05.07.2013 Views

Synthesis of β-Vetivone More resources available ... - ChemistforChrist

Synthesis of β-Vetivone More resources available ... - ChemistforChrist

Synthesis of β-Vetivone More resources available ... - ChemistforChrist

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Synthesis</strong> <strong>of</strong> <strong>β</strong>-<strong>Vetivone</strong><br />

<strong>β</strong>-<strong>Vetivone</strong><br />

O<br />

O Special Features:<br />

- Spiro compound<br />

- 2 vicinal stereocenters<br />

<strong>β</strong>-<strong>Vetivone</strong> produces the pleasant odor characteristic <strong>of</strong> the essence <strong>of</strong> vetiver oil, which is <strong>of</strong> great value to the<br />

perfume, soap, and cosmetic industries. Isolation <strong>of</strong> <strong>β</strong>-vetivone from plant sources is tedious, time-consuming<br />

and low-yielding, which accounts for the high cost <strong>of</strong> this fragrant oiL<br />

<strong>β</strong>-<strong>Vetivone</strong> is a Seqsuiterpene (15 C-Atoms)<br />

Terpenes are a large and varied class <strong>of</strong> hydrocarbons, produced primarily by a wide variety <strong>of</strong> plants,<br />

particularly conifers. Terpenes are derived biosynthetically from units <strong>of</strong> isoprene, which has the molecular<br />

formula C5H8. The basic molecular formulae <strong>of</strong> terpenes are multiples <strong>of</strong> that, (C5H8)n where n is the number <strong>of</strong><br />

linked isoprene units. This is called the isoprene rule or the C5 rule. The isoprene units may be linked together<br />

"head to tail" to form linear chains or they may be arranged to form rings. One can consider the isoprene unit<br />

as one <strong>of</strong> nature's common building blocks. Isoprene itself does not undergo the building process, but rather<br />

activated forms, isopentenyl pyrophosphate (IPP or also isopentenyl diphosphate) and dimethylallyl<br />

pyrophosphate (DMAPP or also dimethylallyl diphosphate), are the components in the biosynthetic pathway.<br />

O<br />

O P O<br />

O<br />

O<br />

P O<br />

O<br />

O P O<br />

Dimethylallyl pyrophosphate Isopentenyl pyrophosphate<br />

O<br />

O<br />

As chains <strong>of</strong> isoprene units are built up, the resulting terpenes are classified sequentially by size as<br />

hemiterpenes, monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, and tetraterpenes.<br />

Hemiterpenes C5 consist <strong>of</strong> a single isoprene unit. Isoprene itself is considered the only hemiterpene, but<br />

oxygen-containing derivatives such as prenol and isovaleric acid are hemiterpenoids.<br />

O<br />

HO<br />

prenol<br />

OH<br />

isovaleric acid<br />

Monoterpenes C10 consist <strong>of</strong> two isoprene units and have the molecular formula C10H16. Examples <strong>of</strong><br />

monoterpenes are: geraniol and limonene. +<br />

HO<br />

geraniol limonene<br />

Sesquiterpenes C15 consist <strong>of</strong> three isoprene units and have the molecular formula C15H24. Examples <strong>of</strong><br />

sesquiterpenes are: farnesol. The sesqui- prefix means one and a half.<br />

P O<br />

<strong>More</strong> <strong>resources</strong> <strong>available</strong> at<br />

www.chemistforchrist.de<br />

O<br />

O


<strong>Synthesis</strong> <strong>of</strong> <strong>β</strong>-<strong>Vetivone</strong><br />

HO<br />

farnesol<br />

Diterpenes C20 are composed for four isoprene units and have the molecular formula C20H32. They derive from<br />

geranylgeranyl pyrophosphate. Examples <strong>of</strong> diterpenes are cafestol, kahweol, cembrene and taxadiene<br />

(precursor <strong>of</strong> taxol). Diterpenes also form the basis for biologically important compounds such as retinol,<br />

retinal, and phytol. They are known to be antimicrobial and antiinflammatory.<br />

