <strong>at</strong> an eleva<br />

tion of approxim<strong>at</strong>ely 8.69 m (28 1/2 ft) above the booster pump centerline.<br />

When the HPCI booster pump suction is shifted to the pressure sup<br />

pression pool due to a high indic<strong>at</strong>ed pool level of 0.18 m (+7 in.), the<br />

pool w<strong>at</strong>er level is 4.04 m (13.25 ft) above the booster pump centerline.<br />

Therefore, the NPSH requirement of 6.40 m (21 ft) can be met as long as<br />

the temper<strong>at</strong>ure of the pumped w<strong>at</strong>er is below 85.0°C (185°F), assuming no<br />

containment back pressure.<br />

E.4 System Initi<strong>at</strong>ion<br />

Either of two signals will cause an autom<strong>at</strong>ic start of the HPCI Sys<br />

tem. These are:<br />

1. Low reactor w<strong>at</strong>er level [12.09 m (476 in.) above vessel zero].<br />

2. High drywell pressure [0.12 MPa (2 psig)].<br />

With either of these conditions, both the suction valve to the con<br />

dens<strong>at</strong>e storage header and the minimum flow bypass valve will open if they<br />

were closed. The pump discharge valve between the main HPCI pump and<br />

feedw<strong>at</strong>er header "A" will open, and the two test line isol<strong>at</strong>ion valves<br />

will close if they were open. The steam supply valve to the turbine will<br />

open.*<br />

The DC-motor-driven auxiliary oil pump starts and as the oil pressure<br />

increases, the turbine stop and control valves open. Above 1800 rpm, the<br />

main oil pump which is driven on the turbine shaft takes over and main<br />

tains the oil pressure while the auxiliary oil pump shuts down. The mini<br />

mum flow bypass valve closes autom<strong>at</strong>ically when the increasing HPCI System<br />

pump flow exceeds 0.076 m3/s (1200 GPM).<br />

The time from actu<strong>at</strong>ing signal to full flow is less than 25 seconds.<br />

The turbine control system will act to maintain a pumped flow of 0.315<br />

m /s (5000 GPM) into the feedw<strong>at</strong>er line over a reactor pressure range of<br />

from 1.14 to 7.83 MPa (150 to 1120 psig). If desired, the oper<strong>at</strong>or in the<br />

Control Room can oper<strong>at</strong>e the system in the manual or autom<strong>at</strong>ic mode <strong>at</strong> a<br />

different controlled flow.<br />

The HPCI turbine oper<strong>at</strong>es <strong>at</strong> between 0.746 to 3.356 MW, (1000 and<br />

4500 horsepower) with a steam demand of between 6.17 to 23.18 kg/s (49,000<br />

and 184,000 lbs/h). System steam and pumped w<strong>at</strong>er flows <strong>at</strong> oper<strong>at</strong>ing con<br />

ditions are given in tabular form on Fig. 6.4.1 of the <strong>Browns</strong> <strong>Ferry</strong> FSAR.<br />

*The two normally-open primary containment isol<strong>at</strong>ion valves in the<br />

steam supply line will not reopen, if closed.


221<br />

E.5 Turbine Trips<br />

On an HPCI turbine trip, the turbine stop valve closes and the mini<br />

mum flow bypass valve to the pressure suppression pool closes to preclude<br />

drainage from the condens<strong>at</strong>e storage header into the suppression pool.<br />

The following conditions will cause turbine trip:<br />

1. High reactor vessel w<strong>at</strong>er level [14.78 m (582 in.) above vessel zero].<br />

2. High HPCI turbine exhaust pressure [1.14 MPa (150 psig)].<br />

3. Low HPCI booster pump suction pressure [—0.381 m (—15 in.) Hg].<br />

4. HPCI turbine mechanical overspeed (5000 rpm).<br />

5. Any HPCI isol<strong>at</strong>ion signal.<br />

6. Remote manual trip from Control Room.<br />

7. Manual trip lever on the HPCI turbine.<br />

All turbine trips except high reactor w<strong>at</strong>er level and HPCI isol<strong>at</strong>ion will<br />

reset autom<strong>at</strong>ically when the initi<strong>at</strong>ing condition clears. The high reac<br />

tor w<strong>at</strong>er level signal can be reset manually, or will reset autom<strong>at</strong>ically<br />

when the reactor w<strong>at</strong>er level decreases to the low reactor w<strong>at</strong>er level HPCI<br />

initi<strong>at</strong>ion point, 12.09 m (476 in.) above vessel zero. The HPCI isol<strong>at</strong>ion<br />

signal must be manually reset.<br />

E.6 System Isol<strong>at</strong>ion<br />

The Primary Containment and Reactor Vessel Isol<strong>at</strong>ion Control System<br />

initi<strong>at</strong>es autom<strong>at</strong>ic isol<strong>at</strong>ion of appropri<strong>at</strong>e pipelines which penetr<strong>at</strong>e the<br />

primary containment whenever certain monitored variables exceed their pre<br />

selected oper<strong>at</strong>ional limits. The system is designed so th<strong>at</strong>, once initi<br />

<strong>at</strong>ed, autom<strong>at</strong>ic isol<strong>at</strong>ion continues to completion. Return to normal oper<br />

<strong>at</strong>ion after isol<strong>at</strong>ion requires deliber<strong>at</strong>e oper<strong>at</strong>or action.<br />

An autom<strong>at</strong>ic isol<strong>at</strong>ion signal for the HPCI System causes the inboard<br />

and outboard HPCI steam line isol<strong>at</strong>ion valves to close, trips the HPCI<br />

turbine, and closes the two motor-oper<strong>at</strong>ed valves in the suction line from<br />

the pressure suppression pool. The inboard steam line isol<strong>at</strong>ion valve is<br />

AC-motor-oper<strong>at</strong>ed, the outboard DC-motor-oper<strong>at</strong>ed. The maximum closing<br />

time for these valves is 20 s.<br />

The following conditions cause a HPCI System isol<strong>at</strong>ion signal:52<br />

