05.07.2013 Views

Jasmone 1 - ChemistforChrist

Jasmone 1 - ChemistforChrist

Jasmone 1 - ChemistforChrist

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Synthesis of JASMONE<br />

Synthesis of <strong>Jasmone</strong><br />

Reviews: Synth. Comm. 1974, 4, 265-287<br />

Synthesis, 1973, 397-412<br />

O<br />

<strong>Jasmone</strong><br />

O<br />

O<br />

Jasmolactone<br />

Firmenich (Company in Geneva producing fragrances):<br />

O<br />

Hedrione<br />

Ways to make a cis-Double bond:<br />

O<br />

R H<br />

H 2 / Lindlar<br />

Wittig<br />

R'<br />

PPh 3<br />

HBR 2<br />

NiP 2<br />

H 2<br />

Diimine Reduction:<br />

Usually gives an excellent Z/E ration (up to 99.9%)<br />

Synthesis of H N N H :<br />

DEAD:<br />

EtO2C N N CO2Et H 2O / NaOH<br />

R<br />

H<br />

R'<br />

BR 2<br />

More resources available at<br />

www.chemistforchrist.de<br />

H<br />

O<br />

CO 2Me<br />

Na O2C N N CO2 Na<br />

H<br />

Methyl-Jasmonate<br />

The syn compound has a strong smell<br />

Only one enantiomer is active<br />

cis-Selectivity<br />

90-95%<br />

85-90%<br />

98-99%<br />

98-99%<br />

Very reactive! H N N H HO2C N N CO<br />

- CO<br />

2H<br />

2<br />

Problem: intermediates and the diimine might be explosive (Not done in industry, largest scale might be 2 or 3<br />

mmol).


Synthesis of JASMONE<br />

Phauson-Khand reaction: Synthesis of cyclopentenones via [2+2+1] cycloaddition<br />

Net-reaction:<br />

R L<br />

R S<br />

Mechanism:<br />

R S<br />

R S<br />

R<br />

R L<br />

R L<br />

R S<br />

O<br />

R<br />

Co(CO) 3<br />

Co(CO) 3<br />

R L<br />

Red. Elimination<br />

Co(CO) 3<br />

Co(CO) 3<br />

Co 2(CO) 8<br />

Co 2(CO) 8<br />

CO<br />

- 2 CO<br />

Insertion in<br />

red bond<br />

R S<br />

R L<br />

R S<br />

R S<br />

R<br />

O<br />

R<br />

O<br />

Review: Angew. Chem. Int. Ed. 2005, 44, 3022<br />

Aldolkondensation:<br />

O O<br />

OH<br />

R S<br />

R L<br />

R<br />

Co(CO) 3<br />

R L<br />

Co(CO) 3<br />

2<br />

3<br />

O<br />

1<br />

O<br />

R L<br />

CO comes from Co 2(CO) 8<br />

R<br />

Co(CO) 3<br />

Co<br />

(CO) 3<br />

Co(CO) 3<br />

Co(CO) 3<br />

4<br />

R migh also end up here,<br />

mixtures are formed.<br />

-[Co 2(CO) 6]<br />

More resources available at<br />

www.chemistforchrist.de<br />

R<br />

Insertion in<br />

red bond<br />

+ CO<br />

O<br />

1,4 Dicarbonyl compound<br />

R S<br />

R<br />

R S<br />

R S<br />

R L<br />

(OC) 2Co<br />

R L<br />

O<br />

Co(CO) 3<br />

Co<br />

(CO) To create a<br />

2<br />

free coordination<br />

site<br />

R<br />

R L<br />

Co(CO) 3<br />

R


Synthesis of JASMONE<br />

O<br />

O<br />

O<br />

O<br />

R 1<br />

R 1<br />

1<br />

2<br />

O<br />

O<br />

O<br />

O<br />

R 1<br />

R 1<br />

R 2<br />

R 2<br />

S S +<br />

Synthesis by S. Mann Synth. Comm. 1985, 15, 1147-1151<br />

O<br />

O<br />

O N<br />

O O Li<br />

Solution: Hydrazone<br />

O H 2N NMe 2<br />

O<br />

O<br />

O<br />

R 2<br />

made out of:<br />

O<br />

+<br />

N<br />

H<br />

N NMe 2<br />

n-Bu Li<br />

Cl<br />

O<br />

R 1<br />

XMg<br />

O<br />

More resources available at<br />

www.chemistforchrist.de<br />

+<br />

Nu<br />

Br<br />

R 2<br />

O O R2<br />

O O R2<br />

Br R 2<br />

Enamine is a too weak nucleophile.<br />

O<br />

To weak as a nucleophile?!<br />

N NMe 2<br />

Li<br />

O<br />

R 2<br />

O O R2<br />

very strong nucleophile<br />

(charge is not delocalized)