Triterpenes C30 consist <strong>of</strong> six isoprene units and have the molecular formula C30H48. The linear triterpene<br />

squalene, the major constituent <strong>of</strong> shark liver oil, is derived from the reductive coupling <strong>of</strong> two molecules <strong>of</strong><br />

farnesyl pyrophosphate. Squalene is then processed biosynthetically to generate either lanosterol or<br />

cycloartenol, the structural precursors to all the steroids.<br />

squalene<br />

Polyterpenes consist <strong>of</strong> long chains <strong>of</strong> many isoprene units. Natural rubber consists <strong>of</strong> polyisoprene in which<br />

the double bonds are cis. Some plants produce a polyisoprene with trans double bonds, known as guttapercha.<br />

Correct structure elucidation by M.J. Marshall JACS 1967, 89, 2749 and 2750<br />

First synthesis: M.J. Marshall JOC 1970, 35, 192<br />

Possible synthesis <strong>of</strong> the starting material used by Marshall:<br />

O O<br />

Key-step reaction:<br />

Base<br />

stays axial to avoid A 1.2 strain<br />

with OH<br />

Excerpt from a textbook how the mechanism could go:<br />

The Di-π-Methane rearrangement<br />

3<br />

hν<br />

O<br />

O<br />

Me<br />

<strong>More</strong> <strong>resources</strong> <strong>available</strong> at<br />

www.chemistforchrist.de<br />

O<br />

hν, dioxane<br />

1,4 Dienes carrying alkyl or aryl Substituents on C-3 can be photochemically rearraanget to vinylcyclopropane<br />

in a reaction that is called the Di-π-Methane rearrangement. When photolyzed 2,5-cyclohexadienones can<br />

undergo a number <strong>of</strong> different reactions, one <strong>of</strong> which is formally the same as the di-π-methane<br />

rearrangement.<br />

O<br />

O


<strong>Synthesis</strong> <strong>of</strong> <strong>β</strong>-<strong>Vetivone</strong><br />

O<br />

Ph Ph<br />

hν<br />

O<br />

Ph Ph<br />

O<br />

Ph Ph<br />

Another proposal for the mechanism (ionic pathway):<br />

KROPP, JACS, 1963, 85, 3779<br />

O<br />

O<br />

hν, dioxane<br />

hν, dioxane<br />

O<br />

O<br />

Ph Ph<br />

O O<br />

<strong>More</strong> <strong>resources</strong> <strong>available</strong> at<br />

www.chemistforchrist.de<br />

O<br />

Ph Ph<br />

AcOH, Ac 2O<br />

H 2SO 4<br />

In comparison with the desired molecule, following steps have to be done:<br />

Get rid <strong>of</strong> C=O<br />

O<br />

Attach:<br />

Introduce a C=O<br />

Remember: This is chemistry from 1970, fancy reagents haven't been known then and benzene was still used<br />

as a solvent!<br />

O<br />

O<br />

O<br />

O<br />

O<br />

O<br />

Ph<br />

H<br />

Ph


<strong>Synthesis</strong> <strong>of</strong> <strong>β</strong>-<strong>Vetivone</strong><br />

O<br />

n-BuSH<br />

Et 2O<br />

H 2SO 4<br />

O<br />

BuS<br />

AcO<br />

AcO<br />

O<br />

H OMe<br />

Base<br />

O<br />

HO<br />

NaBH 4,<br />

MeOH<br />

Ac 2O,<br />

NaOAc, Δ<br />

Na 2CrO 4, AcOH<br />

Ac 2O, 40°C<br />

O<br />

O<br />

O<br />

HO<br />

BuS<br />

HO<br />

BF 3 . Et2O, rt<br />

O<br />

O<br />

O<br />

<strong>β</strong>−<strong>Vetivone</strong><br />

<strong>More</strong> <strong>resources</strong> <strong>available</strong> at<br />

www.chemistforchrist.de<br />

O<br />

HgCl 2, H 3O +<br />

acetone<br />

MeLi, Et 2O<br />

- 35°C<br />

O<br />

O<br />

O<br />

O<br />

hν, dioxane<br />

, NaH<br />

H OEt<br />

benzene, MeOH<br />

O<br />

O<br />

MeLi, Et 2O<br />

- 35°C<br />

1. Li, NH 3, Et 2O<br />

2. CrO 3<br />

A small amount <strong>of</strong> the isoprenyl<br />

isomer is also formed:<br />

Other disconnection approaches:<br />

O O<br />

Cl<br />

O<br />

or<br />

HO<br />

O<br />

AcOH, Ac 2O<br />

H 2SO 4<br />

For the - charge there is no easy synthon<br />

O<br />

MnO 2<br />

O


<strong>Synthesis</strong> <strong>of</strong> <strong>β</strong>-<strong>Vetivone</strong><br />