1. HPCI System equipment space high temper<strong>at</strong>ure. Since high temper<strong>at</strong>ure<br />

in the vicinity of the steam supply line or other HPCI equipment could<br />

indic<strong>at</strong>e a break in the turbine steam supply line, an isol<strong>at</strong>ion signal<br />

is gener<strong>at</strong>ed if this temper<strong>at</strong>ure exceeds 93.3°C (200°F). This temper<br />

<strong>at</strong>ure is sensed by four sets of four bimetallic temper<strong>at</strong>ure switches.<br />

These 16 temper<strong>at</strong>ure switches are arranged in four trip systems with<br />

four temper<strong>at</strong>ure switches in each trip system. The four temper<strong>at</strong>ure<br />

switches in each trip system are arranged in one-out-of-two taken<br />

twice logic.<br />

2. HPCI turbine high steam flow. Since high steam flow could indic<strong>at</strong>e a<br />

break in the turbine steam supply line, an isol<strong>at</strong>ion signal is gener<br />

<strong>at</strong>ed if the measured steam flow exceeds 150% of design maximum steady<br />

st<strong>at</strong>e flow. The steam line flow is sensed by two differential pres<br />

sure switches which monitor the differential pressure across a mechan<br />

ical element installed in the HPCI turbine steam pipeline. The trip<br />

ping of either switch <strong>at</strong> a differential pressure of 0.62 MPa (90 psi)<br />

initi<strong>at</strong>es HPCI System isol<strong>at</strong>ion.


222<br />

3. Low reactor pressure. After steam pressure has decreased to such a<br />

low value th<strong>at</strong> the HPCI turbine cannot be oper<strong>at</strong>ed, the steam line is<br />

isol<strong>at</strong>ed so th<strong>at</strong> steam and radioactive gases will not escape from the<br />

HPCI turbine shaft seals into the reactor building. The steam pres<br />

sure is sensed by four pressure switches from the HPCI turbine steam<br />

line upstream of the isol<strong>at</strong>ion valves. The switches are arranged in a<br />

one-out-of-two taken twice logic. The set point for this isol<strong>at</strong>ion<br />

signal is 0.793 MPa (100 psig).<br />

4. High turbine exhaust diaphragm pressure. A line tapping off the tur<br />

bine exhaust line contains two rupture diaphrams in series, with the<br />

space between vented to the HPCI equipment space through a flow re<br />

stricting orifice. The diaphrams are designed for 1.138 MPa (150<br />

psig). If the pressure in the space between the diaphrams exceeds<br />

0.172 MPa (10 psig), a system isol<strong>at</strong>ion signal is gener<strong>at</strong>ed.<br />

5. Manual Isol<strong>at</strong>ion. If a HPCI initi<strong>at</strong>ion signal is present, the opera<br />

tor can cause HPCI system isol<strong>at</strong>ion by pushing a control panel push<br />

button.<br />

The low reactor pressure isol<strong>at</strong>ion will be autom<strong>at</strong>ically reset if re<br />

actor pressure is restored; all other isol<strong>at</strong>ion signals seal in and the<br />

oper<strong>at</strong>or must push the HPCI auto isol<strong>at</strong>ion circuit reset push-button after<br />

the condition has cleared.<br />

E.7 Technical Specific<strong>at</strong>ions<br />

1. The HPCI System shall be operable<br />

a. Prior to startup from cold condition<br />

b. Whenever there is irradi<strong>at</strong>ed fuel in the reactor vessel and the<br />

reactor vessel pressure is gre<strong>at</strong>er than 0.945 MPa (122 psig), ex<br />

cept<br />

c. If the HPCI System is inoperable the reactor may remain in opera<br />

tion for a period not to exceed 7 days provided ADS, core spray,<br />

LPCI mode of RHR and RCIC are all operable.<br />

If these conditions are not met, an orderly shutdown shall be initi<br />

<strong>at</strong>ed and the reactor vessel pressure reduced to 0.945 MPa (122 psig)<br />

or less within 24 hours.<br />

2. HPCI testing shall be performed as follows:<br />

a. Simul<strong>at</strong>ed autom<strong>at</strong>ic actu<strong>at</strong>ion test — once per oper<strong>at</strong>ing cycle<br />

b. Pump operability — once per month<br />

c. Motor oper<strong>at</strong>ed valve operability — once per month<br />

d. Flow r<strong>at</strong>e <strong>at</strong> normal reactor oper<strong>at</strong>ing pressure — once per<br />

three months<br />

e. Flow r<strong>at</strong>e <strong>at</strong> 1.138 MPa (150 psig) — once per oper<strong>at</strong>ing cycle<br />

3. Whenever HPCI is required to be operable the piping from the pump dis<br />

charge to the last flow blocking valve shall be filled. W<strong>at</strong>er flow<br />

from the high point vent must be observed monthly. (Purpose is to<br />

prevent w<strong>at</strong>er hammer when the system is started.)


223<br />

APPENDIX F<br />

A COMPENDIUM OF INFORMATION CONCERNING THE BROWNS FERRY<br />

UNIT 1 REACTOR CORE ISOLATION COOLING SYSTEM<br />

F.1 Purpose<br />

The Reactor Core Isol<strong>at</strong>ion Cooling (RCIC) System is designed to en<br />

sure th<strong>at</strong> the core is not uncovered in the event of loss of all AC power.<br />

The RCIC System provides w<strong>at</strong>er to make up for th<strong>at</strong> lost through steam gen<br />

er<strong>at</strong>ed by decay he<strong>at</strong> during reactor isol<strong>at</strong>ion.53 RCIC is a consequence<br />

limiting system r<strong>at</strong>her than an ECCS System; the system design is not pred<br />

ic<strong>at</strong>ed on any loss of structure accident.51*<br />

F.2 System Description<br />

The RCIC System (Fig. F-l) consists of a steam-turbine driven pump<br />

unit and the associ<strong>at</strong>ed piping and valves. The RCIC pump can take suction<br />

from either the condens<strong>at</strong>e storage tank or the pressure suppression pool<br />

and discharges to the reactor vessel feedw<strong>at</strong>er line "B" via a thermal<br />

sleeve connection. A full flow system test line permits testing of the<br />

RCIC System while the reactor is <strong>at</strong> power, with the pump discharge routed<br />

to the condens<strong>at</strong>e storage tank. A minimum flow line connects the RCIC<br />

pump discharge to the pressure suppression pool, as a means of ensuring a<br />

flow of <strong>at</strong> least 0.004 m3/s (60 GPM) through the pump. The minimum flow<br />

bypass valve closes <strong>at</strong> a system flow of gre<strong>at</strong>er than 0.008 m3/s (120<br />