Synthesis of JASMONE<br />

Chiral Hydrazones: Enders<br />

N N<br />

OMe<br />

Is made out of proline<br />

by reduction and protection<br />

with MeI<br />

1<br />

2<br />

3<br />

O<br />

1<br />

2<br />

O<br />

O<br />

3<br />

N OMe<br />

Me<br />

Weinreb-Amid<br />

1.) n-BuLi<br />

2.) E<br />

3.) H 3O , CuSO 4<br />

+ X<br />

Wittig-Reaction<br />

O<br />

O<br />

X<br />

O<br />

+<br />

+<br />

O<br />

XMg<br />

+<br />

O<br />

H 2 , Lindlar-Pd<br />

PPh 3<br />

Aledehyde reacts faster than the ketone!<br />

O<br />

Commercially available<br />

E<br />

*<br />

SAMP RAMP<br />

N<br />

H<br />

O Mg<br />

N O<br />

More resources available at<br />

www.chemistforchrist.de<br />

R<br />

Problem:<br />

E/Z Isomers<br />

S or R<br />

OMe Amino<br />

Methoxy<br />

Pyrolidine


Synthesis of JASMONE<br />

Synthesis:<br />

EtO<br />

O<br />

O<br />

O<br />

O<br />

O<br />

1<br />

2<br />

H 2N NMe 2<br />

O<br />

100%<br />

90%<br />

+<br />

N NMe 2<br />

O<br />

10%<br />

Enolate formed at Position: 2 1<br />

electron poor due<br />

to conjugation<br />

R<br />

R<br />

O O<br />

E 2<br />

O<br />

E 1<br />

:<br />

1. O 3<br />

2. Me 2S<br />

O<br />

O<br />

Ph 3P<br />

Sterically hindered Base<br />

(Kinetically controlled deprotonation)<br />

NaOH<br />

to create the<br />

Ylide<br />

: Thermodynamically controlled deprotonation<br />

R<br />

R<br />

For E 1 = Br<br />

For E 2 =<br />

Br<br />

BH 4<br />

H 3O<br />

- CO 2<br />

O<br />

EtO<br />

EtO<br />

O O<br />

O O<br />

E 2<br />

R<br />

E 1<br />

R<br />

n-Bu Li<br />

More resources available at<br />

www.chemistforchrist.de<br />

Li<br />

E 2<br />

1. n-BuLi<br />

2.<br />

O<br />

3. H2O + Cu(OAc) 2<br />

O<br />

75%<br />

SiMe3 N<br />

SiMe3 EtO<br />

EtO<br />

E 1<br />

O O<br />

O O<br />

NaOH<br />

70%<br />

44% yield<br />

LMDS<br />

R<br />

O<br />

OH<br />

O<br />

O<br />

What was deprotonated<br />

last will react first!<br />

E 1<br />

R<br />

Oxidation<br />

with PCC


Synthesis of JASMONE<br />

Synthesis of Larry Weiler Can. J. Chem. 1978, 56, 2301-2304<br />

O<br />

O<br />

OEt<br />

1. Base<br />

2.<br />

O<br />

O CO2Et<br />

O<br />

<strong>Jasmone</strong><br />

Br<br />

NaOH<br />

Synthesis of Welch JOC 1987, 52, 1440-1450<br />