O O O<br />

Problem:<br />

1,4<br />

<strong>More</strong> <strong>resources</strong> <strong>available</strong> at<br />

www.chemistforchrist.de<br />

Br<br />

Br<br />

1,2<br />

Enolate<br />

O<br />

1.2 or 1.4 attack, usually<br />

the 1.2 attack is the major<br />

one!<br />

Maybe it is possible to block the 2 Position, so that it would mainly be an attack from the 4-Position:<br />

SiMe 3<br />

O<br />

SiMe3 Problem:<br />

Brook rearrangement<br />

O<br />

Ways to get a Enone that is substituted in the para-Position:<br />

OTMS<br />

Method No.1:<br />

I OMe<br />

R (Nucleophile)<br />

+ Pd<br />

R<br />

OMe<br />

Li, NH3 (Birch)<br />

R<br />

OMe<br />

Method No.2:<br />

Use <strong>of</strong> the Danishefsky Diene<br />

OMe<br />

TMSO<br />

δ<br />

OMe<br />

δ<br />

R<br />

TMSO<br />

Treatment with H 3O + leads to the most<br />

stable conjugated enone.<br />

OMe<br />

OMe<br />

R<br />

H<br />

H 2O<br />

δ<br />

H<br />

H2O TMSO R Me R<br />

O R<br />

δ<br />

Problem: Due HOMO <strong>of</strong> the 2 Donors being on the same side the upper reaction will not work but will rather<br />

give the meta product. A possible solution would be to use a Dienophile with an EWG-group attached to it (e.g.<br />

an ester).<br />

O<br />

R<br />

R<br />

H 3O<br />

O


<strong>Synthesis</strong> <strong>of</strong> <strong>β</strong>-<strong>Vetivone</strong><br />

TMSO<br />

OMe<br />

δ<br />

δ<br />

CO 2R<br />

TMSO<br />

OMe<br />

Method 3: Micheal addition <strong>of</strong> an enamine.<br />

O<br />

R<br />

N<br />

H<br />

N<br />

R<br />

CO 2R<br />

<strong>Synthesis</strong> by Storck: JACS, 1973, 95, 3414<br />

O<br />

LDA<br />

O<br />

OEt O<br />

O<br />

N<br />

R<br />

H<br />

H 2O<br />

O<br />

2<br />

R<br />

<strong>More</strong> <strong>resources</strong> <strong>available</strong> at<br />

www.chemistforchrist.de<br />

O<br />

kinetic enolate<br />

O<br />

H<br />

thermodynamic enolate<br />

1<br />

N<br />

N<br />

R<br />

CO 2R<br />

Idea <strong>of</strong> Storck: Create the kinetic enolate and place something at the para-Position that can be turned later on<br />

into a ketone:<br />

O<br />

O<br />

O<br />

<strong>Synthesis</strong> <strong>of</strong> <strong>β</strong>-<strong>Vetivone</strong> by Storck<br />

O<br />

OEt<br />

Me<br />

O<br />

<strong>β</strong>-<strong>Vetivone</strong><br />

O<br />

H 3O<br />

OEt<br />

OEt<br />

LDA<br />

Me<br />

HO<br />

LDA<br />

O<br />

OEt<br />

O<br />

OEt<br />

kinetic enolate<br />

MeLi<br />

O<br />

2<br />

R<br />

R X<br />

OEt R<br />

OEt<br />

O<br />

Cl<br />

Cl<br />

OEt<br />

O<br />

O<br />

OEt<br />

6<br />

Cl<br />

O<br />

LDA<br />

HMPA<br />

O<br />

OEt<br />

Cl<br />

This Methyl group will<br />

direct the attack <strong>of</strong> the<br />

enolate.