GPM). The normal setpoint for RCIC pumped flow is 0.038 m3/s (600 GPM).<br />

The RCIC turbine is driven by steam extracted from main steam line<br />

"C" upstream of the main steam line isol<strong>at</strong>ion valve. The two primary con<br />

tainment isol<strong>at</strong>ion valves in the steam line to the RCIC turbine are nor<br />

mally open to keep the piping to the turbine <strong>at</strong> elev<strong>at</strong>ed temper<strong>at</strong>ures so<br />

as to permit rapid system startup (within 30 seconds of an initi<strong>at</strong>ion sig<br />

nal). The normally closed DC-motor-oper<strong>at</strong>ed steam supply valve just up<br />

stream of the RCIC turbine will open against full system pressure within<br />

15 seconds after receipt of a system initi<strong>at</strong>ion signal.<br />

The RCIC turbine exhaust steam is discharged to the pressure suppres<br />

sion pool. The turbine gland seals are drained to a barometric condenser,<br />

in which the steam is condensed by a w<strong>at</strong>er spray. The w<strong>at</strong>er spray is pro<br />

vided by a flow diverted from the RCIC pump discharge to pass through the<br />

turbine lube oil cooler and subsequently form the spray. The condens<strong>at</strong>e<br />

from the barometric condenser is pumped back to the RCIC pump suction. A<br />

vacuum pump removes the non-condensibles from the barometric condenser and<br />

inserts them into the pressure suppression pool.<br />

A vacuum breaker line (not shown on Fig. F-l) is installed between<br />

the torus airspace and the RCIC turbine exhaust line. Its purpose is to<br />

prevent pressure suppression pool w<strong>at</strong>er from being drawn up into the tur<br />

bine exhaust line when the remaining exhaust steam condenses after turbine<br />

oper<strong>at</strong>ion and shutdown.<br />

All components normally required for initi<strong>at</strong>ing oper<strong>at</strong>ion of the RCIC<br />

System are completely independent of AC power, plant service air, and ex<br />

ternal cooling w<strong>at</strong>er systems, requiring only DC power from a unit b<strong>at</strong>tery


224<br />

TO SUPPRESSION POOL


225<br />

normally open AC-motor-oper<strong>at</strong>ed RCIC inboard steam line isol<strong>at</strong>ion valve,<br />

which will remain open on loss of power.<br />

F.3 RCIC Pump Suction<br />

The RCIC pump can take suction either from the condens<strong>at</strong>e storage<br />

header through a single normally-open DC-motor-oper<strong>at</strong>ed valve or from the<br />

pressure suppression pool via the suppression pool ring header.<br />

Each <strong>Browns</strong> <strong>Ferry</strong> <strong>Unit</strong> is provided with a 1419.4 m3 (375,000 gal<br />

lon) condens<strong>at</strong>e storage tank, which provides a w<strong>at</strong>er head to the storage<br />

header for th<strong>at</strong> unit. The storage header, which taps into the bottom of<br />

the storage tank, feeds the suctions of the high-pressure ECCS Systems,<br />

specifically, the pumps for the HPCI and the RCIC systems. The core spray<br />

pumps and the RHR pumps can be fed from this source, but are not normally<br />

aligned to it. All other demand for condens<strong>at</strong>e storage tank w<strong>at</strong>er is fed<br />

via a standpipe within the tank; the standpipe height is such th<strong>at</strong> 511.0<br />

m3 (135,000 gallons) of w<strong>at</strong>er is reserved for the ECCS Systems.<br />

There is no provision for an autom<strong>at</strong>ic shifting of the RCIC pump suc<br />

tion from the condens<strong>at</strong>e storage header to the pressure suppression pool.<br />

However, if condens<strong>at</strong>e storage tank w<strong>at</strong>er is unavailable for any reason,<br />

the control room oper<strong>at</strong>or can shift the RCIC pump suction to the pressure<br />

suppression pool ring header. This is done by remote-manually opening the<br />

two DC-motor-oper<strong>at</strong>ed suction valves to the pool ring header; when these<br />

two valves are fully open, the suction valve to the condens<strong>at</strong>e storage<br />

header will autom<strong>at</strong>ically close.<br />

The minimum required net positive suction head (NPSH) for the RCIC<br />

System is 6.10 m (20 ft), which is readily available with suction taken<br />

from the condens<strong>at</strong>e storage tank. With suction from the pressure suppres<br />

sion pool, the required NPSH is available for suppression pool tempera<br />

tures up to 85.0°C (185°F) with no containment back pressure.<br />

F.4 System Initi<strong>at</strong>ion<br />

An autom<strong>at</strong>ic start of the RCIC System is initi<strong>at</strong>ed by low reactor<br />

vessel w<strong>at</strong>er level <strong>at</strong> 12.10 m (476.5 in.) above vessel zero. The single<br />

normally-closed valve in the steam supply line opens, and steam is ad<br />

mitted to the turbine. (The turbine stop valve and control valve are nor<br />

mally open when the RCIC System is in standby.) The barometric condenser<br />

vacuum pump starts, and the condens<strong>at</strong>e pump will act to autom<strong>at</strong>ically con<br />

trol the w<strong>at</strong>er level in the condenser. The RCIC turbine speed and pump<br />

flow are autom<strong>at</strong>ically maintained by the steam flow controller. Turbine<br />

lube oil is supplied by a shaft-driven oil pump. The single .normallyclosed<br />

valve in the pump discharge line to feedw<strong>at</strong>er header "B" autom<strong>at</strong>i<br />

cally opens, and the minimum flow bypass valve closes autom<strong>at</strong>ically when<br />

pump flow exceeds 0.008 m3/s (120 GPM).<br />

If the RCIC System is in an abnormal lineup when an initi<strong>at</strong>ion signal<br />

is received, the system will realign:<br />

a. If the normally open pump discharge valve is closed, it will open.<br />

b. If the normally open pump suction valve from the condens<strong>at</strong>e storage<br />

header Is closed, it will open provided <strong>at</strong> least one of the suppres<br />

sion pool suction valves is not fully open.