O<br />

O<br />

CO 2Et<br />

1. NaH<br />

2. n-BuLi<br />

3.<br />

O P(OEt) O<br />

2<br />

Cl<br />

CO 2Et<br />

O P(OEt)2<br />

O<br />

NaOH<br />

O<br />

Cl<br />

O<br />

H 3O<br />

HgSO 4<br />

O<br />

O<br />

+<br />

OEt<br />

CO 2Et<br />

<strong>Jasmone</strong><br />

1. NaH<br />

2. n-BuLi<br />

3.<br />

Br<br />

O CO2Et<br />

More resources available at<br />

www.chemistforchrist.de<br />

H<br />

HgSO 4<br />

R H 2SO 4<br />

TMS<br />

KF<br />

R<br />

O O<br />

Lindlar / Pd<br />

OH<br />

TMS<br />

O CO2Et<br />

TMS<br />

OEt<br />

R<br />

Steric bulk<br />

hinders<br />

Hydrogenation<br />

O


Synthesis of JASMONE<br />

Additional information:<br />

Reaction of Perkow: JACS 1955, 77, 2871<br />

Perkow:<br />

O<br />

O<br />

Cl Cl<br />

O<br />

Cl Cl<br />

Arbusow:<br />

EtO<br />

EtO P<br />

EtO<br />

P(OEt) 3<br />

∆<br />

P(OEt) 3<br />

R Br<br />

Cl<br />

Cl<br />

O<br />

O<br />

EtO<br />

EtO P<br />

O<br />

P(OEt) 2<br />

P(OEt) 3<br />

Et<br />

Br<br />

HWE-Reagent (HWE = Horner-Wadsworth-Emmons)<br />

Synthesis by McMurry<br />

JOCS 1973, 38, 4367-4373<br />

JACS 1971, 93 5309-5311<br />

New approach to create the 1,4 diketone<br />

2<br />

3<br />

O<br />

1<br />

4<br />

O<br />

O<br />

+<br />

R<br />

O<br />

R<br />

R<br />

S S<br />

NO 2<br />

The conditions of the Nef-reaction are rather harsh:<br />

O O<br />

N<br />

H<br />

OH<br />

NaOH<br />

O O<br />

N<br />

H 2SO 4<br />

conc.<br />

reflux<br />

R<br />

R<br />

Cl<br />

Cl<br />

HO OH<br />

N<br />

O<br />

O<br />

O<br />

EtO<br />

EtO P<br />

O<br />

P(OEt) 2<br />

P(OEt) 2<br />

Et<br />

More resources available at<br />

www.chemistforchrist.de<br />

O<br />

H 2O<br />

R<br />

+ EtBr<br />

S S<br />

E<br />

E<br />

NO 2<br />

R<br />

R<br />

O<br />

Hg(II)<br />

1. NaOH<br />

2. H 2SO 4<br />

Nef-reaction<br />

Et<br />

Et<br />

O<br />

O<br />

R<br />

R


Synthesis of JASMONE<br />

McMurrys attention was therefore drawn to a publication of Wildsmith, who used much milder conditions to<br />

hydrolyze an oxime (which is not that far away from a nitro group):<br />

Synthesis by Wildsmith TL 1971, 195-198<br />

Utilisisation of TiCl3 for the Nef reaction: Tetrahedron Letters, 1971, 195-198<br />