<strong>Synthesis</strong> <strong>of</strong> <strong>β</strong>-<strong>Vetivone</strong><br />

<strong>Synthesis</strong> <strong>of</strong> starting material:<br />

O<br />

OEt<br />

OEt<br />

Cl<br />

Cl<br />

+<br />

O<br />

OH<br />

OH<br />

OEt<br />

OEt<br />

O<br />

O<br />

OEt<br />

OEt<br />

O<br />

O<br />

The last step didn't work due to following side reaction:<br />

The fast ring closure is due to the a very reactive LG (Allylic chloride)<br />

OH<br />

New approach:<br />

OH SO 2Cl<br />

OH 2 eq. n-BuLi<br />

OH<br />

O<br />

Cl<br />

OH<br />

LiAlH 4<br />

O 2 eq. MsCl<br />

O<br />

<strong>More</strong> <strong>resources</strong> <strong>available</strong> at<br />

www.chemistforchrist.de<br />

O<br />

+<br />

O<br />

OH<br />

OH<br />

Reacts faster due to being<br />

the less stabilized alcoholate<br />

Yields are rather moderate but the dichloride could be obtained.<br />

Revisiting dipolar, aprotic solvents<br />

Me<br />

O<br />

S<br />

Me<br />

H<br />

O<br />

N Me<br />

Me<br />

DMSO DMF<br />

Most important ones are DMSO and DMF<br />

Cl<br />

Cl<br />

SO 2Cl<br />

O<br />

OMs<br />

HMPA<br />

LiCl<br />

Cl<br />

Cl<br />

The allylic alcoholate<br />

is not very reactive and<br />

give is therefore quickly<br />

Mesylated before<br />

undergoing ring -<br />

closure.<br />

OMs<br />

OMs<br />

HMPA makes the Cl -<br />

very nucleophilic.


<strong>Synthesis</strong> <strong>of</strong> <strong>β</strong>-<strong>Vetivone</strong><br />

HMPA Hexamethylphosphoramide<br />

HMPA<br />

Me 2N<br />

Me2N Me2N P O<br />

The most polar solvent that exists (Problem: might cause nasal cancers). HMPA is used as a solvent for<br />

polymers, gases, and organometallic reagents. It usefully improves the selectivity <strong>of</strong> lithiation reactions,<br />

because it breaks up the oligomers <strong>of</strong> lithium bases such as butyllithium. Because HMPA solvates cations so<br />

well, while not solvating anions, it accelerates some difficult SN2 reactions. The basic oxygen atom in HMPA<br />

coordinates strongly to Li + . Was used on a large scale as lubricant solvent in industry.<br />

DMPU<br />

DMPU<br />

O<br />

N N<br />

DMPU is a cyclic urea sometimes used as a polar, aprotic organic solvent. D. Seebach showed that it is possible<br />

to substitute the relatively toxic hexamethylphosphoramide (HMPA) with DMPU.<br />

<strong>Synthesis</strong> <strong>of</strong> Asaoka Chem. Lett. 1988, 1225<br />

Asaoka found a way to synthesize the enantiopure starting material (this will not be discussed here). The<br />

strategy <strong>of</strong> the synthesis is pretty much the same as the one used by Stork:<br />

Me 3Si<br />

O<br />

1) MeMgBr<br />

5% CuX<br />

2) TMS-Cl<br />

The 1.4 addition is directed<br />

mainly by the TMS-group<br />

so that a single diasteroisomer<br />

is formed.<br />

Me 3Si<br />

Analogous<br />

to Peterson<br />

Elimination<br />

Cl<br />

F<br />

O<br />

O<br />

Me<br />

TBAF<br />

(Bu4N + F- )<br />

Me<br />

Me 3Si<br />

MeLi<br />

1. LDA<br />

2. NCS<br />

OTMS<br />

Me<br />

Me 3Si<br />

OH<br />

MeLi<br />

Me<br />

O<br />

Me 3Si<br />

PCC<br />

Me<br />

OLi<br />

Me<br />

<strong>More</strong> <strong>resources</strong> <strong>available</strong> at<br />