o<br />

ro<br />

On<br />

a rt rt 3 O to rt 00 00 ~>l O Ul -p- OJ ro P rt Hi rt O o rt O CT /-v 03 -c<br />

c<br />

/-v CD B Hi rt<br />

£5f H Oh o<br />

•<br />

O XT o O 3 1 P- p- ID 3d 3 p. H Hi P- ro TJ p. On TJ P 3"T] CO ^ o ID * H XT O ID C O O "S _,<br />

o CO i-l i-J On 3 r1<br />

M X) o O rt 00 o (D 3* c7p. f?<br />

%<br />

£<br />

W rH 3=<br />

frt p-<br />

i-H<br />

O o<br />

O- XT O B rt P M<br />

H $3 03 nOQ o S to M O- O rt O H P^ - 3 O ID 0 Pje h,<br />

a Gr o.<br />

o I-J M<br />

TJ ID Hi<br />

i-h fD pj o M P- XT o B •^ « 00 o to 0Q XT H- rt M • 3 XT rt 3 o> fD O p- XT TJ O p n ID rt<br />

3 ro XI CO l-l 03 rH<br />

rt :<br />

£ o 3d XT n XT to rt ID O to \-h B to S ID ID g rt p 3 CD cr ID O rt 3 G rt<br />

B<br />

3 to l-j o rt 03 ?3 03 rt XT n h- 03 3 p. pj "T P- P" 03 N-X 3 o XT H rt 3 p- 3 3-<br />

03<br />

t* i-J XT<br />

XT • o I-J o l-l rt CO rt to G O "» 3 rt i-J Hi P. ^H- 3 CD Oj 00 *• rt 11 CD rt ID *~\ O CD "3 O 11<br />

pJ i-( X3 fD < o 3 03 G rt 3 It O C ID<br />

f? 03 CO O n O O -~1 03 • O o ID CO P- XT < o rt rt 3 Hi Hi rt p- M 3<br />

.<br />

"-< O H rt to i-( 03 H- fD pJ 03 P- B G O o i-J H- X l-l rt ID o 3 ON TJ H p VJ 00 to p Hi . p rt rj M ID i-H O p<br />

rt XT O n OQ rH Cu I-1 O TJ l-l < < 3 n p- CD It 3 i-1 OTJ OJ O CD 3 n O tl O O 3 i-H M<br />

rt rr to 03 p. O B ro ID fD 3d TJ CO rr rt SB to O. O O rt rt CD rt ID M 3 00 XT i-H cT rt XT CD<br />

3 (D XT XT 3<br />

e t-1 I-1 B ^a Oj O. B fD B CD . rj P- O rH M 3- G O • rt O ID to P CO P- ID rt<br />

CD ry l-j CO • CD O >-^ on . . rt Oj C P- TJ s3 CD l—> rt . P P- TJ Hi 3 3 fD<br />

.<br />

"-< i-j o rt<br />

o h-J s~\ rt XT n O TJ TJ CO 3 to ID • 03 to ~J O O Hi CO CO ID P* CD P- TJ 3<br />

(/ 1<br />

to rt 3 P- < On g UI i-i n ID ID TJ o TJ p »* • Hi B OJ P- TJ TJ ID O P" 11<br />

~0 O i-j rH rt cr do 3 fD h3 00 H- o B CO rH rt TJ O O OJ CO 00 G ID 00 O ID ID Oj S IB P ID Hi<br />

XT e 03 pJ fD OQ l-l<br />

p. fu roTj rt 03 •xJ XT 03 3 "S oo rt rt ro rH rt SI ID ID TJ CO c<br />

03 3 rr fD rt CO 3 rt H- rt H 3 - ID ID XT on rH ID B Oj Oh O P- ID P CD M<br />

3 3 a o XT 0> TJ . •-s. H- rt i-H 3 3d M O ID •-J S S to n u>rt O CD to G G i-H<br />

p. p. XT


227<br />

F.6 System Isol<strong>at</strong>ion<br />

The Primary Containment and Reactor Vessel Isol<strong>at</strong>ion Control System<br />

initi<strong>at</strong>es autom<strong>at</strong>ic isol<strong>at</strong>ion of appropri<strong>at</strong>e pipelines which penetr<strong>at</strong>e the<br />

primary containment whenever certain monitored variables exceed their pre<br />

determined oper<strong>at</strong>ional limits. The system is designed so th<strong>at</strong> once initi<br />

<strong>at</strong>ed, autom<strong>at</strong>ic isol<strong>at</strong>ion goes to completion. Return to normal oper<strong>at</strong>ion<br />

after isol<strong>at</strong>ion requires deliber<strong>at</strong>e oper<strong>at</strong>or action.<br />

An autom<strong>at</strong>ic isol<strong>at</strong>ion for the RCIC System causes the normally-open<br />

inboard and outboard steam supply isol<strong>at</strong>ion valves to close, the turbine<br />

to trip, and the two RCIC suction valves from the pressure suppression<br />

pool to close (if they were open). The minimum flow bypass valve to the<br />

suppression pool is interlocked to close whenever the turbine is tripped.<br />

The following conditions cause a RCIC system isol<strong>at</strong>ion signal:<br />

!• RCIC System equipment space high temper<strong>at</strong>ure. Since high temper<strong>at</strong>ure<br />

in the vicinity of the RCIC equipment could indic<strong>at</strong>e a break in the<br />

turbine steam supply line, an isol<strong>at</strong>ion signal is gener<strong>at</strong>ed if this<br />

temper<strong>at</strong>ure exceeds 93.3°C (200°F). This setpoint is based on the<br />

calcul<strong>at</strong>ed AT with a 0.001 m3/s (15 GPM) steam leak in the space.<br />