N OH<br />

NH<br />

1.<br />

2. H<br />

O<br />

2O<br />

Oxime<br />

TiCl 3<br />

McMurry was lucky, the reaction worked:<br />

O O<br />

N<br />

nitro<br />

Synthesis:<br />

H<br />

NO 2<br />

NO 2<br />

TiCl 3<br />

base<br />

OH<br />

N N O<br />

H<br />

oxime imine<br />

NaNO 2<br />

NH<br />

O<br />

I<br />

2 eq.<br />

NO 2<br />

O<br />

HO Br<br />

HI<br />

or:<br />

1. TsCl<br />

2. I<br />

More resources available at<br />

www.chemistforchrist.de<br />

HO<br />

HO<br />

TiCl 3<br />

diglyme, ∆<br />

MeO O OMe<br />

Lindlar Pd<br />

O<br />

O<br />

O<br />

<strong>Jasmone</strong><br />

NaOH


Synthesis of JASMONE<br />

Synthesis by Givaudan, Helv. Chim. Acta 1978, 61, 990-997<br />

Not a very good Electrophile<br />

due to having a quite acidic<br />

Proton in an allylic Position<br />

Nu<br />

That's why he decided rather to use it as a nucleophile:<br />

That is present in a certain<br />

fraction in petrol refinery<br />

(The other compounds present<br />

in the mixture are usually<br />

hydrocarbons and do therefore<br />

not react - pure Butin is very expensive)<br />

O<br />

<strong>Jasmone</strong><br />

n-Bu Li Li<br />

O<br />

OH<br />

NaOH<br />

JONES-OX<br />

H<br />

MgBr<br />

O<br />

Br<br />

Jones Reagent:<br />

CrO 3, diluted H 2SO 4, acetone<br />

Mg<br />

Nef-reaction<br />

Synthesis of <strong>Jasmone</strong> by Stetter, Synthesis 1975, 379-380<br />

d 1<br />

O<br />

Might be:<br />

NO 2<br />

1<br />

O<br />

2<br />

OR<br />

CN<br />

3<br />

O<br />

4<br />

EtO<br />

S<br />

undesired<br />

side reaction<br />

O<br />

More resources available at<br />

www.chemistforchrist.de<br />

S<br />

R<br />

MgBr<br />

OH<br />

Lindlar-Pd,<br />

H 2<br />

HBr<br />

NaOH<br />

OH<br />

Br<br />

NO 2<br />

O<br />

Conj. Addition<br />

NO 2


Synthesis of JASMONE<br />

R<br />

O<br />

Ph H<br />

Ph H<br />

O<br />

O<br />

H<br />

+ cat. KCN<br />

+<br />

CN<br />

In the presence of:<br />

cat.<br />

CN<br />

R<br />

O<br />

CN<br />

O<br />

Ph H<br />

CN<br />

H<br />

CN<br />

Ph<br />

+ Ph<br />

O<br />

O<br />

R<br />

OH<br />

Ph<br />

Ph<br />

OH<br />

OH<br />

CN<br />

Ph<br />

OH<br />

CN<br />

O Will react much slower with CN , because the<br />

Carbonylfunction is stabilized by conjugation.<br />

Stetter: Biomimetic Reaction<br />

Tetrahedron Letters, 1974, 4505-4508<br />

Review: Org. React. 1991, 40, 407-496<br />

Biomimetic: Means copied from nature.<br />

Vitamine B1 (Thiamine)<br />

thiamine<br />

HO<br />

Cl -<br />

N +<br />

S<br />

HO<br />

NH 2<br />

N<br />

N<br />

N<br />

S<br />

Bn<br />

O<br />

R 1<br />

benzoine<br />

Ph<br />

Ph<br />

O<br />

Conj. Add.<br />

More resources available at<br />

www.chemistforchrist.de<br />

2<br />

3<br />

4 Me<br />

O<br />

Simplified by Stetter:<br />

HO<br />

S<br />

Thiazolium-Salt<br />

HO<br />

X<br />

N +<br />

H<br />

Ph<br />

NaOH<br />

N<br />

S<br />

Bn<br />

OH<br />

CN<br />

O<br />

Ph<br />

more acidic<br />

as the other<br />

O<br />

CN<br />

R<br />

R<br />

OH<br />

OH<br />

CN<br />

O<br />

CN<br />

Ph<br />

O<br />

O<br />

Me<br />

Me<br />

Today also chiral versions<br />

for asymmetric reactions.<br />

This proton is quite acidic!<br />

This anion replaces the role of the CN that we saw in the reaction above.


Synthesis of JASMONE<br />

Another way to see it is:<br />

Bn<br />

HO<br />

N<br />

S<br />

A nucleophilic Carbene<br />

This kind of carbenes are pretty important today:<br />

Ar The first carbene that was isolated, crystalized and characterized.<br />

N Today there are many chiral versions available that are used<br />

in asymmetric synthesis.<br />

N<br />

Ar<br />

N<br />

N<br />

Ar<br />

Ar<br />

Very reactive<br />

species! Prone<br />

to nucleophilic<br />

attack.<br />

N<br />

N<br />

Nu<br />

H<br />

N<br />

N<br />

N<br />

N<br />

Ar<br />

Ar<br />

6-π Electron aromatic<br />

system, that's why the carbene<br />

is so stable!<br />

Idea:<br />

Block the site prone<br />

to nucleophilic attack<br />

with very bulky substituents.<br />

The 2 plane where the 2 mesityl<br />

substituents are lying in are<br />

perpendicular to each other.<br />

More resources available at<br />

www.chemistforchrist.de<br />

Putting different charges on the<br />

same carbon atom can also be a<br />

way of representing a carbene!<br />

N<br />

N<br />

N<br />

N<br />

Mesityl- Adamantyl-<br />

The fact that carbenes can be used in catalysis as a Ligand is due to the fact that the 2 Electrons in the sp 2<br />

Orbital behave like lone pair and can thus donate electron density to the corresponding metal.<br />

R<br />

N<br />

N<br />

R<br />

behaves like a<br />

Donor e.g.<br />

R<br />

R P<br />

R<br />

Carbenes in catalysis are often named NHC-Ligands (N-Heterocyclic Carbenes) and offer many advantages<br />

compare to their Phosphorous counterparts:<br />

a) Environmentally more friendly (often non toxic)<br />

b) Not sensitive to oxidation<br />

c) Lower Molecular mass, for industrial purpose this means less gramms or kg of Ligand has to be added.