www.chemistforchrist.de<br />

O<br />

Allylic bromide<br />

reacts faster than the<br />

primary alkyl-bromide<br />

attack from<br />

upper side<br />

Me<br />

<strong>β</strong>-<strong>Vetivone</strong><br />

Br<br />

Br<br />

Me 3Si<br />

The enolate here<br />

would lead to a 7membered<br />

cycle<br />

-Disfavored-<br />

NCS =<br />

Me 3Si<br />

7<br />

O<br />

O<br />

N-Chloro-succinimid<br />

Me<br />

EtO , Na<br />

EtOH<br />

Na<br />

1<br />

Me<br />

O<br />

O<br />

Br<br />

5<br />

Br<br />

N Cl


<strong>Synthesis</strong> <strong>of</strong> <strong>β</strong>-<strong>Vetivone</strong><br />

The last step <strong>of</strong> the oxidation reaction with PCC we have already seen in the synthesis <strong>of</strong> JASMONE, here a little<br />

reminder:<br />

O<br />

Thermodynamically more<br />

stable due to being<br />

a trisubstituted double<br />

bond.<br />

O<br />

MeLi<br />

Me<br />

Jasmone<br />

<strong>Synthesis</strong> <strong>of</strong> Posner JOC 1988, 53, 6031<br />

MeO<br />

O<br />

S<br />

O<br />

O<br />

MeTi(OiPr) 3<br />

THF<br />

Me CrO3, verd. H2SO4, Aceton<br />

OH<br />

Jones-Reagent<br />

CrO 3<br />

MeO<br />

HO<br />

Revisisiting: 1.4 Addition to chiral sulfoxides:<br />

1.4 Addition to chiral sulfoxides:<br />

µ O O<br />

µ Decreasing Dipole-<br />

R<br />

S<br />

Dipole interaction<br />

R<br />

O<br />

S<br />

R<br />

O<br />

Al (Hg)<br />

created by reaction<br />

<strong>of</strong> Al with HgCl 2<br />

Chirality transfer on Carbon<br />

OH<br />

R<br />

Al / Hg<br />

O<br />

S<br />

O<br />

S<br />

Zn 2<br />

O<br />

OH<br />

R<br />

R<br />

µ<br />

Hydride<br />

from above<br />

O<br />

R<br />

S<br />

O<br />

µ<br />

Cu-Organyl<br />

will attack from<br />

above!<br />

R<br />

DIBAL<br />

ZnCl 2<br />

O<br />

O<br />

S<br />

tertiary alcohol,<br />

H 2O is eliminated<br />

<strong>More</strong> <strong>resources</strong> <strong>available</strong> at<br />

www.chemistforchrist.de<br />

tertiary alcohol cannot be oxidized!<br />

Me<br />

O<br />

S<br />

O<br />

Add metal<br />

M = Zn, Ti<br />

O<br />

R<br />

O<br />

DIBAL<br />

R<br />

Raney-Nickel<br />

EtOH<br />

M<br />

O O<br />

S<br />

Cu-Organyl<br />

will attack from<br />

below!<br />

(Clayden, Greeves, Warren and Wothers, p.1266, reprint 2004, Oxford University press<br />

O<br />

S<br />

Me<br />

Me<br />

O<br />

O<br />

51% yield<br />

93% ee<br />

Metal complexes<br />

the oxygens and<br />

attack leads to<br />

the other isomer!<br />

OH<br />

R<br />

Al / Hg<br />

O R<br />

S<br />

O<br />

Reduced<br />

Dipol-Dipol<br />

Interaction!<br />

Hydride<br />

from above<br />

OH<br />

R


<strong>Synthesis</strong> <strong>of</strong> <strong>β</strong>-<strong>Vetivone</strong><br />