There are 16 temper<strong>at</strong>ure sensors arranged in four trip logics with<br />

four sensors in each logic. The 16 sensors are physically arranged in<br />

four groups with four sensors in each group. <strong>One</strong> sensor in each group<br />

is in each of the four one-out-of-two taken twice trip logics.<br />

2. RCIC System high steam flow. Since high steam flow could indic<strong>at</strong>e a<br />

leak in the turbine steam supply line, an isol<strong>at</strong>ion signal is gener<br />

<strong>at</strong>ed if the measured steam flow exceeds 150% of design maximum steady<br />

st<strong>at</strong>e flow. The steamline flow is sensed by two differential pressure<br />

switches which monitor the differential pressure across an elbow in<br />

stalled in the RCIC turbine steam supply pipeline. The tripping of<br />

either trip channel <strong>at</strong> a differential pressure of 11.43 m (450 in.)<br />

H20 initi<strong>at</strong>es RCIC System isol<strong>at</strong>ion.<br />

3. Low reactor pressure. After steam pressure has decreased to such a low<br />

value th<strong>at</strong> the RCIC turbine cannot be oper<strong>at</strong>ed, and there is no cool<br />

ant spray to the barometric condenser, the steam line is isol<strong>at</strong>ed to<br />

protect against continuous gland seal leakage to the RCIC equipment<br />

space. The set point for this isol<strong>at</strong>ion signal is a reactor vessel<br />

pressure of 0.345 MPa (50 psig). The pressure is sensed by four pres<br />

sure switches <strong>at</strong> the RCIC turbine steam line upstream of the isol<strong>at</strong>ion<br />

valves. The switches are arranged in a one-out-of-two taken twice<br />

logic.<br />

4. High turbine exhaust diaphragm pressure. A line tapping off the tur<br />

bine exhaust line contains two rupture diaphrams in series, with the<br />

space between vented to the RCIC equipment space through a flow re<br />

stricting orifice. The diaphrams are designed for 1.138 MPa (150<br />

psig). If the pressure in the space between the diaphragms exceeds<br />

0.172 MPa (10 psig), a system isol<strong>at</strong>ion signal is gener<strong>at</strong>ed.<br />

5. Manual Isol<strong>at</strong>ion. If an RCIC initi<strong>at</strong>ion signal is present, the oper<br />

<strong>at</strong>or can cause RCIC System isol<strong>at</strong>ion by pushing a control panel push<br />

button.<br />

All isol<strong>at</strong>ion signals are sealed in and must be manually reset after<br />

the condition causing them has cleared. A control panel pushbutton is<br />

provided for this purpose.


228<br />

F.7 Technical Specific<strong>at</strong>ions<br />

1. The RCIC System must be operable prior to startup from a cold condi<br />

tion or whenever there is irradi<strong>at</strong>ed fuel in the reactor and the re<br />

actor vessel pressure is above 0.945 MPa (122 psig).<br />

If the RCIC System is inoperable, the reactor may remain in oper<strong>at</strong>ion<br />

for a period not to exceed seven days if the HPCI System is operable<br />

during such time.<br />

If these conditions are not met, an orderly shutdown of the reactor<br />

must be initi<strong>at</strong>ed and the reactor depressurized to less than 0.945 MPa<br />

(122 psig) within 24 hours.<br />

2. RCIC testing shall be performed as follows<br />

a. Simul<strong>at</strong>ed autom<strong>at</strong>ic actu<strong>at</strong>ion test — once per oper<strong>at</strong>ing cycle<br />

b. Pump operability — once per month<br />

c. Motor oper<strong>at</strong>ed valve operability — once per month<br />

d. Flow r<strong>at</strong>e <strong>at</strong> normal reactor oper<strong>at</strong>ing pressure — once per three<br />

months<br />

e. Flow r<strong>at</strong>e <strong>at</strong> 1.138 MPa (150 psig) — once per oper<strong>at</strong>ing cycle<br />

3. Whenever RCIC is required to be operable the piping from the pump dis<br />

charge to the last flow blocking valve shall be filled. W<strong>at</strong>er flow<br />

from the high point vent must be observed monthly. (Purpose is to<br />

prevent w<strong>at</strong>er hammer when the system is started.)


229<br />

APPENDIX G<br />

EFFECT OF TVA-ESTIMATED SEVEN HOUR BATTERY LIFE ON<br />

NORMAL RECOVERY CALCULATIONS<br />

Section 7, Computer Prediction of Thermal Hydraulic Parameters for<br />

Normal Recovery, is based on the assumption th<strong>at</strong> the 250 vdc unit b<strong>at</strong>ter<br />

ies will fail in four hours under the conditions of <strong>St<strong>at</strong>ion</strong> Blackout.<br />

After review of the draft results presented in Sect. 7, the Electrical En<br />

gineering Branch <strong>at</strong> TVA performed a b<strong>at</strong>tery capacity calcul<strong>at</strong>ion to deter<br />

mine how long the <strong>Browns</strong> <strong>Ferry</strong> 250 vdc b<strong>at</strong>teries would last under these<br />

conditions, and arrived <strong>at</strong> an estim<strong>at</strong>e of seven hours. This appendix ex<br />

amines the impact of the newly estim<strong>at</strong>ed seven hour b<strong>at</strong>tery failure time<br />

on the results and conclusions of Sect. 7.<br />

Two basic conclusions are presented in Sect. 7.<br />

1. If AC power is recovered any time in the first five hours, then<br />

a normal recovery will be possible if the 250 vdc b<strong>at</strong>teries have<br />

not failed.<br />

2. If the 250 vdc b<strong>at</strong>teries fail <strong>at</strong> four hours and the AC power<br />

remains unavailable then the time between b<strong>at</strong>tery failure and<br />

first uncovering of fuel will be <strong>at</strong> least three hours if the re<br />

actor has been previously depressurized as recommended by this<br />

report.<br />

If the unit b<strong>at</strong>teries were to last seven instead of four hours, there<br />

would be a slight lengthening of the time interval from b<strong>at</strong>tery failure to<br />

core uncovery due to the slightly lower decay he<strong>at</strong>. The most important<br />

question to be answered regarding the extension of the estim<strong>at</strong>ed b<strong>at</strong>tery<br />

failure time from four to seven hours is whether there is some other sys<br />

tem failure caused by the increased temper<strong>at</strong>ures and/or pressures during<br />

this period th<strong>at</strong> would complic<strong>at</strong>e or make impossible a normal recovery if<br />