Synthesis of JASMONE<br />

O<br />

O<br />

O<br />

(with cat. Stetter reagent)<br />

+<br />

O<br />

BrMg<br />

Br<br />

HO<br />

More resources available at<br />

www.chemistforchrist.de<br />

+ DMF<br />

(already discussed<br />

see above)<br />

For adding a formyl DMF is the best reagent (Adding the Weinrebamide would more complicated).<br />

O<br />

H OH<br />

O<br />

H OH<br />

SO 2Cl 2<br />

DCC<br />

Me<br />

HN<br />

OMe<br />

O<br />

H Cl<br />

H<br />

O<br />

N<br />

Me<br />

OMe<br />

instable<br />

BrMg<br />

CO + HCl<br />

Historically Formyl groups were added with the help of Orthoesters:<br />

Et Et<br />

O<br />

R MgX<br />

Et O in the presence of :<br />

Heat > 35°C<br />

and evaporate<br />

R MgX<br />

Et<br />

OEt<br />

HC OEt<br />

OEt<br />

Orthoester<br />

the ether<br />

OEt<br />

HC OEt<br />

OEt<br />

Stetter chose to change the orthoester in making<br />

one of the OEt group to a better leaving group a<br />

Phenol (OPh). This facilitates the reaction and it can<br />

be done now at r.t.<br />

OEt<br />

HC OEt<br />

OEt<br />

+ PhOH HC<br />

OEt<br />

OEt<br />

OPh<br />

+ HOEt<br />

Utilisation of mixed othoformiates: Chem. Ber. 1970, 103, 643<br />

Synthesis of Stetter<br />

MgBr<br />

OEt<br />

HC OEt<br />

OPh<br />

O<br />

<strong>Jasmone</strong><br />

R<br />

O<br />

H<br />

H<br />

H 3O<br />

O<br />

R<br />

H<br />

OEt<br />

OEt<br />

Highly reactive,<br />

will react immediately<br />

with the grignard<br />

reagent.<br />

R<br />

R MgX<br />

OEt<br />

H<br />

OEt<br />

OEt O<br />

H3O OEt<br />

NaOH<br />

10 mol%<br />

Thiazolium-Salt<br />

O<br />

4<br />

3<br />

O<br />

2<br />

1<br />

O


Synthesis of JASMONE<br />

Different approach using Photo-reactions:<br />

O<br />

rotation of<br />

C-C bond<br />

O<br />

O<br />

HIO4 OH OH<br />

R<br />

O<br />

O<br />

O<br />

O<br />

O<br />

Problem:<br />

hν<br />

hν<br />

OH BrMg<br />

O<br />

O OH<br />

5<br />

4<br />

H<br />

3<br />

O<br />

1<br />

O<br />

2<br />

Biradikal<br />

Does it come from above<br />

or below?<br />

Answer: 50:50<br />

1,5 H-Shift<br />

Synthesis by Büchi JOC 1966, 31, 977-978<br />

O<br />

Molecules with the same oxidation state:<br />

N<br />

Imine<br />

Synthesis in 3 steps<br />

O<br />

O<br />

O<br />

O<br />

Acetale<br />

H<br />

N<br />

NH<br />

Aminale<br />

OH<br />

R<br />

OH<br />

OH<br />

OH<br />

R<br />

OH<br />

O O<br />

50 : 50<br />

Only this diastereoisomer<br />

will react with HIO 4, the other<br />

cannot react in a syn-fashion.<br />

More resources available at<br />

www.chemistforchrist.de<br />

N<br />

Enamine<br />

R<br />

O<br />

R<br />

O<br />

OsO 4<br />

R<br />

very difficult<br />

to synthesize<br />

OH<br />

OH<br />

OH<br />

R<br />

Enole / Enole-ether<br />

Why not putting the 2 OH<br />

groups together?<br />

To hydrolyze a furane is not that easy because it is aromatic, but it can be done!


Synthesis of JASMONE<br />

one step<br />

O<br />

n-Bu Li<br />

O<br />

O<br />

Li<br />

<strong>Jasmone</strong><br />

Br<br />

As discussed earlier not<br />

a good E but used anyway<br />

40%<br />

(3 steps)<br />

NaOH<br />

Synthesis of <strong>Jasmone</strong> by Hiyama, Bull. Chem. Soc. Jpn. 1980, 53, 169-173<br />

(Electrocylic reactions)<br />

More resources available at<br />

www.chemistforchrist.de<br />

O<br />

1<br />

O<br />

2<br />

3<br />

AcOH,<br />

H 2SO 4<br />

H 2O<br />

O<br />

4<br />

Problem: under the very acidic<br />

hydrolysis condition E/Z isomerization<br />

takes place! - 7% E Isomer is yielded<br />

In an electrocyclic reaction a ring is always broken or formed. Rings may, of course be formed by cycloadditions<br />

as well, but the difference with electrocyclic reactions is that just one new σ bond is formed (or broken) across<br />

the ends of a single conjugated π system.<br />

The types of pericyclic reactions are distinguished by the number of σ bonds made or broken.<br />

