13.07.2013 Views

EECE488: Analog CMOS Integrated Circuit Design Set 5 Current ...

EECE488: Analog CMOS Integrated Circuit Design Set 5 Current ...

EECE488: Analog CMOS Integrated Circuit Design Set 5 Current ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

SM<br />

<strong>EECE488</strong>: <strong>Analog</strong> <strong>CMOS</strong> <strong>Integrated</strong> <strong>Circuit</strong> <strong>Design</strong><br />

<strong>Set</strong> 5<br />

<strong>Current</strong> Mirrors<br />

Shahriar Mirabbasi<br />

Department of Electrical and Computer Engineering<br />

University of British Columbia<br />

shahriar@ece.ubc.ca<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 1


SM<br />

Applications of <strong>Current</strong> Sources<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 2


SM<br />

Simple Resistive Biasing for <strong>Current</strong> Source<br />

nCox<br />

W R<br />

IOUT ≈ ( −<br />

2 L R +<br />

µ<br />

2<br />

2 2<br />

VDD<br />

VTH<br />

)<br />

R1<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 3


• Output current depends on:<br />

SM<br />

– Supply<br />

– Process<br />

– Temperature<br />

Problems<br />

• What if the bias voltage is independent of supply voltage?<br />

• Is there a way of generating reliable currents?<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 4


SM<br />

Basic Idea<br />

Typically we assume that one precisely defined current source is<br />

available and other current sources copy their current from this precise<br />

source.<br />

I out is a function of gate-source voltage<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 5


SM<br />

Basic Idea<br />

This structure is called current mirror<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 6


SM<br />

Question<br />

• What happens if the two transistors in the basic current mirror<br />

have different sizes?<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 7


SM<br />

Example<br />

Assuming all the transistors are in saturation region, find I out:<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 8


SM<br />

<strong>Current</strong> Mirrors: Amplifier Bias Example<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 9


SM<br />

Board Notes<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 10


SM<br />

<strong>Current</strong> Mirrors: Signal Amplification Example<br />

• Find the small signal voltage gain of the following circuit.<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 11


SM<br />

Effect of Channel Length Modulation<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 12


SM<br />

Cascode <strong>Current</strong> Mirror<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 13


SM<br />

Board Notes<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 14


SM<br />

Cascode <strong>Current</strong> Mirror<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 15


SM<br />

Cascode <strong>Current</strong> Mirror<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 16


SM<br />

Cascode <strong>Current</strong> Mirror<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 17


SM<br />

Board Notes<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 18


SM<br />

Cascode <strong>Current</strong> Mirror Biasing<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 19


SM<br />

Cascode <strong>Current</strong> Mirror Biasing<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 20


SM<br />

<strong>Current</strong> Mirror Biasing<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 21


SM<br />

Basic <strong>Circuit</strong> to Generate Supply Independent <strong>Current</strong><br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 22


SM<br />

Supply Independent <strong>Current</strong><br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 23


SM<br />

Board Notes<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 24


SM<br />

Supply Independent <strong>Current</strong><br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 25


SM<br />

Start-up Problem<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 26


SM<br />

Start-up Problem<br />

V > V<br />

TH1<br />

+ VTH<br />

5 + VTH<br />

3 < VDD<br />

and VGS1<br />

+ VTH<br />

5 + VGS<br />

3<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 27<br />

DD


SM<br />

Board Notes<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 28


SM<br />

Active <strong>Current</strong> Mirrors<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 29


SM<br />

Active <strong>Current</strong> Mirrors in Differential to Single-Ended<br />

Amplifiers<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 30


SM<br />

Differential to Single-Ended Amplifiers<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 31


SM<br />

Calculation of G m<br />

I D1 = I D3 = I D 4 = g m1,2V in / 2 I D2 = −g m1,2V in /2<br />

I out = I D2 − I D4 = −g m1,2V in ,⇒ G m = g m1, 2<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 32


SM<br />

Small-Signal Gain<br />

A v ≈ g m 1,2 (r o2 || r o4 )<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 33


SM<br />

Common Mode Characteristics<br />

A CM = ∆V out<br />

∆V in,CM<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 34


SM<br />

A CM ≈<br />

Common Mode<br />

1<br />

− ||<br />

2gm3,4 ro3,4 2<br />

1<br />

+ RSS 2gm1,2 =<br />

−1<br />

1 + 2g m1,2 R SS<br />

g m1,2<br />

g m 3, 4<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 35


SM<br />

Common Mode<br />

CMRR = A DM<br />

A CM<br />

= g m1, 2(r o1,2 || r o3,4) g m 3,4 (1 + 2g m1,2 R SS )<br />

g m1,2<br />

= g m 3,4 (r o1, 2 || r o3,4 )(1 + 2g m1, 2 R SS )<br />

<strong>EECE488</strong> <strong>Set</strong> 5 - <strong>Current</strong> Mirrors 36

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!