AC power were restored.<br />

To answer this question calcul<strong>at</strong>ions similar to those shown in Figs.<br />

7.1 through 7.9 of Sect. 7 were performed. These new calcul<strong>at</strong>ions start<br />

<strong>at</strong> an initial point four hours after st<strong>at</strong>ion <strong>blackout</strong> and extend to seven<br />

hours. The b<strong>at</strong>teries are assumed to last throughout this period and oper<br />

<strong>at</strong>or actions are the same as detailed in Sect. 7.3.1, Normal Recovery-<br />

Assumptions.<br />

Due to the elev<strong>at</strong>ed pool temper<strong>at</strong>ures experienced during the period<br />

from four to seven hours, it has been necessary to modify the calcul<strong>at</strong>ion<br />

of the fraction of relief valve (SRV) discharge th<strong>at</strong> is quenched in the<br />

suppression pool. When the pool temper<strong>at</strong>ure is within its normal opera<br />

tional range, the SRV discharge is completely condensed (quenched) in the<br />

cool w<strong>at</strong>er surrounding the submerged SRV discharge nozzle (T-quencher).<br />

However, if the temper<strong>at</strong>ure of the w<strong>at</strong>er around the T-quencher is suffi<br />

ciently close to s<strong>at</strong>ur<strong>at</strong>ion, then the condens<strong>at</strong>ion will be less than 100%<br />

and some of the steam will reach the suppression pool <strong>at</strong>mosphere. Monti<br />

cello tests58 showed th<strong>at</strong> an approxim<strong>at</strong>ely 28°C (50°F) difference be<br />

tween bulk and local pool temper<strong>at</strong>ure can exist during extended discharge<br />

through a single SRV. In this case, one would expect less than 100%<br />

quenching to begin <strong>at</strong> a bulk pool temper<strong>at</strong>ure of about 74°C (165°F), cor<br />

responding to 100°C (212°F) near the SRV discharge point (provided the


230<br />

pool is <strong>at</strong> <strong>at</strong>mospheric pressure). For the purposes of the calcul<strong>at</strong>ions<br />

reported in this appendix, the following provisions were made for the cal<br />

cul<strong>at</strong>ion of quench fraction in the pool:<br />

1. The temper<strong>at</strong>ure of the w<strong>at</strong>er surrounding the T-quencher during<br />

SRV discharge is assumed to be 28°C (50°F) higher than the bulk<br />

pool temper<strong>at</strong>ure.<br />

2. If the vapor pressure of the w<strong>at</strong>er surrounding the T-quencher is<br />

equal to or gre<strong>at</strong>er than the st<strong>at</strong>ic pressure then 0% of the SRV<br />

discharge is quenched; if the vapor pressure is 5.0 psi or more<br />

below the st<strong>at</strong>ic pressure then 100% of the discharge is<br />

quenched. Vari<strong>at</strong>ion of quench fraction is linear between these<br />

two points.<br />

This should provide a reasonable upper limit estim<strong>at</strong>e of containment pressuriz<strong>at</strong>ion<br />

due to non-quenched SRV discharge. Consider<strong>at</strong>ion of this ef<br />

fect was not necessary for the zero to five hour results reported in Sect.<br />

7 because bulk pool temper<strong>at</strong>ure does not exceed 82°C (180°F) during the<br />

first five hours of a <strong>St<strong>at</strong>ion</strong> Blackout.<br />

Results of the four to seven hours after <strong>blackout</strong> calcul<strong>at</strong>ions are<br />

shown in Figs. G.1 through G.9. From these results it is concluded th<strong>at</strong><br />

system parameters remain within acceptable ranges during this period:<br />

1. The 250 vdc b<strong>at</strong>teries by TVA estim<strong>at</strong>e last the full seven hours.<br />

2. Reactor vessel level is within the normal control range, about<br />

5.08 m (200 in.) above the top of active fuel.<br />

3. Reactor vessel pressure is being controlled by oper<strong>at</strong>or action<br />

<strong>at</strong> about 0.69 MPa (100 psia).<br />

4. At the seven-hour point, about 414 m3 (109,265 gal) of w<strong>at</strong>er<br />

have been pumped from the condens<strong>at</strong>e storage tank, which had an<br />

assured capacity of 511 m3 (135,000 gal) before the <strong>blackout</strong>.<br />

5. At the seven-hour point, average suppression pool temper<strong>at</strong>ure is<br />

about 92°C (198.2°F), but this should not be a problem for the<br />

T-quencher type of SRV discharge header piping.<br />

6. Containment pressures would be elev<strong>at</strong>ed to about 0.23 MPa (33<br />

psia), well below the 0.53 MPa (76.5 psia) design pressure.<br />

7. Drywell <strong>at</strong>mosphere temper<strong>at</strong>ure is about equal to the 138°C<br />

(281°F) design temper<strong>at</strong>ure.<br />

These results show th<strong>at</strong> if power were recovered within seven hours of<br />

the <strong>St<strong>at</strong>ion</strong> Blackout a normal recovery would be possible.* The 92°C<br />

(198°F) bulk pool temper<strong>at</strong>ure after seven hours may cause elev<strong>at</strong>ed air<br />

temper<strong>at</strong>ure in the RCIC and HPCI spaces, but this would not be expected to<br />

lead to failure of the HPCI or RCIC, because the lube oil of both units is<br />

cooled by the w<strong>at</strong>er being pumped — in this case, w<strong>at</strong>er from the conden<br />

s<strong>at</strong>e storage tank which would not exceed 32°C (90°F). The periods of RCIC<br />

oper<strong>at</strong>ion are very infrequent after the first four hours of <strong>St<strong>at</strong>ion</strong> Black<br />

out, with about an hour between actu<strong>at</strong>ions.<br />

The supply of control air for remote-manual oper<strong>at</strong>ion of the SRVs is<br />

sufficient for the full seven hours. As discussed in Chap. 3 of this re<br />

port, the accumul<strong>at</strong>ors provided for the six relief valves associ<strong>at</strong>ed with<br />

the ADS system are sized to permit five oper<strong>at</strong>ions or a total of 30 actua<br />

tions. As illustr<strong>at</strong>ed in Sect. 7 and this appendix, less than 30 actua<br />

tions are required during the first seven hours of the <strong>St<strong>at</strong>ion</strong> Blackout.<br />