Cycloadditions<br />

2 new σ-bonds are formed<br />

... or broken<br />

∆σ = 2<br />

Types of pericyclic reactions<br />

Sigmatropic<br />

rearrangements<br />

One new σ-bonds is<br />

formed as another is<br />

broken.<br />

∆σ = 0<br />

Electrocyclic reactions<br />

One new σ-bonds is formed<br />

... or broken<br />

∆σ = 1<br />

Rules for electrocyclic reactions<br />

All electrocyclic reactions are allowed<br />

Thermal electrocyclic reactions involving (4n+2)π electrons are disrotatory:<br />

one group rotates clockwise and one anticlockwise<br />

Thermal electrocyclic reactions involving (4n)π electrons are conrotatory, in contrary reactions the two groups<br />

rotate in the same way:<br />

both clockwise both counterclockwise


Synthesis of JASMONE<br />

The Nazarow reaction: Short revision<br />

For more details see: Org. React. 1994, 45, 1-158<br />

O<br />

O<br />

R R<br />

O<br />

H<br />

hν (254 nm)<br />

benzene<br />

AcOH, H 3PO 4<br />

50°C<br />

R R<br />

Disrotatory Conrotatory<br />

O<br />

R R<br />

R R<br />

In its simplest form the Nazarow cyclization is the ring closure of a doubly α,β unsaturated ketone to give a<br />

cyclopentenone.<br />

O<br />

H<br />

R R<br />

O<br />

H<br />

R R<br />

R<br />

empty<br />

OH<br />

More resources available at<br />

www.chemistforchrist.de<br />

R<br />

O<br />

R R<br />

array of five p orbitals<br />

containing 4p electrons<br />

One of the five π orbitals involved is empty, so the cyclization is a 4π electrocyclic reaction and the orbitals<br />

forming the new σ bond must interact antarafacially.<br />

H<br />

O<br />

OH<br />

O<br />

OH<br />

OH<br />

R R<br />

R<br />

π 4<br />

a<br />

R<br />

H<br />

R<br />

R<br />

R R<br />

R R<br />

cyclopentenone<br />

Usually the double bond is formed at the site which is higher substituted (thermodynamically more stable<br />

product) to get the double bond at the less substituted site can also be done by introducing a siliconsubstituent:<br />