Enolate can only<br />

be formed here<br />

O<br />

O<br />

This bond is the precursor<br />

<strong>of</strong> the C=O bond<br />

Methyl group is supposed to<br />

direct the reactions to give<br />

diasteromerically pure compounds.<br />

Posner is using the same dihalide precursor as Storck (see above)<br />

allylic bromide is<br />

O<br />

O<br />

substituted faster<br />

Br<br />

KHMDS<br />

Br<br />

O<br />

KHMDS<br />

+<br />

O<br />

Mesitoylchloride<br />

DMAP<br />

<strong>Synthesis</strong> <strong>of</strong> Dauben<br />

JACS 1975, 97, 1622<br />

JACS 1977, 99, 7307<br />

O<br />

O<br />

OH<br />

O<br />

Br<br />

OH<br />

1 eq.MeMgr<br />

<strong>More</strong> <strong>resources</strong> <strong>available</strong> at<br />

www.chemistforchrist.de<br />

O<br />

Use <strong>of</strong> Mesitoylchloride prrevents the ketone from being attacked again by MeMgBr<br />

to afford the corresponding tert-alcohol.<br />

O<br />

CrO 3 . 2Pyr<br />

Ph 3P CH 2<br />

Using the Fuchs (from Corey-Fuchs reaction) Synthon:<br />

O<br />

OH<br />

Br<br />

CH 2 O<br />

O<br />

1. CrO 3<br />

2. SnCl 4<br />

Oxidation to<br />

aldehyde and<br />

cyclisation<br />

(no standard<br />

chemistry)<br />

O<br />

O<br />

K<br />

O<br />

O<br />

LiAlH 4<br />

PPh3 BF4<br />

CO2Et - -<br />

The Counterion BF4 is chosen because Cl and other halides <strong>of</strong>ten give very hygroscopic Salts and are <strong>of</strong>ten less<br />

soluble.<br />

CH 2<br />

OH


<strong>Synthesis</strong> <strong>of</strong> <strong>β</strong>-<strong>Vetivone</strong><br />

Possible <strong>Synthesis</strong>:<br />

EtO<br />

Br<br />

O<br />

PPh 3<br />

Br 2<br />

For a simple system:<br />

EtO<br />

O<br />

PPh 3<br />

Br<br />

O O<br />

1. LDA<br />

2.<br />

O<br />

EtO H<br />

EtO<br />

O<br />

OEt<br />

Diethylcarbonate<br />

PPh 3<br />

EtO<br />

O<br />

Br<br />

O O<br />

H<br />

O<br />

CO 2Et<br />

EtO<br />

PPh 3<br />

O<br />

<strong>More</strong> <strong>resources</strong> <strong>available</strong> at<br />

www.chemistforchrist.de<br />

H<br />

CO 2Et<br />

O<br />

H<br />

PPh 3<br />

NaH<br />

Wittig<br />

base<br />

Br<br />

O<br />

Ph 3P<br />

O<br />

EtO<br />

EtO<br />

O<br />

O<br />

O<br />

Br<br />

O<br />

H<br />

PPh 3<br />

CO 2Et<br />

CO 2Et<br />

H<br />

PPh 3<br />

PPh 3


<strong>Synthesis</strong> <strong>of</strong> <strong>β</strong>-<strong>Vetivone</strong><br />

For the real system:<br />

EtO<br />

O<br />

1. Ac 2O<br />

2, BF 3<br />

by elimination<br />

<strong>of</strong> the tert-alcohol<br />

O<br />

1. NaH<br />

2.<br />

O<br />

EtO H<br />

EtO<br />

EtO<br />

<strong>Synthesis</strong> <strong>of</strong> Büchi JOC 1976, 41, 3208<br />

H<br />

H<br />

pKa = 15<br />

base<br />

O<br />

O<br />

OH<br />

O<br />

H<br />

MeLi<br />

NaH<br />

EtO<br />

This double bond formed<br />

due to being the most stable<br />

one (4 Subst instead <strong>of</strong> 3)<br />

H<br />

O<br />

R H<br />

EtO<br />

<strong>More</strong> <strong>resources</strong> <strong>available</strong> at<br />

www.chemistforchrist.de<br />

O<br />

O<br />

H<br />

Only this enantiomer shown,<br />

to explain diasteroselectivity<br />

<strong>of</strong> the reaction.<br />

O<br />

OH<br />

H<br />

R<br />

The Fuchs synthon comes in anti in regard to<br />

the methyl group.<br />

CO 2Et<br />

- H 2O<br />

PPh 3<br />

CO 2Et<br />

H 2 / Pd<br />

EtO<br />

EtO<br />

O<br />

Ph 3P<br />

O<br />

CO 2Et<br />

O<br />

Wittig<br />

H<br />

CO 2Et<br />

This double bond<br />

is more e - poor than the<br />

other one (even though the<br />

difference might not be that<br />

big)<br />

Fulvenes<br />

Fulvenes can react as a micheal acceptor. The driving force <strong>of</strong> the reaction is the creation <strong>of</strong> an aromatic<br />