*With the assumption of no independent secondary equipment failures.


a.<br />

2<br />

cr<br />

co n<br />

CO<br />

UJ<br />

oc<br />

a.<br />

<<br />

ui<br />

rco<br />

o<br />

o<br />

— 0<br />

o<br />

01<br />

0<br />

00<br />

UJ<br />

cr 8<br />

3 10<br />

co<br />

CO<br />

UJ<br />

OC 0<br />

in<br />

5<br />

<<br />

1— Sh<br />

co £<br />

0<br />

m<br />

a<br />

CN]<br />

0-<br />

1<br />

REACTOR PRESSURE CONTROLLED BY OPERATOR BETWEEN 90 AND 11! 5 psia<br />

I<br />

SRVSrHUT SRV OPENED SRV SHUT SRV OPENED<br />

i^- 1 ^<br />

"<br />

t Tn<br />

RCIC ON RCIC OFF RCIC ON RCIC OFF<br />

1 1<br />

240 270 300 330<br />

TIME (min)<br />

360 390<br />

Fig. G.l Reactor vessel pressure - four to seven hours after<br />

st<strong>at</strong>ion <strong>blackout</strong>.<br />

|<br />

"'<br />

ORNL-DWG 81-8593 ETD<br />

420<br />

ro<br />

OJ


-* o i =<br />

3<br />

O<br />

3i2<br />

<<br />

UJ<br />

8<br />

<br />

84<br />

i—RCIC TURBINE STEAM FLOW<br />

•NO STEAM FLOW FROM REACTOR VESSEL<br />

-1 SRV OPEN- 1 SRV OPEN-<br />

O-l o-<br />

-1-<br />

I<br />

240 270 300<br />

330<br />

360 390<br />

<strong>blackout</strong>.<br />

TIME (min)<br />

Fig. G.2 Vessel steam flow - four to seven hours after st<strong>at</strong>ion<br />

ORNL-DWG 81-8594 ETD<br />

420<br />

ro<br />

OJ<br />

ro


t—<br />

> 2-<br />

UJ<br />

8 2-<br />

UJ<br />

><br />

CO<br />

CO<br />

UJ<br />

> o in<br />

o<br />

ORNL-DWG 81-8595 ETD<br />

TOP OF CONTROL ROOM INDICATION -OVERSHOOT DUE TO HEATUP OF SUBCOOLED<br />

WATER AFTER RCIC TURNED OFF<br />

BOTTOM OF CONTROL ROOM INDICATION<br />

to I<br />

240 270<br />

<strong>blackout</strong>.<br />

Fig. G.3<br />

OPERATOR CONTROLS LEVEL BY REMOTE-MANUAL<br />

ACTUATION OF RCIC SYSTEM<br />

300 330<br />

TIME (min)<br />

360 390<br />

Vessel level - four to seven hours after st<strong>at</strong>ion<br />

TOP OF ACTIVE FUEL<br />

420<br />

ro<br />

OJ<br />

U3


ID.<br />

CM<br />

-IS oj<br />

O (M. O<br />

_ CM<br />

»- OI<br />

s c<br />

LL<br />

O oj<br />

UJ —"<br />

UJ --<br />

<strong>blackout</strong>.<br />

Fig. G.4<br />

330<br />

TIME (min)<br />

Injected flow - four to seven hours after st<strong>at</strong>ion<br />

ORNL-DWG 81-8596 ETD<br />

420<br />

N3<br />

OJ


VOLUME(20000<br />

VOLUME D3501•._!_<br />

300<br />

INJECTED TOTAL 60000 40000<br />

TOTAL 200i<br />

150 120(14<br />

100000 800i1<br />

00<br />

o<br />

o<br />

o<br />

in-i<br />

«j<br />

gal)<br />

o-<br />

/<br />

/i\<br />

a<br />

(m3) INJECTE 250 100<br />

m<br />

o-" o-<br />

t<br />

LRCIC ON<br />

/i<br />

— RCIC OFF<br />

40 2 70 3 00 3 30<br />

TIME<br />

: (min)<br />

L- RCIC ON<br />

-RCIC OFF<br />

ORNL-DWG 81-8597 ETD<br />

360 390 42<br />

Fig. G.5 Total injected flow (pumped by RCIC from condens<strong>at</strong>e<br />

storage tank) - four to seven hours after st<strong>at</strong>ion <strong>blackout</strong>.<br />

y<br />

NJ<br />

OJ<br />

On


E<br />

"»•«* -~*<br />

o .£ n<br />

^<br />

X<br />

-J<br />

UJ<br />

_l ><br />

UJ UJ<br />

> CM-I _l<br />

UJ<br />

_l<br />

_l<br />

o<br />

-J<br />

O ?»<br />

O<br />

a.<br />

Z<br />

z<br />

o<br />

o -J to<br />

CO<br />

3<br />

UJ<br />

rr<br />

UJ<br />

rr<br />

0-<br />

a.<br />

a.<br />


O<br />

o_<br />

CO<br />

UJ<br />

cr<br />

r-<br />

<<br />

CC<br />

UJ<br />

a.<br />

m<br />

5<br />

< g-<br />

I ^<br />

O<br />

UJ<br />

rr<br />

a.<br />

a.<br />

CO o.<br />

in<br />

m<br />

5<br />

<<br />

X<br />

z 2<br />

o<br />

co<br />

CO<br />

UJ<br />

Is<br />

D<br />

CO<br />

240<br />

RAPID INCREASE DUE TO DIRECT<br />

MIXING WITH UNQUENCHED<br />

STEAM FROM SRV DISCHARGE<br />

LESS THAN 100%, QUENCHING—J<br />

OF SRV DISCHARGE BEGINS<br />

270 300 330<br />

TIME (min)<br />

ORNL-DWG 81-8599 ETD<br />

SUPPRESSION CHAMBER<br />

ATMOSPHERE<br />

CONDENSATION AND HEAT TRANSFER<br />

FROM ATMOSPHERE ARE DOMINANT<br />

WHEN SRV NOT DISCHARGING<br />

360 390 420<br />

Fig. G.7 Suppression chamber temper<strong>at</strong>ures - four to seven hours<br />