O<br />

TMS R<br />

Lewis acid<br />

LA<br />

O<br />

TMS R<br />

Nazarow<br />

LA<br />

O<br />

TMS R<br />

Anion<br />

H 3O<br />

O<br />

R


Synthesis of JASMONE<br />

Synthesis of Hiyama Bull. Chem. Soc. Jpn 1980, 53, 169-173<br />

O<br />

OH<br />

O<br />

HCOOH,<br />

H 3PO 4<br />

Difficult mechanism:<br />

Tautomerization,<br />

Isomerization,<br />

Eliminatation....<br />

For more details consult<br />

literature given.<br />

Some commercially available 5-memebered rings:<br />

O O O<br />

O<br />

O<br />

O<br />

OH<br />

O<br />

is like other 1,3 diketones<br />

in equilibrium with its<br />

enol.<br />

O H<br />

OH<br />

H<br />

O<br />

More resources available at<br />

www.chemistforchrist.de<br />

O<br />

O H<br />

best nucleophile<br />

in the mixture<br />

cyclopentane-1,3-dione<br />

Is an important starting material<br />

for the industrial synthesis of<br />

steroids.<br />

O O<br />

The Keto-Enol Tautomerization can be seen in the 1 H-NMR.<br />

O<br />

Examples for E :<br />

O<br />

soft E<br />

E<br />

R I<br />

OH<br />

hard E<br />

Vinylogous Behaviour:<br />

O<br />

OH<br />

behaves like a<br />

carboxlic acid<br />

pK a = 9-10<br />

O<br />

OH<br />

O<br />

OH<br />

E<br />

O<br />

,<br />

EtO Cl<br />

Synthesis by Piers et al Can. J. Chem. 1982, 60, 1256-1263<br />

O O<br />

O<br />

R<br />

O<br />

O<br />

This one also<br />

O<br />

O<br />

O<br />

OH<br />

H<br />

O O


Synthesis of JASMONE<br />

O<br />

O<br />

NaOH<br />

Even easier:<br />

O<br />

O<br />

O<br />

O<br />

Cl<br />

soft E<br />

O<br />

Na O<br />

EtOH, H<br />

(due to Vinologous<br />

behaviour same<br />

conditions can be<br />

used as for Carboxylic<br />

acids!)<br />

O<br />

OEt<br />

Me<br />

More resources available at<br />

www.chemistforchrist.de<br />

O<br />

Br 2, PPh 3<br />

(due to Vinologous<br />

behaviour same<br />

conditions can be<br />

used as for Carboxylic<br />

acids!)<br />

MeLi<br />

This is a electron rich<br />

double bond and therefore<br />

Me 2CuLi doesn't react nicely<br />

with this molecule.<br />

Review on conjugated addition of Organocopper reagents: Org. React. 1972, 19, 1-113<br />

Org. React. 1992, 42, 135-631<br />

Revisit on Organocopper reagents:<br />

Homocuprates (Gilman reagents): Me2CuLi, Bu2CuLi<br />

e.g. Me2CuLi, Bu2CuLi<br />

Mixed homocuprate: RCuR'Li<br />

Mixed homocuprates are used in order not to waste halt of the Substituent R:<br />

R MgX + CuCl 2 R Cu + RCl + MgXCl<br />

MeCuBuLi (Bu-Substituent is transfered),<br />

transfered!)<br />

R<br />

Li<br />

Cu R'<br />

Heterocuprates: RCuXR'<br />

e.g. -SPh, -OtBu (these substituents are never transfered)<br />

R Li + CuSPh RCuSPhLi<br />

Me<br />

Me<br />

OH<br />

OEt<br />

O<br />

O<br />

O<br />

Me<br />

Br<br />

Br<br />

H<br />

Me 2CuLi<br />

(The R substituent is transfered, alkynes are never<br />

R3CuLi2 (higher order cuprates)<br />

Those were discovered by following experiment: MeLi and CuI were mixed in various rations and the Me-<br />

Singlet in the 1 H-NMR was observed: When mixing MeLi and CuI in a 3:1 ratio only a single species could be<br />

seen.<br />

Cyanocuprates (Lipshutz cuprates) R3CuCNLi2<br />

2 RLi + CuCN R 2CuCNLi 2 (R 2CuLi, LiCN)<br />

Cyanide (CN) acts as the 3rd R group in relation to the creation of higher order cuprates.


Synthesis of JASMONE<br />

The LiI that is created while reacting RLi and CuI is absolutely necessary for reactions to take place!<br />

The cuprates have a shape of a plane square, therefore reactions can done highly<br />

diastereoseletive because cuprates are quite sensitive to sterical effects:<br />

Cuprate<br />

O<br />

Example for an application of organocopper reagents: 1,4 Addition to Pyridinium-Salts<br />