system:<br />

Nu<br />

R<br />

For example: Nu = R 2CuLi (Cuprates)<br />

R<br />

Nu<br />

6 π-electron<br />

System<br />

R


<strong>Synthesis</strong> <strong>of</strong> <strong>β</strong>-<strong>Vetivone</strong><br />

<strong>Synthesis</strong> <strong>of</strong> the starting material:<br />

O<br />

5<br />

<strong>Synthesis</strong>:<br />

H<br />

H<br />

1<br />

O<br />

O<br />

Rationale:<br />

Pseudo 1,3 diaxial interaction<br />

O<br />

O O (Enolate <strong>of</strong> acetaldehye is very<br />

difficult to create, either the use<br />

<strong>of</strong> enamine chemistry or reacting<br />

n-BuLi with THF might help).<br />

O<br />

n-BuLi<br />

O<br />

<strong>More</strong> <strong>resources</strong> <strong>available</strong> at<br />

www.chemistforchrist.de<br />

Li<br />

+<br />

OLi<br />

This is the reason why reactions including THF and n-BuLi<br />

are <strong>of</strong>ten cooled down to -78°C.<br />

O<br />

O O<br />

favored<br />

(2 methyl are eq, ax)<br />

+<br />

disfavored<br />

(2 methyl are ax, ax)<br />

O<br />

Ozonolysis + work up with<br />

Me 2S<br />

O<br />

Me 2CuLi<br />

O<br />

1 single<br />

diasteroisomer<br />

is formed<br />

The hydrogenation <strong>of</strong> only on <strong>of</strong> the double bonds in the furane ring pro<strong>of</strong>ed to be very difficult. The only<br />

reagent found to do the job was Diimine:<br />

Reminder <strong>of</strong> diimine reduction<br />

Usually gives an excellent Z/E ration (up to 99.9%)<br />

<strong>Synthesis</strong> <strong>of</strong> H N N H :<br />

DEAD:<br />

EtO2C N N CO2Et H 2O / NaOH<br />

Na O2C N N CO2 Na<br />

Very reactive! H N N H<br />

HO2C N N CO<br />

- CO<br />

2H<br />

2<br />

Problem: Intermediates and the diimine might be explosive (Not done in industry, largest scale might be 2 or 3<br />

mmol).<br />

H<br />

OH


<strong>Synthesis</strong> <strong>of</strong> <strong>β</strong>-<strong>Vetivone</strong><br />

OH<br />

Might help to selectively<br />

reduce one double bond<br />

1) Ac 2O<br />

2) NH=NH (Diimine)<br />

Desymmetrizing the<br />

the 5-membered cycle<br />

Usual text-book chemistry <strong>of</strong> opening epoxides:<br />

O<br />

Nu<br />

Nu<br />

This might change quite a bit with sterically hindered nucleophiles:<br />

OH<br />

With Grignard reagents, X (e.g. Br) might turn out to be the nucleophile:<br />

O<br />

R Mg X<br />

With BuLi Deprotonation might occur:<br />

n-Bu Li<br />

O O<br />

This reaction was used by Büchi:<br />

OH<br />

O<br />

nBuLi<br />

X<br />

OH<br />

O<br />

OH<br />

The other H would<br />

be too hindered to<br />

deprotonate<br />

OH<br />

Example<br />

OH<br />

<strong>More</strong> <strong>resources</strong> <strong>available</strong> at<br />

www.chemistforchrist.de<br />

O<br />

O<br />

O<br />

O<br />

O H<br />

R Mg Br<br />

OH<br />

O<br />

OH<br />

O<br />

X<br />

PPh 3<br />

Wittig<br />

Br<br />

OH<br />

<strong>β</strong>−<strong>Vetivone</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!