after st<strong>at</strong>ion <strong>blackout</strong>.<br />

ro<br />

OJ


O<br />

o_<br />

UJ<br />

cc<br />

< ~<br />

rr<br />

UJ<br />

a.<br />

5<br />

UJ<br />

o<br />

0-|<br />

OJ<br />

UJ<br />

cc<br />

UJ<br />

I<br />

a.<br />

co<br />

O<br />

H °<br />

5 2-<br />

UJ<br />

> rr<br />

a<br />

UJ<br />

rr<br />

D<br />

I-<br />

<<br />

cr<br />

UJ<br />

a.<br />

UJ<br />

X<br />

a.<br />

co<br />

O<br />

IS<br />

>tr<br />

Q<br />

»<<br />

o<br />

ro<br />

a<br />

oto<br />

o<br />

Ol<br />

o<br />

Ol<br />

o<br />

•-.<br />

o<br />

DRYWELL ATMOSPHERE TEMPERATURE —<br />

INCREASES GRADUALLY TOWARD<br />

REACTOR COOLANT TEMPERATURE SEE FIG. G.1)<br />

""^<br />

240 270 300 330<br />

TIME (min)<br />

<strong>blackout</strong>.<br />

DRYWELL DESIGN TEMPERATURE<br />

ft 1<br />

jL_<br />

ORNL-DWG 81-8600 ETD<br />

H^ -TEMPORARY DECREASE DUE TO DECREASE IN<br />

REACTOR COOLANT TEMPERATURE (CAUSED<br />

BY DECREASE IN REACTOR PRESSURE -<br />

360 390<br />

Fig. G.8 Drywell temper<strong>at</strong>ures - four to seven hours after st<strong>at</strong>ion<br />

420<br />

ro<br />

OJ<br />

OO


(T CM.<br />

§<br />

x<br />

CO<br />

UJ<br />

cc<br />

D<br />

UJ ts.<br />

tr -<br />

Ol<br />

H<br />

Z<br />

UJ<br />

2<br />

z<br />

o<br />

Z °<br />

o<br />

"—DRYWELL<br />

SUPPRESSION CHAMBER PRESSURE GOES<br />

DOWN BECAUSE OF CONDENSATION<br />

AND HEAT TRANSFER (SEE FIG. G.7)-<br />

240 270 300 330<br />

MORE RAPID PRESSURE BUILDUP BEGINS<br />

WHEN LESS THAN 100% OF QUENCHING<br />

OF SRV DISCHARGE BEGINS<br />

TIME (min)<br />

ORNL-DWG 81-8601 ETD<br />

360 390 420<br />

Fig. G.9 Containment pressures - four to seven hours after<br />

st<strong>at</strong>ion <strong>blackout</strong>.<br />

rO<br />

OJ<br />

VO


1. W. J. Armento<br />

2. T. E. Cole<br />

3. W. A. Condon<br />

4. D. H. Cook<br />

5. W. B. Cottrell<br />

6. W. G. Craddick<br />

7. G. F. Flanagan<br />

8. S. R. Greene<br />

9. R. M. Harrington<br />

10-14. S. A. Hodge<br />

15. T. S. Kress<br />

16. R. A. Lorenz<br />

241<br />

Internal Distribution<br />

NUREG/CR-2182, Vol. I<br />

ORNL/NUREG/TM-455/VI<br />

Dist. C<strong>at</strong>egory RX, IS<br />

17. A. L. Lotts<br />

18. T. W. Robinson, Jr.<br />

19. H. E. Trammell<br />

20. B. J. Veazie<br />

21. C. F. Weber<br />

22. R. P. Wichner<br />

23. D. D. Yue<br />

24. P<strong>at</strong>ent Office<br />

25. Central Research Library<br />

26. Document Reference Section<br />

27-28. Labor<strong>at</strong>ory Records Department<br />

29. Labor<strong>at</strong>ory Records (RC)<br />

External Distribution<br />

30-31. Director, Division of Accident Evalu<strong>at</strong>ion, Nuclear Regul<strong>at</strong>ory<br />

Commission, Washington, DC 20555<br />

32-33. Chief, Severe Accident Assessment Branch, Nuclear Regul<strong>at</strong>ory Com<br />

mission, Washington, DC 20555<br />

34. Director, Reactor Division, DOE, 0R0, <strong>Oak</strong> <strong>Ridge</strong>, TN 37830<br />

35. Office of Assistant Manager for Energy Research and Development,<br />

DOE, 0R0, <strong>Oak</strong> <strong>Ridge</strong>, TN 37830<br />

36-40. Director, Reactor Safety Research Coordin<strong>at</strong>ion Office, DOE,<br />

Washington, DC 20555<br />

41-42. D. B. Simpson, Tennessee Valley Authority, W10C126 C-K, 400 Com<br />

merce Avenue, Knoxville, TN 37902<br />

43-44. Wang Lau, Tennessee Valley Authority, W10C126 C-K, 400 Commerce<br />

Avenue, Knoxville, TN 37902<br />

45-46. R. F. Christie, Tennessee Valley Authority, W10C125 C-K, 400 Com<br />

merce Avenue, Knoxville, TN 37902<br />

47-48. J. A. Raulston, Tennessee Valley Authority, W10C126 C-K, 400 Com<br />

merce Avenue, Knoxville, TN 37902<br />

49-50. H. L. Jones, Tennessee Valley Authority, 253 HBB-K, 400 Commerce<br />

Avenue, Knoxville, TN 37902<br />

51-52. Technical Inform<strong>at</strong>ion Center, DOE, <strong>Oak</strong> <strong>Ridge</strong>, TN 37830<br />

53-552. Given distribution as shown under c<strong>at</strong>egories RX, IS (NTIS-10)<br />

*U.S. GOVERNMENT PRINTING OFFICE: 1981-740-062/291

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!