R'<br />

N<br />

R'<br />

O<br />

R Cl<br />

N<br />

R O<br />

R'<br />

RMgX<br />

R 2CuLi<br />

More resources available at<br />

www.chemistforchrist.de<br />

N<br />

R O<br />

R O<br />

Construction of molecules that resemble natures NAD, NADH<br />

Synthesis of Grieco JOC, 1972, 37, 2363-2364<br />

O<br />

C<br />

Cl Cl<br />

Made out of:<br />

, H<br />

Heating and destillation<br />

of cyclopentadiene<br />

O<br />

C<br />

Cl Cl<br />

O<br />

Cl<br />

Cl<br />

[2+2]<br />

[2+2]<br />

Bayer Villinger<br />

AcOH, H 2O 2<br />

CH 2N 2<br />

O<br />

C<br />

Cl Cl<br />

stable<br />

O<br />

C<br />

H H<br />

O<br />

Cl<br />

Cl<br />

O<br />

Cl<br />

O<br />

R<br />

*<br />

N<br />

*<br />

Made out of:<br />

Not stable,<br />

reacts with<br />

itself:<br />

Cl<br />

Cl<br />

O<br />

O<br />

O<br />

R<br />

R'<br />

Cl<br />

Cl Cl + Zn or<br />

Cl<br />

O<br />

O<br />

O<br />

Cl<br />

Cl H NEt 3


Synthesis of JASMONE<br />

O<br />

O<br />

DIBAL-H<br />

For a lactone the best<br />

reducing agent to a lactole<br />

is DIBAL-H, for an ester this<br />

might not work so well!<br />

H<br />

OH<br />

O<br />

Thermodynamically more<br />

stable due to being<br />

a trisubstituted double<br />

bond.<br />

O<br />

under the acidc<br />

conditions:<br />

isomerization<br />

MeLi<br />

Me<br />

<strong>Jasmone</strong><br />

O<br />

O<br />

OH<br />

More resources available at<br />

www.chemistforchrist.de<br />

OH<br />

O<br />

CrO 3, verd. H 2SO 4, Aceton<br />

Jones-Reagent<br />

Me CrO3, verd. H2SO4, Aceton<br />

OH<br />

Jones-Reagent<br />

CrO 3<br />

HO<br />

tertiary alcohol,<br />

H 2O is eliminated<br />

Wittig<br />

tertiary alcohol cannot be oxidized!<br />

The textbook Clayden, Greeves, Warren and Wothers (Oxford University press, p. 951, 2004 reprint) proposes<br />

a different mechanism:<br />

OH (VI)<br />

OH<br />

O<br />

R Li<br />

R<br />

O<br />

CrO3 R (VI)<br />

CrO<br />

orange<br />

3<br />

OH<br />

R CrO 3<br />

H<br />

O OH<br />

Cr<br />

O O<br />

R<br />

H<br />

[3,3]<br />

HO OH<br />

Cr<br />

O O<br />

H<br />

H R<br />

Me<br />

O<br />

(III)<br />

CrO3 R<br />

+ Cr(IV)<br />

green<br />

PPh 3<br />

OH<br />

Me<br />

Me<br />

gives Cr(III) and Cr(VI)<br />

by disproportionation.<br />

The first step is the formation of a chromate ester but this intermediate has no proton to lose, so it transfers<br />

the chromate to the other end of the allylic system where there is a proton. The chromate transfer can be<br />

drawn as a [3,3] sigmatropic rearrangement.<br />

Very general method:<br />

R' MgBr<br />

O<br />

R<br />

HO<br />

R'<br />

R'<br />

R H<br />

R<br />

OH<br />

Ox<br />

R'<br />

R<br />

O


Synthesis of JASMONE<br />

Cope Rearrangement<br />

1 2<br />

1<br />

2<br />

3<br />

4<br />

5<br />

Cope<br />

2<br />

1 2<br />

1<br />

3 4<br />

Synthesis of Descotes Synthesis 1975, 118-119<br />

3<br />

O<br />

3<br />

4<br />

2 6<br />

H<br />

1<br />

5<br />

4<br />

2 6<br />

H<br />

1<br />

CO 2Et<br />

CO 2Et<br />

5<br />

much<br />

cheaper<br />

5<br />

H<br />

Z<br />

Cope<br />

O O<br />

YZn X<br />

CH2<br />

EtO 2C CO 2Et<br />

CO 2Et<br />

EtO 2C CO 2Et K 2CO 3 EtO 2C CO 2Et Br<br />

Br<br />

+<br />

Br<br />

EtO 2C CO 2Et<br />

2 steps as<br />

explained above<br />

(Grignard, Oxidation)<br />

CO 2Et<br />

+ K 2CO 3<br />

intramolecular<br />

reaction<br />

(ring closure)<br />

More resources available at<br />

www.chemistforchrist.de<br />

Simmons Smith<br />

Br EtO 2C CO 2Et<br />

Technique to enlarge<br />

cyclic systems<br />

Br<br />

<strong>Jasmone</strong><br />

K 2CO 3<br />

EtO 2C CO 2Et<br />

Br


Synthesis of JASMONE<br />

Br<br />

Br<br />

Br<br />

+<br />

CO 2Et<br />

CO 2Et<br />

CO2Et CO2Et S N2'<br />

K2CO3 CO2Et ?<br />

DMF CO2Et CO 2Et<br />

CO 2Et<br />

∆<br />

150°C<br />

CO2Et ?<br />

CO2Et Industrial Synthesis (Firmenich) Helv. Chim. Acta 1978, 61, 2524-2529<br />

O<br />

+ Br 2 (hν)<br />

(heat in a radical<br />

fashion)<br />

Br<br />

Br<br />

+<br />

Br<br />

Br<br />

Br<br />

Br<br />

E/Z mixture<br />

and..<br />

+<br />

Br<br />

Br<br />

via the<br />

enolate<br />

More resources available at<br />

www.chemistforchrist.de<br />

O<br />

O<br />

> 150°C<br />

The Problem is that during the radical bromination epoxides are involved due to the presence of air and one<br />

day the plant that produced <strong>Jasmone</strong> via this pathway was blown up and since then this reaction is not used<br />

industrially anymore.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!